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Summary

Modelling and control of discrete event manufacturing flow lines

Over the last decades complexity of products and production processes has increased tremen-
dously, moving towards high-tech production systems: manufacturing expensive products with
even more expensive resources. Failures or mistakes have therefore become expensive too and
need to be avoided to fulfill the manufacturers’ targets: generating products while maximizing
the profit. In general, this is to be achieved by keeping vast control over the manufacturing
processes, resources, stocks and labour. Easier said than done, since controlling all phenomena
that occur in a manufacturing system is very expensive, if possible at all. Therefore, specific
parts of a manufacturing facility are modelled to reduce its complexity. With the models, pre-
dictions of future behavior of the system can be made. Moreover, different control strategies
can be tested offline at low risks, before implementing them on the real production system.

In this dissertation, manufacturing flow lines are modelled using several modelling paradigms.
These are divided into three groups: discrete event models, continuous models and hybrid
models. The presented modelling methods are used throughout the remainder of the thesis and
therefore the survey is by no means an attempt to give a complete overview of the whole area
of modelling manufacturing systems.

A state space representation of a manufacturing workstation is introduced, which is finite di-
mensional, can be measured instantaneously and does not contain any information about pro-
duction or control policy. This state space representation is used in the coupling of different
model paradigms, facilitating the use of analysis techniques in both time domain and event
domain. In addition, the introduced state space representation is used in the development of a
continuous time receding horizon state feedback controller. For a flow line of multiple work-
stations, each with its own buffer capacity and process time, and for an event based control
horizon, an optimal production schedule controller is developed. This state feedback controller
provides optimal schedules, even when unexpected disturbances occur.

Switching servers are found in a wide variety, like in manufacturing industries, traffic networks
and call-centers. Switching servers process multiple types of jobs, with a switchover time in-
volved. A hybrid fluid model is used to describe the dynamics of switching servers. Continuous
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viii SUMMARY

dynamics is used to describe the evolution of buffer levels. The discrete event part of the model
describes the switches between the product types. For a workstation processing two product
types that arrive at constant rates, optimal switching policies with respect to minimal time av-
eraged weighted work in process levels are defined for situations with and without maximum
buffer level capacities. An important insight is the possible appearance of a slow-mode in op-
timal process cycles. During a slow-mode, a buffer is empty and products are served at their
arrival rate, instead of switching to the other product type. The slow-mode represents a trade-
off between losing capacity due to serving products at a lower rate than the maximum rate and
losing capacity due to relatively often switching in time. Conditions on the appearance of a
slow-mode in optimal process cycles are derived explicitly. In a manufacturing network, ar-
rivals of products at a workstation are in general not at a constant rate. For a switching server
processing two product types and with piecewise constant periodic arrival rates (on/off), opti-
mal system behavior with respect to work in process levels is defined. The total optimization
problem then splits into several subproblems, which need to be solved separately.

The optimal mean work in process level for a single switching server is also a lower bound on
the mean work in process level that can be realized for a switching server flow line in which that
server resides. For a flow line consisting of two switching servers, each processing two product
types, it is investigated under which conditions this lower bound can actually be achieved. An
important conclusion is that, in certain cases, workstations in a flow line need a synchronization
mechanism to get to the desired process cycles.

For the single switching server and the switching server flow lines with constant arrival rates
of products, state feedback controllers are proposed to steer the trajectory of the switching
server (flow line) to the determined optimal process cycle from arbitrary feasible starting point.
Contrary to many methods proposed in literature, in this research first the desired (optimal)
system behavior is defined, regardless of any control policy. Then a control policy is formulated
to achieve this desired behavior.

It is questionable whether optimal system behavior should be looked for. The studies in this
thesis show that optimal process cycles can be determined for a rather small class of worksta-
tions. Taking more than two product types into account or more than two workstations leads to
very complex optimization problems. Apart from the complexity, it is not even known whether
optimal cyclic behavior for these larger systems exists. Manufacturers might not be interested
in the theoretically optimal solution. Often, a better solution than the current solution will do.
Moreover, a manufacturer might prefer suboptimal solutions over optimal solutions when the
suboptimal solution handles disturbances or uncertainties better.

This dissertation can serve as a starting point for further research on modelling and control of
manufacturing networks. The introduced state space representation topic can be extended for
larger networks and other manufacturing resources. In addition, other research areas can be
linked to this research, including stochastic behavior and effective process times.
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Chapter 1

Introduction

1.1 Manufacturing systems

Manufacturing systems exist in a wide variety. But what exactly is a manufacturing system?
Hopp and Spearman [61] use the following definition:

“A manufacturing system is an objective-oriented network of processes through
which entities flow”.

The objective of the manufacturing system usually is twofold: generating products and making
money. However, in academic studies often different objectives are chosen, such as minimal
inventory, high customer satisfaction or smooth production. Eventually, all academic objectives
can be translated into some money related equivalent. The network of processes refers to the
lay-out of a factory and the physical processes that take place, like drilling, welding, lithogra-
phy, etc. Common network topologies are presented in Section 1.1.2. The term entities in the
definition refers to the kind of goods that are produced. Is it the product of mass-fabrication
that is hard to distinguish as an individual item? Is it a batch of breads in a bakery? Or is it a
customized car from a car manufacturer? In each case, the entity is different. More on manu-
facturing entities is presented in Section 1.1.1. Finally, the verb flow in the definition describes
how materials and information are processed. In modelling manufacturing systems, this flow
characterization has a great influence on the model type that is suitable for the specific factory.

A common factor of all manufacturing systems is that they convert material into products. This
conversion process in general consists of a multitude of process/production steps. At the start
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2 CHAPTER 1. INTRODUCTION

of the manufacturing process, raw material is used (e.g. steel, water, oil) or the product from
another manufacturing process (e.g. at an assembly station). At the end of the manufacturing
process, products leave the system and are either sold or used as starting point for another
manufacturing process. During all manufacturing processes, value is added to the products.
This relates to the general objective of making money, as mentioned before.

1.1.1 Lots and products

The items that are manufactured are called lots. Often a lot is the same as a product, for
example in car manufacturing industry, where cars are produced and transported in the facility
on a one-by-one basis. (With the current mass-customization of cars, it often occurs that a car
manufacturer does not produce two cars that are exactly the same in one day.)

It is also possible that a lot consists of multiple products. An example of this is the semi-
conductor industry, in which a pod with wafers travels through the plant. The pod represents
the lot, while the wafers are the actual products. An even more complicating aspect is that not
all pods contain the same number of wafers during production.
Another example is a bakery, in which individual breads are the lots for a cutter, but a batch of
breads represents a lot for the oven. This example shows that even at different production steps
within a manufacturing system the term lot may refer to different amounts of products.

In this thesis, the term lot is used as the manufacturing entity, although in most cases it can be
interchanged with product freely.

1.1.2 Manufacturing system topologies

As stated in the definition of a manufacturing system, lots flow through a network of processes.
The processes are physically arranged in a certain manner on the factory floor, the so-called
lay-out of the factory. Many different lay-out structures exist. The most basic concepts are
called job-shop, flow line or continuous flow processes, cf. [26].

Job-shops are resource oriented: lots have a non-fixed route through the facility. Job-shops
are often used for low-volume, highly customized products, in which each product has its own
recipe and requirements. Examples of job-shops are custom furniture shops, commercial print
services, ship yards, etc.
Flow lines are product oriented manufacturing systems in which products have a fixed recipe
and route. Especially for high-volume, highly standardized products a flow line is often used.
Examples of flow lines can be found in (parts of the) car industry, food processing facilities,
mass textile fabrication, etc. A special form of flow lines emerges when products have to travel
a certain part of the flow line more than once. In that case a reentrant flow line is obtained. In
this thesis, the focus is on flow lines without reentrant behavior.
Continuous flow processes are facilities in which material literally flows through the factory.
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The route of products is fixed and in general cannot be changed very easily. Examples are oil
refineries, beer breweries, gas installations, steel producers, etc.

Zooming in on the physical lay-out of a manufacturing system, one encounters workstations.
A workstation is a manufacturing resource consisting of a buffer and a number of parallel
competing machines. The buffer has either infinite or finite storage capacity and is used to store
incoming lots from other workstations. The machines are fed with products from the buffer
and send them to the next workstation after completion of the production step. In this thesis
it is assumed that a workstation contains only one machine, unless indicated otherwise. In
addition, the buffer is assumed to work on a FIFO basis (first-in-first-out). This means that the
order in which lots are taken from the buffer is the same as the order in which the lots arrived
at the buffer. A schematic picture of a flow line consisting of four workstations is presented
in Figure 1.1. The buffers are denoted by B and the machines by M. These capitals are used
throughout the remainder of this thesis. Note that the term downstream indicates the direction
in which the lots flow and upstream denotes the opposite direction.

lots finished lots
M

B
M

B
M

B
M

B

upstream downstream

Figure 1.1: Example of a flow line.

Taking a closer look at the machine itself in a workstation, different types of machines exist.
The most commonly used machines are single-lot machines, batch machines or conveyors.
Single-lot machines are machines that process only one lot at a time. After completion of the
production step, the lot is sent away and only then the next lot can be taken from the buffer.
Single-lot machines are mostly considered in this research. Batch machines are machines that
process a number of lots in parallel. This number of lots can be fixed or variable. An example of
a batch machine is the aforementioned oven in a bakery. A number of breads is taken from the
preceding buffer and baked simultaneously. After baking, the breads leave the oven at the same
time. A conveyor is a machine that is able to process or transport multiple lots simultaneously.
Lots do not have to start on a conveyor at the same time instant. Examples of conveyors are
transport belts for suitcases on airports or pasteurizers in a beer brewery, where filled bottles
move slowly through a heated area.

1.1.3 Common performance measures

Manufacturers may have different objectives for their production facility. Sometimes, a man-
ufacturer wants to produce as many products as possible. Others just want to meet a certain
customer demand with the lowest possible amount of lots in the system, while again others
just want to keep the response time to their market low. Some basic quantities are defined here
(taken from [93]) that characterize in some sense the performance of a manufacturing system.
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Throughput δ of a manufacturing system denotes the number of lots per time unit that leave the
system. In a steady-state situation, the mean throughput equals the mean number of jobs that
enter the system.
Flow time ϕ of a lot denotes the time a lot is in the manufacturing system. It includes all process
times, waiting times, transportation times, etc.
Work in process (wip) level w denotes the total number of lots in the manufacturing system.
In addition to momentaneous wip levels, one is often interested in mean wip levels. The mean
wip level is the time averaged value of momentaneous wip levels. Especially in manufacturing
systems where variability occurs (in practice all manufacturing systems), the mean wip level is
often more important than the momentaneous wip level.
A relationship exists between throughput δ , flow time ϕ and wip level w for a steady-state
situation. This relationship is called Little’s law, named after the man who proved the law
mathematically [75]. The bars ¯ indicate mean values. Little’s law is given by

w̄ � δ̄ � ϕ̄

and although not quite right, the bars are often omitted. Little’s law appears often in modelling
and analysis of manufacturing systems, as becomes clear in the remaining of this thesis. It can
for example be used to compute one of the three quantities if only two of them are measurable.
A disguised variant of Little’s law appears in models of manufacturing systems with partial
differential equations (Section 2.2.2). Little’s law is also used for queue length calculations in
a variety of applications.

wip level w �

flo
w

tim
e

ϕ

�

w �
wip level w �

th
ro

ug
hp

ut
δ

�

w �

Figure 1.2: Relations between wip, throughput and flow time.

Quantities like throughput and flow time are bounded quantities, e.g. the flow time of lots in a
manufacturing system is at least the sum of all process times of production steps and the sum of
all transportation times. Even so, the throughput is bounded by the production capacity (in lots
per time unit) of the slowest machine. These observations result in Figure 1.2. The figure shows
that in a deterministic situation, a critical wip level w � exists that separates the curves into two
parts. Below this critical wip level, the throughput increases as the wip level increases, keeping
the flow time constant. Above the critical wip level, the throughput remains constant, whereas
the flow time increases. Practical manufacturing systems are never completely deterministic,
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resulting in the smoother dashed lines in the figure. Little’s law holds for both the deterministic
situation and the situation in which variability occurs.

Note that the performance measures throughput, flow time and mean wip all relate to time.
Either it is a time averaged quantity or the quantity itself represents a time duration. In the next
chapters it is shown that some elegant model types of manufacturing systems are not specified in
time, which makes computation and interpretation of these time related performance measures
difficult. In Chapter 3 a framework is presented that couples model types that are specified in
time and model types that are not specified in time.

Another important notion for manufacturing systems is stability. A manufacturing system is
called stable if all buffer levels in the system remain bounded. This definition is commonly
used for manufacturing systems, cf. [25, 98]. Two ingredients are necessary to achieve a stable
manufacturing system:

• The system characteristics should meet the product inflow (i.e. is it physically possible to
process all incoming products?).

• The production policy must stabilize the system.

For example, a manufacturing system that has enough capacity to process all incoming prod-
ucts, but has a production policy that says to process only all odd numbered products is not
stable. On the other hand, a manufacturing system with a production policy that says that all
incoming products are to be processed as fast as possible, but with an arrival rate of products
that outreaches the production capacity is also unstable. Perkins and Kumar [87] show that
having enough production capacity is a necessary and sufficient condition for the existence of
a scheduling policy which stabilizes the manufacturing system for all possible initial system
conditions.

1.2 Model and control framework

The industrial need for advanced control methods for manufacturing systems becomes stronger,
in order to make a manufacturing system behave in a pre-determined desired manner. For ex-
ample, based on the customer demand (due dates of finished products) the production steps in
the plant need to be scheduled. A schematic overview of this research objective is shown in
Figure 1.3. A large gap exists between on the one hand real industrial manufacturing plants
and on the other hand scientific systems and control theory. In order to bridge the gap, mod-
els are made of industrial facilities. Models are abstractions of the real system, in which only
the important phenomena are incorporated (a more detailed overview of models and modelling
techniques is given in Chapter 2). Since models are mathematical representations of the in-
dustrial reality, they can be used for analysis, predictions, simulations, testing and controller
synthesis. Basically, the model and control framework looks as presented in Figure 1.4. This
framework has been adapted from [72, 105, 106].
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I

Controller

Production
schedules Measurements

Due dates

Finished products

Figure 1.3: Objective of the research: production control of manufacturing systems.

The first step in the framework, arrow ➀ in Figure 1.4, is to obtain a (mathematical) model of the
physical systemI. Different modelling techniques are possible. Chapter 2 gives an overview
of commonly used modelling techniques for manufacturing systems. Inspiration from other
application fields can be obtained, for example by comparing a manufacturing system to traf-
fic flow, in which the roads and intersections represent transport and process steps, while cars
represent lots. An extensive overview of traffic modelling techniques is presented on Traffic-
forum [54]. Other application fields that relate to manufacturing systems are railroad networks
with trains (lots) and stations (machines) or blood cells (lots) flowing through vessels with
junctions (machines).

Manufacturing
systemI

Model of
I

Feedback
controller

➀

➁➂ ➂

➃ ➃

Figure 1.4: Steps in the
model and control framework.

Once a model of the physical system has been obtained, it can
be used for analysis. The model can be validated by exposing
it to simulated normal factory circumstances and compare the
results to real system behavior. In addition one might derive
properties of the model, such as maximum throughput, mini-
mal flow time, etc. One should keep in mind that the properties
belong to the model rather than the real physical manufacturing
system. When working with models for a long time without a
view of the physical system, it is tempting to regard the mod-
els as the real world. In this thesis, one should keep in mind
that all models are abstractions of possible real manufacturing
systems. Since the models presented in this thesis have been
constructed artificially without linkage to a real physical sys-
tem, one should constantly be aware that real system behavior
differs from the modelled behavior.

The second step in the model and control framework (arrow ➁ in Figure 1.4) is controller
development. Given a desired closed-loop behavior of the manufacturing system, one looks for
controllers that achieve this desired behavior. Either a controller is derived from the model, or a
controller is proposed based on the insights obtained with the model. If possible, the controller
is to be verified mathematically, e.g. a convergence proof to a steady state or limit cycle.
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The third step in the model and control framework (loop ➂ in Figure 1.4) is to implement and
validate the newly obtained controller on the model of the manufacturing system. Validation
on the model allows for inspecting the closed-loop behavior without damaging the real man-
ufacturing system. Also different scenarios can be tested that cannot be tested in the factory
itself. In this step it is also possible to inspect the closed-loop behavior when disturbances oc-
cur in the model, e.g. machine breakdowns, operator unavailability, process time elongations or
power cut-offs. The controller should be able to deal with all situations in an appropriate way
before one can implement the controller on the real factory, which is step ➃ in the framework
of Figure 1.4. With this final implementation on the real industrial manufacturing system I,
Figure 1.3 is obtained, the ultimate objective of the research. Step ➃ is not treated in this thesis.

In Figure 1.3, the controller receives measurements from the manufacturing system, which
are used to determine new control actions, in this case production schedules. In this thesis, the
controller receives state measurements. A state space representation for manufacturing systems
is introduced, which can be measured instantaneously (as if taking a snapshot of the system)
and is finite dimensional. This state space representation is used in Chapters 2–4 for modelling
and control of manufacturing systems. For situations where it is not possible to measure the full
state, observers might be used to reconstruct the state. Recent developments in observers for
manufacturing systems are presented in [94] by Roset, which was partly inspired by Hardouin
[51].

1.3 Objective and contributions

The objective of this Ph.D. research is twofold:

1. Model discrete event manufacturing flow lines in such a way that control techniques can
be applied.

2. Based on the obtained models of manufacturing flow lines, develop controllers that make
the flow line behave in a pre-determined desired (possibly optimal) manner.

Although the manufacturing systems that are to be controlled have a discrete event nature
(which is explained in Chapter 2), the model types that are examined in this thesis are mostly
based on ordinary differential equations and hybrid models. The resulting controllers can be
validated on discrete event models, because the discrete event character can be regarded as a
kind of disturbance with respect to the models. How do the controllers deal with these distur-
bances? It is expected that disturbances are handled well (without specifying ‘well’ here), since
all controllers that are developed in this thesis are feedback controllers, that determine con-
trol actions based on measurements of the state of the manufacturing system or model under
control.

It should be noted that although the focus in this thesis is on manufacturing flow lines, many
concepts and insights can be applied to other manufacturing topologies as well.
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1.3.1 Contributions of this research

The main contributions of the research presented in this thesis are:

• Introduction of a state space representation for manufacturing systems, which is finite di-
mensional, can be measured instantaneously and does not contain any information about
the production and control policy.

• A coupling between different model types of manufacturing systems by means of maps
between different state representations and signals, including the newly developed state
space representation.

• Continuous time receding horizon control of manufacturing flow lines. Optimal produc-
tion schedules are determined based on state information, with the feedback law com-
puted off-line.

• Analysis and state feedback control of switching servers (workstations that process mul-
tiple lot types with switchover times). Results are obtained for single switching servers
and classes of switching server flow lines. Optimal system behavior is defined with re-
spect to mean wip levels and controllers are proposed that steer a switching server (flow
line) to this optimal behavior.

1.3.2 Systems science and engineering

Systems science and systems engineering are complementary: the one does not exist without the
other. It is science that discovers new theoretical methods and techniques, while engineering
tries to make the science applicable for industrial purposes. On the other hand, problems or
desires that are encountered in the industrial practice may inspire science to develop theory that
is able to solve industrial problems or meets these desires.

In addition to stimulation of science and engineering by each other, also fields of tension exist.
In science, one often tries to achieve optimal solutions to problems, while manufacturers gener-
ally want a ‘good enough’ or ‘better than the current’ solution. In Chapters 5 and 6 this field of
tension is also encountered. An optimal solution to a problem might not be the solution of best
interest. Consider for example a machine which has to be fine-tuned manually. Based on this
parameter setting, a net profit is obtained. However, due to market fluctuations, the optimal pa-
rameter setting may not be known and needs to be estimated by the manufacturer. Suppose that
a choice exists between two machines, each with its own net profit curve, as indicated in Fig-
ure 1.5. The optimal choice would be the narrow (left hand side) curve: it yields the largest net
profit. However, the best parameter setting is unknown and a little deviation from the optimal
setting results in a dramatic decrease of the profit. The other machine however yields less profit,
but small deviations from the optimal setting result in a far less decrease of the profit. This ex-
ample shows that although systems science may look for theoretically superior solutions, one
should always keep the practical implications in mind, which is more the engineering approach.
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Figure 1.5: Which machine do manufacturers prefer?

1.4 Outline of this thesis

This thesis is organized as described below. After an introduction into modelling of manufac-
turing systems (Chapter 2), Chapters 3 and 4 form a part concerning modelling and control
of manufacturing flow lines that process only one lot type. As mentioned, a state space rep-
resentation is introduced, which is used in control of discrete event manufacturing flow lines.
The models that are used in this part of the thesis allow for distinction of individual lots in the
manufacturing system.
Chapters 5 and 6 form a part concerning modelling and control of switching servers, i.e. work-
stations that process multiple lot types with switchover times. The models that are used in this
second part of the thesis are based on fluid approximations, meaning that individual lots cannot
be distinguished anymore.
A quick overview of the chapters and their coherence is given below.

Chapter 2 gives a non-exhaustive overview of modelling techniques for manufacturing sys-
tems. Three classes of models are distinguished: discrete event models, continuous models and
hybrid models. Model types in this chapter are used throughout the remainder of the thesis, or
closely related to other models to indicate differences or similarities. A state space representa-
tion for a workstation is introduced, which involves both discrete and continuous variables.

In Chapter 3 a coupling between different model types is established by means of mappings
of the state. This facilitates the ‘use best of both worlds’ principle, e.g. measuring the state of
one model type and performing analysis in an other model type. A coupling between the event
domain and time domain is presented, and between two time domain model types. One of the
models in this chapter uses the introduced state space representation of Chapter 2.

In Chapter 4 a production schedule control method is developed. A feedback controller yields
optimal production schedules of jobs in a flow line, based on measurements of the introduced
state of the flow line and the due dates of lots. The underlying technique is multi-parametric
linear programming. The developed control method is a continuous time receding horizon
controller, in which the horizon is event based, i.e. a number of lots that has to be scheduled.
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Chapter 5 treats switching servers, which are workstations that process multiple lot types.
Switching from one lot type to the other takes time. For a switching server with two lot types
and a constant arrival rate of new lots, an optimal process cycle is derived with respect to
mean work in process levels. An important obtained insight is that in order to achieve optimal
behavior, one should not always work as fast as possible. In addition to the derivation of an
optimal process cycle, feedback controllers are proposed that steer the trajectory of a switching
server to the desired (optimal) trajectory.

Chapter 6 elaborates on the results of its preceding chapter. Flow lines of switching servers are
analyzed and for certain classes of flow lines, optimal process cycles are derived, with feedback
controllers that settle down a trajectory of the system to the desired trajectory. The analyses are
mostly based on the results of Chapter 5.

Finally, Chapter 7 concludes this thesis with the general conclusions from all chapters, a sum-
mary of the main contributions of this thesis and suggestions for further research on the subjects.

In each chapter, examples are added to illustrate the basic concepts that are treated. In addition,
most chapters end with an extensive case study about how the theory from that specific chapter
can be applied to flow lines of manufacturing workstations. Although restricted here to flow
lines, most ideas and concepts in this thesis can be applied to other manufacturing system
topologies as well.

Some useful or insightful models and sources of examples or case studies are included in the
appendices. These models and sources are intended to facilitate further research on the subjects.



Chapter 2

Modelling manufacturing systems

In manufacturing systems a lot of phenomena occur. Incorporating all phenomena in analyzing
manufacturing systems may on the one hand lead to too detailed analyses (which are time
consuming and expensive), and on the other hand it can simply be too difficult a job to perform.
The phenomena that occur in manufacturing systems can roughly be divided into these groups:

• The physical manufacturing process itself and the set of processes: product recipes.
• Physical capacity constraints: both process capacity (in products per time unit) and stor-

age capacity (in products per storage location).
• The physical layout of the system and transportation between processes. In addition:

capacity of transportation systems.
• Temporal influences: change of product mix, modifications of equipment, seasonal influ-

ences.
• Human aspects: operator availability (working hours, breaks, meetings), influence of

working in shifts, operator dependent product and process quality.
• Scheduled and unscheduled maintenance and all other failure behavior.

To analyze a manufacturing system, abstractions of the real system are made, in which only
a selection of the aforementioned groups of phenomena is taken into account. The obtained
abstractions are referred to as models. Modelling is the first step in the framework that had
been introduced in Chapter 1 and is schematically shown in Figure 2.1, where the thick arrow
represents the development of models of physical manufacturing systems. Models can be used
for analysis, optimization and control of the physical system. Because of the fact that only
a limited number of phenomena is considered, one gets a better understanding of the basic
dynamics of a physical system, without being distracted by noisy details. However, one should

11
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always keep in mind that models remain abstractions of a real physical manufacturing system,
although it is tempting to consider the models as the real world.

Manufacturing
flow lineI

Model of
flow lineI

Feedback
controller

Figure 2.1: First step in the
framework: modelling.

Different abstraction techniques exist for modelling manufac-
turing systems. These abstraction techniques, also called mod-
elling paradigms, can be divided into several classes. In this
thesis, the division is based on the classification of the signals
and domains:

• In time driven systems, the state and signals change as
time progresses. Time can be progressing continuously
or at certain ticks of the clock. The former is called a
continuous time system, the latter a discrete time sys-
tem.

• In event driven systems, the state and signals change
due to the occurrence of events. Events typically do
not take time. These systems are called discrete event
systems.

Time driven systems are also called systems in the time do-
main, whereas event driven systems are also referred to as systems in the event domain.

In addition to the distinction between continuous time, discrete time and discrete event systems,
another distinction exists between continuous variables and discrete variables:

• Continuous variables are variables which can take on any value within an uncountably
large allowed set. Typical examples of continuous variables are time, magnitudes of
fluids, positions or lengths of objects, velocities and temperatures.

• Discrete variables are variables that can only take on a countable (possibly infinite) num-
ber of values (within an allowed set). Typical examples of discrete variables are: a binary
signal (on/off), a number of products, an amount of money, a number of people or the
primary colors (red, green, blue).

The descriptions of continuous and discrete variables also apply to continuous and discrete
states.

This chapter gives an overview of modelling techniques for manufacturing systems that are
used in the remainder of this thesis and is not an attempt to give a full overview of all modelling
techniques. Section 2.1 starts with discrete event models. Modelling techniques are introduced
which are event driven or in which all variables in the model are discrete. Next, Section 2.2
deals with continuous models, in which all variables in the models are continuous variables.
Note that the domain of these models can be the discrete time domain. Finally, Section 2.3 treats
hybrid modelling paradigms. In these hybrid models, a mix of continuous variables and discrete
variables is used and the models can be either time driven or event driven. In all modelling
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paradigms, some basic manufacturing entities, e.g. buffers and machines, are modelled. At
the end of the chapter, all models are evaluated and compared for a manufacturing flow line
example.

2.1 Discrete event models

A certain class of manufacturing systems can be regarded as discrete event systems. Loosely
speaking, these are systems where individually distinguishable products, which are countable,
are led through the facility, like (semiconductor) wafer industry or automotive industry. An
example of industry where products are not individually distinguishable is an oil refinery: apart
from the molecular level, oil is not countable. However, this type of industry often contains a
discrete event part, for example after the oil has been put into barrels. If only the barrel-part
is taken into account, the system can be modelled with a discrete event model. If only the
oil fluid is taken into account, the system can be modelled with a continuous model, cf. Sec-
tion 2.2. When both the continuous flow of oil and the barrelling are taken into account, a
hybrid modelling paradigm might be considered for modelling the system, cf. Section 2.3.

A property of discrete event systems is that events occur instantaneously, so events do not take
time. Examples of events are: arrival of a lot, start of processing a lot, finishing a lot, or machine
breakdown. However, processes between events can take time, like waiting, processing or
transportation.

This section elaborates on modelling pure events. The modelling techniques treated are max-
plus models, min-plus models and process algebra models, using formalism χ .

2.1.1 Max-plus models

A valid question in manufacturing systems modelling that may arise is:

“When can a machine start processing a lot?”

Suppose now that the answer is:

“As soon as a lot is available and the previous lot has been finished on the machine.”

This informal description of the machine’s behavior can be formalized. In order to do so, first
define x � k � as the time instant the machine starts processing a lot for the k-th time (k � N)
and u � k � as the time instant a lot arrives for the k-th time. The as soon as part of the answer
can be formalized with a maximum operator. The answer to the same question can now be
modelled as:

x � k � � max � u � k � , x � k � 1 ��� d � (2.1)
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where d � R ��� � 0, � � represents the process time of the machine. In words, (2.1) reads: The
k-th time the machine starts processing a lot is the latest of two time instants: the arrival time
of that particular lot and the start time of the previous (k � 1-th) lot plus its process time d. The
two operators in (2.1) are maximization and addition, and form the operators of the max-plus
algebra.

Max-plus algebra

The max-plus algebra consists of the structure Rmax � � Rε , � , � � with Rε � R �	� ε 
 , where
ε � ��� . Operations � and � are called max-plus-algebraic addition and max-plus-algebraic
multiplication, defined as follows:

a � b � max � a, b � (2.2a)
a � b � a � b (2.2b)

with a, b � Rε . The ‘0’ element in conventional algebra can be compared with ε in max-plus
algebra. In conventional algebra, the following property exists:

a � 0 � 0 � a � a (2.3a)

whereas in max-plus algebra this property exists:

a � ε � ε � a � a. (2.3b)

The ‘1’ in conventional algebra is similar to ‘0’ in max-plus algebra:

a � 1 � 1 � a � a (2.4a)
a � 0 � 0 � a � a. (2.4b)

Max-plus algebraic matrix additions and multiplications can be defined in a similar way as in
conventional linear algebra. If A, B � R

m  n
ε and C � R

n  p
ε :

� A � B � i j
� ai j � bi j

� max � ai j, bi j � (2.5a)

� A � C � i j
�

n�
k � 1

aik � ck j
� max

k � 1...n
aik � ck j (2.5b)

for all i, j. For a detailed introduction into max-plus algebra, the reader is referred to [6, 53].

Modelling a workstation in max-plus algebra

In the previous section the basics of max-plus algebra have been explained. Manufacturing
entities (building blocks) can be modelled using this algebra. Consider the workstation as
shown in Figure 2.2. The workstation consists of buffer B and machine M with constant process
time d. A number of ways of modelling the workstation in max-plus algebra exist, depending
on the entities one wants to model and the characteristics of the buffer (e.g. finite or infinite
storage capacity) and the machine (e.g. single-lot machine or batch machine).
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B M

d
lots processed lots

Figure 2.2: Workstation consisting of buffer B and machine M.

Suppose that the items of interest are the time instants that lots enter the buffer, start on the
machine and leave the workstation. Define u � k � , x1 � k � , x2 � k � and y � k � � Rε as the time instants
the k-th lot arrives at the workstation, enters the buffer, is started on the machine and leaves the
workstation respectively. Index k � N is called the event counter of the system. A max-plus
algebraic description of this workstation expressed in u � k � , x1 � k � , x2 � k � and y � k � is:

x1 � k � � u � k �
x2 � k � � max � x1 � k � , x2 � k � 1 � � d � � x1 � k � � x2 � k � 1 � � d

y � k � � x2 � k � � d � x2 � k � � d.

(2.6)

If the buffer has a finite storage capacity, lots arriving at the workstation cannot always be
accepted by the buffer, because the storage capacity cannot be exceeded. In the max-plus
algebraic description of the workstation, the buffer capacity of N � N lots must be incorporated:

x1 � k � � max � x2 � k � N � , u � k � � � x2 � k � N � � u � k �
x2 � k � � max � x1 � k � , x2 � k � 1 � � d � � x1 � k � � x2 � k � 1 � � d

y � k � � x2 � k � � d � x2 � k � � d.

(2.7)

Modelling a batch machine with fixed batch size is more difficult in max-plus algebra. Since
the number of batches that are produced does not equal the number of lots anymore (if the batch
size is bigger than one), the event counter k cannot be used straightforwardly anymore. Suppose
that the fixed batch size equals two lots. There always exists a ‘first lot’ and a ‘second lot’ in the
batch. These are modelled as different lot types. The buffer receives the artificial two lot types
and both lots must have arrived before the machine can start processing the batch. Let u1 � k �
and u2 � k � be the times instants lots of type 1 and 2 arrive for the k-th time. Variables x1 � k �
and x2 � k � are the time instants the lots enter the buffer for the k-th time and x3 � k � is the time
instant the batch machine starts processing a batch for the k-th time. Variable y � k � is the time
instant the k-th batch leaves the system. The max-algebraic description of the workstation with
a batch machine can now be written as in (2.8). An additional requirement on the input signals
for the batch forming is that u1 � k � �

u2 � k � �
u1 � k � 1 � .

x1 � k � � u1 � k � � u1 � k �
x2 � k � � u2 � k � � u2 � k �
x3 � k � � max � x1 � k � , x2 � k � , x3 � k � 1 � � d � � x1 � k � � x2 � k � � x3 � k � 1 � � d

y � k � � x3 � k ��� d � x3 � k � � d.

(2.8)

Max-plus algebraic models can be written in max-plus linear state space form, similar to con-
ventional linear state space models. Max-plus linear state space models are of the form:

x � k � � A � x � k � 1 � � B � u � k �
y � k � � C � x � k � . (2.9)
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In cases where no confusion is possible, the � sign can be omitted, similar to omitting the
multiplication symbol in conventional algebra. A max-plus linear state space model for the
workstation with infinite buffer capacity and batch machine (2.8) is:��� x1 � k �

x2 � k �
x3 � k �

���� �

��� ε ε ε
ε ε ε
ε ε d

���� ��� x1 � k � 1 �
x2 � k � 1 �
x3 � k � 1 �

���� � ��� 0 ε
ε 0
0 0

������ u1 � k �
u2 � k �
	�

y � k �� �
�
ε ε d � ��� x1 � k �

x2 � k �
x3 � k �

���� .

(2.10)

Note that if one is only interested in y � k � , variables x1 � k � and x2 � k � are redundant, since y � k �
only depends on x3 � k � and input signals u � k � , which (in turn) are not dependent on x1 � k �
and x2 � k � . If the workstation has a finite buffer capacity, variables x1 � k � and x2 � k � are not
redundant.

Example 2.1. In (2.7) the max-plus algebraic equations for a workstation consisting of a buffer
with finite storage capacity and single-lot machine have been presented. Now an example of a
realization is given. Suppose that the buffer capacity N � 2 lots and the process time of a lot on
the machine takes one time unit, i.e. d � 1.
The arrival times of lots at the workstation are stacked in vector ũ where u � k � � ũk, the k-th
element of ũ. Vector ũ � � 0 1 1.5 2 2.5 2.5 7 7 7.5 7.5 � T. The initial condition
for the max-plus model is set to x � 0 � � �

ε ε � T, informally meaning that no lots have ever
entered the workstation before. Figure 2.3 shows a lot-time diagram of the lots as they flow
through the workstation. On the horizontal axis, running time is shown, while the vertical axis
shows the lot number. A boxed B and M mean that a lot is in the buffer or on the machine
respectively, whereas a boxed q means that the lot is queued in front of the workstation, since
the buffer is full then. In Figure 2.4 the values of x1 � k � and y � k � are shown for the given
u � k � � ũk. Values of x2 � k � have been omitted for clarity reasons. In this figure, it can be seen
that x1 � 6 � � 3 � u � 6 � � 2.5, also showing that the sixth lot cannot be accepted by the buffer
upon arrival.

In this section, the max-plus algebra has been used to model basic manufacturing systems. The
max-plus model is an event domain model, where the variables take values from a continuous
domain: time instants at which the respective event occurs. Note that this is not exclusive for
the max-plus model. It is possible to use max-plus algebra in time domain with discrete signal
values, but this is usually not the case in modelling manufacturing systems. Closely related to
max-plus algebra is the min-plus algebra, which is discussed in the next section. The relation
between max-plus and min-plus models of manufacturing systems and how these models can
be translated into each other is discussed in Chapter 3.
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Figure 2.3: Lot-time diagram example 2.1.

event counter k �

x 1

� k

� (c
ro

ss
es

),
y

� k

� (d
ot

s)

�

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

+

+
+

+
+

+

+ +
+

+

�
�

�
�

�
�

�
�

�
�

Figure 2.4: Values of max-plus realization.

2.1.2 Min-plus models

Min-plus algebra

Similar to max-plus algebra (explained in the previous section) another algebra exists in which
(manufacturing) systems can be modelled: min-plus algebra. The min-plus algebra consists of
the structure Rmin

� � R � , � , � � with R � � R �	� � 
 . Operations � and � are called min-
plus-algebraic addition and min-plus-algebraic multiplication, defined as follows:

a � b � min � a, b � (2.11a)
a � b � a � b (2.11b)

with a, b � R � . Min-plus algebraic matrix substraction and multiplications can again be defined
in a similar way as in conventional linear algebra. If A, B � R

m  n� and C � R
n  p� :

� A � B � i j
� ai j � bi j

� min � ai j, bi j � (2.12a)

� A � C � i j
�

n	

k � 1
aik � ck j

� min
k � 1...n

aik � ck j (2.12b)

for all i, j. A more detailed introduction into min-plus algebra can be found in [6].

Modelling a workstation in min-plus algebra

Consider again the workstation consisting of a buffer and a machine of Figure 2.2. Another
way of modelling the workstation is by means of min-plus algebra, where time instants at
which events occur are not to be modelled (like in the max-plus algebra), but the number of
events that have occurred at a certain time instant. Note however that similar to the max-plus
algebra, the min-plus algebra is not exclusively used in time domain with real valued signals.

A workstation with infinite buffer capacity and a single-lot machine is modelled in min-plus
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algebra. Define u � t � � Z � (integer subset of R � ) as the number of lots that have arrived at
the workstation until (and including) time t. Variables x1 � t � and x2 � t � � Z � denote the number
of lots that have entered the buffer and the number of lots that have started on the machine at
time t. The variable y � t � � Z � is the number of lots that have left the workstation at time t. The
min-plus algebraic relations for this workstation now become:

x1 � t � � u � t �
x2 � t � � min � x1 � t � , x2 � t � d ��� 1 � � x1 � t � � x2 � t � d � � 1
y � t � � x2 � t � d � � x2 � t � d � .

(2.13)

The workstation can also be modelled in min-plus algebra when a buffer with finite capacity is
involved. Lots that arrive at the workstation might not be accepted immediately. The capacity
of the buffer is N lots. The min-plus algebraic model now becomes (with the same definitions
for u � t � , x1 � t � , x2 � t � and y � t � as in the situation with infinite buffer capacity):

x1 � t � � min � x2 � t ��� N, u � t � � � x2 � t � � N � u � t �
x2 � t � � min � x1 � t � , x2 � t � d ��� 1 � � x1 � t � � x2 � t � d � � 1
y � t � � x2 � t � d � � x2 � t � d � .

(2.14)

Similar to the max-plus algebraic model of a workstation that contains a batch machine, the
min-plus model needs a trick to model the batching behavior. Again, difference between ‘first’
and ‘second’ lots of a batch is made (for a batchsize of two lots). Therefore, x1 � t � , x2 � t �
and x3 � t � are defined as the number of ‘first’ lots, the number of ‘second’ lots and the num-
ber of batches that have entered the buffer or started at the machine respectively. The min-plus
algebraic model for the workstation with batch machine now becomes (with again the additional
batch forming requirement u1 � t � �

u2 � t � �
u1 � t � � 1):

x1 � t � � u1 � t � � u1 � t �
x2 � t � � u2 � t � � u2 � t �
x3 � t � � min � x1 � t � , x2 � t � , x3 � t � d ��� 1 � � x1 � t � � x2 � t � � x3 � t � d � � 1
y � t � � x3 � t � d � � x3 � t � d � .

(2.15)

Example 2.2. The min-plus algebraic model of the workstation consisting of a finite buffer
and a single-lot machine (2.14) has been used to make a realization when applying a certain
input signal u � t � . The same parameters as in the max-plus algebraic example (Section 2.1.1):
process time d � 1 and buffer capacity N � 2. In Figure 2.5 an input signal u � t � is shown. It
corresponds to the same input series as in the max-plus example. Note that the signal is defined
over the whole time interval: t � R and that the signal is right-continuous, i.e. it is uniquely
defined at each time instant and at signal jumps the value is determined as if coming ‘from the
right’. In Figure 2.6 signals x1 � t � and y � t � have been plotted. Again, x2 � t � has been omitted for
visibility reasons. At two places in the graphs, u � t � and x1 � t � differ. These are the time instants
that arriving lots cannot enter the buffer immediately due to lack of capacity.

Using min-plus models for manufacturing systems is discussed further in Chapter 3, where the
relation with other models is investigated. These other models include max-plus models (which
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Figure 2.6: Values of min-plus realization.

have been discussed previously in Section 2.1.1) and hybrid process algebra models. Before
hybrid process algebra models are discussed in Section 2.3.3, first timed process algebra models
are discussed in the next section as part of the discrete event models.

2.1.3 Timed discrete event process algebra

Manufacturing systems often consist of multiple workstations in series or parallel. Distributed
or parallel machines/systems can be described by process algebra, where process stands for the
behavior of a system, as explained in Baeten et al. [8]. The behavior is the total of actions that
takes place in the system. Since process algebra is rooted in computer science, the actions are
usually discrete: they occur at a certain moment in time. The process is then called a discrete
event system. A discrete event system is called timed (and can be described by a timed process
algebra) if time may pass between successive events. Timed systems have been subject of
many studies (e.g. see [7, 85]). Timed process algebras can be characterized by a few intuitive
properties with respect to time (Hennessy and Regan [58]):

• time determinism: meaning that passage of time is deterministic. A process can reach
only one state by performing a delay;

• instantaneous actions: time is not directly associated with communication actions. Time
occurs independently. Events occur at certain moments in time;

• patience: processes wait indefinitely until they can communicate;
• maximal progress: processes communicate as soon as a possibility for a communication

arises.

An example of a process algebra is formalism χ . In this section, first an introduction to formal-
ism χ is given, then some examples of modelling a workstation are presented.
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Timed process algebra: formalism χ

The χ formalism has been developed in the Systems Engineering Group of the Eindhoven Uni-
versity of Technology and dates back approximately ten years. The original (discrete event)
simulator of Naumoski and Alberts [82] has been applied to several industrial cases, like semi-
conductor manufacturing, food processing industry, breweries and automobile industry. Later
on, a hybrid language has been developed by Fábián [42]. Recently, a new formal redesign
of the χ formalism has taken place, which is hybrid of nature. A subset of this language is
the timed process algebra as discussed in this section. The hybrid χ language is discussed in
Section 2.3.3.

An introduction to process algebra χ is given in [8, 9] while the complete formal semantics is
presented in Man and Schiffelers [78]. The language is explained here informally guided by
the examples of modelling several different workstations in χ .

Modelling a workstation in χ

Several ways exist to model a workstation in χ , in both discrete event and hybrid form. Dis-
crete event examples are given here, whereas hybrid models are presented in Section 2.3. The
general workstation is shown (again) in Figure 2.7, in which buffer B and machine M can be
distinguished. Buffer B and machine M can be modelled separately in χ using two (parallel)
processes, which communicate with each other using a channel.

B M

d
lots processed lots

Figure 2.7: Workstation consisting of buffer B and machine M.

A χ model of workstation W consisting of buffer B with infinite storage capacity and single-lot
machine M can schematically be represented by Figure 2.8. Lots arrive at the workstation via

B M
a c b

a b a b

Figure 2.8: Schematic representation of χ model of workstation W .

channel a and leave the workstation via channel b, whereas communication/transport of lots
between the buffer and the machine goes via channel c. The χ specification of this workstation
is given in (2.16).
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type lot � nat

proc B � chan a? : lot, b ! : lot � �
� �
var x : lot, xs :

�
lot� � � �

:: � � a?; xs : � xs � � � x �
8 len � xs ��� 0 � b !hd � xs � ; xs : � tl � xs �
�� �

proc M � chan a?, b ! : lot, val d : real � �
� �
var x : lot

:: � � a?x; ∆ d ; b !x �� � (2.16)

model W � chan a, b : lot, val d : real � �
� �
chan c : lot

:: B � a, c �
‖M � c, b, d �� �

In the model part of the specification, a, b and c can be recognized. These parameters are the
formal parameters of the system. In (2.16), processes B and M (proc B and proc M) can be rec-
ognized. Within these processes, lots are received via channel a and sent via channel b. These
are the actual parameters of the processes, how the channels are referred to within processes.

Process B represents the buffer of the workstation where incoming lots are accepted via chan-
nel a. When lots arrive at the workstation over channel a, they are stored in variable x which
in turn is placed at the end of list xs. In the alternative option, when the list contains elements
(i.e. the length of the list is greater than zero), lots can be sent to the machine. Condition is that
the machine is willing to accept lots. Communication only takes place when the sender and
receiver are able to communicate at the same time. The first lot of the list (head: hd) is sent to
the machine, leaving behind the remainder (tail: tl) of the list. By placing new lots at the end
of the list and sending away the front elements of the list, a first-in-first-out (FIFO) buffer has
been created. The two alternatives (sending and receiving lots) are separated by the

� � symbol.

Process M is the machine of the workstation. It accepts lots via channel a. After having received
a lot (stored in variable x), it waits for the process time d � R � (in the process denoted as ∆ d).
After the process time has been completed, the machine tries to send the lot away via channel b.
Upon completion, the sequence starts over again. This looping behavior is denoted by the
symbols � � and � . These were also present in buffer process B.

The model W connects the buffer and the machine. The ‖ symbol means that the processes in
front of it and after it are executed in parallel. Process time d of the machine can be provided
from an external source, for example the command line or by means of interconnection with
another process.

In (2.16) lots are represented as natural numbers (in the variable type declaration). Instead of a
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natural number, different, free to choose, data elements/structures can be used as lot.

BN M
a c b

Figure 2.9: Schematic representation of χ model of workstation W with finite buffer BN . The actual
parameters inside the processes have been omitted.

In (2.17) a χ model for a workstation consisting of a buffer with finite storage capacity and
a single-lot machine is presented (cf. Figure 2.9). The capacity to store lots is N � N places.
The major difference between (2.17) and (2.16) is the extra condition in buffer BN for the
acceptance of incoming lots. Lots can only be accepted as long as the buffer capacity is not
exceeded: len � xs ��� N.

type lot � nat

proc BN � chan a? : lot, b ! : lot, val N : nat � �
� �
var x : lot, xs :

�
lot� � � �

:: � � len � xs ��� N � a?; xs : � xs � � � x �
8 len � xs ��� 0 � b !hd � xs � ; xs : � tl � xs �
�� �

proc M � chan a?, b ! : lot, val d : real � �
� �
var x : lot

:: � � a?x; ∆ d ; b !x �� � (2.17)

model W � chan a, b : lot, val N : nat, d : real � �
� �
chan c : lot

:: BN � a, c, N �
‖M � c, b, d �� �

Specifications (2.16) and (2.17) represented workstations with a single-lot machine. However,
if the machine is a batch machine, the specification needs to be adjusted, resulting in specifica-
tion (2.18).

type lot � nat

, batch � � lot�
proc B � chan a? : lot, b ! : batch, val N, k : nat � �
� �
var x : lot, xs :

�
lot� � � �

:: � � len � xs ��� N � a?; xs : � xs � � � x �
8 len � xs � �

k � b ! take � xs, k � ; xs : � drop � xs, k �
�� �
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proc M � chan a?, b ! : batch, val d : real � �
� �
var x : batch

:: � � a?x; ∆ d ; b !x �� � (2.18)

model W � chan a : lot, b : batch, val N, k : nat, d : real � �
� �
chan c : batch

:: B � a, c, N, k �
‖M � c, b, d �� �

An additional data type is specified: batch, which is a list of lots. The machine accepts complete
batches (in this case with fixed batch size k). The list in buffer B containing all lots is split up
by the function drop, which litterally ‘drops’ a natural number of lots from the buffer list.

Three different discrete event modelling methods (max-plus, min-plus and χ) have been pre-
sented so far. The classification of modelling techniques resulted in another two groups of
models: continuous models of manufacturing systems and hybrid models. The former is dis-
cussed in the next section, while the latter is discussed in Section 2.3.

2.2 Continuous models

The previous section dealt with purely discrete event models of manufacturing systems. A
different way to approach the modelling problem is by looking at the system from a higher
level of abstraction. Assume that individual lots cannot be distinguished. This occurs when
fluids are processed, e.g. in an oil refinery. From a different point of view: it might not be
necessary to distinguish all individual lots, for example in mass production facilities of discrete
items. If a very large number of products is in the system (e.g. in semiconductor industry, food
processing, pharmaceuticals fabrication or other mass consumables), the stream of lots through
the system can be regarded as a fluid, when looking at it from a distance. A workstation can then
be interpreted as a fluid tank which is filled at a certain input rate and a valve which is able to
empty the fluid tank at a certain process rate. Summarizing, when dealing with fluids or discrete
items that can be approximated as a fluid, models of the system with continuous variables can
be developed, cf. the introductory part of this chapter. This section gives a short (not exhaustive)
overview of models based on ordinary differential equations (ODEs), also called fluid models.
First, a continuous time standard fluid model is introduced, which displays a problem with the
time delay due to the process time of machines. A few different solutions to this problem are
then presented: sampling the continuous time system resulting in a discrete time system, using
approximation methods for the time delay, or adding discrete event dynamics. The first two
solutions are treated in this section, whereas the third solution is treated in Section 2.3, where
hybrid model types are introduced.
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2.2.1 Fluid models

Fluid models are continuous models based on ordinary differential or difference equations. An
often used form of a fluid model in continuous time is:

�
x � t � � Ax � t ��� Bu � t �
y � t � � Cx � t ��� Du � t � (2.19)

where u � t � is an m � 1 vector containing the input variables, x � t � is an n � 1 vector containing
state elements and y � t � is a p � 1 vector containing output (measured) variables. The matri-
ces A � R

n  n, B � R
n  m, C � R

p  n and D � R
p  m, are the system matrices of the fluid model.

Modelling a workstation with a standard fluid model

Consider the workstation plus extra buffer as shown in Figure 2.10. The (manipulative) infeed
rate is u0 � t � � R � (lots per time unit), while the process rate is u1 � t � � R � (lots per time unit).
The process rate has a lower bound (u1

� 0) to prevent lots flowing backwards and an upper
bound (u1

� µ). Parameter µ � R � represents the maximum process rate. The amount of lots
in buffer B1 at time t is denoted as x1 � t � . Further downstream, finished products are stored in
buffer B2, which has buffer level x2 � t � . The buffer levels are subject to constraints: x1 � t � � 0
and x2 � t � � 0, meaning that buffer contents cannot have a negative value.

The general idea of modelling manufacturing systems with fluid models is that the change of a
buffer level equals the inflow rate minus the outflow rate. This idea was introduced by Kimemia
and Gershwin [65]. Some of the hybrid models that are presented in Section 2.3 use these
dynamics for the continuous part of the hybrid dynamics.

