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Abstract The paper considers standard fluid models of multi-product multiple-
server production systems where setup times are incurred whenever a server changes
product. We consider a general approach to the problem of optimizing the long-run
average cost per unit time that consists of first determining an optimal steady state
(periodic) behavior and then to design a feedback scheduling protocol ensuring conver-
gence to this behavior as time progresses. In this paper, we focus on the latter part and
introduce a systematic approach. This approach gives rise to protocols that are cyclic
and distributed: the servers do not need information about the entire system state.
Each of them proceeds basically from the local data concerning only the currently
served queue, although a fixed finite number of one-bit notification signals should
be exchanged between the servers during every cycle. The approach is illustrated by
simple instructive examples concerning polling systems, single server systems with
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processor sharing scheme, and the re-entrant two-server manufacturing network with
non-negligible setup times introduced by Kumar and Seidman. For the last network
considered in the analytical form, some cases of optimal steady-state (periodic) behav-
ior are first recalled. For all examples, based on the desired steady state behavior and
using the presented theory, we designed simple distributed feedback switching con-
trol laws. These laws not only give rise to the required behaviors but also make them
globally attractive, irrespective of the system parameters and initial state.

Keywords Hybrid dynamical systems · Optimal switched control ·
Control of networks · Fluid models · Queueing

1 Introduction

The paper deals with standard fluid models of production systems. We represent the
system as a network that receives incoming product flows, interpreted as deterministic
fluid streams, and processes them by means of servers. The servers move products
(also called work) among internal buffers and ultimately dispatch work into the exte-
rior of the network. The servers can alter their locations, which requires nonzero setup
times.

Such models are used to describe certain aspects of flexible manufacturing systems,
computer, communication and transport networks, chemical kinetics, etc. [2,22,32].

Recently, a great deal of research was concerned with these models, see e.g.,
[5,6,8,12,18,35,36,38] and the literature therein. It was shown that they may exhibit
unexpectedly complicated and counter-intuitive behavior, especially if decentralized
control policies and non-zero setup times are involved. For instance, it was shown via
computer simulation in [3] that some standard policies may cause instability: the total
amount of work increases without limits even if each server has enough capacity to
cope with the incoming flows. In [23], it was rigorously proved that the clearing policy
(serve the buffer until emptying) is unstable for very simple networks even if the setup
times are zero. In [32], clear a fraction (CAF) policies were introduced and shown to
achieve stability for single server systems, as well as for multi-server networks such
that under some enumeration of the servers, work visits them in the ascending order. If
such enumeration is impossible (which holds for e.g., re-entrant networks), CAF pol-
icies may fail to stabilize the system [23]. In some cases, the so-called gated policies
proposed in [20,21] are able to overcome this drawback. The main idea behind them is
to assign a certain level (gate) to every buffer and switch the servers proceeding from
not the entire backlog in the buffer but its excess over the gate. This shortens the time
of buffer service, thus reducing the likelihood of the detrimental situation underlying
instability: a server wastes its capacity due to deficiency in work supply from another
server since the latter is occupied by another activity in a side buffer for a too long
time. However, gated policies carry potential for increase of the mean number of jobs
in the system, which is undesirable from a performance point of view.

In [34], a universal decentralized switching strategy was proposed and shown to
stabilize very general multiple server networks with time-varying rates of the outer
inflows. The strategy arranges the system operation in repeated cycles of a fixed
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duration T ; within any cycle, every server visits each of the associated buffers only
once in a pre-specified cycle-invariant order. From any buffer, the server removes the
amount of work identical to the cumulative network income brought for time T by
all inflows that affect, either directly or indirectly, this buffer. If the buffer contains
not enough work to do so, it is drained out. The next setup may be prolonged to fully
consume the time reserved for the step. This strategy not only keeps wip (= ‘work
in progress’ = the total amount of work in the system) bounded but also makes all
trajectories eventually periodic in the case of constant arrival rates. However, it does
not provide a machinery of wip reduction. For example, the more work in the system
initially, the comparably more work remains afterwards. This is undesirable from a
performance point of view as well.

The above references display characteristic features of other works on feedback
control of fluid networks (see e.g., [11] for a recent reference). They start from more
or less heuristically designed policies and proceed with study of the resultant system
behavior. Performance optimization, when treated, is typically limited to the choice of
the parameters for a pre-specified policy, with a few exceptions [1,7,9,13,19] which
focused on two buffer systems. However, the issue of performance becomes one of
the major concerns as a result of complication of manufacturing processes and cost
increase. Though optimal scheduling of systems with setups has an extensive litera-
ture, it is primarily focused on open-loop schedules and basically assumes a static and
certain environment (see, e.g., [33] and the literature therein). This approach, being
a backbone of production systems planning, is not suited well to deal with real-life
dynamic and uncertain environments, which causes a reported gap between the theory
and practice [31]. The basic tool to cope with these uncertainties is feedback under
which decisions are made on an ongoing basis from the current events in the system.

A systematic approach to bridge this gap between optimal open-loop scheduling and
feedback switching control protocols was proposed in [26,27]. Assuming a pre-deter-
mined periodic process that represents the desired open-loop schedule, the objective
of the approach is to develop a general technique to design a feedback switching policy
that not only gives rise to this periodic process but also makes it globally attractive.
The last property is of especial interest if the given process is optimal or nearly opti-
mal. Though most schedule optimization problems are NP hard, relatively effective
optimization techniques have been developed to treat them [31,33]. The main concern
of this paper is not optimization, but is a stable feedback generation of a desired peri-
odic process. This is similar to the standard hard problem in control engineering, i.e.,
excitation of the oscillations in a technical device: a feedback controller should make
the desired cyclic trajectory globally attracting.

A Lyapunov-type technique of the above kind was proposed in [27]. The resultant
controllers are central: every server has access to the entire system state. In certain
cases, decentralized controllers driven by only local data are needed. In [26], it was
shown, by means of an example, that within the new view of the problem introduced
in [27], decentralized controllers can be derived as well. The discussed technique
relies on computation of a Lyapunov function and suffers much from the ‘curse of
dimensionality’.

To break the curse, a computationally non-demanding Poincaré-type technique
was reported in [10] in a preliminary form. It is aimed at designs of decentralized
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controllers and offers to partition the required process into relatively simple phases,
each associated with a specific combination of activities of the servers. The policy is
to periodically repeat the resultant cycle of the phases, each governed by an individual
control rule on the basis of local information. When the server completes the task for
the phase, it broadcasts one-bit notifications to the other servers and proceeds to the
next phase as soon as it collects all notifications. Design of the phase control rules
(PCR) is the core occupation. According to [10], the design objective is confined into
the phase itself: it should be ensured that a certain set of properties hold for the phase
dynamical operator, which maps the system state at the phase beginning into that at its
end. This set is elaborated so that these properties are inherited by compositions and
so inevitably hold for the monodromy operator (MO). This is the composition of the
dynamical operators over the entire cycle of the phases; the system in fact evolves via
iterations of the MO. The above properties are such that being established for the MO,
they guarantee the global stability of the equilibrium point of the iteration process
and as a result that of the required periodic behavior. The curse becomes broken by
avoiding computation and analysis of the entire MO, which is typically cumbersome
up to intractable. In [10], this technique was probed by application to an example, also
treated in [26]. It concerns the Kumar–Seidman system [23] and a periodic process
optimal for only particular numerical values of the system parameters. Under them,
this process features special properties, unnecessary in general, which were essentially
utilized in the design and proofs.

This paper offers an extended and systematic presentation of this technique and
demonstrates, by means of examples1, that it fits to handle the entire range of cases
encountered in the optimization problem. To the latter end, we start with polling sys-
tems, i.e., ones with a single server attending several buffers typically, in a cyclic order.
Such systems have a wide range of applications and have been the subject of extensive
research; see e.g., [24,37,39] for surveys of this area. Mostly concerned were the per-
formance of specific policies and performance estimates. Only a relatively small body
of research dealt with optimal designs under non-zero setup times, with the focus on
open-loop schedules and efficient visit orders, where only the latter topic was partly
handled with the aid of feedback protocols; see e.g., [4,14–16,24] and the literature
therein.

