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Abstract: We study the problem of optimal feedback switching control of two-server re-entrant
manufacturing network with nozero setup times introduced by Kumar and Seidman. The optimal steady-
state (periodic) behavior is determined for the system in the analytical form. A simple feedback switching
control law is proposed under which the process in the systemconverges to the optimal steady state
behavior irrespective of the initial state. This law is cyclic and distributed: the servers do not need
information about the entire system state. Each of them proceeds basically from the local data concerning
only the currently served queue, although a fixed finite number of one-bit notification signals should be
exchanged between the servers during every cycle. The framework of Kumar-Seidman model is used for
presentation of a methodology of both design of a switching policy and justification of its convergence.
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1. INTRODUCTION

The paper deals with fluid models of production systems. They
represent the system as a network that receives incoming prod-
uct flows, interpreted as deterministic fluid streams, and pro-
cesses them by means of servers. The servers move products
(also called work) among internal buffers and ultimately dis-
patch work into the network exterior. Every server can serveno
more than one buffer at any time instant; whenever the buffer
is changed, setup times are incurred. Such models are used
to describe certain aspects of flexible manufacturing systems,
computer, communication and transport networks, chemicalki-
netics, etc. Perkins and Kumar (1989).

Recently a great deal of research was concerned with these
models, see e.g., Chase et al. (1993); Horn and Ramadge
(1997); Matveev and Savkin (2000); Bramson (2008) and the
literature therein. It was shown that they may exhibit unex-
pectedly complicated and counter-intuitive behavior, especially
whenever decentralized control policies and nonzero setup
times are involved. For instance, it was established via com-
puter simulation in Banks and Dai (1997) that standard poli-
cies may cause instability: the total amount of work increases
without limits even if each server has enough capacity to cope
with the incoming flows. In Kumar and Seidman (1990), it was
rigorously proved that the clearing policy (serve the buffer until
emptying) is unstable for very simple networks even if the setup
times are zero. In Perkins and Kumar (1989), clear a fraction
(CAF) policies were introduced and shown to achieve stability
for single server systems, as well as for multi-server networks
such that under some enumeration of the servers, work visits
them in the ascending order. If such enumeration is impossible
(which holds for e.g., reentrant networks), CAF policies may

fail to stabilize the system Kumar and Seidman (1990). In some
cases, the so-called gated policies Humes (1994); J. R. Perkins
and Kumar (1994) are able to overcome this drawback. The
main idea behind them is to assign a certain level (gate) to every
buffer and switch the servers proceeding from not the entire
backlog in the buffer but its excess over the gate. This shortens
the time of buffer service, thus reducing the likelihood of the
detrimental situation underlying instability: a server wastes its
capacity due to deficiency in work supply from another server
since the latter is occupied by another activity in a side buffer
for a too long time. However, gated policies carry potentialfor
increase of the mean number of work in the system, which is
undesirable from the performance point of view.

In Savkin (1998), a universal decentralized switching strategy
was proposed and shown to stabilize very general multiple
server networks with time-varying rates of the outer inflows.
The strategy arranges the system operation in repeated cycles
of the fixed durationT ; within any cycle, every server visits
each of the associated buffers only once in a pre-specified cycle-
invariant order. From any buffer, the server removes the amount
of work identical to the cumulative network income brought for
time T by all inflows that affect, either directly or indirectly,
this buffer. If the buffer contains not enough work to do so, it is
drained out. The next setup may be prolonged to fully consume
the time reserved for the step. This strategy not only keeps
wip ( = ’work in progress’, i.e., the total amount of work in
the system) bounded but also makes all trajectories eventually
periodic in the case of constant arrival rates. At the same
time, it does not provide a machinery of wip reduction. For
example, the more work in the system initially, the comparably
more work remains afterwards. This is undesirable from the
performance point of view as well.
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The above references display characteristic features of other
related works in the area. They start from more or less heuristi-
cally designed policies and proceed with study of the resultant
system behavior. With few exceptions (see, e.g., Gaudio et al.
(2001) and the literature therein) focused on two buffer sys-
tems, the issue of performance optimization, when treated,is
typically limited to choice of the parameters for a pre-specified
policy. However, this issue becomes one of the major concerns
in recent years as a result of complication of manufacturing
processes and cost increase. Though optimal scheduling of
systems with setups has an extensive literature, it is primarily
focused on open-loop schedules and basically assumes a static
and certain environment. This approach, being a backbone of
production systems planning, is not suited well to deal with
real-life dynamic and uncertain environments, which causes
a reported gap between the theory and practice Ouelhadj and
Petrovic (2008). The basic tool to cope with these uncertainties
is feedback under which decisions are made on an ongoing
basis from the current events in the system.

