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We consider a third party logistics service provider (LSP), who faces the problem of
distributing different products from suppliers to consumers having no control on supply
and demand. In a third party set-up, the operations of transport and storage are run as
a black box for a fixed price. Thus the incentive for an LSP is to reduce its operational
costs. The objective of this paper is to find an efficient network topology on a tactical
level, which still satisfies the service level agreements on the operational level. We develop
an optimization method, which constructs a tactical network topology based on the
operational decisions resulting from a given model predictive control (MPC) policy.
Experiments suggest that such a topology typically requires only a small fraction of all
possible links. As expected, the found topology is sensitive to changes in supply and
demand averages. Interestingly, the found topology appears to be robust to changes in
second order moments of supply and demand distributions.

Keywords: Network topology design; logistics service provider; bi-level optimization;
robustness.

1. Introduction

The logistics networks considered in this paper consist of production facilities, ware-
houses, and consumers, which are geographically connected by links, e.g. roads,
railways, waterways. In long-distance transportation networks, the distribution of
products is often performed by a logistics service provider (LSP). As opposed to the
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common supply chain studies, the problem addressed here is not to control the
amount of products in the supply chain. Instead, this study addresses one of the
typical services an LSP provides: Supply and demand cannot be influenced by
the LSP, but are simply a (stochastic) reality, that is revealed only a few days in
advance. A supplier pushes its products from several production facilities to the
logistics provider. By the same token, consumers pull products from the network.
The logistics provider then has to decide whether to store the products in a ware-
house or to immediately match them with a consumer demand.

The decisions regarding design and operation of distribution networks are typi-
cally classified into three levels: the strategic level, the tactical level, and the opera-
tional level. The strategic level deals with decisions regarding the number, location
and capacities of warehouses. These decisions have a long-lasting effect on the sys-
tem’s performance. The goal on the tactical level is to construct a network topology
with a small number of fixed line hauls (transportation links between two facilities).
Decisions on the network topology are made on the medium term time scale. To
preserve continuity for employees and to restrict the complexity of organizational
tasks, such a network topology should not change too frequently. According to the
economies of scale principle, the efficiency of a line haul increases if more prod-
ucts flow through it. The average line haul utilization can simply be increased by
decreasing the number of line hauls in the network topology. Therefore, an LSP
strives for a network topology with a small number of links. The operational level
refers to short term decisions such as scheduling and routing of the daily shipments
given the tactical topology.

In this paper, we focus on the interplay between the operational level and the
tactical level, i.e. we are interested in determining the topology of the network
for a given operational strategy and given operational parameters (see [7]). We
specifically strive for a robust topology, which can be established for a relatively
long period of time (months or years) and is still cost-effective when operational
parameters (supply and demand distributions) change.

The operation of an LSP is run as a black box for a fixed price. Within certain
boundaries with respect to variability in supply and demand, the LSP is contrac-
tually bound to supply the desired quantities at the desired day. In this case, there
are high incentives for an LSP to reduce its operational costs, within the limits set
by the service contract.

The LSP can compensate for the stochasticity in supplies and demands by
temporarily storing products in warehouses rather than shipping them directly
from supplier to consumer. Furthermore, shipping via a warehouse enables product
mixing so as to leverage on the economies of scale. On the other hand shipping
through a warehouse introduces additional delay due to the handling activities,
e.g. (un)loading and consolidation. In settings like the automotive industry, actual
orders are accurately released to the LSP a couple of days in advance. The LSP
can use this information to decide which transportation links to use in the long run
and how much of which product(s) to ship through them each day, such that total
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costs, including transportation and storage costs and penalties for early and late
deliveries, are minimized.

1.1. Contributions

We determine the structure of the tactical network topology (the link or line hauls
to choose) dependent on the decisions constructed at the operational level. We
specifically strive for a network with a very small number of links that still has
close to minimal operational cost. Reducing the number of links is a surrogate for a
more detailed optimization at the tactical level for which the associated costs (for
establishing a link) are hard to quantify:

• A reduction in the number of links reduces the complexity of the network and
with that the complexity of the organizational tasks of an LSP,

• Each link involves a fixed cost due to contracts and overhead,
• Reducing the number of links leads to thicker flows per link.

The overall problem can thus be characterized as a bi-level joint problem:
the upper (tactical) level chooses the links and the lower (operational) level, for
given choice of links, chooses the material flow. Our goal is to provide an efficient
method to approximate the trade-off frontier of link cost versus operational cost for
given stochastic supply and demand processes of which only the mean values are
known, and in particular to determine a network topology that is (i) approximately
optimal in both objectives (small number of links and minimal operational costs)
and (ii) robust with respect to stochasticity (second order moments) of supply and
demand.

In Sec. 2 we solve the lower-level operational problem (Sec. 2.1) of controlling the
material flow for a given network topology. A stepwise cost function is introduced
in the flow model to represent the costs for transportation by trucks (economies
of scale). Additional cost for storage and for missed shipment dates are imposed.
A model predictive control with rolling horizon (MPC) [5] is used to deal with
changing demand realizations.

The upper-level refers to the tactical decision making and is discussed in Sec. 2.2.
We present a branch-and-bound method that computes the operational costs as a
function of the number of links for given multiple-product supply and demand time
series. The method is impractical for larger networks and hence we propose a heuris-
tic that works by iteratively dropping least used links and replaces the stepwise cost
model by a linear cost model. For small networks we study the full and the approx-
imate optimization problem and find similar results in both the costs curve and the
topology structure. For the heuristic approximation, which is very efficient, we can
usually provide a network with a small number of links and close to minimal oper-
ational costs. From that we can conclude that the topology is also close to optimal.