When dealing with polling systems, we mean to highlight the ease of application
of the proposed theory, which promises well regarding more complicated networks.
Our choice of the desired periodic behavior is based on many studies showing that
for a whole variety of performance criteria (e.g., time-averaged wip, maximum wip,
throughput, etc.), service at the rates maximal under the current circumstances2 is
required for optimal system performance; see e.g., [9,24]. So we assume that the
pre-specified process has this property, with no other assumptions being imposed.
A simple distributed feedback switching control law is designed that not only gives

1 Application of this technique to the general multiple-server fluid networks is the topic of ongoing research.
As compared with the examples, this requires essentially more technical developments, which makes the
general case not the best arena for the first presentation of the approach.
2 i.e., at the maximal rate if the served buffer is not empty, and at the input rate otherwise.
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rise to the required steady state behavior but also makes it globally attractive, irrespec-
tive of the system parameters.

Being of self-importance, polling systems are not interesting enough for illustra-
tion of the general theory: for these systems the phase dynamical operators are affine,
whereas the general theory deals with non-affine ones. As the simplest example involv-
ing non-affine operators, we extend the above results on a generalization of the polling
system where the server can simultaneously serve several buffers. This model is of
interest for e.g., high speed data and computer networks [40], transport and manufac-
turing networks [28], etc., with the simplest example being an intersection of two-way
roads.

Our third illustration concerns the more complicated two-server re-entrant network
introduced by Kumar and Seidman [23] and traditionally employed as a testbed in the
area. We first recall the analytical solution to the problem of optimizing the system
behavior, as presented in [25]. Next, we design a distributed feedback switching control
law that gives rise to the optimal steady state behavior and makes it globally attractive.
Compared with [10], this requires new phase control rules, with an emphasis on the
concept of the flexible phase. This is a phase that encompasses several activities of
every server and within which the servers are given the freedom to proceed to the next
activity independently of each other and based on only the local data, thus achieving
complete decentralization of control.

The body of the paper is organized as follows. Section 3 presents the proposed
general guidelines for switching policies design and the related mathematical back-
ground.3 To make presentation of these specific guidelines, Sect. 2 introduces a rather
general model of multi-product multiple server system with setups.4 Sections 4, 5, and
6 deal with polling systems, single server networks with processor sharing scheme,
and the Kumar–Seidman system, respectively. There are three appendices providing
the technical facts and their proofs.

2 General multi-product multiple server system with setups

We consider a system that receives F product flows, interpreted as fluid streams, and
processes them by means of S servers. The servers move products among N internal
buffers and ultimately dispatch them into the exterior of the system. We do not con-
sider the case where a job may dynamically choose the server to be processed at, and
assume that the production routes are specified a priory. A setup activity is required
to switch a product type at any server.

This system is represented by a directed graph with the set of nodes
N := {1, . . . , N ,�1, . . . ,�F ,�out}. Here �i is the source of the i th flow and �out
is the exterior where work is ultimately delivered. Other nodes represent buffers enu-
merated by n ∈ [1 : N ]. The graph arcs display the paths along which work is moved.
Any server s has its own service area Is ⊂ [1 : N ], which form a partition of the set

3 This material was partly reported in [10].
4 These guidelines can be extended and the proposed mathematical background can be directly applied to
even more general systems.
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of buffers. The sources � j have no incoming arcs, the exterior �out has no outgoing
arcs. There is only one arc starting at n �= �out; its end is denoted by next(n). The
graph contains no cycles and every buffer n has incoming arcs. The rate λi ≥ 0 of the
flow from the source �i is constant. Any server can serve only one buffer at a given
time. Service of buffer n consists in withdrawal of its content to next(n) at a rate
0 ≤ un(t) ≤ μn , where μn > 0 is given. Switching the server from n′ to n′′ consumes
σn′→n′′ > 0 time units.

The (feasible) state (X, Q) consists of the continuous state X = {xn ≥ 0}N
n=1 and

the discrete state Q = {
qs ∈ Is ∪ {�}}S

s=1. Here xn is the content of buffer n and qs

is the state of server s, i.e., qs either indicates the buffer served or is the ‘switching
in progress’ symbol �. A process refers to a feasible evolution of the feasible state
[X (t), Q(t)] over time, i.e., evolution such that

1. any function qs[·] is piece-wise constant and in the chronological list of its values,
any two successive ‘buffer’ entries n′, n′′ are different n′ �= n′′ and separated by
the ‘switching’ one �, which is maintained no less than σn′→n′′ time units5;

2. the function X (·) is absolutely continuous and for any buffer n ∈ [1 : N ],

xn(t) ≥ 0, ẋn(t) =
∑

j∈N:n=next( j)

u j (t) − un(t), where u�i (t) ≡ λi

and for j �= �i ∀i, 0 ≤ u j (t) ≤ μ j ∀t and u j (t) = 0 whenever qs �= j ∀s.

In practice, the system is usually governed by a switching policy. It endows each
server with a rule to determine the current service rate un(t) and to decide when this
service should be terminated and which buffer should be served next. The problem to
be treated in this paper is as follows:

(P) Given a periodic process π0, a switching policy should be designed such that
• The process π0 is generated by this policy;
• All processes converge to π0 as t → ∞.

For the definition of process convergence, we refer the reader to [35,36]. Briefly, this
means asymptotic convergence. Notice that a necessary and sufficient condition for
existence of periodic processes is provided in [17,34]: all servers should have enough
capacity to process the job inflow.

Given a switching policy, the process is determined by the initial state. So the first
requirement means that there exists an initial state that gives rise to π0. By the second
requirement, sooner or later, the system evolution closely follows π0 irrespective of
the initial state. This is of especial interest if π0 is suboptimal. Then the policy ensures
automatic transition to the suboptimal system behavior. The main concern of this paper
is not determining optimal system behavior, but is generating stable feedbacks that
make all processes converge to a given desired periodic processes. So in what follows,
the process π0 is treated as pre-specified.

5 Dropout of ‘no less than’ might seem more natural. ‘No less than’ is taken for the technical convenience.
This is possible since prolonging the switching period is equivalent to continuing the previous service at
the zero rate.
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3 Transformation of a periodic process into a switching policy: general
guidelines and mathematical background

According to [10], transformation of the periodic process π0 = [X0(·), Q0(·)] into a
switching policy is arranged along the following lines:

• The periodic process π0 is partitioned into finitely many phases

C = P0,P1,P2, . . . ,Pc−1, (1)

each associated with the discrete state transitions involved;
• Every phase is equipped with a phase control rule (PCR) to govern the system

within the phase;
• The entire policy is to progress through the periodically repeated sequence of

phases (1) while applying the relevant PCR within every phase;
• When a server completes the task for the phase, it broadcasts one-bit notification

to the others and proceeds to the next phase as soon as it collects all notifications.

To promote decentralization, PCR are welcome to drive every server on the basis of
only its own local data (i.e., that about the currently served buffer). Then within any
phase, the control is completely decentralized and cooperation of servers comes to
exchange of finitely many bits at the end of every phase.

The dynamical operator T Pi of phase Pi maps the continuous state X at the
beginning of Pi into that at the end (for a given PCR). The monodromy operator is
the similar map for the entire cycle (1):

M = T Pc − 1 ◦ T Pc − 2 ◦ · · · ◦ T P1 ◦ T P0 . (2)

The problem (P) from page 482 is solved whenever PCR’s ensure the following:

(i) Any PCR generates the related piece of π0;
(ii) Any trajectory of the iterated system X (k +1) = M[X (k)], X (0) ≥ 0 converges

to X0
0 := X0(0) as k → ∞.

Here (i) guarantees that the entire switching policy does generate the required peri-
odic process π0 and also that X0

0 is the equilibrium point of the iterated system. If the
phase dynamical operators T Pi are continuous, (ii) ensures convergence of all pro-
cesses in the original fluid network to the desired periodic behavior π0 by the standard
argument presented in e.g., [34–36].

