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Abstract: The paper considers standard fluid models of multi-product multiple-server produc-
tion systems where setup times are incurred whenever a server changes product. Concerned is the
general approach to the problem of optimizing the long-run average cost per unit time that offers
to first determine an optimal steady state (periodic) behavior and then to design a feedback
scheduling protocol ensuring convergence to this behavior as time progresses. The second part
of this program is treated and a systematic presentation of a novel approach to it is offered.
This approach gives rise to protocols that are cyclic and distributed: the servers do not need
information about the entire system state. Each of them proceeds basically from the local data
concerning only the currently served queue, although a fixed finite number of one-bit notification
signals should be exchanged between the servers during every cycle. The approach is illustrated
by simple albeit instructive examples concerning polling systems, single server systems with
processor sharing scheme, and the re-entrant two-server manufacturing network with non-
negligible setup times introduced by Kumar and Seidman. For the last network considered in the
analytical form, the optimal steady-state (periodic) behavior is first determined. Based on the
desired steady state behavior and the presented theory, we designed simple distributed feedback
switching control laws for all examples. These laws not only obtain the required behaviors but
also make them globally attractive, irrespective of the system parameters and initial state.

Keywords: Hybrid dynamical systems, Optimal switched control, Control of networks, Fluid
models, Queueing.

1. INTRODUCTION

The paper deals with fluid models of production systems.
They represent the system as a network that receives
incoming product flows, interpreted as deterministic fluid
streams, and processes them by means of servers. The
servers move products (also called work) among internal
buffers and ultimately dispatch work into the exterior of
the network. The servers can alter their locations, which
requires nonzero setup times. Such models are used to
describe certain aspects of flexible manufacturing systems,
computer, communication and transport networks, chem-
ical kinetics, etc. Baker [1974], Perkins and Kumar [1989],
Kelly and Williams [2004].

Recently a great deal of research was concerned with
these models, see e.g., Savkin [2001], Dai and Vate [2000],
Bramson [2008], Gamarnik and Hasenbein [2005] and the
literature therein. It was shown that they may exhibit
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Scientific Research (NWO-VIDI grant 639.072.072; NWO visitors
grant 040.11.131), the Russian Foundation for Basic Research (grant
09-08-00803), and Russian Federal Program (grant N 2010-1.1-111-
128-033).

unexpectedly complicated and counter-intuitive behavior,
especially if decentralized control policies and non-zero
setup times are involved, see also Banks and Dai [1997],
Kumar and Seidman [1990]. In Perkins and Kumar [1989],
clear a fraction (CAF) policies were introduced and shown
to achieve stability for single server systems, as well as for
multi-server networks such that under some enumeration
of the servers, work visits them in the ascending order.
If such enumeration is impossible (which holds for e.g.,
re-entrant networks), CAF policies may fail to stabilize
the system. In some cases, the so-called gated policies
proposed in Humes [1994], Perkins et al. [1994] are able
to overcome this drawback. The main idea behind them is
to assign a certain level (gate) to every buffer and switch
the servers based on the buffer contents after the gate.
However, gated policies carry potential for increase of the
mean number of jobs in the system, which is undesirable
from a performance point of view.

In Savkin [1998], a universal decentralized switching strat-
egy was proposed and shown to stabilize very general
multiple server networks with time-varying rates of the
outer inflows. However, it does not provide a machinery of
wip reduction. For example, the more work in the system
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initially, the comparably more work remains afterwards.
This is also undesirable from a performance point of view.

The above references display characteristic features of
other works on feedback control of fluid networks. They
start from more or less heuristically designed policies and
proceed with study of the resultant system behavior. A dif-
ferent approach was proposed in Lefeber and Rooda [2006,
2008]. Assuming a pre-determined periodic process that
represents the desired open-loop schedule, the approach
sets as the objective development of a general technique to
design a feedback switching policy that gives rise to this
process and makes it globally attractive, thus equalizing
the asymptotic qualities of service along any and the given
processes, respectively. The last property is of especial
interest if the given process is optimal or nearly optimal.
The main concern of this paper is not optimization but is
stable feedback generation of a desired periodic process.