The full optimization problem is computationally intractable at various different
levels: The upper-level problem involves binary decisions variables to model the
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choice of links reflecting the combinatorial explosion of the number of different
networks for a set of nodes. This is the reason for investigating the heuristics of
dropping the least used links. For each chosen network we will have to solve the
lower level problem of scheduling the flows. However, the lower-level problem is a
stochastic control problem and intractable due to the short time horizon in which
orders become fixed. We therefore use an MPC approach as a heuristic here (which
also mimics the operational practice of the logistics provider). The MPC approach
requires to solve a limited horizon optimization problem in each time step. For this
problem, we consider (i) a version where we model the fixed cost for each used truck
explicitly, which requires additional binary variables that make the problem again
intractable (solvable in practice for only small instances) and (ii) a version that
linearizes this cost function to arrive at a convex quadratic program (the quadratic
term due to the quadratic backlog cost, which can be then solved efficiently). The
latter one can be seen as a heuristic (or approximation) of the former one.

Section 3 compares the branch and bound method and the heuristics approach
for small problems and applies the heuristics approach to the linear model for
several large network configurations. The sensitivity of the resulting networks under
stochastic variations of demand and supply is studied. We end with conclusions and
recommendations for future work in Sec. 4.

1.2. Related work

Most related work is framed in the context of supply chain modeling which, as
discussed before, has a very different decision space. There is a very limited set of
papers that deal with the issues facing an LSP.

Similar to our heuristic approach [10] determines an near optimal number and
locations of transshipment hubs (strategic level) in a supply network by starting
from a network in which all potential hubs are present and successively dropping the
hubs that generate the largest cost decrease upon deletion. The process terminates
whenever deleting a hub does not significantly affect the costs. For a stochastic sup-
ply chain setting, only [6, 13] model transportation costs by a stepwise cost-function
dependent on the capacity of a transportation device (economies of scale). Such an
approach reflects practice more accurately than a linear model at the expense of
higher computational time. As discussed we follow this practice until the networks
become too large and we have to revert back to a linear model.

To our knowledge, only a restricted number of studies consider the viewpoint of
an LSP where supply and demand are both stochastic and uncontrollable [2, 14].
In [2], models and algorithms for a one product, multi-stage stochastic distribution
problem with recourse are developed. In [14] a company owns several production
plants and has to distribute one type of product to different regional markets. In
each time period, a random (uncontrollable) amount of product becomes available
at each of these plants. Before the random demand becomes available, the company
has to decide which proportion of the products should be shipped directly and which
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proportion should be held at the production plants. It is numerically shown that
a dynamic programming method yields high quality solutions of the problem. One
of the results of [14] is that most improvements on the operational costs are made
when a part of the consumers is served by two plants, rather than one.

Our success to reduce large networks to networks with a small number of links
with similar costs suggest that the network with only a few links provides a large
portion of the operational efficiency of the fully connected network. This confirms
other studies on different kinds of two-echelon networks. Results in [9] for instance
suggest that, for a small theoretical problem, limited flexibility in manufacturing
processes (i.e. each plant builds only a few products) yields most of the benefits of
total flexibility (i.e. each plant builds all products). However, the authors mention
that for more realistic cases they have no guidelines or general approach to add
flexibility in an arbitrary network. In this paper, this issue is addressed by develop-
ing a heuristic that for more realistic cases and for more than a two echelon system
generates a network with a small number of links that still performs well.

2. Bi-Level Network Design Problem

We consider the distribution of K types of products by trucks through a net-
work with S production facilities, W warehouses, and D consumers. Unless stated
differently, we use the indices i ∈ {1, . . . , S} for the production facilities, w ∈
W = {1, . . . , W} for the warehouses, j ∈ {1, . . . , D} for the consumers, and
k ∈ {1, . . . , K}, for the product types. Products can be sent either directly from sup-
plier(s) to consumer(s) or indirectly via a warehouse, assuming that the LSP is free
to choose from which supplier(s) a consumer receives a certain product. Shipments
from one warehouse to another are not taken into account yet, but could easily

1

S

.

.

.

1

.

.

W

.

1

D

.

.

.

1

K

...

Suppliers Warehouses Consumers

Fig. 1. Illustration of the considered logistics networks. An arrow represents a line haul (link)
from one facility to another.
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be incorporated into this framework as well. An example network for this type
of three-echelon multi-item distribution system is depicted in Fig. 1. Even though
each link in the graph has a certain length representing the geographical distance
between the corresponding nodes, Fig. 1 does not show the spatial positioning of
the nodes for ease of presentation.

Each production facility supplies one or multiple product types, and each
consumer demands one or multiple product types, at each time step (day) t ∈
{1, . . . , T}. The supply and demand time series S k

i (t) (supply of product type k

by supplier i at day t) and Dk
j (t) (demand of product type k by consumer j at day

t) are stochastic, and a realization is assumed to be given.

2.1. Operational decision making

Below we first present the decision and auxiliary variables and then discuss the
model constraints subsequently.