To ensure (i), the idea is to design PCR’s so that they enforce the system to copycat
the desired process π0. Property (ii) brings more trouble partly due to the curse of
dimensionality: computation of the monodromy operator becomes cumbersome up to
intractable as the numbers of servers or buffers increase. This burden is especially hard
at the stage of design, where there is no specific monodromy operator to compute, and
the actual task is to display and employ the relationships between this operator and
particular designs of PCR’s in order to choose the proper ones. The following new
criterion for stability of equilibria of iterative dynamic systems aids to remove this
blockage since this criterion can be verified and ensured ‘phase-wise’, thus annihilat-
ing the need to deal with the entire monodromy operator.
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3.1 Mathematical background

The inequalities x ≤ y and x < y for x, y ∈ R
p are meant component wise.

Definition 1 The operator T : K p
+ → K p

+ := {x ∈ R
p : x ≥ 0} is said to be:

(i) monotone, if x ≤ y ⇒ T(x) ≤ T(y);
(ii) piece-wise affine, if a partition K+ = ⋃m

j=1 S j exists such that each set S j

(called cell) has an interior point and is described by finitely many linear
inequalities (both strict and non-strict), and all restrictions T |S j are affine,
i.e., T (x) = A j x + b j ∀x ∈ S j , where A j ∈ R

p×p, b j ∈ R
p;

(iii) dominated if b j ≥ 0 ∀ j ; and strictly dominated if b j > 0 ∀ j .

The following theorem is the main result of this section.

Theorem 1 Suppose that an iteration Tm of a piece-wise affine continuous monotone
map T is strictly dominated and this map has a fixed point T[x∗] = x∗ ∈ K p

+. Then this

fixed point is unique and attracts xk
k→∞−−−→ x∗ all trajectories of the iterated system

xk+1 = T[xk], x0 ∈ K p
+.

The proof of Theorem 1 is given in Appendix A.
With respect to the monodromy operator T := M , the assumptions of continuity,

monotonicity, and piece-wise affinity can be checked ‘phase-wise’ since they are evi-
dently inherited by compositions of the maps. As for as the strict dominance, it can
be shown that the composition not only inherits this property but also acquires it even
if the composed maps are not strictly dominated.

Piece-wise affinity is usually absolutely clear from the formula of the operator.
To check the continuity of piece-wise affine operators it is required to establish that
the formulas that are active at the different sides of the boundary of any cell pro-
duce a common result at any boundary point. Another useful fact is that the com-
position f = g ◦ h of a continuous and piece-wise affine operator g with an affine
operator h is continuous and piece-wise affine as well. For example, by taking here
g(y1, . . . , ym) = max{y1, . . . , ym}, h(x) = {∑n

j=1 ai j x j + bi }m
i=1, x ∈ R

n , we see

that the function f (x) = maxi=1,...,m

(∑n
j=1 ai j x j + bi

)
is continuous and piece-

wise affine. Linear combinations of continuous and piece-wise affine functions clearly
inherit these properties. Finally, it can be shown that a piece-wise affine continuous
operator is monotone if and only if all matrices A j from (ii) Definition 1 have non-
negative entries.

4 Polling systems

We consider a particular case of the system from Sect. 2: only one server, N ≥ 2
buffers, and N outer flows (see Fig. 1a, where N = 6). The nth flow arrives at buffer
n at a constant rate λn > 0 and after service at a rate 0 ≤ un(t) ≤ μn , leaves the
system. Switching between buffers requires a given and nonzero setup time.
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(a) (b)
Fig. 1 a Polling system, b basic quantities underlying the phase control rule

Consider a T -periodic process6 π0 = [{x0
n (t)}N

n=1, q0
1 (t) ∈ [1 : N ] ∪ {�}] for

which the service rate of buffer n = q1(t) is maximal un(t) = μn if xn(t) > 0,
and equals the input rate un(t) = λn if xn(t) = 0. Without any loss of gener-
ality, we assume that T is the end of a switching period. Following the lines of
Sect. 3, we decompose π0 into the simplest phases (1) by partitioning the period
0 = t0

0 < t0
1 < t0

2 < · · · < t0
c−1 < t0

c = T into the intervals where the discrete state
is constant q0

1 (t) ≡ qi , t ∈ [t0
i , t0

i+1), q0
1 (ti − 0) �= q0

1 (ti + 0). Then any phase Pi is
associated with a discrete state qi , which form the sequence

q0 �→ q1 = � �→ q2 �→ q3 = � �→ · · · �→ qc−2 �→ qc−1 = �. (3)

Now we introduce the phase control rules (PCR).
PCR for the switching phase qi = �. Switching is implemented for a duration of

σ 0
i time units, where σ 0

i > 0 is its duration along the process π0.
PCR for the service phase qi = n �= �. We first introduce the following (see

Fig. 1b):

• θn
i —the fraction of the initial content of buffer n at this phase that is retained in

the buffer at the phase end for π0, i.e.,

θn
i := x0

n (t0
i+1)

x0
n (t0

i )
∈ [0, 1]; (4)

• δi —the duration of the service at the rate λn at this phase for π0.

Note that θn
i · δi = 0. Let ti stand for the time when the phase commences.

Phase control rule:

Buffer n = qi is served at the maximal rate μn until its content reduces to the level
θn

i xn(ti ) and then at the input rate δi time units more.

The entire policy is to progress through the periodically repeated sequence of phases
(3) while applying the relevant phase control rule within every phase.

Thus the server is driven by local data about the currently served buffer.

6 Existence of a periodic process is equivalent to
∑N

n=1 λn/μn < 1 [17,34]. In fact, this inequality is
the minimal requirement: whenever it is violated, no control policy keeps the total amount of work in the
system bounded [17,34].
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Theorem 2 The proposed policy gives rise to a unique periodic process, which is
equal to π0 and attracts all other processes.

Proof The proposed PCR’s trivially meet (i) from Sect. 3. So the entire policy does
generate π0 and X0

0 := X0(0) is the equilibrium of the monodromy operator M . By
Theorem 1 and the standard argument presented in e.g., [34–36], it suffices to show
that the assumptions of Theorem 1 are true for M .

By elementary computation, the phase dynamical operators are as follows:

T Pi X =

⎧
⎪⎨

⎪⎩

AX + b if qi = n �= �

σ 0
i ·

[
λ1 . . . λN

]�
if qi = �,

where

AX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 + λ1
1−θn

i
μn−λn

xn

...

xn−1 + λn−1
1−θn

i
μn−λn

xn

θn
i xn

xn+1 + λn+1
1−θn

i
μn−λn

xn

...

xN + λN
1−θn

i
μn−λn

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1δi

...

λn−1δi

0

λn+1δi

...

λN δi

.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

They are clearly affine, continuous, monotone, and dominated. So evidently their
composition is M . It is also strictly dominated since so is the operator T Pc − 1 (where
qc−1 = � by (3)) that is the last to act in the composition (2). Thus, the assumptions
of Theorem 1 are satisfied. ��

For this example, the phase dynamical operators are affine, which is not the case
for the next example, where they are only piece-wise affine.

5 Single server networks with processor sharing scheme

Now we consider a modification of the previous example where the server can operate
in several modes, enumerated by m ∈ [1 : M], M ≥ 2. In mode m, it simultaneously
serves the buffers from a set Jm �= ∅; these sets form a partition of [1 : N ]. Switching
from mode m1 to m2 requires ≥ σm1→m2 > 0 time units.7

7 Though the system at hand is not a particular case of the network from Sect. 2, it can be emulated on
such a network. To this end, we first equalize the sizes |Jm | of all sets Jm by inserting ‘void’ buffers n with
λn := μn := 0 if necessary. Then we enumerate the buffers in every set Jm by r ∈ [1 : k], where k := |Jm |,
and replace the ‘real’ server by k ‘fictitious’ ones. The service area of the r th of them is formed by the r th
elements of Jm ’s, the switch between two elements consumes the time of the switch between the related
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Let π0 be a T -periodic process8 for which any service of any buffer n starts at the
maximal rate μn and proceeds at the input rate λn , where any of these periods may
be of zero duration, i.e., does not occur in effect. Like in Sect. 4, the interest to such
processes is inspired by optimization issues.