In Feoktistova and Matveev [2009] a Poincaré-type tech-
nique was reported preliminary form. It is aimed at designs
of decentralized controllers and offers to partition the
required process into relatively simple phases, each asso-
ciated with a specific combination of activities of different
servers. The policy is to periodically repeat the resultant
cycle of the phases, each governed by an individual control
rule on the basis of local information. When the server
completes the task for the phase, it broadcasts one-bit
notification to the others and proceeds to the next phase
as soon as it collects all notifications. Design of the phase
control rules (PCR) is the core occupation. According to
Feoktistova and Matveev [2009], the design objective is
confined into the phase itself: it should be ensured that a
certain set of properties hold for the phase dynamical oper-
ator, which maps the system state at the phase beginning
into that at its end.

This paper offers an extended and systematic presentation
of this technique and demonstrates, by means of examples,
that it fits to handle the entire range of cases encountered
in the optimization problem.

The body of the paper is organized as follows. Section 2
introduces a rather general model of multi-product multi-
ple server system with setups. Section 3 presents general
guidelines of switching policies design and the related
mathematical background. 1 Sections 4, 5, and 6 respec-
tively deal with polling systems, single server networks
with processor sharing scheme, and the Kumar-Seidman
system. Section 7 concludes the paper with some simula-
tion results.

2. GENERAL MULTI-PRODUCT MULTIPLE
SERVER SYSTEM WITH SETUPS

We consider a system that receives F product flows,
interpreted as fluid streams, and processes them by means
of S servers. The servers move products among N internal
buffers and ultimately dispatch them into the exterior of
the system. We do not consider the case where a job may
dynamically choose the server to be processed at, and
assume that the production routes are specified a priori.
A setup activity is required to switch a product type at
any server.
1 This material is partly from Feoktistova and Matveev [2009].

This system is represented by a directed graph with the
set of nodes N := {1, . . . , N,⊛1, . . . ,⊛F ,⊛out}. Here ⊛i is
the source of the ith flow and ⊛out is the exterior where
work is ultimately delivered. Other nodes represent buffers
enumerated by n ∈ [1 : N ]. The graph arcs display the
paths along which work is moved. Any server s has its
own service area Is ⊂ [1 : N ], which form a partition
of the set of buffers. The sources ⊛j have no incoming
arcs, the exterior ⊛out has no outgoing arcs. There is
only one arc starting at n 6= ⊛out; its end is denoted by
next(n). The graph contains no cycles and every buffer n
has incoming arcs. The rate λi ≥ 0 of the flow from the
source ⊛i is constant. Any server can serve only one buffer
at a given time. Service of buffer n consists in withdrawal
of its content to next(n) at a rate 0 ≤ un(t) ≤ µn,
where µn > 0 is given. Switching the server from n′ to
n′′ consumes σn′→n′′ > 0 time units.

The (feasible) state (X,Q) consists of the continuous state
X = {xn ≥ 0}Nn=1 and the discrete state Q =

{
qs ∈ Is ∪

{⊖}
}S

s=1
. Here xn is the content of buffer n and qs is the

state of server s, i.e., qs either indicates the buffer served
or is the ’switching in progress’ symbol ⊖. A process refers
to a feasible evolution of the feasible state [X(t), Q(t)] over
time, i.e., evolution such that

(1) any function qs[·] is piecewise constant and in the
chronological list of its values, any two successive
’buffer’ entries n′, n′′ are different n′ 6= n′′ and sepa-
rated by the ’switching’ one ⊖, which is maintained
no less than σn′→n′′ time units 2 ;

(2) the function X(·) is absolutely continuous and for any
buffer n ∈ [1 : N ],

xn(t) ≥ 0, ẋn(t) =
∑

j∈N:n=next(j)

uj(t)− un(t),

where u⊛i
(t) ≡ λi and for j 6= ⊛i ∀i, 0 ≤ uj(t) ≤

µj ∀t and uj(t) = 0 whenever qs 6= j ∀s.