2.1.1. Variables

To formalize the operational task of the LSP, we define the operational decision
variables xk

ij(t) ≥ 0 as the amount of products of type k transported from node i

to node j on time step t, where (i, j) ∈ U , the set of links in the given network. On
the supplier’s side, we require that all available products S k

i (t) have to be picked
up at time t such that

S k
i (t) =

∑
j∈ Pi

xk
ij(t) ∀ k, i, t (1)

where the set Pi contains the indices of all the nodes to which production facility i

is connected. On the consumers side, both early and late deliveries might occur and
have to be accounted for. For this we introduce state variables bk

j (t) as the backlog
of product type k for consumer j on day t, whose dynamics is

bk
j (t) = bk

j (t − 1) + Dk
j (t) −

∑
i∈ Qj

xk
ij(t) ∀ k, j, t (2)

where the set Qj contains the indices of all the nodes connected to consumer j. In
the warehouses, several processes (e.g. inbound, consolidation) between arriving at
and storing in a warehouse cause delay. The total delay is captured in a constant
τw ∈ N, τw � T , so that products arriving in warehouse w at time t can be shipped
out τw time steps later at the earliest. To model this time delay, we introduce
additional state variables yk

w(t) as the inventory of product k in warehouse w on
day t, whose dynamics is

yk
w(t) = yk

w(t − 1) +
∑

i∈ Iw

xk
iw(t − τw) −

∑
j∈ Ow

xk
wj(t) ∀ k, w, t (3)

where the set Iw contains the indices of all nodes that are sources of warehouse w,
the set Ow contains the indices of all nodes that are destinations of warehouse w,
and yk

w(0) = Y k
w denotes the initial inventory, which we assume to be 0.
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The operational cost for time step t is the sum of transportation cost, storage
cost, and backlog cost. It can be expressed as a function of the decision variables
xk

ij(t) and state variables bk
j (t) and yk

w(t) at time t as

α(xk
ij(t), b

k
j (t), yk

w(t))

=
∑

(i,j)∈ U

cijφ

(
K∑

k=1

xk
ij(t)

)
+

K∑
k=1

D∑
j=1

βkbk
j

2
(t) +

∑
w∈ W

hw

K∑
k=1

yk
w(t) (4)

where cij represents the geographical distance between nodes i and j, hw repre-
sents the inventory holding costs in warehouse w, and βk represents the “value”
of product k. The reason for not using the absolute value |bk

j (t)| as a penalty for
early or late delivery is that in case of shortages, the quadratic function favors equal
distribution of shipments among consumers rather than shipping everything to one
consumer. The function φ(·) expresses quantity-dependent transportation costs. We
consider two cases, (i) φ(x) ≡ V � x

V � to express stepwise-constant transportation
costs due to the use of trucks with unit capacity V , and (ii) the identity φ(x) ≡ V x

to express the simplest case of linear transportation costs.
We further assume that suppliers and consumers commit to their real supplies

and demands for a constant number of time steps Ω in advance, where Ω � T .
Thus, the exact supplies and demands for the current and the next Ω−1 time steps
are known and can be taken into account when deciding on the transportation
quantities.

The method applied by Frans Maas is to use a limited look-ahead scheme in
a rolling horizon fashion, also called model predictive control (MPC). The basic
idea of MPC is that optimization is not performed over an infinite horizon, but
only performed over a limited horizon where more information about uncertain
data is available, or even well representable by deterministic or nominal values,
and to choose some reasonable approximation of the value function for the time
steps outside the horizon, which typically is used as terminal costs. Here, we use a
horizon of Ω steps as the exact supply and demand data is known over this time
frame. Thus, we obtain an approximate control policy µ̂ by solving the following
time-expanded network flow problem:

minimize
t+Ω−1∑

q=t


 ∑

(i,j)∈ U

cijuij(q) +
K∑

k=1

D∑
j=1

βk[bk
j (q)]2 +

∑
w∈ W

hw

K∑
k=1

yk
w(q)




subject to

S k
i (q) =

∑
j∈Pi

xk
ij(q) ∀ k, i, q

yk
w(q) = yk

w(q − 1) +
∑
i∈Iw

xk
iw(q − τw) −

∑
j∈Ow

xk
wj(q) ∀ k, w, q
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bk
j (q) = bk

j (q − 1) + Dk
j (q) −

∑
i∈Qj

xk
ij(q) ∀ k, j, q

V · uij(q) ≥
K∑

k=1

xk
ij(q) ∀ i, j, q

xk
ij(q) ≥ 0 ∀ k, i, j, q

yk
w(q) ≥ 0 ∀ k, w, q

(5)

Minimization is performed over the variables xk
ij(q), uij(q), bk

j (q), and yk
w(q),

where q ∈ {t, . . . , t+Ω−1}, initial backlog bk
j (0) = Bk

j and initial inventory yk
w(0) =

Y k
w . The additional variables uij(q) are introduced to linearize the transportation

cost function φ(·) and represent the number of trucks of capacity V necessary to
transport the total amount of products over link (i, j) at time step q. To model
the step-wise constant transportation cost, these variables have to be restricted
to integer values; otherwise a continuous relaxation can be used to model linear
transportation costs.

For all time steps prior to t, the values of variables are known so that they
serve as deterministic data in the above limited look-ahead problem. The same
holds for the values of supplies S k

i (q) and demands Dk
j (q) within the considered

horizon {t, . . . , t + Ω − 1}. Consequently, the problem is a mixed-integer quadratic
program (in case of stepwise-constant transportation costs) or a quadratic program
(in case of linear transportation costs). The model parameters are nicely arranged
in Table 1.