B1

x1
�
t �

M1

µ � 1
d

u0
�
t �

B2

x2
�
t �

u1
�
t �

Figure 2.10: Schematic representation of fluid model with input rate u0 � t � , process rate u1 � t � and buffer
levels x1 � t � and x2 � t � .

Remark 2.3. Instead of buffer levels, it is better to regard xi as work in process levels of a
workstation. The machines typically do not hold lots when processing, they just transfer lots
from buffer to buffer. In fact, lots are on a machine for a while. Therefore, in continuous
models without space to store lots on machines, xi should be interpreted as a work in process
(wip) level.

Work in process levels x1 and x2 are measured as outputs while infeed rate u0 and process



CHAPTER 2. MODELLING MANUFACTURING SYSTEMS 25

rate u1 are the inputs. The fluid model (2.19) now becomes:� �
x1 � t ��
x2 � t �
	 � � 0 0

0 0 	 � x1 � t �
x2 � t � 	 � � 1 � 1

0 1 	 � u0
u1 	� y1 � t �

y2 � t �
	 � � 1 0
0 1 	 � x1 � t �

x2 � t � 	 (2.20)

in which the general idea of Kimemia and Gershwin [65] can be recognized in matrix B: change
of wip level equals inflow rate minus outflow rate. Note that multiple workstations can easily
be connected in a flow line by making the outflow of the one workstation the inflow of the next
workstation.

Example 2.4. Linear system (2.20) is evaluated in a simulation with initial condition x � 0 � �
�

x1 � 0 � x2 � 0 � � T � �
0 0 � T, constant input rate u0 � t � � 1 [lot/hour] and constant maximal

process rate µ � 1 [lot/hour]. The machine processes in a greedy manner, i.e. always at the
highest possible rate. If the buffer is empty, then lots are processed at their arrival rate at the
workstation, provided that this rate is lower than the maximum rate µ:

u1 � t � �

�
µ if y1 � t � � 0
min � u0 � t � , µ � if y1 � t � � 0.

(2.21)

The wip levels evolve in time as shown in Figure 2.11. Buffer 1 remains empty: lots that arrive
can immediately be processed at rate u0 (which is equal to µ here). Another evaluation is done
with constant u0 � t � � 1

2 , µ � 11
2 and initial wip levels x � 0 � � �

x1 � 0 � x2 � 0 � � T � �
5 0 � T.

The results of this evaluation are shown in Figure 2.12. The graph shows that first buffer 1 is
emptied at full rate µ after which the machine processes the arriving lots at their arrival rate u0.
An observation that can be made looking at the graphs is that immediately at time t � 0, lots
come out of the machine and are stored in buffer B2. In reality, it takes time before the first lot
arrives at this buffer: the process time of the machine 1 � µ .

In the previous example, it was shown that the time delay caused by the process time of a
machine is not modelled explicitly in the standard fluid model. Several ways exist to model this
time delay in a linear system form as (2.19). Two possibilities are described briefly by Lefeber
[70]. One way is to model the time delay explicitly in the following form:

�
x1 � t � � u0 � t � � u1 � t � (2.22a)

�
x2 � t � � u1 � t � 1

µ � . (2.22b)

This is a linear model which cannot be dealt with easily by standard linear control theory. The
time delay makes this system infinitely dimensional, which does not make a control engineer’s
life easier. Infinitely dimensional linear systems are discussed extensively in Curtain and Zwart
[29]. This dimensionality problem also reveals itself in Chapter 3 of this thesis, where it is
discussed in more detail.
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Figure 2.11: Evolution of wip levels y1 � t �
and y2 � t � with u0 � t ��� 1 and µ � 1.
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Figure 2.12: Evolution of wip levels y1 � t �
and y2 � t � with u0 � t ��� 1

2 and µ � 1 1
2 .

A consequence of the delay problem in linear system (2.20) is that the time span lots reside
in the system (the so-called flow time, sojourn time, cycle time or throughput time) cannot
be measured or computed anymore. With the presented model and constraints, it is possible
to achieve the desired throughput with zero inventory. The model is only able to measure
throughputs. With zero work in process, Little’s law (as explained in Chapter 1) is useless to
determine the flow time accurately: it would result in flow times of zero.

A way to overcome the dimensionality problem in the continuous time domain is to use approxi-
mations for the time delay. A well-known method is the use of Padé approximations [109]. This
method implies expanding a function as a ratio of two power series. The higher the order of the
power series, the better the approximation. However, raising the order of the Padé approxima-
tion results in a higher order linear system and therefore more complicated controllers. Another
disadvantage of using Padé approximations is that the trajectory fluctuates slightly around a cer-
tain value for the duration of the time delay. For the manufacturing example this means that
starting with empty buffers results in fluctuating trajectories around zero. The constraints on the
system are that wip levels are not allowed to become negative. The Padé approximation there-
fore causes some numerical problems in the constrained environment. The Padé approximation
for modelling the time delay has been elaborated in [35, 70, 71].

Another way to deal with the dimensionality problem present in (2.22) is by means of sampling
the system, see Åström and Wittenmark [5]. At fixed timesteps the model is sampled, meaning
that it is assumed that between successive samples, the signals are constant. A continuous time
system without time delays �

x � t � � Ax � t ��� Bu � t � (2.23)

can be sampled as:
x � kh � h � � Φx � kh � � Γu � kh � (2.24)

in which k is an integer counter and h denotes the sampling period. Note that (2.22a) belongs
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to the category of systems that can be sampled in this way. Matrices Φ and Γ are given by:

Φ � eAh (2.25)

Γ ��� h

0
eAsdsB. (2.26)

Next consider a system which consists of continuous time dynamics and time delayed inputs:
�
x � t � � Ax � t ��� Bu � t � τ � (2.27)

in which τ represents the time delay. Note that (2.22b) belongs to this category. When the time
delay is smaller than sampling period h, the sampled delayed model is given by:

x � kh � h � � Φx � kh ��� Γ0u � kh ��� Γ1u � kh � h � (2.28a)

in which

Φ � eAh (2.28b)

Γ0 � � h � τ

0
eAsdsB (2.28c)

Γ1 � eA � h � τ � � τ

0
eAsdsB. (2.28d)

For systems where the time delay τ is greater than the sampling period, a different solution is
obtained. Suppose that the time delay consists of two parts:

τ � � d � 1 � h � τ � 0 � τ � �
h (2.29)

where d is an integer variable. The following sampled system equation is obtained:

x � kh � h � � Φx � kh � � Γ0u � kh � dh � h � � Γ1u � kh � dh � (2.30)

where Φ, Γ0 and Γ1 are given by (2.28b)–(2.28d) in which τ is replaced by τ � . The state
space description of this system contains d � r extra elements (with r denoting the number of
input signals) to serve as an internal memory for the time delayed signals over the d sampling
periods. The state space representation then looks like:�������������

x � kh � h �
u � kh � dh � h �

...

...

...
u � kh � h �

u � kh �

�������������� �

�������������
Φ Γ1 Γ0 0 � � � � � � 0
0 0 I 0 � � � � � � 0
0 0 0 . . . . . . ...
... ... ... . . . . . . . . . ...
... ... ... . . . . . . 0
0 0 0 � � � � � � 0 I
0 0 0 0 0 0 0

��������������
�������������

x � kh �
u � kh � dh �

...

...

...
u � kh � 2h �
u � kh � h �

�������������� �

�������������
0
0
...
...
...
0
I

�������������� u � kh � . (2.31)

The results for non-delayed inputs and delayed inputs can be combined in one state space
description.
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Remark 2.5. For the standard fluid model in continuous time with time delays as presented
in (2.22), matrix A is zero, so eAh is the identity matrix, resulting in fairly simple expressions
for Φ, Γ0 and Γ1.

The sampling method, resulting in a discrete time fluid model, takes away the dimensionality
problem. An intuitive interpretation of this is as follows: in the continuous time case, the
delayed signal must be incorporated in the model for the duration of the time delay, serving
as an internal memory. As the evolution of the delayed signal(s) is unknown, infinitely many
realizations are possible, yielding an infinitely dimensional system. In a sampled system, it is
assumed that between successive samples, signals are constant. The time delay consists of a
finite number of sampling periods. Only for this number of samples, the signal values need
to be stored in the internal memory, resulting in a finite dimensional model of the system.
Another way of understanding the dimensionality issue is that, loosely speaking, a continuous
model is the limit of a discrete model where the sampling period goes to zero. The number of
samples within a fixed time delay duration grows to infinity then, which makes (2.31) infinitely
dimensional.

A disadvantage of sampling is that for a manufacturing flow line, a wide variety of time delays
can occur within the flow line. To keep realistic outcomes, the sampling period should be
chosen small enough, resulting in a rather large state space, which makes controller synthesis
for these typically MIMO (multi-input, multi-output) systems more difficult.

The fluid models are all based on ordinary differential equations (ODEs). Another way of con-
tinuous modelling is by means of partial differential equations (PDEs). These PDE models, also
called flow models are treated in the next section. A completely different way of overcoming
the time delay problem present in the standard continuous time fluid model is to add discrete
event dynamics, resulting in a hybrid model. These models are treated in Section 2.3.

2.2.2 Flow models

The model presented in the previous section has a few disadvantages: first, cycle times are
not computable and second, time delays (e.g. transportation or process times) are not easy to
implement in a convenient way. The fluid models essentially were ODE (ordinary differen-
tial equations) models. Another stream of literature is based on partial differential equations
(PDEs). As mentioned in the introductory chapter, traffic flow modelling shows similarities
to manufacturing systems modelling. In the 1950s, Lighthill and Whitham [74] and Richards
[91] proposed a first order fluid model (known as the LWR model) to describe the dynamics of
traffic flow. The first order characterization of this model means (loosely speaking) that only
first order partial derivatives of a variable are present in the (set of) equations.

Traffic flow theory makes use of basic principles, like mass conservation. Consider the density
of cars at a point x in space and at time t. This density is denoted by ρ � x, t � [cars/meter]. The
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speed of the cars is v � x, t � [meters/second] and the flow of cars is denoted by q � x, t � [cars/sec-
ond]. A basic relationship exists between these three variables:

q � x, t � � ρ � x, t � � v � x, t � . (2.32)

This equation embodies the PDE version of Little’s law [75], (see Chapter 1).

The number of cars needs to be conserved on a road (without on-ramps and off-ramps). This
mass conservation principle can be expressed as: the change in the number of cars over a
distance ∆x in time equals the difference between inflow and outflow (cf. the fluid model of
Kimemia and Gershwin). In other words:

�

�
t
� ∆x

0
ρ � x, t � dx � q � t � � x � 0 � � q � t � � x � ∆x � . (2.33)

In differential form, this equation becomes:
�
ρ

�
t
�

�
q

�
x

� 0. (2.34)

These two relations (2.32) and (2.34) are the basic relations for traffic flow. However, three
variables are used: q, v and ρ . Therefore, a third relation is needed. The LWR model uses a
fixed relation between speed v and density ρ . This is an assumption next to the two fundamental
relations (2.32) and (2.34).

Higher order PDE models have been proposed in the 1970s. The static relation between speed
and density was replaced by an other PDE. This is often a momentum conservation law (result-
ing in a Payne-type model [86]), with the following form:

�
v

�
t
� v

�
v

�
x

� sum of internal and external forces
ρ � x, t � . (2.35)

The left hand side of this equation is the total time derivative of v, consisting of the the local
acceleration noticed by a standing observer and the convection acceleration, describing the
change in the mean velocity due to in- and outflowing cars with different speeds. The right hand
side of (2.35) is composed of all factors that influence the change of velocity in time and space.
Payne developed a model himself, but in [30] Daganzo pointed out some serious problems
with that model type, e.g. unallowed backward travel of cars. Most literature after [30] do not
suffer from this problem anymore. For a quick overview of these models, the reader is referred
to [88]. A third category of traffic flow models are the Helbing-type models, see [55, 57, 84].
These models have a third PDE describing the dynamics and velocity variance. The latter is a
possible term in the right hand side of (2.35). A hierarchy of PDE models for supply chains and
possibly re-entrant networks is studied by Armbruster et al. in [2–4], where ideas from both gas
dynamics and traffic flow theory are incorporated into the PDEs. A very thorough overview of
modelling traffic flow is presented in Helbing [56].

As stated in the introductory chapter, insights, notions as well as modelling techniques from
traffic flow theory might be used for manufacturing control. The analogy is that cars can be
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substituted by products or lots, and road intersections can be regarded as multi-product servers
(with or without setup times). Even without a great imagination, the analogy between traffic
and manufacturing phenomena is quite obvious. In Chapter 5 of this thesis, an example of a
road crossing is given that relates closely to a workstation that serves two product streams. The
model type in that chapter is a hybrid model. This type of models is treated in the next section.

2.3 Hybrid models

Hybrid models contain both continuous (analog) and discrete (logic/events) dynamics. Events
can make continuous variables jump from one value to the other. It is also possible that events
do not cause a jump in the continuous variable, but a change of a discrete variable. This in
turn may have a subsequent effect on the evolution of a continuous variable. Examples of
hybrid systems are traffic control systems (continuous car flows with discrete ramp metering),
beer breweries (continuous beer flow which is to be bottled in discrete bottles), temperature
control systems (continuous temperature and discrete on/off switches), airplane coordination
control (continuous speed, yaw, roll and pitch with discrete steering actions) and chemical
plants (continuous chemical reaction kinetics and discrete event recipes). Hybrid systems are
encountered in almost every branch of industry. Even when the hybrid nature of a system is
not obvious at first sight, when the discrete material flow through a manufacturing system is
modelled with a continuous approximation (as in the previous section) and the control actions
remain discrete, a hybrid model has been obtained.

Several forms of hybrid system modelling paradigms/frameworks exist. The choice between the
modelling paradigms is often a trade-off between modelling power on the one hand and decision
power and tractability on the other hand. A fine introduction of a philosophical nature to this
trade-off and different modelling techniques is presented by Boel et al. in [17]. During the last
two decades, an enormous amount of literature on hybrid systems has appeared and currently
it is still a hot topic in not only the systems and control community, but also in operations
research, economics and management science.

This section first introduces a hybrid system modelling framework of discrete hybrid automata.
Then a hybrid fluid model is presented in Section 2.3.2. Hybrid process algebra models using
the hybrid χ formalism are studied in Section 2.3.3.

2.3.1 Discrete hybrid automata

A large class of hybrid systems can be represented as discrete hybrid automata (DHA). A dis-
crete hybrid automaton is the interconnection of a finite state machine and a switched affine
system through a mode selector and an event generator. An overview of discrete hybrid au-
tomata is given by Geyer et al. [49], in which the aforementioned components are described in
more detail. DHAs are formulated in the discrete-time domain. They generalize many com-
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putation oriented models for hybrid systems and therefore represent a universal starting point
for solving complex analysis and synthesis problems for hybrid systems. Examples of mod-
elling paradigms for DHAs for which analysis and control techniques have been developed are
piecewise affine systems (PWA) and mixed logical dynamics (MLD). Piecewise affine systems
are described by Sontag [102]. Mixed logical dynamics systems are introduced in Bemporad
and Morari [14]. The two representations (PWA and MLD) are equivalent for a certain class
of systems, as shown by Heemels et al. in [52]. Other model representations within the DHA
framework are linear complementarity systems (LC), extended linear complementarity systems
(ELC) and max-min-plus-scaling systems (MMPS). Each system representation has its own
advantages and disadvantages, as described in Bemporad [11]. In the next subsection, a work-
station is modelled in the MLD and PWA representations.

Remark 2.6. The max-plus and min-plus algebraic models as described in Sections 2.1.1
and 2.1.2 are subsets of the max-min-plus-scaling modelling framework. In these subsets, the
hybrid nature has been lost.

A continuous model of a manufacturing system has been presented in Section 2.2.1, based on
the work of Kimemia and Gershwin [65]. In Figures 2.11 and 2.12 it was shown that the delay
due to the process time of a machine is not incorporated in this model type. A possible way
to overcome this is to use approximation techniques, like the Padé approximation. A different
way of overcoming the delay issue is presented here in a hybrid model. The idea behind this
model was first presented in [35] and was also used in [70] by Lefeber.

Modelling a workstation as a discrete hybrid automaton

Consider again the workstation, consisting of a buffer and a single-lot machine (Figure 2.13)
with the linear dynamics of (2.20) and the constraints on the wip levels: x1

� 0 and x2
� 0. The

delay problem of the continuous fluid model was that lots immediately come out of a machine
as soon as they are available in the buffer. However, in reality the machine can only start
processing a lot when a complete lot has entered the workstation. In other words, the machine
can only start processing a lot when the workstation contains at least one lot. In addition to
this, the machine is allowed to process lots if the wip level is smaller than one, provided that
the inflow is zero. Otherwise the buffer would never be emptied completely. The constraint on
the process rate u1 now becomes as in (2.36) (note that k represents the discrete time).

u1 � k � �

������� ������
µ if x1 � k � � 1
µ if 0 � x1 � k � � 1 and u0 � k � � 0
0 if 0 � x1 � k � � 1 and u0 � k ��� 0
0 if x1 � k � � 0.

(2.36)

A discrete hybrid automaton has been obtained. It consists of the linear continuous dynamics
of (2.20), wip level constraints and the logic relations given in (2.36). The model is now casted
in MLD and PWA form.
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B1

x1 � t �
M1

u0 � t �
B2

x2 � t �

u1 � t �

Figure 2.13: Schematic representation of a workstation with lot input rate u0 � t � , process rate u1 � t � and
buffer levels x1 � t � and x2 � t � .

Mixed logical dynamical systems

In Bemporad and Morari [14] a class of systems has been introduced, containing logic, dy-
namics and constraints. The general form of this mixed logical dynamical system (MLD) is:

x � k � 1 � � Ax � k � � B1u � k ��� B2δ � k � � B3z � k � (2.37a)
y � k � � Cx � k ��� D1u � k ��� D2δ � k ��� D3z � k � (2.37b)

E2δ � k ��� E3z � k � �
E1u � k ��� E4x � k � � E5 (2.37c)

where x � k � � � xT
r � k � xT

b � k � � T with xr � k � � R
nr and xb � k � � � 0, 1 
 nb representing vectors of nr

real and nb boolean variables respectively. Vectors y � k � and u � k � have a similar structure and
vectors δ � k � � � 0, 1 
 rb and z � k � � R

rr contain rb and rr auxiliary boolean and real variables.
The inequalities in (2.37c) have to be interpreted componentwise. Evaluating an MLD model
in general means that a mixed integer linear program needs to be solved in order to compute the
values of the boolean and real auxiliary variables. For systems with a lot of boolean variables,
this can be a time consuming procedure. Translating the model into a PWA model (see the next
part of this section) might improve the evaluation speed then.

To model the workstation as an MLD system, boolean variables are introduced to deal with the
logic relations in (2.36):

δ1 � k � � � x1 � k � � 1 � (2.38a)
δ2 � k � � � x1 � k � � 0 � (2.38b)
δ3 � k � � � u0 � k � � 0 � . (2.38c)

Remark 2.7. The expression for δ2 � k � and δ3 � k � look somewhat strange: input u0 and wip
level x1 can never be negative (as a physical constraint). In (2.36) the test u0 � k � � 0 is a test for
strict equality and x1 � 0 is a strict inequality. Strict (in)equalities cannot be incorporated in an
MLD system, so the � 0 test is used to check if input u0 is zero. Requirements u0

� 0 and x1
� 0

are added to (2.37c). To deal with strict inequalities, parameter ε � 0 is used (typically in the
order of the machine computing precision). Inequality x1 � 0 is then stated as x1

� ε .

An additional boolean variable δ4 � k � is introduced together with real auxiliary variable z1 � k � to
determine the machine process rate, according to (2.36).

if δ1 � ��� δ1 � � δ2 � δ3 ����	�
���
�
�
�
�
���
��	���
���
�
�
�
�	�
�
δ4

then z1 � µ else z1 � 0. (2.39)
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The resulting MLD model for the workstation, obtained via HYSDEL [103] with manually added
lower bounds on x1 � k � and u0 � k � , then becomes (gray terms are zero):

� x1 � k � 1 �
x2 � k � 1 � 	 � � 1 0

0 1 	 � x1 � k �
x2 � k � 	 � � Ts

0 	 u0 � k ��� � 0 0 0
0 0 0 	

����� δ1 � k �
δ2 � k �
δ3 � k �
δ4 � k �

� ���� � � � Ts

Ts 	 z1 � k � (2.40a)

� y1 � k �
y2 � k � 	 � � 1 0

0 1 	 � x1 � k �
x2 � k � 	 � � 00 	 u0 � k � � � 0 0 0 0

0 0 0 0 	
����� δ1 � k �
δ2 � k �
δ3 � k �
δ4 � k �

� ���� � � 00 	 z1 � k � (2.40b)

����������������������������

� 999 0 0 0
1 0 0 0
0 � ε 0 0
0 1000 0 0
0 0 � ε 0
0 0 1000 0
1 0 0 � 1
0 � 1 1 � 1
� 1 1 0 1
� 1 0 � 1 1
0 0 0 µ
0 0 0 � µ
0 0 0 0
0 0 0 0

�����������������������������

����� δ1 � k �
δ2 � k �
δ3 � k �
δ4 � k �

� ���� �

����������������������������

0
0
0
0
0
0
0
0
0
0
� 1
1
0
0

�����������������������������
z1 � k � �

����������������������������

0
0
0
0
1
� 1
0
0
0
0
0
0
1
0

�����������������������������
u0 � k � �

����������������������������

� 1 0
1 0
1 0
� 1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1

�����������������������������
� x1 � k �
x2 � k � 	 �

����������������������������

1
0
0

1000
0

1000
0
0
1
0
0
0
0
0

�����������������������������
(2.40c)

in which Ts denotes the sample time of the discrete-time MLD system. Note that the input u0
and wip level x1 are bounded by constraints. They are not only non-negative, but also have an
upper bound, here set to 1000. The upper bound is needed to be able to determine the values
of δ � k � .

Piecewise affine systems

The same workstation can be modelled as a piecewise affine system (PWA). PWA systems
are defined by partitioning the input space and state space into polyhedral regions. With each
region, a different linear state-update equation is associated. The general form of a PWA model
is:

x � k � 1 � � Ai � k � x � k � � Bi � k � u � k ��� fi � k � (2.41a)
y � k � � Ci � k � x � k � � Di � k � u � k ��� gi � k � (2.41b)
i � k � such that Hi � k � x � k ��� Ji � k � u � k � �

Ki � k � . (2.41c)
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Matrices Ai, Bi, Ci, and Di are all of proper dimensions and the inequalities of (2.41c) should
be interpreted componentwise. To evaluate a PWA system, first the current region i � k � needs to
be determined. In practice, this means that for all regions the inequalities are evaluated to check
for feasibility. Once the current region (or regions) has been found, the state elements x � k � and
output elements y � k � can be computed using the corresponding system matrices. Checking
all regions for feasibility can be quicker than solving a mixed integer linear program for the
(equivalent) MLD case, especially when a lot of boolean variables are involved in the MLD
representation.

Instead of defining boolean variables to incorporate the logic relations of (2.36) into inequali-
ties, the logic relations define the different modes in which the system can be. The PWA model
has been obtained by means of hybrid systems description language HYSDEL [103]. The system
consists of six modes. The affine equations (2.41a) and (2.41b) are identical for all modes, ex-
cept for the fi � k � vector. For each mode, this vector is given below together with the inequalities
that determine the current mode.

� x1 � k � 1 �
x2 � k � 1 � 	 � � 1 0

0 1 	 � x1 � k �
x2 � k � 	 � � Ts

0 	 u0 � k ��� fi � k � (2.42a)� y1 � k �
y2 � k � 	 � � 1 0

0 1 	 � x1 � k �
x2 � k � 	 � � 00 	 u0 � k � � � 00 	 (2.42b)

mode 1: � � 1 0
0 0 	 � x1 � k �

x2 � k � 	 � � 01 	 u0 � k � � � � 1
0 	 , f1 � � � µTs

µTs 	 (2.42c)

mode 2: � � 1 0
0 0 	 � x1 � k �

x2 � k � 	 � � 0
� 1 	 u0 � k � � � � 1

0 	 , f2 � � � µTs

µTs 	 (2.42d)

mode 3: � 1 0
0 0 	 � x1 � k �

x2 � k � 	 � � 01 	 u0 � k � � � 00 	 , f3 � � 00 	 (2.42e)

mode 4: � 1 0
0 0 	 � x1 � k �

x2 � k � 	 � � 0
� 1 	 u0 � k � � � 00 	 , f4 � � 00 	 (2.42f)

mode 5:

��� 1 0
� 1 0
0 0

� ���� x1 � k �
x2 � k � 	 � ��� 0

0
1

� �� u0 � k � �

��� 1
0
0

� �� , f5
� � � µTs

µTs 	 (2.42g)

mode 6:

��� 1 0
� 1 0
0 0

� �� � x1 � k �
x2 � k � 	 � ��� 0

0
� 1

� �� u0 � k � �

��� 1
0
0

� �� , f6 � � 00 	 . (2.42h)

Remark 2.8. The bounds on variables x1 � k � and x2 � k � and input u0 � k � are not present in the
PWA expressions, while they were necessary in the MLD representation. In order to add the
bounds on the wip levels and the input rate if desired, the following inequalities should be added
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to each mode: ���������
1 0
� 1 0
0 1
0 � 1
0 0
0 0

� �������� � x1 � k �
x2 � k � 	 �

���������
0
0
0
0
1
� 1

� �������� u0 � k � �

���������
1000

0
1000

0
1000

0

� �������� . (2.43)

If the initial buffer levels x1 and x2 are chosen within these bounds and the input signal u0 that
is applied lies within its bounds, these inequalities are always obeyed. These bounds, especially
the lower bound on the input rate, can be necessary when the input rate becomes a manipulative
input, determined by a controller. Without the lower bound, a controller might yield negative
input rates, which are physically impossible.

Example 2.9. A simulation is performed for the workstation with the MLD model (2.40) (the
PWA model gives the same result, because they are equivalent, cf. [52]). The input signal u0 � t �
is chosen piecewise linear. First lots arrive with u0 � t � � µ , then the input rate is put to zero.
After a while, lots start to arrive again with u0 � t � � µ , and finally the input rate is put to zero
again. The complete input signal u0 � t � is shown in the top graph of Figure 2.14. The resulting
wip levels are shown in the bottom graph of the figure. It can be seen that buffer B2 is filled
when the workstation contains at least one lot. The other phenomenon is also visible in the
graph: the workstation is only emptied when the input rate is zero.
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Figure 2.14: Evaluation of MLD model (2.40). Top graph: lot input rate. Bottom graph: wip level of
the workstation y1 � t � and cumulative output y2 � t � .



36 CHAPTER 2. MODELLING MANUFACTURING SYSTEMS

2.3.2 Hybrid fluid models

Consider again the linear fluid model as stated in (2.20). With a discrete event dynamics part,
it is possible to incorporate dynamics that influence the nominal behavior of this linear system.
One could think of scheduled and unscheduled maintenance, breakdowns, cleaning of the work-
station, switching between different lot types or recipes. In the next subsection, an example is
given of a hybrid fluid model in which a workstation is modelled that needs to be cleaned after
a while. This model type is also used in Chapter 5 and Chapter 6.

Modelling a workstation with a hybrid fluid model

Consider a single machine workstation with a FIFO buffer (infinite capacity), for example the
workstation as shown in Figure 2.2. The machine needs to be cleaned whenever it suits the
machine operator. The wip level is denoted by x1 and the machine maximum process rate
is µ � R � lots per hour. Lots arrive with fixed rate λ � µ, λ � R � and the process rate of
the machine at time t is denoted by u1 � t � � µ , which is a manipulative input of the system. In
addition to this input, another (discrete) input u0 represents the action that needs to be performed
by the workstation. The following actions are possible:

u0 � P : process lots
u0 � C : perform a cleaning sequence.

A cleaning sequence takes a positive fixed amount of time: c � R � hours. Immediately after
the machine has been cleaned, it can process lots again. State variable x0 denotes the remaining
cleaning time of the machine. The state vector of this system x � t � is therefore defined as:

x � t � �
�
x0 � t � x1 � t � � T � � 0, c � � R � (2.44)

and the input vector of this system is defined as:

u � t � �
�
u0 � t � u1 � t � � T � � P, C 
 � � 0, µ � . (2.45)

The inputs are bound to constraints at any moment in time:

u0 � � P, C 
 , 0 �
u1

� µ for x0 � 0 and x1 � 0
u0 � � P, C 
 , 0 �

u1
� λ for x0 � 0 and x1 � 0

u0 � C, u1 � 0 for x0 � 0.

The discrete event dynamics of this system are:

x0 : � c if x0 � 0 and u0 � C (2.46)

which means that whenever the machine is processing (x0 � 0) and the operator decides to
perform a cleaning sequence, the remaining cleaning time is set to c. The continuous dynamics
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of this system is:

�
x0 � t � �

�
� 1 if x0 � t � � 0
0 if x0 � t � � 0

(2.47a)

�
x1 � t � � λ � u1 � t � . (2.47b)

The remaining cleaning time decreases linearly over time when its value is greater than zero.
Once it has reached zero, it remains zero (unless it is put to c again by the operator). The wip
level x1 follows the same dynamics as the linear fluid model in (2.20).

Remark 2.10. Although input u0 is neither a real variable nor a boolean variable, the hybrid
fluid model presented in this section might fit in the DHA framework as presented in Sec-
tion 2.3.1. The possible realizations of u0 should be translated to boolean variables then, in
order to fit in a MLD structure for example. An example of such a translation is given in [14],
in which qualitative outputs of a thermal system (COLD, COOL, NORMAL, WARM, . . . )
are translated into a set of natural variables, which in case are formed by the sum of boolean
variables, fitting (2.37). The hybrid fluid model is treated separately here, since it is used ex-
tensively in other chapters in this thesis.

Example 2.11. Model (2.44)–(2.47) has been evaluated with initial state x � 0 � � � 0 2 � T. The
process policy is greedy: always process lots at the highest possible rate, which means:

u1 � t � �

�
µ if x1 � t � � 0
λ if x1 � t � � 0.

(2.48)

Furthermore, at t � 4 it is decided to perform a cleaning sequence, after which processing
lots continues. The maximum process rate µ � 3 lots/hour, while the constant arrival rate of
jobs λ � 2 lots/hour. The evolution of the inputs and state elements is shown in Figure 2.15.
First, the buffer is emptied at rate µ , while it is being filled at rate λ . The effective decrease
rate of the wip level therefore is µ � λ lots/hour. At t � 2, the buffer is empty and the machine
continues processing lots at the arrival rate (as specified in (2.48)). Then at t � 4 it is decided
to perform the cleaning sequence. No jobs can be processed, so the process rate is zero. The
wip level increases with rate λ . After the cleaning sequence, the machine starts processing the
lots again with rate µ .

As shown above, the hybrid fluid model type is suitable to incorporate various (discrete event)
phenomena explicitly in the dynamics of the system. For workstations with multiple lot types
and switchover times between processing the lot types, a hybrid fluid model is used in Chap-
ters 5 and 6.

2.3.3 Hybrid process algebra

In Section 2.1.3 models of a workstation have been presented which were specified in formal-
ism χ , a process algebra. These models were completely based on events that occur in time,
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Figure 2.15: Evolution of input signals and state elements of hybrid fluid model (2.44)–(2.47).

so called discrete event models. It is also possible to use process algebra for modelling hybrid
dynamics: systems where both events occur in time and continuous variables evolve in time.
In this case, a hybrid process algebra is used. In fact, formalism χ is suited for hybrid systems
modelling. In Section 2.1.3, only the discrete event part of the formalism had been used.

Hybrid process algebra: formalism χ

The hybrid χ language was originally developed by Fábián [42] and it was redesigned in
2005/2006. This resulted in a hybrid process algebra with formal semantics, as defined in [9]. In
this section, hybrid χ models of basic workstations are explained. The informal meaning of the
different constructs is given along with the specifications. For the complete formal semantics
of the language, the reader is referred to [9, 78].

Modelling a workstation in hybrid process algebra χ

For modelling a workstation in hybrid process algebra, a different approach is used than with
discrete event process algebra. Next to the events that occur (arrival of a lot, start of a lot
on the machine), time-consuming phenomena take place: processing lots. The total process
time equals d � R � time units. The remaining process time of a lot that has started on the
machine decreases over time until zero. If the remaining process time equals zero, the lot has
been completed and the lot can be sent away. If a lot cannot be sent away immediately after
processing, the remaining process time stays zero. When a new lot is started on the machine,
the remaining process time is set to d again and decreases again over time. This piecewise
continuous behavior can be caught in the continuous part of a hybrid model, together with
events in the discrete part.

A workstation with infinite buffer capacity and a single-lot machine is modelled in hybrid pro-
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cess algebra, see (2.49).

type lot � nat

proc W � chan a? : lot, b ! : lot, val d : real � �
� �
var x : lot, xs :

�
lot� � � � , ml : lot, m : nat � 0, cont xc : real � 0

:: � � a?x; xs : � xs � � � x �
8 len � xs � � 0 � m � 0 � ml : � hd � xs � ; m : � 1; xs : � tl � xs � ; xc : � d
8 m � 1 � xc

� 0 � b !ml ; m : � 0
�

‖ xc � 0 �
�
xc

� � 1
‖ xc

� 0 �
�
xc

� 0� �
(2.49)

The workstation is not split up anymore in a separate buffer and machine, but is modelled as a
whole, as schematically depicted in Figure 2.16. Arriving lots are stored in list xs. Lots can be
of any type, in this case of type natural: nat. If the machine is idle, m � 0. Variable ml contains
the lot that is currently in process (one at a time for a single-lot machine). When a lot is put on
the machine (ml : � hd � xs � ), the remaining process time xc � R � is set to the total process time
(xc : � d). The continuous dynamics of the workstation mean that if the remaining process time
is greater than zero, it declines with slope � 1 in time: xc � 0 �

�
xc

� � 1. When the remaining
process time has reached zero, it stays zero: xc

� 0 �
�
xc

� 0. The arrow � means implication.
In classical logic A � B is equivalent to � A � B (i.e. NOT A OR B).

W
a b

Figure 2.16: Schematic representation of hybrid χ model of workstation W .

If the buffer has limited storage capacity and the machine processes batches with a fixed batch
size k � N, the hybrid process algebra model in χ could be as in (2.50).

type lot � nat

, batch � � lot�
proc W � chan a? : lot, b ! : batch, val d : real, N, k : nat � �
� �
var x : lot, xs :

�
lot� � � � , m : batch � � � , cont xc : real � 0

:: � � len � xs ��� N � a?x; xs : � xs � � � x �
8 len � xs � �

k � m � � � � m : � take � xs, k � ; xs : � drop � xs, k � ; xc : � d
8 m � � � � xc

� 0 � b !m; m : � � �
�

‖ xc � 0 �
�
xc

� � 1
‖ xc

� 0 �
�
xc

� 0� �
(2.50)
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With respect to (2.49), a constraint has been added on the acceptance of new lots in the buffer.
Moreover, variable m gets k lots at a time via the take and drop command, as used earlier in the
discrete event χ models in Section 2.1.3.

Remark 2.12. In cases where individual lots are not distinguishable or not to be distinguished,
lists xs and m can be replaced by two counters, which represents the number of lots in the
buffer and on the machine respectively. The specification of (2.50) is transformed into a spec-
ification with counters x and n. The communication between processes can now be restricted
to synchronization (communication with type void). This results in the following specification:

proc W � chan a? : void, b ! : void, val d : real, N, k : nat � �
� �
var x : nat � 0, n : nat � 0, cont xc : real � 0

:: � � x � N � a?; x : � x � 1
8 x

�
k � n � 0 � n : � k; x : � x � k; xc : � d

8 n � 0 � xc
� 0 � b !; n : � 0

�
‖ xc � 0 �

�
xc

� � 1
‖ xc

� 0 �
�
xc

� 0� �
(2.51)

In this section hybrid process algebra models have been used to model a workstation. Discrete
variables involved the number of lots in a buffer and the presence of lots on the machine, while
a continuous variable represented the remaining processing time of the lot that was currently
being processed on the machine. Intuitively, a state space representation has been introduced for
a manufacturing system that is finite dimensional and incorporates the delay due to the process
time. This state space representation therefore overcomes the dimensionality and delay issues
that have been mentioned in Section 2.2.1. In the next chapters, this state space representation
for manufacturing systems is elaborated on. Maps to other representations are investigated in
Chapter 3, and feedback control methods for scheduling lots in manufacturing flow lines are
developed using this state space representation in Chapter 4.

2.4 Case study: modelling a flow line

In this chapter, a variety of modelling techniques has been presented. Some models are con-
tinuous or hybrid models in which individual lots cannot be distinguished, whereas in other
models individual lots can be distinguished. In this section, all models are evaluated for a flow
line example. The length of the flow line does not influence the phenomena that occur in a man-
ufacturing system, so the smallest possible flow line is investigated here: a flow line consisting
of two workstations.

Consider the manufacturing flow line as shown in Figure 2.17. Two workstations exist, each
consisting of a FIFO buffer with infinite capacity and a single-lot machine. At the end of
the flow line, finished lots are stored in buffer B3. The buffer levels are denoted by x1 � t � ,
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x2 � t � and x3 � t � , as indicated in the figure. For the continuous model and the hybrid discrete
automata, the buffer levels should be interpreted as wip levels, as explained before. The constant
process times of the machines are d1 and d2 respectively, so the maximum process rates (for
the continuous and hybrid models) of the machines are µ1 � 1

d1
and µ2 � 1

d2
lots per time unit

respectively. Without loss of generality, the time unit is ‘hours’. For this example, µ1 � 2
[lots/hour] and µ2 � 11

2 [lots/hour]. It is assumed that the evaluation starts with an empty
factory.

The rate at which lots arrive at the workstation is denoted by u0 � t � . To make several phenomena
visible, a ‘rich’ input signal is chosen, shown in Figure 2.18. During the first hour, no lots arrive
at the first workstation, so the flow line should stay in rest for one hour. Then lots start to arrive
and the interarrival time decreases (rate u0 � t � increases) after which a constant arrival rate is
kept until t � 7. No lots arrive then until t � 12 1

2 . For four hours, one lot arrives at each hour
then. At the end of the evaluation, from t � 19 lots arrive with an increasing interarrival time,
until t � 23. From that time, lots do not arrive anymore. The total number of lots that arrive
is

� 23
0 u0 � t � dt � 28. The arrival rate profile is chosen in this way because it contains rates lower

and greater than the process rates, it contains periods of no arrivals, and it contains increasing
and decreasing rates.

B1

x1 � t �
M1

µ1 � 1
d1

u0 � t �
B2

x2 � t �
M2

µ2 � 1
d2

B3

x3 � t �

Figure 2.17: Manufacturing flow line for comparison of modelling techniques.
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Figure 2.18: Arrival rate u0 � t � of lots at the flow line.

For the models in which individual lots can be distinguished, their arrival times are determined
from the u0 � t � graph. The reason for this procedure is that it is easier to determine arrival times
based on an arrival rate profile than constructing an arrival rate profile based on arrival times.
The arrival times of lots are the time instants at which the cumulative inflow rate has increased
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by one. The arrival times of the 28 lots are:

ũ0 � ��� 2 � 1 3
�

6 � 1
�

8 � 1
�

10 � 1
�

12 � 1
�

14 � 1 5 . . .

51
4 51

2 53
4 6 61

4 61
2 63

4 7 131
2 141

2 151
2 161

2 . . .

23 � � 14 23 � � 12 23 � � 10 23 � � 8 23 � � 6 21 23 � � 2 23 � T.

(2.52)

All model types (max-plus, min-plus, timed discrete event χ , standard fluid, discrete hybrid
automaton, hybrid fluid and hybrid χ) are evaluated for this example. For this example, the
hybrid fluid model of Section 2.3.2 reduces to the standard fluid model of Section 2.2.1, since
no additional discrete event dynamics are present in the flow line. For the max-plus and min-
plus algebraic models, characters w are used instead of x, to prevent confusion with the buffer
levels xi, i � � 1, 2, 3 
 . Signals w1, w3 and w5 relate to the entrance of a lot in buffers B1, B2
and B3 respectively. Signals w2 and w4 relate to the start of a lot on machine M1 and M2
respectively. In the max-plus model, the signals denote the time instants at which the events
occur, while in the min-plus model the signals count the number of specific events until (and
including) time t. The max-plus and min-plus model for the flow line are:

max-plus model: min-plus model:
w1 � k � � u � k � w1 � t � � u � t �
w2 � k � � max � w1 � k � , w2 � k � 1 ��� d1 � w2 � t � � min � w1 � t � , w2 � t � d1 ��� 1 �
w3 � k � � w2 � k � � d1 w3 � t � � w2 � t � d1 �
w4 � k � � max � w3 � k � , w4 � k � 1 ��� d2 � w4 � t � � min � w3 � t � , w4 � t � d2 ��� 1 �
w5 � k � � w4 � k � � d2 w5 � t � � w4 � t � d2 � .

For the standard fluid model, machine actual process rates u1 � t � and u2 � t � are introduced. The
continuous-time fluid model for the flow line is:

�
x1 � u0 � t � � u1 � t � u1 � t � �

�
µ1 if x1 � t � � 0
min � u0 � t � , µ1 � if x1 � t � � 0

�
x2 � u1 � t � � u2 � t � u2 � t � �

�
µ2 if x2 � t � � 0
min � u1 � t � , µ2 � if x2 � t � � 0

�
x3 � u2 � t � .

The discrete hybrid automaton for this flow line is constructed using HYSDEL. The resulting
MLD model resembles (2.37) and is not included here because of its size: 29 inequalities
specify the logic relations and determine the actual machine process rates.

The χ models are simple and elegant models, very similar to the models specified in Sec-
tion 2.1.3 and Section 2.3.3. A lot generating process G is added that sends lots to the first
workstation at the time instants specified in (2.52).

For all model types, it is expected that during the first simulated hour, the signals in the models
do not change. This is due to the fact that the factory starts empty and during the first hour, no
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lots arrive at the flow line. For the model types in which individual lots can be distinguished,
it is expected that the results of the evaluation are similar. The resulting signals may have to
be translated/interpreted to other signals to make the comparison possible (e.g. the translation
from time instants in event domain for max-plus models to counters in the min-plus model and
a lot-time diagram for the χ models). For the models that use continuous variables for wip
levels, it is expected that the wip level signals in the standard fluid model evolve earlier than
the wip level in the DHA model, because the latter takes the time delay due to processing lots
into account, while the former does not.

The max-plus and min-plus models are evaluated with MATLAB. The standard fluid model is
evaluated with SIMULINK and the discrete hybrid automaton is evaluated using HYSDEL and
MATLAB. The χ models are evaluated using χ version 1.0. Both χ models give similar results.
The results from the χ models are shown in Figure 2.19 as a lot-time diagram. The lightgray
boxes indicate that a lot is in a buffer. Buffer 3 has not been plotted here, it is the stock of
finished lots. The black boxes represent the processing of a lot on machine M1, whereas the
darkgray boxes represent residence of a lot on machine M2. The max-plus signals w1 and w5
have also been plotted in the figure by means of crosses and dots respectively. Notice that
iteration counter k is the vertical axis, while the values of w1 � k � and w5 � k � are on the horizontal
time axis. Signals w2, w3 and w4 have not been plotted. They coincide completely with the left
hand sides of the boxes in Figure 2.19. The results of the simulations satisfy the expectations:
the models stay in rest until the first lot comes in and the model types give similar results.

The results of the standard fluid model and MLD model are shown in Figures 2.20, 2.21
and 2.22. In Figure 2.22 signal w5 � t � of the min-plus model is also plotted. It should be noticed
that the min-plus realization fits the lot-time diagram of Figure 2.19 exactly, so this realization
can be used to compare the discrete event models with the continuous and hybrid models. The
expectations are fulfilled quite well. The first hour, all models remain in rest (no inflow of lots).
From t � 1, the standard fluid model starts to evolve, although it seems that buffer B1 and B2
remain in rest for a longer time. Looking at Figure 2.22 reveals that from t � 1, lots start to ar-
rive at buffer B3, which indicates that they have passed through two workstations. The maximal
process rate of the machines was higher than the arrival rate during the first hours, so buffers B1
and B2 could be kept empty. As expected, the standard fluid model finished lots earlier than the
hybrid MLD model. In this MLD model, buffer B2 could be emptied further at t � 13, since
the process rate of machine M1 is zero then (its wip level is below 1. However, the graph shows
that buffer B2 is not emptied here. The reason for this is that the process rate of machine M1 is
set to ε � 0, as explained in the Section 2.3.1. The second workstation cannot empty the buffer
now, according to the logic relations in (2.36). It should also be noted that the MLD model
suffers from small numerical differences with respect to the values that one should expect. If
the discrete time step size is chosen small enough, the differences are also kept small. For all
model evaluations, the 28 lots all come out of the workstations. This is an expected result.
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Figure 2.19: Lot-time diagram for χ simulation (both timed χ and hybrid χ) of the flow line. Light gray
box: lot in buffer. Black box: lot on machine M1. Dark gray box: lot on machine M2. Also max-plus
results: crosses denote signal w1, dots denote signal w5.
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Figure 2.20: Work in process levels of workstation B1 � M1 in the standard fluid model (solid) and MLD
model (dashed).
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Figure 2.21: Work in process levels of workstation B2 � M2 in the standard fluid model (solid) and MLD
model (dashed).
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Figure 2.22: Buffer level of B3-stock in the standard fluid model (solid) and MLD model (dashed).
Additionally, signal w5 � t � has been plotted (stairs-shaped).
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2.5 Summary

In this chapter, an overview of different modelling techniques for manufacturing systems has
been given, which is by no means intended to be exhaustive. This section summarizes the
models that have been treated.

Manufacturing systems can be modelled in many different ways. This chapter provides an
overview of a few different modelling techniques and is not an attempt to cover the whole
area of modelling paradigms and frameworks. The rationale for including these modelling
techniques is that they are either elaborated on in the remainder of this thesis or closely related
to the model types that are treated, to indicate similarities and differences.

A distinction between several classes of model types has been made: discrete event models,
continuous models and hybrid models. The distinction has been made as follows: discrete
event models are models that ‘live’ in the event domain (the dynamics is driven by events) or
where all variables are of discrete nature, i.e. they can take on a countable number of values.
Continuous models are models in which the variables can take on an uncountable number of
values. Continuous models generally ‘live’ in the time domain (the discrete time domain is
possible). Hybrid models are models in which the variables are a mixture of discrete and
continuous variables. Both continuous dynamics and discrete event dynamics are part of hybrid
models.

The different modelling techniques that have been treated in this chapter are:

• Max-plus models, for manufacturing systems often used in the event domain with real-
valued variables.

• Min-plus models, for manufacturing systems often used in the time domain. In this chap-
ter, the variables were counters that count the number of a specific event that has taken
place until and including a certain time instant.

• Timed process algebra models, using formalism χ . A powerful and formal way to model
manufacturing systems. Timed (discrete event) process algebra is a subclass of the hybrid
process algebra χ .

• Fluid models, to approximate the discrete nature of buffer levels and counters. Disadvan-
tage of the fluid model is that the flow time of lots cannot be determined, since the time
delay due to processing of lots is not incorporated in the models. Important is the insight
that instead of buffer levels, one should regard the variables as work in process levels.

• Flow models, often used in traffic flow models. Lately, partial differential equation (PDE)
models have been used in manufacturing systems modelling, because great similarities
exist between traffic flow and products through a manufacturing network. Difficulty how-
ever is to catch the dynamic phenomena of a manufacturing system in a PDE.

• Discrete hybrid automata (DHA), a framework for a class of hybrid systems that are
computationally tractable. Mixed logical dynamic (MLD) models and piecewise affine
(PWA) models have been explained. These models are able to incorporate the time delay
due to the process time of a machine. In this model type it is also better to speak of work
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in process levels rather than buffer levels.
• Hybrid fluid models, which can possibly be written as a DHA. Hybrid fluid models com-

bine the standard continuous fluid models with discrete events that represent all kinds of
phenomena that may occur in manufacturing systems. Hybrid fluid models are used in
the analyses in Chapter 5 and Chapter 6.

• Hybrid process algebra, using formalism χ . A formal method to describe the dynamical
behavior of manufacturing systems, in which discrete events are combined with differen-
tial equations.

While developing the hybrid process algebra model, a state space representation was intro-
duced. The state includes the number of lots on each machine and in each buffer and the
remaining process or transport time of the lots that are being processed or transported. This fi-
nite dimensional and instantaneously measurable state does not contain any information about
the production or control policy. The introduced state space representation is used in Chapters 3
and 4.

As mentioned before, the process time of machines was not incorporated in the standard con-
tinuous fluid model. The problem of this property is that flow times cannot be determined
anymore, since eventually the required throughput can be reached without any work in process.
In Section 2.2 a way to overcome this problem has been mentioned: Padé approximations. An-
other way to overcome the time delay problem is to model a manufacturing flow line with a
flow model. These models are based on partial differential equations. Flow models are not
elaborated further in the remainder of this thesis, but a short idea of modelling a manufacturing
system as a PDE has been given in this chapter. The ideas behind this modelling technique have
been adopted from traffic flow modelling and control.

Outlook

The next chapters elaborate on the different modelling techniques. Chapter 3 investigates the
coupling between models by means of maps between the state trajectories. Max-plus, min-
plus and hybrid χ models are coupled, facilitating the use of the different analysis and control
techniques that are available for the modelling paradigms. Once a model of a manufacturing
system has been made, it can be used to develop and/or derive feedback controllers. These
controllers aim to steer a manufacturing system to its desired behavior and keep it there as
good as possible, even if disruptions occur. Due to the feedback mechanism, the controlled
system is aware of deviations from the desired behavior and new actions can be computed. In
Chapter 4, state feedback controllers are developed, based on multi-parametric programming
techniques. The measured state in that chapter is part of the state space representation that has
been introduced in this chapter.

The hybrid fluid model technique is used in Chapter 5 and Chapter 6 where it is used in the
analysis of switching servers, i.e. workstations that process multiple product types. For these
hybrid fluid models, controllers are proposed in these chapters.



Chapter 3

Coupling event domain and time domain

models of manufacturing systems

Manufacturing systems are often characterized as discrete event systems and therefore modelled
as discrete event systems. These models are event driven, i.e. events occur and time labels are
assigned to events. Different modelling techniques exist for discrete event systems. A detailed
overview of modelling techniques is presented by Cassandras and Lafortune in [24]. Control
methods have been developed in the event domain. A modelling and control framework for
timed event graphs in dioids is presented in [28, 51]. For max-plus models in a model predictive
control framework, a lot of work has been done by De Schutter and Van den Boom, for example
in [33]. An advantage of some discrete event modelling paradigms is that models are simple
and elegant, and scale up linearly when enlarging the system to be modelled. However, a
disadvantage of discrete event models is that a mathematical background for analysis in the
time domain is hard to establish. Moreover, especially in the timed event graph and dioid
paradigm, dealing with initial conditions of a manufacturing system is difficult, which makes
practical relevance doubtful. In event domain, the state usually is not a function of time, which
makes real-time control difficult, if not impossible. In Chapter 2 a state space representation
as a function of time for manufacturing systems has been introduced. This characterization is
well suited for incorporating initial conditions of a manufacturing system. In Chapter 4 also
a control method is introduced for a certain class of manufacturing systems, using this system
representation.

