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Abstract: We study the problem of optimal feedback switching contrbltwo-server re-entrant
manufacturing network with nozero setup times introduceltimar and Seidman. The optimal steady-
state (periodic) behavior is determined for the systemeratialytical form. A simple feedback switching
control law is proposed under which the process in the systmrerges to the optimal steady state
behavior irrespective of the initial state. This law is égcind distributed: the servers do not need
information about the entire system state. Each of themga@gbasically from the local data concerning
only the currently served queue, although a fixed finite nurnbene-bit notification signals should be
exchanged between the servers during every cycle. Thewark®f Kumar-Seidman model is used for
presentation of a methodology of both design of a switchiolgcp and justification of its convergence.

Keywords:Control of networks, Queuing networks with setups, Fleximlanufacturing systems.

1. INTRODUCTION fail to stabilize the system Kumar and Seidman (1990). Inesom
cases, the so-called gated policies Humes (1994); J. RinBerk

The paper deals with fluid models of production systems. Th%{’d Kumar (1994) are able to overcome this drawback. The

represent the system as a network that receives incoming préiain idea behind themis to assign a certain level (gate)do/ev
uct flows, interpreted as deterministic fluid streams, ara prPuffer and switch the servers proceeding from not the entire
cesses them by means of servers. The servers move prodi}dsklog in the buffer but its excess over the gate. This shert
(also called work) among internal buffers and ultimately-di the time of buffer service, thus reducing t.he likelihood loé t
patch work into the network exterior. Every server can sewe detrlm_ental situation _under_lylng instability: a serverstes its
more than one buffer at any time instant; whenever the buff§gPacity due to deficiency in work supply from another server
is changed, setup times are incurred. Such models are us¥ice the latter is occupied by another activity in a siddesuf
to describe certain aspects of flexible manufacturing syste [0F & {00 long time. However, gated policies carry poterfoal

computer, communication and transport networks, cherkieal ncrease of the mean number of work in the system, which is
netics, etc. Perkins and Kumar (1989). undesirable from the performance point of view.

Recently a great deal of research was concerned with thd§eSavkin (1998), a universal decentralized switchingtegy
models, see e.g., Chase et al. (1993); Horn and Ramad{js proposed anq sh'own to _stablhze very general 'mult|ple
(1997): Matveev and Savkin (2000): Bramson (2008) and the"Ver networks with time-varying rates of the outer inflows
literature therein. It was shown that they may exhibit unex! N€ strategy arranges the system operation in repeateelscycl
pectedly complicated and counter-intuitive behavioreesly of the fixed duratioril’; within any cycle, every server visits
whenever decentralized control policies and nonzero setd@h&Ch,Ofthe associated buffers only once in a pre-specifted Cy
times are involved. For instance, it was established via-corfflvariantorder. From any buffer, the server removes theuarno
puter simulation in Banks and Dai (1997) that standard polPf Work identical to the cumulative network income brouggtt f
cies may cause instability: the total amount of work incesas iMme 7' by all inflows that affect, either directly or indirectly,
without iimits even if each server has enough capacity tecop!is buffer. If the buffer contains not enough work to do $as i
with the incoming flows. In Kumar and Seidman (1990), it wagrainéd out. The next setup may be prolonged to fully consume
rigorously proved that the clearing policy (serve the bufiietil "€ time reserved for the step. This strategy not only keeps
emptying) is unstable for very simple networks even if thege WiP (='work in progress, i.e., the total amount of work in
times are zero. In Perkins and Kumar (1989), clear a fractidi€ System) bounded but also makes all trajectories evigntua
(CAF) policies were introduced and shown to achieve stgbili Periodic in the case of constant arrival rates. At the same
for single server systems, as well as for multi-server neitaro iMe, it does not provide a machinery of wip reduction. For
such that under some enumeration of the servers, work visg&ample, the more work in the system initially, the compgrab
them in the ascending order. If such enumeration is imptessign©ré work remains afterwards. This is undesirable from the
(which holds for e.g., reentrant networks), CAF policiesymaPerformance point of view as well.
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The above references display characteristic featureshsr ot properties are inherited by compositions and so inevitably
related works in the area. They start from more or less htgurisfor the monodromy operator (MO). This is the composition of
cally designed policies and proceed with study of the rastlt the dynamical operators over the entire cycle of the phaises;
system behavior. With few exceptions (see, e.g., Gaudih et aystem in fact evolves via iterations of MO. The above proper
(2001) and the literature therein) focused on two buffer sydies are such that being established for MO, they guarahtee t
tems, the issue of performance optimization, when treased, global stability of the equilibrium point of the iteratiomqress
typically limited to choice of the parameters for a pre-sfied  and whereby that of the required periodic behavior. Theecurs
policy. However, this issue becomes one of the major coscerhecomes broken by avoiding computation and analysis of the
in recent years as a result of complication of manufacturingntire MO, which is typically cumbersome up to intractalbhe.
processes and cost increase. Though optimal scheduling F#oktistova and Matveev (2009), this technique was prolged b
systems with setups has an extensive literature, it is pilyna application to an example, also treated in Lefeber and Rooda
focused on open-loop schedules and basically assumesca sté2008b). It concerns the Kumar-Seidman system Kumar and
and certain environment. This approach, being a backbone $idman (1990) and a periodic process optimal for only par-
production systems planning, is not suited well to deal witlicular numerical values of the system parameters. Undsnth
real-life dynamic and uncertain environments, which causehis process features special properties, unnecessaeyera,