2.2. Tactical decision making

In a given collection of suppliers, warehouses, and consumers, let L be the union
of all potential links (directed edges) from suppliers to warehouses, warehouses to
consumers, and suppliers to consumers. The tactical problem can then be defined

Table 1. Model parameters.

Parameter Definition

T Number of discrete time slots considered
K Number of product types
S Number of suppliers in the network
W Number of warehouses in the network
D Number of consumers in the network

S k
i (t) Amount of products of type k supplied at time t by supplier i

Dk
j (t) Amount of products of type k demanded at time t by consumer j

τw Delay in warehouse w due to consolidation activities
Ω Horizon length
V Capacity of a truck
cij Costs for sending a truck from node i to node j
hw Costs per day for storing a product in warehouse w
βk Costs for not delivering product k in time
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as choosing a subset U ⊆ L of a given cardinality L with smallest expected
operational cost. In doing so, we tacitly assume that there exists some mapping γµ

that assigns the expected operational costs γµ(U ) to the network of chosen links
U when using a particular control policy µ. As it is unclear how this expectation
can be computed exactly in the present set-up, we resort to a variant of sample
average approximation by Monte Carlo simulation, where we simulate the process
for a fixed number of time steps while applying the given policy µ. Here, we use the
approximate limited look-ahead policy µ̂ defined above, and refer to the resulting
estimator of the expected operational cost as γ̂µ̂(U ).

In a bi-objective formulation, this tactical problem is to be solved for any value
of L ∈ {Lmin, . . . , |L |}, where Lmin is the smallest number of links such that no
node is isolated and each warehouse is connected to at least one supplier and one
consumer. Our conjecture about this trade-off between the number of chosen links
and the operational costs is that the operational costs are only marginally sensitive
to a reduction of the number of links from the fully connected network until a crit-
ical value, after which the costs increase sharply. In this case, the cost curve would
form a pronounced knee. Hence, our particular goal is to determine a representa-
tive network from this region, as this would constitute in a sense a best-possible
bi-objective approximation. Such a network could be considered “cost-effective” as
it would yield close-to-minimal operational costs with a close-to-minimal number
of links.

To determine the cost curve, we first develop a bi-objective branch and bound
method that computes the minimal cost topology for any given number of links
simultaneously. As this method still searches a large part of the solution tree, we
additionally propose a heuristic, which is able to generate a satisfactory solution
for larger instances.

2.2.1. Bi-objective branch and bound method

We develop a branch and bound algorithm that defines a tree search over a set of
binary decision variables zij associated with each link (i, j) ∈ L , where

zij =

{
1 if the link from facility i to facility j is present,

0 otherwise.

A pseudo-code description of the algorithm is given below (Algorithm 1). The
algorithm starts with a fully connected network and no bound on the minimal cost
and maintains and updates a current approximation to the cost curve γ̂µ̂.

During the search, the L-entry is updated whenever a network z with L links is
identified to have lower operational cost than the current best network with L links
(lines 14–16). At each branching operation (lines 19–27), a natural lower bound is
given by setting all undecided variables to one as all solutions in this subtree can
only be composed of a subset of those links. The subtree can be pruned if this lower
bound is not lower than the current best value for any number of links L for which
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Algorithm 1. Branch and Bound
1: let z := (�, �, ..., �)
2: let LB(z) := −1
3: initialize the list of unexplored nodes A with z

4: while A is not empty do
5: pick z as the last element from A

6: delete z from A

7: let p be the number of ones in z and q be the number of zeros in z

8: if p + q = |L | then
9: if LB(z) = −1 then

10: let c := γ̂µ̂(z)
11: else
12: let c := LB(z)
13: end if
14: if c < opt(p) then
15: let opt(p) := c

16: let Zopt(p) := z

17: end if
18: else
19: if LB(z) = −1 then
20: let z′ be a copy of z where all � are replaced by 1
21: let LB(z) := γ̂µ̂(z′)
22: end if
23: if LB(z) < Zopt(L) for some L with p ≤ L ≤ |L | then
24: let z′′ be a copy of z where the first � is replaced by 0 and append z′′

to A
25: let z′′′ be a copy of z where the first � is replaced by 1 and append z′′′

to A
26: let LB(z′′) := −1 and LB(z′′′) := LB(z)
27: end if
28: end if
29: end while

there are potential solutions in the subtree; otherwise, two children are created by
setting the first undecided variable to zero and one, respectively, and added to the
list of unexplored nodes A.

2.2.2. Heuristic

Since the branch and bound method evaluates a large number of possible topologies,
only small problems can be solved. Hence, we propose a heuristic that evaluates less
than |L | topologies and still yields a very good solution. The heuristic starts from
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Algorithm 2. Heuristic
1: let U be the fully connected network L

2: while the network is not minimally connected do
3: apply the policy µ̂ during K time steps and determine γ̂µ̂(U )
4: determine usage Pij for each link in U

5: delete the link(s) from U with minimal usage
6: end while

the fully connected network and approximates the operational costs γ̂µ̂(L ) when
using the control policy µ̂ over the fixed number of time steps. Then the link(s)
that are least used over this time period are deleted. In determining the usage of a
link, the value of the product type(s) through this link is taken into account by a
weight factor. We define the weighted average daily usage Pij of the link between
facilities i and j as

Pij =
1
T

T∑
t=1

K∑
k=1

βk

βmax
· xk

ij(t), where βmax = max
k

βk. (6)

In this way, links that provide just-in-time delivery of high value products are
not (easily) deleted. This procedure of deleting links is repeated until a minimally
connected network remains. A pseudo-code description of the algorithm is given in
Algorithm 2.