In real industrial manufacturing systems, although often event driven, events occur while time
elapses and many control and performance notions are specified in time domain, as explained
earlier in the introductory chapter. One could think of stability, transient behavior, throughput

49
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measurements and flow times of lots. In addition, for time domain systems (not necessarily
manufacturing systems) many control methods have been developed. This is the reason why a
framework for real-time control of discrete event systems using time domain notions is devel-
oped. In [94, 95] a coupling has been established between max-plus and min-plus models of a
manufacturing system (which is used in this thesis in Section 3.3.1) and an MPC setup in the
time domain has been formulated for a class of manufacturing systems.

In this chapter event domain and time domain models of manufacturing systems are coupled.
This facilitates the use of the advantages of both domains and maybe loosen the disadvan-
tages of some modelling techniques. Maps are presented between states and signals of models
in different modelling paradigms. The maps are generic in a way that when manufacturing
systems grow, the models and maps between states grow proportionally. In Section 3.1 defini-
tions and notations are presented for dynamical systems and state space dynamical systems. In
Section 3.2 models are developed for the most basic manufacturing system: one workstation.
Three different modelling techniques are used, for both event domain and time domain. The
modelling techniques are max-plus, min-plus and hybrid χ , as introduced in the previous chap-
ter. In Section 3.3 maps are presented to couple state and signal vectors from different model
representations. In this way, time domain and event domain models can be interconnected for
analysis and real-time control, combining all advantages of the two domains.

3.1 (State space) Dynamical systems

3.1.1 Class of manufacturing systems under consideration

In this chapter manufacturing systems are considered in which only synchronization occurs.
All product recipes, orders and routes are predetermined and all system parameters are deter-
ministic. Moreover, only timed manufacturing systems are considered: processing a lot takes
a non-negligible amount of time. Examples of manufacturing systems under consideration are:
buffers, single-lot machines, batch machines and assembly stations. These examples are build-
ing blocks from which larger manufacturing systems can be constructed by means of intercon-
nection. In this chapter, the coupling framework is restricted initially to an elementary building
block: a workstation, consisting of a first-in-first-out buffer with finite storage capacity and a
single-lot machine. However, all concepts presented here are suitable for the manufacturing
building blocks mentioned above.

3.1.2 Definitions and notational aspects

The manufacturing systems are considered to be dynamical systems, as described by Willems
in [111]. Definitions for time domain dynamical systems are:

Definition 3.1. A dynamical system Σ is a triple Σ � � T, W, B � with T � R the time axis, W

the signal space and B � W
T the behavior.
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A dynamical system is thus defined by T (the time instants of interest), W (the space in which
the time signals take on their values) and B (a family of W-valued time trajectories).

Definition 3.2. A dynamical system with latent variables is defined as Σ f
� � T, W, L, B f �

with T � R the time axis, W the signal space of manifest variables, L the space of latent
variables and B f � � W � L � T the full behavior. It defines a latent variable representation of
the manifest dynamical system Σ � � T, W, B � with manifest behavior B : � � w : T � W

���
l :

T � L such that � w, l � � B f 
 .

In the framework of Willems, the signal variables are those variables which the model aims
at describing, and are called manifest variables, whereas the latent variables are considered
auxiliary variables or internal variables. A special case of a dynamical system with latent
variables is a state space dynamical system:

Definition 3.3. A state space dynamical system is defined as a dynamical system with latent
variables Σs

� � T, W, X, Bs � in which the full behavior Bs satisfies the axiom of state. This
axiom requires that:

� � w1, x1 � , � w2, x2 � � Bs, t � T and x1 � t � � x2 � t � 
 � � � w, x � � Bs 

with � w, x � defined as

� w � t � � , x � t � � � �

�
� w1 � t � � , x1 � t � � � for t � � t

� w2 � t � � , x2 � t � � � for t � �
t.

Informally, the axiom of state means that the state should contain sufficient information about
the past so as to determine future behavior [90, 111]. The state makes the future independent
from the past. The axiom of state is illustrated in Figure 3.1, in which the three dimensions
represent time t, state x and (manifest) signal w. The lightgray plane is the intersection plane
at t � � t. The equality x1 � t � � x2 � t � has been indicated in the figure.

In Chapter 2 several modelling techniques for manufacturing systems have been presented. In
this chapter, the max-plus algebraic model, min-plus algebraic model and hybrid χ model of
manufacturing workstations are elaborated on.

In the max-plus model of a manufacturing system, the time domain has been replaced with the
event domain, which represents a counter for the events. The signals in the max-plus algebraic
models of a workstation represent time instants at which the events occur. Thus for a max-plus
algebraic dynamical system: T � Z and W � R

p
ε , with p a proper dimension. Because events

occur chronologically in time (e.g. the second event does not occur earlier than the first event),
the signals in a max-plus algebraic model are non-decreasing. Let wK denote the manifest
variables in the max-plus model (with K indicating that the signals ‘live’ in the event domain),
behavior BK can then be defined as:

BK �

�
wK

����� γkwK
�

wK , � k � 0
“Physical laws of system are satisfied”

�
(3.1)
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Figure 3.1: Graphical representation of axiom of state (taken from [111]).

where γ is the event shift operator: γnwK � k � � wK � k � n � . The phrase “Physical laws of system
are satisfied” contains constraints on product recipes, routes, capacities and production policies.
In Section 3.2, this phrase is made explicit.

In the min-plus model of a manufacturing system, the time domain is a real time axis, repre-
senting time instants. The signals in the min-plus algebraic models of a workstation represent
counters. The counters denote the number of times a specific event has occurred at a certain
time instant. Thus for a min-plus algebraic dynamical system: T � R and W � Z

q, with q
a proper dimension. Since the signals in the min-plus models count how often an event has
occurred, it is clear that these signals are also non-decreasing signals. Let wT denote the man-
ifest variables in the min-plus model (with T indicating that the signals ‘live’ in time domain),
behavior BT can then be defined as:

BT �

�
wT

����� σ τwT
�

wT , � τ � 0
“Physical laws of system are satisfied”

�
(3.2)

where σ is the time shift operator: σ τwT � t � � wT � t � τ � and again the phrase “Physical laws
of system are satisfied” contains constraints on the same issues as described above. The non-
decreasing signals property of both the max-plus and min-plus signals is important in coupling
the models, as is explained in Section 3.3.1.

The hybrid χ model ‘lives’ in the time domain and the signals represent the numbers of lots in
buffers and machines and the remaining process times of lots on machines (see Section 2.3.3).
For the hybrid χ model, T

�
R and W

�
N

r � R
s, with r and s of proper dimensions. Let wχ

denote the manifest variables in hybrid χ , then behavior B
χ
T can be defined as:

B
χ
T

��� wχ
�
“Physical laws of system are satisfied” � . (3.3)

Although the same sentence “Physical laws of system are satisfied” appears three times in the
defined behaviors, they represent different constraints in each case. However, they embody the
same physical phenomena and constraints that occur in a manufacturing system.
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Now that the manufacturing systems under consideration and the type of signals that are allowed
have been defined, different modelling techniques can be used to describe the evolution of the
signals in both time and event domain, i.e. in the three model paradigms: max-plus, min-plus
and hybrid χ .

3.2 Modelling a workstation

In this section, the basic building block of a manufacturing system, a workstation, is presented.
First the dynamics are specified in an informal way and then the three modelling techniques are
used to explicitly model the dynamics of this workstation. The deliberately left vague sentence
“Physical laws of system are satisfied” of Section 3.1 is made explicit in this section.

3.2.1 Informal description

Consider the workstation consisting of buffer B and single-lot machine M as shown in Fig-
ure 3.2. Buffer B has a capacity of N lots. Machine M has a constant process time of d time
units and can process only one lot at a time. Lots are pushed through the workstation, i.e.
the machine never stays idle when lots reside in the buffer. In the next sections, this informal
description of the dynamics is elaborated in different time domain and event domain models.

B M
lots processed lots

Figure 3.2: Workstation with buffer B (finite capacity) and single-lot machine M.

3.2.2 Event domain: max-plus model

Max-plus algebra is suitable to obtain a representation of the workstation in event domain.
In Chapter 2 an introduction into this algebra has been given. For reasons of readability, the
conventional � and max operators are used in modelling the workstation. Let wKu be the signal
denoting the time instants at which lots arrive at the workstation. Signal wK1 denotes the time
instants lots enter the buffer, while wK2 is the signal containing the time instants lots leave the
workstation after being processed. Furthermore, wKu � k � denotes the time instant a lot arrives at
the workstation for the kth time, and similarly for wK1 � k � and wK2 � k � .

A lot enters the buffer as soon as it has arrived and an empty space is available in the buffer. A
lot leaves the workstation as soon as it has been processed. Only one lot can be processed at a
time. The max-plus representation is then given by:

wK1 � k � � max
�
wKu � k � , wK2 � k � � N � 1 � � � (3.4a)

wK2 � k � � max
�
wK1 � k ��� d, wK2 � k � 1 ��� d � . (3.4b)
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Figure 3.3: Example of signals wKu � k � (left), wK1 � k � (crosses) and wK2 � k � (dots) for one workstation
with N � 2 and d � 1.

The event driven max-plus model of the workstation then becomes (the � superscript indicates
the modelling technique):

B �K ��� wK : Z � R
3 �� γkwK

�
wK , � k � 0; (3.4) � (3.5)

with wK � � wKu wK1 wK2 � T. Note that modelling in max-plus algebra is generic in a sense
that adding a second workstation to the line would be a matter of adding one max-algebraic
equation to (3.4). In Figure 3.3 an example is given of the signals in this behavior with N � 2
and d � 1. The horizontal axis is the event counter, while the vertical axis is a time axis. The
graphs thus show the time instants at which events occur. The figure shows that 4 lots arrive at
the workstation at the same time (time � 3), but they cannot enter the buffer all at once, because
of the limited capacity: wK1 � 6 � � 4 while wKu � 6 � � 3. The sixth lot must remain at its source
until time � 4. This source can be a warehouse or a preceding workstation, which is blocked
because it cannot send the lot away when possible. Signal wKu can be regarded as input signal.

Remark 3.4. Vector wK � k � in this model is not the state of the system. The state decouples the
past from the future. For the workstation, (3.4a) contains the term wK2 � k � � N � 1 � � . In further
iterations, wK1 � k � 1 � contains the term wK2 � k � N � and so on. To make the future independent
from the past, at least all terms wK2 � k � 1 � . . .wK2 � k � � N � 1 � � need to be included in state
vector xK � k � . The value of N � 1 is called the event memory span of the system.

3.2.3 Time domain: min-plus model

The workstation described in Section 3.2 can also be modelled in the time domain, for example
by means of min-plus algebra. A short introduction into the min-plus algebra has been given in
Chapter 2. Again, only the conventional � and min operators are used in the expressions here.
Let wTu be the signal denoting the number of lots that arrived at the workstation. Let wT1 denote
the signal containing the number of lots that entered the buffer, while wT2 is the signal contain-
ing the number of lots that have left the workstation after being processed. Furthermore, wTu � t �
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denotes the number of lots that have arrived at the workstation at time t, and similarly for wT1 � t �
and wT2 � t � . Only right-continuous signals are considered.

The dynamics in time domain perspective can now be described in words as: The number of lots
that have entered the buffer at time t equals the minimum of the number of available lots and the
number of lots that have left the workstation minus the complete capacity of the workstation.
In addition, the number of lots that have left the workstation equals the minimum of lots that
has entered the buffer and of the number of lots that had left d time units ago. In other words:

wT1 � t � � min
�
wTu � t � , wT2 � t � � N � 1 � (3.6a)

wT2 � t � � min
�
wT1 � t � d � , wT2 � t � d � � 1 � . (3.6b)

The time driven min-plus model of the workstation then becomes (the � superscript indicates
the modelling technique):

B �T � � wT : R � Z
3 �� σ τwT

�
wT , � τ � 0; (3.6) � (3.7)

with wT � � wTu wT1 wT2 � T. Similar to the max-plus model (3.5), min-plus model (3.7) is
also scalable: adding more workstations makes the model grow proportionally.
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Figure 3.4: Example of signals wTu � t � (left), wT1 � t � (solid) and wT2 � t � (dashed) for one workstation
with N � 2 and d � 1.

The signals in wT for the same example as Figure 3.3 are shown in Figure 3.4. The jump
in wTu � t � at t � 3 means that at this time instant, four new lots are offered at the buffer. The
right hand side graph in Figure 3.4 shows that not all four lots can enter the buffer immediately
upon arrival: the fourth lot can only enter at t � 4 since the buffer’s maximum capacity cannot
be exceeded.

Remark 3.5. Note that vector wT � t � in this model is not the state of the system. In (3.6b),
the expression for wT2 � t � contains the terms wT1 � t � d � and wT2 � t � d � . In the evolution of the
signals after a small time step ε � d, wT2 � t � ε � contains wT1 � t � d � ε � and wT2 � t � d � ε � .
So information of these signals over at least the interval

� � d, 0 � is necessary in the state to
make the future independent from the past. The interval over which the signals are stored in
state xT � t � is called the memory span ∆ �

d of the system. More details on the memory span
are provided in [111].
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If signal wTu is regarded as the input of a state space model, the relation between state vari-
ables xTi � t � and signals wTi � t � can be defined as:

xTi � t � :
� � ∆, 0 � � Z with xTi � t � � τ � � wTi � t � τ � (3.8a)

wTi � t � : R � Z with wTi � t � � xTi � t � � 0 � (3.8b)

with i � � 1,2 
 and the full behavior of the workstation is:

B �T s
�

��� �� wT : R � Z
3

xT : R � � � � ∆, 0 � � Z � 2

�������
σ τwT

�
wT , � τ � 0

(3.6), (3.8)
∆ �

d

������ (3.9)

with xT � t � � � xT1 � t � xT2 � t � � T. Note that this state is infinitely dimensional, since it consists
of piece-wise constant signals over time interval

� � ∆, 0 � (as defined in (3.8)).

3.2.4 A hybrid model in the χ formalism

Another way of modelling the dynamics of the workstation is by means of the χ formalism.
This formalism is suited for modelling, simulation and analysis of hybrid systems, i.e. with dis-
crete event dynamics and continuous dynamics, in a formal and mathematically unambiguous
way. A detailed introduction into the χ formalism has been presented in Chapter 2, formal se-
mantics is described in [9]. The χ models in this chapter are given explicitly, but are discussed
in an informal way.

The idea for modelling the workstation in χ is that the concept of using a memory span,
which is needed to determine a state in min-plus modelling, can be omitted by introduc-
ing a continuous state variable in time, representing the remaining process time of the ma-
chine, xχ3 � t � �

�
0,d � , as already presented in Chapter 2. As discrete state variables, the number

of lots in the buffer, xχ1 � t � � � 0, 1, . . . , N 
 , the number of lots on the machine, xχ2 � t � � � 0, 1 

and the number of finished lots, xχ4 � t � � Z are used. The state of the workstation is defined as:

xχ � t � �

����� xχ1 � t � � � 0, 1, . . . , N 

xχ2 � t � � � 0, 1 

xχ3 � t � �

�
0, d �

xχ4 � t � � Z

� ���� �

number of lots in buffer B;
number of lots on machine M;
remaining process time of lot residing on M;
number of finished lots.

(3.10)

Note that for the number of finished lots the integer type Z is used, since the event counters in
max-plus models have been defined in Z.

A χ model of the workstation is presented in (3.11). A schematic representation of this χ model
is given in Figure 3.5. The χ model consists of three processes: generator G, workstation W
and exit process E. Model S connects the processes to each other and communicates the ex-
ternally provided initial conditions (with subscript 0) to the processes. Process G sends lots
to the workstation and has an input signal wTu � t � , which is similar to the input in the min-plus
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model. The number of lots that cannot be sent immediately to the workstation (due to a fully
loaded buffer) is stored in variable n. As mentioned before, this is the amount of lots waiting
in a warehouse or on previous workstations. Process E receives lots from workstation W af-
ter they have been finished and the process updates state element xχ4 � t � and variable wT2 � t � .
Workstation W combines buffer B and machine M from the informal workstation description in
Section 3.2.1. Workstation W works as follows: as long as the maximum buffer capacity is not
exceeded, accept lots and store them in counter xχ1 . If no lots reside on the machine (xχ2

� 0)
and the buffer contains lots, start a lot on the machine. The remaining process time decreases
linearly according to the differential equations. In processes W and E, variables wT1 and wT2

are the signals in time domain, as if they were the min-plus signals, together with wTu .

G W E
wTu a b

N, d

xχ10
xχ20
xχ30

xχ1
xχ2
xχ3

xχ40 xχ4

Figure 3.5: Schematic representation of χ model in (3.11).

proc G � chan a ! : void, alg wTu : int � �
� �
var n : nat � 0, pu : int � wTu

:: � � wTu � pu � n : � n � wTu � pu; pu : � wTu

8 n � 0 � a !; n : � n � 1
�� �

proc W � chan a?, b ! : void, val d : real, N : nat, wT1 : int, xχ1, xχ2 : nat, x̃3 : real � �
� �
cont xχ3 : real � x̃3

:: � � xχ1 � N � a?; wT1 : � wT1 � 1; xχ1 : � xχ1 � 1
8 xχ1 � 0 � xχ2

� 0 � xχ1 : � xχ1 � 1; xχ2 : � 1; xχ3 : � d
8 xχ2 � 0 � xχ3

� 0 � b !; xχ2 : � 0
�

‖ xχ3 � 0 �
�
xχ3

� � 1
‖ xχ3

� 0 �
�
xχ3

� 0� �
(3.11)

proc E � chan b? : void, val wT2, xχ4 : int � �
� �
� � b?; xχ4 : � xχ4 � 1; wT2 : � xχ4 � � �
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model S � alg wTu : int, val d : real, N : nat � �
� �
chan a, b : void

:: G � a, wTu �
‖W � a, b, d, N, wT10 , xχ10 , xχ20 , xχ30 �
‖E � b, wT20, xχ40 �� �

Since elementary building blocks proc are specified separately from the model, hybrid χ models
are highly scalable. Adding an extra workstation (with different parameters) is only a matter of
adding one process term (which is one line) to model S. In this way, very large systems can be
modelled using a relatively small specification.

The state space dynamical model B
χ
T s of the workstation is now given by:

B
χ
T s

�

�
wT : R � Z

3

xχ : R � N
2 � R � Z

����� χ model (3.11)

�
(3.12)

with wT � t � � � wTu � t � wT1 � t � wT2 � t � � T and xχ � t � as in (3.10).

A major difference with the max-plus or min-plus models is that due to the discrete event nature,
signals are piecewise linear over closed intervals, i.e. at time instants where events take place,
they can have multiple values. In order to obtain single-valued functions of time, the signals
from the χ model are mapped onto right continuous signals. The physical meaning of right-
continuous signals in this case is that the state at a certain time instant is measured only if all
events that can happen at that time instant have taken place. The resulting state space dynamical
model is then:

B
χ
T s

�

�
wT : R � Z

3

xχ : R � N
2 � R � Z

����� ��� wT � t �
xχ � t ��� � B

χ
T s s.t. � t � R :

� wT � t �
xχ � t ��� � lim

t̄ � t � wT � t̄ �
xχ � t̄ ��� �

(3.13)
with wT � t � � � wTu � t � wT1 � t � wT2 � t � � T and xχ � t � the right-continuous variant of xχ � t � .

The state evolution from the right-continuous χ model for the same situation as in Figures 3.3
and 3.4 is shown in Figure 3.6. Properties (not exhaustive) of the right-continuous state in (3.13)
are:

xχ1 � t � � � 0, 1, . . . , N 
 (3.14a)
xχ2 � t � � � 0, 1 
 (3.14b)
xχ3 � t � �

�
0, d � (3.14c)

xχ2 � t � � 0 � xχ1 � t � � 0; xχ3 � t � � 0 (3.14d)
xχ1 � t � � 0 � xχ2 � t � � 0 (3.14e)
xχ2 � t � � 1 � xχ3 � t � � 0 (3.14f)

or in words:
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• The buffer can only contain a non-negative integer number of lots with the maximum
buffer capacity as upper bound.

• The machine processes one lot at a time, so either one or zero lots reside on the machine.
• If the machine is idle, then the buffer must be empty and the remaining process time

equals zero (3.14d).
• If the buffer is not empty, a lot must reside on the machine (3.14e).
• If the machine contains a lot, its remaining processing time is strictly greater than zero,

because when it becomes zero, it is immediately sent away (3.14e), increasing xχ4 � t � by
one.
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Figure 3.6: Example of state elements xχ1 � t � , xχ2 � t � , xχ3 � t � and xχ4 � t � for one workstation with N � 2
and d � 1, modelled in χ .

These properties do also appear in Figure 3.6. Note that although the state elements itself do
not contain any information about production policy, these properties do, since they are only
valid within full behavior (3.13), in which a production policy (push) has been enclosed.

Now that the workstation has been specified in a pure event domain model (max-plus), pure
time domain model (min-plus) and a hybrid form, in which events take place and the state
can be measured continuously over time, the coupling between these system representations is
investigated by means of mapping the state trajectories.

3.3 Maps between states and signals

A coupling between the presented models facilitates the use of analysis and control methods
from both domains. In order to establish a coupling between the system’s representations, a
map between the state or signal trajectories of the different models is looked for. The state
of the system contains sufficient information about the past to determine future behavior and
is therefore suitable as an ‘intermediary’ between different model types. The three models all
represent the same physical manufacturing system, so having information about the past in one
model form should be sufficient to construct the state in a different model form. The maps that
are treated in this section are schematically shown in Figure 3.7. Between the max-plus and
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min-plus signals, a bijection π is established. A state in the min-plus model has been defined
in (3.8). Between the min-plus and right continuous hybrid χ state trajectories, maps M ��� χ
and Mχ � � are developed. With these maps, one can switch from one system representation to
another, using current state or signal information and the maps.

wK
�
t � wT

�
t � xT

�
t � xχ

�
t �

π � 1

π

(3.8)

M ��� χ

Mχ ���

Figure 3.7: Overview of maps between the state trajectories of different system representations.

3.3.1 Coupling the max-plus and min-plus model

Max-plus models (in event domain) and min-plus models (in time domain) of a workstation are
closely related if the signals in the models correspond to the same physical events that occur
in the workstation. For these max-plus and min-plus models, a bijection π has been developed
in [95], which is a map (both surjective and injective). The following properties must hold for
the bijection:

• Surjective (map ‘onto’): � wK � BK ,

�
wT � BT such that π � wT � t � � � wK � k �

• Injective (map ‘one-to-one’): � wT1 , wT2 � BT , π � wT1 � t � � � π � wT2 � t � �	� wT1 � t � � wT2 � t �

Proposition 3.6. If the signals wK � BK and wT � BT are non-decreasing, the following maps π
and π � 1 map signals from the max-plus model and the min-plus model onto each other. The
resulting signals correspond to the same physical phenomena in the manufacturing system.

wKi � k � � π � wTi � t � � � inf
wTi � t ��
 k, t � R t, i � � 1, . . . ,n 
 , � k � Z (3.15a)

wTi � t � � π � 1 � wKi � k � � � sup
wKi � k �� t, k � Z

k, i � � 1, . . . ,n 
 , � t � R. (3.15b)

Proof. See [94, 95] for the proof, including conditions and assumptions.

Loosely speaking, these maps swap the axes of the counter-time graph in min-plus modelling
to obtain the time-event graph in max-plus modelling (cf. Figures 3.4 and 3.3). The relatively
simple maps π and its inverse map π � 1 require the signals to be non-decreasing to make this
axes-swap possible: otherwise the signals would become multi-valued, which does not fit in the
max-plus and min-plus models.
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3.3.2 Coupling the min-plus model and hybrid χ model

The state in the min-plus model (as defined in (3.8)) is (in general) infinitely dimensional (sig-
nals over a time interval

� � ∆, 0 � with ∆ �
d), while the state of the hybrid χ model consists

of 4 scalars. To establish the coupling between the two representations, a map between the
state trajectories is looked for. So the map from min-plus state to hybrid χ state constructs
scalars from signals over a time interval, while the map from hybrid χ state to min-plus state
constructs a non-empty set of signals over time interval

� � ∆, 0 � from scalars. The maps are
presented below, each with an informal explanation afterwards.

For any state xT � t � in the min-plus model, it is possible to find a corresponding hybrid χ
state xχ � t � � B

χ
T s using the map M ��� χ : � � � ∆,0 � � Z � 2 � N

2 � R � Z:

M ��� χ :

�������������������������� �������������������������

xχ1 � t � � max � 0, xT1 � t � � 0 � � xT2 � t � � 0 ��� 1 �
xχ2 � t � � min � xT1 � t � � 0 ��� xT2 � t � � 0 � , 1 �

xχ3 � t � �

������������������� ������������������

0 if xT1 � t � � 0 � � xT2 � t � � 0 �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

max � inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 � d, 0 �
if xT1 � t � � � ∆ � �

xT2 � t � � 0 � � 1
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

max

��
� inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 � d

inf � τ � � � ∆, 0 � � xT1 � t � � τ � � xT2 � t � � 0 � � 1 
 � d
0

���
�

if xT1 � t � � � ∆ � � xT2 � t � � 0 � � 1
and xT1 � t � � 0 � � xT2 � t � � 0 �

xχ4 � t � � xT2 � t � � 0 � .

(3.16)

The expressions for xχ1 � t � . . .xχ4 � t � can be explained informally:

• xχ1 � t � : This max-expression has been built up from its two parts:

xχ1 � t � �

�
xT1 � t � � 0 ��� xT2 � t � � 0 ��� 1 if xT1 � t � � 0 � � xT2 � t � � 0 � � 1
0 if xT1 � t � � 0 � � xT2 � t � � 0 �

� 1.

(3.17)

The first alternative means that if the number of arrivals at the workstation at time t minus
the number of lots that have left the workstation is more than one, than the number of lots
in the buffer equals this difference minus one, since one lot must reside on the machine
(cf. (3.14e)). The second alternative means that if the aforementioned difference is at
most one, then no lots are in the buffer, since the only lot that can be in the workstation
is on the machine then.

• xχ2 � t � : This min-expression has also been built up from two parts:

xχ2 � t � �

�
1 if xT1 � t � � 0 � � xT2 � t � � 0 �
0 if xT1 � t � � 0 � � xT2 � t � � 0 � .

(3.18)
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If the number of arrivals at the workstation differs from the number of lots that have left
the workstation, a lot must reside on the machine. If not, no lots reside on the machine.

• xχ3 � t � : Three situations are distinguished:
– Currently, no lots reside in the workstation. The remaining process time is zero

then.
– Enough lots reside in the workstation to ensure that during the interval

� � ∆, 0 � , the
machine has constantly been busy. It is known then that after the last jump of xT2 � t � ,
a new lot was started. The remaining process times is the time instant of that last
jump plus the nominal process time d.

– A lot resides in the workstation, but it may have arrived after the most recent de-
parture of a lot from the workstation. The additional infimum in the maximization
checks this option.

• xχ4 � t � : The number of lots that have left the workstation at time t is equal to the value
of wT2 � t � , but since this signal is not a state element, it cannot be used in the expression
for xχ4 � t � . The evolution of wT2 � t � over time interval

� � ∆, 0 � however is part of the state,
so taking the value of this state element at its right boundary (τ � 0 )gives the correct
number of lots that have left.

Map M ��� χ has a simple and elegant structure (the cases in xχ3 � t � only make sure that all
infima exist), which makes it suitable for larger manufacturing systems (proportional scaling).

For any state xχ � t � � B
χ
T s, one can find a corresponding non-empty set of min-plus states xT � t � �

B �T s using the map Mχ � � : N
2 � R � Z � � � � ∆,0 � � Z � 2:

Mχ � � :

���������������������������� ���������������������������

� xT � t �
� �

x̃T � t � :
� � ∆ � d, d � � Z

2 with ∆ �
d such that:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

x̃T1 � t � � τ � �
x̃T2 � t � � τ ��� N1 � 1

x̃T2 � t � � τ � � min � x̃T1 � t � � τ � d � , x̃T2 � t � � τ � d ��� 1 � for τ � � � ∆, d �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

x̃T1 � t � � 0 � � xχ4 � t ��� xχ2 � t ��� xχ1 � t �

x̃T2 � t � � τ � �

�
xχ4 � t � for τ � � xχ3 � t ��� d, 0 � if xχ2 � t � � 0
xχ4 � t � for τ � 0 if xχ2 � t � � 0

x̃T1 � t � � xχ3 � t � � d � �
xχ4 � t ��� 1 if xχ2 � t � � 0

x̃T2 � t � � τ � � xχ4 � t � for 0 � τ � xχ3 � t � if xχ2 � t � � 0
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� ε � 0, � τ � � � ∆ � d � ε, d � : x̃Ti � t � � τ � ε � �
x̃Ti � t � � τ � , i � � 1, 2 


� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� τ � � � ∆, 0 � and i � � 1, 2 
 : xTi � t � � τ � � x̃Ti � t � � τ � 
 .
(3.19)

Map Mχ � � can be explained informally as:

• The first and last line of the map concern the domain of the signals. Auxiliary sig-
nals x̃T � t � are used to make sure that time shifted signals, e.g. τ � d exist for the whole
domain of xT � t � . Signals xT � t � and x̃T � t � are equal on domain

� � ∆, 0 � .
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• The lines starting with x̃T1 � t � � τ � and x̃T2 � t � � τ � are similar to (3.6). In the expression
for x̃T1 � t � � τ � the original minimization has been omitted, to make the map independent
of an input signal.

• The next four lines set the boundaries of the signals (x̃Ti � t � � 0 � ) at the correct values, based
on the values of xχ � t � .

• The remaining line of the map is a monotonicity requirement on all signals in x̃T � t � .

Map Mχ � � constructs the state elements in xT � t � , which are a function over time interval
(memory span)

� � ∆, 0 � with ∆ �
d, as defined in (3.8). Since in general many states xT � t � in

the min-plus model map to the same state xχ � t � in the hybrid χ model, a set of states xT � t �
corresponds to a single state xχ � t � . Therefore, map Mχ � � returns a non-empty set of states.
One can interpret this set as all possible states of the min-plus models that could have led to
the current physical situation in the manufacturing system. Map Mχ � � yields the complete
set of feasible trajectories. In (3.19) the dynamics equations (3.6), conditions on the upper
bound of interval

� � ∆, 0 � , and the requirement for non-decreasing signals can be recognized.
This map therefore can easily be extended for larger manufacturing systems, since it is scaling
up proportionally. Furthermore, auxiliary state x̃T � t � was used to be able to construct feasible
signals at the left boundary of interval

� � ∆, 0 � , but this is of minor importance for understanding
the map.

Both maps are complementary, i.e. if one starts with a right-continuous hybrid χ state xχ � t � ,
maps it to a set of min-plus states xT � t � and then back again, the original state xχ � t � is returned.
And the other way around: if one starts with a min-plus state xT � t � , maps it to a hybrid χ
state xχ � t � and then back to a set of min-plus states, the original state xT � t � lies within the
resulting set. In other words:

Proposition 3.7.

� xχ � t � � B
χ
T s : xχ � t � � M ��� χ � Mχ � � � xχ � t � � � (3.20a)

and

� xT � t � � B �T : xT � t � � Mχ � � � M ��� χ � xT � t � � � . (3.20b)

Proof. See Appendix A.1.

3.3.3 Example

Consider the workstation as described in Section 3.2, with buffer capacity N � 2 and process
time d � 1. Six lots are pushed through the system. Lots are available at time 0, 0.5, 3, 3, 3
and 3. The flow of lots through the system is shown in Figure 3.8. The horizontal axis is the
time axis, the vertical axis shows the lot number. Blocks in the diagram indicate the presence
of the lot in either the buffer or the machine. Note that although available at time � 3, the sixth
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lot can only enter the buffer at time � 4, due to the buffer capacity. Until time � 4, this lot must
remain at its source, e.g. a preceding workstation. Figures 3.3, 3.4 and 3.6 were taken from this
example. At time � 4.5, one lot is on the machine with remaining process time 0.5 and two lots
are in the buffer. The number of already finished lots equals 3, so xχ � 4.5 � � � 2 1 0.5 3 � T.
Assume that memory span ∆ � 2 �

d. Applying map Mχ � � from (3.19) gives a set of so-
lutions for xT1 � 4.5 � and xT2 � 4.5 � . One possible realization is given in Figure 3.9. This re-
alization differs from the wT1 and wT2 graphs between time � 2.5 and 4.5 in Figure 3.4, but
it is a feasible realization of the past which leads to the current situation in the manufactur-
ing system. Applying map M ��� χ (3.16) on the realization of Figure 3.9 yields the original
state xχ � 4.5 � � � 2 1 0.5 3 � T.
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Figure 3.8: Lot-time diagram.
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Figure 3.9: Possible realization for xT1 � 4.5 �
(solid) and xT2 � 4.5 � (dashed).

3.4 Summary

In this chapter, a generic way of coupling different model types for manufacturing systems
by means of maps between the states and signals of the models has been presented. Goal
of this coupling method is to be able to use analysis techniques, real-time control methods,
and performance measurement techniques which are either formulated in time domain or event
domain. By coupling time domain and event domain models by state maps, the gap between
those two domains is bridged. The models and maps presented in this chapter are generic
and scalable in a sense that enlarging the manufacturing system under consideration results
in proportional growth of the models and maps. For this reason, only a single workstation
has been considered in this chapter. Specifying larger manufacturing systems in the presented
model techniques (max-plus, min-plus and hybrid χ) is straightforward as shown in Chapter 2.



Chapter 4

Receding horizon control using

(multi-parametric) linear programming

Manufacturing
flow lineI

Model of
flow lineI

Feedback
controller

Figure 4.1: Next step in the
framework: design of controller.

In the previous chapters, different modelling techniques
have been introduced and a coupling between discrete event
and hybrid model types has been established. The ultimate
goal of the research is to control manufacturing flow lines in
a sense that the flow line should behave in a predetermined
desired manner. In this chapter, feedback controllers are de-
veloped. Based on the state of manufacturing system under
consideration, the feedback controllers determine new con-
trol actions. These control actions are intended to steer the
system to the desired behavior/trajectories. When the con-
trol actions have been implemented, the resulting state is the
basis for new control actions, yielding a control loop.

The high-level model and control framework has reached the
point where controllers are to be designed. In the framework
picture (Figure 4.1), the thick black arrow is elaborated on in
the first part of this chapter. First, model predictive control,
linear programming and multi-parametric linear programming are explained in preliminary
Section 4.1. For a single workstation, a multi-parametric optimization problem is formulated
in Section 4.2. The solution of this optimization problem is an optimal manufacturing schedule
for a certain number of lots. Only the first step of this schedule is implemented and then a
new schedule is determined only whenever the discrete state variables change. This is called

65
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a receding horizon strategy. An important feature of this method is the off-line computation
(optimization) of the control law. This facilitates large optimization problems that take quite
some time to solve to be tractable in this situation, because optimization does not take place
online. Moreover, off-line determination of a control law is safer than online optimization. In
case of an emergency, a manufacturer does not want to await the results of an optimization
solver. A second and even more important feature is that the method is carried out in the time
domain whereas required re-determination of schedules is invoked by events that take place.
In other words: if nothing happens, new schedules are not needed. On the other hand, during
the time span between events the feedback controller keeps its optimal schedule. Since optimal
schedules are available continuously in time (in the form of a look-up table or drawing a record
from a database), a continuous (time) receding horizon controller has been obtained. Another
manufacturing related work on continuous model predictive control is [96], in which a method
to solve continuous linear programs is used which is described by Weiss [108].

Finally, the method is applied to a larger flow line. The controller is implemented in a discrete
event simulation, which functions as the to be controlled manufacturing system. A generic
methodology is developed to generate feedback controllers for flow lines of arbitrary length,
with arbitrary buffer capacities and arbitrary control horizons.

4.1 Model predictive control and (multi-parametric)

linear programming

This section provides preliminaries on model predictive control and the basics of linear pro-
gramming and multi-parametric linear programming. Insight in the working principle of linear
programming is necessary to understand multi-parametric linear programming.

4.1.1 Model predictive control

An interesting overview of model predictive control (MPC) techniques is given by Qin and
Badgwell [89]. They describe MPC as a class of algorithms that compute a sequence of ma-
nipulated variable adjustments in order to optimize the future behavior of a plant. Originally
developed in the 1970s to meet the specialized control needs of power plants and petroleum
refineries, MPC technology can now be found in a wide variety of application areas includ-
ing chemicals, food processing, automotive, aerospace, metallurgy, etc. Instead of going into
technical details on MPC, the important features and principles are explained here.

A model predictive controller computes control actions for a plant in order to optimize future
behavior. The length of this future is called a horizon. In most MPC techniques, two different
horizons exist: a control horizon Nc and a prediction horizon Np. The latter is always longer
than (or at least equal to) the former. The control horizon is the time span over which the
control actions may vary. The final control action is held constant during the remaining length



CHAPTER 4. RECEDING HORIZON CONTROL USING MPLP 67

of the prediction horizon. The output variables are optimized over the prediction horizon, with
the control actions over the control horizon as manipulative variables. For the predictions of
the outputs an internal model is used. Figure 4.2 visualizes the concept of the two horizons,
cf. [19]. After an optimal control action has been computed, only the first step is implemented.
Then the state and/or outputs are measured again and new control actions are optimized over
shifted horizons. This is called a receding horizon strategy. To keep the optimization problem
finite dimensional, MPC is often used in a discrete time environment with fixed time steps.
Continuous time receding horizon control over a finite and fixed time horizon is much more
difficult. A paper related to this subject is by Weiss [108].

An important feature of MPC is that it is able to handle constraints on the manipulative vari-
ables, state and outputs. With the constraints it is possible to take physical limitations, safety
regulations and performance requirements into account.
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Figure 4.2: Model predictive control receding horizon principle.

An elegant model predictive control method for max-plus linear discrete event systems has
been presented by De Schutter and Van den Boom [33]. Instead of discrete time MPC, they
use an event horizon: a number of lots. They present an MPC control structure with a similar
objective function as in this chapter. For practical industrial implementation, a causality issue
emerges in [33]: in order to compute input time instants of a kth lot, the departure time of the
� k � 1 � th lot is needed. In practice, this information is not yet available at the time instant it
is needed. In [18] the same authors present a method to overcome this problem by estimating
the unknown state components using forward iteration with the system matrices and combining
estimated and actually measured time instants. Another difficulty in the max-plus linear setting
(as mentioned in Chapter 3) is the fact that initial conditions of a factory (in time domain) are
hard to catch in a max-plus linear initial condition. With the maps presented in Chapter 3, this
issue can be resolved.
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In this chapter, a slightly different than the conventional (discrete time) approach is used, based
on the MPC principles: similar to [33], an optimal production schedule is computed for a
control horizon (here equal to the prediction horizon), which is a fixed number of lots instead
of time. In this chapter however, the evolution of signals and measurement of the state of the
system take place in the time domain. With the multi-parametric linear programming technique,
which is explained in Section 4.1.2, it is possible to compute optimal schedules for all possible
states and for all possible times and due dates of the jobs. In this way, a continuous time
predictive control method is obtained. The control actions are implemented at their scheduled
times, and since the schedule updates itself continuously in time based on the current state, the
receding horizon principle is embodied. Contrary to the method in [33], the feedback law is
completely computed offline, yielding an explicit feedback structure.

4.1.2 Linear programming and multi-parametric linear programming

Invented in 1939 by Leonid Vitaliyevich Kantorovich, linear programming (LP) became widely
known by the work of George Dantzig [31]. Kantorovich received the Nobel Prize in Economics
in 1975, together with Tjalling C. Koopmans “for their contributions to the theory of optimum
allocation of resources” [1]. Although the invention of the linear programming method had
contributed greatly to this achievement, Dantzig is often mentioned as the founding father of
linear programming, cf. [31, 32].

Linear programming involves the optimization of a linear objective function subject to linear
(in)equality constraints. The variables that can be varied to reach an optimum are called the de-
sign variables of the optimization problem. Every LP problem can be written into the following
form:

min
x

cTx (4.1a)

subject to x
� 0 (4.1b)

Ax
�

b. (4.1c)

Expression (4.1a) is called the objective function, in which vector c weighs the elements of de-
sign variable vector x. The inequalities in (4.1b) are the non-negativity constraints, while (4.1c)
embodies all other linear constraints. Note that inequalities (4.1b) can be incorporated into
inequality set (4.1c), but they are often mentioned separately. Any other form than (4.1) can
be rewritten into this general form. One could think of maximization objectives, equality con-
straints and non-positivity constraints. Details on this rewriting procedure are given in [104].

Example 4.1. Consider the objective function

min
x1, x2

� � x1 � x2 �
subject to the non-negativity constraints x1

� 0 and x2
� 0 and additionally the following con-

straints:

x1 � 4x2
� 16, 8x1 � 5x2

� 56, � x1 � x2
� 1.
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The design variables are x1 and x2. Graphi-
cally, the feasible domain, i.e. the domain of
the design variables in which no constraints are
violated, and the objective function are shown
in Figure 4.3. The feasible domain has been
shaded gray, from darkgray to lightgray. The
arrow indicates the direction of decreasing ob-
jective function. The black dot is the solution
of this LP problem:

x1 � 51
3 and x2 � 22

3 .
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Figure 4.3: Linear programming example.

In practice the coefficients of all constraints and of the objective function are not always known
exactly beforehand. The solution of the optimization problem may depend heavily on the exact
values of these coefficients, for example if the particular constraints are active. A constraint is
active in the optimal solution, if the constraint holds with equality. If one is interested for the
optimal solution for all possible values of certain coefficients, the optimization problem turns
into a multi-parametric optimization problem.

A few years after the invention of the simplex method (a quick and efficient way to solve linear
programs), the term parametric programming appeared for the first time. In the early 1950s a
few papers appeared on the subject and the multitude of articles on parametric programming
grew over the years. A historical overview of this method is given by Gal in [44, 45].

Often used in economical decision problems and management sciences, multi-parametric pro-
gramming is used in the systems and control domain mainly for optimal control of constrained
linear and piecewise affine systems (PWA systems have been introduced in Section 2.3.1), see
Bemporad [12], Bemporad et al. [13], Borrelli et al. [20]. Multi-parametric programming tech-
niques provide an explicit control law for these systems by means of off-line computation of
this law. From a system and control theoretic point of view, one could interpret this as follows:
for all possible states x � t � an optimal control action u � t � is computed off-line. Different multi-
parametric programming techniques exist, e.g. multi-parametric linear programming, multi-
parametric quadratic programming and multi-parametric mixed integer linear and quadratic
programming. An overview is given in the manual of the multi-parametric toolbox (MPT)
for MATLAB [68]. In this thesis, only multi-parametric linear programming problems (MPLP
problems) are considered.

Remark 4.2. It is important to notice that the design variables are stored in vector u, rather
than in vector x, which is now used for the parameters that may vary. Notice also that the term
parameter vector is used for x, since it may contain more elements than the state elements of a
system only.
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The general form of a multi-parametric linear program with its constraints is:

V � x � � min
u

�
HTu � FTx � (4.2a)

subject to Gu
�

W � Ex (4.2b)
� Ax

�
b � (4.2c)

in which (4.2a) is the objective function. The problem may be bound by linear constraints (4.2b)
which involve the state x and the input u. Linear constraints that depend on x only can be
included in (4.2b), but can also be expressed in the familiar form of (4.2c). In numerical im-
plementations, like in the multi-parametric toolbox for MATLAB [68], the form of (4.2c) is
mandatory. The solution consists of N regions, which are defined by the polyhedral partition Pn

with n � � 1, 2, . . . , N 
 :
Pn � i � � � x : Hnx

�
Kn 
 (4.3)

with the optimal control law and corresponding cost function expression:

u � Fix � Gi (4.4a)
V � x � � Bix � Ci. (4.4b)

Example 4.3. Consider again the linear programming problem of Example 4.1. Suppose that
the first constraint is modified into:

x1 � 4x2
�

a

with as domain for a: 16 �
a

� 28. In Figure 4.4 the optimization problem is shown again
for a � 28. The original constraint has been plotted in lightgray. As can be seen, the optimum
has shifted to x1 � 312

13 and x2 � 412
13 .

The MPLP problem is formulated as:

u �
�
x1 x2 � T

, x � a, min
u

�
� 1 � 1 � u

subject to

��� 1 4
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���� u
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Figure 4.4: Multi-parametric linear
programming example.

The solution consists of two regions, each with its own cost function:

region 1: � � 1
1 	 x

� � � 16
23 8

13 	 , V � x � � � 1
9x � 62

9

region 2: � � 1
1 	 x

� � � 23 8
13

28 	 , V � x � � � 811
13 .
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The transition from region 1 to region 2 is at a � 23 8
13 . For this value, the constraint line exactly

crosses the optimum as indicated in Figure 4.4. If a increases further, the optimum remains the
same, which can be seen in the corresponding cost function, which is constant.

The (hybrid) state space representation which was developed in Chapter 2 and elaborated on
in Chapter 3 is used to develop a control strategy in time domain which optimizes over events,
i.e. the start times of lots on machines. Developing a controller for the production planning of
a single workstation using MPLP problems is treated in the next section.

4.2 Deriving a controller for a single workstation

Now that the basics of linear programming and multi-parametric linear programming (MPLP)
have been explained, this section deals with the development of a controller for the production
of lots in a single workstation. A receding horizon control method is used. The idea is as fol-
lows: the workstation’s state is chosen to be as in the hybrid χ examples of Chapters 2 and 3.
The state therefore is finite dimensional and consists of three elements. For all possible state
vectors, an optimal control action is to be computed. Therefore, the state of the workstation is
part of vector x in the MPLP structure: the solution is parametrized over all state realizations.
The optimal schedule that is computed by the MPLP problem is then implemented. The sched-
ule is optimal at every moment in time. A continuous (time) receding horizon controller has
been obtained then.

BN Mu
arrival of lot

y
departure of lot

w
actual start of lot

v
authorization to start

Figure 4.5: Workstation consisting of a buffer with finite storage capacity N and a single-lot machine.
Variables u, v, w and y denote different input and output signals.

4.2.1 System characterization, state and inputs

Consider the workstation as shown in Figure 4.5. It consists of a buffer BN with finite capacity N
and a single-lot machine with process time d. The hybrid state as introduced in Section 2.3.3 is
used:

x � t � �

��� x1 � t � � N

x2 � t � � N

x3 � t � � R �

���� �

��� number of lots in BN at time t
number of lots on machine M at time t
remaining process time of current lot on M at time t

���� .
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Two different types of input signals are used: ui � t � is the time instant at which the i-th next lot
is fed into the workstation, computed at time t. Input signal vi � t � is the time instant at which
machine M is scheduled to start for the i-th time. Inputs ui and vi not necessarily correspond
to the same lot. When lots reside in the buffer, v1 � t � denotes the time instant that the first lot
from the buffer starts on the machine, scheduled at time t and u1 � t � is the time instant the first
new lot is to arrive at the buffer, scheduled at time t. All ui and vi are stored in vectors u and v
respectively. In addition to input signals u and v, let vector w denote the time instants lots
actually start on the machine. This is a sort of auxiliary variable, since in the optimization, the
authorization signal is computed exactly as the time instant the machine starts processing.

The control law for scheduling lots on the workstation is computed by means of an MPLP
problem in this chapter. The design variables of the optimization problem are the elements of u
and v. The parameters of the multi-parametric optimization problem are state x, current time t
and reference vector r. The time t is included, since it is not possible to schedule the start of a
job back in time. Note that a time dependent system has been obtained now. Reference vector r
contains the time instants at which lots should be finished, also called due dates. The length
of r is the horizon over which the schedule is optimized. This control horizon is denoted by Nc

and equals the prediction horizon in this chapter: Nc
� Np. Due dates are assumed to be in

chronological order, which translates into constraints on the optimization problem. Whenever
a lot is finished on the machine and leaves the system, the corresponding due date is removed
from r (from the top) and a new due date is added to this vector (at the bottom).

To prevent confusion, the control action vector and parameter vector of the MPLP problem are
denoted by capitals U and X respectively.

4.2.2 Control objective

The control objective is to minimize the difference between the due date and the actual comple-
tion time of a lot. Both earliness and tardiness of lots are to be penalized. Let yi � t � denote the
time instant the i-th lot leaves the system, computed at time t. Note that y does not necessarily
equal the start time on the machine, v, plus the process time d. Particularly when a flow line is
modelled, blocking effects may force that y becomes strictly greater than v � d. Linear costs are
put on the penalty. The main objective is thus to minimize the absolute value of the difference
between yi and ri for all lots. Within this objective, lots are to be fed to the system and started
on the machine as late as possible. The reason for this additional control objective is that value
is to be added as late as possible to lots. Every production step costs money in practice, so
value is added to lots as they are being processed. Manufacturers tend to keep the expenses as
low as possible, so all production steps should be performed as late as possible. This additional
objective is weigthed lower than the main objective of minimizing the output error. The total
control objective is:

min
u, v

� λ
�
u v w � T �

Nc�

i � 1

�
yi � ri

�
. (4.5)
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Vector λ � 0 (element-wise) is the weighting vector that is used to prioritize the main control
goal of minimizing the output error. Typically, λ � 1 contains small values. The secondary
control objective (which implies just-in-time processing) also makes sure that the values of v
and w are forced to be equal in the optimization: the machine starts only when it minimizes the
output error and authorization signals are sent to the machine as late as possible. Thus ideally, vi

and wi are equal in the solution of the MPLP problem.

The control objective as stated in (4.5) is not directly suitable to fit in a linear program, because
the absolute value function is non-linear. Therefore, auxiliary variables zi are introduced:

zi
� �

yi � ri
� � max � yi � ri, ri � yi � . (4.6)

The control objective then translates into the following expression with additional constraints:

min
�
yi � ri

� � minzi (4.7a)
subject to zi

�
yi � ri (4.7b)

zi
�

ri � yi. (4.7c)

Auxiliary variables zi are stored in vector z and are part of the multi-parametric program. They
are not to be parametrized, so they are put in the control action vector U. For the same reason
variables yi are also part of U, which is composed as follows:

U �
�
u v w y z � T . (4.8)

So far, the workstation’s state and inputs have been defined and the control objective has been
stated. The constraints for the multi-parametric linear program can now be constructed. It
appears that several MPLP problems need to be formulated, based on the different possible
initial conditions of the workstation. This is elaborated in the next section.