In practice, the system is usually governed by a switching
policy. It endows each server with a rule to determine the
current service rate un(t) and to decide when this service
should be terminated and which server should be served
next. The problem to be treated in this paper is as follows:

P) Given a periodic process π0, a switching policy should
be designed such that
P1) The process π0 is generated by this policy;
P2) All processes converge to π0 as t → ∞.

For the definition of process convergence, we refer the
reader to Savkin [2001].

Given a switching policy, the process is determined by the
initial state. So P1) means that there exists an initial
state that gives rise to π0. By P2), sooner or later,
the system evolution closely follows π0 irrespective of
the initial state. This is of especial interest if π0 is
optimal or suboptimal. Then the policy ensures automatic
transition to the optimal or suboptimal system behavior
and its subsequent globally stable maintenance. The main

2 Dropout of ’no less than’ might seem more natural. ’No less than’ is
taken for the technical convenience. This is possible since prolonging
the switching period is equivalent to continuing the previous service
at the zero rate.
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concern of this paper is not optimization but is stable
feedback generation of desired periodic processes. So in
what follows, the process π0 is treated as pre-specified.

3. TRANSFORMATION OF A PERIODIC PROCESS
INTO A SWITCHING POLICY: GENERAL

GUIDELINES AND MATHEMATICAL
BACKGROUND

According to Feoktistova and Matveev [2009], transfor-
mation of the periodic process π0 = [X0(·), Q0(·)] into
a switching policy is arranged along the following lines:

H The optimal periodic process is partitioned into
finitely many phases

C = P0,P1,P2, . . . ,Pc−1, (1)

each associated with the discrete state transitions
involved;

H Every phase is equipped with a phase control rule
(PCR) to govern the system within the phase;

H The entire policy is to progress through the periodi-
cally repeated sequence of phases (1) while applying
the relevant PCR within every phase;

H When a server completes the task for the phase,
it broadcasts one-bit notification to the others and
proceeds to the next phase as soon as it collects all
notifications.

To promote decentralization, PCR are welcome to drive
every server on the basis of only its own local data
(i.e., that about the currently served buffer). Then within
any phase, the control is completely decentralized and
cooperation of servers comes to exchange of finitely many
bits at the end of every phase.

The dynamical operator TPi of phase Pi maps the contin-
uous state X at the beginning of Pi into that at the end
(for a given PCR). The monodromy operator is the similar
map for the entire cycle (1):

M = TPc − 1 ◦ TPc − 2 ◦ · · · ◦ TP1 ◦ TP0 . (2)

The problem P) is solved whenever PCR’s ensure:

i) Any PCR generates the related piece of π0;
ii) Any trajectory of the iterated system X(k + 1) =

M [X(k)], X(0) ≥ 0 converges to X0
0 := X0(0) as

k → ∞.

Here i) guarantees that the entire switching policy does
generate the required periodic process π0 and also that
X0

0 is the equilibrium point of the iterated system. If the
phase dynamical operators TPi are continuous, ii) ensures
convergence of all processes in the original fluid network to
the desired periodic behavior π0 by the standard argument
presented in e.g., Savkin [1998, 2001].

To ensure i), the idea is to design PCR’s so that they
enforce the system to copycat the desired process π0.
Property ii) brings more trouble partly due to the curse of
dimensionality: computation of the monodromy operator
becomes cumbersome up to intractable as the numbers
of servers or buffers increase. This burden is especially
hard at the stage of design, where there is no specific
monodromy operator to compute, and the actual task is to
display and employ the relationships between this operator
and particular designs of PCR’s in order to choose the

proper ones. The following new criterion for stability of
equilibria of iterative dynamic systems aids to remove this
blockage since this criterion can be verified and ensured
’phase-wise’, thus annihilating the need to deal with the
entire monodromy operator.

3.1 Mathematical Background

The inequalities x ≤ y and x < y for x, y ∈ R
p are meant

component-wise. The operator T : Kp
+ → Kp

+ := {x ∈ R
p :

x ≥ 0} is said to be:

i) monotone, if x ≤ y ⇒ T(x) ≤ T(y);
ii) piecewise affine, if a partition K+ =

⋃m

j=1 Sj exists

such that each set Sj (called cell) has an interior point
and is described by finitely many linear inequalities
(both strict and non-strict), and all restrictions T |Sj

are affine, i.e., T (x) = Ajx + bj ∀x ∈ Sj , where
Aj ∈ R

p×p, bj ∈ R
p;

iii) dominated if bj ≥ 0 ∀j; and strictly dominated if
bj > 0 ∀j.