3. Computational Study

In the previous section, we proposed two algorithms to find a network topology with
a close to minimal number of links that is still cost-effective on the operational level.
In this section, the performance of both of these algorithms is evaluated and com-
pared. Experiments suggest that the heuristic is very effective in constructing a
network topology with a small number of links that yields close to minimal opera-
tional costs. However, large real-life problems are still intractable. Hence, we replace
the stepwise cost function by a linear cost function and find similar results much
faster. Some large real-life instances are solved for the linear cost structure and
results are presented.

To evaluate the performance of the heuristic, a bi-objective relative approxima-
tion factor (εc, εL) is used as a performance measure. The factor denotes the relative
deviation from the ideal point, the point composed of the single-objective optima.
In this case, those values are known, so we can define the two components as

εc(U ) :=
γ̂µ̂(U )
γ̂µ̂(L )

and εL(U ) :=
|U |
Lmin

, (7)

denoting the operational costs of the considered topology U relative to the oper-
ational costs in the fully connected network, and the number of links |U | relative
to the number of links in a minimally connected network. Even though we are not
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able to give some a priori performance guarantee of the heuristic, this factor can
be used to bound the approximation quality a posteriori.

In addition to evaluating the performance of the heuristic approach, a compu-
tational study is performed to investigate the robustness of the generated network
topology with respect to changes in the supply and demand distributions. Results
suggest that a “heuristic network” with a satisfactory (εc(U ), εL(U )) value is cost-
effective as long as the means of supply and demand distributions remain the same.
Finally, we formulate the hypothesis that increasing the initial inventory can com-
pensate for the backlog costs embedded in a particular supply and demand time
series. The hypothesis is confirmed by experimental results.

For the logistics networks in this paper, we consider S suppliers, W warehouses,
D consumers and the distribution of K product types. The networks considered
typically consist of few suppliers and warehouses and a lot of consumers, such that
W < S � D.

The supply and demand time series S k
i (t) (supply of product type k by supplier

i at day t) and Dk
j (t) (demand of product type k by consumer j at day t) are ran-

domly distributed according to a joint distribution that is defined by the following
sampling procedure: for each combination of product type, supplier and consumer,
we assume a uniform distribution on an interval [µk

i (t) − σ̂k
i (t), µk

i (t) + σ̂t
i(t)] with

given mean µk
i (t) and half-length σ̂k

i (t). Next, T preliminary samples out of each of
the K · (S + D) distributions are taken. The final samples are then determined by
adding a constant either to each supply or each demand sample for each product
type to enforce that for each product type, the sum of T supplies equals the sum
of T demands over the horizon. We generate stochastic time series of T ·S supplies
and T · D demands from uniform distributions with random means and variances
for 100 time steps. We assume that supplies and demands are only known 2 days
in advance, so the window size Ω is equal to 3. Moreover, we focus on networks
of relatively small geographical extent. Therefore, it is assumed that products can
be transported from any arbitrary node to another within one day. In addition, we
assume that the delay for going through warehouse n is equal to one day, which
implies that τw = 1. The costs are chosen such that the proportion of transporta-
tion and storage costs ci,j : hn =1 : 0.6 on average and the early/late delivery costs
βk are randomly chosen between the bounds of 0.001 and 100.

3.1. Comparison: Branch and bound versus heuristic

First, we compare the results of the branch and bound method and the results
of the heuristic applied to the stepwise cost model. Hence, we generate different
problem instances (supply and demand distributions as well as spatial location of
network nodes) for many small network configurations and run the branch and
bound method as well as the heuristic. Comparison of the resulting cost curves of
operational cost versus number of links show that the heuristic generates a topology
that is close to optimal.
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Fig. 2. Comparison of branch and bound with heuristic for 10 supply and demand instances,
S = 2, W = 1, D = 3, K = 1, Branch and bound: εc ≤ 1.01, εL = 1.5, Heuristics: εc ≤ 1.01,
εL = 1.63.

To illustrate this we use a network with S = 2, W = 1, D = 3, and K = 1.
A hundred sets of supply and demand time series and graphical supply, demand and
warehouse locations are generated. Next, for each of these sets, a network topology
is constructed with both the branch and bound, and the heuristics method.

Results for both the branch and bound method and the heuristic are shown in
Fig. 2. For clarity of presentation we only depict results for ten different parameter
sets, which give a proper representation of all hundred performed experiments. As
can be seen from this figure, both methods generate equal operational costs for the
fully connected network (number of deleted links equals zero). From Fig. 2, it also
appears that the critical value in the efficient frontier found by the heuristic occurs
at 5 or 6 deleted links, whereas it always occurs at 6 deleted links for the networks
generated by the branch and bound approach. The difference in the number of links
in the resulting network for these instances is thus at most 1 link. This suggests
that the heuristic finds a satisfactory solution for small network instances. Since the
CPU time of the branch and bound grows extremely fast with increasing network
size, we have to rely on the heuristic for larger instances.