4.2.3 Initial conditions, constraints and set of MPLP problems

Number of design variables

As mentioned earlier, optimization takes place over a certain horizon Nc, the number of lots
that is to be scheduled. Although Nc is chosen beforehand and remains fixed, the number of
design variables (in U � t � ) is not fixed, but depends on state x � t � of the workstation. This can be
explained as follows: when a schedule is made for a workstation that contains lots in the buffer,
fewer new lots should arrive at the workstation than when a schedule is made for an empty
workstation. Thus the number of elements in u is dependent on x1 and x2. In addition, if a
workstation is currently busy processing a lot, the number of lots that has to start on the machine
decreases by one, so the number of elements in v depends on x2. Straightforwardly solving one
MPLP problem is therefore not sufficient to compute a scheduling controller. This problem
is solved by formulating multiple MPLP problems. For each possible state realization that
leads to a different number of design variables, a different MPLP problem is formulated. The
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conditions of the regions of the solutions of the individual MPLP problems are then extended
with the state condition that led to this MPLP problem. In this way, by proper bookkeeping,
all solutions can be put in one overall solution, containing the feedback control law for the
schedules. The number of jobs in the buffer x1 and the number of jobs on the machine x2 are
not part of the individual MPLP problems anymore. Parameter vector X therefore only consists
of the following elements:

X �

��� r � t �
t

x3 � t �

� �� . (4.9)

The number of elements in vector U is given by:

dimu � max � Nc � x1 � x2, 0 �
dimv � max � Nc � x2, 0 �
dimw � dimv
dimy � Nc

dimz � dimy

where the max operators prevent negative numbers of design variables, e.g. when the x1 or x2
outnumber control horizon Nc. An important issue is that the number of MPLP problems may
grow to infinity now. This can happen when the buffer has infinite storage capacity. For all
possible state realizations that lead to a different number of design variables, a separate MPLP
problem is constructed. Actual buffer contents value x1 is allowed to grow arbitrarily high, so
does the number of different design variables and thus the number of MPLP problems. A way
to overcome this problem is to exclude the set of MPLP problems which do not contribute to
the number of different solutions. For example, if the buffer storage capacity N � 5 and control
horizon Nc

� 3, it is only useful to construct the MPLP problems for x1 � � 1, 2, 3 
 and even,
if x2 � 1, only x1 � � 1, 2 
 gives new MPLP problems. The max operators in determining the
dimensions of u and v already take care of this issue, but in an implementation, one should
take care not to construct multiple MPLP problems for all realizations of x1 and x2 that result
in dimu � 0 or dimv � 0, since all those MPLP problems are identical.

Constraints and bounds on the exploration space

As explained in the previous section, the number of design variables depends on the initial state
(i.e. the state at each moment of re-scheduling) and this results in a number of MPLP problems
that need to be solved. The constraints in the MPLP problem as a consequence also vary with
the number of design variables and the initial state. In this section, the constraint classes are
introduced. When implementing the formulation of the MPLP problem set, bookkeeping should
make sure that all constraints get the correct subscript indices.

The constraints in the MPLP problems look very similar to the terms in the max-plus alge-
braic expressions in Section 2.1.1. The difference however is that in the max-plus models, all
expressions involve equalities, while in the MPLP problems all expressions are inequalities.
In the max-plus model, lots are pushed through the workstation, while in this chapter lots are
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pulled out of the workstation, by computing the desired arrival time and start time of a lot at the
workstation based on the due date. The inequalities ensure that events can be delayed by the
authorization signals vi on the one hand, and that the optimization solver forces the solution to
lie at certain constraint boundaries.

The constraint classes that can be distinguished are as follows. Note that indices i and j are
determined by the initial state.

• Authorization to start a lot on a machine is only useful when the lot has arrived: vi
�

u j.
• The machine can only start a job when it is authorized: wi

�
vi.

• The machine can only start a job when that job is present: wi
�

u j.
• A lot can only leave a machine once the process time has been completed: yi

�
w j � d.

• A machine can only start a job when the previous lot has been sent away: wi
�

y j.
• Due to buffer capacity constraints, a job can only enter the buffer after a certain job

was started on the machine: ui
�

w j. In case of infinite buffer storage capacity, these
constraints can be lifted.

• The absolute function was re-casted into auxiliary variables z with additional constraints,
yielding: zi

�
yi � ri and zi

�
ri � yi.

• If a lot resides on the machine (x2 � 1), then it can only leave after its remaining process
time: y1

�
x3 � t.

• All time instants that are computed are in the future, since it is not possible to change the
past: ui

�
t, vi

�
t, wi

�
t, yi

�
t.

• Lots do not overtake: ui � 1
�

ui, vi � 1
�

vi, wi � 1
�

wi and yi � 1
�

yi.

In addition to these constraints on the design variables, some constraints set the bounds on the
exploration space. Theoretically, these bounds are not necessary, as shown in the theory and
example in a paper by Bemporad et al. [13]. However, for numerical implementation purposes,
as in the MATLAB MPT toolbox, the value of the objective function needs to be bounded in
each of the polyhedra. This is achieved by specifying bounds on the exploration space. These
bounds have to be put in the Ax

�
b inequalities of the MPLP problem formulation:

• It is assumed that the reference vector contains due dates in chronological order: ri � 1
�

ri.
• The remaining process time x3 �

�
0, d � .

• All parameters need a lower and an upper bound: 0 �
ri

� Ω and 0 �
t

� Ω, in which Ω
represents a very large number. This upper bound is never allowed to become an active
constraint, since then it influences the schedule. The upper bounds only facilitate the use
of the MPT toolbox.

• Time is assumed to be non-negative and is upper bounded for the same reasons as the
upper bounds on the due dates: 0 �

t
� Ω.

As mentioned before, the values of subscripts i and j depend on the initial state of the system
and have to be taken care of by means of proper bookkeeping. All ingredients of a multi-
parametric linear program have been treated now. Parameter vector X and control vector U
have been defined. The control objective has been stated as a minimization of the earliness and
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tardiness of lots and a just-in-time production policy. The receding horizon method based on
events caused the problem to be decomposed into several subproblems. Based on the state of
the workstation, a specific MPLP problem needs to be solved. All possible MPLP problems
can be formulated beforehand and solved. The set of solutions of all individual problems is the
feedback control law for the production scheduling of the workstation.

4.2.4 Case study: development of a controller for a workstation

The receding horizon feedback controller that has been explained in the previous sections is
developed for a specific numerical example in this section. A single workstation is considered,
as shown in Figure 4.5. The process time of the machine, d, is 3 hours and the buffer storage
capacity equals 5 lots. A control horizon Nc of two lots is used. This means that the manufac-
turing schedule for the first two lots is optimized. The receding horizon principle facilitates that
once the first lot has left the system, optimization takes place over the next two lots.

Parameter vector X is defined as follows:

X �
�
r1 r2 t x3 � T

which contains two due dates, current time t and the remaining process time of a lot on the
machine. State elements x1 and x2 are not explicit part of the MPLP problems, but all useful
combinations within the control horizon specify separate MPLP problems, as explained in the
previous section. The following combinations of � x1, x2 � result in unique MPLP problems:

� x1, x2 � � � � 0, 0 � , � 0, 1 � , � 1, 0 � , � 1, 1 � , � 2, 0 � 
 .
In case x1 � 2 and x2 � 1 and a control action is needed (e.g. in an initial situation or in a
stochastic environment), one should compute the control action for the x1 � 1 and x2 � 1 situ-
ation, because it yields the same MPLP problem. On the next pages, the five MPLP problems
are built up in detail. First, the design variables vector is stated, which differs for each situ-
ation. Vectors H and F that define the objective function are then presented. They prioritize
the minimization of the output error

�
yi � ri

�
and force just-in-time manufacturing within this

primary objective. Then the constraints are formulated for that set of design variables. The
order of constraints is the same as in the explanation given in Section 4.2.3, where the physi-
cal interpretation of each constraint class was given. In addition to the constraints that involve
design variables, the bounds on the exploration space are set, in which upper bound Ω is set
to 1000. In an implementation, one should keep in mind that these upper bound constraints are
never to be active. At the right hand side of each situation, the solution of the MPLP problem
is presented. Each solution consists of four regions. The regions are bounded by constraints.
Only the constraints that are additive to the bounds on the exploration space are shown. Finally,
for each region the control actions u and v are presented, expressed as a function of the param-
eter vector X. The other design variables w, y and z are not presented here, although they are
also expressions in X. However, these design variables involve non-manipulative variables or
auxiliary variables. It is possible that the system’s state is part of multiple regions. It is on the
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edge of the regions then, where the inequalities hold with strict equality. This is not a problem,
because of the continuity of the control action at the edges, see [13]. In the region characteri-
zations, control actions and constraints, the process time d � 3 of the machine is indicated by
variable d. Note that this variable is not part of the parameter vector X.

Situation:
x1 � 0
x2 � 0

MPLP problem structure:
U ��� u1 u2 v1 v2 w1 w2 y1 y2 z1 z2 � T
H ��� � ε � ε � ε � ε � ε � ε 0 0 1 1 � T
F ��� 0 0 0 0 � T and ε � 1

100 � 1
Constraints:
v1 � u1, v2 � u2
w1 � v1, w2 � v2
w1 � u1, w2 � u2
y1 � w1 � d, y2 � w2 � d

w2 � y1
z1 � y1 � r1, z1 � r1 � y1, z2 � y2 � r2, z2 � r2 � y2
u1 � t, u2 � t, v1 � t, v2 � t, w1 � t, w2 � t, y1 � t, y2 � t

u2 � u1, v2 � v1, w2 � w1, y2 � y1
Bounds on the exploration space:
x3 � 0
t � 0
r1 � 0
r2 � 0
r2 � r1

Solution: 4 regions.
Region 1:
r2 � r1 � d, r1 � t � d
Control action:
u1 � r1 � d, v1 � r1 � d

u2 � r1, v2 � r1
Region 2:
r2 � r1 � d, r1 � t � d
Control action:
u1 � r1 � d, v1 � r1 � d

u2 � r2 � d, v2 � r2 � d
Region 3:
r2 � t � 2d, r1 � t � d
Control action:
u1 � t, v1 � t

u2 � t � d, v2 � t � d
Region 4:
r2 � t � 2d, r1 � t � d
Control action:
u1 � t, v1 � t

u2 � r2 � d, v2 � r2 � d

Situation:
x1 � 1
x2 � 0

�

MPLP problem structure:
U ��� u1 v1 v2 w1 w2 y1 y2 z1 z2 � T
H ��� � ε � ε � ε � ε � ε 0 0 1 1 � T
F ��� 0 0 0 0 � T and ε � 1

100 � 1
Constraints:
v2 � u1
w1 � v1, w2 � v2
w2 � u1
y1 � w1 � d, y2 � w2 � d

w2 � y1
z1 � y1 � r1, z1 � r1 � y1, z2 � y2 � r2, z2 � r2 � y2
u1 � t, v1 � t, v2 � t, w1 � t, w2 � t, y1 � t, y2 � t

v2 � v1, w2 � w1, y2 � y1
Bounds on the exploration space:
x3 � 0
t � 0
r1 � 0
r2 � 0
r2 � r1

Solution: 4 regions.
Region 1:
r2 � r1 � d, r1 � t � d
Control action:
u1 � r1, v1 � r1 � d

v2 � r1
Region 2:
r2 � r1 � d, r1 � t � d
Control action:
u1 � r2 � d, v1 � r1 � d

v2 � r2 � d
Region 3:
r2 � t � 2d, r1 � t � d
Control action:
u1 � t � d, v1 � t

v2 � t � d
Region 4:
r2 � t � 2d, r1 � t � d
Control action:
u1 � r2 � d, v1 � t

v2 � r2 � d
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Situation:
x1 � 2
x2 � 0

��

MPLP problem structure:
U ��� v1 v2 w1 w2 y1 y2 z1 z2 � T
H ��� � ε � ε � ε � ε 0 0 1 1 � T
F ��� 0 0 0 0 � T and ε � 1

100 � 1
Constraints:
w1 � v1, w2 � v2
y1 � w1 � d, y2 � w2 � d

w2 � y1
z1 � y1 � r1, z1 � r1 � y1, z2 � y2 � r2, z2 � r2 � y2
v1 � t, v2 � t, w1 � t, w2 � t, y1 � t, y2 � t

v2 � v1, w2 � w1, y2 � y1
Bounds on the exploration space:
x3 � 0
t � 0
r1 � 0
r2 � 0
r2 � r1

Solution: 4 regions.
Region 1:
r2 � r1 � d, r1 � t � d
Control action:

v1 � r1 � d

v2 � r1
Region 2:
r2 � r1 � d, r1 � t � d
Control action:

v1 � r1 � d

v2 � r2 � d
Region 3:
r2 � t � 2d, r1 � t � d
Control action:

v1 � t

v2 � t � d
Region 4:
r2 � t � 2d, r1 � t � d
Control action:

v1 � t

v2 � r2 � d

Situation:
x1 � 0
x2 � 1

�

MPLP problem structure:
U ��� u1 v1 w1 y1 y2 z1 z2 � T
H ��� � ε � ε � ε 0 0 1 1 � T
F ��� 0 0 0 0 � T and ε � 1

100 � 1
Constraints:
v1 � u1
w1 � v1
w1 � u1
y1 � t � x3
y2 � w1 � d

w1 � y1
z1 � y1 � r1, z1 � r1 � y1, z2 � y2 � r2, z2 � r2 � y2
u1 � t, v1 � t, w1 � t, y1 � t, y2 � t

y2 � y1
Bounds on the exploration space:
x3 � 0
t � 0
r1 � 0
r2 � 0
r2 � r1

Solution: 4 regions.
Region 1:
r2 � r1 � d, t � x3 � r1
Control action:
u1 � r1, v1 � r1
Region 2:
r2 � r1 � d, t � x3 � r1
Control action:
u1 � r2 � d, v1 � r2 � d
Region 3:
r2 � t � x3 � d, t � x3 � r1
Control action:
u1 � t � x3, v1 � t � x3
Region 4:
r2 � t � x3 � d, t � x3 � r1
Control action:
u1 � r2 � d, v1 � r2 � d
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Situation:
x1 � 1
x2 � 1

��

MPLP problem structure:
U ��� v1 w1 y1 y2 z1 z2 � T
H ��� � ε � ε 0 0 1 1 � T
F ��� 0 0 0 0 � T and ε � 1

100 � 1
Constraints:
w1 � v1
y1 � t � x3
y2 � w1 � d

w1 � y1
z1 � y1 � r1, z1 � r1 � y1, z2 � y2 � r2, z2 � r2 � y2
v1 � t, w1 � t, y1 � t, y2 � t

y2 � y1
Bounds on the exploration space:
x3 � 0
t � 0
r1 � 0
r2 � 0
r2 � r1

Solution: 4 regions.
Region 1:
r2 � r1 � d, t � x3 � r1
Control action:

v1 � r1
Region 2:
r2 � r1 � d, t � x3 � r1
Control action:

v1 � r2 � d
Region 3:
r2 � t � x3 � d, t � x3 � r1
Control action:

v1 � t � x3
Region 4:
r2 � t � x3 � d, t � x3 � r1
Control action:

v1 � r2 � d

The feedback law has also been computed for different values of maximum buffer storage
capacity N and different control horizons Nc. The feedback laws are not presented here, but
Table 4.1 shows for each combination the number of MPLP problems that need to be solved
and the number of regions within each MPLP problem. Computations have been made with
the MPT toolbox [68]. From the table it can be concluded that the number of MPLP problems
is determined by the storage capacity of the buffer. This is an expected result, since for every
combination of x1 and x2 a separate MPLP problem is constructed. The number of regions
within the MPLP problems however depends solely on the control horizon Nc. This is also not
a surprise, since each individual MPLP problem is not dependent on x1 and x2 anymore. The
number of regions grows exponentially with the control horizon.

In this section a feedback controller for a single workstation has been computed. Control hori-
zon Nc has a big influence on the size of the optimization problems: a larger control horizon
results in more regions per MPLP problem. Unfortunately, this curse of dimensionality works
exponentially. For a control horizon of 2 lots, the feedback control law has completely been
characterized in this section. With this controller, it is possible to compute optimal manu-
facturing schedules, by means of a simple evaluation of the control law, given the state of a
manufacturing system, current time and the due dates of the lots. Recall that measuring the
state of the workstation can be done instantaneously: the system does not need to be observed
for a certain time span to obtain full state information.

The presented method for developing a feedback controller can also be applied to other manu-
facturing entities, such as buffers with infinite storage capacities, batch machines or conveyors.
In general, manufacturing systems in which product recipes, routes and order of processing are
predetermined are suitable to be controlled with the method that is presented in this section.
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Table 4.1: Number of MPLP problems and regions for varying workstation storage capacities and con-
trol horizons.

Nc N number of MPLP problems number of regions within each MPLP problem

2 2 5 4, 4, 4, 4
3 2 6 10, 10, 10, 10, 10, 10
3 3 7 10, 10, 10, 10, 10, 10, 10
4 2 6 24, 24, 24, 24, 24, 24
4 3 8 24, 24, 24, 24, 24, 24, 24, 24
4 4 9 24, 24, 24, 24, 24, 24, 24, 24, 24
5 2 6 56, 56, 56, 56, 56, 60
5 3 8 56, 56, 56, 56, 56, 56, 60, 60
5 4 10 56, 56, 56, 56, 56, 56, 56, 60, 60, 60
5 5 11 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
6 1 4 148, 148, 148, 148
7 1 4 370, 370, 370, 370
8 1 4 920, 920, 920, 920
9 1 4 2300, 2300, 2300, 2300

4.2.5 Implementation of feedback controller

Manufacturing
flow lineI

Model of
flow lineI

Feedback
controller

Figure 4.6: Next step in the
framework: implementation of
controller.

In the on-going process of modelling and control of man-
ufacturing flow lines, the next step is taken: validation of
the controller. In the previous section, a feedback control
law was developed. For a single workstation consisting of
a FIFO buffer with finite storage capacity and a single-lot
machine, the control law has been presented for a control
horizon Nc

� 2. In this section, the control law is imple-
mented in a simulation, to show its working (see the mod-
elling and control framework in Figure 4.6). The results are
plotted in a special type of graph, in which both axes repre-
sent time. The graphs show the schedules (control actions)
at each time instant, they show the moments of rescheduling
and whether the events occur as scheduled. In Section 4.2.4
it was also explained that enlarging the control horizon leads
to larger optimization problems, resulting in more regions
in the MPLP problem solutions. In this section, it is shown
that enlarging the control horizon leads to smaller cumula-
tive penalties on earliness and tardiness and can therefore be
profitable. Deterministic simulations are carried out first. Afterwards, a simulation study is
carried out in which the process times of the machine vary. It is shown that the controller keeps
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updating its optimal schedule every time new state information is available.

The controller has been implemented in a simulation study in MATLAB. The process time of
the machine d � 3 time units (hours) and the buffer has a storage capacity of two lots. The
control horizon (i.e. the number of lots that are scheduled to finish as close as possible to their
due dates) is set to Nc

� 2. The due dates of lots are listed in chronological order in list R:

R �
�
7 12 14 15 20 25 � . . . �

which means that in this particular simulation study only the first six lots are taken into account.
Lot number 7 and beyond have a due date which is artificially set to � , so they do not influence
the schedule for the first six lots. Due dates vector r that is used to compute the control actions
consists of the first two elements of R and everytime a lots leaves the system, the corresponding
(first) due date is removed from R. The due dates at infinity ensure that the dimension of r can
always be Nc.
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Figure 4.7: Implementation of feedback controller in a simulation study. Vertical dashed lines: due
dates. Blocks: processing of lots on machine. Darkgray shading: earliness and tardiness. Horizontal
lines: scheduled machine starts.

The simulation is started with an empty workstation: x1 � 0, x2 � 0. At t � 0, the control law
is evaluated, resulting in an optimal schedule for manufacturing the first two lots. The schedule
is computed in Region 2 of the MPLP problem solution. The arrival of a lot, authorization
of the machine and actual start of the machine take place at the same instant. In Figure 4.7
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the schedule is shown. The horizontal axis represents the actual (simulated) time, whereas the
vertical axis represents the scheduled times of events. In the figure, only the scheduled starts
of lots on the machines are plotted, the arrivals of lots have the same value. For example,
at t � 0, two jobs are scheduled to start, the first at t � 4 and the second at t � 9. The vertical
dashed lines show the due dates of the lots. The gray boxes show the processing of lots on
the machine. If these boxes start on the diagonal line, it means that they started as scheduled.
So the first lot was scheduled to start at t � 4 (from t � 0) and it indeed started at t � 4. All
lots start at their scheduled times, so the controller produces feasible schedules. At t � 7, the
first lot leaves the workstation, exactly on its due date. From that time, the due dates of the
second and third lot are parameters for the control law. The second lot (that had already been
scheduled from t � 0) remains scheduled to start at t � 9 and the third lot is scheduled to start
at t � 12. The darkgray shaded parts of the boxes show the earliness or tardiness (in Figure 4.7
only tardiness) of lots. The cumulative penalty on the output error � 6

i � 1
�
yi � ri

�
equals 5 for

this simulation (the additional just-in-time control objective has a negligible contribution to the
objective function).
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Figure 4.8: Implementation of feedback controller in a simulation with control horizon Nc � 3. Looking
further ahead leads to early adaptation of the schedule to reduce penalties on earliness and tardiness.

Another deterministic simulation is performed to show the effect of larger control horizons.
For the same workstation with the same due dates as in the first simulation, a feedback control
law is computed with control horizon Nc

� 3 lots. The controller looks further ahead and it is
expected that possible large output errors can be avoided by early adjusting the manufacturing
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schedule. From Table 4.1 it is known that this control horizon leads to an optimization problem
consisting of 6 MPLP problems and that each MPLP problem has a solution with 10 regions.
Implementation of this feedback controller in a deterministic simulation yields the results as
shown in Figure 4.8. Initially, three lots are scheduled. After the first lot has been sent away,
the reference vector r is updated with the due date of the fourth lot. This due date is close to
the due date of the third lot. Therefore, the schedule is adapted: the second and third lot are to
be processed earlier, to keep the cumulative output error as small as possible. As a result, lot
number 2 finishes 1 hour early and the fourth lot finishes 2 hours late. The third lot is scheduled
to depart exactly on its due date. The total cumulative output error in the implementation with
control horizon Nc

� 3 equals 3, which is indeed less than the result with a control horizon of
two lots. For these specific due dates, enlarging the control horizon even more does not result
in lower output errors anymore (only considering the first six lots), but in general enlarging the
control horizon leads to better overall solutions in a deterministic environment.
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Figure 4.9: Simulation of feedback controller with control horizon Nc � 3 and varying process times.

Due to different sources of variability, process times are almost never constant and determinis-
tic in practice. The feedback controllers that are obtained based on the constant process times
can also be used in an environment where variation exists. Suppose that lots are scheduled
based on the knowledge that the mean process time equals 3 hours and that the exact process
time becomes known only when a lot is started on the machine (e.g. based on a manual inspec-
tion before processing starts). With this new information, the schedule can be recomputed by
evaluating the feedback control law. An example of the schedule adaptation is presented in Fig-
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ure 4.9, for control horizon Nc
� 3. Inside the lot processing boxes, the process time is given.

The graph shows that at the very moment it becomes clear that the first lot needs longer to
process than average, the schedule for the second and third lot is adapted. The second lot takes
shorter to process than planned, so the third lot is re-scheduled again. In this way, the schedule
tries to keep up with the due dates as well as possible, always producing feasible schedules.

With three controller implementation simulations, the working of the controllers has been made
insightful. The most important feature of the controllers is that optimal schedules are available
continuously over time without re-optimization. Moreover, evaluating the feedback control law
is only necessary when events occur in the manufacturing system, which also saves a lot of
computation power. Looking further ahead by enlarging the control horizon results in sched-
ules that give better performance in the sense of lower cumulative output errors. Finally, it was
shown that also in an environment where variations occur, the controllers keep presenting fea-
sible manufacturing schedules. In Section 4.3 the method for developing feedback controllers
is used to determine a controller for a flow line of workstations. At the end of the chapter, a few
remarks are made on the implementation of the feedback controller.

4.3 Flow line: interconnection and case study

In the previous sections, the receding horizon control method using the MPLP feedback was
used to control a single workstation. Based on the due dates of products, the controller deter-
mined at which time instants lots needed to arrive at the workstation and when the machine
should start processing a lot. The objective was to minimize the absolute output error, which
is the absolute difference between due date and actual departure time of a finished lot. In this
section, the method is propagated for control of a manufacturing flow line. The coupling be-
tween workstations appears to be very elegant and powerful. A generic approach is used to
construct the MPLP problems: the method is suitable for an arbitrary number of workstations
and arbitrary number of buffer places in each workstation. It is assumed that all workstations
contain a single-lot machine. However, with slight adaptations, batch machines or conveyors
can be incorporated in a similar way.

Consider the flow line as depicted in Figure 4.10, consisting of N � N workstations. In this
particular case study, N � 3. The workstations consist of a buffer Bn with finite capacity Cn � N

and a single-lot machine Mn with constant process time dn � R � , n � � 1, 2, 3 
 . Lots move from
workstation 1 through 2 to 3 after which they are finished and leave the system. It is assumed
that lots can always leave the flow line without delays.

The goal is to schedule jobs on the machines in such a way that the cumulative output error is
minimized over a certain control horizon Nc (which is equal to the prediction horizon). This
control horizon is the number of lots that is scheduled ahead. Within this goal, an additional
objective exists: all process steps should be performed as late as possible (just in time) for
economic reasons. This ensures that value is added as late as possible. In this case study, the
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Figure 4.10: Flow line consisting of three workstations. Each workstation contains a buffer with finite
capacity and a single-lot machine.

control horizon Nc
� 4 lots. The objective function now becomes:

min
u, v

� λ
�
u v w � T �

Nc � 4�

i � 1

�
yi � ri

�
(4.10)

in which λ is a weighting vector between the main and additional (just in time) control objec-
tive. Vectors u, v and w are explained below. A little nuance has to made for the secondary (just
in time) control objective. If a job has been finished on one of the workstations which is not the
most downstream workstation and the succeeding buffer has an empty space, the lot is imme-
diately moved there. This introduces negative values in vector λ for the yn vectors, 1 � n � N.

The state of this flow line is here characterized as:

x � t � �
�
x1

1 � t � x1
2 � t � x1

3 � t � x2
1 � t � x2

2 � t � x2
3 � t � x3

1 � t � x3
2 � t � x3

3 � t �� T (4.11)

where xn
1 � N denotes the number of lots residing in the buffer of workstation n at time t. State

elements xn
2 � � 0, 1 
 represent the number of lots on the machine of workstation n and xn

3 � t � is
the remaining process time of the lots that is currently being processed. When no lot is being
processed, the remaining process time is zero: xn

2 � t � � 0 � � xn
3 � t � � 0, n � � 1, 2, 3 
 .

For each workstation n, vectors un, vn, wn and yn are constructed. These vectors are the design
variables of the optimization problem and contain the time instants at which lots arrive at the
workstation, are authorized to be processed, are started being processed and leave the worksta-
tion respectively. The number of elements in these vectors depends on the distribution of lots
that are already in the flow line. For example, if the most downstream workstation contains
more lots than the control horizon, all other workstations do not have to process any lots any-
more. For this reason, every possible combination of xn

1 and xn
2 over all workstations n results

in a separate optimization problem, with different numbers of design variables.

The dimensions of the vectors un, vn, wn and yn for all workstations n � � 1, 2, . . . , N 
 are
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computed as follows:

dimyN � Nc

dimyn � dimun � 1 for 1 �
n � N

dimvn � max � dimyn � xn
2, 0 � for 1 �

n
�

N
dimwn � dimvn for 1 �

n
�

N
dimun � max � dimwn � xn

1, 0 � for 1 �
n

�
N.

(4.12)

For generating and solving the set of MPLP problems a MATLAB script was used, which has
been included in Appendix B.1. An elaborate explanation of the script is given in the appendix,
but in short the script works as follows. For arbitrary numbers of workstations and buffer places,
a set of subproblems is generated which consists of all combinations of the buffer levels and
presence of lots on machines. The number of subproblems is:

number of MPLP problems to solve � 2N �
N�

n � 1
� Cn � 1 � .

The parameter vector X in the MPLP problems consists of the following elements:

X �
�
r1 r2 . . . rNc t x1

3 x2
3 . . . xN

3 � T

which gives a parameter vector X with eight elements for control horizon Nc
� 4 and the num-

ber of workstations N � 3. Parameter t denotes the current time. For each MPLP problem,
the constraint sets GU

�
W � EX and AX

�
b are constructed. Each workstation has similar

constraints on u, v, w and y. These constraints are constructed for each workstation separately.
Afterwards, the constraints are coupled in order to interconnect the workstations. This inter-
connection is facilitated as follows. Vector y represents the time instants at which lots leave a
workstation. Vector u contains the time instants at which lots arrive at a workstation. In a flow
line, the departure times of one workstation are the arrival times of the subsequent workstation.
In (4.12) it was already shown that the dimension of these vectors are equal. Assuming zero
transportation time between workstations, one may conclude:

yn � un � 1
, for 1 �

n � N. (4.13)

The G matrix from the constraint set is now built up as shown schematically in Figure 4.11.
The interconnection of workstations by (4.13) also reduces the number of design variables in U.
Figure 4.11 also shows the addition of the constraints of type (4.7) that are involved with the
absolute value function on the output error in the objective function. The gray blocks in the
figure typically consist of a collection of 0s, 1s and � 1s to form the precedence relations.

For the flow line consisting of three workstations, the set of MPLP problems are constructed
and solved. The workstations have the following parameters:

C1 � 2, C2 � 4, C3 � 2, d1 � 4, d2 � 3, d3 � 2.

The number of MPLP problems for this configuration is 360. Each MPLP problem has been
solved with the MPT Toolbox for MATLAB (see [68]). The average number of regions within
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Figure 4.11: Construction of matrix G with intrinsic interconnection of workstations.

the MPLP problems is 72. The maximum number or regions is 178 and the minimum is 24. Al-
though the number of MPLP problems and regions looks high, the computations take only 1.5
hours on a PC (3GHz, 2GB memory). In addition, once all MPLP problems have been solved,
no optimizations need to take place anymore in an implementation of the controller. The feed-
back law has been fully characterized now and can be used continuously in time as if drawing
a record from a database.

The resulting feedback control law is implemented in both a deterministic and a stochastic sim-
ulation. In the deterministic simulation, process times of the machines are constant as indicated
above, whereas in the stochastic simulation the process times of the machines are subject to
variations due to a gamma distribution, with mean dn as indicated above and a variance of 0.1.
For the due dates, the following vector is used:

R �
�

10 11 13 14 15 25 29 36 37 45 � . . . � .

Again, the artificial � at the end of R ensures that scheduling of the 8th, 9th and 10th lot is not
influenced by future due dates and that r can always have the right dimension. The following
initial condition is used in both simulations:

• Workstation 1 has one lot in the buffer and an empty machine: x1
1

� 1, x1
2

� 0, x1
3

� 0.
• Workstation 2 has two lots in the buffer. The machine processes a lot which is half-way

processing: x2
1

� 2, x2
2

� 1, x2
3

� 11
2 .

• Workstation 3 is empty: x3
1

� 0, x3
2

� 0, x3
3

� 0.

The controller obtained by the MPLP problems is implemented in a discrete event simulation
using MATLAB. The results of the deterministic simulation are shown in Figure 4.12, while the
results from a stochastic simulation (gamma distributed with mean di and variance 0.1 for each
workstation i) are presented in Figure 4.13. Instead of presenting graphs with scheduled times
against simulation time, lot-time diagrams are shown in which the progress of lots through the
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flow line is visualized. The due dates are indicated with the black arrowheads. Lightgray boxes
show the presence of lots on a machine and darkgray boxes indicate that a lot resides in a buffer.
The initial condition is clearly visible in the graphs for the first four lots. The cumulative output
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Figure 4.12: Lot-time diagram of deterministic simulation.
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Figure 4.13: Lot-time diagram of stochastic simulation.

error � 10
i � 1

�
yi � ri

�
for the deterministic simulation is 7 hours (the additional just-in-time control

goal has a negligible contribution to the objective function). Lot number 5 has a large output
error. This is caused by the fact that at the moment lot 4 starts on machine 1, it is not known yet
what the due date of lot 5 is. The control horizon equals 4 and no lot has left the flow line yet.
By the time lot 1 leaves the flow line, lot 5 is scheduled and can only start on M1 after lot 4 has
been finished on M1. In case the control horizon Nc would have been 5, lot 4 would have been
started earlier to keep the output error of lot 5 lower. Another interesting phenomenon happens
with lot 8. It is started quite early to keep the output error of lot 9 small. As a result, lot 8
has to wait in buffers B2 and B3. For the simulation of Figure 4.13, the cumulative output error
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is 9.43 hours. However, this is just one simulation. In order to obtain a more insightful number
for the cumulative output error in the stochastic environment, 100 simulations are carried out
with the same initial conditions and due dates. The mean cumulative output error is 9.58 hours,
with a standard deviation of 1.52 hours. The minimal cumulative output error in these 100
simulations is 6.20 hours (which is a better performance than the deterministic case) and the
maximum realization is 13.96 hours. Only 2% of all stochastic simulations perform better than
the deterministic simulation. This is not surprising, since only for lot numbers 1, 4, 5 and 9
an improvement is possible; all other lots had an error of zero in the deterministic case. In the
stochastic case all lots have an output error, because due to the variations lots never leave the
flow line exactly at their due dates. Any output error of a lot cannot be compensated: both
earliness and tardiness are penalized equally.

The case study on the manufacturing flow line showed that the MPLP receding horizon control
method can be implemented for a flow line. The coupling between workstations is a matter of
equalizing departure and arrival times of the subsequent workstations. This case also showed
that it is possible to generate all individual MPLP problems for a flow line of arbitrary length
and control horizon in a generic way. This provides a powerful reference point for future
research on the subject.

Remarks on the computation of MPLP problems and controller implementation

• The current computation of MPLP problems is for workstations with finite buffer capac-
ity. In case of infinite capacity, an infinite number of problems is generated. This problem
can be overcome by putting the buffer capacity to Nc. Because no more than Nc lots are
optimized, the buffer is never exceeding this value. All buffer levels higher than Nc result
in the same MPLP problem.

• It is possible that for different combinations of xn
1 and xn

2 the same MPLP problem
emerges. The MATLAB script that computes and solves all problems does not check for
duplicates. More extensive bookkeeping in this area can save a lot of time, since solving
the MPLP problems takes far most of the computation time.

• The elements of weighting λ should be chosen small. When lots are scheduled over
longer horizons or further away in time, the λ

�
u v w � sum can become too large with

respect to the cumulative output error. This problem can be overcome by subtracting the
current time t from the design variables in the objective function: λ

�
u � t v � t w � t � .

This does not influence the solution of the optimization problem, since a constant is added
to the objective function.

• In a situation where a workstation is empty (xn
1

� 0 and xn
2

� 0), after which a lot enters in
that workstation which is to be processed immediately, two events occur: arrival of the lot
(xn

1
� 1 and xn

2
� 0), followed by the start of the lot on the machine (xn

1
� 0 and xn

2
� 1).

Since optimal schedules are available continuously in time, two updated schedules are
determined at the same time instant. In the graphs, only the second schedule is shown,
which corresponds to the right continuous variant of the schedule.
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• If a lot resides on the machine (x2 � 1) and its due date is still far away (r � t � d),
then it is still possible to obtain an output error (y � r) of zero. This is possible when
the lot does not leave the machine before the due date. Output time y is not the time
of completion of a lot, but the time of departure of the lot. For the most downstream
workstation, the completion time of a lot should be interpreted as the time of departure.
This departure should not be delayed anymore. An example of this unwanted behavior
is the eighth lot in Figure 4.13. That lot is completed earlier than expected, but the ninth
lot does not start on M3 immediately. The eighth lot is only sent away at t � 36. A way
to overcome this problem is by adding equality constraint yN

1
� t � xN

3 , which makes sure
that the departure time of the first lot that leaves the flow line equals the current time plus
its remaining process time. However, the current implementation of the MPT toolbox for
MATLAB does not support inclusion of equality constraints.

• Enlarging the control horizon or adding more workstations to the flow line results in
larger MPLP problems. Unfortunately, the curse of dimensionality applies here: the
size of the MPLP problems and the number of MPLP problems increase exponentially
(For example, enlarging the control horizon to five lots yields MPLP problem solutions
consisting of about 700 regions per MPLP subproblem; a control horizon of six lots
yields in solutions consisting of about 3000 regions). High computation times are not a
big problem, because the computation of the feedback law takes place off-line. However,
for even larger MPLP problems, computer memory problems may occur.

4.4 Summary

In the previous chapters a state space representation for a manufacturing workstation has been
introduced. The state vector consists of only three scalars per workstation and full state infor-
mation can be measured instantaneously.

In this chapter the introduced state space representation has been used in a feedback control
loop. A receding horizon control method was introduced to schedule the production steps of a
certain number of jobs ahead. This number of jobs is called the control horizon Nc. Based on
the current state of a workstation, the first Nc jobs are scheduled. However, different states lead
to different schedules. For example, in case of an empty workstation all lots need to arrive at
the workstation before they can be processed, while in case of a fully occupied workstation less
or even no lots need to arrive anymore. Optimization of the production schedule is therefore
performed for all separate states that lead to a different structure (in terms of design variables
and constraints) of the optimization problem. In the optimization problems, the due dates of
lots are parameters. In addition, the current time t and the remaining process times of lots that
are currently being processed (part of the state) are parameters. This leads to a multi-parametric
mathematical programming problem. In this chapter the objective function for the optimizations
was taken linear, so the solutions of the complete set of multi-parametric linear programming
(MPLP) problems represent the feedback control law. This control law is computed completely
off-line. In an implementation, no optimizations need to take place anymore. At any point in
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time, an optimal schedule is available as a kind of look-up table, based on the information that
is known at that time. Even in a disturbed environment (where process times are random or
with machine breakdowns), an optimal schedule is available based on the current state. With
hindsight, earlier schedules might have been suboptimal, but they were optimal at the time of
determining those schedules.

The feedback control method based on the receding horizon strategy has been implemented on a
single workstation and on a flow line of workstations. In the flow line, individual workstations
are interconnected elegantly by equalizing departure and arrival times of lots at succeeding
workstations. A generic method was developed for generating and solving the MPLP problems
for a flow line of arbitrary length, with arbitrary buffer capacities and control horizon. As an
MPLP problem solver, the MPT toolbox for MATLAB [68] has been used.

Although this chapter only deals with workstations consisting of a buffer with finite storage
capacity and a single-lot machine, the method that has been described is perfectly suitable for
incorporating other manufacturing entities.
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Chapter 5

A switching server

In a lot of applications, servers have to share capacity over competing resources. Such servers
can be found in manufacturing industry, food processing facilities and traffic flow networks. In
general, these systems are discrete event systems. Switching between the competing resources
might take time, the so-called setup time. In this chapter the scheduling problem of switching
servers with non-zero setup times is regarded. The discrete event system behavior is modelled
with hybrid fluid model dynamics, as introduced in Section 2.3.2. Buffer levels are modelled
as continuous variables (as fluid levels) and switching between the product types is the discrete
event part of the model. Since a server is assumed to process only one lot type at a time, steady
state behavior results in a periodic process cycle rather than a fixed point. First, an optimal
process cycle with respect to work in process levels is derived for a switching server processing
two lot types. Next, a state feedback controller is proposed that brings the trajectory of a system
to the derived optimal cycle. After the analysis for a single workstation has been completed,
the analysis of switching server flow lines for two product types is treated in Chapter 6.

With respect to scheduling of a single switching server, in [97–99] a method is proposed to
stabilize a server that serves n queues. A stable limit cycle solution is found with minimal cycle
period. The control policy consists of fixed process periods for each lot type, actually a feed
forward controller. A disadvantage of this approach is that it does not deal with disturbances
and it does not reduce the number of lots in the system in case this number of lots is larger
than necessary. In this chapter a feedback controller is used to deal with disturbances and with
techniques as described in Matveev and Savkin [81], stability can be shown. Contrary to the
control method in their work, the control strategy that is proposed in this thesis also reduces the
number of lots in the system if possible.

93
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Hybrid fluid model dynamics are also used by Boccadoro and Valigi [15, 16] and Del Gaudio
et al. [34]. In these studies, scheduling problems for two competing queues with both infinite
and finite buffer capacities are considered. However, those studies are based on completely
symmetric systems, i.e. equal setup times, equal arrival rates and equal process rates for both
lot types, whereas in this research these assumptions are dropped. Another assumption in [15,
16, 34] is that an optimal process cycle is never influenced by the maximum buffer capacities,
whereas buffer constraints are embodied in the analyses in this chapter. On the other hand, they
also study optimal transient behavior, which is not considered here. Other work by Martinelli
and Valigi [80] focuses on the impact of finite buffer capacities on optimal scheduling of a single
machine that processes two part types. However, this study does not include non-negligible
setup times, whereas in this chapter setup times are involved. Khmelnitsky and Caramanis
[64] use a different objective function: cumulative backlog costs (which can be translated to
cumulative work in process levels) over a cyclic period, instead of mean wip level over a cyclic
period. In addition, in [64] only systems with infinite buffer capacities are considered.

For queueing systems, policies to obtain stable process cycles are proposed by Boxma et al. [21,
22]. Some papers, e.g. [47, 48, 79], use a heavy traffic assumption on top of the proposed policy.
In most work, first a control policy is proposed and then analysis and (sometimes) optimization
is done within the given policy. Clearing policies (serve a queue until it is empty then switch to
another queue) or threshold services (serve a queue until a value has been reached) are mostly
considered in this area for both stochastic and deterministic environments. Eisenstein [41] as-
sumes that a target cycle is given with idle times therein to be robust against disturbances. A
recovering policy is proposed that uses this idle time to get back on the target cycle after a
disruption. Gallego [46] also proposes a target cyclic scheduling recovering method, by means
of introducing safety stocks and with infinite buffer capacities. In this chapter however, a dif-
ferent procedure is used: first the desired process cycle is derived (without necessary idle times
and incorporating finite buffer capacity constraints) and then a control policy is looked for. A
similar approach for traffic control is used by Haijema and Van der Wal [50], in which a control
strategy is looked for to reach a desired system trajectory. The control policies that are proposed
in this thesis follow from methods described in Lefeber and Rooda [73]. The derivations are
not given here, the interested reader is referred to [73]. Related work for stochastic systems has
been done by Hofri and Ross [60], but only equal maximum process rates and infinite buffer
capacities are considered therein.

In Lan and Olsen [69] a fluid model is presented for a multi-product server which has to choose
between the competing resources. A convex optimization problem is defined which results in
a theoretical lower bound on the work in process levels in a deterministic environment. It is
stated that the polling table resulting from the optimization is rare to find and in most cases
unachievable. In this chapter the exact lower bound on the mean work in process level for a
server with two lot types is computed, which in most cases differs from the lower bound found
by Lan and Olsen [69].

A well known scheduling heuristic is based on the cµ-rule (see e.g. Buyukkoc et al. [23]) where
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switching (without setup times) takes place according to a cµ index where c is a cost rate and µ
the process rate. The lot type with highest index has priority. In this chapter, an optimal process
cycle is derived, in which a slow-mode may occur (also referred to in literature as ‘idling’ [25]
or ‘cruising’ [69]). In this mode, lots are processed at a lower rate than the maximum rate. If
the slow-mode occurs, it takes place at the queue with the highest cλ index, even if the cµ index
of the other lot type is higher, as is shown in the case study in Section 5.5.

The remainder of this chapter is organized as follows. In Sections 5.1 and 5.2, the hybrid fluid
model dynamics of a single switching server are described and an optimal process cycle with
respect to time averaged weighted work in process levels of such a server is derived. In Sec-
tion 5.3 a state feedback controller for a single switching server is proposed and convergence
is proved analytically. The influence of finite buffer capacities on optimal process cycles and
the feedback controllers is then studied in Section 5.4. For a case study with finite buffer ca-
pacities, the controller is implemented in simulations with the original hybrid fluid model, a
deterministic discrete event model and a stochastic discrete event model. Results from the sim-
ulations show that the controller gives satisfactory results in an environment where disturbances
(the stochastic behavior) occur. Sections 5.6 and 5.7 give remarks on deriving an optimal cycle
based on pure discrete event dynamics and for situations with multiple product types (more
than two types).

In Sections 5.1–5.7, it is assumed that products arrive at the workstation with a constant arrival
rate. However, this is not always the case. Especially in manufacturing networks, in which the
outflow of lots of one machine serves as inflow for the other machine, the arrival process of lots
for the latter is not constant. In Section 5.8 again a switching server is considered that serves
two lot types. The arrival pattern is now considered piecewise constant. Optimal process cycles
(under certain assumptions) are derived and illustrated by means of a case study.

5.1 Characteristics and dynamics of two queues switch-

ing server

For switching servers, the modelling and control framework as laid down in the introductory
chapter is passed through completely in this chapter. A model type is chosen to describe the
dynamics of such a server. Based on the desired behavior of the closed-loop (controlled) system,
a controller is proposed, which is implemented on the model and on other representations of
switching servers. This section focuses on the modelling part. First the characteristics and
dynamics of a switching server are presented. In Figure 5.1 a schematic representation of a
workstation is given. In this chapter, a workstation consists of a number of parallel first-in-
first-out (FIFO) lot-type specific buffers and a server. A lot is the to be processed entity. The
number of lots in buffer i is denoted by xi. The server can process only one type of lots at a
time. Switching from lot type i to lot type j takes σi j � 0 time units. Without loss of generality,
‘hours’ is used as time unit. Furthermore, unless indicated otherwise, subscript i refers to the
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lot type: i � � 1, 2, . . . , n 
 , with n the number of different lot types in the system. Lots of type i
arrive at the workstation with a constant inter-arrival time of 1 � λi hours. The server processes
this type of lots with a constant process time of 1 � µi hours. In Figure 5.1, a workstation is shown
that processes two lot types. This workstation is used in the analysis in this chapter: n � 2.

Since it is hard to describe the discrete event dynamics of the workstation with the purpose to
perform analysis with it, a hybrid fluid model is used. Instead of using the interarrival times and
process times of lots, the arrival rate λi � 0 and process rate µi � 0 are used. A consequence is
that the buffer levels xi � R � , with R � � � 0, � � , so they lose their natural-valued character.

The partial workload of a lot type on a server is denoted by ρi: ρi
� λi � µi. For reasons of

stability, the total workload of a server must be strictly smaller than 1: � i ρ1 � 1. This workload
must not equal 1, since then no time is left to process the lots that arrive during a setup and buffer
levels eventually explode.

Remark 5.1. Only switchover times σi j strictly greater than zero are considered. When the
switchover times are zero and ρ � 1, the server is able to keep both queues empty by switching
infinitely many times in finite time. This phenomenon is not studied in this thesis.

λ1

λ2

µ1

µ2

x1

x2
σ12, σ21

Figure 5.1: Switching server with two lot types.

The state of the system consists not only of the buffer levels x1 and x2, but also of the mode m of
the server and the remaining setup time x0. The mode is the lot type that the server is processing
or setting up for. The remaining setup time is positive and decreases linearly while a setup is
performed and zero otherwise. The state of the system at time t is given by:

x � t � �
�
x0 � t � x1 � t � x2 � t � m � t � � T � � 0, max � σ12, σ21 � � � R

2� � � 1, 2 
 . (5.1)

It is assumed that the process rate of the machine can be manipulated by a controller, as long
as it does not exceed the maximum rate µi. Let manipulative input ui

� µi be the rate at which
lots are processed. Another input of the system is the required activity u0 of the server. Possible
activities are:

u0 � ❶ : setup for type 1 lots
u0 � ① : process type 1 lots
u0 � ❷ : setup for type 2 lots
u0 � ② : process type 2 lots.
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Note that ‘idling’ is not a separate activity, since it can be regarded as processing lots at rate
zero, thus processing no lots. The complete input vector u is given by:

u � t � �
�
u0 � t � u1 � t � u2 � t � � T � � ❶, ①, ❷, ② 
 � � 0, µ1 � � � 0, µ2 � . (5.2)

The inputs are bounded by constraints:

• lots cannot be processed while the server is busy with a setup;
• when the server is processing lots of a specific type, other lot types cannot be processed;
• if a buffer contains lots, the process rate for that type cannot exceed the maximum process

rate;
• if a buffer is empty, the server can process lots with at most the arrival rate.

Formally, these input constraints can be written as:

u0 � � ❶, ❷ 
 , u1 � 0, u2 � 0 for x0 � 0
u0 � � ①, ❷ 
 , 0 �

u1
� µ1, u2 � 0 for x0 � 0, x1 � 0, m � 1

u0 � � ①, ❷ 
 , 0 �
u1

� λ1, u2 � 0 for x0 � 0, x1 � 0, m � 1
u0 � � ❶, ② 
 , u1 � 0, 0 �

u2
� µ2 for x0 � 0, x2 � 0, m � 2

u0 � � ❶, ② 
 , u1 � 0 0 �
u2

� λ2 for x0 � 0, x2 � 0, m � 2.

Input u0 causes state variables to jump between values. Not only mode m jumps between 1
and 2, but also the remaining setup time jumps from 0 to σi j when the mode switches:

x0 : � σ21, m : � 1 for u0 � ❶ and m � 2 (5.3a)
x0 : � σ12, m : � 2 for u0 � ❷ and m � 1. (5.3b)

Note that during a setup, an intervention may cause a switch to a different lot type. In that
case the ongoing setup is interrupted and the new setup starts. This new setup takes its nominal
duration σi j from the moment of interruption.

In addition to the discrete event dynamics, the following continuous dynamics apply:

�
x0 � t � �

�
� 1 for u0 � t � � � ❶, ❷ 

0 for u0 � t � � � ①, ② 


(5.4a)

�
x1 � t � � λ1 � u1 � t � (5.4b)

�
x2 � t � � λ2 � u2 � t � . (5.4c)

The workstation with two product types has a fixed process cycle:

process type 1 � setup to type 2 � process type 2 � setup to type 1 � process type 1 � . . .

The only freedom in this process cycle is the duration of each step in the cycle, in particular the
steps in which lots are processed. The question now arises what is the best way to perform this
cycle. This best adjective can be translated into an optimization problem. In the next section,
optimal process cycles with respect to time averaged weighted work in process (wip) levels are
investigated.
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5.2 Optimal process cycle of two queues switching server

In this section, a switching server with two incoming lot types and constant arrival rates is
considered, as presented in Section 5.1. An optimization problem is formulated for averaged
weighted work in process levels. For strictly increasing cost functions, the general form of the
process cycle is presented and for linear costs, an explicit solution is derived.