a reported gap between the theory and practice Ouelhadj antich were essentially utilized in the design and proofs.
Petrovic (2008). The basic tool to cope with these unceitesn
is feedback under which decisions are made on an ongoi

H’Qis paper offers an extended and detailed presentatidmeof t
basis from the current events in the system. P

oposed approach. The objective is to demonstrate, by snean
of an example, that the approach fits to handle the entireerang
A systematic approach to bridging this gap between optimaf cases encountered in the optimization problem. To thik en
open-loop scheduling and feedback control of networks afe first provide an exhaustive analysis of the optimal péciod
switching servers with setup times was proposed in Lefebbehaviors of the Kumar-Seidman system treated in the genera
and Rooda (2006, 2008b). Assuming a pre-determined periodanalytical) form. This research is based on Lefeber anddRoo
process that represents the desired open-loop schedellgpth (2008a), where the optimal behavior was characterizedinge
proach sets as the objective development of a general tpodani of the separate activities of the servers. In this paper, ise d
to design a feedback switching policy that gives rise tophis  close both the combination of these activities and its eiaiu
cess and makes it globally attractive, thus equalizing$gen@-  over time. A simple distributed feedback switching contawl
totic qualities of service along any and the given processds proposed that not only gives rise to the optimal steady sta
respectively. The last property is of especial interestivelver behavior but also makes it globally attractive, irrespextif the
the given process is optimal or nearly optimal. Though mostystem parameters. Compared with Feoktistova and Matveev
schedule optimization problems are NP-hard, relativelgaef (2009), this requires elaboration of new phase controlstule
tive optimization techniques have been developed to theaht In particular, a special emphasis is given to the concept of
Ouelhadj and Petrovic (2008). The main concern of this pap#re flexible phase that encompasses several activitieseny ev
is not optimization but is stable feedback generation ofrdds server and within which the servers are given the freedom to
periodic processes. proceed to the next activity independently of each other.

A Lyapunov-type approach to this problem was proposed iihe body of the paper is organized as follows. Section 24intro
Lefeber and Rooda (2006). The resultant controllers are ceduces the system to be studied; its optimal periodic behavio
tral: access to the information about the entire systene $tat is established in Section 3. Section 4 presents the proposed
assumed for every server. In certain cases, decentral@ed cgeneral guidelines of switching policies design and thateel
trollers driven by only local data are needed. In Lefeber anghathematical background. The main result is stated in Sec-
Rooda (2008b), it was shown, by means of an example, thi@bn 5, where the optimal switching policy is introduced €@
within the new view of the problem introduced in Lefeber ands an appendix providing the necessary technical facts.