The heuristic, applied to the stepwise cost model, enables to find a close to opti-
mal topology for a network with up to 4 suppliers, 3 warehouses, 25 consumers and
6 product types (S = 4, W = 3, C = 25, and K = 6, respectively). Due to the non-
linearity, larger real-life problems are still intractable. We therefore remove the inte-
ger variables uij from the model and introduce linear transportation costs (φ(x) ≡
V x). We apply the heuristic to this linear model, which is now able to construct
cost-effective topologies for large real-life network sizes. In the next section, results
of the heuristic for the stepwise and linear model are compared. Additionally, we
present results of the heuristic for the linear model for large real-life network sizes.
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(a) S = 3, W = 2, D = 15, K = 5,
εc ≤ 1.01, εL = 1.65.

(b) S = 4, W = 3, D = 20, K = 5,
εc ≤ 1.01, εL = 1.57.

Fig. 3. Comparison heuristics results for the linear and stepwise model, T=100, τw=1, Ω=3. The
cost start to increase at about (a: 165%, b: 157%) of the links of a minimally connected network.

3.2. Performance of the heuristic for large networks

Results for both the linear and the stepwise model are presented in Fig. 3 for two
different network configurations. For larger network sizes, we have to rely on the
heuristic model with linear costs. Two cost curves for large real-life networks are
presented in Fig. 4. Costs are plotted on a logarithmic scale versus the number of
deleted links. In these plots, zero deleted links corresponds to the fully connected
network, whereas the maximal number of deleted links corresponds to a minimally
connected network.

(a) S = 5, W = 3, D = 40, K = 6,
εc ≤ 1.01, εL = 2.35.

(b) S = 8, W = 4, D = 75, K = 10,
εc ≤ 1.01, εL = 1.97.

Fig. 4. Heuristics results for the linear model, T = 100, τw = 1, Ω = 3. The cost start to increase
at about (a: 235%, b: 197%) of a minimally connected network.
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All these curves (in Figs. 3 and 4) exhibit the same typical characteristics from
the left to the right: at first, a large number of links can be deleted without affect-
ing the costs significantly: Up to 70% of the links are not used at all in the first
heuristic iteration and are thus deleted at once. Still, about 15% of all the links
can subsequently be deleted without substantially affecting costs. Then, after about
85% of the total number of links that can be deleted, costs start increasing slightly
with the number of deleted links. Finally, when about 90–95% of the total number
of links that can be deleted are actually deleted, costs start increasing dramatically.
Below the figures the εL-value are given for an upper bound on the εc-value of 1.01,
which means that the heuristic is stopped if deleting one more link would lead to
operational costs that are more than 1% higher than the operational costs in the
fully connected network.

The comparison between the results of the linear and stepwise model show that
in the fully connected network, as expected, the costs for the stepwise model are
slightly higher than the costs for the linear model (due to the logarithmic scale this
can hardly be noticed in Fig. 3). Furthermore, Fig. 3 shows that for both models the
dramatic cost increase starts at approximately the same number of links. Further
analysis (not depicted in the figures here) shows that for the performed experiments,
the set of deleted links at the critical value is approximately the same for both
models. A large number of experiments, not presented in this paper, exhibit the
same characteristics, suggesting that the heuristic for the linear model is a quite
good approximation of the heuristic with the stepwise model.

Apparently, a topology with only a small number of links suffices to gain close
to minimal operational costs. Since only a small number of links remain we can also
conclude that the resulting topology is also close to optimal. In [9], similar charac-
teristics are presented for a manufacturing system with deterministic supplies and
demands. The results in [9] suggest that a small flexibility (each plant produces only
a couple of product types) can almost achieve the benefits of total flexibility (each
plant produces all product types). Furthermore, it should be noticed that the curves
in Figs. 3 and 4 exhibit approximately horizontal plateaus. The reason for this is
that not one, but a group of links has to be deleted to significantly affect the costs.

3.3. Statistical robustness analysis

We now formulate the hypothesis that networks generated for a particular supply
and demand time series are insensitive to changes of second order moments of
supply and demand distributions. Thus, if information about the individual means
of supplies and demands is available a priori, we only need to generate a stochastic
time series with these means to find a cost-effective topology for other scenarios
with these means. An additional experiment suggests that these stochastic time
series, rather than deterministic ones, are required to generate a robust topology.
Furthermore, we perform an experiment suggesting that the heuristics applied to
the linear model finds a topology, which is efficient with respect to the economies of
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scale principle (consolidation of product flows to induce full truckload shippings).
Finally, as we optimize over a finite period of time T , we have to address the
influence of the initial inventory. We demonstrate that the steady state value of the
costs in the fully connected network converges to the minimal transportation plus
storage costs, as initial inventory increases.

3.3.1. Sensitivity

To allow for an automatic statistical sensitivity analysis we define a representative
“heuristic network” to be the smallest network U determined by the heuristic,
whose operational costs are within a factor F of the operational costs of the fully
connected network, i.e. where εc(U ) ≤ F . Deleting one more link will increase the
costs above that level. We then perform the following statistical analysis: We choose
fixed mean supplies and demands for a network with S = 4, W = 3, D = 20, and
K = 5 and generate stochastic supply and demand samples (for 100 time steps).
Based on this, we determine the “heuristic network” and fix its topology, i.e. its link
structure U . For this network U , we then compute the operational costs for supply
and demand time series from twenty different distributions (with different second
order moments but same means) and record the resulting approximation factor
εc(U ) in each case. Finally, the mean values ε̄c and ε̄L of the twenty instances are
determined.