Starting from an arbitrary initial state, the goal is to achieve a switching policy that in the end
minimizes the costs related to wip levels. The cost function J has the following form:

J � limsup
t � �

1
t
� t

0

�
g1 � x1 � s ��� � g2 � x2 � s ����� ds (5.5)

with gi : R � � R � functions that relate costs to wip levels (buffer levels). If assumed that
higher buffer levels result in higher costs, i.e. if only strictly increasing functions gi are taken
into account, gi � xi ��� gi � yi � if xi � yi , then the following statements can be made.

Lemma 5.2. When serving type i, optimal policies first serve at the highest currently possible
rate, after which they might idle. This highest possible rate equals µi when the buffer contains
lots, or arrival rate λi otherwise.

Proof. Suppose that a policy is given for which after having completed the setup to type i,
buffer i contains x0

i lots and at the end of mode i, buffer i contains x f
i lots. Then one can

consider the alternative policy which serves type i equally long in mode i and first serves at the
highest possible rate, i.e. at the maximal processing rate as long as the buffer contains lots or at
the arrival rate in case the buffer is empty. In the end, this alternative policy idles to make sure
that at the end of mode i the buffer contains x f

i lots (see Figure 5.2). Clearly, during mode i the
number of lots in the buffer cannot decrease faster and in the end cannot increase faster than in
this alternative strategy. Therefore, for the alternative policy at each time instant the wip level
of type i is minimal. In particular, if the given policy is different, the wip level of type i is less at
certain time instants. Since the time evolution of the other lot type(s) remains the same for both
policies and gi is strictly increasing, the costs are strictly less using the alternative strategy.

Note that Lemma 5.2 holds for arbitrary number of lot types n
� 2.

Lemma 5.3. Optimal policies do not idle, i.e. process lots at rate zero.

Proof. Suppose that an optimal policy would idle in mode i. Given the result in Lemma 5.2
this is at the end of mode i. Furthermore, suppose that for this policy service in the next mode
stops at time t f . Consider an alternative policy which does not idle in mode i, but switches
immediately to the next mode and stays in this mode until t f , serving an equal amount of lots as
the supposed optimal strategy. For this alternative strategy the evolution of the buffer contents
of type i does not change. Also the amount of lots remaining in the buffer of the next mode at t f

is equal. However, (some of) the lots that are served in the next mode are served sooner, due
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Figure 5.2: Graphical representation of
Lemma 5.2.
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Figure 5.3: Graphical representation of
Lemma 5.4.

to the constant arrival rate and non-negative setup time. Therefore, for some period of time the
number of lots in the buffer of the next mode is strictly less in the alternative strategy. Since g is
strictly increasing, the costs up to time t f are strictly less for the alternative strategy. Therefore,
an optimal policy does not idle.

Note that Lemma 5.3 also holds for arbitrary number of lot types n
� 2.

In order to derive optimal steady state behavior for a server serving two types of lots, first prop-
erties of optimal behavior for one type only without considering the other type are investigated.
Note that in general it might not be possible to have both types behave optimally, but at least
this provides us with a lower bound for optimal system behavior. Next, it is shown that both
types can behave optimally, i.e. that this lower bound can be achieved.

Lemma 5.4. For optimal steady state behavior of type i, buffer i is always emptied.

Proof. Consider a policy where at time t � t0 the system stops serving buffer i which is not yet
empty, and that at t � ts type i is served again. Consider an alternative policy where the system
stops serving buffer i at t � t0 � ε (with 0 � ε �

xi � t0 � � � µi � λi � ), mimics the given policy with
a time delay of ε , and then starts serving type i at t � ts � ε . Mimicking is possible, since
delaying the start of processing lots results in an increase of the buffer level due to the constant
arrival rate. Since some lots of type i are served sooner in the alternative strategy, the number of
lots in buffer i is strictly less at each time instant for the alternative strategy. Since gi is strictly
increasing, the contribution to the costs by type i is strictly less for the alternative strategy (the
gray shaded area represents the difference).

Remark 5.5. Note that the contribution to the costs by the other type(s) might be higher for the
proposed alternative strategy, but as mentioned earlier currently the focus is only on optimizing
a single lot type without taking into account the other lot type(s).



100 CHAPTER 5. A SWITCHING SERVER

Lemma 5.6. For optimal steady state behavior of type i, vacations always take equally long,
i.e. setups and serving the other type(s) between two successive services of type i always takes
equally long.

Proof. Assume that for an optimal steady state behavior of type i, service for type i stops at
time t � 0. From Lemma 5.4 it is known that buffer i is empty then. Since lots of type i arrive at
a constant rate, the contents of buffer i grow linearly, until type i is served again. Then buffer i
is emptied, the contents of buffer i grow linearly until type i is served again, and buffer i is
emptied again, see also Figure 5.4. Now assume that two successive periods of not serving

0 0

x i

�

time �

x i

�

time �

Figure 5.4: Times between successive services are equally long.

type i are not equally long. Without loss of generality, assume that the first period is shorter
than the second. The resulting evolution of the buffer contents of buffer i is depicted in the left
hand side of Figure 5.4. In the right hand side of Figure 5.4 the resulting evolution of the buffer
contents of buffer i is depicted in case both periods of not serving type i are equally long. The
graph of the buffer contents of type i in the left hand side figure can be divided into four parts.
The first part consists of the period that type i is not served. The second part consists of the
period that type i is first served and then not served, until the buffer reaches the value it would
have had if both periods of not serving type i would have been equally long. The third part
consists of the period that the buffer contents exceed this value and return at this value. And,
finally, the fourth part consists of the remaining period. The different parts can be distinguished
based on the fill color in Figure 5.4.

By interchanging the second (dark gray) and third (light gray) part of this graph, the right hand
side of Figure 5.4 can be obtained. Next, it can be seen that the alternative strategy (not serving
type i for equally long duration) results in strictly less lots of type i for a certain amount of time.
Since gi is strictly increasing, the resulting costs for this alternative strategy are strictly less for
type i.

Lemmas 5.4 and 5.6 are valid if a lot type is optimized in isolation. Since multiple lot types
occur in switching servers, optimizing each lot type separately might not lead to a feasible solu-
tion. However, in case of n � 2 lot types, this is not an issue: During the time span a lot type is
not processed, processing the other type can take place. Because the vacation times are equally
long, the process intervals are also equally long: vacation time of one type is processing time of
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the other type. Setups count on both sides in the vacation time. So in general (given (5.5)) for
two types, the shape of an optimal process cycle looks as in Figure 5.5, which always fulfills
the previous lemmas and leads to the following corollary:

Corollary 5.7. An optimal steady state process cycle for a switching server with two different
lot types and strictly increasing costs on wip levels defined as:

J � 1
T
� T

0

�
g1 � x1 � s ��� � g2 � x2 � s ����� ds. (5.6)

needs to have the shape as shown in Figure 5.5. In the left-hand side graph of this figure, the
process cycle is plotted in the � x1, x2 � -plane. The right-hand side graphs show the buffer levels
over time, with the slopes of the lines annotated to them. The cycle has period 1 with period
length T .

0 x1 �

x 2

�

time �

x 2

�

x 1

�
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1 σ12 τµ
2 τλ

2

❶ ① ① ❷ ② ②
①

①

❷

②

② ❶

λ 1 λ
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µ
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λ
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µ
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Figure 5.5: General form of an optimal process cycle for a switching server processing two lot types.
Left: Periodic orbit. Right: buffer levels over time, with slopes of the lines.

Remark 5.8. When setup costs are involved, i.e. setups not only take time but also contribute
to J, optimal cycles still have the shape of Figure 5.5, provided the number of setups to each
type within a process cycle adds linearly to the objective function. In case of two lot types,
only a constant is added to J, since the number of setups to each type is fixed: every lot type
is processed only once in an optimal process cycle. Lan and Olsen [69] take setup costs into
account in their analysis in addition to setup times.

Remark 5.9. When the server processes lots at the arrival rate, thus keeping the respective
buffer empty, it is in slow-mode. An example of a slow-mode is visible in Figure 5.5, where
the orbit stays on the vertical axis for a while. One might argue that this slow-mode does not
occur for an optimal policy since it means that capacity is lost due to processing at lower rates
than the maximum rate. However, introducing a slow-mode implies that the duration of the
process cycle becomes longer, which in turn implies that the system switches less. Possibly
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a trade-off exists between losing capacity due to processing at lower rates and losing capacity
due to switching more often. The outcome of this trade-off depends on the specific choice for
the functions gi.

In the remainder of this chapter, linear costs on wip levels are assumed, resulting in the follow-
ing costs for optimal process cycles:

J � 1
T
� T

0

�
c1x1 � s � � c2x2 � s � � ds (5.7)

where c1 and c2 are constant weighting factors for lot type 1 and 2 respectively. In addition,
without loss of generality, assume c1λ1

�
c2λ2. Moreover, define σ � σ21 � σ12. Corollary 5.7

describes a class of trajectories to which an optimal trajectory belongs (not all trajectories with
the shape of Figure 5.5 result in optimal wip levels). From this class of trajectories, the optimal
one obeys the following theorem.

Theorem 5.10. Optimal process cycles with respect to time averaged weighted wip levels for
a switching server with two different lot types and linear costs on wip levels (5.7), have a
slow-mode (see Remark 5.9) for at most one lot type (type 1). During the slow-mode, lots are
processed at their arrival rate, keeping the respective buffer empty. The slow-mode occurs if
and only if c1λ1 � ρ1 � ρ2 ��� � c1λ1 � c2λ2 � � 1 � ρ2 ��� 0.

Proof. See Appendix A.2.

X1X �2

X2

X �1

x1
� X1

�

X
2

�

x 2

�

Figure 5.6: Construction of process cycle with minimal maximum buffer lengths.

In addition to the optimal process cycle, another process cycle is of particular interest: the cycle
with a minimal period and with minimal maximum buffer lengths. This process cycle can be
obtained by solving a mathematical program: minimize the maximum buffer levels such that
the cycle remains feasible. In Figure 5.6 the construction of the cycle is sketched. In the left
hand side, a cycle similar to Figure 5.5 is given. The solid lined arrows indicate parts of the
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process cycle that are fixed: the setup times and the direction of the process lines. Capitals Xi

denote the buffer levels of type i lots at which a setup starts to mode i. It can be seen that if a
setup starts at Xi, eventually the arrow hits the other axis at X �i . The cycle is feasible if and only
if X �1 �

X2 and X �2 �
X1. The coordinates of X �i can be determined:

X �1 � λ1

�
σ12 � X1 � λ2σ12

µ2 � λ2 � (5.8a)

X �2 � λ2

�
σ21 � X2 � λ1σ21

µ1 � λ1 � . (5.8b)

Constraint lines X �1 �
X2 and X �2 �

X1 are shown (sketch) in the right hand side of Figure 5.6.
The slopes of the lines are always positive, since λi � 0 and µi � λi. Therefore, the minimal
maximum buffer lengths are at the intersection of the constraint lines. The graph also shows
that this is the optimal value for both X1 and X2. The resulting periodic orbit of this cycle
with minimal maximum buffer lengths is shown in the left hand side graph of Figure 5.7. As
can be seen, no slow-modes occur: after having processed a specific lot type until its buffer
is empty, the system immediately switches to the other lot type. The buffer values at specific
corner points of this (pure) bow tie curve are indicated with an asterisk ( � ) and hats (̂ ) are used
to indicate maximum buffer levels for a given cycle. The coordinates of interest are:

After ①: � 0, x �2 � with x �2
� λ2

�
σ21 � σρ1

1 � ρ1 � ρ2 � (5.9a)

After ❷: � λ1σ12, x̂ �2 � with x̂ �2
� λ2σ

�
1 � ρ2

1 � ρ1 � ρ2 � (5.9b)

After ②: � x �1 , 0 � with x �1
� λ1

�
σ12 � σρ2

1 � ρ1 � ρ2 � (5.9c)

After ❶: � x̂ �1 , λ2σ21 � with x̂ �1
� λ1σ

�
1 � ρ1

1 � ρ1 � ρ2 � . (5.9d)

These coordinates are in accordance with the values in the examples of [15, 34] for the symmet-
ric queues. In the right hand side graph of Figure 5.7 the periodic orbit of an optimal cycle has
been shown for the case where a slow-mode occurs. This orbit is referred to as the truncated
bow tie curve. The coordinates with flat ( � ) and sharp ( � ) symbols denote the points where the
slow-mode starts and ends respectively.

Remark 5.11. The lines corresponding to similar phases in the process cycle have the same
slopes in the left hand side and right hand side graph. Notice that therefore x �2

�
x �2 and x �1

�
x �1

(these hold with equality iff no slow-mode occurs). Although it looks counterintuitive, the right
hand side graph has lower mean weighted wip levels than the left hand side graph, in case a
slow-mode occurs according to the condition stated in Theorem 5.10. The counterintuitiveness
is due to the fact that sense of time is lost in these graphs: the left hand side graph has a shorter
period than the right hand side graph. The system spends a relatively large amount of time on
the vertical axis (x1 � 0) of the truncated bow tie, compared to the pure bow tie.
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Figure 5.7: Pure bow tie curve and truncated bow tie curve.

The coordinates of interest for the truncated bow tie curve are:

After ① at µ1: � 0, x �2 � with x �2 � λ2

�
σ21 � σρ1 � 1 � α1ρ2 �

1 � ρ1 � ρ2 � (5.10a)

After ① at λ1: � 0, x �2 � with x �2 � λ2

�
σ21 � σ � α1 � 1 � ρ1 � � 1 � ρ2 ��� ρ1 �

1 � ρ1 � ρ2 � (5.10b)

After ❷: � λ1σ12, x̂2 � with x̂2 � λ2σ
� � 1 � ρ2 � � 1 � α1 � 1 � ρ1 � �

1 � ρ1 � ρ2 � (5.10c)

After ②: � x �1, 0 � with x �1 � λ1

�
σ12 � σρ2 � 1 � α1 � 1 � ρ1 � �

1 � ρ1 � ρ2 � (5.10d)

After ❶: � x̂1, λ2σ21 � with x̂1 � λ1σ
� � 1 � α1ρ2 � � 1 � ρ1 �

1 � ρ1 � ρ2 � . (5.10e)

The value of α1 can be computed using expressions in Appendix A.2 and is proportional to
the duration of the slow-mode. Note that if α1 � 0, the pure bow tie trajectory actually is the
optimal curve: x �2 � x �2 � x �2 and consequently x �1 � x �1 .

Example 5.12. Consider two uni-directional roads crossing each other (see Figure 5.8). Cars
approach the intersection with constant speed and constant distance between each other. Traffic
lights have been placed for safe traffic flow. Between successive passages of cars, all traffic
lights are red for 10 seconds (σ12 � σ21 � 10 seconds) to clear the intersection completely.
Acceleration and deceleration effects are neglected. Cars from the west arrive at a rate of 40
cars/minute, while cars from the south arrive at a rate of 10 cars/minute.
The intersection maximum capacity is 100 cars/minute for both car flows. Do the traffic lights
have to turn red immediately after the queues are gone? Assume that both queues are of equal
importance: c1 � c2 � 1. Indeed c1λ1

�
c2λ2, so the expressions and conditions from this

chapter can be used without re-labelling the car flows. This traffic lights problem is very much
alike the switching server problem that was treated in this section. According to Theorem 5.10
the optimal traffic light cycle contains a slow-mode. This slow-mode has a duration of 10.4
seconds. This means that when the western queue has disappeared, the traffic light should
remain green until the southern queue has reached a certain length x �2, which according to (5.10)
is approximately 6 cars. The average waiting time for a car in a queue is minimal then ( � 12.8
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Figure 5.8: Cars approaching an intersection: what are the best switch-over times for the traffic lights?

seconds), according to Little’s law, see [75] and the introductory chapter of this thesis. If the
slow-mode would have been omitted, which results in the pure bow tie curve (clearing policy),
the average waiting time would be 13.2 seconds. Introducing the slow-mode thus results in a
(small) reduction of the average waiting times.

In this section, an optimal process cycle for a switching server with two lot types and setup
times has completely been determined. Additionally, the process cycle with minimal period
and minimal extreme buffer lengths has been characterized. In the next section, a state feedback
controller is proposed that steers the trajectory of the system to this desired optimal trajectory,
from any arbitrary starting point (initial state).

5.3 State feedback control of switching server

During the start-up of a factory, or due to disturbances, the trajectory of a workstation is in
general not on the desired curve. Therefore, a controller is needed to steer the process trajectory
to the desired curve. A possible controller can be derived using the theory presented in [73].

Proposition 5.13. The following informal state feedback control law brings the system of Fig-
ure 5.1, with its dynamics described by (5.3) and (5.4), to the desired optimal periodic process
cycle with respect to minimal time averaged wip level.

• Mode 1: Process lots of type 1 at rate µ1 as long as x1 � 0, then go to Mode 2.
• Mode 2: Process lots of type 1 at rate λ1 as long as x2 � x �2, then go to Mode 3.
• Mode 3: Perform a setup to type 2 lots, after σ12 go to Mode 4.
• Mode 4: Process lots of type 2 at rate µ2 as long as x2 � 0, then go to Mode 5.
• Mode 5: Process lots of type 2 at rate λ2 as long as x1 � x �1, then go to Mode 6.
• Mode 6: Perform a setup to type 1 lots, after σ21 go to Mode 1.

A formal representation of this feedback control law is given in Appendix A.3.
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Dependent on the state of the system, the controller is in one of the six controller modes ini-
tially. This follows trivially from the controller mode descriptions. Mode 2 and Mode 5 of
this controller might have a duration of zero, immediately proceeding to Mode 3 and Mode 6
respectively. The controller modes are not to be confused with mode m of the server.

Proof. See Appendix A.3.

The controller presented in Proposition 5.13 is a double threshold policy, i.e. exhaustive pro-
cessing and switch only whenever the other buffer level has reached some value. Hofri and
Ross [60] use a similar double threshold policy, though implemented in a stochastic environ-
ment. The difference between their result and the controller presented here is that their analysis
has only been done for workstations with equal (stochastic) process rates for both lot types.
Moreover, in [60], only infinite buffer capacities have been taken into account. In the next sec-
tion, the optimal process cycle analysis and feedback controller are extended to situations with
finite buffer capacities.

5.4 Finite buffer capacities: effects on optimal process

cycle and controller

In this section, an optimal process cycle for a switching server with two lot types and setup
times is determined for a workstation with finite buffer capacity. Buffer level limitations not
only occur in physical systems, like manufacturing systems or food processing industry, but
also in data flow or communication systems, where data storage is most often limited. In fact,
storage capacity is always limited, but in special cases it can be regarded as virtually unlimited
and then the analyses of Sections 5.2 and 5.3 are applicable. The results from these sections
serve as a starting point to derive an optimal process cycle in the finite buffer case.

When the buffer level constraints are ‘large enough’ (which is specified below), the optimal
process cycle as derived in the previous section does not change. However, when an optimal
process cycle crosses a buffer level constraint, the process cycle is not feasible anymore and
needs to be adjusted, if possible. In the previous section, it was derived that the process cycle
with minimal maximum buffer lengths was the pure bow tie. If the pure bow tie curve violates
a buffer level constraint, no feasible process cycle is possible anymore. In the remainder of this
section, optimal process cycles are derived for situations where either the unconstrained optimal
process cycle is not restricted by the maximum buffer capacities, or an adapted process cycle
is possible, then serving as new optimal process cycle. For this constrained situation, again a
feedback controller is proposed which is analytically proven to converge to the new optimal
process cycle.

The maximum number of lots in the buffers is denoted by xmax
1 and xmax

2 . In Section 5.2, the
pure bow tie curve was defined as the periodic orbit with minimal period and with minimal
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maximum buffer levels: x̂ �1 and x̂ �2 . As mentioned, if the buffer capacity is less than these
values, no periodic orbit can be found, so the first conditions on the new optimal process cycle
are:

xmax
1

�
x̂ �1; xmax

2
�

x̂ �2 (5.11)

with x̂ �1 and x̂ �2 as in (5.9).

0 0x1
�

x 2

�

x1
�

x 2

�

x̄ �1 xmax
1

x̄ �2

x̄ �2

ˆ̄x2

x̄ �2

x̄ �2

xmax
2

x̄ �1 ˆ̄x1

Figure 5.9: New optimal cycle, due to buffer capacity constraints. In dashed gray: original uncon-
strained optimal cycle.

Assume that the maximum buffer capacities cross an unconstrained process cycle: xmax
1 � x̂1

or xmax
2 � x̂2 (recall that the hats ˆ denote the maximum buffer lengths of a process cycle). The

unconstrained optimal process cycle now has to be adjusted, to prevent violation of the buffer
constraint. In Figure 5.9, buffer constraints have been drawn for type 1 lots (left hand side
graph) and type 2 lots (right hand side). The coordinates of the optimal process cycle with
buffer level constraints are denoted with bars � �̄ . The original (unconstrained) process cycle is
shown in dashed gray. Examining the geometrical implications of buffer level constraints on
the optimal periodic orbit, the following expressions can easily be derived for the coordinates
of the new optimal process cycle:

x̄ �1 � min
�
x �1, xmax

1 � λ1σ21, λ1

�
σ12 � xmax

2
µ2 � λ2

� �
ˆ̄x1 � min

�
x̂1, xmax

1 , λ1

�
σ � xmax

2
µ2 � λ2

� �
x̄ �2 � min

�
x �2, λ2

�
σ21 � xmax

1
µ1 � λ1

� , λ2

�
σ21 � λ1

µ1 � λ1

�
σ � xmax

2
µ2 � λ2

� � �
x̄ �2 � min

�
x �2, µ2 � λ2

λ1
� xmax

1 � λ1σ ��� λ2σ12, xmax
2 � λ2σ12 �

ˆ̄x2 � min
�
x̂2,

µ2 � λ2
λ1

� xmax
1 � λ1σ � , xmax

2 � .

(5.12)

Note that if no slow-mode occurs in the unconstrained optimal process cycle, x̄ �2 � x̄ �2 � x �2 �

x �2 � x �2 , ˆ̄x2 � x̂2 � x̂ �2 , x̄ �1 � x �1 � x �1 and ˆ̄x1 � x̂1 � x̂ �1 . Another observation is that if the optimal
process cycle with slow-mode changes due to the buffer capacity constraints, the duration of
the slow-mode is shortened. In the minimum expressions in (5.12), the first term is ‘active’ (the
smallest term) if the buffer level constraints are not restrictive for both lot types. The second
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term is ‘active’ if the constraint on type 1 lots is most restrictive and the third term is ‘active’ if
the buffer level constraint for type 2 lots is most restrictive.

Before the state feedback controller is adjusted to accommodate the buffer level constraints,
first a closer look at the � x1,x2 � -plane is taken. This plane can be divided into regions from
which it is either possible or impossible to reach the desired steady state process cycle.

Lemma 5.14. Regardless of the state feedback policy, the � x1,x2 � -plane can be divided into
regions from which it is impossible to reach the steady state process cycle when in a certain
mode, see Figure 5.10. The regions marked with ① � and ② � indicate that if the trajectory
enters that region processing type 1 or type 2 lots respectively, the trajectory eventually becomes
infeasible (i.e. a buffer constraint is violated). If the trajectory is on the bow tie curve shifted
into the upper right corner of the � x1,x2 � -plane, the trajectory stays there.

Proof. It is easy to see that once the trajectory has crossed the dashed lines in Figure 5.10 and
enters the areas with a � next to an action ① or ②, a setup to the other lot type causes the buffer
constraint to be violated. Moreover, if the setup is not initiated, the trajectory also crosses the
borders of the feasible domain. For the regions in or above the upper-right bow tie, the proof is
included in the feedback control law proof of Proposition 5.15 in Appendix A.4.

Optimal process cycles for a switching server with two product types and finite buffer capacity
have completely been defined. In addition, insight has been obtained about feasible and infea-
sible areas in the � x1,x2 � -plane. By using the theory presented in [73] the feedback controller
as presented in Proposition 5.13 can be modified by taking into account the buffer constraints.

0 x1 �

x 2

�

xmax
1

x̄ �2

xmax
2

xmax
1 � λ1σ21

xmax
2 � λ2σ12

xmax
2 � x̂ �2

xmax
1 � x̂ �1

① � ① � ① � ② �

② �

② �

Figure 5.10: Feasible and infeasible regions for trajectories, subject to buffer level constraints.
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Proposition 5.15. A feedback which stabilizes a trajectory to the derived optimal process cycle
if started from a feasible starting point (see Figure 5.10) is given by:

• Mode 1: ① at µ1 as long as x1 � 0 and x2 � xmax
2 � λ2σ12, then go to Mode 2.

• Mode 2: ① at λ1 as long as x2 � x̄ �2, then go to Mode 3.
• Mode 3: perform ❷, after σ12 go to Mode 4.
• Mode 4: ② at µ2 as long as x2 � 0 and x1 � xmax

1 � λ1σ21, then go to Mode 5.
• Mode 5: ② at λ2 as long as x1 � x̄ �1, then go to Mode 6.
• Mode 6: perform ❶, after σ21 go to Mode 1.

Dependent on the state of the system, the controller is in one of these modes, which follows
trivially from the mode description.

Proof. See Appendix A.4

The switching server with two lot types and setup times now has a suitable controller, for
which convergence has been proven. In the next section, the controller is implemented in a case
study, where the hybrid fluid model has been replaced with a discrete event simulation and with
stochastic process times.

5.5 Case study: controller implementation

For both the unconstrained and the constrained buffer situation, optimal process cycles have
been derived and state feedback controllers have been proposed. Although convergence was
proven analytically, the controllers are validated in a case study, because the controller has
been proposed based on a fluid model. Validation on discrete event models is needed. In this
section an optimal process cycle is determined for the situation with finite maximum buffer
capacities. A feedback controller (as proposed in Section 5.4) is implemented. The controller
uses measurements of the state to determine its control actions. The proposed controller is
implemented in three different simulations:

• original hybrid fluid model which was used in the derivation of optimal process cycles;
• deterministic discrete event simulation of the switching server;
• and a discrete event simulation with stochastic inter-arrival times and stochastic process

times of lots.

The results of the simulations are not only compared with each other, but also with other con-
trollers:

• a controller which only uses a clearing policy and a mechanism to prevent buffer con-
straint violations;

• a controller as proposed by Lan and Olsen [69], which eventually boils down to a clearing
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policy for the specific numerical example;
• and a Savkin-type controller (see [97–99]) which uses fixed time spans for processing

certain lot types.

λ1

λ2

µ1

µ2

x1

x2
σ12, σ21

Figure 5.11: Switching server.

The discrete event models have been specified in language χ
(see [9]). The models have been included in Appendix B.2.
The parameter settings and buffer level constraints used for
the simulation are presented in Table 5.1. The cost weight-
ing factors c1 and c2 are equal to 1. The initial state of the
system is also given in Table 5.1.

The condition for a slow-mode is evaluated:

c1λ1 � ρ1 � ρ2 ��� � c1λ1 � c2λ2 � � 1 � ρ2 � � � 23
24 � 0 (5.13)

so a slow-mode occurs for type 1 lots. Note that the slow-mode occurs for the lot type with
highest cλ index and lowest cµ index, (cf. Buyukkoc et al. [23]). The optimal process cycle is
characterized as follows: x̄ �2 � 15, x̄ �2 � 18, ˆ̄x2 � 24, x̄ �1 � 27 and ˆ̄x1 � 45. The process interval
lengths are as follows: τ µ

1
� 3 hours, τλ

1
� 1 hour, τµ

2
� 1 hour. The total period length in

the steady state optimal process cycle is 9 hours. The buffer level capacity constraints did not
influence the determined optimal periodic orbit.

Table 5.1: Parameter settings and initial conditions for controller implementation simulations.

λ1: 9 lots/hr. xmax
1 : 70 lots

λ2: 3 lots/hr. xmax
2 : 40 lots

µ1: 24 lots/hr. x0 � 0 � : 0 hrs.
µ2: 27 lots/hr. x1 � 0 � : 50 lots

σ12: 2 hrs. x2 � 0 � : 20 lots
σ21: 2 hrs. m � 0 � : 2

5.5.1 Hybrid fluid model simulation

The hybrid fluid model (5.1)–(5.4) has been simulated with MATLAB. The source of the simu-
lation code has been included in Appendix B.2, along with a detailed explanation of the script.

Results of the simulation are shown in Figures 5.12 and 5.13. The orbit goes from light-gray
to black in Figure 5.12, for better visual understanding. The graph axes limits correspond with
the maximum buffer capacities. The first and second setup that take place are invoked by the
buffer level constraint. That is why the buffer is not cleared before a setup to the other lot type
takes place. After three setups, the trajectory touches the x1 � 0 axis below x̄ �2. From this point,
the trajectory is on the determined optimal periodic orbit. A slow-mode is performed until the
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Figure 5.12: Orbit of hybrid fluid model simulation.
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Figure 5.13: Buffer levels in hybrid fluid
model simulation.

buffer level of type 2 lots reaches x̄ �2, after which the setup to process type 2 lots takes place,
etc. Figure 5.13 shows the individual buffer levels over time.

5.5.2 Deterministic discrete event simulation

Both a deterministic and a stochastic discrete event simulation have been carried out. Formal-
ism χ 1.0 has been used [8, 9, 59], which has been introduced in Section 2.1.3. The model of
the deterministic simulation has been included in Appendix B.2. An iconic model of this model
is shown in Figure 5.14. Lots are sent from two generators G to buffer B. This buffer keeps two
lists where lots are stored before they are processed by machine M. Finished lots are sent to
the exit process E. The feedback controller has been implemented in the buffer process, since
it makes use of the actual buffer contents and the mode of the system. The controller decides
when the machine has to switch modes; this information is sent to machine M over channel e.
The lot type in this model is simply an identification number, but this information is not used
explicitly. Another possibility would have been to communicate by means of synchronization
and use counters in the buffer process for the actual buffer levels. The latter has not been imple-
mented to facilitate performance measurement (see Section 5.5.7): to measure quantities like
flow time, more information about the lots has to be stored in the lot variable. The simulation
results (Figures 5.15 and 5.16) show great resemblance with the hybrid fluid model simulation.
The lines in the graph however look like stairs, due to the integer valued variables.

G

G

B M E

a

b
c d

e

Figure 5.14: Iconic representation of χ model of two queues switching server.
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Figure 5.15: Trajectory of deterministic discrete event
simulation.
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Figure 5.16: Buffer levels in deterministic
discrete event simulation.

5.5.3 Stochastic discrete event simulation

A stochastic simulation has been carried out for the workstation whose characteristics have
been presented in Table 5.1. The inter-arrival times and process times of lots are exponentially
distributed (with their means equal to the means in the deterministic case). The χ model of this
simulation has been included in Appendix B.2. The iconic representation is similar to the deter-
ministic case, as shown in Figure 5.14. In the stochastic case, it is possible that buffer capacity
constraints are violated, e.g. when many lots arrive within a short time. The discrete event
model then interrupts the arrival of lots until space is available again in the buffer. This method
is used in all stochastic discrete event simulations in this thesis. Results of one simulation are
shown in Figures 5.17 and 5.18. As can be seen, the stochastic behavior has a great impact on
the shape of the orbit, but the truncated bow tie can be distinguished (at least the slopes of the
lines). The switchover coordinates are also very alike the deterministic simulation.
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Figure 5.17: Trajectory of stochastic discrete event sim-
ulation.
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Figure 5.18: Buffer levels in stochastic dis-
crete event simulation.



CHAPTER 5. A SWITCHING SERVER 113

5.5.4 Clearing policy

A simple but effective strategy to stabilize a workstation (with ρ � 1) and reduce the number of
lots in the system is by using a clearing policy. This policy states that buffers should be emptied
and after a buffer has been emptied, a setup to another lot type takes place. A clearing policy is
implemented in a simulation with the hybrid fluid model. An extension is made to make sure
that buffer capacity constraints are not violated. To this purpose, similar switching rules as in
the proposed controller (Proposition 5.15) are added to deal with the finite buffer capacities.
It is expected that the trajectory is steered towards the pure bow tie curve (cf. the proof of
Proposition 5.13 in which the trajectory converges to the pure bow tie curve if slow-modes are
not taken into account). The same initial conditions are used in the simulation as in the previous
simulations (Table 5.1). Results of the simulation are shown in Figures 5.19 and 5.20. Indeed,
the trajectory is steered towards the pure bow tie curve and does not contain a slow-mode, as it
did with the proposed controller.
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Figure 5.19: Trajectory of hybrid fluid model simulation
with clearing policy.
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Figure 5.20: Buffer levels in hybrid fluid
model simulation with clearing policy.

5.5.5 Lan and Olsen [69]

In Lan and Olsen [69] a theoretical lower bound on the mean wip level is computed for a multi-
product server with both setup times and setup costs. The analysis is based on a similar fluid
model assumption as used in this chapter. The theoretical lower bound that is computed might
not be achievable in practice. Lan and Olsen introduce cruising conditions (they use ‘cruising’
as a term for processing lots in a slow-mode) to determine which queue is most effective to
cruise at and whether enough capacity exists to cruise at all. Furthermore, they use a clearing
policy with double thresholds to steer a trajectory to the desired one, similar to the controller
that was proposed in this chapter. For the numerical example in this section, their cruising
conditions do not hold. Eventually, they obtain the pure bow tie curve as desired periodical
orbit, with equal performance as the clearing policy from the previous section. The work of
Lan and Olsen is explained in more detail in Section 5.7, which treats workstations that serve
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more than two product types. Finally, it should be noted that Lan and Olsen [69] do not handle
buffer level constraints in their analysis and controller.

5.5.6 Savkin [98]

The control method that is proposed in [97–99] by Savkin is essentially a method to stabilize
a network of servers. Stable here means that all buffer lengths remain bounded. A minimal
period length for the network process cycle is derived and the process interval lengths (how
long should the server process lots of each type) are then determined. The result is a feed
forward controller, which does not base its control actions on measurements of the state, but
follows a fixed time-based process cycle. A disadvantage of this approach is that it does not
reduce the number of lots in the system to an optimal process cycle: from the starting point a
feasible process cycle is obtained.

A single switching server processing two different lot types in fact is the smallest possible
network. The Savkin controller is implemented in the hybrid fluid model with the same initial
conditions as the previous simulations. Since [98] does not take finite buffer capacities into
account, it is assumed that lots which arrive at a full buffer are scrapped. Note that this is a
start-up effect, which takes place at most once per lot type in the deterministic case.

The minimal period length of a stable process cycle is the period length of the pure bow tie
curve. For the parameters in Table 5.1, the minimal period length is 288

37 � 7.78 hours. Pro-
cessing lots of type 1 takes 108

37 � 2.92 hours and processing type 2 lots takes 32
37 � 0.86 hours.

The two setup times of two hours each complete the period length. The simulation is started
with processing type 2 lots, where it is assumed that the setup to type 2 lots has just completed.
Buffer 2 is emptied, after which a very small amount of time ( 7

222 hour) is left for processing
type 2 lots in slow-mode. Then the setup to type 1 lots takes place. During this setup, buffer 1
gets fully loaded before the setup is complete. A total of 5 58

74 lots of type 1 is scrapped now.
After this setup, the trajectory is in point � 70, 6 � in the � x1, x2 � plane and is able to process at
its bow tie curve. The trajectory and the buffer levels are visible in Figures 5.21 and 5.22.

As can be seen in the figure, buffer 1 is never emptied in its stable cycle. This already indicates
that the obtained trajectory is not an optimal one (cf. Lemma 5.4). The minimal buffer length
value of type 1 lots is 26 8

37 , so with respect to the bow tie curve obtained by a clearing policy,
the mean wip level is increased by 26 8

37 for the Savkin control policy. Note that for different
initial settings for the simulation, this number may vary.

5.5.7 Performance comparison and evaluation

Different simulations with the proposed controller have been carried out: a hybrid fluid model
simulation, a deterministic discrete event simulation, a stochastic discrete event simulation and
a simulation with the hybrid fluid model using a clearing policy. The performance of the con-
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Figure 5.21: Trajectory of hybrid fluid model simulation
with controller based on Savkin [98].
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Figure 5.22: Buffer levels in hybrid fluid
model simulation with controller based
on Savkin [98].

trolled system is determined. For the given throughput (which equals the total inflow in steady
state for reasons of mass conservation), the mean wip level and mean flow time are determined
using Little’s law [75]:

w � δ � ϕ

in which w denotes the mean work in process level, δ is the throughput and ϕ is the mean flow
time of lots. For all simulations, results are shown in Table 5.2.

In the hybrid fluid model simulation, steady state is reached when buffer level x1 becomes zero
for the first time. From that point, the determined optimal process cycle is followed exactly. For
both lot types, the mean wip level and flow time follow from the hybrid fluid model analysis
and Little’s law.

For the discrete event simulations, any possibly present transient part of the trajectory has been
cut-off by computing the mean wip levels and flow times only after 30 process cycles, guar-
anteeing that the system was in steady state and that all lots in the system had been generated
by the generators and not as part of the initial state. After this transient period, 100 process
cycles have been performed. The mean flow times of the lot times were then determined. This
simulation has been repeated 20 times to compute the mean and standard deviation of the mean
flowtimes. With Little’s law the mean wip levels were determined.
The differences between the deterministic discrete event model and the hybrid fluid model are
caused by the fact that processing a lot takes time. So when a buffer is empty and the switching
conditions are met, the switch cannot take place immediately, because first the final lot has to
be finished processing. This causes small differences in the mean wip level. A more elaborate
explanation of the effects of the discrete nature of the buffer levels is given in Section 5.6.

The stochastic simulation results show that rather good results are obtained with the controller.
In Table 5.2, in addition to the mean values the standard deviations are shown. Taking these
values into account, one can conclude that no significant rise of the mean wip levels and flow
times occur due to the stochastic nature of the arrival and process rates. It can be investigated
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Table 5.2: Performance comparison for different simulations with a single switching server, processing
two lot types.

simulation lot type mean wip level mean flow time

hybrid fluid model 1 20 20
9 � 2.22

2 12 4

1+2 32 8
3 � 2.67

deterministic discrete event 1 20.10 2.23

2 11.68 3.89

1+2 31.78 2.65

stochastic discrete event 1 20.34 � 0.46 2.26 � 0.052

(20 simulations over 100 cycles) 2 12.31 � 0.16 4.10 � 0.052

1+2 32.63 � 0.46 2.72 � 0.038

clearing policy 1 810
37 � 21.89 90

37 � 2.43

Lan and Olsen [69] 2 384
37 � 10.38 128

37 � 3.46

1+2 1194
37 � 32.27 199

74 � 2.69

Savkin [98] 1 1780
37 � 48.11 1780

333 � 5.35

2 384
37 � 10.38 128

37 � 3.46

1+2 2164
37 � 58.49 541

111 � 4.87

what the influence is of the values of x �1 and x �2 on the stochastic simulation results. Slight
adaptation of these values (which have been obtained from the fluid model analysis without
stochastics) might result in better performance for the stochastic situation. Another interesting
topic is studying the influence of the parameters of the distributions on the process cycle and
performance. This is not investigated in this thesis and is left for future research.

The clearing policy (with finite buffer constraint prevention) settles the trajectory down to the
pure bow tie curve. For the given numerical example this is not an optimal process cycle,
since introducing a slow-mode results in lower mean wip levels, as the hybrid fluid model
simulation showed. The controller that is proposed by Lan and Olsen [69] eventually boils
down to a clearing policy for the given numerical example. The cruising conditions, which
indicate whether a lot type should be processed in slow-mode, do not hold for both lot types.
Therefore the controller reduces to a clearing policy for both lot types. Finally, the Savkin
control strategy performed as predicted: the number of lots in the system is not reduced where



CHAPTER 5. A SWITCHING SERVER 117

possible. Due to the feed forward mechanism with fixed process interval lengths, the period
of one cycle cannot be enlarged to process more lots in a cycle than arrive during the minimal
cycle period. Therefore this controller only stabilizes the system and does not reach an optimal
cycle. It is questioned how the trajectory evolves in a disturbed environment (e.g. stochastics),
since the controller does not measure anything from the system under control. Whether the
buffer levels remain stable (bounded) under the Savkin policy with disturbances has not been
investigated in this thesis.

5.6 Discrete event analysis

The derivation of an optimal process cycle has been performed with a hybrid fluid model, in
which buffers can have any non-negative real value. Individual lots cannot be distinguished. In
the discrete event simulations of the previous sections, individual lots are distinguished. The
buffer levels are integer valued then. For the deterministic case, the effects of the discrete nature
of the buffer levels on the analysis of process cycles are studied in this section.

Given a buffer with lots arriving with a constant inter-arrival time, how many lots can be pro-
cessed before the buffer is empty? And how long does this take? This depends on the ‘phase’
of the arrival process. Consider a constant arrival rate of λ lots/hour. This means that every 1 � λ
hours, a lot arrives at the buffer. For the continuous setting, being in the middle between two
successive arrivals would be translated to a half lot in the buffer. Suppose that the last arrival
took place δ hours ago and the discrete buffer level is x lots. In the continuous setting, the buffer
level would be x � δλ . In Figure 5.23, the continuous approximation and discrete equivalent
of the arriving lots are shown with the gray solid and dashed lines. Two examples are given in
the figure. On the left hand side, x � 2 and δ � 4, with λ � 1

5 . On the right hand side, x � 2
and δ � 2. The black solid and dashed line represent the number of lots that have been taken
from the buffer, for the discrete event and continuous case respectively. At t � 0, the machine
starts processing lots (µ � 1

2 ), so immediately one lot is taken from the buffer (as can be seen
in the graphs). To find the intersection point of the two continuous approximation lines, the
following equation is to be solved:

µt � 1 � λ t � x � δλ (5.14)

which gives as a result for the number of lots n that can be processed:

n � µ
�

x � δλ � 1
µ � λ � � 1. (5.15)

If n is not an integer, the actual number of lots that has entered or left the buffer is:

n �
�
µ

�
x � δλ � 1

µ � λ � � 1 � �
�
µ

�
x � δλ � 1

µ � λ � � � 1 (5.16)

in which � A � denotes the largest integer less than or equal to A. Since µ � λ (stability issue), the
dashed black line makes its discrete step earlier than the dashed gray line after the intersection
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point of the solid lines. This would mean that a lot would be taken from the buffer that had not
yet arrived. This is not possible, so n ��� µ �

x � δλ � 1
µ � λ ��� � 1 is an upper bound on number of

lots that can be processed. Left of the intersection point of the solid lines, again µ � λ , so the
final discrete step of the black dashed line prior or equal to the intersection point must be later
than or equal to the last discrete step of the gray dashed line prior or equal to the intersection
point. This means that the final lot before the intersection point arrived earlier or at the same
time instant than it was started on the machine. The derived number of lots n therefore also is
the lower bound. So at the moment a workstation switches modes and has completed the setup
time, the number of lots that can be processed before the buffer is empty equals:

n �
�
µ

�
x � δλ � 1

µ � λ � � � 1. (5.17)

The duration of this process interval is n � 1
µ time units. For the left hand side graph of Fig-

ure 5.23, the number of lots that can be processed is four, while in the right hand side situation,
only three lots can be processed. These points are indicated in the figure by black dots.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

time � time �

nu
m

be
ro

fl
ot

s

�

nu
m

be
ro

fl
ot

s

�

Figure 5.23: The black dots indicate the number of lots that can be processed given a buffer level and
phase of the arrival pattern. Gray solid and dashed line: number of lots that have arrived at the buffer.
Black solid and dashed line: number of lots that have been taken from the buffer.

When using expressions like (5.17) in analyses, rather complicated expressions for characteriz-
ing process cycles arise, if possible at all to state them explicitly. Also in further computations
(e.g. convergence proofs) the discrete expressions may become too complex to show conver-
gence. Therefore it is not convenient to use discrete event analysis for determining desired
process cycles. Hybrid fluid models are an abstraction of the discrete event character of the
workstation, but allow for relatively easy analysis and computations. The fluid approximation
is generally accepted to be valid for situations where many lots are involved and where the
process time is relatively short compared to the flow time of lots. These issues become visible
when the state feedback controllers based on the fluid model analysis are implemented in a
discrete event simulation. Especially when the threshold levels for switching, x �1 and x �2, are
non-integer, one should decide at which moment to switch. For example, if x �2 � 181

2 , when
should the workstation switch? Exactly between two successive arrivals of lots? And what to
do with the lot that is currently being processed? These issues are not addressed here. In the
case studies of Section 5.5, the workstation only switches after a lot has been completed and
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the threshold level has been reached. The effects of different controller implementations can be
studied, but are left for future research.

5.7 On multiple product types and optimal process cycles

So far, only workstations serving two product types have been considered. But what if a work-
station processes more than two different lot types? The complexity of deriving an optimal
process cycle is not comparable to the two-product case. For the situations with two lot types,
the order in which mode switches take place is fixed: mode 1, mode 2, mode 1, mode 2, etc.
However, for more than two lot types, the order of mode switches is unknown. For example,
in the three-product type situation, after serving lots in mode 1, the workstation can switch to
either mode 2 or mode 3. Moreover, it is not known beforehand how many switches have to be
performed within one process cycle. It is tempting to serve each lot type once and then start
a new cycle. Serving certain lot types more than one time during a cycle is also a very rea-
sonable option: especially when the load of the different lot types on the server is unbalanced.
Apart from the search for the best process cycle, it can be questioned whether optimal system
behavior is periodic at all.

Lan and Olsen [69] provide a theory to compute a lower bound on the mean work in process
level for a server with n lot types, n � N. This lower bound on the mean wip level is a good
reference point, but not a practically reachable situation. Their lower bound is based on the
assumption that in each buffer-time graph (e.g. Figure 5.13), the buffer peaks are equally high
every time that particular mode is visited (cf. Lemma 5.4 and Lemma 5.6 of this chapter). For
completely symmetric systems (equal process rates, arrival rates and setup times for all lot
types) the theoretical lower bound can be achieved, but for all other situations this might not
be the case. In addition, in [69] the number of switches to each mode in one cycle is expressed
as a continuous variable: the number of switches to a particular mode per time unit. If these
continuous variables are non-rational, it is not possible to find a process cycle that visits the
queues exactly in the prescribed ratios.

In Lan and Olsen [69] slow-modes are taken into consideration. Processing in slow-mode is
called cruising and the paper provides two cruising conditions which determine the queues
which are most effective to cruise at and determine whether sufficient capacity exists to make
cruising cost effective. However, for the two-product case of Section 5.5, the cruising con-
ditions do not hold, while the optimal process cycle as derived in Section 5.2 does contain a
slow-mode. The theoretical lower bound on the wip level by Lan and Olsen for this two product
workstation is set to 31,2084. The exact and reachable lower bound based on the hybrid fluid
model analysis is 32. For two lot types, [69] may yield unequal visit frequencies for the lot
types, while for two product types the number of visits of each queue per time unit in a process
cycle is always equal. Therefore the theoretical lower bound in [69] can never be achieved. An
exact lower bound can be found by using the theory of Sections 5.2 and 5.4.
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λ1 � 4

λ2 � 2

λ3 � 1

µ1 � 16

µ2 � 16

µ3 � 16

x1

x2

x3

σi j � 1

Figure 5.24: Switching server with three different product types.

For a workstation serving more than two lot types, [69] provides a good reference point for
the performance of an arbitrary process cycle. As already mentioned, determining an optimal
process cycle might be a job too difficult to perform (if possible or existing at all: enlarging
the process cycles over and over again might result in ever decreasing mean wip levels for
particular situations), because the number of mode switches and the order of mode switches
are unknown. Experimenting with different choices may however give insights in the structure
of optimal process cycles. Consider for example a workstation serving three product types, as
shown in Figure 5.24. All parameters values are as indicated in the figure. All setup times are
set to one time unit. Equal costs are put on the individual wip levels. The theoretical fluid bound
according to Lan and Olsen [69] is 14.3875, and the cruising conditions do not hold, indicating
that once a buffer has been emptied, the wisest thing to do is immediate switching to another
lot type. Since cµ � 16 for all queues (assuming equal weights ci

� 1, i � � 1, 2, 3 
 ), a buffer
should be cleared before switching to another queue, see Buyukkoc et al. [23]. The number
of setups per time unit for lot type 1, 2 and 3 are 0.242, 0.185 and 0.135 respectively. This is
roughly a 4:3:2 ratio of the number of setups to the different lot types in a period. For this ratio,
and several other ratios, the mean wip level has been determined using the hybrid fluid model,
similar to the two-product case of Section 5.1, and presented in Table 5.3. The small MATLAB
source of these computations has been included in Appendix B.2. The table shows that for
different mode ratios, different mean wip levels are obtained. Even within a certain mode ratio,
different process cycles are possible, resulting in different mean wip levels. For the 4:3:2 and
5:4:3 ratio, only two of all possible process cycles are shown in the table.

After a desired steady state process cycle has been chosen for a server with multiple lot types, a
feedback controller is to be developed. In [112] a controller is developed for the

�
1 2 1 3 �

process cycle (shown in gray in Table 5.3). This controller uses a clearing policy: it immediately
switches to another lot type after a buffer has been emptied. After processing in mode 2 or
mode 3, the control action is easy: switch to mode 1. After serving lots of type 1, the controller
has to decide to which lot type to switch. The controller that has been developed in [112] makes
this decision based on the buffer level of type 2 lots. When it is above a certain level, switch
to mode 2, otherwise switch to mode 3. Convergence of the system’s trajectory to the desired
process cycle has been proven for this control strategy.
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For workstations serving multiple product types, finding optimal process cycle with respect to
mean weighted wip level is very complicated, if possible at all. One can imagine that the com-
plexity of this problem grows with the number of lot types that is to be served. Therefore, one
should reside to an acceptable process cycle, which could be a personally weighted combina-
tion of simplicity and mean wip level. This process cycle can then be regarded as the desired
process cycle. Afterwards, a new challenge is to develop feedback controllers that steer a sys-
tem to this desired process cycle. Theory to develop controllers for manufacturing networks
based on Lyapunov’s direct method has already been introduced by Lefeber and Rooda [73]
and will be elaborated on in the near future.

Table 5.3: Steady state mean wip levels for a three product workstation with clearing policy and without
slow-modes.

ratio process cycle mean wip

1:1:1
�

1 2 3 � 91
6 � 15.1667

2:1:1
�

1 2 1 3 � 403
27 � 14.9259

3:2:1
�

1 2 1 2 1 3 � 1549
99 � 15.6465

4:3:2
�

1 3 2 1 2 1 3 1 2 � � 15.0341

4:3:2
�

1 2 3 1 3 1 2 1 2 � � 17.2194

5:4:3
�

1 2 1 3 2 1 2 1 3 2 1 3 � � 15.1983

5:4:3
�

1 2 1 3 2 1 2 3 1 2 1 3 � � 14.8930

5.8 Piecewise constant arrival rates

In the previous sections, a single workstation processing two product types has been considered.
The arrivals of lots at the workstation have a fixed interarrival time and switching from one prod-
uct type to the other takes a fixed amount of time. Optimal process cycles have been defined and
feedback controllers have been proposed. However, in a practical industrial manufacturing sys-
tem, the arrival rates, process rates and switchover times are in general non-constant. Dealing
with disturbances (represented by variations on inter-arrival and process times) has been inves-
tigated in the discrete event simulations and the proposed state feedback controllers performed
as expected. The disturbances that were applied to the single switching server were a distri-
bution on the arrival and process rates, with the mean value taken from the fluid model. But
what happens if for example the constant arrival pattern changes? In a manufacturing network,
servers are connected to each other, resulting in highly varying arrival rates. If for example
the outflow of a machine is the inflow for a downstream machine, the arrival pattern becomes
piecewise constant: lots arrive at the second workstation when the preceding machine is pro-
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cessing that specific type and no lots arrive if the preceding machine is in a different mode. This
section investigates the influence of a time varying arrival pattern on optimal process cycles for
a single switching server, processing two different lot types. More specifically, inflow patterns
with piecewise constant arrival rates are considered.