Like in Sect. 4, it can be assumed that T is the end of a switching period. To trans-
form π0 into a switching policy, we still decompose π0 into the simplest phases (1)
by partitioning [0, T ] into the intervals where the discrete state is constant. Then any
phase Pi from (1) is associated with either an active mode Pi ∼ mi or switching
Pi ∼ �, which are arranged in the sequence

m0 �→ � �→ m2 �→ � �→ · · · �→ mc−2 �→ �. (5)

PCR for the switching phase Pi ∼ �. Switching is implemented for the duration
of σ 0

i time units, where σ 0
i > 0 is its duration along π0.

PCR for the service phase Pi ∼ mi . To state this rule, we employ the quantity
θn

i from (4) in Sect. 4. Let δn
i denote the duration of the service of buffer n at the input

rate at phase Pi for process π0. The PCR is as follows:

(1) Every buffer n ∈ Jmi is served at the maximal rate μn until its content reduces to
the level θn

i xn(ti ), where ti is the time when Pi has commenced;
(2) When task (1) is completed for a buffer n ∈ Jmi , the server reduces the service

rate for this buffer to the input rate λn and maintains it no less than δn
i time units

and until the phase end;
(3) The phase is terminated as soon as task (1) is accomplished and the compulsory

time δn
i of service at the input rate is expired for all buffers n ∈ Jmi .

The entire policy is to progress through the periodically repeated sequence of phases
(5) while applying the relevant phase control rule within every phase.

Thus the server is driven only by data about the currently served buffers.

Theorem 3 The proposed policy gives rise to a unique periodic process, which is
equal to π0 and attracts all other processes.

Proof Similarly to the proof of Theorem 2, it suffices to show that the assumptions of
Theorem 1 are true for the monodromy operator M . By elementary computation, the
phase dynamical operators are as follows:

T Pi X =
⎧
⎨

⎩

{yn}N
n=1 + {an}N

n=1 · τ for Pi ∼ mi �= �
σ 0

i ·
[
λ1 . . . λN

]�
for Pi ∼ �

, (6)

Footnote 7 continued
modes. The processes in the original system can be identified with those in the auxiliary k-server system
for which all servers first, are switched synchronously and second, always serve buffers from a common
set Jm . So if a switching policy designed for the auxiliary system gives rise only to processes with these
properties, it can be interpreted as a policy for the original system.
8 Existence of such process clearly implies that μn > λn ∀n.
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where

yn =
{

θn
i xn if n ∈ Jmi

xn otherwise
, an =

{
0 if n ∈ Jmi

λn otherwise
,

τ = max
n∈Jmi

[
δn

i + (1 − θn
i )xn

μn − λn

]
.

Note that T Pi is a piece-wise affine monotone continuous function of X , whose

cells (see Definition 1) are enumerated by n ∈ Jmi and look as follows: δn
i + (1−θn

i )xn

μn−λn
≥

δn′
i + (1−θn′

i )xn′
μn′−λn′ for all n′ ∈ Jmi \ {n}. On this cell, τ is equal to the expression on the

left. It follows that the entire dynamical operator T Pi is not only piece-wise affine,
continuous, and monotone but also dominated. So evidently is the composition M of
these operators. It is also strictly dominated since so is the operator T Pc − 1 (by (5))
that is the last to act in the composition (2). Thus the assumptions of Theorem 1 are
satisfied. ��

The following lemma addresses existence of a periodic process and shows that such
process exists if and only if the system is stabilizable (there is a way to control the
system so that the total queue is kept bounded).

Lemma 1 The following statements are equivalent for the system at hand:

(i) There exists a periodic process of the kind that we have considered (i.e., such
that any service of any buffer n starts at the maximal rate μn and proceeds at
the input rate λn);

(ii) There exists a (not necessarily periodic) process along which the total amount
of work in the system remains bounded as time progresses;

(iii) The following inequality holds

M∑

m=1

max
n∈Jm

λn

μn
< 1; (7)

(iv) There exists a cyclic switching policy that generates a unique periodic process,
which attracts all other processes.

An example of such policy is that given by any periodically repeated production cycle
(5) equipped with the above PCR’s, where the parameters θn

i ∈ [0; 1), δi > 0, σ 0
2i+1 ≥

σ2i→2i+2 are arbitrary chosen, provided that any mode m is encountered in the chain
(5) and θn

i = θm
i ∀n ∈ Jm.

The proof of this lemma is given in Appendix B. The last requirement from the lemma
in fact is not necessary and is imposed to simplify the proof in the face of the paper
length limitations.

Since the system at hand generalizes that from Sect. 4, Lemma 1 extends on polling
system. For them, (7) shapes into

∑N
n=1

λn
μn

< 1 since modes are associated with
buffers m ∼ n and every Jm contains only one buffer n.
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λ
x1 x2

x3x4

μ1

μ4

server 1

μ2

μ3

server 2

Fig. 2 The Kumar–Seidman model

6 The Kumar–Seidman manufacturing network

This network consists of four buffers and two servers and processes a single job flow,
see Fig. 2. Work arrives at the first buffer at a constant rate λ > 0, then is consecutively
processed by server 1, then twice by server 2, and finally by server 1 once more, and
then leaves the system. Any server is capable to serve only one buffer at a given time.
Switching between buffers consumes setup times σ1→4, σ4→1, σ2→3, σ3→2 > 0,
respectively. The maximal service rate is μn > 0 for buffer n.

Thus the continuous state X = {xn}4
n=1 and the service areas are as follows I1 =

{1, 4} , I2 = {2, 3}.
The system is stabilizable, i.e., the total amount of work can be kept bounded pro-

vided that the system is properly controlled. This holds if and only if every server has
enough capacity to process the job inflow [17]:

1 − ρ1 − ρ4 > 0, 1 − ρ2 − ρ3 > 0, where ρi := λ/μi . (8)

The model at hand was introduced in [23], also analyzed in [29], to demonstrate
that the clearing policy (serve any buffer until emptying) is inappropriate since it may
cause instability: even if (8) holds, the total amount of work may explode. Moreover,
this inevitably holds whenever

ρ2 + ρ4 > 1. (9)

It is this case that is examined: (8) and (9) are assumed to be true. Then

μ1 > μ2, μ3 > μ4, (10)

i.e., ẋ2 > 0 (or ẋ4 > 0) if buffers 1 and 2 (or 3 and 4) are simultaneously served at the
maximal rates.

6.1 Optimal periodic behavior of the Kumar–Seidman system

In [25] optimal periodic behavior for this network has been determined with respect
to the long-run time-averaged weighted wip (work in progress):

W (π) := lim
T →∞

1

T

T∫

0

w(t) dt, where w(t) :=
4∑

n=1

cn xn(t) (11)

under the following technical assumption.
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Assumption 1 No downstream buffer values more than an upstream one:

c1 ≥ c2 ≥ c3 ≥ c4 > 0. (12)

More precisely, a periodic processes is said to be simple if every server processes each
of the associated buffers only once during the period. The paper [25] characterizes the
optimal simple periodic process in terms of the separate activities of the first and sec-
ond servers. For switching policy design, we need to know more: how these activities
are combined and how this combination evolves over time. The following theorem
summarizes the results of [25].