The above described experiment is repeated for 99 other heuristic networks, each
generated from particular means of supply and demand. Figure 5 shows four scatter
plots (each for a particular value of F ) of the hundred mean values ε̄c versus ε̄L. As
expected, the robustness decreases as F increases (since then the number of links in
the heuristic network decreases which makes the network more sensitive). We define
the network to be robust if the mean value of εc (over 20 experiments) is at most
1.2 with a frequency of 95%. The scatter plot in Fig. 5(a) shows that εc is strongly
clustered near one indicating that, with high likelihood, our process of choosing
a heuristic network (with F = 1.001) will find a network that is a “very good”
network even when the supply and demand time series vary randomly with respect
to second order moments. The histogram for the case where F = 1.01 [Figure 5(b)]
is still satisfactory since more than 95% of the considered cases results in an εc value
equal to or smaller than 1.2. The results for F = 1.05 [Figure 5(c)] and F = 1.1
[Figure 5(d)] do not satisfy our definition of a robust network anymore. For these
values of F , several means and standard deviations of εc are even outside the figure
range (larger than 3). We choose as “heuristic network” the one with F = 1.01, since
(i) the accompanying results fulfill our definition of a robust network, and (ii) the
generated heuristic networks have fewer links than the case where F = 1.001. These
results suggest that the “heuristic network” (F = 1.01) indeed is robust to changes
in second order moments of supply and demand distributions.

The corresponding values of εL suggest that the generated heuristic networks on
average consist of 2.5 times the number of links in a minimally connected network.
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(a) F = 1.001. (b) F = 1.01.

(c) F = 1.05. (d) F = 1.10.

Fig. 5. Sensitivity of “heuristic network” to 2nd order moments. “o” represents a product mix
with 1 high value and 4 low value products, “+” product mix with more than 1 high value product.

This means that each network node is on average connected to two or three other
network facilities. Apparently, this limited amount of connectivity suffices to provide
a large portion of the operational efficiency and robustness of the fully connected
network. Another interesting result is that the number of links in the “heuristic
network” depends on the product mix. A circle in Fig. 5 represents an instance
with a product mix with only one high value product and in this case four low
value products, whereas a plus represents an instance with a product mix with
at least two high value products. The results suggest that more links are required
when more high value products are present. We give the following explanation for
this phenomenon: the structure of the “heuristic network” is mostly determined
by the number and locations of suppliers and consumers of high value products.
When more high value products are present, in general the number of suppliers
and consumers of high value products increases, and thus more links have to be
established to provide just-in-time delivery.
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Fig. 6. Empirical cumulative distributions showing the sensitivity of the heuristic networks to
changes in (i) variances, and (ii) means of supplies and demands.

To check the sensitivity of the “heuristic network” to the first moments of sup-
ply and demand distributions, we perform the following experiment: we take the
hundred heuristic networks, where F = 1.01, and hundred accompanying results
of εc from the previous experiments where the means of supplies and demands
stay the same, but the variances change [Figure 5(b)]. In addition, for each of the
100 heuristics networks we generate supply and demand time series from newly
generated distributions and determine the corresponding εc. Figure 6 depicts two
empirical cumulative distribution functions of hundred εc values generated from (i)
time series with different variances, but the same means as the “heuristic network”
originally was generated from (solid line), and (ii) time series with different means
(dotted line). The solid line again confirms that the “heuristic network” is robust to
the variances since the cumulative distribution grows to 100% very fast starting at
εc = 1. The cumulative distribution function for the instances with different means
grows much slower. This is not surprising since the networks have been optimized
to deliver the right amount at the right time for an ensemble mean. Changing the
mean should change the topology of the optimal network.

3.3.2. Deterministic versus stochastic approach

As the results from the previous subsection suggest, only the supply and demand
averages are required to construct a robust topology. This however does not imply
that solving the deterministic problem based on these averages results in a robust
topology. On the contrary, (random) stochastic supplies and demands are required
to create back-up links that are not generated in the deterministic approach. This is
illustrated by the following experiment. We consider 3 suppliers, 2 warehouses and
15 customers in a distribution network with 5 product types, i.e. S = 3, W = 2, D =
15, and K = 5. We first randomly generate 3 · 5 supply and 15 · 5 demand averages.
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Now we construct network topologies in the following two ways: the heuristic applied
to (i) the deterministic case based on these averages, and (ii) stochastic supplies and
demands (with these same averages and additionally randomly generated second
order moments). In both cases εL = 1.01 for arriving at a topology. Next, 31 new
supply and demand time series (of 100 time steps each) with the same averages
but different second order moments are generated. The performance of both found
topologies for the new time series (relative to the performance of the fully connected
network for the new time series) can now be compared by means of the value of
εc. Figure 7(a) depicts the results of 31 topologies (F = 1.01) each subject to 31
time series. Results are expressed by values (εL, εc). In this figure we observe that
the (extreme) values of εc for the deterministic approach (circles) are much larger
than the ones for the stochastic approach (stars). Apparently, the approach based
on stochastic supplies and demands leads to much more robust network topologies
than the approach based on deterministic supplies and demands.