Time varying arrival rates have been studied, but far less than constant arrival rates in manu-
facturing networks. Although in a manufacturing network of switching servers lots may arrive
at workstations with a piecewise constant arrival rate, no literature has been found on servers
with piecewise constant arrival rates. Queueing models for call centers have been studied ex-
tensively (see for example the survey paper by Koole and Mandelbaum [67] and references
therein). A common assumption in call center modelling is that customers arrive according to a
Poisson process. However, more customers call/arrive at the call center during office hours than
at night. Therefore, a day is often partitioned into multiple time slots, in which the arrival rate is
assumed to be constant. This results in piecewise constant Poisson arrivals. This assumption is
reasonable when steady state is achieved relatively fast. An example of modelling call centers
with piecewise constant Poisson processes is given in [63].

Call centers with time varying parameters have also been studied in [10], where the arrival rate
and service rate are dependent on the workload of the system, where workload is interpreted
here as the amount of work in the system. For a special case with two models in which the ratio
between arrival and process rate is equal, steady state distributions are derived. The authors
show that the workload relations are proportional and that the difference between the models
is just a rescaling of time. This result is in accordance with the results presented in Chap-
ter 5 of this thesis, where the shape of the steady state trajectories is determined by the partial
workloads ρi (which is dimensionless) and scaled by the arrival rates λi.

In several papers, the number of servers in a workstation is adapted to the work in the system
and the arrival rates of jobs, for example in [92], where two types of customers arrive at a
workstation. The two types represent high and low priority customers. Low priority jobs that
wait too long in queue are transferred to the high priority queue. Arrival rates are exponentially
distributed. In this research however, the number of servers is fixed and lots do not jump from
the one queue to the other.

Before optimal process cycles are derived in Section 5.8.2, first the characteristics and dynamics
of a switching server processing two lot types and with two piecewise constant arrival rates are
presented in Section 5.8.1.

5.8.1 Characteristics and dynamics of a single switching server with

piecewise constant arrival rates

For a single switching server, processing two different lot types (see Figure 5.1), an optimal
process cycle is looked for. Instead of constant arrival rates, piece-wise constant arrival patterns
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of both lot types are considered. An important assumption is that only process cycles with the
same period length as the arrival pattern period length are considered. In this section, first the
characteristics of the arrival pattern and the dynamics of the workstation are stated. Goal is
again to determine an optimal process cycle with respect to minimal weighted work in process
levels (cf. (5.7)).

With respect to the arrivals of lots, a few assumptions are made:

• Lots of type i arrive either at rate λ̂i or at rate 0.
• The arrival pattern is periodic with fixed period length P for both lot types.
• During one period, the arrival pattern consists of two parts: a time span in which lots

arrive at rate λ̂i and a time span in which no lots arrive.
• Without loss of generality, arrival of type 1 lots starts at time t � 0 in the periodic cycle.

Type 2 lots start to arrive somewhere between t � 0 and t � P.
• The two lot types arrive independently from each other, so concurrent arrivals of both lot

types are allowed.
• Arrivals are independent from the actions of the machine. In a manufacturing network,

especially when re-entrant behavior is involved, the process cycle of a machine influences
the arrival pattern at its own buffers. Here, the arrival pattern does not depend on the
process cycle of the machine.

Examples of arrival patterns are shown in Figure 5.25. Let si denote the time instant type i
lots start to arrive. From the assumptions, it is clear that s1 � 0. In Section 5.8.2 expressions
are derived for the mean wip levels for the two lot types. The shape of the input profiles
(e.g. Figure 5.25) influences the complexity of the expressions that are to be used. Properly
labelling lots as either ‘type 1’ or ‘type 2’ may decrease the complexity of the optimization
problem of minimizing the mean work in process levels. For the most right-hand side situation
in Figure 5.25, one could consider changing the labels of type 1 and type 2, resulting in a profile
similar to the middle situation in the figure.

s1 � 0 Ps2

λ̂1
λ̂2

s1 � 0 Ps2

λ̂1

λ̂2

s1 � 0 Ps2

λ̂1

λ̂2

Figure 5.25: Examples of arrival patterns for switching server with two piecewise constant arrival rates.
The length of the arrivals time span of type i lots is denoted by φiP.

The duration of the interval in which lots arrive at the workstation is denoted by φiP. In other
words: lots arrive during fraction φi of the period length. In Figure 5.25 a few possible arrival
patterns are shown. As can be seen in the figure, the signals are assumed to be right-continuous.
Formally, the input pattern λi � t � can be characterized as in (5.18), in which the first and second
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expression for λ2 � t � correspond to the middle and right hand side situation of Figure 5.25.

λ1 � t � �

�
λ̂1 for 0 �

t � φ1P

0 for φ1P
�

t � P
(5.18a)

for s2 � φ2P
�

P : λ2 � t � �

���� ���
0 for 0 �

t � s2

λ̂2 for s2
�

t � s2 � φ2P

0 for s2 � φ2P
�

t � P

(5.18b)

for s2 � φ2P
�

P : λ2 � t � �

���� ���
λ̂2 for s2

�
t � P

0 for s2 � φ2P � P
�

t � s2

λ̂2 for 0 �
t � s2 � φ2P � P.

(5.18c)

λ1
�
t �

λ2
�
t �

µ1

µ2

x1
�
t �

x2
�
t �

σ12, σ21

Figure 5.26: Switching server with two lot types and time-varying arrival rates.

Now that the arrival pattern of lots has been characterized, the workstation itself (Figure 5.26)
is considered. Similar to the situation with constant arrival rates (in Section 5.1), the state
elements and dynamics of the workstation with piecewise constant arrival rates are presented.
Due to the varying input signal, the state and dynamics are slightly extended.

The state of the system consists of six elements. The remaining setup time x0, buffer levels x1
and x2 and mode m are again part of the state. In addition to these elements, it is necessary to
‘know’ the current position with respect to the input profiles. Let ∆i � � 0, P � be the remaining
time before a new arrival block of type i jobs starts. If ∆i reaches zero, it is set to period length P
again, resulting in a sawtooth, as shown in Figure 5.27. In this figure, an arbitrary arrival pattern
and the resulting evolution of ∆i has been plotted over two period lengths. The state x � t � can
now be defined as:

x � t � �
�
x0 � t � x1 � t � x2 � t � m � t � ∆1 � t � ∆2 � t � � T � � 0, max � σ12,σ21 � � � R

2� � � 1,2 
 � � 0, P � 2.
(5.19)

The inputs of the system are equal to the inputs of the switching server with constant arrival
rates:

u � t � �
�
u0 � t � u1 � t � u2 � t � � T � � ❶, ①, ❷, ② 
 � � 0, µ1 � � � 0, µ2 � . (5.20)

Input u0 denotes the action which is to be performed: setting up for type 1 lots, processing type 1
lots (if available), setting up for type 2 lots or processing type 2 lots (if available). Inputs u1
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and u2 denote the rate at which lots are to be processed (possibly zero). The mean workload ρ̄i

of lot type i can now be defined as:

ρ̄1 � λ̂iφi

µi
(5.21)

in which the term λ̂1φi can be interpreted as the mean arrival rate over the period.

0 φ1P s2 s2 � φ2P P P � s2 2P

λ̂1

λ̂2

∆1

∆2

P

Figure 5.27: Evolution of ∆1 and ∆2 given arrival patterns.

The dynamics of the system can be divided into discrete event dynamics and continuous dy-
namics:

x0 : � σ21, m : � 1 if m � 2 � u0 � ❶ (5.22a)
x0 : � σ12, m : � 2 if m � 1 � u0 � ❷ (5.22b)
∆i : � P if ∆i

� 0, i � � 1, 2 
 (5.22c)

�
x0 � t � �

�
� 1 for u0 � t � � � ❶, ❷ 

0 for u0 � t � � � ①, ② 


(5.22d)

�
x1 � t � � λ1 � t ��� u1 � t � (5.22e)

�
x2 � t � � λ2 � t ��� u2 � t � (5.22f)�
∆1 � t � � � 1 with ∆1 � 0 � � P (5.22g)�
∆2 � t � � � 1 with ∆2 � 0 � � s2. (5.22h)

Similar to the situation with constant arrival rates, the inputs of the workstation are subject to
constraints:

u0 � � ❶, ❷ 
 , u1 � 0, u2 � 0 for x0 � 0
u0 � � ①, ❷ 
 , 0 �

u1
� µ1, u2 � 0 for x0 � 0, x1 � 0, m � 1

u0 � � ①, ❷ 
 , 0 �
u1

� λ1 � t � , u2 � 0 for x0 � 0, x1 � 0, m � 1
u0 � � ❶, ② 
 , u1 � 0, 0 �

u2
� µ2 for x0 � 0, x2 � 0, m � 2

u0 � � ❶, ② 
 , u1 � 0, 0 �
u2

� λ2 � t � for x0 � 0, x2 � 0, m � 2.

The constraints have the following interpretation:
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• during a setup no lots can be processed;
• only one lot type can be processed at a time;
• maximum actual process rates exist based on the buffer levels and arrival patterns;
• at any time the system can switch to the other lot type (even while busy with another

setup).

So far, the state vector, input vector and dynamics have been defined for the switching server
with piecewise constant arrival patterns (taken from the class as described before). For this
switching server, again an optimal process cycle with respect to minimal mean weighted work in
process level is looked for. After determination of this process cycle, feedback control strategies
can be investigated to steer the system to the desired process cycle from any arbitrary starting
point. In the next section, an optimal process cycle is determined for the single switching server
with piecewise constant arrival rates, under the assumption that the period length of the process
cycle equals the period length of the input rate profile.

5.8.2 Optimal process cycle

Similar to the situation with constant arrival rates, the goal is to minimize the time averaged
weighted work in process level:

min
t1, t2

� c1w̄1 � t1 ��� c2w̄2 � t2 � � (5.23)

in which w̄1 and w̄2 are the mean work in process levels for type 1 and type 2 products re-
spectively and ti is the start time of processing lot type i in a process cycle (which is explained
later). Parameters c1 and c2 are weighting factors. This objective function is subject to con-
straints that couple the two lot types. In words, these constraints say: only one product type can
be processed at a time and switching between types takes the setup time. These constraints are
formalized at the end of this section.

Remark 5.16. The period length P is not a variable in the objective function, as it was in
Section 5.2. The length of the process cycle is assumed to be equal to the period length of the
arrival patterns. This facilitates the optimization procedure, because now only the (weighted)
area underneath the buffer-time graph needs to be optimized. One should keep in mind that it is
possible to find process cycles with a lower mean wip level when the period of a process cycle
is not fixed to equal the period of the arrival pattern, but a multiple of this period.

An important assumption in the analysis is that during one period P, each lot type is served only
once. In other words: only two setups take place within a period: from type 1 lots to type 2 lots
and vice versa.

With the insights obtained in the first part of this chapter, a few lemmas can be stated that
facilitate the derivation of optimal process cycles.

Lemma 5.17. Minimizing mean wip level of type i implies serving lots of type i at the highest
possible rate, after which the server may idle.
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Proof. See the proof of Lemma 5.2.

Lemma 5.18. In an optimal process cycle with respect to minimal time averaged weighted work
in process levels, all buffers are emptied at least once.

Proof. Consider a feasible process cycle that satisfies Lemma 5.17 in which the buffer level of
type i has a minimal value of ε � 0 at the moment it switches to the other lot type. Consider also
an alternative feasible process cycle with exactly the same process rate profile and with a buffer-
time graph that is shifted ε downwards with respect to the first process cycle. This alternative
process cycle has buffer level zero at that particular switch to the other lot type. The mean wip
level is now reduced by ε , so the alternative process cycle has lower costs than the original
process cycle. This result holds for any feasible process cycle that satisfies Lemma 5.17, so in
optimal process cycles, all buffers are emptied at least once during the period.

Optimization recipe

To find an optimal process cycle for the workstation serving two piecewise constant arriving
lot types, a recipe is followed that is based on lot type distinction. For both lot types mean wip
level expressions are developed. The fact that the machine can only process one lot type at a
time is translated into constraints in the optimization procedure. The recipe can be summarized
as follows:

• Mean wip level expressions are derived for the lot types separately, as a function of the
start time of processing the lot type and the duration of the process interval.

• Combining the separate mean wip level expressions yields the objective function as stated
in (5.23).

• The objective function can be optimized with respect to the start times and process in-
terval lengths of the lot types. Additional constraints need to ensure that the workstation
only serves one lot type at a time. These constraints are called overlap constraints.

• The overlap constraints cause the optimization problem to be split into two separate op-
timization problems: either type 1 lots are served before type 2 lots, or type 2 lots are
served before type 1 lots. This results in two sets of overlap constraints. The two opti-
mization problems are called subproblems.

• The solution of the two optimization subproblems with the lowest mean weighted wip
level is the overall solution to the optimization problem. This solution defines the desired
optimal process cycle.

The process interval length can be variable in case a slowmode may occur. The workstation can
process all lots at maximum rate µ or at arrival rate λ̂ . It is also possible to process only a part of
the lots at rate µ and the remaining lots at arrival rate λ̂ . However, a slow-mode is only possible
if the arrival rate λ̂ is smaller than the maximum process rate µ . Therefore, for each product
type a distinction is made based on the difference between the arrival rates and maximum
process rates. Proposition 5.19 states the mean wip level expressions for the two lot types, in
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which this distinction is made. The two cases (λ̂ � µ and λ̂ � µ) are shown in Figures 5.28
and 5.29 respectively. Each case consists of multiple situations, for which mean wip level
expressions are derived. All situations are summarized in Proposition 5.19 and Appendix A.5.
In the figures, the horizontal axis represents one period of the piecewise constant input signal
and consequently also the period of the process cycle. Variable t1 �

�
0, P � denotes the start time

of processing type 1 lots, whereas τ1 �
�
0, P � represents the process interval length, i.e. how

much time is reserved for processing lots of type 1. Similar variables are used for type 2 lots.
In the figures, the arrival pattern of a lot type is shown with a solid line. The actual process rate
profile is shown with a dashed line. The dotted line is the buffer level of the lot type.

0 φ1P P

λ̂1
µ1

t1

situation I
A

B

τ1

0 φ1P P

λ̂1
µ1

t1

situation II

τ1

0 φ1P P

λ̂1
µ1

t1

situation III

A

B

Z

τ1

0 φ1P P

λ̂1
µ1

t1

situation IV
A

B

Z

τ1

Figure 5.28: Different situations for type 1 and λ̂1 � µ1. Input rate profile (solid), process rate profile
(dashed gray) and buffer level curve (dotted).

Proposition 5.19. For a single switching server (as formally described by (5.22)) with two
piecewise constant periodic arrival patterns with equal period lengths, the mean work-in-
process levels w̄i are given by the following expressions. Roman numbers refer to different
situations that can take place. These are all explained in detail in the proof. A graphical repre-
sentation of the different situations is given in Figures 5.28 and 5.29. In case multiple situations
can take place, optimization together with the other lot type determines which one is the actual
mean wip level expression. In the mean wip level expressions, ti and τi denote the start time of
processing lots of type i and the process interval length of type i lots respectively.
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• For type 1 lots with λ̂1
� µ1 (Figure 5.28):

w̄1 � t1 � �

�
1
2 µ1ρ̄1P � ρ̄1 � φ1 ��� µ1ρ̄1t1 for 0 �

t1 � � 1 � ρ̄1 � P
1
2 µ1ρ̄1P � ρ̄1 � φ1 ��� µ1 � 1 � ρ̄1 � � P � t1 � for � 1 � ρ̄1 � P �

t1
�

P

τ1 � ρ̄1P.

• For type 1 lots with λ̂1 � µ1 (Figure 5.29):

w̄I
1 � t1, τ1 � � µ1ρ̄1

2φ1 � φ1 � ρ̄1 � P
�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1

� 2P � 1 � φ1 � � φ1 � ρ̄1 � t1 � φ1P2 � 2 � φ1 � ρ̄1 � � 1 � φ1 ��� φ 2
1 � �

for 0 �
t1

� � φ1 � ρ̄1 � P and ρ̄1P
� τ1

� φ1P � t1

w̄II
1 � τ1 � � µ1ρ̄1 � P � τ1 � 2

2P � φ1 � ρ̄1 �
for � φ1 � ρ̄1 � P �

t1
� φ1P and P � t1

� τ1
�

P and τ1
� ρ̄1P

and τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ 2
1

ρ̄1 � P

w̄III � VI
1 � t1, τ1 � � µ1ρ̄1

2φ 2
1 P

� � � 1 � φ1 � P � τ1 � t1 � � � φ1 � ρ̄1 � t1
� � φ1 � ρ̄1 � τ1 � P � ρ̄1 � φ1 � ρ̄1φ1 � φ 2

1 ��� �
for τ1

�
�

φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ 2
1

ρ̄1 � P and τ1
�

P � t1

and τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P and τ1

� � 1 � φ1 � P � t1

w̄IV � V
1 � t1 � � � 1

2
µ1ρ̄1P � φ1 � ρ̄1 ��� µ1ρ̄1t1 and τ1 � ρ̄1P

for � φ1 � ρ̄1 � P �
t1

� max � φ1P, � 1 � ρ̄1 � P �

w̄V II
1 � t1, τ1 � � µ1ρ̄1

2φ1 � φ1 � ρ̄1 � P
�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1

� 2P � 1 � φ1 � � φ1 � ρ̄1 � t1 � P2 � 2ρ̄1 � 2φ1 � φ 3
1 � 2φ 2

1 ρ̄1 � �
for � 1 � ρ̄1 � P �

t1 � P and ρ̄1P
� τ1

�
�

φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P.

• For type 2 products, the expressions are similar to the mean wip expressions of type 1
products, but shifted in time, since the arrival pattern of type 2 lots starts s2 time units
later than the arrival of type 1 lots. The mean wip level expressions for type 2 products
are given in Appendix A.5.
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Proof. A detailed derivation of these expressions for the mean work in process level is provided
in Appendix A.5.
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Figure 5.29: Different situations for type 1 and λ̂1
� µ1. Solid line: input rate profile. Gray dashed line:

process rate profile. Dotted line: buffer level.
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The mean wip level expressions as stated in Proposition 5.19 are a function of processing start
time ti and process interval length τi. In case λ̂i

� µi, the process interval length is fixed: ρ̄iP.
From the derivation of the mean wip level expressions follows that different situations may
occur. This causes the optimization recipe to be adapted slightly. Instead of solving two sub-
problems (due to the overlap constraints), optimization over all situations is required, after
which the lowest solution of all subproblems is the overall solution. For example, if for both
lot types the arrival rate λ̂ is smaller than the maximum process rate µ , five different situations
may occur for each lot type. All combinations are distinct subproblems, that in turn need to
be solved with both overlap constraint sets separately. This results in 50 optimization subprob-
lems. A number of these problems turns out to be infeasible due to the overlap constraints (it
is not possible to process two lot types at the same time). The remaining subproblems are to
be solved, after which the actual optimal process cycle can be determined by taking the ‘best’
solution of the subproblems.

The design variables of the optimization subproblems are t1, t2, τ1 and τ2. The overlap con-
straint sets can be expressed explicitly in these design variables:

t1 � τ1 � σ12
�

t2 t2 � τ2 � σ21
�

t1 � P (5.24)

and the other constraint set is:

t2 � τ2 � σ21
�

t1 t1 � τ1 � σ12
�

t2 � P. (5.25)

The first overlap constraint set forces type 1 lots to be processed before type 2 lots. The in-
equality sign means that it is possible to have an idling period between processing type 1 and
type 2 lots. The interpretation of the second overlap constraint set is similar to the first set, but
this second set forces type 2 lots to be processed before type 1 lots.

A question that may arise is how these mean wip level expressions and optimizations relate to
the work presented in Section 5.2 where lots with a constant inter-arrival time were considered
for both lot types. Eventually, Section 5.2 has been a special case of the piece-wise constant
arrival pattern, with the time fraction in which lots arrive set to one for both lot types. This
leads to the following remark:

Remark 5.20. If the arrival patterns fractions φ1 and φ2 are set to 1, physically the original
problem with constant arrival rates is re-obtained. Solving the optimization problem for the
process interval lengths and period length results in the slow-mode condition of Theorem 5.10.
A detailed proof of this statement is given in Appendix A.6.

5.8.3 Numerical example of an optimization problem for piecewise

constant arrival rates

The recipe for determining optimal process cycles for a switching server and piecewise constant
arrival rates has been treated in the previous section. For both lot types expressions for the
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mean wip level have been derived and an optimization procedure regarding subproblems has
been stated. To make the recipe more insightful, a numerical example is given in this section.

Consider the workstation as shown in the right hand side of Figure 5.30. All parameter values
are indicated in the figure, and the arrival rate profiles have also been plotted. For type 1
lots, λ̂1 � µ1 and for type 2 lots, λ̂2 � µ2. The work in process levels have equal weight for
both lot types: c1 � c2 � 1. With the general expressions for the mean wip level as proposed
in Section 5.8.2, the following specific expressions for this numerical problem are found. For
type 1 lots the expressions are rather complex since λ̂1

� µ1:

w̄I
1 � t1, τ1 � � 3

16 τ2
1 � 3τ1 � 3

2 t1 � 9 (5.26a)
for 0 �

t1
� 4

3 and 8
3

� τ1
� 4 � t1

w̄II
1 � t1, τ1 � � 3

16 � 16 � τ1 � 2 (5.26b)
for 4

3
�

t1
� 4 and 16 � t1

� τ1
� 16 and τ1

� 8
3 and 2τ1

�
t1 � 28

w̄III � VI
1 � t1, τ1 � � 5

48 τ2
1 � 11

3 τ1 � 1
48 t2

1 � 7
6t1 � 1

12 τ1t1 � 95
3 (5.26c)

for 4
3

�
t1

� 16 and 2τ1
�

t1 � 28 and τ1
� 16 � t1

and 2τ1
�

t1 � 8 and τ1
� 20 � t1

w̄IV � V
1 � t1 � � 1

2 t1 � 1
3 (5.26d)

for 4
3

�
t1

� 40
3 and τ1 � 8

3
w̄V II

1 � t1, τ1 � � 3
16 τ2

1 � 3τ1 � 3
2 t1 � 33 (5.26e)

for 40
3

�
t1

� 16 and 8
3

� τ1
� 1

2t1 � 4

and for type 2 lots, relatively simple expressions are obtained since λ̂2
� µ2:

w̄2 � t2 � � 7 � 5
4t2 for 0 �

t2
� 5 and τ2 � 6 (5.26f)

w̄2 � t2 � � � 1
2 � 1

4t2 for 5 �
t2

� 15 and τ2 � 6 (5.26g)
w̄2 � t2 � � 27 � 5

4 t2 for 15 �
t2

� 16 and τ2 � 6. (5.26h)

0 2 4 6 8 10 12 14 16
0

2

λ 1

� t

�

�

φ1 �
1
4

0 2 4 6 8 10 12 14 16
0

2

4

λ 2

� t

�

�

time t �

φ2 �
1
4

s2

µ1 � 3

µ2 � 2

x1

x2
σ12 � 3
σ21 � 1

Figure 5.30: Numerical example for workstation with piece-wise constant arrival rates.
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Five situations for type 1 lots exist and three situations for type 2 lots. All fifteen combinations
form an optimization subproblem. Each subproblem itself yields two subproblems: the addi-
tional overlap constraints that couple the two lot types come in two forms. The first constraint
set is:

t1 � τ1 � σ12
�

t2 : t1 � τ1 � 3 �
t2 (5.27a)

t2 � τ2 � σ21
�

t1 � P : t2 � 7 �
t1 � 16 (5.27b)

and the other constraint set is:

t2 � τ2 � σ21
�

t1 : t2 � 7 �
t1 (5.28a)

t1 � τ1 � σ12
�

t2 � P : t1 � τ1 � 3 �
t2 � 16. (5.28b)

These constraint sets couple the two lot types in a sense that they guarantee that the machine
only serves one lot type at a time and that switching from lot type takes time. The first set
computes the process cycle in which type 1 lots are processed earlier than type 2 lots and the
second constraint set computes the process cycle the other way around. The total number of
subproblems for this numerical example therefore is 30. All subproblems have been solved with
MATLAB. Only nine of the subproblems turn out to be feasible. The solutions of the feasible
subproblems are presented in Table 5.4. The first three columns in the table refer to the mean
wip level expressions and the constraint set that were used for the subproblem. The optimal
values for t1, τ1 and t2 are indicated with an asterisk. Some solutions are identical; they lie on
the boundary of different situations and give the same result. Other solutions may look different
but refer to the same physical solution, e.g. the first and last solution: since P � 16, the actual
start time of processing type 1 lots is the same. These two solutions also have the minimal
weighted mean wip level together with the third solution and therefore provide the solution to
the overall problem (gray shaded rows). Note that the third solution looks different from the
other two optimal solutions, but in fact the third solution starts with idling for type 1 lots (the
length of processing lots at rate µ1 is zero), followed by processing the lot types similar to the
other two optimal solutions.

A physical interpretation of this solution is that the workstation processes the lots of type 1
completely in slow-mode, i.e. keeping the buffer empty all the time (in steady state). Due to the
relatively long setup time σ12, arrivals of type 2 lots have already started before the workstation
processes those lots. The input and process rate profile, together with the buffer levels, are
plotted in Figure 5.31.

A second optimization procedure is carried out with the numerical example. If the weights of
the mean wip level are not equal, the optimal steady state cycle might differ. The following
weighing factors are chosen: c1 � 1 and c2 � 2. Again, the thirty subproblems are solved.
Of course, the same nine subproblems are feasible and the rest is infeasible (the constraints
are not influenced by the weighing factors!). The solutions to the nine feasible subproblems are
presented in Table 5.5. The wip level of type 2 lots (which can never be kept zero, since λ̂1

� µ1)
is more important now. The area of the buffer level curve for type 2 lots is minimized now. This
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Table 5.4: Solutions of the feasible subproblems of the numerical example (c1 � c2 � 1).

type 1 type 2 constraint set t �1 τ �1 t �2 c1w̄1 � c2w̄2

(5.26a) (5.26g) (5.27) 0 4 7 9
4

(5.26c) (5.26f) (5.28) 12 6 5 19
6

(5.26c) (5.26g) (5.28) 14 6 7 9
4

(5.26d) (5.26f) (5.28) 12 8
3 5 77

12

(5.26d) (5.26g) (5.28) 12 8
3 5 77

12

(5.26d) (5.26g) (5.27) 4
3

8
3 7 31

12

(5.26d) (5.26h) (5.27) 7 8
3 16 61

6

(5.26e) (5.26f) (5.28) 44
3

10
3 5 23

6

(5.26e) (5.26g) (5.28) 16 4 7 9
4

means that processing type 2 lots starts as soon as the arrivals start, loosely speaking to keep
the ‘damage’ the lowest. Due to setup time σ12 � 3, type 1 lots cannot all be processed in slow-
mode anymore. The more lots are processed in slow-mode, the longer the buffer level remains
zero and the less the buffer level of that type rises. After processing the ‘expensive’ type 2 lots
(c2 � 2), the buffer of type 1 is emptied as quickly as possible, after which the workstation idles
until the arrivals of type 1 start again, processing them in slow-mode. This optimal solution
(gray shaded in the table) is graphically shown in Figure 5.32.

5.8.4 Remarks on optimal process cycles and feedback control

For piecewise constant arrival rates at a workstation, optimal process cycles have been defined.
However, the analysis has only been made for two lot types and certain assumptions on the
arrival rate profiles (see Section 5.8.1). For all situations that do not fit within the assumptions
(e.g. unequal period lengths of the arrival processes, more than two piecewise constant levels,
more than two lot types), optimal process cycles are still unknown. It is even unknown whether
optimal solutions exhibit periodic behavior in these cases.

For multiple (more than two) lot types, a similar approach can be followed as laid out in this
chapter. If the assumptions on the arrival rate profiles hold, then for each lot type the mean
weighted wip level can be expressed as in Section 5.8.2. It is stressed that the number of
subproblems that need to be solved increases (hyper)exponentially with the number of lot types.
Even, when the assumptions on the arrival rate profiles are lifted or when the server is allowed to
process a lot type more than one time within a period, the number of optimization subproblems
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Table 5.5: Solutions of the feasible subproblems of the numerical example (c1 � 1, c2 � 2).

type 1 type 2 constraint set t �1 τ �1 t �2 c1w̄1 � c2w̄2

(5.26a) (5.26g) (5.27) 0 4 7 9
2

(5.26c) (5.26f) (5.28) 12 6 5 47
12

(5.26c) (5.26g) (5.28) 12 6 5 47
12

(5.26d) (5.26f) (5.28) 12 8
3 5 43

6

(5.26d) (5.26g) (5.28) 12 8
3 5 43

6

(5.26d) (5.26g) (5.27) 4
3

8
3 7 29

6

(5.26d) (5.26h) (5.27) 7 8
3 16 103

6

(5.26e) (5.26f) (5.28) 44
3

10
3 5 55

12

(5.26e) (5.26g) (5.28) 16 4 7 9
2
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Figure 5.31: Optimal steady state arrival/process
rate profiles and buffer levels, c1 � c2 � 1. (Note
that the buffer of type 1 stays empty.)
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Figure 5.32: Optimal steady state arrival/process
rate profiles and buffer levels, c1 � 1, c2 � 2.

grows dramatically. Consequently, only for small problems (very low number of lot types) and
within the assumptions, the proposed method is a practically tractable approach.

As for the feedback control problem with respect to the workstation with non-constant arrival
rates, synchronization between the arrivals and processing of lots needs to be established. The
start time of processing a certain lot type is related to the start time of the arrivals. Even if
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an optimal process cycle implies only a clearing policy, unsynchronized clearing of buffers
may not lead to this optimal process cycle, because of the ‘phase difference’ between arrivals
and controller modes. The controller goal is therefore twofold: reducing the number of lots in
the system and synchronizing with the arrival processes. A possible solution is to use similar
controllers as in the situation with constant arrival rates, but with additional predicates for
leaving controller modes. These predicates make sure that at the right time a switch takes place
to the other job type. Synchronization is easy then. However, reducing the number of jobs in the
system is not trivial anymore. Consider for instance two identical workstations processing at a
pure bow tie process cycle. The arrival pattern for the second workstation is piecewise constant,
since the first workstation switches between the job types. In theory, the buffers of the second
workstation can be kept empty: the second workstation mimics the first workstation. But can a
controller be found which achieves this mimic behavior while reducing the number of lots in the
buffers of the second workstation? Only when enough ‘room’ exists to reduce the number of
lots, this can actually be achieved. In other words: the process interval length needs to be larger
than ρ̄iP (the minimum amount of time needed to process all lots that arrive during a period)
or some idling must be present before switching to the other type. Only then the workstation is
able to serve more lots during a period than arriving. This requirement is necessary for all lot
types. For the pure bow tie process cycle, the process interval length equals ρ̄iP, so different
control strategies need to be found. In the next chapter, the optimization and control problem
for two workstations in series is considered for some special cases.

If no room exists within a synchronized system to reduce the number of lots in the system, more
advanced controllers need to be developed. An example could be enlarging the period length in
the controller. This means that the relative amount of time that setups claim decreases, creating
the necessary room to reduce the number of lots in the system. Then the period length of the
controller can be decreased again to eventually synchronize with the arrival patterns.

5.9 Summary

In this chapter, a single workstation serving two product types has been analyzed extensively. A
hybrid fluid model has been developed to describe the behavior of such a system. Based on this
model, optimal process cycles with respect to time averaged weighted work in process levels
have been determined for situations with and without maximum buffer capacities. Next, state
feedback controllers were proposed. These controllers steer a trajectory to the desired (optimal)
trajectory from an arbitrary starting point (buffer levels, time, mode of the workstation, etc.).
Convergence to the desired trajectory has been proven mathematically.

The initial analysis was performed for a workstation where lots arrive at a constant arrival
rate. In a manufacturing network setting however, this is not likely to be the case. Switching
upstream servers cause the arrivals of lots to be non-constant. The arrival rate profile at a
workstation shows piecewise constant behavior then. For a single switching server with two
product types that arrive with periodic piecewise constant arrival rates, optimal process cycles
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with respect to mean weighted work in process levels have been defined in the final part of this
chapter. Analyzing all possible situations that may occur in this environment revealed that the
number of situations grows rapidly. In a numerical example, thirty optimization subproblems
had to be solved in order to obtain the global optimal solution. This number grows exponentially
with the number of product types. Therefore, tractability issues rise when applying this theory
to larger manufacturing systems. In practical (e.g. industrial) applications, one might not be
interested in the optimal solution, but in a better solution than the current one. Instead of
determining optimal process cycles, one will determine and prescribe desired process cycles,
which may consist of a set of process cycles.

Nevertheless, the theory and analyses that have been performed in this chapter are not useless
at all. Important insights have been obtained, for example the use of a slow-mode. During a
slow-mode, lots are processed at their arrival rate, keeping the buffer of that type empty for a
while. A slow-mode implies losing capacity due to processing at lower rates than the maximum
rates. On the other hand, not using a slow-mode results in losing capacity due to relatively often
switching in time. During switching between modes, no lots can be processed which can be
regarded as losing capacity. In addition to the slow-mode, insight has been obtained about the
shapes of optimal process cycles, the influence of buffer capacity constraints and the use of
hybrid fluid models instead of a discrete event model.

The feedback controllers in this chapter have been implemented in discrete event simulations.
Although the controllers had been developed using the hybrid fluid models, they perform well
in a discrete event setting (as has been shown in the case studies), due to the feedback loop.
Based on current measurements of the state, proper control actions are computed. The discrete
/ integer behavior is regarded as a disturbance with respect to the hybrid fluid model.

In the next chapter, the analysis of switching servers is extended towards flow lines. As men-
tioned earlier, the arrival rates of lots at workstations are in general not constant anymore.
Switching causes a piecewise constant arrival pattern. For reasons just mentioned, Chapter 6
does not solve the overall general problem of finding an optimal process cycle. However, for
some special situations, insightful results with respect to minimal work in process levels can be
obtained.
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Chapter 6

Flow lines of switching servers

Switching servers have been studied in Chapter 5. For a certain class of servers (two product
types, constant arrival rates, constant process rates and setup times) an optimal process cycle
has been derived, for both unconstrained and constrained buffer capacities. Next, state feedback
controllers were developed that steer a trajectory to the desired one, from an arbitrary starting
point. In the final part of the previous chapter, the results had been extended to a class of
switching servers with piecewise constant arrival rates.

This chapter elaborates on the results of Chapter 5 and studies flow lines of switching servers.
The ideas and insights obtained in the previous chapter form the basis for the analyses that are
performed here. In general, one could state that the number of lots in a manufacturing network
is only determined by the workstations at which lots arrive and the workstations at which lots
leave the system. For a flow line these are the most upstream and downstream workstation
respectively. Throughout the complete chapter, it is assumed that lots arrive at a constant rate,
so in fact the number of lots in the flowline (the total wip level) is only determined by the most
downstream workstation: the other workstations only move work from the one workstation to
the other workstation.

In general, optimal process cycles for networks of workstations, including flow lines, are cur-
rently unknown. However, for certain classes of flow lines, it is possible to find optimal process
cycles. The common feature of the two classes that are examined in this chapter is that one of
the workstations processes at its optimal process cycle as derived in the previous chapter and
that the corresponding optimal work in process level is achieved for the complete flow line. The
following classes are investigated:

139
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• The first workstation in a flow line performs its stand alone optimal process cycle and all
downstream workstations make sure that their buffers remain empty. This is elaborated
in Section 6.2.1.

• The most downstream workstation in a flow line performs its optimal process cycle and
upstream workstations make sure that this final workstation can actually do that. This is
studied in Section 6.2.2.

• One of the middle workstations in the flowline performs its stand alone optimal process
cycle and all other workstations make sure that the optimal wip level of this workstation
is achieved for the flowline. Results of Sections 6.2.1 and 6.2.2 are combined then. This
is also illustrated in Section 6.4.

For the first two classes of flow lines, optimal process cycles are derived and conditions for
all workstations to achieve this optimal cycle are given. In addition, state feedback controllers
are proposed that steer the trajectories of the workstations to the desired ones. Results are
illustrated with case studies. The third class of flowlines can be treated with a combination of
the first two classes. First, the characteristics and dynamics of switching server flow lines are
given in Section 6.1, which is basically a recapitulation of Section 5.1 with extensions for a
flow line.

6.1 Characteristics and dynamics of flow lines of switch-

ing servers

In this section the characteristics and dynamics of a switching server flow line are presented,
based on a flow line with two workstations and serving two product types. The way of mod-
elling is generic for multiple workstations and lot types.

Consider the flow line consisting of workstations A and B, each consisting of two parallel
buffers and a switching server. The buffers have infinite capacity, store a specific lot type
and the contents are denoted by x j

i � t � , i � � 1, 2 
 , j � � A, B 
 , e.g. xB
1 � t � equals the number of lots

of type 1 that are present in workstation B at time t. Lots arrive at workstation A with constant
rates λ1 and λ2 for type 1 and type 2 lots respectively. The maximum process rates are µ j

i .
Switching from processing type 1 to type 2 lots takes σ j

12 time units and σ j
21 time units vice

versa. The system is schematically shown in Figure 6.1.

For stability reasons, the total workload must not exceed 1 for each server: � i ρ j
i � 1 for

all j � � A,B 
 with ρ j
i

� λi � µ j
i . Unless indicated otherwise, superscript j � � A,B 
 denotes the

workstation number and subscript i � � 1,2 
 represents a lot type throughout the remainder of
this chapter.

The state and input vector for this flow line are similar to those of the single switching server
example. The state consists of the remaining setup times (x j

0), the buffer levels (x j
1 and x j

2) and
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Figure 6.1: Flow line of two switching servers overview.

the modes (m j) of the servers:

x �
�
xA

0 xB
0 xA

1 xA
2 xB

1 xB
2 mA mB � T � � 0,max � σ A

21,σ
A
12 � � � � 0,max � σ B

21,σ
B
12 � � � R

4� � � 1,2 
 2 .

The input vector consists of the action that has to be performed by the servers (u j
0) and the rates

at which the servers are processing the lot types (u j
1 and u j

2). Possible actions of the servers are:

u j
0

� ❶ : setup server j for type 1 lots
u j

0
� ① : server j process type 1 lots

u j
0

� ❷ : setup server j for type 2 lots
u j

0
� ② : server j process type 2 lots

The input vector u becomes:

u �
�
uA

0 uB
0 uA

1 uA
2 uB

1 uB
2 � T � � ❶,①,❷,② 
 2 � � 0, µA

1 � � � 0, µA
2 � � � 0, µB

1 � � � 0, µB
2 �

and similar to the single switching server, the inputs are constrained by the state:

uA
0 � � ❶, ❷ 
 , uA

1
� 0, uA

2
� 0 for xA

0 � 0
uA

0 � � ①, ❷ 
 , 0 �
uA

1
� µA

1 , uA
2

� 0 for xA
0

� 0, xA
1 � 0, mA � 1

uA
0 � � ①, ❷ 
 , 0 �

uA
1

� λ1, uA
2

� 0 for xA
0

� 0, xA
1

� 0, mA � 1
uA

0 � � ❶, ② 
 , uA
1

� 0, 0 �
uA

2
� µA

2 for xA
0

� 0, xA
2 � 0, mA � 2

uA
0 � � ❶, ② 
 , uA

1
� 0, 0 �

uA
2

� λ2 for xA
0

� 0, xA
2

� 0, mA � 2
uB

0 � � ❶, ❷ 
 , uB
1

� 0, uB
2

� 0 for xB
0 � 0

uB
0 � � ①, ❷ 
 , 0 �

uB
1

� µB
1 , uB

2
� 0 for xB

0
� 0, xB

1 � 0, mB � 1
uB

0 � � ①, ❷ 
 , 0 �
uB

1
� min � uA

1 ,µB
1 � , uB

2
� 0 for xB

0
� 0, xB

1
� 0, mB � 1

uB
0 � � ❶, ② 
 , uB

1
� 0, 0 �

uB
2

� µB
2 for xB

0
� 0, xB

2 � 0, mB � 2
uB

0 � � ❶, ② 
 , uB
1

� 0, 0 �
uB

2
� min � uA

2 , µB
2 � for xB

0
� 0, xB

2
� 0, mB � 2.

Informally, these constraints mean the following:

• if a server is busy with a setup, no lots can be processed;
• after a setup to a lot type has been completed, only lots of that specific type can be

processed;
• it is always possible to stay in the current mode, or to switch to the other mode.
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The discrete event and continuous dynamics of the flow line look similar to the dynamics of the
single switching server (5.3)–(5.4):

x j
0 � t � : � σ j

21, m j � t � : � 1 for u j
0 � t � � ❶ and m j � t � � 2, j � � A, B 
 (6.1a)

x j
0 � t � : � σ j

12, m j � t � : � 2 for u j
0 � t � � ❷ and m j � t � � 1, j � � A, B 
 (6.1b)

�
x j

0 � t � �

�
� 1 for u j

0 � t � � � ❶,❷ 
 , j � � A, B 

0 for u j

0 � t � � � ①,② 
 , j � � A, B 

(6.1c)

�
xA

i � t � � λi � uA
i � t � , i � � 1, 2 
 (6.1d)

�
xB

i � t � � uA
i � t ��� uB

i � t � , i � � 1, 2 
 . (6.1e)

The goal is to minimize the time averaged weighted work in process level of the flow line. The
cost function J is defined as:

J � limsup
t � �

1
t
� t

0

�
g1 � xA

1 � s ��� xB
1 � s ��� � g2 � xA

2 � s � � xB
2 � s � � � ds (6.2)

with gi : R � � R � strictly increasing functions. Note that it is assumed that work of a specific
lot type has equal cost weights in both workstations.

An important observation is that the switching policy of workstation A does not affect the work
in process level. Workstation A moves work from A to B, but work remains in the flow line.
Workstation B actually removes work from the flow line. The switching policy of B therefore
determines the wip level of the flow line. In general, when the arrival rate cannot be influenced,
switches of the most downstream workstation determine the wip in the system.

From Section 5.2 the optimal process cycle of a single switching server is known. This is
the process cycle which gives minimal mean work in process levels. Any other process cycle
results in larger mean wip levels. Therefore, the optimal mean wip level for a single switching
server is an absolute lower bound on the mean wip level for a flow line of switching servers. In
this chapter it is investigated under which conditions it is possible to achieve this lower bound
on the mean wip level for the complete flow line. The general idea is as follows: make one
of the workstations perform its optimal cycle according to Section 5.2 and make sure that all
downstream buffers remain empty and also make sure that all upstream workstations can make
this particular workstation process at its optimal cycle. For the situation with two workstations
two cases can be distinguished:

• Workstation A performs its optimal cycle and workstation B is able to keep its buffers
empty. This is studied in Section 6.2.1.

• Workstation B performs its optimal cycle and workstation A is able to serve workstation B
in such a way that B can actually perform at this optimal cycle. Section 6.2.2 investigates
the necessary and sufficient conditions on workstation A.
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For larger flow lines (more than two workstations), the aforementioned two situations can be
combined. Consider for example a flow line consisting of three switching servers. Let the
middle server perform its optimal process cycle, the upstream workstation facilitates this and
the downstream server keeps its buffers empty. In that way the minimal mean wip level of the
middle workstation is achieved for the complete flow line. In the next section, the two cases
mentioned are studied in detail.

6.2 Process cycles and controllers for switching server

flow line

The largest optimal mean wip level of all switching servers in a flow line regarded as stand
alone switching servers is a lower bound for the mean wip level of that switching server flow
line. Any other process cycle of that particular workstation results in higher wip levels and
other workstations can only add more wip, since negative buffer levels are not allowed. In this
section, two cases are elaborated. First, in Section 6.2.1, the situation is studied in which work-
station B keeps its buffers empty. Necessary and sufficient conditions are derived. Secondly,
in Section 6.2.2, necessary and sufficient conditions for workstation A are derived which have
to be met in order to make the flow line behave (with respect to wip levels) as if it were only
workstation B. For both classes, a feedback controller is proposed that steers the trajectory of
the system to the desired behavior. Case studies illustrate the working of the controller and are
used to compare the results with other control policies. In Section 6.3 some remarks are made
on the general problem of finding an optimal process cycle for a flow line with two workstations
(if existing at all, this is an open problem) and Section 6.4 focuses on using the earlier obtained
results in the analysis of larger flow lines.

6.2.1 Optimal process cycle and feedback controller for restrictive

upstream workstation

In this section an optimal process cycle is derived for a switching server flow line consisting
of two workstations. Goal is to find the conditions which have to be met in order to make
the optimal mean wip level of the upstream workstation the mean wip level for the flow line.
After an optimal process cycle has been determined including the conditions, a state feedback
controller is proposed that steers the system to the desired trajectory. Case studies that show
results of the controller implementation conclude this section.

Conditions on downstream workstation

Consider again the flow line as presented in Figure 6.1. Assume that workstation A is to pro-
cess at its optimal process cycle as derived in Section 5.2. The resulting minimal mean work
in process level is to be established for the complete flow line. What are the conditions on
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workstation B to achieve this?

Theorem 6.1. In a switching server flow line consisting of two workstations serving two product
types, the optimal mean weighted work in process level of the upstream workstation stand alone
can be achieved for the complete flow line iff the downstream workstation is not slower than
the upstream workstation, i.e. its process rates are not lower than the upstream workstation
process rates and the setup times to a mode are not longer than the setup times to that mode of
the upstream workstation.

Proof. The minimal mean wip level of the upstream workstation can only be achieved for the
complete flow line if the buffers of the downstream workstation can remain empty at all times.
This implies that whenever A is processing lots, B must be processing the same lot type. It
may never occur that B is busy with a setup, while A is processing lots. Therefore, σ B

12
� σ A

12
and σ B

21
� σ A

21. In addition, in order to keep the buffers in B empty, workstation B must be able
to process lots at the same process rate as workstation A. The maximum process rates of B have
to be greater than or equal to the maximum process rates of A: µB

1
� µA

1 and µB
2

� µA
2 . This

completes the necessity proof of the conditions. But are these conditions also sufficient?

Consider two workstation forming a flow line with σ B
i j

� σ A
i j and µB

i
� µA

i . Is it always possible
to find a feasible process cycle for workstation B to keep the buffer of that workstation empty?
Assume that workstation B mimics workstation A with respect to the actual rates of processing
lots: uB

i � t � � uA
i � t � � t, i � � 1, 2 
 . This is possible because of the assumption that setups in B do

not take longer than in A and the maximum process rates of B are not exceeded. The mimicked
process cycle in B ensures that its buffers remain at the same level during the complete cycle.
Lemma 5.4 also holds here: this constant level can be zero, meaning that the buffers in work-
station B can be kept empty: xB

i � t � � 0 � t. Thus, the optimal mean wip level of workstation A
indeed is the mean wip level for the complete flow line under the given conditions.

Example 6.2. Consider a flow line of two switching servers, A and B. The first workstation
has the following characteristics: maximum process rates µA

1
� 24 lots/hour, µA

2
� 27 lots/hour

and setup times σ A
12

� σ A
21

� 2 hours. At the upstream workstation, lots arrive at constant
arrival rates: λ1 � 9 and λ2 � 3 lots/hour. The optimal mean work in process level for this
workstation was determined in Section 5.5 and equals 32 lots. It is desired to achieve this mean
wip level for the complete flow line. What are the required specifications for workstation B?
From Theorem 6.1 it is known that workstation B needs to be at least as fast as workstation A
in both setup times and process rates. Therefore, workstation B is chosen to have the following
specifications: µB

1
� 30 lots/hour, µB

2
� 30 lots/hour, σ B

12
� σ B

21
� 1 hour. The resulting periodic

orbit, actual process rates and buffer levels are shown in Figure 6.2. Indeed, the graphs show
that the periodic orbit of workstation A is obtained for the complete flow line (cf. Figure 5.12)
and the buffers of workstation B remain empty. Note that for t � � 1, 2 � and t � � 7, 8 � server B is
idling, or stated otherwise, performing a slow-mode with actual process rate zero.
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Figure 6.2: The optimal mean wip level for workstation A stand alone is achieved for the complete flow
line A and B. Left: periodic orbit, center: process rates, right: buffer levels.

State feedback controller

Now that the conditions on workstation B are known to make the flow line (workstations A
and B) behave as if it were only workstation A (with respect to work in process levels), a state
feedback controller can be looked for that steers a system trajectory to the desired one, from an
arbitrary starting point.

Without loss of generality, one may require to start the setups to a lot type at the same moment.
See Figure 6.2 for an example of this. Another feasible solution would have been to idle 1
time unit longer in each mode in workstation B and make sure that the setup times end at the
same moment. Requiring that the setups start synchronously simplifies the development of a
feedback controller, since now in the optimal cycle mA � t � � mB � t � � t.

It is tempting to use the controller of the single switching server with unbounded buffer capaci-
ties (Proposition 5.13) and simply add the synchronous start of the setups in both workstations.
Workstation B works ‘faster’ (Theorem 6.1) than A, so any amount of work in B is reduced
over time until zero. However, when this feedback policy is applied to a server which is for at
least one lot type identical to workstation A, i.e. equal process rate and equal setup time to that
lot type, it is not guaranteed that the number of lots in B is reduced to zero. If workstation A
reaches its optimal process cycle earlier than workstation B has emptied its buffer, the remain-
ing buffer level is kept constant without reducing it any further. Therefore, the original feedback
controller of Proposition 5.13 is used with the additional requirement that workstation A and B
can only switch to the other lot type when both the buffer in A and the buffer in B are empty.
This guarantees that after one process cycle the buffers in workstation B are empty and remain
empty. This adaptation does not necessarily lead to optimal transients, but it is stressed that the
original controller of Proposition 5.13 did not take into account optimal transients either. The
aforementioned reasoning leads to the following proposition:
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Proposition 6.3. The following state feedback controller steers the system to the desired (opti-
mal) periodic orbits, from any arbitrary initial state x � 0 � :

• If at t � 0 the modes m � � mA
, mB � of the machines are unequal in the initial state, then

make B switch to the same mode as A.
• After the initial control action (if necessary), the controller loops the following lines from

top to bottom. Based on the state of the system, the controller (trivially) starts in one of
the lines for each server.