Theorem 4 An optimal simple periodic process exists. For this optimal periodic
behavior, server 1 repeatedly goes through the following successive phases:

• Setup from 4 to 1 for a duration of σ4→1 (x2 = 0 upon completion),
• Serve 1 at rate μ1 for a duration of ρ1

1−ρ1
(ρ4T + σ1→4 + σ4→1) (x1 = 0 upon

completion),
• Serve 1 at rate λ1 for a duration of 1

1−ρ1
[(1 − ρ1 − ρ4)T − (σ1→4 + σ4→1)],

• Setup from 1 to 4 for a duration of σ1→4,
• Serve 4 at rate μ4 for a duration of ρ4T .

and server 2 repeatedly goes through the following successive phases:

• Setup from 3 to 2 for a duration of σ3→2,
• Serve 2 at maximal rate for a duration of (1 − ρ3)T − (σ2→3) + σ3→2), which is

either at rate μ2 as long as x2 > 0 or at rate 0 when x2 = 0,
• Setup from 2 to 3 for a duration of σ2→3 (x4 = 0 upon completion),
• Serve 3 at rate μ3 for a duration of ρ3T (x3 = 0 upon completion).

where T denotes the optimal duration of the period (see [25] for the explicit expres-
sion). Furthermore, depending on the parameters ci , λ, μi , σi→ j , either the setups of
duration σ4→1 and σ3→2 are finished simultaneously, or the setups of duration σ1→4
and σ2→3 are finished simultaneously.

As explained in [25], eight different time evolutions of buffer contents result, depend-
ing on the above parameters.9 In this paper, we discuss, for three of these cases, how
to arrive at a distributed feedback switching control law that gives rise to the optimal
steady state behavior and makes it globally attractive. Since two of the cases can be
merged, we call the cases Case 1(a), Case 1(b), and Case 2, respectively.

All other cases can be easily treated along the same lines; their discussion is omitted
only to meet the paper length limit.

For the considered cases, the optimal periodic behavior is illustrated by Figs. 3 and
4, respectively. For each of them, the buffers are served at the maximal feasible rates.

In Case 1 from Fig. 3, the optimal behavior consists of periodic repetition of the
following successive phases:

P0 The servers simultaneously start services of buffers 1 and 2; during the phase,
buffer 1 is drained out and then served at the input rate;

9 An explicit description of this dependence is also provided.

123



Designs of optimal switching feedback decentralized control policies 491

(a) (b)
Fig. 3 Case 1 of the optimal periodic behavior

Fig. 4 Case 2 of the optimal
periodic behavior

P1 Server 1 goes to buffer 4 and serves it until emptying; server 2 empties buffer 2
and switches to buffer 3, the switch is completed when buffer 4 is drained out;

P2 Server 2 empties buffer 3 and then switches to buffer 2, where it idles for some
time τ 0

2 . Server 1 serves buffer 4 and then switches to buffer 1. This switch is
completed synchronously with the end of the idling period of server 2, which is
the end of the phase.

In Case 2 from Fig. 4, the optimal behavior consists in periodic repetition of the
following successive phases:

P1 The servers simultaneously start services of buffers 3 and 4. Server 2 empties
buffer 3, then switches to buffer 2 and serves it until emptying. Server 1 serves
buffer 4 until emptying and then begins switching to buffer 1. When this switch is
in progress, buffer 2 is emptied, which is the end of the phase;

P2 After emptying buffer 2, server 2 goes to buffer 3. Server 1 completes the switch to
buffer 1, serves it until emptying and then even longer, and finally goes to buffer 4.
Switches to buffers 3 and 4 are completed synchronously.

The difference between Fig. 3a and b concerns only the evolution of buffer 4 at
phase P2. Case 1(b) occurs if and only if σ4→1 < σ̂3→2 := σ3→2 +τ 0

2 , where τ 0
2 is the

idling time of server 2. Then the content of buffer 4 decreases during some sub-phase
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of this phase. In Case 1(a), σ4→1 ≥ σ̂3→2, and the content of buffer 4 never decreases
at this phase.

Dissimilarities in the two optimal behaviors can be related to the fact that the prob-
lem is reducible to that of optimization of a linear function over a polytope. The
solution to this optimization problem may abruptly jump from one vertex to another
under the continuous change of the parameters.

To design the switching policy, we also need the following parameters of the optimal
process:

Notation 1 τ 0
2 : the idle time of server 2 at phase P2, see Fig. 3 and (13a);

τλ
1 : the duration of the period when server 1 serves the emptied buffer 1 at the input

rate λ at phases P0 and P2, see Figs. 3, 4 and (13b);
θ : the fraction of the maximal content of buffer 2 at phase P0 that remains in this

buffer at the phase end, see Fig. 3b and (13c);
ξ : the fraction of the buffer 3 initial content x∗

3 at phase P2 that remains there at the
start of server 1 switching 4 → 1, see Fig. 3 and (13d);

ζ : the fraction of the buffer 4 content x∗
4 at the start of server 2 switching 3 → 2

at phase P2 that is in this buffer at the first time instant when both servers are
involved in switching within the phase, see Fig. 3 and (13d);

ν: the percentage of the switching period σ4→1 that elapses until buffer 2 is emptied
at phase P2, see Fig. 4 and (13e);

For a given value of T ,10 these parameters are given by:

τ 0
2 = (1 − ρ2 − ρ3)T − (σ2→3 + σ3→2), (13a)

τλ
1 = (1 − ρ1)

−1 [(1 − ρ1 − ρ4)T − (σ1→4 + σ4→1)] , (13b)

θ = 1 − μ2 − λ

μ1 − μ2

(1 − ρ1 − ρ4)T − (σ1→4 + σ4→1)

ρ1 [ρ4T + (σ1→4 + σ4→1)]
, (13c)

[ξ ; ζ ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
μ3

σ4→1−σ3→2−τ 0
2

λT ; 1
]

in case 1(a)

[
0; 1 − μ4

τ 0
2 +σ3→2−σ4→1
(μ3−μ4)ρ3T

]
in case 1(b)

, (13d)

ν = σ32

σ4→1
+ [ρ2 + ρ3 − ρ4] T

σ4→1
. (13e)

6.2 Optimal switching policy

Now by following the guidelines from Sect. 3, we propose a simple interactive switch-
ing policy that ensures that after a transient and irrespective of the initial state, the
system inevitably exhibits the optimal periodic behavior described in Theorem 4.

Since there are two qualitatively different optimal behaviors, two switching policies
are offered to handle the cases where the first or second behavior occurs, respectively.

10 An explicit expression of the period T of the optimal process is given in [25].
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The partition (1) of the process into phases is merely borrowed from Theorem 4.
The phase control rules are designed so that the system behavior copycats that from
Fig. 3 or 4.

Switching policy 1 (to be applied in Case 1 illustrated by Fig. 3)

1. Whenever any buffer n is served, the service is at the maximal feasible rate:

un = μmax
n :=

{
μn if xn > 0
un−1 if xn = 0

, where u0 := λ; (14)

2. The servers are switched so that the discrete state Q(t) = [q1(t), q2(t)] periodi-
cally repeats the following cycle:

→ (1, 2)︸ ︷︷ ︸
P0

(a)−→ (�, 2) −→
∣
∣
∣
∣
∣
∣

(4, 2)

or
(�,�)

∣
∣
∣
∣
∣
∣
−→ (4,�)

︸ ︷︷ ︸
P1

→

(b)−→ (4, 3) −→
∣
∣
∣
∣
∣
∣

(�, 3)

or
(4,�)

∣
∣
∣
∣
∣
∣
−→ (�,�) −→ (�, 2)

︸ ︷︷ ︸
P2

(c)−→; (15)

3. Transition (a) is implemented as soon as
3(a) buffer 1 is emptied
3(b) and after this the level of buffer 2 is reduced to the value θx2(τ ).
Here τ is the time when event 3(a) occurs, and θ is introduced in Notation 1;

4. Within phase P1,
• Server 1 switches from buffer 1 to 4 for σ1→4 time units and then serves buffer

4 until emptying and possibly longer, waiting for the switch of server 2 to be
completed;

• Server 2 serves buffer 2 until emptying, then switches to buffer 3 for σ2→3
time units and then possibly idles, waiting for emptying buffer 4.