Rooda (2006), decentralized controllers can be derivecedls w

The proposed technique relies on computation of a Lyapunov 2. THE KUMAR-SEIDMAN SYSTEM
function and so suffers much from the standard in the area

curse of dimensionality”. We consider the manufacturing system that is assembled of
To break the curse, a computationally non-demanding Préncafour buffers and two servers (machines), see Fig. 1 The oonte
type approach aimed at designs of decentralized contsoller
was reported in Feoktistova and Matveev (2009). It offers to I 1o
partition the required process into relatively simple gsasach
associated with a specific combination of activities ofetiét
servers. The policy is to periodically repeat the resultacte
of the phases, each governed by an individual control rule on € Ha 13
the basis of local information. When the server completes th
task for the phase, it broadcasts one-bit notification tothers  Fig. 1. The Kumar-Seidman model

and proceeds to the next phase as soon as all notifications are

collected. Design of the phase control rules is the coreacu of the buffers is calledvork and interpreted as fluid. Work
tion. According to Feoktistova and Matveev (2009), the giesi arrives at the first buffer at the constant rate> 0, then is
objective is confined into the phase itself. Specificallghibuld  consecutively processed by server 1, then twice by server 2,
be ensured that a certain set of properties hold for the phased finally by server 1 once more, and then leaves the system.
dynamical operator, which maps the system state at the phasgy server is capable to serve only one buffer at a given time.
beginning into that at its end. This set is elaborated satigse  Switching between buffers consumes setup times;, 041,

Server 1
Server 2
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o093, 03— > 0, respectively. Service of buffer consists A12 12 02 42 40 43 030002
in withdrawal of its content,, (¢) at the rateu,, (¢t) € [0, ], (@) O X, — X facd
wherep,, > 0 is given. The system istabilizablei.e., the total X4 RN 5
amount of work can be kept bounded provided that the system NS _ - X;ﬁsX: X =
is properly controlled. This holds if and only if every serbas N T -ixf}-— .
h ity t the job inflow: XN XX, N S
enough capacity to process the job inflow: T X3 X, W
—p— e S : =
1=p1—pa >0, 1—pos—ps >0, where p;,:=p; "\ (1) A > — >
. . . p1.1 p1.2 p1.3
The model at hand was mtroduceq in Kumar and $e|dman A12 12 O2 42 40 43 400002
(1990) to demonstrate that the clearing policy is unappaber (b) X, — X 5
since it may cause instability: even if (1) holds, the totabaint X i Ows 75 \Xg AX :
of work may explode. Moreover, this inevitably holds whesiev 4 — e \ 4
X5 N 2 _ -
p2+ps>1. @) \51/ ---- X ﬁrX’ 0
In this paper, we assume that (1) and (2) are true. Then X%o\”( Xj, =7 1%
- N _—— O3> >
. 1 -> M2, 3 > Ha, () — I~ v N v 7
i.e., xo 1 (or x4 7) if buffers 1 and 2 (or 3 and 4) are p1.1 p1.2 p1.3

simultaneously served at the maximal rates. _ . o _
. . Fig. 2. Case 1 of the optimal periodic behavior.
The system statd X, Q) consists of thecontinuous state

X(t) = {x:(t)};, and thediscrete stat€)(t) = [¢1(t),¢2(t)],  we provide the required complement, thus giving the exhaus-
q(t) € {1,4,0},q2(t) € {2,3,0}. Hereg; is the state of tive description of the optimum, under the following teatadi
machinei, i.e., g; is either the serial number of the bufferassumption borrowed from Lefeber and Rooda (2008a).

served or t_he switching in progress §ymb©l In practice, Assumption 3.1No downstream buffer values more than an
the system is usually governed by a switching policy. It enslo upstream one, i.e., in (4 > c5 > 3 > ¢4 > 0

each server with a rule to determine the serviceuate) and to e t=m=m=ms
decide when the service should be terminated and switcfeto tRyow we are in a position to state the main result of the section
other buffer should be commencedpfocesgefers to feasible
evolution of the system. The formal definition is as follows.