– ① at the highest actual possible rate in both workstations until xA
1

� 0, xB
1

� 0
and xA

2
�

xA �2 ;
– ❷ in both workstations, after the setup time immediate ② in each workstation;
– ② at the highest actual possible rate in both workstations until xA

2
� 0, xB

2
� 0

and xA
1

�
xA �1 ;

– ❶ in both workstations, after the setup time immediate ① in each workstation.
in which xA �1 and xA �2 are given by the expressions in (5.10).

Proof. See Appendix A.7.

The feedback controller of Proposition 6.3 is validated by means of simulations. Both the
original hybrid fluid model and discrete event models are used in the simulations to implement
the feedback controller on. The controller is also compared with other control policies.

Case study: implementation of controller

λ1

λ2

µA
1

µA
2

µB
1

µB
2

xA
1

xA
2

xB
1

xB
2

A B

σ A
12, σ A

21 σ B
12, σ B

21

Figure 6.3: Flow line consisting of two switching servers.

For the situation in which the flow line achieves the mean wip level of the first workstation a
state feedback controller has been developed, after the conditions on the second workstation
have been defined. To validate proper working of the controller and to compare the results with
other control policies, simulations are carried out. The following simulations are performed:

• Implementation of the controller of Proposition 6.3 on the original hybrid fluid model.
• Implementation of the controller of Proposition 6.3 on a deterministic discrete event

model using χ .
• Implementation of the controller of Proposition 6.3 on a stochastic discrete event model

using χ . Arrival rates and process rates are exponentially distributed with means λi
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and µ j
i respectively.

• Control of the flow line using local controllers, implemented on the hybrid fluid model.
• Open loop control with fixed process interval lengths, as proposed by Savkin [97–99].

Consider the flow line from Example 6.2, presented in Figure 6.3. All characteristics of the
arrivals and workstation are given in Table 6.1. Note that the arrival rates and the upstream
workstation are equal to the case study characteristics of Section 5.5. The threshold levels for
switching to the other mode for workstation A are xA �1

� 27 and xA �2
� 18. Weighting functions g1

and g2 in the cost function (6.2) are assumed to be equal. Each simulation is carried out with
the same initial conditions, which are also shown in the table.

Table 6.1: System parameters and initial conditions of case study.

λ1: 9 lots/hr. µA
1 : 24 lots/hr. µB

1 : 30 lots/hr. xA
1 � 0 � : 20 lots xA

0 � 0 � : 0 hrs.
λ2: 3 lots/hr. µA

2 : 27 lots/hr. µB
2 : 30 lots/hr. xA

2 � 0 � : 20 lots xB
0 � 0 � : 0 hrs.

σ A
12: 2 hrs. σ B

12: 1 hrs. xB
1 � 0 � : 40 lots mA � 0 � : 1

σ A
21: 2 hrs. σ B

21: 1 hrs. xB
2 � 0 � : 40 lots mB � 0 � : 1

The state feedback controller of Proposition 6.3 is implemented on the deterministic hybrid fluid
model (6.1). It is expected that the buffers of workstation B are emptied during the first process
cycle and remain empty. From that moment, the trajectory of workstation A converges to the
truncated bow tie curve which is optimal for the given settings (cf. Section 5.5). Simulation
results are shown in Figure 6.4. The figure shows that indeed the buffer levels of the second
workstation decrease until zero. The figure also shows that when workstation A has emptied
buffer 1 for the first time, it has to wait before setting up to the other lot type, although xA

2 � xA �2 .
The setup is delayed because first the buffer of type 1 lots of the second workstation has to be
empty, before the switchover takes place. The left hand graph shows that eventually the desired
periodic orbit is reached for the lumped buffer levels of each type. This means that the mean
wip level of workstation A stand alone has been achieved for the entire flow line.

A similar simulation is carried out on discrete event plant models. Both a deterministic and
stochastic discrete event simulation are performed. The χ specification of the deterministic
situation has been included in Appendix B.2, along with a few notes on the model and the
implementation of the controller. Simulations are carried out with the same parameter settings
and initial conditions, see Table 6.1. Results are shown in Figure 6.5 for the deterministic
case and Figure 6.6 for the stochastic case (exponential distributions on inter-arrival times and
process times with the same mean values as in the deterministic simulation). As expected, the
integer-valued trajectories are steered to the desired (continuous) trajectory as good as possible.
Due to the stochastics, workstation B is not able to keep its buffers empty anymore. However,
the periodic orbit of the lumped buffer levels (left hand side of Figure 6.6) follows the desired
periodic orbit quite well.

Another control policy with local controllers has been implemented. Workstation A uses the
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Figure 6.4: Simulation results for implementation of the state feedback controller of Proposition 6.3 on
original hybrid fluid model. Left: periodic orbit, center: buffer levels workstation A, right: buffer levels
workstation B.
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Figure 6.5: Simulation results for implementation of the state feedback controller of Proposition 6.3 on
deterministic discrete event model. Left: periodic orbit, center: buffer levels workstation A, right: buffer
levels workstation B.

original controller for a single switching server, as developed in Chapter 5, Proposition 5.13.
Workstation B uses a clearing policy, i.e. empty a buffer at highest possible rate, then switch
to the other lot type. The clearing policy is extended a little: when both buffers are empty and
lots start to arrive at the buffer which is not served currently, a setup to that specific lot type
takes place. It is assumed that in the first part of the simulation the buffers of B are emptied,
because workstation B can work faster than A. Then B should be able to keep up with A.
Workstation A is assumed to converge to its stand alone optimal process cycle, since it does
not ‘feel’ what is going on downstream in the flow line. A simulation with the hybrid fluid
model has been carried out, with the same initial conditions and parameters, as presented in
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Figure 6.6: Simulation results for implementation of the state feedback controller of Proposition 6.3 on
stochastic discrete event model. Left: periodic orbit, center: buffer levels workstation A, right: buffer
levels workstation B.

Table 6.1. Simulation results are shown in Figure 6.7. As can be seen, the trajectory of B
does not converge to the desired one, while the trajectory of A converges to the desired one, as
expected. Buffers in workstation B are not kept empty. The reason for this is as follows: when
both buffers are empty and workstation B is performing a slow-mode for a lot type, it can only
switch to the other lot type when jobs start to arrive. During the setup time lots are stored in
the buffer of workstation B, which are processed after the setup time. This causes an increase
in the mean wip level of the flow line. Based on the characteristics of the workstations and the
initial conditions, the increase of the buffer level in B takes place in at least one of the job types.
It can be concluded that only local control does not settle the trajectory down to the desired
periodic orbit. Note that different initial conditions may lead to different steady state periodic
orbits, which is also not desirable.

Finally, a feed forward (open loop) controller is implemented on the hybrid fluid model. Such
controllers have been proposed by Savkin in [97–99]. For the single switching server, the
controller was implemented in Section 5.5 of this thesis. The controller uses fixed time spans in
which the machine resides in a specific mode. The time spans for this example can be read from
Figure 6.2: τA

1
� 4 and τA

2
� 1 for workstation A and for workstation B: τB

1
� 5 and τB

2
� 2. It is

assumed that switching to a specific lot type is synchronized. The expected outcome is that the
buffers of workstation B can be kept empty now after the transient period, because switching is
synchronized and B works faster than A. On the other hand, the fixed process intervals might
lead to unsatisfactory results for workstation A this time, as it did for the single switching server
situation. The results of the simulation are shown in Figure 6.8. The buffers in workstation B
indeed reach zero, although it takes longer than in the first experiment: the workstation has
to wait until it can process type 2 lots for the second time, this is only allowed after t � 14.
Workstation A does not reach its desired trajectory. Because it is only allowed to serve type 2
jobs for 1 hour during a cycle, it is never able to reduce the number of type 2 lots in the system.
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Figure 6.7: Simulation with only local controllers: workstation A with the controller of Proposition 5.13
and workstation B with clearing policy.

This is the same problem as encountered in Section 5.5. It must be noted that this controller,
though not with state feedback, stabilizes the system in the sense that buffer levels do not
explode over time. It should be noted that also in this case different initial conditions lead to
different steady state solutions. Comparing the mean wip level of this specific solution with the
wip level that results from the proposed controller (Proposition 6.3) is therefore not useful.
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Figure 6.8: Simulation with feed forward (open loop) controllers: switching takes place according to a
fixed time schedule.

Performance measures flow time and mean wip level have been measured for the implemen-
tation of the controller of Proposition 6.3. The results are shown in Table 6.2. Results of the
other two controllers (local controller and open loop controller) have not been included, since
different initial conditions lead to different trajectories and thus a different performance. In the
table, means and standard deviations are shown for the stochastic simulations. The simulations
have been carried out twenty times. In each simulation, a transient period of 30 process cycles
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Table 6.2: Performance comparison for different simulations with a switching server flow line, process-
ing two lot types. Control objective is to make the flow line of workstations A and B behave as if it were
workstation A in isolation.

simulation lot type mean wip level mean flow time

hybrid fluid model 1 20 20
9 � 2.22

2 12 4

1+2 32 8
3 � 2.67

deterministic discrete event 1 21.24 2.36

2 12.10 4.03

1+2 33.34 2.78

stochastic discrete event 1 22.73 � 0.39 2.53 � 0.043

(20 simulations over 100 cycles) 2 12.47 � 0.17 4.16 � 0.057

1+2 35.19 � 0.41 2.93 � 0.034

was taken into account, after which the measurements started. The mean flow time of lots were
determined after 100 complete process cycles. The mean wip levels have been computed using
Little’s law.

For a flow line of two switching servers, the situation has been described in which the first
workstation performs its optimal process cycle and the second workstation makes sure that the
corresponding work in process level is realized for the whole flow line. Conditions on the
second workstation were relatively simple: it must not be slower than the first workstation for
each lot type. This requirement concerns both setup times and process rates. A state feedback
controller has been developed, which was proven to make the trajectory of a system converge
to the desired trajectory. The controller has been tested in both discrete event and hybrid fluid
model simulations. In the next section, the counterpart of this situation is examined: what are
the conditions on the first workstation to let the second workstation perform its optimal cycle
and establish that wip level for the complete flow line?
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6.2.2 Optimal process cycle and feedback controller for restrictive

downstream workstation

The general form of an optimal process cycle for a single switching server has been presented
in Figure 5.5 and was made explicit in Theorem 5.10. The corresponding optimal work in
process level is a lower bound for the wip level of a flow line with the same input rates of
lots, since any other cycle of the server results in higher wip levels. In addition, other servers
cannot reduce the mean wip level, since negative buffer levels are not allowed. In this section,
conditions on the upstream workstation are derived to make the flow line behave as if it were
only the downstream workstation with respect to work in process levels. With these conditions,
a feasible process cycle for the upstream workstation can be determined. Once the process
cycles of both workstations are known, a state feedback controller is proposed that stabilizes
the system’s trajectory to the desired one.

Conditions on upstream workstation

If it is possible to have the most downstream workstation process at its optimal cycle and have
the other workstation make this possible, then optimal behavior for the complete flow line
has been achieved. The buffer levels of a lot type can then virtually be added. For these
lumped buffer levels, the optimal cycle as determined in Chapter 5 must be performed. The
switching policy of the upstream workstations must then accommodate these virtually lumped
buffer levels. This idea is schematically shown in Figure 6.9 (cf. Figure 5.1).
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Figure 6.9: General idea of flow line behaving as single switching server.

The derived optimal cycle for a single switching server must be performed by workstation B and
must also become the optimal cycle with respect to wip levels for the flow line. An important
assumption is that the period of one process cycle in A equals the period of one process cycle in
workstation B. This period is denoted by T . In Section 6.3 this assumption is further studied.
If workstation A has to switch between lot types in such a way that it makes the flow line of
workstation A and B behave like B stand alone, then some observations can be made:

1. If workstation B processes lots in slow-mode, i.e. its buffer is empty (xB
i

� 0) and it
processes lots at the arrival rate, then workstation A also processes lots in slow-mode,
because in an optimal trajectory the wip level of that type is zero for the whole flow line.
Consequently, slow-modes in A should completely overlap slow-modes in B, if occurring
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(see the conditions in Section 5.2). Define θ �i and θ �i as the amount of time a slow-
mode of lot type i in A starts earlier and ends later (respectively) than the corresponding
slow-mode in B:

θ �i � τλB
i � θ �i � τλA

i , i � � 1,2 
 (6.3)

in which τλ j
i is the duration of the slow-mode in type i at workstation j. The overlap

requirement yields:
θ �1 � 0; θ �1

� 0; θ �2 � 0; θ �2
� 0. (6.4)

2. Without loss of generality, let time t � 0 be the start of σ B
21. From observation 1 it follows

that at t � 0, A starts with a setup (if θ �2 � 0) or is still in slow-mode of type 2 lots
(if θ �2 � 0). Therefore, σ A

21 starts at t
� 0. Similarly, σ A

12 cannot start earlier than the start
of σ B

12.
3. Let τµ j

i denote the duration of processing lots of type i at maximum process rate µi at
workstation j. From observations 1–2 follows:

θ �2 � σ A
21 � τµA

1 � θ �1 � σ B
21 � τµB

1 (6.5a)

θ �1 � σ A
12 � τµA

2 � θ �2 � σ B
12 � τµB

2 . (6.5b)

4. Buffer levels are not allowed to become negative. Therefore, if τ µB
i starts earlier than τµA

i ,
the number of lots B processes before τ µA

i starts may not exceed the number of lots A
processes (in slow-mode) after B switched to the other mode:

µB
i � τµB

i � θ �i � τµA
i � � λiθ

�
i (6.6)

or written differently:

σ A
21 � θ �2 � σ B

21
� ρB

1 θ �1 (6.7a)
σ A

12 � θ �1 � σ B
12

� ρB
2 θ �2 . (6.7b)

This restriction is also valid if τ µB
i starts after τµA

i started, since then the left-hand sides
of (6.6)–(6.7b) become negative, while the right-hand sides are always positive. There-
fore, these constraints may always be required.

5. The amount of lots A processes of each type during one cycle must be equal to the number
of lots that is processed by B in one cycle. These mass conservation equations follow
(with i � � 1,2 
 ):

µA
i τµA

i � λiτλA
i

� µB
i τµB

i � λiτλB
i

� λiT. (6.8)

These observations have been summarized in Figure 6.10. The process cycles for worksta-
tions A and B are presented. Note that the time line for B is the same as in Figure 5.5. For
reasons of symmetry and without loss of generality, the process cycle of B may contain slow-
modes for both lot types, though it is known from Chapter 5 that in an optimal cycle the slow-
mode takes place in at most one lot type. In addition, a slow-mode was added to both lot types
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in workstation B for future extensions to larger flow lines. The overlapping slow-modes (obser-
vation 1) are clearly visible in Figure 6.10. Note that the situation which observation 4 refers
to is visible for type 1 lots in the figure: the amount of lots workstation A processes during θ �1
must at least equal the number of lots that are processed by B before τ µA

1 starts again.
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Figure 6.10: The period of one cycle, T , divided into subsequent phases.

With the given observations visualized in Figure 6.10 it is possible to derive conditions for
server A which must be obeyed to make the flow line behave like B stand-alone with respect to
work in process levels.

Remark 6.4. Observations 1–5 are also applicable for flow lines with more than two servers,
e.g. a flow line with workstation A, B and C. In that case, first B has to make workstations B
and C behave like C stand-alone and secondly, find a feasible trajectory for A to make work-
stations A and B behave like B stand-alone. Similar reasoning goes for larger flow lines. In
Section 6.4 this is elaborated for four workstations in a flow line, where an optimal process
cycle is determined all at once by means of solving a linear program.

Theorem 6.5. Workstation A can make flow line of workstations A and B perform like B stand-
alone with respect to work in process levels if and only if:

R2

�
τµB

1 � τλB
2 � σ B

21 � σ A
21 � T � R1 � τλB

1 � T � � � τµB
2 � σ B

12 � σ A
12

� 0 (6.9a)

and

R1

�
τµB

2 � τλB
1 � σ B

12 � σ A
12 � T � R2 � τλB

2 � T � � � τµB
1 � σ B

21 � σ A
21

� 0 (6.9b)

with R1 � max � ρA
1 ,ρB

1 � and R2 � max � ρA
2 ,ρB

2 � , the highest partial workloads of a lot type over
the workstations.

Proof. See Appendix A.8.

When more than one upstream workstation is present, similar conditions can be derived for
these workstations. Each additional workstation adds two constraints similar to (6.9) to Theo-
rem 6.5. Notice, however, that for larger flow lines, checking the conditions for all workstations
in upstream direction might involve some iterations. In general, some freedom exists in the
choice of process interval lengths within all conditions as described in the observations earlier
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in this section. The one choice may give feasible results for other upstream servers, whereas
the other choice might give infeasible results. Eliminating this freedom and developing explicit
relations is not investigated in this thesis. To avoid this issue, a way to find feasible trajectories
for upstream servers all at once given the parameters (µ and σ ) is to cast the problem into a
linear program with design variables τ µ

1 , τλ
1 , τµ

2 , τλ
2 , and slow-mode extensions θ �1 and θ �2 for

all servers. All constraints (6.3)–(6.8) are linear in the design variables. Any arbitrary objective
function results in a feasible solution, (unless the problem is infeasible according to (6.9) and
corresponding conditions for other workstations). In this way, for larger flow lines, feasible
trajectories can be found relatively easy. The linear program solver can also be used to check
if a feasible solution exists at all. An example of this linear programming approach for longer
manufacturing flow lines is given in Section 6.4

The desired (optimal) process cycle has been defined for the entire flow line now and conditions
for the upstream workstations have been derived. Now a controller that steers the state x � t � to
the desired periodic orbits from any arbitrary initial state x � 0 � is developed.

State feedback controller

A state feedback controller that brings any arbitrary trajectory to the desired periodic orbits as
defined in Sections 5.2 and 6.2 is presented in this section. The controller can be obtained using
the ideas presented by Lefeber and Rooda [73].

Proposition 6.6. The following state feedback controller steers the system to the desired (opti-
mal) periodic orbits, from any arbitrary initial state x � 0 � :

• If at t � 0 the modes m � � mA
, mB � of the machines are unequal in the initial state, then

make A switch to the same mode as B.
• After initial switching (if necessary), each workstation separately loops the following

lines from top to bottom. Based on the state of the system, the controller (trivially) starts
in one of the lines for each server. Note that at some lines the workstations synchronize
before a setup takes place. Lots are always processed at the actual highest possible rate.

Workstation A: Workstation B:

① until xA
1

� xB
1

� 0 ① until xB
1

� xA
1

� 0
① until xB

1
�

xB �1 and mB � 2 ① until xA
2

�
xA �2

perform ❷ perform ❷

② until xA
2

� xB
2

� 0 ② until xB
2

� xA
2

� 0
② until xB

2
�

xB �2 and mB � 1 ② until xA
1

�
xA �1

perform ❶ perform ❶

Note that the servers always process at the current highest possible rate, obeying Lemma 5.2.

Proof. See Appendix A.9.
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Table 6.3: System parameters of flow line case study with two workstations.

λ1: 4 lots/hr. µA
1 : 20 lots/hr. µB

1 : 20 lots/hr. mA � 0 � : 1 xA
1 � 0 � : 25 lots

λ2: 4 lots/hr. µA
2 : 40 lots/hr. µB

2 : 20 lots/hr. mB � 0 � : 1 xA
2 � 0 � : 25 lots

σ A
12: 0.5 hrs. σ B

12: 5.0 hrs. xA
0 � 0 � : 0 hrs. xB

1 � 0 � : 25 lots
σ A

21: 1.0 hrs. σ B
21: 0.5 hrs. xB

0 � 0 � : 0 hrs. xB
2 � 0 � : 25 lots

Convergence to the desired steady state process cycle has been proven mathematically. Next,
simulations are carried out in which the controller of Proposition 6.6 is implemented on the
hybrid fluid model, a deterministic discrete event simulation and a stochastic discrete event
simulation. In addition, the performance of the controller is compared with the performance of
a controller in which only local state information of a workstation is available to determine the
control action for that workstation.

Case study: controller implementation
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Figure 6.11: Flow line consisting of two switching servers.

Consider again the switching server flow line consisting of two workstations, processing two lot
types. A schematic overview of this flow line is given in Figure 6.11. The buffers have infinite
storage capacity and the system parameters are as given in Table 6.3. First, all parameters are
constant. Later on, some parameters are subject to variability, to check the working of the feed-
back controller under disturbing circumstances. It is assumed that wip in the buffers has equal
weight in the cost function for both lot types. The state feedback controller of Proposition 6.6
is implemented in a few simulations:

• the original hybrid fluid model;
• a deterministic discrete event simulation using χ;
• a stochastic discrete event simulation using χ in which the inter arrival times and process

times of lots are distributed exponentially, with means 1 � λi and 1 � µ j
i respectively.

In addition to these simulations, the performance of the controller of Proposition 6.6 is com-
pared with a control strategy which uses only local information of a workstation to determine
the control action of that workstation, i.e. the workstations are not aware of each other’s exis-
tence.
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The determined optimal process cycle of workstation B does not contain a slow-mode (cf. Sec-
tion 5.2), so the periodic orbit has the pure bow tie shape (see Figure 5.7). The optimal process
cycle can be characterized as follows: τ µB

1
� 15

6 hours, τµB
2

� 15
6 hours, resulting in a total

period length of 9 1
6 hours. The threshold levels for switching to the other lot type are x �2 � 91

3
and x �1 � 271

3 lots. The mean number of lots in the system is 29 1
3 , which is 142

3 per lot type
(symmetric workstation with respect to process rates and arrival rates). Using Little’s law, the
mean flow time of both lot types is 3 2

3 hours.

For workstation A, first the conditions of (6.9) are checked and they are fulfilled. The process
cycle of A is computed in the way as described in the second part of the proof of Theorem 6.5.
The process cycle of workstation A has the following characteristics: τ µA

1
� 11

12 hours, τλA
1

� 4 7
12

hours, τµA
2

� 7
9 hours, τλA

2
� 1 7

18 hours, θ �1 � 4 7
12 hours and θ �2 � 5

12 hours. Note that the
process cycle of workstation A contains a slow-mode in both lot types and the period length
of the process cycle of workstation A equals (by requirement) the period length of the cycle
performed by workstation B: 9 1

6 hours.

For the controller implementation, the values of the buffers at which setup to the other lot type
takes place have to be computed. For the values of slow-mode extensions θ �1 and θ �2 the largest
possible values are chosen (see Appendix A.8 for details). This yields the following threshold
values for switching: xA �1

� 9, xA �2
� 72

3 , xB �1
� 181

3 and xB �2
� 12

3 .

First, a simulation with the original hybrid fluid model (with constant arrival and process rates)
and the controller has been carried out (with Matlab). Initial conditions for this simulation
are presented in Table 6.3. Simulation results are shown in Figure 6.12. In the left hand side
graph, the lumped buffer levels are plotted against each other. Clearly, the threshold buffer
levels for switching to the other type in case of stand alone workstation B are visible: x �2 � 91

3
and x �1 � 271

3 lots. These threshold values are now achieved for the flow line of workstations A
and B. The middle and right hand side graph show the individual buffer levels over time.

In the discrete event simulation, the fluid model is abandoned, i.e. buffer levels only take on
integer (natural) values and processing lots takes a real amount of time, contrary to the fluid
model approximation. Two different discrete event simulations are performed: a completely
deterministic simulation and a stochastic simulation. In the stochastic simulation, the inter-
arrival times of lots and process times of lots are chosen to be exponentially distributed. Setup
times remain constant. The variability on the arrival and process pattern and the integer char-
acter of the buffer levels can be regarded as disturbances with respect to the original hybrid
fluid model. This hybrid fluid model was used to develop the feedback controller. Therefore it
is interesting to see how the controller behaves when it is implemented on other plant models.
Similar to the results obtained in previous discrete event simulations, it is expected that the feed-
back controller settles the trajectories of the systems down to the desired trajectories. Results
of the discrete event simulations (with the same initial conditions as in the previous simulation)
are shown in Figures 6.13 and 6.14. Compared with the results of the hybrid fluid model sim-
ulation, one can conclude that the controller is very well capable to steer the trajectories of the
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Figure 6.12: Simulation results for implementation of the state feedback controller (Proposition 6.6) on
original hybrid fluid model. Left: periodic orbit, center: buffer levels workstation A, right: buffer levels
workstation B.

discrete event simulations to the desired trajectories.
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Figure 6.13: Simulation results for implementation of the state feedback controller (Proposition 6.6) on
deterministic discrete event model. Left: periodic orbit, center: buffer levels workstation A, right: buffer
levels workstation B.

Another control policy is implemented on the hybrid fluid model. If the workstations do not
know the state information of each other, local information must result in control actions. As-
sume that only local information is available about the mode of the server and the buffer lev-
els of that server. Both workstations can implement a clearing policy with double threshold
switching levels. The switching levels can be read from Figure 6.12 (or from the numerical
simulation data). These levels seem to give optimal system behavior, but does it also work with
local controllers? The threshold levels are set to: xA �1

� 102
3 , xA �2

� 26, xB �1
� 181

3 and xB �2
� 12

3 .
Simulation results are shown in Figure 6.15. The same initial conditions were used as in the first
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Figure 6.14: Simulation results for implementation of the state feedback controller (Proposition 6.6) on
stochastic discrete event model. Left: periodic orbit, center: buffer levels workstation A, right: buffer
levels workstation B.

simulation. As can be seen, the trajectory does not settle down to the optimal steady state pe-
riodic orbit. The synchronization between the workstations is crucial when steering the system
to its optimal steady state orbit. Note that different initial conditions lead to the same periodic
orbit as shown in Figure 6.15.
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Figure 6.15: Simulation results for implementation of local clearing with double threshold controller on
original hybrid fluid model. Left: periodic orbit, center: buffer levels workstation A, right: buffer levels
workstation B.

All four different simulations result in mean wip levels and flow times of lots in the system.
In Table 6.4 the numerical results are presented. For the discrete event simulations, a transient
of 30 process cycles was taken before the measurements of flow times start. Flow times were
computed during 100 process cycles, resulting in mean flow times per lot type. For the stochas-
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tic simulation, this procedure has been repeated 20 times. The mean and standard deviation over
those 20 simulations are shown in the table. It is striking that although the controller which uses
only local information does not settle down to the desired trajectories, the mean flow times of
all lots and total wip level do not differ much from the stochastic simulation results. For the lot
types separately big differences exist, but overall the difference is not that big.

Table 6.4: Performance comparison for different simulations with a switching server flow line, process-
ing two lot types. Control objective is to make the flow line with workstations A and B behave as if it
were workstation B in isolation.

simulation lot type mean wip level mean flow time

hybrid fluid model 1 14 2
3 32

3

2 142
3 32

3

1+2 291
3 32

3

deterministic discrete event 1 15.25 3.81

2 14.80 3.70

1+2 30.05 3.76

stochastic discrete event 1 16.82 � 0.20 4.21 � 0.051

(20 simulations over 100 cycles) 2 17.64 � 0.26 4.41 � 0.066

1+2 34.46 � 0.42 4.31 � 0.053

clearing with double threshold levels 1 9.94 2.49

(local controllers) 2 25.27 6.32

1+2 35.21 4.40

6.2.3 Special situation: identical workstations

In the previous sections two different classes of manufacturing flow lines have been studied.
When can one workstation make the other workstation perform at its optimal stand alone pro-
cess cycle in such a way that the corresponding mean wip level is achieved for the complete
flow line? First the situation was studied in which the second workstation could keep its buffers
empty, letting the first workstation process its optimal cycle. Then the counterpart was investi-
gated: what are the conditions on the first workstation to make the flow line achieve the mean
wip level of the second workstation as if it were stand alone? One situation exists that is part
of both classes: a flow line consisting of identical workstations: µA

1
� µB

1 , µA
2

� µB
2 , σ A

12
� σ B

12
and σ A

21
� σ B

21.
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In short, the conditions on the workstations in a two-workstation flow line were as follows:

• Workstation B makes the flow line behave as workstation A stand alone with respect to
work in process levels. Conditions: µB

1
� µA

1 , µB
2

� µA
2 , σ B

12
� σ A

12 and σ B
21

� σ A
21.

• Workstation A makes the flow line behave as workstation B stand alone with respect to
work in process levels. Conditions:

R2

�
τµB

1 � τλB
2 � σ B

21 � σ A
21 � T � R1 � τλB

1 � T � � � τµB
2 � σ B

12 � σ A
12

� 0

R1

�
τµB

2 � τλB
1 � σ B

12 � σ A
12 � T � R2 � τλB

2 � T � � � τµB
1 � σ B

21 � σ A
21

� 0.

It is immediately clear that identical workstation fall within the first category: all inequalities
hold with equality then. The conditions of the second class of flow lines reduce to the following
inequalities for identical workstations:

ρB
2

�
τµB

1 � τλB
2 � T � ρB

1 � τλB
1 � T � � � τµB

2
� 0 (6.10a)

ρB
1

�
τµB

2 � τλB
1 � T � ρB

2 � τλB
2 � T � � � τµB

1
� 0. (6.10b)

Recall that mass conservation requirement (6.8) stated:

τµB
i � ρB

i � τλB
i � T � � 0.

This equality can be used twice in each of the inequalities (6.10). This results in 0 � 0 which
always holds. Thus, identical workstations also fall in the second category.

The steady state periodic process cycle of the identical workstations results in empty buffers in
workstation B. The workstations mimic each other with respect to actual process rates.

As for the feedback controllers that were proposed for both classes of flow lines: they reduce
to the same controller when applied to a flow line of identical workstations. The easiest way to
verify this is to regard the informal representation of the controller of Proposition 6.6. Recall
that xB �1

� 0 and xB �2
� 0 in case of identical workstations. With this insight, the informal

representation of Proposition 6.3 is obtained.

6.3 General problem of two workstations flow line

For two special cases of a flow line of two switching servers, optimal system behavior with
respect to mean wip levels has been defined so far. The cases implied imposing the optimal
mean wip level of a single switching server on the entire flow line. Conditions under which
this is possible were derived and after having determined optimal process cycles, feedback
controllers were proposed that steer the system to the desired trajectories. For the particular
case of identical workstations, it was shown that the aforementioned conditions always hold
and that both feedback controllers reduce to the same controller.
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The general problem of minimizing the work in process level for a flow line of two switching
servers is an open problem. However, insights obtained in Chapter 5 and this chapter lead to
the following lemmas which must hold for the solution of the general optimization problem.

Lemma 6.7. In an optimal process cycle, each buffer is emptied at least once.

Proof. Assume that an optimal cycle has a minimal buffer level of ε � 0 lots. An alternative
process cycle with the same process rate profiles can be realized in which the particular buffer
level reaches zero. The mean wip level of that particular buffer is decreased with ε now, so the
claimed optimal cycle was not optimal.

Lemma 6.8. Workstation A (the upstream workstation) only moves lots from A to B, so without
loss of generality, workstation A can always work at the highest possible actual process rate
(which might be the arrival rate).

Proof. If lots are processed by A as quickly as possible, then lots arrive at workstation B as early
as possible and therefore can leave the flow line earlier, since they can be processed earlier by B.
Any other strategy in A does not result in lower wip levels, so without loss of generality, A can
always process lots at the highest possible rate (which might be the arrival rate).

Lemma 6.9. Workstation B removes lots from the system, so B always has to process lots at the
actual highest possible rate (which might be the arrival rate).

Proof. Assume that in an optimal cycle B does not process at the highest possible rate. In an
alternative cycle, B processes at highest possible rate and stays in each mode equally long as in
the optimal cycle, processing an equal number of lots as in the optimal cycle. In the alternative
cycle, lots leave the system earlier than in the optimal cycle, meaning that the presumed optimal
cycle was not optimal. Therefore, B always has to process lots at the highest possible rate.

Lemma 6.10. At the start of τB
i , buffer xB

i contains:

• The number of lots that arrive at workstation B outside the τB
i interval.

• The number of lots that arrive during τB
i that cannot be processed anymore during τB

i .

Proof. Outside τB
i , no lots of type i are processed, so jobs arriving at workstation B reside in

the buffer until processing of type i lots starts over again. Apart from these lots, it is possible
that lots depart from A at a higher rate than µB

i at the end of τB
i . Not all lots can be processed

then during τB
i . The remaining lots reside in the buffer until the next start of processing type i

lots. In a steady state situation, these lots can definitely be processed in the next cycle.

Lemma 6.11. Without loss of generality, one can assume that in workstation B a mode never
ends with idling.
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Proof. Suppose that the optimal process cycle idles at the end of mode i. Consider an alternative
cycle which is equal to the optimal cycle, apart from the fact that instead of idling, it switches to
mode j. Jobs of type i are processed in the same way in the alternative cycle as in the presumed
optimal cycle. However, jobs of type j might be processed earlier now and leave the system
earlier. Costs of type j are therefore not higher in the alternative cycle than in the presumed
optimal cycle. (Most probably the costs are even lower in the alternative cycle.) Without loss
of generality, one can state that an optimal strategy never idles at the end of a mode.

These lemmas contribute to finding an optimal process cycle for the flow line. However, man-
ufacturers might be satisfied with a suboptimal process cycle, as explained in the previous
chapter. As long as a new process cycle is better (measured in euros) than the current one,
the new cycle will do. The process of finding a ‘better’ process cycle can be guided by Lem-
mas 6.7–6.11 and the resulting cycle at least shares some properties with an optimal cycle.
Once an optimal or desired process cycle has been found, deriving a state feedback controller
is a straightforward exercise using the theory and methods presented in [73].

Unequal period lengths of the workstations

An important assumption in this chapter is that the period lengths of the process cycles in all
workstations are equal. This assumption made the analysis tractable. But are equal period
lengths also required? One can imagine that in situations in which the workstation’s charac-
teristics are of the same order, the period lengths are likely to equal each other, due to the
overlapping slow-mode requirements. However, the equal period assumption is not a require-
ment, as is shown in the following example.

Example 6.12. Consider the manufacturing flow line consisting of two workstations, serving
two lot types, presented in Figure 6.16. The system characteristics and constant arrival rates
are indicated in the figure. It is investigated whether it is possible to make the flow line behave
as if it were only one workstation stand-alone with respect to work in process levels. For this
purpose, the conditions on the workstations as presented in this chapter are checked:

λ1 � 2

λ2 � 2

µA
1 � 7

µA
2 � 7

µB
1 � 8

µB
2 � 28

xA
1

xA
2

xB
1

xB
2

A B

σ A
12 � 1, σ A

21 � 2 σ B
12 � 1, σ B

21 � 18

Figure 6.16: Example of flow line for which A can make the flow line behave like B stand-alone with
respect to work in process levels, but with unequal period lengths

• Is it possible to make the flow line behave as if it were only workstation A? Then work-
station B must not be slower than A. This holds for the maximum process rates, but not
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for the setup times.
• Is it possible to make the flow line behave as if it were only workstation B? Condi-

tions (6.9) are checked and do not hold.

If the assumption is lifted that the periods of the process cycles in the workstations must be
equal, a solution exists which makes the flow line behave as if it were only workstation B, with
respect to work in process levels. The solution is presented in Figure 6.17. The left hand side
graph shows the optimal periodic orbit of workstation B, derived with the theory from Chapter 5.
This periodic orbit has become the orbit for the lumped buffer levels (cf. Figure 6.9). This is
achieved by having workstation A perform four process cycles, while workstation B performs
only one process cycle. The buffer levels of the workstations are shown in the center and right
hand side graph of Figure 6.17. Note that in this solution workstation A also processes at its
optimal process cycle (pure bow tie curve) as derived in Chapter 5. This means that once the
flow line processes in these cycles, no room exists anymore to reduce the wip level if needed.
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Figure 6.17: Optimal mean work in process level for the flow line is achieved with unequal period
lengths of workstations A and B.

Example 6.12 shows that it is possible to make a flow line behave as one workstation with
respect to wip levels when the equal period assumption is lifted. One can intuitively check that
Lemmas 6.7–6.11 also hold when this assumption is lifted, making them applicable to a larger
class of optimization problems of finding optimal process cycles for manufacturing flow lines
and networks.

6.4 Larger flow lines

In the previous sections, optimal system behavior for certain classes of flow lines consisting
of two workstations has been defined. The general idea was to have one of the workstations
perform its stand-alone optimal process cycle. The other workstation should make this possible
by either keeping its buffers empty (Section 6.2.1) or providing enough work at the right times
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in such a way that the server performing its optimal cycle can actually do so (Section 6.2.2). In
this section, similar issues are addressed for larger flow lines.

Are the results for flow lines of two workstations applicable to larger flow lines? Suppose that it
is desired to achieve the optimal mean wip level of one workstation for a large flow line. Three
situations are possible:

• the first workstation of the flow line is to perform its optimal cycle and the remainder of
the flow line must keep its buffers empty;

• the last workstation of the flow line is to perform its optimal cycle and the rest of the flow
line must make this happen;

• a combination of the first two situations: an arbitrary workstation is to perform at its
optimal process cycle. Upstream workstations should make this happen and downstream
workstations should keep their buffers empty.

Identification of the ‘bottleneck’ workstation can be done by determining the optimal mean wip
level for each workstation with the theory of Chapter 5. The highest individual mean wip level
determines the bottleneck workstation. The downstream workstations are to perform according
to the first mentioned situation and the upstream workstations are to perform according to the
second mentioned situation. These situations are elaborated on below.

The first situation is relatively easy: in order to keep buffers empty, the workstation should not
be slower than the preceding one, as explained in Section 6.2.1. For larger flow lines these
conditions hold, otherwise the downstream workstation would not be able to keep up with the
upstream one. Or in other words, for a flow line consisting of N � N workstations:

σ n
12

� σ n � 1
12 , σ n

21
� σ n � 1

21 , µn
1

� µn � 1
1 , µn

2
� µn � 1

2 for n � � 2, 3, . . . , N 
 .
The second situation is more complex. Upstream workstations should provide a succeeding
workstation with work in such a way that the succeeding workstation is able to process lots
according to a certain rate profile. In Section 6.2.1 necessary and sufficient conditions have
been derived for the flow line with two workstations. For larger flow lines, the results are
applicable, but the conditions are only sufficient, not necessary anymore, as explained below.

For a flow line consisting of two workstations, the conditions on the first workstation to make
the flow line behave as a single server with respect to mean wip levels, left some freedom
in the process cycle of the first workstation (see Figure A.21 in Appendix A.8, which shows
the feasible area for θ �1 and θ �2 , the extensions of the slow-modes in workstation A in each
mode). When a specific choice for θ �1 and θ �2 has been made, the process cycle of A is fixed.
When an additional upstream workstation is added, the conditions on the workstations can be
shifted upstream: the determined process cycle of A needs to be achieved by choosing a suitable
process cycle for the newly added workstation. However, different choices in the process cycle
of A might lead to different process cycles of the new workstation. Or worse: specific choices on
the process cycle of A gives infeasible results for the added upstream workstation, while other
choices for A lead to feasible process cycles for the added upstream workstation. It would be
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better to solve the problem for multiple workstations all at once. For larger flow lines, process
cycles can be obtained by solving a linear matrix inequality, as explained in the following.

Consider a flow line consisting of N � N workstations, each serving two lot types, see Fig-
ure 6.18. Each server has its own processing characteristics µ n

1 , µn
2 and setup times σ n

12 and σ n
21,

with n � � 1, 2, . . . , N 
 . Note that the server identification in the superscripts is a number now
rather than a capital. Server N is the most downstream server which has to perform its opti-
mal process cycle (cf. Chapter 5). All upstream workstation should behave in a way that the
corresponding optimal mean work in process level can be achieved for the complete flow line.
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Figure 6.18: Flow line of N switching servers with two product types.

From Figure 6.10 and the observations which led to this figure it is known that the process cycle
of the upstream workstation has a similar shape as the process cycle of the downstream work-
station, but with possibly different lengths of all intervals. When this shape of process cycles is
required for all upstream workstations, Figure 6.19 emerges. The dashed vertical lines indicate
that the slow-modes should overlap each other completely when looking upstream. Slow-mode
extensions θ n

i are measured from the start and ending of the slow-mode of workstation n � 1,
as indicated graphically in the figure.

The observations for the two workstation flow line, as explained in Section 6.2.2, can be applied
to the larger flow line:

• Overlapping slow-modes:

θ � ,ni � τλ ,n � 1
i � θ � ,n

i
� τλ ,n

i , i � � 1, 2 
 , n � � 1, 2, . . . , N � 1 
 (6.11a)
θ � ,n

i
� 0, i � � 1, 2 
 , n � � 1, 2, . . . , N � 1 
 (6.11b)

θ � ,ni
� 0, i � � 1, 2 
 , n � � 1, 2, . . . , N � 1 
 . (6.11c)

The slow-mode extensions are defined with respect to the succeeding workstation, see
Figure 6.19. By definition, θ � ,N

i
� 0 and θ � ,Ni

� 0.
• The period of the process cycles is equally long in all workstations (assumption).
• The equal period lengths and overlapping slow-modes lead to the following equal interval

lengths:

θ � ,n
2 � σ n

21 � τµ,n
1 � θ � ,n1

� σ n � 1
21 � τµ,n � 1

1 , n � � 1, 2, . . . , N � 1 
 (6.12a)

θ � ,n
1 � σ n

12 � τµ,n
2 � θ � ,n2

� σ n � 1
12 � τµ,n � 1

2 , n � � 1, 2, . . . , N � 1 
 . (6.12b)
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period T
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Figure 6.19: Time lines of multiple workstations, achieving optimal system behavior of most down-
stream workstation m stand-alone.

• Buffer levels are not allowed to become negative:

µn � 1
i

�
τµ,n � 1

i � θ � ,ni � τµ,n
i � � λiθ

�
,n

i , i � � 1, 2 
 , n � � 1, 2, . . . , N � 1 
 . (6.13)

• Mass conservation holds in each workstation:

µn
i τµ,n

i � λiτλ ,n
i

� λiT, i � � 1, 2 
 , n � � 1, 2, . . . , N 
 . (6.14)

All equations and inequalities (6.11)–(6.14) are linear in all τ and θ variables, thus a linear
matrix inequality (LMI) is obtained (see [100] for details on LMI theory). LMIs can be solved
efficiently with numerical tools. If one is only interested in the existence of a feasible solution,
a linear program solver can also be used. In fact, the linear program solver is (mis)used here
to check the existence of feasible solutions. The coefficients of the linear objective function do
not influence the feasibility question. Only if some freedom is left in the process cycles of the
workstations, the linear objective function coefficients of the LP force the solution to a certain
direction in the feasible area.

Example 6.13. Consider a flow line consisting of four workstations, each serving two product
types, see Figure 6.18. The characteristics of the flow line are given in Table 6.5. Is it possible
to make this flow line behave with respect to work in process levels as if it were only the most
downstream workstation (workstation 4)? This problem is solved by means of constructing
a linear programming problem as described above. First of all, an optimal process cycle is
determined for workstation 4, with the insights obtained in Chapter 5. A slow-mode occurs
for type 1 lots. The time intervals for an optimal process cycle are as follows: τ µ,4

1
� 8.19,

τλ ,4
1

� 0.71, τµ,4
2

� 2.83 and τλ ,4
2

� 0 hours. The period length of the steady state process cycle
is 20.72 hours and the buffer values at points of switching are x �1 � 70.4 and x �2 � 38.7 lots.
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Table 6.5: System parameters of flow line case study with four workstations.

λ1: 9 lots/hr. µ1
1 : 20 lots/hr. µ2

1 : 18 lots/hr. µ3
1 : 20 lots/hr. µ4

1 : 22 lots/hr.
λ2: 3 lots/hr. µ1

2 : 20 lots/hr. µ2
2 : 19 lots/hr. µ3

2 : 20 lots/hr. µ4
2 : 22 lots/hr.

σ 1
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2 hrs. σ 2
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2 hrs. σ 4
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Figure 6.20: Buffer levels (left and center) and periodic orbit (right) of the steady state cycle of the flow
line example. Buffer level graphs: workstation 1 (solid), workstation 2 (dashed gray), workstation 3
(dotted) and workstation 4 (dashed black).

For the linear programming problem, constraints (6.11)–(6.14) have been formulated for this
example. The choice of the objective function parameters is arbitrary and does not influence
the feasibility issue. For a certain (unspecified) choice of the objective function parameters, the
resulting feasible steady state process cycle is shown in Figures 6.20 and 6.21. The latter shows
the time lines of the cycles, the former shows the buffer levels over time and the periodic orbit
of the lumped buffer levels of each lot type. This periodic orbit equals the periodic orbit of
workstation 4 stand-alone (cf. x �1 and x �2 of the stand-alone curve and the corresponding values
in the graph). For developing a state feedback controller that steers a trajectory of the system
to the desired optimal trajectory, the reader is referred to [73].

The linear program that has been obtained by propagating conditions (6.9) over the upstream
workstations results in feasible process cycles for the flow line of switching servers. However,
using this method might be too restrictive. The conditions are based on the assumption that lots
can only be processed at rate µ of the specific workstation or at arrival rate λ . For the flow line
consisting of two workstations, this was a valid assumption, which was not over-restrictive. For
a flow line consisting of multiple workstations (more than two), lots can also be processed in a
slow-mode at the maximum process rate of one of the upstream workstations. In addition, it is
imaginable that idling takes place in one of the workstations. This was not included in the linear
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Figure 6.21: Time lines of flow line example. Numbers represent the duration of the intervals.

program that was constructed above, so infeasible LP problems do not imply that no process
cycle exists that makes the flow line behave as if were only the most downstream workstation,
with respect to wip levels. Conditions (6.9) are then sufficient, not necessary anymore.

6.5 Summary

This chapter elaborated on the results of Chapter 5, where optimal process cycles with respect
to wip levels were derived for single switching servers with two lot types. In this chapter,
flow lines of switching servers were considered. In a flow line, the number of lots in process
is determined by the arrival pattern and the most downstream workstation in line. All other
workstations only move lots from the one server to the other. When the arrival pattern cannot
be influenced, the work in process levels of the system are only determined by the process cycle
of the most downstream workstation. Is it possible to achieve the optimal wip level of a single
switching server in a flow line? What are the conditions on the individual workstations? The
idea here is to have one of the workstations in a flow line process at its optimal process cycle and
investigate conditions on other workstations. Two classes of flow lines have been investigated:

• Flow lines for which it is possible to have the first workstation process at its optimal cycle
while keeping the buffers in all other workstations empty. The optimal wip level of the
stand alone first workstation is then achieved for the complete flow line. Conditions on
the downstream workstation were derived. Loosely speaking, in order to keep its buffers
empty, a workstation must be ‘not slower’ than its immediate upstream supplier. Both the
setup times must be shorter and the process rates must be larger for each lot type.

• Flow lines for which it is possible to have the most downstream workstation process at its
optimal cycle. For a flow line of two workstations, conditions on the upstream one have
been derived.
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For both classes of flow lines, state feedback controllers were proposed that steer the buffer lev-
els of the workstations to the desired trajectories. Convergence to these steady state trajectories
has been proven. The controllers were implemented successfully in case studies, where they
were also compared to other control policies. A general conclusion from these case studies is
that the workstations need a synchronization mechanism in order to reach the desired trajecto-
ries. Synchronization takes place in the proposed controllers which use full state information.
When local controllers are applied (i.e. only local information of a specific workstation is avail-
able), synchronization does not take place automatically. In that case the desired steady state
process cycles with corresponding work in process levels are not reached. Flow lines consisting
of identical switching servers fall in both aforementioned classes and the proposed controllers
reduce to the same feedback controller.

The general problem of finding an optimal process cycle for a flow line of two workstations is
(still) difficult to solve. Similar remarks as in Chapter 5 can be given here: it is questionable
whether one should be interested in finding an optimal process cycle. Apart from the mathe-
matical challenge, suboptimal process cycles might handle disturbances or parameter changes
better, as explained in the introductory chapter. Robust process cycles facilitate smooth opera-
tions, which can be more valuable to manufacturers than finding strictly optimal cycles.
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Figure 6.22: Time lines of Figure 6.10 in radial repre-
sentation (for periodic boundary conditions).

The current graphical representation of
process cycles (in the form of straight
time lines, cf. Figure 6.10) is a conve-
nient representation, but when systems
become larger, the time lines become
rather cluttered (cf. Figure 6.19). Espe-
cially the periodic boundary conditions
make the time lines quite intransparant.
A way to overcome this problem is by
using rotary time lines. Figure 6.10 has
been redrawn in rotary time lines in Fig-
ure 6.22. The time lines are followed in
clockwise direction. The process inter-
val lengths are no longer denoted by the
lengths of the arrows, but by the angles
in the figure. One complete process cy-
cle period is 360 degrees. In addition, if
it is possible to make the period of one
process cycle dimensionless, the opti-
mization procedure becomes easier, because only the area underneath the wip-time curve needs
to be minimized then (cumulative costs). Lan and Olsen [69] already perform a similar anal-
ysis: they compute the relative number of setups and proportion of time processing a specific
lot type per hour. Khmelnitsky and Caramanis [64] also optimize cumulative costs instead of
mean costs, but do not use a normalized period length.
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Analyses in this chapter have been carried out for a flow line of two workstations. The results
are applicable to larger flow lines. In an example with four workstations, it was shown that a
linear programming problem or LMI can be solved to obtain a feasible process cycle that makes
the flow line behave as if it were only the most downstream workstation, with respect to work
in process levels. However, propagating the conditions for two workstations to conditions for a
flow line of more workstations might be too restrictive, since processing lots at other rates than
arrival rate or local maximum process rate is possible in larger flow lines.
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Chapter 7

Conclusions and recommendations

This chapter summarizes the conclusions from this thesis. In addition, the main contributions
are recalled. Finally, some recommendations for further research are given.

7.1 Conclusions

With the increasing complexity of products and manufacturing processes, combined with ever
increasing market demands, the need for advanced control strategies for manufacturing systems
becomes stronger and stronger. In order to understand the dynamic aspects of manufacturing
systems, models are made of the physical industrial system. The models embody only the most
important phenomena that occur within the system. In this research, models have been made of
manufacturing systems to perform analysis, to predict future behavior and to test and validate
control methods. Based on the models, feedback controllers have been proposed that make the
system behave in a pre-determined desired, possibly optimal, manner. One should keep in mind
that proper working of the controller on a model in a simulation is only an indication for good
results in an actual industrial implementation.