The following theorem is the main result of this section.

Theorem 1. Suppose that an iteration T
m of a piecewise

affine continuous monotone map T has a fixed point
T[x∗] = x∗ ∈ Kp

+ and is strictly dominated in the domain
x : {x ≥ x∗} and in the domain x : {x ≤ x∗}. Then

this fixed point is unique and attracts xk
k→∞
−−−−→ x∗ all

trajectories of the iterated system xk+1 = T[xk], x0 ∈ Kp
+.

With respect to the monodromy operator T := M , the
assumptions of continuity, monotonicity, and piecewise
affinity can be checked ’phase-wise’ since they are evi-
dently inherited by compositions of the maps. As for the
strict dominance, it can be shown that the composition
not only inherits this property but also acquires it even if
the composed maps are not strictly dominated.

4. POLLING SYSTEMS

We consider the particular case of the system from Sec-
tion 2: there is only one server, N ≥ 2 buffers, and N
outer flows (see Fig. 1(a)). The nth flow arrives at buffer
n at the constant rate λn > 0 and after service at a rate
0 ≤ un(t) ≤ µn, leaves the system. Switching between
buffer requires a nonzero setup time.

Let we be given a T -periodic process 3 π0 =
[

{x0
n(t)}

N
n=1,

q01(t) ∈ [1 : N ] ∪ {⊖}
]

for which the service rate of buffer

n = q1(t) is maximal un(t) = µn if xn(t) > 0, and
equals the input rate un(t) = λn if xn(t) = 0. Without
any loss of generality, we assume that T is the end of
a switching period. Following the lines of Section 3, we
decompose π0 into the simplest phases (1) by partitioning
the period 0 = t00 < t01 < t02 < . . . < t0c−1 < t0c = T
into the intervals where the discrete state is constant
q01(t) ≡ qi, t ∈ [t0i , t

0
i+1), q01(ti − 0) 6= q01(ti + 0). Then

any phase Pi is associated with a discrete state qi, which
form the sequence

q0 7→ q1 = ⊖ 7→ q2 7→ q3 = ⊖ 7→ · · · 7→ qc−2 7→ qc−1 = ⊖.
(3)

3 The existence of such process implies that
∑

N

n=1
λn/µn < 1 Gross

and Harris [1985].
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Fig. 1. (a) Polling system; (b) Basic quantities underlying
the phase control rule

Now we introduce the phase control rules (PCR).

Switching phase qi = ⊖. Switching is implemented
during σ0

i time units, where σ0
i > 0 is its duration along

the required periodic process π0.

Service phase qi = n 6= ⊖. We first introduce the fol-
lowing (see Fig. 1(b)):

q.1) θni — the fraction of the initial content of buffer n at
this phase that is retained in the buffer at the phase

end for π0, i.e., θni :=
x0
n(t

0
i+1)

x0
n(t

0
i
)

∈ [0, 1];

q.2) δi — the duration of the service at the rate λn at
this phase for π0.

Note that θni · δi = 0. Let ti stand for the time when the
phase commences.

Phase control rule:

Buffer n = qi is served at the maximal rate µn until
its content reduces to the level θni xn(ti) and then at
the input rate δi time units more.

The entire policy is to progress through the periodically
repeated sequence of phases (3) while applying the relevant
phase control rule within every phase.

Thus the server is driven by local data about the currently
served buffer.

Theorem 2. The proposed policy gives rise to a unique
periodic process, which is equal to π0 and attracts all other
processes.

Proof. The proposed PCR’s trivially meet i) from Sec-
tion 3. So the entire policy does generate π0 and X0

0 :=
X0(0) is the equilibrium of the monodromy operator M .
By Theorem 1 and the standard argument presented in
e.g., Savkin [1998, 2001], it suffices to show that the as-
sumptions of Theorem 1 are true for M .