Definition 2.1. A processr is a functional dependendy (),
Q(t)] of the system state on timesuch that the functio®|']

is piece-wise constant; time,, ., elapses between any two
consecutive discontinuities of the forms(t’ — 0) = n —
gs(t' +0) = © andgs(t” — 0) = © — ¢s(t" +0) = m for

s = 1, 2; the functionse; are absolutely continuous, and

xl(t) > O,Lti(t) = ’U,ifl(t) — ’U,l(t) 1=1,...,4, where

—0,  ifiZaq) el -
w0 =Nt 210 152 f iy o121

A 43 40 42 0200 16 0,0

Thi§ paper is goncerned with design of the op@imal swi_tching
policy that minimizes the long-run averaged weighted wip:  Fig. 3. Case 2 of the optimal periodic behavior

T
Wi(r) = Th_{noo T /0 w(t) dt — min, Proposition 1. The optimal simple periodic process does exist.
4 There are two different types of the optimal periodic bebavi
h — . . ~ (4) lllustrated by Figs. 2 and 3, resp'ectlvéIyF.or each of them,
where w(?) ;C a(t), en >0 (4) the buffers are served at the maximal feasible rates.

The design is accomplished via two steps. First, optinorati In Case 1 from Fig. 2, the optimal behavior consists in péciod
is performed over periodic processes. Second, we proposdepetition of the following successive phases:

feedback interactive switching policy that makes all psses
converging to the optimal periodic one, thus equalizingrthe
asymptotic qualities of service (4).

1.1) The servers simultaneously start services of buffers 1 and
2, serve them until buffer 1 is emptied and then any longer;

1.2) Server 1 switches to buffer 4 and serves it until emptying;
server 2 empties buffer 2 and then switches to buffer 3.

3. OPTIMAL PERIODIC BEHAVIOR This switch is completed when buffer 4 is drained out;
1.3) Server 2 empties buffer 3 and then switches to buffer 2,
A periodic processes is said to Isempleif every machine where it idles for some time!. Server 1 serves buffer 4

processes each of the associated buffers only ones dueng th and then switches to buffer 1. This switch is com-
period. The recent publication Lefeber and Rooda (2008a&) ch pleted synchronously with the end of the idling period of
acterizes the optimal simple periodic process in terms ef th server 2, which is the end of the phase.

separate activities of the first and second servers. Foclsivg
policy design, we need to know more: how these activities areappendix A offers a rule to determine which of these casedsidrhe grey
combined and how this combination evolves over time. Nowertical stripes in the figures highlight switching aciiit.
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In Case 2 from Fig. 3, the optimal behavior consists in péciod e On completion the task for the phase, each server broad-
repetition of the following successive phases: casts one-bit notification to the others and proceeds to the

2.1) The servers simultaneously start services of buffers 3 and next phase as soon as all notifications are collected.

4. Server 2 empties buffer 3, then switches to buffer 2 andet X°[b|%93;] and X °[¢|3;] be the values o °(-) at the start
serves it until emptying, whereas server 1 serves bufferand end of phasg;, respectively; and l1eT'¥: map X at the
until emptying and then begins switching to buffer 1beginning of3; into that at the end (for a given PhCR). The
When this switching is in progress, buffer 2 is emptiedmonodromy operatas the similar map for the entire cycle (5):
which is the end of the phase;

2.2) After emptying buffer 2, server 2 switches to buffer 3.
Server 1 completes the switch to buffer 1, serves it until
emptying and then any longer, and switches to buffer 4.