A systematic approach to bridging this gap between optimal
open-loop scheduling and feedback control of networks of
switching servers with setup times was proposed in Lefeber
and Rooda (2006, 2008b). Assuming a pre-determined periodic
process that represents the desired open-loop schedule, the ap-
proach sets as the objective development of a general technique
to design a feedback switching policy that gives rise to thispro-
cess and makes it globally attractive, thus equalizing the asymp-
totic qualities of service along any and the given processes,
respectively. The last property is of especial interest whenever
the given process is optimal or nearly optimal. Though most
schedule optimization problems are NP-hard, relatively effec-
tive optimization techniques have been developed to treat them
Ouelhadj and Petrovic (2008). The main concern of this paper
is not optimization but is stable feedback generation of desired
periodic processes.

A Lyapunov-type approach to this problem was proposed in
Lefeber and Rooda (2006). The resultant controllers are cen-
tral: access to the information about the entire system state is
assumed for every server. In certain cases, decentralized con-
trollers driven by only local data are needed. In Lefeber and
Rooda (2008b), it was shown, by means of an example, that
within the new view of the problem introduced in Lefeber and
Rooda (2006), decentralized controllers can be derived as well.
The proposed technique relies on computation of a Lyapunov
function and so suffers much from the standard in the area
’curse of dimensionality’.

To break the curse, a computationally non-demandingPoincaré-
type approach aimed at designs of decentralized controllers
was reported in Feoktistova and Matveev (2009). It offers to
partition the required process into relatively simple phases, each
associated with a specific combination of activities of different
servers. The policy is to periodically repeat the resultantcycle
of the phases, each governed by an individual control rule on
the basis of local information. When the server completes the
task for the phase, it broadcasts one-bit notification to theothers
and proceeds to the next phase as soon as all notifications are
collected. Design of the phase control rules is the core occupa-
tion. According to Feoktistova and Matveev (2009), the design
objective is confined into the phase itself. Specifically, itshould
be ensured that a certain set of properties hold for the phase
dynamical operator, which maps the system state at the phase
beginning into that at its end. This set is elaborated so thatthese

properties are inherited by compositions and so inevitablyhold
for the monodromy operator (MO). This is the composition of
the dynamical operators over the entire cycle of the phases;the
system in fact evolves via iterations of MO. The above proper-
ties are such that being established for MO, they guarantee the
global stability of the equilibrium point of the iteration process
and whereby that of the required periodic behavior. The curse
becomes broken by avoiding computation and analysis of the
entire MO, which is typically cumbersome up to intractable.In
Feoktistova and Matveev (2009), this technique was probed by
application to an example, also treated in Lefeber and Rooda
(2008b). It concerns the Kumar-Seidman system Kumar and
Seidman (1990) and a periodic process optimal for only par-
ticular numerical values of the system parameters. Under them,
this process features special properties, unnecessary in general,
which were essentially utilized in the design and proofs.

This paper offers an extended and detailed presentation of the
proposed approach. The objective is to demonstrate, by means
of an example, that the approach fits to handle the entire range
of cases encountered in the optimization problem. To this end,
we first provide an exhaustive analysis of the optimal periodic
behaviors of the Kumar-Seidman system treated in the general
(analytical) form. This research is based on Lefeber and Rooda
(2008a), where the optimal behavior was characterized in terms
of the separate activities of the servers. In this paper, we dis-
close both the combination of these activities and its evolution
over time. A simple distributed feedback switching controllaw
is proposed that not only gives rise to the optimal steady state
behavior but also makes it globally attractive, irrespective of the
system parameters. Compared with Feoktistova and Matveev
(2009), this requires elaboration of new phase control rules.
In particular, a special emphasis is given to the concept of
the flexible phase that encompasses several activities of every
server and within which the servers are given the freedom to
proceed to the next activity independently of each other.

The body of the paper is organized as follows. Section 2 intro-
duces the system to be studied; its optimal periodic behavior
is established in Section 3. Section 4 presents the proposed
general guidelines of switching policies design and the related
mathematical background. The main result is stated in Sec-
tion 5, where the optimal switching policy is introduced. There
is an appendix providing the necessary technical facts.