By elementary computation, the phase dynamical opera-
tors are as follows:

TPiX =














x1 + λ1τ
...

xn−1 + λn−1τ
θni xn

xn+1 + λn+1τ
...

xN + λNτ














,

where

τ := δi +
(1− θni )xn

µn − λn

,

if qi = n 6= ⊖;

TPiX = σ0
i · (λ1, . . . , λN )⊤ if qi = ⊖.

They are clearly affine, continuous, monotone, and dom-
inated. So evidently is their composition M . It is also
strictly dominated since so is the operator TPc − 1 (where
qc−1 = ⊖ by (3)) that is the last to act in the composition
(2). Thus the assumptions of Theorem 1 are satisfied.
2

For this example, the phase dynamical operators are affine,
which is not the case for the next example, where they are
only piecewise affine.

5. SINGLE SERVER NETWORKS WITH
PROCESSOR SHARING SCHEME

Now we consider modification of the previous example
where the server can operate in several modes, enumerated
by m ∈ [1 : M ],M ≥ 2. In mode m, it simultaneously
serves the buffers from a set Jm 6= ∅; these sets form
a partition of [1 : N ]. Switching from mode m1 to m2

requires ≥ σm1→m2
> 0 time units. 4

Let π0 be a T -periodic process 5 for which any service of
any buffer n starts at the maximal rate µn and proceeds
at the input rate λn, where any of these periods may be
of zero duration, i.e., does not occur in effect. Like in
Section 4, the interest to such processes is inspired by
optimization issues.

Like in Section 4, it can be assumed that T is the end
of a switching period. To transform π0 into a switching
policy, we still decompose π0 into the simplest phases (1)
by partitioning [0, T ] into the intervals where the discrete
state is constant. Then any phase Pi from (1) is associated
with either an active mode Pi ∼ mi or switching Pi ∼ ⊖,
which are arranged in the sequence

m0 7→ ⊖ 7→ m2 7→ ⊖ 7→ · · · 7→ mc−2 7→ ⊖. (4)

PCR for the switching phase Pi ∼ ⊖ is to implement
switching during σ0

i time units, where σ0
i > 0 is its

duration along the process π0.

4 Though the system at hand is not a particular case of the network
from Section 2, it can be emulated on such a network. To this end,
we first equalize the sizes |Jm| of all sets Jm by inserting ’void’
buffers n with λn := µn := 0 if necessary. Then we enumerate the
buffers in every set Jm by r ∈ [1 : k], where k := |Jm|, and replace
the ’real’ server by k ’fictitious’ ones. The service area of the rth of
them is formed by the rth elements of Jm’s, the switch between two
elements consumes the time of the switch between the related modes.
The processes in the original system can be identified with those in
the auxiliary k-server system for which all servers first, are switched
synchronously and second, always serve buffers from a common set
Jm. So if a switching policy designed for the auxiliary system gives
rise only to processes with these properties, it can be interpreted as
a policy for the original system.
5 Existence of such process clearly implies that µn > λn ∀n.
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PCR for the service phase Pi ∼ mi. To state this
rule, we employ the quantity θni from q.1 in Section 4. Let
δni denote the duration of the service of buffer n at the
input rate at phase Pi for process π

0. PCR is as follows:

1) Every buffer n ∈ Jmi
is served at the maximal rate µn

until its content reduces to the level θni xn(ti), where ti
is the time when Pi is commenced;

2) When task 1) is completed for a buffer n ∈ Jmi
, the

server reduces the service rate for this buffer to the
input rate λn and maintains it no less than δni time
units and until the phase end;

3) The phase is terminated as soon as task 1) is accom-
plished and the compulsory time δni of service at the
input rate is expired for all buffers n ∈ Jmi

.

The entire policy is to progress through the periodically
repeated sequence of phases (4) while applying the relevant
phase control rule within every phase.

Thus the server is driven only by data about the currently
served buffers.

Theorem 3. The proposed policy gives rise to a unique
periodic process, which is equal to π0 and attracts all other
processes.