Switches to buffers 3 and 4 are completed synchronousighCR should be designed so that the following propertiess: hol

The proof of this proposition will be given in the full versiof i) Every PhCR generates the related piece 7df i.e.,
the paper. T%: XOb|%B;] = XO[eBs] Vi

: . i) Any trajectory of the iterated systeM(k+1) = M[X (k)]
The difference between Figs. 1(a) and (b) concerns only the converges tox{ := X°[b|%] ask — oc.

evolution of buffer 4 at phask 3). Case 1(b) occurs if and only
if 041 < T30 := 032 + 73, wherer! is the idling time Thanks to i), the entire switching policy does generate the
of server 2. Then the content of buffer 4 decreases during@somequired periodic process’ and X{ is the equilibrium point
sub-phase of this phase. In case 1a),., > 035, and the of the iterated system. If the operatdf§: are continuous,
content of buffer 4 never decreases at this phase. i) ensures convergence of all processes in the originad flui
network to the desired behaviaf by the standard argument

Dissimilarities in Figs. 2 and 3 are underlaid by the fact tha presented in e.g., Matveev and Savkin (2000); Savkin (1998)
problem is reducible to optimization of a linear functioreoa

polytop, which solution may abruptly jump from one vertex tolTo ensure i), PhCR are designed so that the system copycats
another under the continuous change of the parameters. the desired process. Property i) brings more trouble siooe
utation of the monodromy operatdf becomes cumbersome

To desihgnhthe SI‘.N itching policy, we need the lelowigg Trameﬁp to intractable as the numbers of servers or buffers iserea
ters, which explicit expressions are givenin Appendix A.  This pyrden is especially hard at the stage of design, where

pl) Tg — the time of server 2 idling at phase 1.3), see Fig. 2;there is no specific monodromy operator to compute, and the
p2) { — the time during which the emptied buffer 1 is servecctual task is to display and employ the relationships betwe
at the input rate\ at phases 1.1) and 2.2), see Figs. 2, 3; M and particular designs of PhCR in order to choose the proper
p3) § — the fraction of buffer 2 maximal content at phase 1.1pnes. The following new criterion for stability of equiliarof
that remains in this buffer at the phase end, see Fig. 2b ;Iterative dynamic systems aids to remove this blockageesinc
p4) ¢ — the fraction of buffer 3 content} at the start of this criterion can be verified and ensured 'phase-wises tint
phase 1.3) that remains in this buffer at the start of servernihilating the need to deal with the entire monodromy operat

switching4 — 1, see Fig. 2; . " - »
p5) ¢ — the fraction of buffer 4 content) at the start of Ig;&i%lﬁwgg -th :ggrxat‘;ryf(f’? r_x}, %(pe Hi {zreer%%ar]t
server 2 switching — 2 at phase 1.3) that is in this buffer "~ 0} is said to be: ot t ’

at the first time instant when both servers are involved in

switching within the phase, see Fig. 2; A an - o U m a. av
P6) gla_ Stezeuﬁﬁlrgi?fggze is 2meti(sa\évi;(t:hiﬂgsgezrig;dgé;hlzailt 3sucﬂiﬁitvg;ihajgeé];;le%acrgrll)oaals(gn inteLrJié)?lpi?nte :rfésis
P P P = 9 2gescribed by finitely many linear inequalities (both staod
By combining Proposition 1 with the results of Lefeber andion-strict), and all restriction¥’|s, are affine, i.e..T'(x) =
Rooda (2008a), exhaustive analytical description of thé&en Ajx+bj Vo € Sj, whered; € RPXP, b; € RP;
optimal periodic process can be obtained. However, thi®is n dominatedf b; > 0Vj; andstrictly dominatedf b; > 0Vj.
needed to design the optimal switching policy.