2. THE KUMAR-SEIDMAN SYSTEM

We consider the manufacturing system that is assembled of
four buffers and two servers (machines), see Fig. 1 The content

Fig. 1. The Kumar-Seidman model

of the buffers is calledwork and interpreted as fluid. Work
arrives at the first buffer at the constant rateλ > 0, then is
consecutively processed by server 1, then twice by server 2,
and finally by server 1 once more, and then leaves the system.
Any server is capable to serve only one buffer at a given time.
Switching between buffers consumes setup timesσ1→4, σ4→1,
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σ2→3, σ3→2 > 0, respectively. Service of buffern consists
in withdrawal of its contentxn(t) at the rateun(t) ∈ [0, µn],
whereµn > 0 is given. The system isstabilizable, i.e., the total
amount of work can be kept bounded provided that the system
is properly controlled. This holds if and only if every server has
enough capacity to process the job inflow:

1−ρ1−ρ4 > 0, 1−ρ2−ρ3 > 0, where ρi := µ−1
i λ. (1)

The model at hand was introduced in Kumar and Seidman
(1990) to demonstrate that the clearing policy is unappropriate
since it may cause instability: even if (1) holds, the total amount
of work may explode. Moreover, this inevitably holds whenever

ρ2 + ρ4 > 1. (2)

In this paper, we assume that (1) and (2) are true. Then

µ1 > µ2, µ3 > µ4, (3)

i.e., x2 ↑ (or x4 ↑) if buffers 1 and 2 (or 3 and 4) are
simultaneously served at the maximal rates.

The system state(X, Q) consists of thecontinuous state
X(t) = {xi(t)}4

i=1 and thediscrete stateQ(t) = [q1(t), q2(t)],
q1(t) ∈ {1, 4, ⊖} , q2(t) ∈ {2, 3, ⊖}. Hereqi is the state of
machinei, i.e., qi is either the serial number of the buffer
served or the ’switching in progress’ symbol⊖. In practice,
the system is usually governed by a switching policy. It endows
each server with a rule to determine the service rateun(t) and to
decide when the service should be terminated and switch to the
other buffer should be commenced. Aprocessrefers to feasible
evolution of the system. The formal definition is as follows.

Definition 2.1. A processπ is a functional dependency[X(t),
Q(t)] of the system state on timet such that the functionQ[·]
is piece-wise constant; timeσn→m elapses between any two
consecutive discontinuities of the formsqs(t′ − 0) = n 7→
qs(t′ + 0) = ⊖ andqs(t′′ − 0) = ⊖ 7→ qs(t′′ + 0) = m for
s = 1, 2; the functionsxi are absolutely continuous, and

xi(t) ≥ 0, ẋi(t) = ui−1(t)− ui(t) i = 1, . . . , 4, where

u0(t) := λ, ui(t)
{

= 0, if i 6= q1(t), q2(t)
∈ [0, µi], if i ∈ {q1(t), q2(t)}

}
for i ≥ 1.

This paper is concerned with design of the optimal switching
policy that minimizes the long-run averaged weighted wip:

W (π) := lim
T→∞

1
T

∫ T

0

w(t) dt → min,

where w(t) :=
4∑

n=1

cnxn(t), cn > 0. (4)

The design is accomplished via two steps. First, optimization
is performed over periodic processes. Second, we propose a
feedback interactive switching policy that makes all processes
converging to the optimal periodic one, thus equalizing their
asymptotic qualities of service (4).

3. OPTIMAL PERIODIC BEHAVIOR

A periodic processes is said to besimple if every machine
processes each of the associated buffers only ones during the
period. The recent publication Lefeber and Rooda (2008a) char-
acterizes the optimal simple periodic process in terms of the
separate activities of the first and second servers. For switching
policy design, we need to know more: how these activities are
combined and how this combination evolves over time. Now
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Fig. 2. Case 1 of the optimal periodic behavior.

we provide the required complement, thus giving the exhaus-
tive description of the optimum, under the following technical
assumption borrowed from Lefeber and Rooda (2008a).

Assumption 3.1.No downstream buffer values more than an
upstream one, i.e., in (4),c1 ≥ c2 ≥ c3 ≥ c4 > 0.

Now we are in a position to state the main result of the section.
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Fig. 3. Case 2 of the optimal periodic behavior

Proposition 1.The optimal simple periodic process does exist.
There are two different types of the optimal periodic behavior
illustrated by Figs. 2 and 3, respectively.1 For each of them,
the buffers are served at the maximal feasible rates.