3.3.3. Performance of the heuristic using linear transportation costs

Since the heuristic using the stepwise model can only solve medium-size instances,
we have to rely on the heuristic using linear transportation costs (a cost model
without an economies of scale principle). However, we have implemented a kind of
a consolidation aspect in our heuristic instead: the utilization of a link is weighed
according to the type(s) of product flowing through it. The higher the value of
product k, the higher the weigh factor βk. In this way, we prevent links that trans-
port high-valued product(s) from being deleted and induce links with low-valued
products to be deleted. The low-valued products will eventually be added to the

(a) Deterministic versus stochastic
approach, S = 3, W = 2, D = 15,
K = 5, F = 1.01.

(b) Performance of the stepwise model
for the topology found with the linear
model, S = 3, W = 2, D = 15,
K = 5, F = 1.01.

Fig. 7. Validation of the heuristics performance.
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links with high value products. Although we realize that this consolidation effect
is different from the one in the stepwise model, and as a consequence the daily
shipping decisions may be different for both approaches, the constructed network
topologies turn out to be very similar. Since this is exactly what we are looking for,
namely a good network topology, the heuristic with the linear model can be used
for solving large instances, e.g. S = 8, W = 4, D = 75, having 2932 ≈ 3.63 · 10280

possible topologies.
The following experiment is developed and performed: We again consider 3

suppliers, 2 warehouses and 15 customers in a distribution network with 5 product
types, i.e. S = 3, W = 2, D = 15, and K = 5, and use the found 31 heuristic
topologies (using linear costs) from the experiment in Sec. 3.3.3. Then, for each of
these topologies, we run the stepwise model for (i) the found topology, and (ii) the
fully connected network for thirty-one supply and demand time series (the same
as in the first experiment) with the original averages, but different second order
moments, and compare both costs. Corresponding values of (εL, εc) are shown in
Fig. 7(b). We see that the values of εc are still satisfactorily small (major part
below 1.2) and closely resemble the values for εc (stars) in Fig. 7(b). Apparently,
running the heuristic using the linear cost model results in a topology, which from
an economies of scale perspective can efficiently be used.

3.3.4. Inventory flexibility

In all previously performed experiments the parameter of initial inventory Y k
w has

been set to zero. It turns out that this initial inventory is the only controllable
parameter that can influence the operational costs for running the fully connected
network. Consider the black dotted lines in Figs. 8(a) and 8(b), which show results
of the heuristic for S = 4, W = 3, D = 20, and K = 5, for respectively two different
supply and demand time series with equal first moments and yk

w(0) = 0. The fact

(a) Results time series 1. (b) Results time series 2.

Fig. 8. Initial inventory flexibility. Performance of the network for different values of the initial
inventory Y k

w .
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that the means of supply and demand are equal implies that approximately the
same amount of products is shipped along time period T , and thus approximately
the same transportation costs are present for both these cases. Nevertheless, a large
difference in costs for the fully connected network can be noticed. This difference
can therefore only be caused by backlog costs, which are induced by the specific
time series. For instance, a time series, which exhibits a peak in demand at the
beginning of period T , always leads to backlog costs, even in a fully connected
network. Therefore, we pose the hypothesis that the only controllable parameter
that influences the costs for the fully connected network is the initial inventory.
Increasing the initial inventory will compensate for early backlog, which eventually
will lead to convergence to the inevitable transportation costs.

To confirm this hypothesis, we perform the following additional experiments for
the two supply and demand time series as mentioned above: we generate a supply
and demand time series, set the initial inventory in each of the warehouses to zero
and determine the operational costs dependent on the number of deleted links [black
dotted lines in Figs. 8(a) and 8(b)]. Next, we perform two additional optimizations
for the same supply and demand time series where 1.0% and 2.5% of the total
shipped amount of products is present in the warehouses as an initial condition,
respectively. The results of these experiments are depicted in Figs. 8(a) and 8(b).
As one can see, for both cases, the total costs of the fully connected network indeed
converge to the transportation and storage costs as initial inventory increases.

4. Conclusions and Recommendations

In this paper we considered transportation networks from the point of view of a third
party logistics provider, who deals with the problem of distributing different types of
products from suppliers to consumers via transportation links. Warehouses between
the suppliers and consumers may be used to compensate for the stochastic behavior
of supplies and demands and to consolidate different products. The amounts of these
supplies and demands are assumed to be uncontrollable for the logistics provider.
With only information about the supplies and demands a few days in advance,
the logistics provider has to decide on which transportation links to use for a long
period of time (tactical level) and how much of which products to ship through
them each day (operational level).

We formulated a bi-level joint network design and network operation problem:
At the upper (tactical) level, the network topology has to be constructed, and at
the lower (operational) level routings and schedules for daily shipments have to be
decided on. A model predictive control with a rolling horizon (MPC) was used as
decision model on this operational level. A heuristic was proposed to construct the
topology dependent on the operational decisions and compared to a bi-objective
branch and bound method. The consolidation of product types so as to leverage on
the economies of scale principle is taken into consideration in this network design
heuristic.
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Experimental results reveal that the cost of such a near-optimally operated net-
work as a function of the number of links in the network stays almost constant as
the vast majority of network links are removed and explodes once the link number
has decreased below a critical value. The experiments show that our heuristic deter-
mines a network that has close to optimal costs with a very low number of links
(typically about 10% of all links that can be deleted before a minimally connected
network remains).

Furthermore, experimental results suggested that the resulting topology is insen-
sitive to second order moments of the individual supply and demand distributions.
Hence, information about the means of supplies and demands over a certain time
period suffices to generate a close to optimal network topology robust to any supply
and demand scenario with the same means.
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