Proof. Similarly to the proof of Theorem 2, it suffices to
show that the assumptions of Theorem 1 are true for the
monodromy operator M . By elementary computation, the
phase dynamical operators are as follows:

TPiX = {yn}
N
n=1,

where yn =

{
θni xn if n ∈ Jmi

xn + λnτ otherwise

τ := max
n∈Jmi

[

δni +
(1− θni )xn

µn − λn

]

for Pi ∼ mi 6= ⊖;

TPiX = δ0i · (λ1, . . . , λN )⊤ for Pi ∼ ⊖.

They are clearly piecewise affine, continuous, monotone,
and dominated. So evidently is their composition M . It is
also strictly dominated since so is the operator TPc − 1 (by
(4)) that is the last to act in the composition (2). Thus the
assumptions of Theorem 1 are satisfied. 2

6. THE KUMAR-SEIDMAN MANUFACTURING
NETWORK

This network is assembled of four buffers and two servers
and processes a single job flow, see Fig. 2 Work arrives

λ

x1 x2

x3x4

µ1

µ4

server 1

µ2

µ3

server 2

Fig. 2. The Kumar-Seidman model

at the first buffer at a constant rate λ > 0, then is
consecutively processed by server 1, then twice by server
2, and finally by server 1 once more, and then leaves the
system. Any server is capable to serve only one buffer at
a given time. Switching between buffers consumes setup
times σ1→4, σ4→1, σ2→3, σ3→2 > 0, respectively. The
maximal service rate is µn > 0 for buffer n. Thus the

x1

x2

x3

x4

θx∗
2

x∗
2

x∗
3

ξx∗
3

ζ = 1

x∗
4

P1,2 P1 P2

τλ1

σ1→4 σ2→3 σ3→2

σ4→1

τ02

1, 2 1, 2 ⊖, 2 4, 2 4,⊖ 4, 3 ⊖, 3 ⊖,⊖ ⊖, 2

(a)

x1

x2

x3

x4

θx∗
2

x∗
2

x∗
3

ξ = 0

x∗
4

ζx∗
4

P1,2 P1 P2

τλ1

σ1→4 σ2→3 σ3→2 σ4→1

τ02

1, 2 1, 2 ⊖, 2 4, 2 4,⊖ 4, 3 4,⊖ 4, 2 ⊖, 2

(b)

Fig. 3. The optimal periodic behavior.

continuous state X = {xn}
4
n=1 and the service areas are

as follows I1 = {1, 4,⊖} , I2 = {2, 3,⊖}.

The system is stabilizable, i.e., the total amount of work
can be kept bounded provided that the system is properly
controlled. This holds if and only if every server has enough
capacity to process the job inflow Gross and Harris [1985]:

1−ρ1−ρ4 > 0, 1−ρ2−ρ3 > 0, where ρi := λ/µi. (5)

The model at hand was introduced in Kumar and Seidman
[1990] to demonstrate that the clearing policy is inappro-
priate since it may cause instability: even if (5) holds, the
total amount of work may explode whenever

ρ2 + ρ4 > 1. (6)

It is this case that is examined: (5) and (6) are assumed to
be true. Then µ1 > µ2, µ3 > µ4, i.e., ẋ2 > 0 (or ẋ4 > 0) if
buffers 1 and 2 (or 3 and 4) are simultaneously served at
the maximal rates.

6.1 Optimal periodic behavior of the Kumar-Seidman
system

In Lefeber [2011] it has been determined which periodic
behavior minimizes the weighted wip (work in progress):

W (π) := lim
T→∞

1

T

∫ T

0

4∑

n=1

cnxn(t) dt (7)

We restrict ourselves to the case ρ2 ≤ ρ4 and σ4→1 +
σ2→3 ≤ (1 − ρ2)T . Then the optimal trajectory is as
shown in Fig. 3. The gray vertical stripes in the figures
highlight switching activities. The buffers are served at the
maximal feasible rates. The difference between Figs. 3(a)
and (b) concerns only the evolution of buffer 4 at phase
P2. Case 1(b) occurs if an only if σ4→1 < σ3→2 + τ02 ,
where τ02 is the idling time of server 2. Then the content of
buffer 4 decreases during some sub-phase of this phase. In
case 1(a), σ4→1 ≥ σ3→2 + τ02 , and the content of buffer 4
never decreases at this phase.