M=T%Fc-10T¥Fc-20...0TF1 o T¥0, (6)

monotoneif z <y = T(x) < T(y);

The following theorem is the main result of this section.
4. TRANSFORMATION OF A PERIODIC PROCESS INTO Theorem 2.Suppose that an iterati@i” of a piece-wise affine
A SWITCHING POLICY: GENERAL GUIDELINES continuous monotone mapis strictly dominated and this map
_ _ _ has a fixed poinfiz,] = x, € K¥. Then this fixed point is
According to Feoktistova and Matveev (2009), transfororati
of the periodic process’ = [X°(-),Q°(-)] into a switching
policy is arranged along the following lines:

e The optimal periodic process is partitioned ipltases The proof of this theorem will be given in the full version bgt

szmovmlam%"w%c—lv (5) paper.
each identified by the discrete state transitions involved;With respect to the monodromy operafor= M, continuity,
e Everyphase is equipped wittpaase control ruldPhCR)  monotonicity, and piece-wise affinity can be checked 'phase
to govern the system within the phase; wise’ since they are evidently inherited by compositionshef
e The entire policy is to progress through the periodicallynaps. As for the strict dominance, it can be shown that the
repeated sequence of phases (5) while applying the relsamposition not only inherits this property but also acesiir
vant phase control rule within every phase; it even if the composed maps are not strictly dominated.

unique and attracts, ~—>° z, all trajectories of the iterated
systemey1 = T[zi], z0 € K.
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5. OPTIMAL SWITCHING POLICY depending on the initial state and the serial number of tiskecy

(8) at hand. Such phases are said tdlédble

Now by following the above lines, we propose a simple interyy, recognize the phase end, any server needs one-bit "end of

active switching policy that ensures that after a transast
irrespective of the initial state, the system exhibits th&mal

periodic behavior described in Proposition 1, thus makimg t

overall asymptotic quality of service (4) optimal. Sincertn
are two qualitatively different optimal behaviors, two shing

mission’ notification from the companion server. Within paa
P, in case 1(b) and phask, every server acts proceeding
from the current level of the served buffer with no regard to
the other server. As faP, in case 1(a), server 1 needs a one-bit
notification that the required decreasergfis achieved.

policies are offered to handle the cases where the first onsec
behavior occurs, respectively. The partition (5) of thegess Rule 6 is well-defined since buffer 4 should be unloaded only
into phases is borrowed from Proposition 1. PhCR are dedigni® case 1(b), where server 2 does not supply work to it singe th

so that the system behavior copycats that from Fig. 2 or 3.
Switching policy 1 (to be applied in Case 1 from Fig. 2)

1) Whenever any buffer is served, the service is at the maxi-

mal feasible rate:
i ifax; >0
Ui—1 if €Xr; = 0’

max

up =

= { %

2) The servers are switched so that the discrete gpate =
[q1(¢), g2 (t)] periodically repeats the following cycle:

(4,2)
or
(©,0)

a)

—

~ 1,2 ©o,2) — . 4,0) 2

(©,3)
or
(4,0)

4,3) —

Py

3) Transition(a) is implemented as soon as buffer 1 is emptied
(at some time’) and after this the level of buffer 2 is reduced

to 6o (1), wheref is introduced in p3);
4) Within phaseP;,
e server 1 switches from buffdrto 4 duringo;_.4 time

start of the unload and until the phase end.

We assume thaf)(0) = (1,2). Then given the initial state
X (0), Policy 1 uniquely determines a process in the system.

Switching policy 2 (to be applied in Case 2 from Fig. 3)

1) Rulel) of Policy 1 is employed;
2) The servers are switched so that the discrete gjéte =
[q1(), q2(t)] periodically repeats the following cycle:

()
—

— (4,3) — (4,0) — (4,2) — (©,2)

Py
(©,0) — (1,0) — (5,0) £ (9)

Py

3) During phaseP;,

e Server 2 serves buffer 3 until it is emptied, then
switches to buffer 2 durings_,» time units, then serves
buffer 2 until emptying, and finally maybe idles waiting
for server 1 to complete its mission for this phase;

e Server 1 empties buffer 4, then performs the first part of
switch to buffer 1 duringzo4 .1 time units, and finally
maybe idles waiting for emptying buffer 2 by server 2.