In Case 1 from Fig. 2, the optimal behavior consists in periodic
repetition of the following successive phases:

1.1) The servers simultaneously start services of buffers 1 and
2, serve them until buffer 1 is emptied and then any longer;

1.2) Server 1 switches to buffer 4 and serves it until emptying;
server 2 empties buffer 2 and then switches to buffer 3.
This switch is completed when buffer 4 is drained out;

1.3) Server 2 empties buffer 3 and then switches to buffer 2,
where it idles for some timeτ0

2 . Server 1 serves buffer 4
and then switches to buffer 1. This switch is com-
pleted synchronously with the end of the idling period of
server 2, which is the end of the phase.

1 Appendix A offers a rule to determine which of these cases holds. The grey
vertical stripes in the figures highlight switching activities.
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In Case 2 from Fig. 3, the optimal behavior consists in periodic
repetition of the following successive phases:

2.1) The servers simultaneously start services of buffers 3 and
4. Server 2 empties buffer 3, then switches to buffer 2 and
serves it until emptying, whereas server 1 serves buffer 4
until emptying and then begins switching to buffer 1.
When this switching is in progress, buffer 2 is emptied,
which is the end of the phase;

2.2) After emptying buffer 2, server 2 switches to buffer 3.
Server 1 completes the switch to buffer 1, serves it until
emptying and then any longer, and switches to buffer 4.
Switches to buffers 3 and 4 are completed synchronously.

The proof of this proposition will be given in the full version of
the paper.

The difference between Figs. 1(a) and (b) concerns only the
evolution of buffer 4 at phase1.3). Case 1(b) occurs if and only
if σ4→1 < σ̂3→2 := σ3→2 + τ0

2 , whereτ0
2 is the idling time

of server 2. Then the content of buffer 4 decreases during some
sub-phase of this phase. In case 1(a),σ4→1 ≥ σ̂3→2, and the
content of buffer 4 never decreases at this phase.

Dissimilarities in Figs. 2 and 3 are underlaid by the fact that the
problem is reducible to optimization of a linear function over a
polytop, which solution may abruptly jump from one vertex to
another under the continuous change of the parameters.

To design the switching policy, we need the following parame-
ters, which explicit expressions are given in Appendix A.

p1) τ0
2 — the time of server 2 idling at phase 1.3), see Fig. 2;

p2) τλ
1 — the time during which the emptied buffer 1 is served

at the input rateλ at phases 1.1) and 2.2), see Figs. 2, 3;
p3) θ — the fraction of buffer 2 maximal content at phase 1.1)

that remains in this buffer at the phase end, see Fig. 2b ;
p4) ξ — the fraction of buffer 3 contentx∗3 at the start of

phase 1.3) that remains in this buffer at the start of server 1
switching4 → 1, see Fig. 2;

p5) ζ — the fraction of buffer 4 contentx∗4 at the start of
server 2 switching3 → 2 at phase 1.3) that is in this buffer
at the first time instant when both servers are involved in
switching within the phase, see Fig. 2;

p6) ν — the percentage of the switching periodσ4→1 that
elapses until buffer 2 is emptied at phase 2.2), see Fig. 3.

By combining Proposition 1 with the results of Lefeber and
Rooda (2008a), exhaustive analytical description of the entire
optimal periodic process can be obtained. However, this is not
needed to design the optimal switching policy.

4. TRANSFORMATION OF A PERIODIC PROCESS INTO
A SWITCHING POLICY: GENERAL GUIDELINES

According to Feoktistova and Matveev (2009), transformation
of the periodic processπ0 = [X0(·), Q0(·)] into a switching
policy is arranged along the following lines:

• The optimal periodic process is partitioned intophases
C = P0, P1, P2, . . . , Pc−1, (5)

each identified by the discrete state transitions involved;
• Every phase is equipped with aphase control rule(PhCR)

to govern the system within the phase;
• The entire policy is to progress through the periodically

repeated sequence of phases (5) while applying the rele-
vant phase control rule within every phase;

• On completion the task for the phase, each server broad-
casts one-bit notification to the others and proceeds to the
next phase as soon as all notifications are collected.