To design the switching policy, we also need the following
parameters of the optimal process, for which explicit
expressions can be easily found based on the formulas from
Lefeber [2011].

Notation 1. τ02 — the idle time of server 2 within phase
P2, see Fig. 3;
τλ1 — the duration of the period when server 1 serves
the emptied buffer 1 at the input rate λ at phases
P1,2, see Fig. 3;
θ — the fraction of the maximal content of buffer 2
at phase P1,2 that remains in this buffer at the phase
end, see Fig. 3(b);

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

14052



ξ — the fraction of the buffer 3 initial content x∗
3 at

phase P2 that remains there at the start of server 1
switching 4 → 1, see Fig. 3;
ζ — the fraction of the buffer 4 content x∗

4 at the start
of server 2 switching 3 → 2 at phase P2 that is in this
buffer at the first time instant when both servers are
involved in switching within the phase, see Fig. 3;

6.2 Optimal switching policy

Now by following the guidelines from Section 3, we propose
a simple interactive switching policy that ensures that
after a transient and irrespective of the initial state, the
system inevitably exhibits the optimal periodic behavior
illustrated in Fig. 3. The phase control rules are designed
so that the system behavior copycats that from Fig. 3.

Switching policy

(1) Whenever any buffer i is served, the service is at the
maximal feasible rate:

un =

{
µn if xn > 0
un−1 if xn = 0

,where u0 := λ; (8)

(2) The servers are switched so that the discrete state
Q(t) = [q1(t), q2(t)] periodically repeats the cycle:

→ (1, 2)

︸ ︷︷ ︸

P1,2

(a)
−→ (⊖, 2) →

∣
∣
∣
∣
∣

(4, 2)
or

(⊖,⊖)

∣
∣
∣
∣
∣
→ (4,⊖)

︸ ︷︷ ︸

P1

(b)
−→

→ (4, 3) →

∣
∣
∣
∣
∣

(⊖, 3)
or

(4,⊖)

∣
∣
∣
∣
∣
→

∣
∣
∣
∣
∣

(4, 2)
or

(⊖,⊖)

∣
∣
∣
∣
∣
→ (⊖, 2)

︸ ︷︷ ︸

P2

(c)
−→; (9)

(3) Transition (a) is implemented as soon as
3.a) buffer 1 is emptied
3.b) and after this the level of buffer 2 is reduced to

the value θx2(τ).
Here τ is the time when event 3.a) occurs, and θ is
introduced in Notation 1;

(4) Within phase P1,
• server 1 switches from buffer 1 to 4 for σ1→4 time
units and then serves buffer 4 until emptying and
possibly longer, waiting for the switch of server 2
to be completed;

• Server 2 serves buffer 2 until emptying, then
switches to buffer 3 for σ2→3 time units and then
possibly idles, waiting for emptying buffer 4.

(5) Transition (b) from phase P1 to P2 is implemented as
soon as first, buffer 4 is empty and second, switching
of server 2 from buffer 2 to 3 is completed;

(6) Within phase P2,
• Server 2 empties buffer 3, then switches to
buffer 2 for σ3→2 time units, and finally idles for
τ02 time units and possibly longer, waiting for the
switch of server 1 to be completed.

• Server 1 serves buffer 4 until the content of
buffer 3 decays to ξx∗

3 and after this the level
of buffer 4 is reduced to ζx4(τ∗), where x∗

3 is the
buffer level at the start of the phase and τ∗ is the
time instant when the first of these reductions is
completed. After this, server 1 switches to buffer
1 for a duration of σ4→1 time units and then

possibly idles, waiting for the compulsory idling
time τ02 of server 2 to be expired.

Here τ02 , ξ, and ζ are introduced in Notation 1;
(7) Transition (c) is implemented as soon as switching of

server 1 is completed and the compulsory idling time
τ02 of server 2 is expired.