5. Transition (b) from phase P1 to P2 is implemented as soon as first, buffer 4 is
empty and second, switching of server 2 from buffer 2 to 3 is completed;

6. Within phase P2,
• Server 2 empties buffer 3, then switches to buffer 2 for σ3→2 time units, and

finally idles for τ 0
2 time units and possibly longer, waiting for the switch of

server 1 to be completed.
• Server 1 serves buffer 4 until the content of buffer 3 decays to ξ x0

3 and after
this the level of buffer 4 is reduced to ζ x4(τ∗), where x0

3 is the buffer level at
the start of the phase and τ∗ is the time instant when the first of these reductions
is completed. After this, server 1 switches to buffer 1 for a duration of σ4→1
time units and then possibly idles, waiting for the compulsory idling time τ 0

2
of server 2 to be expired.

Here τ 0
2 , ξ , and ζ are introduced in Notation 1;
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7. Transition (c) is implemented as soon as switching of server 1 is completed and
the compulsory idling time τ 0

2 of server 2 is expired.

Remark 1 (i) Formula (15) displays the longest chains of discrete state transitions
that may be observed during phases P1 and P2; the rigorous definitions of these
phases are given in 4 and 6, respectively. Some sub-phases, like (4, 2) in P1,
may be missed depending on the initial state and the serial number of the cycle
(15) at hand. Such phases are said to be flexible.

(ii) To determine the end of the current phase, any server needs the one-bit ‘end of
mission’ notification from the companion server.

(iii) Within the flexible phase P2 in Case 1(b) and phase P1, operation of every server
is based on data about the current level of the buffer served. In particular, each
server operates with no regard to what is going on with the other server. As for
P2 in Case 1(a), server 1 needs a one-bit notification that the required decrease
in the level of buffer 3 is achieved.

(iv) Rule 6 is well-defined since buffer 4 should be unloaded only in Case 1(b), where
server 2 does not supply work to it from the start of the unload and until the phase
ends.

(v) For the definiteness, we assume that Q(0) = (1, 2). Then given the initial state
X (0), policy 1 uniquely determines a process in the system.

Switching policy 2 (to be applied in Case 2 illustrated by Fig. 4)

1. Whenever a buffer is served, the service is at the maximal feasible rate (14);
2. The servers are switched so that the discrete state Q(t) = [q1(t), q2(t)] periodi-

cally repeats the following cycle:

→ (4, 3) → (4,�) → (4, 2) → (�, 2)︸ ︷︷ ︸
P1

(a)→ (�,�) → (1,�) → (�,�)︸ ︷︷ ︸
P2

(b)→;

(16)

3. During phase P1,
• Server 2 serves buffer 3 until emptying, then switches to buffer 2 for σ3→2 time

units, then serves buffer 2 until emptying, and finally possibly idles, waiting
for server 1 to complete its mission for this phase;

• Server 1 empties buffer 4, then undergoes the first part of switching to buffer 1
for νσ4→1 time units, and finally possibly idles, waiting for emptying buffer 2
by server 2. (Here ν is introduced in Notation 1.)

4. Transition (a) is implemented as soon as buffer 2 is emptied and server 1 completes
the required percentage of switching 4 → 1.

5. During phase P2,
• Server 1 completes switching 4 → 1 for (1 − ν)σ4→1 time units, then empties

buffer 1, continues to serve it at the input rate τλ
1 time units and possibly even

longer so that it leaves buffer 1 no sooner than σ2→3 −σ1→4 time units elapses
since the phase beginning, and finally switches to buffer 4 for a duration of
σ1→4 time units;
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• Server 2 switches from buffer 2 to buffer 3 for σ2→3 time units and then
possibly idles, waiting for server 1 to complete its mission.

Here τλ
1 is introduced in Notation 1;

6. Transition (b) is implemented as soon as the switch 1 → 4 is completed.

Remark 2 • The duration of service of the emptied buffer 1 at phase P2 is adjusted
so that switching 1 → 4 is completed at the earliest occasion after the end of the
switch 2 → 3.

• The servers operate independently and on the basis of data from only the currently
served buffer within both flexible phases P1 and P2.

• For the definiteness, we assume that Q(0) = (4, 3). Then given the initial state
X (0), policy 2 uniquely determines a process in the system.

The following theorem shows that the proposed policies ensure asymptotically
optimal performance of the closed-loop system.

Theorem 5 Let the conditions (8) and (10) hold. Suppose that policy 1 is applied in
Case 1 and policy 2 is put in use in Case 2. Then any of these policies gives rise to
a unique periodic process, which attracts all other processes in the Kumar–Seidman
system. Moreover, this periodic process represents the optimal behavior described in
Theorem 4.

6.3 Proof of Theorem 5

The proposed phase control rules trivially meet the requirement (i) from Sect. 3. So
the entire switching policy generates the periodic process described in Theorem 4 and
X0

0 := X0(0) is the equilibrium of the monodromy operator M . By Theorem 1 and the
standard argument presented in e.g., [34–36], it suffices to show that the assumptions
of this theorem are true for this operator.

Policy 1. The phase dynamical operators are easily computed:

TP0 X =

⎛

⎜
⎜
⎜
⎝

0
θ

μ1−μ2
μ1−λ

x1

x3 + μ2

[
x1

μ1−λ
+ 1−θ

μ2−λ

(
x2 + μ1−μ2

μ1−λ
x1

)]

x4

⎞

⎟
⎟
⎟
⎠

TP1 X =

⎛

⎜
⎜
⎜
⎝

x1 + λ max
{

x2
μ2

+ σ2→3; x4
μ4

+ σ1→4

}

0
x2 + x3

0

⎞

⎟
⎟
⎟
⎠

TP2 X =

⎛

⎜
⎜
⎜
⎝

x1 + λ max
{

x3
μ3

+ σ3→2 + τ 0
2 ; c + 1−ζ

μ4
b + σ4→1

}

x2
0
ζb

⎞

⎟
⎟
⎟
⎠

,

where b = x4 + μ3−μ4
μ3

(1 − ξ)x3 and c = 1−ξ
μ3

x3.
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They are clearly piece-wise affine, continuous, monotone, and dominated. So evi-
dently is their composition M = TP2 ◦ TP1 ◦ T1,2. As for the strict dominance, we are
going to examine M2. It is easy to see that +λσ2→3 or +λσ1→4 in the first line of the
formula for TP1 X is converted into +const(> 0) at the first position of TP2 ◦ TP1 X ,
in addition to the constant addend λ[σ3→2 + τ 0

2 ] or λσ4→1. It follows that TP0 ◦ M X
contains +const(> 0) at the second and third positions; TP1 ◦ TP0 ◦ M X contains
+const(> 0) at the first and third positions; TP2 ◦ TP1 ◦ TP0 ◦ M X = M2 X contains
+const(> 0) at the first and forth positions. The second and third positions of M X
are always zero. So by truncating the state space to R

2 = {col (x1, x4)}, we make M2

strictly dominated. So the assumptions of Theorem 1 are satisfied. ��
Policy 2. In this case, the phase dynamical operators are as follows:

TP1 X =

⎛

⎜
⎜
⎜
⎝

x1 + λ max
{

x3
μ3

+ x2
μ2

+ σ3→2 ; x3+x4
μ4

+ νσ4→1

}

0
x2
0

⎞

⎟
⎟
⎟
⎠

,

TP2
(b)=

⎛

⎜
⎜
⎜
⎝

λσ1→4

x1 + x2 + λ max
{
σ2→3 − σ1→4 ; τλ

1 + x1+μ1(1−ν)σ4→1
μ1−λ

}

x3
x4

⎞

⎟
⎟
⎟
⎠

,

where (b) follows from the computation of the phase duration

τ = max

{
σ2→3 ; τλ

1 + x1 + μ1(1 − ν)σ4→1

μ1 − λ
+ σ1→4

}

and noting that since λτ units of work arrives at buffer 1 during the phase, x1 + λτ −
λσ1→4 units should be removed to buffer 2 to make the final level of buffer 1 equal to
λσ1→4. We see that these operators are piece-wise affine, continuous, monotone, and
dominated. So evidently is the monodromy operator M = TP2 ◦TP1. As for the strict
dominance, we still examine M2. Irrespective of the cell, the expression for TP2 con-
tains +const(> 0) at the first and second positions. So TP1 ◦ M contains +const(> 0)

at the first and third positions; TP2 ◦TP1 ◦ M = M2 contains +const(> 0) at the first,
second and third positions. The forth position of M X is always zero. So by truncating
the state space to R