Let X0[b|Pi] andX0[e|Pi] be the values ofX0(·) at the start
and end of phasePi, respectively; and letT Pi mapX at the
beginning ofPi into that at the end (for a given PhCR). The
monodromy operatoris the similar map for the entire cycle (5):

M = T Pc− 1 ◦ T Pc− 2 ◦ · · · ◦ T P1 ◦ T P0 . (6)

PhCR should be designed so that the following properties hold:

i) Every PhCR generates the related piece ofπ0, i.e.,
T PiX0[b|Pi] = X0[e|Pi] ∀i;

ii) Any trajectory of the iterated systemX(k+1) = M [X(k)]
converges toX0

0 := X0[b|P0] ask →∞.

Thanks to i), the entire switching policy does generate the
required periodic processπ0 andX0

0 is the equilibrium point
of the iterated system. If the operatorsT Pi are continuous,
ii) ensures convergence of all processes in the original fluid
network to the desired behaviorπ0 by the standard argument
presented in e.g., Matveev and Savkin (2000); Savkin (1998).

To ensure i), PhCR are designed so that the system copycats
the desired process. Property ii) brings more trouble sincecom-
putation of the monodromy operatorM becomes cumbersome
up to intractable as the numbers of servers or buffers increase.
This burden is especially hard at the stage of design, where
there is no specific monodromy operator to compute, and the
actual task is to display and employ the relationships between
M and particular designs of PhCR in order to choose the proper
ones. The following new criterion for stability of equilibria of
iterative dynamic systems aids to remove this blockage since
this criterion can be verified and ensured ’phase-wise’, thus an-
nihilating the need to deal with the entire monodromy operator.

The inequalitiesx ≤ y andx < y for x, y ∈ Rp are meant
component-wise. The operatorT : Kp

+ → Kp
+ := {x ∈ Rp :

x ≥ 0} is said to be:
monotone, if x ≤ y ⇒ T(x) ≤ T(y);
piece-wise affine, if a partition K+ =

⋃m
j=1 Sj exists

such that each setSj (calledcell) has an interior point and is
described by finitely many linear inequalities (both strictand
non-strict), and all restrictionsT |Sj are affine, i.e.,T (x) =
Ajx + bj ∀x ∈ Sj , whereAj ∈ Rp×p, bj ∈ Rp;

dominatedif bj ≥ 0 ∀j; andstrictly dominatedif bj > 0 ∀j.

The following theorem is the main result of this section.

Theorem 2.Suppose that an iterationTm of a piece-wise affine
continuous monotone mapT is strictly dominated and this map
has a fixed pointT[x∗] = x∗ ∈ Kp

+. Then this fixed point is

unique and attractsxk
k→∞−−−−→ x∗ all trajectories of the iterated

systemxk+1 = T[xk], x0 ∈ Kp
+.

The proof of this theorem will be given in the full version of the
paper.

With respect to the monodromy operatorT := M , continuity,
monotonicity, and piece-wise affinity can be checked ’phase-
wise’ since they are evidently inherited by compositions ofthe
maps. As for the strict dominance, it can be shown that the
composition not only inherits this property but also acquires
it even if the composed maps are not strictly dominated.
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5. OPTIMAL SWITCHING POLICY

Now by following the above lines, we propose a simple inter-
active switching policy that ensures that after a transientand
irrespective of the initial state, the system exhibits the optimal
periodic behavior described in Proposition 1, thus making the
overall asymptotic quality of service (4) optimal. Since there
are two qualitatively different optimal behaviors, two switching
policies are offered to handle the cases where the first or second
behavior occurs, respectively. The partition (5) of the process
into phases is borrowed from Proposition 1. PhCR are designed
so that the system behavior copycats that from Fig. 2 or 3.

Switching policy 1 (to be applied in Case 1 from Fig. 2)

1) Whenever any bufferi is served, the service is at the maxi-
mal feasible rate:

ui = µmax
i :=

{
µi if xi > 0
ui−1 if xi = 0 ; (7)

2) The servers are switched so that the discrete stateQ(t) =
[q1(t), q2(t)] periodically repeats the following cycle:

→ (1, 2)
(a)−→ (⊖, 2) −→

∣∣∣∣∣ (4, 2)
or

(⊖, ⊖)

∣∣∣∣∣ −→ (4, ⊖)︸ ︷︷ ︸
P1

(b)−→

(4, 3) −→
∣∣∣∣∣ (⊖, 3)

or
(4, ⊖)

∣∣∣∣∣ −→ (⊖, ⊖) −→ (⊖, 2)︸ ︷︷ ︸
P2

(c)−→; (8)

3) Transition(a) is implemented as soon as buffer 1 is emptied
(at some timeτ ) and after this the level of buffer 2 is reduced
to θx2(τ), whereθ is introduced in p3);

4) Within phaseP1,
• server 1 switches from buffer1 to 4 duringσ1→4 time

units and serves buffer 4 until emptying and maybe,
longer, waiting for switch of server 2 to be completed;

• Server 2 first serves buffer 2 until emptying, then
switches to buffer 3 duringσ2→3 time units and then
maybe, idles waiting for emptying buffer 4.