Herev is introduced in p6);

4) Transition(a) holds as soon as buffer 2 is emptied and the
units and serves buffer 4 until emptying and maybe,

required percentage of switchidg— 1 is completed;

longer, waiting for switch of server 2 to be completed;5) During phaseP; ,

e Server 2 first serves buffer 2 until emptying, then

switches to buffer 3 during._.3 time units and then
maybe, idles waiting for emptying buffer 4.

5) Transition(b) is implemented as soon as buffer 4 is empty

and switching of server 2 from buffer 2 to 3 is completed,;
6) Within phaseP;,

e Server 2 empties buffer 3, switches to buffer 2 for °

032 time units, and finally idles fory time units and,

maybe, longer, waiting for the switch of server 1 to be

completed.
e Server 1 serves buffer 4 until the content of buffer
decays tofz)

and after this the level of buffer 4 is

e Server 1 completes switching — 1 during (1 —
v)os—1 time units, empties buffer 1, continues to serve
it at the input rater;* (see p2)) time units and maybe,
longer so that it leaves buffer 1 no sooner thgn.o —
014 time units elapses since the phase beginning, and
finally switches to buffer 4 during .4 time units;

Server 2 switches from buffer 2 to 3 duriag_.3 time
units and then maybe idles, waiting for server 1 to
complete its mission.

6) Transition (b) holds when the switdh— 4 is completed.

3Lrhe duration of service of the emptied buffer 1 at ph&ses

reduced ta.z4 (7, ), wherez{ is the buffer level at the adjusted so that switching — 4 is completed at the earliest

start of the phase and is the time instant when the firs

t occasion after the end of the swit2h— 3.

of these reductions is completed. After this, server ¥he servers operate independently and on the basis of data fr

switches to buffer 1 during4_.; time units and then

maybe, idles, waiting for the compulsory idling time

79 of server 2 to be expired.
Hererd, ¢, and( are introduced in p1), p4), and p5);

only the currently served buffer within both phadgsand P.

For the definiteness, we assume tiia0) = (4,3). Then
given the initial stateX (0), the switching policy 2 uniquely

7) Transition (c) holds as soon as server 1 completes the switd§teérmines a process in the system.

and the compulsory idling of server 2 is ceased.

By the following main result of the paper, the proposed petic

Formula (8) displays the longest chains of discrete sgate €nsure asymptotically optimal performance of the system.

transitions that may be observed during phasesand Ps;

Theorem 3.Let the conditions (1) and (3) hold. Suppose that

the rigorous definitions of these phases are given in 4) and @plicy 1 is applied in case 1 and policy 2 is put in use otheswis
respectively. Some sub-phases, l{ke2) in P;, may be missed Then any of these policies gives rise to a unique periodie pro
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cess, which attracts all other processes in the Kumar-Seidm Appendix A
system. Moreover, this periodic process represents thmalpt
behavior described in Proposition 1. The following notations employ the quantiti®sy;, p;, ¢; from

Fig. 1, (1) and (4), respectively, as well as the setup ti :
For the rigorous definition of the process convergence, Weg @) @ P y Pimes

refer the reader to Matveev and Savkin (2000). The proof of Mop—g +04-1)2 - ,
Theorem 3 will be given in the full version of the paper. ap = (c1—c2) T Z cjoyit=1,2,
Jj=1
wherea; ; := )\p4(011_>4 s 04_&)702,2 = 1)\(/)2 - p1),
REFERENCES (=) :
Q21 1= )\(1 - p4)(04_}1 + 0'1_}4)7 a3 1 = )\0237
Banks, J. and Dai, J.G. (199 8imulation studies of multiclass ’ (1—p1) ’

gueueing networksolume 29, 213-219. IIE Transactions. 1 \p?
Bramson, M. (2008). Stability of queueing networks. volumé¥4,1 ‘= (N4—)\)(P2+P4—1)+§)\(P4—P3)»a1,2 = my
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