3 = {col (x1, x2, x3)}, we make M2 strictly dominated. So the
assumptions of Theorem 1 are satisfied, which completes the proof. ��

Appendiz A: Proof of Theorem 1

Lemma A.2 Suppose that T is a continuous piece-wise affine operator. It is domi-
nated if and only if T(θx) ≤ θT(x) ∀θ ≥ 1, x ≥ 0, and it is strictly dominated, if
and only if T(θx) < θT (x) ∀θ > 1, x ≥ 0. In the second case, there exists b > 0,
such that
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T(θx) ≤ θT(x) − (θ − 1)b ∀θ ≥ 1, x ≥ 0. (17)

Proof is focused on the case of strictly dominated operator, the case of dominated
one is considered likewise. Necessity. Let T be strictly dominated, x ∈ K p

+, θ > 1.
Consider the partition from (ii) of Definition 1. There exists a matching partition 1 =
θ0 < θ1 < θ2 < · · · < θk = θ of [1, θ ] such that {z : z = τ x, τ ∈ [θi , θi+1]} ⊂ S j (i)

for i = 0, . . . , k − 1. Then

T(θx) = T(θk x) = T

(
θk

θk−1
θk−1x

)
= A j (k−1)

θk

θk−1
θk−1x + b j (k−1)

= θk

θk−1

[
A j (k−1)θk−1x + b j (k−1)

] +
(

1 − θk

θk−1

)
b j (k−1) = θk

θk−1
T(θk−1x)

+
(

1 − θk

θk−1

)
b j (k−1)

= θk

θk−1
T

(
θk−1

θk−2
θk−2x

)
+

(
1 − θk

θk−1

)
b j (k−1)

= θk

θk−1

{
A j (k−2)

θk−1

θk−2
θk−2x + b j (k−2)

}
+

(
1 − θk

θk−1

)
b j (k−1)

= θk

θk−1

{
θk−1

θk−2

[
A j (k−2)θk−2x + b j (k−2)

] +
(

1 − θk−1

θk−2

)
b j (k−2)

}

+
(

1 − θk

θk−1

)
b j (k−1)

= θk

θk−2
T(θk−2x) +

(
θk

θk−1
− θk

θk−2

)
b j (k−2) +

(
1 − θk

θk−1

)
b j (k−1).

By continuing likewise, we see that:

T(θx) = θk

θ0
T(θ0x) +

k−1∑

l=0

(
θk

θl+1
− θk

θl

)
b j (l) = θT(x) +

k−1∑

l=0

(
θk

θl+1
− θk

θl

)
b j (l).

Let b := min1≤i≤m bi > 0,where min is meant component wise, m is the number
from (ii) of Definition 1, and the inequality holds by (iii) of Definition 1. Then,

T(θx) ≤ θT(x) +
k−1∑

l=0

(
θk

θl+1
− θk

θl

)
b = θT(x) + (1 − θ)b ⇒ (17).

Sufficiency. Suppose that T(θx) < θT(x) for all θ > 1 and x ≥ 0. Pick a set Si

from (ii) of Definition 1 and its interior point x . Then θx ∈ Si for θ > 1, θ ≈ 1 and so:

θ Ai x + bi = T(θx) < θT(x) = θ(Ai x + bi ) ⇒ (θ − 1)bi > 0 ⇒ bi > 0.

��
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Lemma A.3 The continuous piece-wise affine operator T is monotonous if and only if
the entries of the matrix A j from (ii) of Definition 1 are non-negative for j = 1, . . . , m.

Proof Since necessity is obvious, we focus on sufficiency. Let 0 ≤ x ≤ y. Owing to
(ii) of Definition 1, a partition 0 = θ0 < θ1 < · · · < θk = 1 exists such that

{z : z = z(θ) := (1 − θ)x + θy, θ ∈ [θi , θi+1]} ⊂ S j (i) i = 0, . . . , k − 1.

Within any set S j , the operator T(x) = A j x + b j is evidently monotonous. So

z(θi ) ≤ z(θi+1); z(θi ), z(θi+1) ∈ S j (i) ⇒ T[z(θi )] ≤ T[z(θi+1)] ∀i.

Hence, T(x) = T[z(0)] = T[z(θ0)] ≤ T[z(θk)] = T[z(1)] = T(y). ��
Corollary A.1 Fixed points x∗ ≥ 0 of continuous piece-wise affine monotonous
strictly dominated operators are strictly positive x∗ > 0.

Lemma A.4 Suppose that T is a continuous monotone operator. Let {xt (a)}∞t=0 denote
the trajectory of the iterated system xt+1 = T(xt ) starting at x0 = a. Then

(i) a1 ≤ a2 ⇒ xt (a1) ≤ xt (a2) ∀t = 0, 1, 2, . . . ;
(ii) ±[x1(a) − x0(a)]≤ 0⇒±[xt+1(a) − xt (a)] ≤ 0, t ≥ 0;

(iii) If xt (a) −→ x̃ as t → ∞, then T(x̃) = x̃

Proof (i) and (iii) are obvious; (ii) ⇐ (i). ��
Lemma A.5 Let the continuous operator T be piece-wise affine, monotonous, and
strictly dominated, x∗ be its fixed point T[x∗] = x∗, and θ ≥ 1. Then xt (θx∗) → x∗
as t → ∞.

Proof By Corollary A.1, x∗ > 0. In (17), b ≥ ρx∗ with some ρ > 0, and hence

0 ≤ T(τ x∗) ≤ τT(x∗) − ρ(τ − 1)x∗ = [(1 − ρ)τ + ρ]︸ ︷︷ ︸
r(τ )

x∗ ∀τ ≥ 1. (18)

Letting τ → ∞ shows that ρ ≤ 1. So the map r(·) : R → R has the unique fixed
point τ = 1,

τt ≥1 ∀t, τt →1 as t →∞, where τ0 :=θ and τt+1 = r [τt ], t = 0, 1, . . . (19)

Now we are going to show that

x∗ ≤ xt [θx∗] ≤ τt x∗ ∀t = 0, 1, . . . , (20)

arguing via induction on t . For t = 0, this is obvious. Let (20) be true for some t ≥ 0.
Then xt+1[θx∗] ≥ x∗ by i) of Lemma A.4. Furthermore,

xt+1[θx∗] = T {xt [θx∗]}
(20)≤ T[τt x∗]

(18)≤ r [τt ]x∗ = τt+1x∗ ⇒ (20) with t := t + 1 .

The proof is completed by (20) and the second relation in (19). ��
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Corollary A.2 Under the assumptions of Lemma A.5, xt [a] → x∗ as t → ∞ if
a ≥ x∗.

Proof Since x∗ > 0 by Corollary A.1, a ≤ θx∗ for some θ ≥ 1. Then x∗ ≤ xt [a] ≤
xt [θx∗] ∀t ≥ 0 thanks to i) of Lemma A.4. The proof is completed by Lemma A.5.

��
Corollary A.3 There is only one fixed point under the assumptions of Lemma A.5.

Proof Let x ′∗ and x ′′∗ be fixed points of T[·]. We pick a such that a ≥ x ′∗, a ≥ x ′′∗ .
By Corollary A.2, x ′∗ and x ′′∗ are the limits of the common sequence {xt [a]} and so
x ′∗ = x ′′∗ . ��
Lemma A.6 Theorem 1 is true if m = 1 in this theorem.

Proof The fixed point is unique by Corollary A.3. Owing to i) and ii) of Lemma A.4,

0 ≤ x∗, 0 = x0(0) ≤ x1(0) ⇒ xt (0) ≤ xt+1(0) ≤ xt+1(x∗) = x∗,

i.e., limt→∞ xt (0) exists. By iii) of Lemma A.4 and Corollary A.3, this limit is equal
to x∗.