5) Transition(b) is implemented as soon as buffer 4 is empty
and switching of server 2 from buffer 2 to 3 is completed;

6) Within phaseP2,
• Server 2 empties buffer 3, switches to buffer 2 for

σ3→2 time units, and finally idles forτ0
2 time units and,

maybe, longer, waiting for the switch of server 1 to be
completed.

• Server 1 serves buffer 4 until the content of buffer 3
decays toξx0

3 and after this the level of buffer 4 is
reduced toζx4(τ∗), wherex0

3 is the buffer level at the
start of the phase andτ∗ is the time instant when the first
of these reductions is completed. After this, server 1
switches to buffer 1 duringσ4→1 time units and then
maybe, idles, waiting for the compulsory idling time
τ0
2 of server 2 to be expired.

Hereτ0
2 , ξ, andζ are introduced in p1), p4), and p5);

7) Transition (c) holds as soon as server 1 completes the switch
and the compulsory idling of server 2 is ceased.

Formula (8) displays the longest chains of discrete stateQ
transitions that may be observed during phasesP1 and P2;
the rigorous definitions of these phases are given in 4) and 6),
respectively. Some sub-phases, like(4, 2) in P1, may be missed

depending on the initial state and the serial number of the cycle
(8) at hand. Such phases are said to beflexible.

To recognize the phase end, any server needs one-bit ’end of
mission’ notification from the companion server. Within phase
P2 in case 1(b) and phaseP1, every server acts proceeding
from the current level of the served buffer with no regard to
the other server. As forP2 in case 1(a), server 1 needs a one-bit
notification that the required decrease ofx3 is achieved.

Rule 6 is well-defined since buffer 4 should be unloaded only
in case 1(b), where server 2 does not supply work to it since the
start of the unload and until the phase end.

We assume thatQ(0) = (1, 2). Then given the initial state
X(0), Policy 1 uniquely determines a process in the system.

Switching policy 2 (to be applied in Case 2 from Fig. 3)

1) Rule1) of Policy 1 is employed;
2) The servers are switched so that the discrete stateQ(t) =

[q1(t), q2(t)] periodically repeats the following cycle:

−→ (4, 3) −→ (4, ⊖) −→ (4, 2) −→ (⊖, 2)︸ ︷︷ ︸
P1

(a)−→

(⊖, ⊖) −→ (1, ⊖) −→ (⊖, ⊖)︸ ︷︷ ︸
P2

(b)−→; (9)

3) During phaseP1,
• Server 2 serves buffer 3 until it is emptied, then

switches to buffer 2 duringσ3→2 time units, then serves
buffer 2 until emptying, and finally maybe idles waiting
for server 1 to complete its mission for this phase;

• Server 1 empties buffer 4, then performs the first part of
switch to buffer 1 duringνσ4→1 time units, and finally
maybe idles waiting for emptying buffer 2 by server 2.

Hereν is introduced in p6);
4) Transition(a) holds as soon as buffer 2 is emptied and the

required percentage of switching4 → 1 is completed;
5) During phaseP2 ,

• Server 1 completes switching4 → 1 during (1 −
ν)σ4→1 time units, empties buffer 1, continues to serve
it at the input rateτλ

1 (see p2)) time units and maybe,
longer so that it leaves buffer 1 no sooner thanσ3→2 −
σ1→4 time units elapses since the phase beginning, and
finally switches to buffer 4 duringσ1→4 time units;

• Server 2 switches from buffer 2 to 3 duringσ2→3 time
units and then maybe idles, waiting for server 1 to
complete its mission.

6) Transition (b) holds when the switch1 → 4 is completed.

The duration of service of the emptied buffer 1 at phaseP2 is
adjusted so that switching1 → 4 is completed at the earliest
occasion after the end of the switch2 → 3.

The servers operate independently and on the basis of data from
only the currently served buffer within both phasesP1 andP2.