Remark 6.1. i) Formula (9) displays the longest chains
of discrete state transitions that may be observed
during phases P1 and P2; the rigorous definitions of
these phases are given in 4 and 6, respectively. Some
sub-phases, like (4, 2) in P1, may be missed depending
on the initial state and the serial number of the cycle
(9) at hand. Such phases are said to be flexible.

ii) To determine the end of the current phase, any server
needs the one-bit ’end of mission’ notification from
the companion server.

iii) Within the flexible phase P2 in case 1(b) and phase
P1, operation of every server is based on data about
the current level of the buffer served. In particular,
each server operates with no regard to what is going
on with the other server. As for P2 in case 1(a),
server 1 needs a one-bit notification that the required
decrease in the level of buffer 3 is achieved.

iv) Rule 6 is well-defined since buffer 4 should be un-
loaded only in case 1(b), where server 2 does not
supply work to it from the start of the unload and
until the phase ends.

v) For the definiteness, we assume that Q(0) = (1, 2).
Then given the initial state X(0), policy 1 uniquely
determines a process in the system.

The the proposed policy ensures asymptotically optimal
performance of the closed-loop system.

Theorem 4. Let the conditions (5) and (6) hold. The
policy 1 gives rise to a unique periodic process, which
attracts all other processes in the Kumar-Seidman system.
Moreover, this periodic process represents the optimal
behavior illustrated in Fig. 3.

6.3 Proof of Theorem 4

The proposed phase control rules trivially meet the re-
quirement i) from Section 3. So the entire switching policy
generates the periodic process illustrated in Fig. 3 and
X0

0 := X0(0) is the equilibrium of the monodromy oper-
ator M . By Theorem 1 and the standard argument pre-
sented in e.g., Savkin [1998, 2001], it suffices to show that
the assumptions of this theorem are true for this operator.
The phase dynamical operators are easily computed:

T1,2X =










0

θ
µ1 − µ2

µ1 − λ
x1

x3 + µ2

[
x1

µ1 − λ
+

1− θ

µ2 −λ

(

x2 +
µ1− µ2

µ1 −λ
x1

)]

x4










TP1
X =








x1 + λmax

{
x2

µ2
+ σ2→3;

x4

µ4
+ σ1→4

}

0
x2 + x3

0







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TP 2X =







x1 + λmax

{
x3

µ3
+ σ3→2 + τ02 ; c+

1− ζ

µ4
b+ σ4→1

}

x2

0
ζb








,

where b = x4 +
µ3−µ4

µ3
(1− ξ)x3 and c = 1−ξ

µ3
x3.

They are clearly piecewise affine, continuous, monotone,
and dominated. So evidently is their composition M =
TP 2 ◦TP 1 ◦T1,2. As for the strict dominance, we are going
to examine M2. It is easy to see that +λσ2→3 or +λσ1→4

in the first line of the formula for TP 1X is converted into
+const(> 0) at the first position of TP 2◦TP 1X, in addition
to the constant addend λ[σ3→2 + τ02 ] or λσ4→1. It follows
that T12 ◦ MX contains +const(> 0) at the second and
third positions; TP 1 ◦ T12 ◦MX contains +const(> 0) at
the first and third positions; TP 2◦TP 1◦T12◦MX = M2X
contains +const(> 0) at the first and forth positions. The
second and third positions of MX are always zero. So by
truncating the state space to R

2 = {col (x1, x4)}, we make
M2 strictly dominated. So the assumptions of Theorem 1
are satisfied. 2

7. SIMULATION

Consider the Kumar-Seidman manufacturing network
with following initial data: λ = 1, µ1 = 5, µ2 = 4, µ3 = 3,
µ4 = 2(see Fig. 4(a) and 4(b)). The initial level of each
buffer is equal to 800, T=366,6667. As was mentioned,
the difference between cases 1(a) and 1(b) concerns the
duration of switching times. For case 1(a), σ1→4 = 10,
σ2→3 = 100, σ3→2 = 10, σ4→1 = 100, which implies
θ = 1, ζ = 1, ξ = 0, 3864, τ02 = 42, 7778. For case
1(b), all switching times are equal to 55, which implies
θ = 1, ζ = 0, 3, ξ = 0, τ02 = 42, 7778. The simulation
results demonstrate high enough rate of convergence of
the proposed policy.
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