For any c ≥ 0, there exists a ≥ 0 such that a ≥ x∗, a ≥ c. By invoking i) of
Lemma A.4 once more, we see that xt [0] ≤ xt [c] ≤ xt [a] ∀t ≥ 0, where xt [0] → x∗
and xt [a] → x∗ as t → ∞ by the foregoing and Corollary A.2, respectively. Hence
xt [a] → x∗ as t → ∞. ��
Proof of Theorem 1 The iteration Tm is clearly a piece-wise affine continuous mono-
tone map. Applying Lemma A.6 to this iteration shows that it has a unique fixed point
attracting all trajectories. Since any fixed point of T[·] is a fixed point of the iteration,
the fixed point of T[·] is also unique. For the trajectory {xk} from Theorem 1 and any
s ∈ [0 : m −1], the sequence yt := xt ·m+s, t = 0, 1, . . . is the trajectory of the iterated
system yt+1 = Tm[yt ]. Hence yt → x∗ as t → ∞ by Lemma A.6. Since s is arbitrary,
this completes the proof.

Appendix B: Proof of Lemma 1

(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) For any mode m, we pick a buffer n = n(m) furnishing maxn∈Jm

λn
μn

and consider the polling system that results from the system at hand by discarding
all buffers in every group Jm except for n(m). By neglecting everything concerned
with the discarded buffers, any process in the original system is converted into a
process in this polling system. The process from (ii) evidently gives rise to a process
along which the total amount of work in the polling system stays bounded as time
progresses. This implies that

∑M
m=1

λn(m)

μn(m)
< 1 [17,34], which is identical to (7).

(iii) ⇒ (iv) Consider any of the policies described in the last claim of the lemma
and the related dynamical operators (6) of the phases. We are going to show that the
function
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V (X) :=
M∑

m=1

max
n∈Jm

xn

μn
, X = {xn}N

n=1 ∈ R
N (21)

displays a scant Lyapunov-like property under the action of these operators. Indeed,
for any active phase Pi ∼ mi �= �, we have by (6)

V [T Pi X ]=
∑

m �=mi

max
n∈Jm

xn +λnτ

μn
+ max

k∈Jmi

θk
i xk

μk
, where τ = max

k∈Jmi

[

δk
i + (1−θk

i )xk

μk −λk

]

.

By invoking that θn
i = θm

i and maxn[an + bn] ≤ maxn an + maxn bn , we conclude
that

V [T Pi X ] ≤
∑

m �=mi

[

max
n∈Jm

xn

μn
+ max

n∈Jm

λn

μn
max
k∈Jmi

δk
i +(1−θ

mi
i ) max

n∈Jm

λn

μn
max
k∈Jmi

xk

μk − λk

]

+θ
mi
i max

k∈Jmi

xk

μk
= V [X ] + (1 − θ

mi
i )

⎡

⎣
∑

m �=mi

max
n∈Jm

λn

μn

⎤

⎦ max
k∈Jmi

xk

μk − λk

+ (
θ

mi
i − 1

)
max
k∈Jmi

xk

μk
+

∑

m �=mi

max
n∈Jm

λn

μn
max
k∈Jmi

δk
i

︸ ︷︷ ︸
ϕi

.

Now we observe that due to (7)

1 − max
k∈Jmi

λk

μk
>

∑

m �=mi

max
n∈Jm

λn

μn
⇒ 1 − max

k∈Jmi

λk

μk
≥ −1

∑

m �=mi

max
n∈Jm

λn

μn
,

where  ∈ (0, 1) may be chosen independent of i . Hence

max
k∈Jmi

xk

μk − λk
= max

k∈Jmi

xk

μk

1

1 − λk
μk

≤ 1

1 − maxk∈Jmi

λk
μk

max
k∈Jmi

xk

μk

≤ 

⎛

⎝
∑

m �=mi

max
n∈Jm

λn

μn

⎞

⎠

−1

max
k∈Jmi

xk

μk
.

Overall

V [T Pi X ] ≤ V [X ] − (1 − )(1 − θ
mi
i ) max

k∈Jmi

xk

μk
+ ϕi ≤ V [X ] − ω max

k∈Jmi

xk

μk
+ ϕi ,

(22)

where ω := (1 − ) mini :Pi ∼mi �=�(1 − θ
mi
i ) > 0. Hence V [T Pi X ] does not exceed

V [X ] plus the constant ϕi that does not depend on X , with this property being evidently
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true for any switching phase (with another constant ϕi ) since the time of switching is
given.

Based on this scant Laypunov-like property, we are going to show that the
monodromy operator (2) maps the set Cr := {X ∈ R

N : 0 ≤ X, V [X ] ≤ r}
into itself provided that r > 0 is large enough. To this end, we start with analysis
of X ∈ Cr such that V [X ] = r . By assumption, any mode m is encountered in
the chain (5); let i(m) stand for the index of the first phase in this mode Pi ∼ m.
We also enumerate the modes m1, . . . , mM to arrange i(m) in the descending order
i(m1) > i(m2) > . . . > i(m M ). Then

V [M X ] (2)= V

[

T Pc − 1 · · · T Pi(m1) + 1
︸ ︷︷ ︸ T Pi(m1) · · · T P0 X

]

≤ V

⎡

⎣T Pi(m1) T Pi(m1) − 1 · · · T P0 X︸ ︷︷ ︸
X1

⎤

⎦ +
c−1∑

j=i(m1)+1

ϕ j .

Now we employ (22) (where i := i(m1) and X := X1) and note that since i(m1) is
the first phase in mode m1, the contents of all buffers n ∈ Jm1 constantly increase
duting all previous phases and so x1

n > xn ∀n ∈ Jm1 . Hence

V [M X ] ≤ V

[

T Pi(m1) − 1 · · · T Pi(m2) + 1
︸ ︷︷ ︸ · · · T P0 X

]

+
c−1∑

j=i(m1)

ϕ j − ω max
k∈Jm1

xk

μk
.

By continuing likewise, we establish that

V [M X ] ≤ V [X ] +
c−1∑

j=0

ϕ j − ω

M∑

ν=1

max
k∈Jmν

xk

μk

(a)= V [X ] +
c−1∑

j=0

ϕ j − ω

M∑

m=1

max
k∈Jm

xk

μk

(21)= V [X ] +
c−1∑

j=0

ϕ j − ωV [X ] (b)= (1 − ω)r +
c−1∑

j=0

ϕ j .

Here (a) holds since m1, . . . , mM is a permutation of [1 : M]; (b) is true since V [X ] =
r . So far as ω > 0, the last expression in the displayed formula is less than r provided
that r is large enough. Thus V [X ] = r ⇒ V [M X ] ≤ r ⇒ M X ∈ Cr for such r .

To extend this conclusion on all X ∈ Cr , we note that X ∈ Cr ⇒ X̂ :=
r/V [X ] X ∈ Cr &V [X̂ ] = r&X ≤ X̂ . The last inequality implies that M X ≤ M X̂
since the operator M is monotone 11. So far as the function V [·] is evidently monotone
as well, we have V [M X ] ≤ V [M X̂ ] ≤ r , where the last inequality is given be the
foregoing. Thus X ∈ Cr ⇒ M X ∈ Cr .

Overall we see that the continuous (see footnote 11) operator M maps the convex
compact subset Cr ⊂ R

N into itself. By Brouwers fixed point theorem [30, p. 117],

11 Which was established in the proof of Theorem 3.
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this operator has a fixed point X∗ = M X∗. The last equation means that the process
that starts at the initial state X∗ returns in this state after the entire production cycle
is completed; thus it is periodic. The proof is finalized by the arguments from the
concluding part of the proof of Theorem 3.

Since the policy employed in this part of the proof clearly generate only processes
for which any service of any buffer n starts at the maximal rate μn and proceeds at the
input rate λn , we have also proved that (iii) ⇒ (i)

To complete the proof, it is suffices to show that (iv) ⇒ (ii). However, this is evident.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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