For the definiteness, we assume thatQ(0) = (4, 3). Then
given the initial stateX(0), the switching policy 2 uniquely
determines a process in the system.

By the following main result of the paper, the proposed policies
ensure asymptotically optimal performance of the system.

Theorem 3.Let the conditions (1) and (3) hold. Suppose that
policy 1 is applied in case 1 and policy 2 is put in use otherwise.
Then any of these policies gives rise to a unique periodic pro-
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cess, which attracts all other processes in the Kumar-Seidman
system. Moreover, this periodic process represents the optimal
behavior described in Proposition 1.

For the rigorous definition of the process convergence, we
refer the reader to Matveev and Savkin (2000). The proof of
Theorem 3 will be given in the full version of the paper.
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Appendix A

The following notations employ the quantitiesλ, µi, ρi, cj from
Fig. 1, (1) and (4), respectively, as well as the setup timesσi→j :

α0 := (c1−c2)
λ(σ1→4 + σ4→1)2

2(1− ρ1)
, αi :=

4∑
j=1

cjαj,i i = 1, 2,

whereα1,1 :=
λρ4(σ1→4 + σ4→1)

(1− ρ1)
, α2,2 :=

1
2
λ(ρ2 − ρ1),

α2,1 :=
λ(1− ρ1 − ρ4)(σ4→1 + σ1→4)

(1− ρ1)
, α3,1 := λσ23,

α4,1 := (µ4−λ)(ρ2+ρ4−1)+
1
2
λ(ρ4−ρ3), α1,2 :=

λρ2
4

2(1− ρ1)
,

α3,2 :=
1
2
λ(ρ2 + ρ3), α4,2 := (µ4 − λ)(σ4→1 + σ2→3),

T14 :=
σ1→4 + σ4→1

1− ρ1 − ρ4
, T23 :=

σ2→3 + σ3→2

1− ρ2 − ρ3
, T∗ :=

√
α0

α2
.

The rule to distinguish Cases 1 and 2illustrated in Figs. 2
and 3, respectively, and described in Proposition 1. Case 2 from
Fig. 3 holds if and only if Lefeber and Rooda (2008a)

c1 > c2 ∧ T∗ > T23 ∧ µ4 > µ2 + (c2 − c4)(µ2 − λ)c−1
4

∧ 2
√

α0α2 + α1 ≤ α2T23 + α1 +
α0

T23

+ [c2(µ2 − λ)− c2(µ4 − λ)] T23×
× [(ρ2 + ρ4 − 1)T23 + σ2→3 + σ3→2] ; (A.1)

otherwise, Case 1 from Fig. 2 takes place.

Parameters p1)–p6).We need the formulas for the periodT of
the optimal periodic process Lefeber and Rooda (2008a):

T =



T14 if T14 > T23 and eitherc1 = c2 or T14 ≥ T∗

T∗ if



T14 > T23 ∧ c1 > c2 ∧ T∗ > T14; or
T14 ≤ T23 < T∗ ∧ c1 > c2

∧µ4 ≤ µ2 + (c2 − c4)(µ2 − λ)c−1
4 ; or T14 ≤ T23 < T∗ ∧ c1 > c2

∧ µ4 > µ2 + (c2 − c4)(µ2 − λ)c−1
4

and (A.1) does not hold


T23 if T14 ≤ T23 and

{
c1 = c2; or
T∗ ≤ T23; or
(A.1) holds

Straightforward computation based on Lemmas 6 and 7 Lefeber
and Rooda (2008a) shows that the parameters introduced in
p1)–p6)are given by

τ0
2 = (1 − ρ2 − ρ3)T − (σ2→3 + σ3→2),

τλ
1 =

1
1− ρ1

[(1− ρ1 − ρ4)T − (σ1→4 + σ4→1)] ,

θ = 1− µ2 − λ

µ1 − µ2

(1− ρ1 − ρ4)T − (σ1→4 + σ4→1)
ρ1 [ρ4T + σ1→4 + σ4→1]

,

ξ =

µ3
σ4→1 − σ3→2 − τ0

2

λT
in case 1(a)

0 in case 1(b)
,

ζ =

1 in case 1(a)

1− µ4
τ0
2 + σ3→2 − σ4→1

(µ3 − µ4)ρ3T
in case 1(b)

,

ν =
σ32

σ4→1
+ [ρ2 + ρ3 − ρ4]

T

σ4→1
.
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