Manufacturing systems can be modelled in many different ways. Almost all models that have
been treated in this thesis incorporate the aspect of time: manufacturing of products takes time.
A distinction between three classes of models has been made: discrete event models, continuous
models and hybrid models. Discrete event models ‘live’ in the event domain (i.e. the dynamics
is driven by events). Max-plus algebraic models, min-plus algebraic models and timed process
algebra have been treated. The three discrete event modelling paradigms allow for elegant and
compact modelling, but have the disadvantage that most performance related measures, like

173
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throughput, flow time, etc. are time related.
Continuous models generally ‘live’ in the time domain (discrete time domain is possible). The
models that have been presented in this thesis are fluid models (based on ODEs) and flow
models (based on PDEs). The fluid models lack the concept of time delay: no matter the
length of the flow line, once lots are fed to the system, they immediately start to depart from
the final workstation. Possible solutions to this time delay problem are sampling (resulting in
discrete time models) or using approximations for the time delay, e.g. Padé approximations.
Flow models are based on partial differential equations and also overcome the time delay issue.
A difficulty of PDE models of manufacturing systems is that it is hard to choose the right
equation describing the dynamical phenomena in manufacturing systems.
Hybrid models consist of both discrete event and continuous dynamics. The model types that
have been treated in this thesis are discrete hybrid automata (DHA), hybrid fluid models (a
subclass of DHA, but treated separately due to the extensive use of hybrid fluid models in this
thesis) and hybrid process algebra, in the form of formalism χ .

A state space representation for a manufacturing system has been introduced. The state consists
of both discrete and continuous variables. The number of lots that reside in buffers and on
machines are part of this state (the discrete state elements), together with variables indicating
the remaining process times of the lots that are currently on the machines (the continuous state
elements). This state is finite dimensional and can be measured as if taking a snapshot from
the system (collecting full state information does not take time). Moreover, the state does
not contain any information about production or control policy (e.g. information that needs to
be stored as a memory for the production policy). Finally, the newly developed state space
representation scales up proportionally with the size of the manufacturing system.

In Chapter 3 a method has been presented to couple model types. For the max-plus, min-plus
and hybrid χ model of a workstation, maps have been presented that translate the state or signals
from the one representation into the other representation. In this way, analysis techniques from
different domains (time or event) or paradigms can be coupled to facilitate a ‘take the best of
both worlds’ idea. For one workstation, explicit maps have been presented including proofs
that indeed the coupling has been established in a two-way manner. The state of the hybrid χ
model has been characterized by the hybrid state as introduced earlier.

With the newly developed state space representation of a manufacturing system, it is possible to
control such systems in a state feedback approach. Based on state measurements of the manu-
facturing system under control, new actions can be determined. In Chapter 4 a continuous time
receding horizon control method has been developed to determine optimal production schedules
for a fixed number of lots ahead. The feedback control law is completely determined offline us-
ing multi-parametric linear programming techniques. For a class of manufacturing systems (the
class in which all product routes, recipes and orders are fixed), an optimal production schedule
is available at any point in time, for all possible system states. When a disturbance occurs, a
new optimal schedule is immediately available, so the controller can deal with disturbances. In
Chapter 4 a framework has been developed to determine state feedback laws for manufactur-
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ing flow lines or arbitrary length, with arbitrary buffer capacities at each workstation and with
arbitrary control horizon. The method is applicable under certain assumptions, such as fixed
product recipes and routings and first-in-first-out buffers.

In Chapters 5 and 6 switching servers have been treated. A switching server is a machine that
processes multiple lot types, with switchover times between the lot types. A hybrid fluid model
has been developed to describe the dynamic behavior of such servers. Optimal system behavior
with respect to minimal weighted time averaged work in process levels has been derived for a
switching server with two lot types that arrive with a constant inter-arrival time and both finite
and infinite buffer storage capacity. The slow-mode concept has been introduced in Chapter 5.
A slow-mode occurs when a server is processing lots at their arrival rate while the buffer of that
lot type is and remains empty. In some situations (which have been made explicit) it is better to
include a slow-mode in a process cycle of a switching server than to switch immediately to an
other lot type when the buffer is empty. This somewhat counterintuitive idea can be explained
by realizing that a trade-off exists between either losing capacity due to processing lots in a
slow-mode, or losing capacity due to relatively often switching between lot types. The concept
of slow-mode plays an important role in the derivation of optimal process cycles for (networks
of) switching servers. For a switching server with two lot types that arrive in a piecewise
constant manner (e.g. a workstation that is fed by another switching server), optimal process
cycles have been defined. An important conclusion from this analysis is that the number of
optimization problems that need to be solved grows rapidly as the complexity of the problem
increases.

State feedback controllers have been proposed (and proven to converge) that steer a switching
server with constant arrival rates to its desired (optimal) trajectory from arbitrary starting point
and keep it there as good as possible, even in a disturbed environment (stochastic behavior in the
arrival process and process times of the server). The controllers have been validated on both the
original hybrid fluid model and discrete event models. The performance of the controllers has
also been compared to other controllers that are known from literature. The proposed feedback
controllers outperform the standard clearing policy and a feed forward stabilizing controller.

The minimal mean wip level for a single switching server is an absolute lower bound for the
mean wip level of a switching server flow line. In Chapter 6 it has been investigated under which
conditions this lower bound can actually be achieved for a flow line of two switching servers
with two lot types. For both a restrictive upstream workstation and a restrictive downstream
workstation, conditions on the flow line have been derived that need to be fulfilled to make
the flow line behave as if it were a single switching server, with respect to mean wip levels.
Optimal process cycles have been derived and state feedback controllers have been proposed
(and proven mathematically to converge) that steer a system’s trajectory to the desired optimal
one. An important observation here is that synchronization is necessary to achieve the optimal
wip level, i.e. only local controllers (in which only information of one workstation is available)
do not suffice to obtain optimal system behavior.
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The conditions and results for flow lines consisting of two workstations have been extended to
larger flow lines, which resulted in linear matrix inequalities that need to be solved to check
existence of a feasible process cycle.

Research has been performed on switching servers processing more than two lot types or servers
where the original hybrid fluid model has been replaced by a discrete event model. Conclusion
of this study is that the derivation of an optimal process cycle quickly becomes too difficult, if
existing at all. On the other hand, manufacturers might not always be interested in an optimal
solution. Often, a better solution than the current one suffices, or a solution that is easy to
implement, or a production process that remains stable in the presence of disturbances. The
engineering aspect of the research gets more important then.

Contributions

The main contributions of this thesis are:

• A state space representation of a manufacturing workstation. This state is finite dimen-
sional and consists of three scalars: the number of lots in the buffer, the number of lots on
the machine and the remaining process time of the lot that is currently being processed.
This state characterization does not contain any information about production or control
policy. Moreover, the dimension of the state grows proportionally with the size of the
manufacturing system.

• The introduced state space representation can be mapped onto other representations. In
this thesis, maps to max-plus and min-plus algebraic representations were presented, but
other maps are imaginable as well.

• Using multi-parametric linear programming, a continuous time receding horizon feed-
back control method was developed to determine optimal production schedules for a
finite number of lots ahead. The method is suitable for a flow line with an arbitrary finite
number of workstations, arbitrary finite number of buffer places in each workstation and
arbitrary finite control horizon. The state feedback control method is based on the newly
developed state space representation.

• For a switching server processing two lot types with non-zero switchover times, an op-
timal process cycle has been derived with respect to mean work in process levels. For a
well-defined class of these switching servers, a slow-mode appears in this optimal pro-
cess cycle. A slow-mode (keeping a buffer empty by processing lots at their arrival rate)
occurs as the result of the trade-off between losing capacity due to processing lots under
the maximum process rate and losing capacity due to relatively often switching between
the lot types.

• For a flow line consisting of two switching servers as described above, necessary and
sufficient conditions were derived under which it is possible to impose the minimal work
in process level of a single switching server on the flow line as a whole.
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7.2 Recommendations for further research

State space representation

In this thesis, the newly developed state space representation was determined for a workstation
consisting of a buffer and one single-lot machine. Other manufacturing resources, such as
batch machines, conveyors, (dis)assembly stations and workstations without buffer space can
be characterized with a similar characterization. A batch machine fits perfectly in the newly
developed state: the number of lots on the machine is then set to the batch size and allows
for variable batch sizes. Extra state components might be necessary for other manufacturing
resources, e.g. for a conveyor the remaining convey time of all lots residing on the conveyor are
separate scalars.

If the remaining process time of lots is not known, which is quite well imaginable in industrial
practice, it might be possible to use estimators for the remaining process time in the state of the
manufacturing system. These estimators can be updated on-the-fly whenever new information
becomes available.

Continuous time receding horizon state feedback control

The receding horizon feedback control method that has been developed in Chapter 4 can be
extended in various ways. More extensive bookkeeping prevents from solving the same MPLP
problem more than once, thus saving computation time. Generation of MPLP problems takes
far less computation time than solving an MPLP problem, so detecting duplicates can be a great
advantage, especially when larger flow lines or larger control horizons are involved.

The currently available scheduling method based on MPLP problem solutions is only valid for
manufacturing systems in which the order of lots on machines is fixed and pre-determined. This
is necessary to generate the precedence constraints in the linear programs. However, in more
complex manufacturing networks (e.g. with re-entrant behavior or competing queues) one can
imagine that dropping the fixed order assumption may lead to better system performance. The
set of possible process step orders at a certain state results in more MPLP problems to solve.
If the resulting value of the objective function is stored (as a look-up table with the parameter
vector), then the best process step order can be selected continuously in time by choosing the
schedule with the lowest costs. This is a matter of function evaluations; no optimization is
involved in an implementation. The number of MPLP problems to solve increases drastically
when dropping the fixed process order assumption, but with the ever increasing computational
power and storage capacity of computer systems, this approach can be considered.

The current method uses the nominal process time of a machine in the generation of MPLP
problems. Any variations are not taken into account. In the implementations of the controller,
it was shown that due to the feedback mechanism stability for (small) disturbances has been
obtained. Question remains whether the production schedules in the stochastic environment
are still optimal. Introducing stochastic processes in the analysis and development of control
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methods was not treated in this Ph.D. thesis, but needs study, since in a practical industrial
environment constant and deterministic process times or interarrival times of lots are rare.

When stochastic behavior is added to the analysis, it is possible to link this research to recent
studies on Effective Process Times (EPT), see for example [62]. The research on EPT tries to
catch complex or unknown sources of variability on parameters into simplified distributions of
these parameters by means of (black box) measurements on a practical industrial manufacturing
system. If these distributions (or just moments of the distribution) are used in the receding
horizon scheduling method, a powerful and practical engineering method emerges.

Switching servers

The currently used method for derivation of optimal process cycles is suitable for small flow
lines and a limited number of lot types. So eventually, only a small class of switching server
systems can be treated in the current way. For larger networks or servers with more product
types, determination of optimal system behavior quickly becomes too difficult, if possible at
all. As mentioned earlier, manufacturers might not be interested in the theoretically optimal
solution of the switching server problems. Looking for optimal behavior or implementing opti-
mal behavior simply might be too expensive. Therefore, effort should go into advanced control
methods for switching server networks, that stabilize the trajectory to a desired, not necessarily
optimal, process cycle. As long as this desired process cycle is feasible, stable, elegant and
better than the current one, manufacturers will not hesitate to implement it.

In the currently proposed controllers, the transient is not designed to be optimal. In order to get
optimal transient behavior, first the definition of optimal transient behavior for switching server
networks must be clear.

The sensitivity of optimal process cycles (with accompanying costs) for parameter changes
is worth investigating. How does an optimal process cycle change when a system parameter
changes a little? This relates to the issue mentioned in the introductory chapter, where small
variations in parameter settings may have a large influence on the net profit of a company. A re-
lated topic is research on the threshold levels for switching in the proposed feedback controllers.
How do these parameters change in an environment with variability?

General

This Ph.D. thesis focuses on modelling and control of manufacturing flow lines. Many concepts,
modelling techniques or control methods can be used for general manufacturing networks, traf-
fic flow networks, communication networks, etc. as well.

The final step in the modelling and control framework (as presented in the introductory chapter),
implementation of feedback controllers on physical industrial manufacturing systems, has not
been treated in this thesis. Actual implementation requires studies on output measurements,
state observers and signal conversions. As an intermediate step, implementation of controllers
on laboratory scale manufacturing systems is useful.
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Birkhäuser, Boston, 2000.

[82] G. Naumoski and W. Alberts. A discrete-event simulator for systems engineering.
Ph.D. thesis, Eindhoven University of Technology, 1998. online available at http:
//alexandria.tue.nl/extra2/9801171.pdf.

[83] I. Necoara. Model predictive control for max-plus-linear and piecewise affine systems.
Ph.D. thesis, Delft University of Technology, 2006.



BIBLIOGRAPHY 185

[84] I. Necoara, B. De Schutter, and J. Hellendoorn. Structural properties of Helbing’s traffic
flow model. Transportation Research Record, (1883):21–30, 2004.

[85] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.
Information and Computation, 114(1):131–178, 1994.

[86] H.J. Payne. Models of freeway traffic and control. Mathematical models of public ser-
vices, pages 51–60, 1971. Volume 1 of Simulations Councils Proceeding Series.

[87] J.R. Perkins and P.R. Kumar. Stable, distributed, real-time scheduling of flexiblemanu-
facturing/assembly/disassembly systems. IEEE Transactions on Automatic Control, 34
(2):139–148, 1989.

[88] S. Platschorre. Modelling of manufacturing lines using higher order PDEs. M.Sc. thesis,
Eindhoven University of Technology, 2004. SE 420413.

[89] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control technology.
Control Engineering Practice, 11(7):733–764, 2003.

[90] P. Rapisarda and J.C. Willems. State maps for linear systems. SIAM Journal on Control
and Optimization, 35:1053–1091, 1997.

[91] P.I. Richards. Shockwaves on the highway. Operations Research, 4(1):42–51, 1956.

[92] A.D. Ridley, M.C. Fu, and W.A. Massey. Fluid approximations for a priority call center
with time-varying arrivals. In Proceedings of the 2003 Winter Simulation Conference,
volume 2, pages 1817–1823, 2003.

[93] J.E. Rooda and J. Vervoort. Analysis of manufacturing systems using χ 1.0. Lecture
notes, Eindhoven University of Technology, 2007.

[94] B.J.P. Roset. Manufacturing systems considered as time domain control systems: Reced-
ing horizon control and observers. Ph.D. thesis, Eindhoven University of Technology,
2007. Available online: http://alexandria.tue.nl/extra2/200711691.pdf.

[95] B.J.P. Roset, H. Nijmeijer, J.A.W.M. van Eekelen, E. Lefeber, and J.E. Rooda. Event
driven manufacturing systems as time domain control systems. In Proceedings of the
44th IEEE Conference on Decision and Control and 2005 European Control Conference,
Seville, Spain, pages 446–451, 2005.

[96] G.J. Samson. Event-driven model predictive control of a manufacturing line. M.Sc. the-
sis, Eindhoven University of Technology, 2005. SE 420431.

[97] A.V. Savkin. Regularizability of complex switched server queueing networks modelled
as hybrid dynamical systems. Systems & Control letters, 35:291–299, 1998.

[98] A.V. Savkin. Optimal distributed real-time scheduling of flexible manufacturing net-
works modeled as hybrid dynamical systems. In Proceedings of the 42th IEEE Confer-
ence on Decision and Control, Maui (HI), USA, pages 5468–5471, 2003.



186 BIBLIOGRAPHY

[99] A.V. Savkin and A.S. Matveev. A switched server system of order n with all its trajecto-
ries converging to � n � 1 � ! limit cycles. Automatica, 37(2):303–306, 2001.

[100] C.W. Scherer and S. Weiland. Linear matrix inequalities in control. Lecture notes, Dutch
Institute of Systems and Control, 2005.

[101] A.C.J. Smolders. Feedback control of a 2-product workstation with setups and one piece-
wise constant arrival rate. M.Sc. thesis, Eindhoven University of Technology, 2007.
SE 420509.

[102] E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Transactions
on Automatic Control, 26(2):346–358, 1981.

[103] F.D. Torrisi, A. Bemporad, G. Bertini, P. Hertach, D. Jost, and D. Mignone. HYSDEL
2.0.5 – User Manual, 2002.

[104] R.J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.
Available online: http://www.princeton.edu/~rvdb/LPbook/onlinebook.pdf.

[105] F.D. Vargas-Villamil and D.E. Rivera. Multilayer optimization and scheduling using
model predictive control: Application to reentrant semiconductor manufacturing lines.
Computers and Chemical Engineering, 24(8):2009–2021, 2000.

[106] F.D. Vargas-Villamil, D.E. Rivera, and K.G. Kempf. A hierarchical approach to pro-
duction control of reentrant semiconductor manufacturing lines. IEEE Transactions on
control systems technology, 11(4):578–587, 2003.

[107] S.L.H. Verhoeven. Feedback control of 2-product server with setups and bounded
buffers. B.Sc. thesis SE 420470, Eindhoven University of Technology, 2006.

[108] G. Weiss. A simplex based algorithm to solve separated continuous linear programs. sub-
mitted to Mathematical Programming, 2001. Available online: http://stat.haifa.
ac.il/~gweiss/publications/SCLP.pdf.
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Proofs

This appendix contains proofs of several lemmas, theorems and propositions that have been
presented in this thesis. As a guide, the proofs are listed below, together with the referring page
number and the page number of the proof.
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A.1 Proposition 3.7 63 188
A.2 Theorem 5.10 102 193
A.3 Proposition 5.13 105 196
A.4 Proposition 5.15 and Lemma 5.14 109 198
A.5 Proposition 5.19 128 200
A.6 Remark 5.20 131 221
A.7 Proposition 6.3 145 225
A.8 Theorem 6.5 154 227
A.9 Proposition 6.6 155 230
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A.1 Proof of Proposition 3.7 (page 63)

The min-plus state xT � t � and the right continuous state xχ � t � of the hybrid χ model are mapped
onto each other using maps Mχ � � and M ��� χ . In order to verify that the maps are comple-
mentary to each other, the following has to be proven (Proposition 3.7):

� xχ � t � � B
χ
T s : xχ � t � � M ��� χ � Mχ � � � xχ � t � � � (A.1)

and

� xT � t � � B �T : xT � t � � Mχ � � � M ��� χ � xT � t � � � . (A.2)

Before these statements are proven, first two lemmas are stated and maps M ��� χ and Mχ � �
are recalled.

Lemma A.1. For xχ � t � � B
χ
T s:

max � 0, xχ1 � t ��� xχ2 � t � � 1 � � xχ1 � t � .

Proof. From (3.14f), it is known that xχ2 � t � � 0 � xχ1 � t � � 0. This yields max � 0, � 1 � � 0
which holds. If xχ2 � t � � 1, then max � 0, xχ1 � t � � xχ2 � t � � 1 � � max � 0, xχ1 � t � � � xχ1 � t � which
also holds, since xχ1 � t � � 0 (cf. (3.14a)).

Lemma A.2. For xχ � t � � B
χ
T s:

min � xχ1 � t ��� xχ2 � t � , 1 � � xχ2 � t � .

Proof. It is known that xχ2 � t � � 0 � xχ1 � t � � 0 (cf. (3.14f)). This yields min � 0, 1 � � 0 � xχ2 � t � .
If xχ2 � t � � 1, then min � xχ1 � t ��� 1, 1 � � 1 � xχ2 � t � , which completes the proof.

For reasons of completeness, recall maps Mχ � � and M ��� χ :
Map M ��� χ : � � � ∆,0 � � Z � 2 � N

2 � R � Z maps a min-plus state onto a right continuous
hybrid χ state:

M ��� χ :

�������������������������� �������������������������

xχ1 � t � � max � 0, xT1 � t � � 0 � � xT2 � t � � 0 ��� 1 �
xχ2 � t � � min � xT1 � t � � 0 ��� xT2 � t � � 0 � , 1 �

xχ3 � t � �

������������������� ������������������

0 if xT1 � t � � 0 � � xT2 � t � � 0 �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

max � inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 � d, 0 �
if xT1 � t � � � ∆ � �

xT2 � t � � 0 � � 1
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

max

��
� inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 � d

inf � τ � � � ∆, 0 � � xT1 � t � � τ � � xT2 � t � � 0 � � 1 
 � d
0

���
�

if xT1 � t � � � ∆ � � xT2 � t � � 0 � � 1
and xT1 � t � � 0 � � xT2 � t � � 0 �

xχ4 � t � � xT2 � t � � 0 � .

(A.3)
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Map Mχ � � : N
2 � R � Z � � � � ∆,0 � � Z � 2 maps a right continuous hybrid χ state onto a set

of min-plus states:

Mχ � � :

���������������������������� ���������������������������

� xT � t �
� �

x̃T � t � :
� � ∆ � d, d � � Z

2 with ∆ �
d such that:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

➀ : x̃T1 � t � � τ �
�

x̃T2 � t � � τ ��� N1 � 1
➁ : x̃T2 � t � � τ � � min � x̃T1 � t � � τ � d � , x̃T2 � t � � τ � d ��� 1 � for τ � � � ∆, d �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

➂ : x̃T1 � t � � 0 � � xχ4 � t ��� xχ2 � t � � xχ1 � t �

x̃T2 � t � � τ � �

�
➃ : xχ4 � t � for τ � � xχ3 � t ��� d, 0 � if xχ2 � t � � 0
➄ : xχ4 � t � for τ � 0 if xχ2 � t � � 0

➅ : x̃T1 � t � � xχ3 � t ��� d � �
xχ4 � t � � 1 if xχ2 � t � � 0

➆ : x̃T2 � t � � τ � � xχ4 � t � for 0 � τ � xχ3 � t � if xχ2 � t � � 0
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

➇ : � ε � 0, � τ � � � ∆ � d � ε, d � : x̃Ti � t � � τ � ε � �
x̃Ti � t � � τ � , i � � 1, 2 


� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� τ � � � ∆, 0 � and i � � 1, 2 
 : xTi � t � � τ � � x̃Ti � t � � τ � 
 .
(A.4)

The encircled numbers ➀–➇ are used to indicate the respective (in)equalities in the map. The
proof consists of two parts. First, (A.1) is proven, after which (A.2) is proven.

The first part of the proof concerns expression (A.1). Starting with right continuous hybrid χ
state xχ � t � � B

χ
T s, it is to be shown that when mapped to a min-plus state xT � t � � B �T s and back

again to a right continuous hybrid χ state, the original state xχ � t � is obtained.
Suppose that xχ � t � � � xχ1 � t � xχ2 � t � xχ3 � t � xχ4 � t � � T � B

χ
T s is given. Map Mχ � � yields a

min-plus state xT � t � .
Let an xT � t � � Mχ � � � xχ � t � � be given. Then an auxiliary state x̃T � t � exists such that all equal-
ities and inequalities in (A.4) hold. To be proven: M ��� χ � x̃T � t �

��� � ∆,0 � � � xχ � t � .
Let vχ � t � � � vχ1 � t � vχ2 � t � vχ3 � t � vχ4 � t � � T � M ��� χ � x̃T � t �

��� � ∆,0 � � .

Using map (A.3), each component of vχ � t � is determined:

vχ1 � t � � max � 0, x̃T1 � t � � 0 � � x̃T2 � t � � 0 ��� 1 �
� max � 0, xχ4 � t � � xχ2 � t ��� xχ1 � t ��� xχ4 � t ��� 1 �
� max � 0, xχ1 � t � � xχ2 � t ��� 1 �
� xχ1 � t � (Lemma A.1)

vχ2 � t � � min � x̃T1 � t � � 0 ��� x̃T2 � t � � 0 � , 1 �
� min � xχ4 � t � � xχ2 � t � � xχ1 � t � � xχ4 � t � , 1 �
� min � xχ1 � t � � xχ2 � t � , 1 �
� xχ2 � t � (Lemma A.2)

vχ4 � t � � x̃T2 � t � � 0 � � xχ4 � t � .



190 APPENDIX A. PROOFS

The expression for xχ3 � t � in (A.3) consists of three parts, each with its own conditions:

• vχ3 � t � � 0 if x̃T1 � t � � 0 � � x̃T2 � t � � 0 � . Suppose that this condition holds. Using (A.4), the
following result is obtained:

x̃T1 � t � � 0 � � x̃T2 � t � � 0 �
xχ4 � t � � xχ2 � t � � xχ1 � t � � xχ4 � t �

xχ2 � t � � xχ1 � t � � 0.

Property (3.14d) states that if xχ2 � t � � 0, the remaining process time xχ3 � t � � 0 as well.
• Suppose that x̃T1 � t � � � ∆ � �

x̃T2 � t � � 0 � � 1. State x̃T � t � obeys inequality ➇ (monotonicity),
so x̃T1 � t � � 0 � �

x̃T2 � t � � 0 � � 1. As a result, xχ2 � t � � min � x̃T1 � t � � 0 ��� x̃T2 � t � � 0 ���� �
�
�
�
���
�
�
� �
�� �
�
���
�
�
�
�
� �
�

 1

, 1 � � 1.

Because xχ2 � t � � 1, it follows that xχ3 � t � � 0 and for 0 � ε �
xχ3 � t � the following equality

holds: x̃T2 � t � � xχ3 � t ��� ε � � xχ4 � t � .
In addition, the following always holds (➀):

x̃T2 � t � � xχ3 � t ��� ε � � min � x̃T1 � t � � xχ3 � t � � d � ε � , x̃T2 � t � � xχ3 � t ��� d � ε ��� 1 � . (A.5)

Because x̃T1 � t � � xχ3 � t ��� d � ε � �
x̃T1 � t � � � ∆ � �

x̃T2 � t � � 0 � � 1 �
x̃T2 � t � � xχ3 � t � � d � ε � � 1,

it follows that x̃T2 � t � � xχ3 � t � � ε � � x̃T2 � t � � xχ3 � t � � d � ε ��� 1.
This results in x̃T2 � t � � xχ3 � t ��� d � ε � � xχ4 � t ��� 1 for ε �

xχ3 � t � and
thus x̃T2 � t � � xχ3 � t � � d � ε ��� xχ4 � t � for all ε � 0.
Therefore, the following result is obtained:

vχ3 � t � � max � infτ � � � ∆, 0 � � x̃T2 � t � � τ � � x̃T2 � t � � 0 � � d, 0 �
� max � xχ3 � t ��� d � d, 0 � � xχ3 � t � .

• Suppose that x̃T1 � t � � � ∆ � � x̃T2 � t � � 0 ��� 1 and x̃T1 � t � � 0 � � x̃T2 � t � � 0 � . Again, it follows that
xχ2 � t � � min � x̃T1 � t � � 0 � � x̃T2 � t � � 0 ���� �
�
�
�
�
�
�
�
� �
�� ���
�
�
�
�
���
� �
�


 1

, 1 � � 1. Now it follows that:

vχ3 � t � � max

��
� 0

inf � τ � � � ∆, 0 � � x̃T2 � t � � τ � � x̃T2 � t � � 0 � 
 � d
inf � τ � � � ∆, 0 � � x̃T1 � t � � τ � � x̃T2 � t � � 0 ��� 1 
 � d

���
� .

Note that all three terms in this max-expression are �
xχ3 � t � and thus vχ3 � t � �

xχ3 � t � .
It is known that (A.5) always holds. Two options are left then:

– Either x̃T1 � t � � xχ3 � t ��� d � ε � �
x̃T2 � t � � xχ3 � t ��� d � ε ��� 1:

Then it follows that x̃T2 � t � � xχ3 � t � � d � ε � � xχ4 � t � for all ε � 0 (see above) and thus
inf � τ � � � ∆, 0 � � x̃T2 � t � � τ � � x̃T2 � t � � 0 � 
 � d � xχ3 � t � .

– Or: x̃T1 � t � � xχ3 � t ��� d � ε ��� x̃T2 � t � � xχ3 � t ��� d � ε ��� 1:
Then it follows that x̃T2 � t � � xχ3 � t � � ε � � x̃T1 � t � � xχ3 � t � � d � ε � (cf. (A.5)).
Due to ➃, one can conclude that x̃T1 � t � � xχ3 � t ��� d � ε � � xχ4 � t � and thus
x̃T1 � t � � xχ3 � t � � d � ε � � xχ4 � t ��� 1 for ε �

xχ3 � t � and also for all ε � 0, due to ➇.
Thus, inf � τ � � � ∆, 0 � � x̃T1 � t � � τ � � x̃T2 � t � � 0 � � 1��� �
�
�
� �
�� �
�
�
� �
�

xχ4 � t � � 1


 � d � xχ3 � t � .
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This completes the first part of the proof, in which it has been shown that � xχ � t � � B
χ
T s, the

original state xχ � t � is obtained back again when mapped to a min-plus state xT � t � and back
again, i.e. xχ � t � � M ��� χ � Mχ � � � xχ � t � � � .

The second part of the proof concerns (A.2). Given a state xT � t � � B �T s, it is to be shown that
when mapped to a right continuous hybrid χ state xχ � t � � B

χ
T s and back again, the resulting

min-plus state xT � t � � B �T .

Suppose xT � t � �
�
xT1 � t � xT2 � t � � T

is given. From (A.3) follows:

xχ � t � �
�
xχ1 � t � xχ2 � t � xχ3 � t � xχ4 � t � � T � M ��� χ � xT � t � � .

To be proven: xT � t � � Mχ � � � xχ � t � � , or in other words: construct an x̃T � t � �
� � ∆ � d, d � such

that all (in)equalities in (A.4) are fulfilled and xχ � t � � M ��� χ � xT � t � � .
For x̃T � t � �

� � ∆ � d, d � , the following expressions are taken:

x̃T1 � t � � τ � �

���� ���
� for τ � � � ∆ � d, � ∆ �
xT1 � t � � τ � for τ � � � ∆, 0 �
xT1 � t � � 0 � for τ � � 0, d � (A.6)

x̃T2 � t � � τ � �

���� ���
xT2 � t � � � ∆ � for τ � � � ∆ � d, � ∆ �
xT2 � t � � τ � for τ � � � ∆, 0 �
min � xT1 � t � � τ � d � , xT2 � t � � τ � d ��� 1 � for τ � � 0, d � . (A.7)

Signals x̃T � t � are a copy of xT � t � on the interval
� � ∆, 0 � . For the interval

�
0, d � the expressions

can be interpreted in words as: no additional lots arrive at the workstation (xT1 � t � τ remains
constant after τ � 0) and lots keep coming out of the system until the workstation is empty. For
the � expression, two situations are distinguished:

situation 1: xT2 � t � � � ∆ � � xT2 � t � � � ∆ � d �
Let ϑ � inf � τ � � � ∆, � ∆ � d � � xT2 � t � � τ � � xT2 � t � � � ∆ � d � 


x̃T1 � t � � τ � �

�
xT2 � t � � � ∆ � for τ � � � ∆ � d, ϑ � d �
xT1 � t � � � ∆ � for τ � � ϑ � d, � ∆ � .

situation 2: xT2 � t � � � ∆ � � xT2 � t � � � ∆ � d �
Then xT1 � t � � � ∆ � � xT2 � t � � � ∆ � , since xT � t � � B �T s � (3.6b) with τ � � ∆ � d �
x̃T1 � t � � τ � � xT2 � t � � � ∆ � for τ � � � ∆ � d, � ∆ � .

In Figure A.1 two examples are given of the construction of the signals x̃T � t � . First mono-
tonicity requirement ➇ of (A.4) is checked. Since x̃T � t � is a copy of the original xT � t � � B �T s,
one can immediately conclude that monotonicity is guaranteed on the interval

� � ∆, 0 � . For
the extensions of the domain at both sides, the monotonicity of the signals has to be checked.
x̃T1 � t � � τ � � xT1 � t � � 0 � for τ � � 0, d � and x̃T2 � t � � τ � � xT2 � t � � � ∆ � for τ � � � ∆ � d, � ∆ � , which are
both constant and equal at their respective boundaries, so for those subdomains, monotonicity
has been proven. The � expression for situation 2 follows a similar reasoning. For situation 1,
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� ∆ � d � ∆ ϑ � ∆ �
d 0 d

situation 1

x̃T1

�
t � �

τ �

x̃T2

�
t � �

τ �

τ �
� ∆ � d � ∆ � ∆ �

d 0 d

situation 2

x̃T1

�
t � �

τ �

x̃T2

�
t � �

τ �

τ �

Figure A.1: Examples of construction of x̃T � t � .

x̃T1 � t � � � ∆ � � xT1 � t � � � ∆ � and keeps that value on the subdomain
�
ϑ � d, � ∆ � .

For τ � � � ∆ � d, ϑ � d � , x̃T1 � t � � τ � � xT2 � t � � � ∆ � �
xT1 � t � � � ∆ � (cf. (3.6b)).

Because the original xT � t � � B �T s, xT � t � is monotonously non-decreasing on its domain, and
min � xT1 � t � � τ � d � , xT2 � t � � τ � d � � 1 � is a non-deceasing function over τ � � 0, d � , one can con-
clude that the constructed x̃T � t � fulfills the monotonicity requirement.

Inequality ➀ can easily be verified considering that:

x̃T1 � t � � τ � � x̃T2 � t � � τ �
�

x̃T1 � t � � � ∆ ��� x̃T2 � t � � � ∆ � for all τ � � � ∆ � d, � ∆ �
x̃T1 � t � � τ � � x̃T2 � t � � τ � �

x̃T1 � t � � 0 � � x̃T2 � t � � 0 � for all τ � � 0, d � .
combined with the fact that the original xT � t � � B �T s and the constructed x̃T � t � being a copy of
the original xT � t � on the interval

� � ∆, 0 � .
Because the constructed x̃T � t � is a copy of the original xT � t � on

� � ∆, 0 � , equality ➁ only needs
to be checked for the interval

�
0, d � . The constructed x̃T2 � t � has the same expression as ➁, so

this equality holds.

Equality ➂ is verified using the expressions from map M ��� χ :

x̃T1 � t � � 0 � � xχ4 � t ��� xχ2 � t ��� xχ1 � t �
� xT2 � t � � 0 � � max � 0, xT1 � t � � 0 � � xT2 � t � � 0 ��� 1 � � min � 1, xT1 � t � � 0 � � xT2 � t � � 0 � �
� xT2 � t � � 0 � � max � 0, xT1 � t � � 0 � � xT2 � t � � 0 ��� 1 � � min � 0, xT1 � t � � 0 � � xT2 � t � � 0 � � 1 � � 1
� xT2 � t � � 0 � � 0 � xT1 � t � � 0 � � xT2 � t � � 0 � � 1 � 1
� xT1 � t � � 0 � .

Equalities ➃ and ➄ are verified as follows:

• If xT1 � t � � 0 � � xT2 � t � � 0 � then xχ2 � t � � 0 (cf. (A.3)). By definition: x̃T2 � t � � 0 � � xT2 � t � � 0 �
and (A.3) states that xχ4 � t � � xT2 � t � � 0 � .
As a conclusion: x̃T2 � t � � τ � � xχ4 � t � for τ � 0 and xχ2 � t � � 0. This proves ➄.

• If xT1 � t � � 0 � � xT2 � t � � 0 � then xχ2 � t � � 1 (cf. (A.3)).
Also: xχ3 � t ��� d

� inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 (see Figure A.2).
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Therefore, xT2 � t � � τ � � xT2 � t � � 0 � for xχ3 � t ��� d
� τ � 0.

Since xT2 � t � � 0 � � xχ4 � t � according to (A.3), this yields:
x̃T2 � t � � τ � � xχ4 � t � for all τ � � xχ3 � t � � d, 0 � , which proves ➃.

τ �

x T
2

� t

�� τ

�
�

xχ3 � t ��� d 0

Figure A.2: Location of the infimum � xχ3 � t � � d.

Inequality ➅ is also verified in two parts:

• If xT1 � t � � � ∆ � �
xT2 � t � � 0 � � 1 then xT1 � t � � xχ3 � t � � d � �

xT1 � t � � � ∆ � �
xT2 � t � � 0 � � 1 and

therefore x̃T1 � t � � xχ3 � t � � d � �
xχ4 � t � � 1.

• If xT1 � t � � � ∆ � � xT2 � t � � 0 ��� 1 and xT1 � t � � 0 � � xT2 � t � � 0 � then
xχ3 � t ��� d

� inf � τ � � � ∆, 0 � � xT1 � t � � τ � � xT2 � t � � 0 � � 1 
 .
This results in xT1 � t � � τ � � xT2 � t � � 0 � � 1 for xχ3 � t ��� d

� τ � 0 and therefore
x̃T1 � t � � xχ3 � t ��� d � � xχ4 � t � � 1.

Finally, equality ➆ is verified. This equality is only valid for 0 � τ � xχ3 � t � , so it is assumed
that xχ3 � t � � 0. Furthermore, by definition, the following holds:
x̃T2 � t � � τ � � min � xT1 � t � � τ � d � , xT2 � t � � τ � d ��� 1 � . Two situations can occur:

• Either: xχ3 � t ��� d � inf � τ � � � ∆, 0 � � xT2 � t � � τ � � xT2 � t � � 0 � 
 .
Then the following holds: xT2 � t � � τ � d � �

xT2 � t � � 0 � � 1 for 0 � τ � xχ3 � t � .

x̃T2 � t � � τ � � min � xT1 � t � � τ � d � , xT2 � t � � τ � d ��� 1 � �
xT2 � t � � τ � d � � 1

�
xT2 � t � � 0 � � 1 � 1 � xT2 � t � � 0 � � xχ4 � t � .

• Or: xχ3 � t � � d � inf � τ � � � ∆, 0 � � xT1 � t � � τ � � xT2 � t � � 0 � � 1 
 .
Then the following holds: xT1 � t � � τ � d � �

xT2 � t � � 0 � for 0 � τ � xχ3 � t � .

x̃T2 � t � � τ � � min � xT1 � t � � τ � d � , xT2 � t � � τ � d ��� 1 � �
xT1 � t � � τ � d � �

xT2 � t � � 0 � � xχ4 � t � .

With this, the proof that � xT � t � � B �T s : xT � t � � Mχ � � � M ��� χ � xT � t � � � has been completed.

A.2 Proof op Theorem 5.10 (page 102)

The following is the proof of Theorem 5.10, which states that optimal process cycles with
respect to time averaged weighted wip levels for a switching server with two different lot types
and linear costs on wip levels (5.7) have a slow-mode (see Remark 5.9) for at most one lot type
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(type 1). During the slow-mode, lots are processed at their arrival rate, keeping the respective
buffer empty. The slow-mode occurs if and only if c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 ��� 0.

For reasons of readability, Figure 5.5 is recalled in Figure A.3. From Corollary 5.7 the gen-

0 x1 �

x 2

�

time �

x 2

�

x 1

�

σ21 τµ
1 τλ

1 σ12 τµ
2 τλ

2

❶ ① ① ❷ ② ②
①

①

❷

②

② ❶

λ 1 λ
1 �

µ
1 λ 1

λ
2 �

µ
2λ2

Figure A.3: General form of an optimal process cycle for a switching server processing two lot types.
Left: Periodic orbit. Right: buffer levels over time, with slopes of the lines. (Recall of Figure 5.5.)

eral shape of optimal process cycles is known. Let τ µ
i denote the duration of serving type i

at maximal rate, and let τλ
i denote the duration of the slow-mode of type i, as indicated in

Figure A.3.

In steady state, the system reaches the same situation after one complete period. During pro-
cessing a lot type at full rate, as many lots are processed as arrive during setups and processing
the other lot type:

λ1 � σ12 � τµ
2 � τλ

2 � σ21 � � � µ1 � λ1 � τµ
1 (A.8a)

λ2 � σ21 � τµ
1 � τλ

1 � σ12 � � � µ2 � λ2 � τµ
2 . (A.8b)

Let τλ
1

� α1σ and τλ
2

� α2σ with α1
� 0,α2

� 0 and recall σ � σ12 � σ21. Solving (A.8)
for τµ

i : �������
σ
τµ

1
τλ

1
τµ

2
τλ

2

� ������ � σ
1 � ρ1 � ρ2

�������
1 � ρ1 � ρ2

α1ρ1ρ2 � α2ρ1 � 1 � ρ2 � � ρ1
α1 � 1 � ρ1 � ρ2 �

α1ρ2 � 1 � ρ1 � � α2ρ1ρ2 � ρ2
α2 � 1 � ρ1 � ρ2 �

� ������ . (A.9)

The weighted mean wip level is computed by determining the area underneath the right hand
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side graphs of Figure A.3, divided by the period length T :

1
T
� T

0
c1x1 � s � ds � c1 � 1

2
� � σ � τµ

1 � τµ
2 � τλ

2 � � � µ1 � λ1 � τµ
1

σ � τµ
1 � τλ

1 � τµ
2 � τλ

2
(A.10a)

1
T
� T

0
c2x2 � s � ds � c2 � 1

2
� � σ � τµ

1 � τµ
2 � τλ

1 � � � µ2 � λ2 � τµ
2

σ � τµ
1 � τλ

1 � τµ
2 � τλ

2
. (A.10b)

Since 1
2σ � � 1 � ρ1 � ρ2 � is a constant, minimizing (5.7) equals minimizing

c1λ1 � 1 � ρ1 �
�
1 � α1ρ2 � α2 � 1 � ρ2 � � 2 � c2λ2 � 1 � ρ2 �

�
1 � α1 � 1 � ρ1 ��� α2ρ1 � 2

1 � α1 � 1 � ρ1 ��� α2 � 1 � ρ2 � (A.11)

subject to the constraints α1
� 0 and α2

� 0.

Instead of solving this constrained optimization problem first the unconstrained problem is
considered, i.e. constraints α1

� 0 and α2
� 0 are ignored. Taking the derivatives of (A.11)

with respect to α1 and α2 and putting them to zero gives the solution of the unconstrained
problem: α1 � α2 � � 1 (infeasible; local maximum) or

α1 � 1 � 2c2λ2
c1λ1 � 1 � ρ2 ��� c2λ2 � 1 � ρ1 � ,α2 � 1 � 2c1λ1

c1λ1 � 1 � ρ2 ��� c2λ2 � 1 � ρ1 � (A.12)

which is a local minimum. For this second solution, note that

α1 � α2 � � 2 c1λ1ρ2 � c2λ2ρ1
c1λ1 � 1 � ρ2 ��� c2λ2 � 1 � ρ1 � � 0 (A.13)

which means that at least one of the two constraints is active. Suppose that α2 � 0. Then the
following optimization problem needs to be solved:

min
α1 
 0

c1
�
1 � α1ρ2 � 2 λ1 � 1 � ρ1 ��� c2

�
1 � α1 � 1 � ρ1 � � 2 λ2 � 1 � ρ2 �

1 � α1 � 1 � ρ1 � . (A.14)

From � J

� α1
� 0 the following equation is obtained:

�
c1λ1ρ2

2 � 1 � ρ1 ��� c2λ2 � 1 � ρ1 � 2 � 1 � ρ2 � � α2
1 � . . .

2
�
c1λ1ρ2

2 � c2λ2 � 1 � ρ1 � � 1 � ρ2 � � α1 � . . .�
c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 � � � 0. (A.15)

The coefficients of α2
1 and α1 are both strictly positive, so this parabola in α1 has a positive real

root iff c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 � � 0. Note that this is only possible if c1λ1 � c2λ2.
The constrained optimization problem thus has as a solution:

α1 �

�
0 if c1λ1 � ρ1 � ρ2 ��� � c1λ1 � c2λ2 � � 1 � ρ2 � � 0
positive real root of (A.15) otherwise.

(A.16)

For reasons of symmetry, if the other constraint would be active (α1 � 0), the following α2
would minimize (A.11):

α2 �

�
0 if c2λ2 � ρ1 � ρ2 ��� � c2λ2 � c1λ1 � � 1 � ρ1 � � 0
positive real root of second order polynomial otherwise.

(A.17)
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Since it was assumed that c1λ1
�

c2λ2, (A.17) yields α2 � 0 and α1 is given by (A.16). With
this result, an optimal process cycle for a switching server with two product types, setup times
and linear costs on buffer levels has completely been determined. Under certain conditions, as
stated in Theorem 5.10, a slow-mode occurs in one of the lot types.

A.3 Proof of Proposition 5.13 (page 105)

The formal representation of the feedback control law of Proposition 5.13 is:

� u0,u1,u2 � �

������������������ �����������������

� ①,µ1,0 � if m � 1, x0 � 0, x1 � 0
� ①,λ1,0 � if m � 1, x0 � 0, x1 � 0, x2 � x �2
� ❷,0,0 � if m � 1, x0 � 0, x1 � 0, x2

�
x �2

� ❷,0,0 � if m � 2, x0 � 0
� ②,0,µ2 � if m � 2, x0 � 0, x2 � 0
� ②,0,λ2 � if m � 2, x0 � 0, x2 � 0, x1 � x �1
� ❶,0,0 � if m � 2, x0 � 0, x2 � 0, x1

�
x �1

� ❶,0,0 � if m � 1, x0 � 0

(A.18)

with x �1 and x �2 given by (5.10).

The controller loops through Modes 1–6 of the informal feedback law description (page 105).
Given an initial state, the controller starts in one of its modes. Eventually, the system reaches
the same mode again. How has the state changed after one complete cycle? Based on the way
the state has changed, convergence is proven.

Assume the nth start of ❷ (start of controller Mode 3) is from coordinate � 0,x � n �2 � . From which
coordinate does the � n � 1 � st start of ❷ take place? Suppose that x � n �2 is relatively large compared
to x �2. In that case, the duration of both controller Mode 2 and Mode 5 is zero. In one cycle, the
coordinates then become:

�
0,x � n �2 � ❷� �

�
λ1σ12,x

� n �
2 � λ2σ12 �

②� �
�

λ1
�

σ12 � x � n �2 � λ2σ12
µ2 � λ2 � ,0 �

❶� �
�

λ1
�

σ � x � n �2 � λ2σ12
µ2 � λ2 � ,λ2σ21 �

①� �

���
� 0,λ2

���
� σ21 �

λ1

�
σ � x

�
n �

2
� λ2σ12

µ2 � λ2 �
µ1 � λ1

����
�
����
�

(A.19)
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which results in:

x � n � 1 �
2

� λ2

���
� σ21 �

λ1

�
σ � x

�
n �

2
� λ2σ12

µ2 � λ2 �
µ1 � λ1

� ��
�

� ρ1ρ2
� 1 � ρ1 � � 1 � ρ2 � � x

� n �
2 � x �2 � � x �2.

(A.20)

Note that this expression is valid for ‘large’ x � n �2 . In case x � n �2 is not large compared to x �2, either
controller Mode 2 or Mode 5 has a strictly positive duration and the trajectory ends up on the
optimal curve, getting:

x � n � 1 �
2

� x �2. (A.21)

Combining (A.20) and (A.21) results in the difference equation:

x � n � 1 �
2

� max
�

ρ1ρ2
� 1 � ρ1 � � 1 � ρ2 � � x

� n �
2 � x �2 � � x �2, x �2 � , x � 0 �2

� x0
2 (A.22)

which has as a solution

x � n �2
� max

���
ρ1ρ2

� 1 � ρ1 � � 1 � ρ2 ��� n

� x0
2 � x �2 ��� x �2, x �2 � . (A.23)

Since

0 � ρ1ρ2
� 1 � ρ1 � � 1 � ρ2 �

� 1 � 1 � ρ1 � ρ2
� 1 � ρ1 � � 1 � ρ2 � � 1 (A.24)

the following result is obtained:

lim
n � � x � n �2

� max � x �2 , x �2 � � x �2. (A.25)

Remark A.3. In case either x �2 � x �2 (i.e. when a slow-mode occurs, α1 � 0) or x � 0 �2 � x �2,
convergence is reached in finite time, because the trajectory reaches x �2 due to a slow-mode
then. Otherwise, convergence is reached asymptotically.
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A.4 Proof of Proposition 5.15 and completion of proof

of Lemma 5.14 (page 109)

A formal representation of the feedback control law for a switching server with finite buffer
capacities is:

� u0,u1,u2 � �

����������������������� ����������������������

� ①,µ1,0 � if m � 1, x0 � 0, x1 � 0, x2 � xmax
2 � λ2σ12

� ❷,0,0 � if m � 1, x0 � 0, x1 � 0, x2
�

xmax
2 � λ2σ12

� ①,λ1,0 � if m � 1, x0 � 0, x1 � 0, x2 � x̄ �2
� ❷,0,0 � if m � 1, x0 � 0, x1 � 0, x2

�
x̄ �2

� ❷,0,0 � if m � 2, x0 � 0
� ②,0,µ2 � if m � 2, x0 � 0, x2 � 0, x1 � xmax

1 � λ1σ21

� ❶,0,0 � if m � 2, x0 � 0, x2 � 0, x1
�

xmax
1 � λ1σ21

� ②,0,λ2 � if m � 2, x0 � 0, x2 � 0, x1 � x̄ �1
� ❶,0,0 � if m � 2, x0 � 0, x2 � 0, x1

�
x̄ �1

� ❶,0,0 � if m � 1, x0 � 0.

(A.26)

An informal description of this feedback law has been presented in Proposition 5.15 (page 109).

0 x1 �

x 2

�

xmax
1

x̄ �2

xmax
2

xmax
1 � λ1σ21

xmax
2 � λ2σ12

xmax
2 � x̂ �2

xmax
1 � x̂ �1

projection

λ1

µ2 � λ2

① � ① � ① � ① � ② �
② �

② �

Figure A.4: Feasible and infeasible regions for trajectories, subject
to buffer level constraints. (recall of Figure 5.10).

0

x �2

x̄ �2

x � n 	
2 
 A � B

x � n 	
2 
 B � C

x � n 	
2 
 C � D

xmax
1 � x̂ �1(projected)

xmax
1(projected)

Figure A.5: Evolution of
x  n �

2 at start of ❷.

Similar to the proof of the case with infinite buffer capacities, the coordinates of the � n � 1 � st

start of ❷ are computed given from which coordinate the nth start of ❷ took place. Setup for
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type 2 lots can start at different places: on the axis between � 0,0 � and � 0,xmax
2 � λ2σ12 � or on

the line between � 0,xmax
2 � λ2σ12 � and � xmax

1 ,xmax
2 � λ2σ12 � . The latter set of starting points

of ❷ is projected onto the vertical axis, in a way that the trajectory follows the same path in the
feasible � x1,x2 � -plane for both the unconstrained and constrained situation. The projection is
shown in Figure A.4. With a point � x1, xmax

2 � λ2σ12 � the point � 0, x2 � is associated where x2 is
given by:

x2 � µ2 � λ2
λ1

x1 � � xmax
2 � λ2σ12 � (A.27)

and vice versa. Given x � n �2 , the next coordinate x � n � 1 �
2 is looked for. In case x � n �2 is chosen in

such a way that the trajectory is not influenced by the buffer constraints, (A.22) is obtained
again. However, in case one or two buffer constraints become active, the resulting x � n � 1 �

2 is
larger, since switching earlier makes the system move along a line which is located higher
in the � x1,x2 � -plane, cf. Figure A.4. For the case one constraint becomes active, auxiliary
variable Z is introduced, whose value depends on which constraint is active:

Z � min

����
� µ2 � λ2

λ1
� xmax

1 � λ1σ � � x̂ �2�����
�
�
�
�
�
�
���
�
�
� �
��������
�
�
�
�
�
�
�
�����
�
is the smallest if xmax

1 active

,

µ1 � λ1
λ2

� xmax
2 � λ2σ ��� x̂ �1�����
�
�
�
���
�
�
�
�
�
�	�
�� ���
�
�
�
�
�
���
�
�
���
�

is the smallest if xmax
2 active

�����
� . (A.28)

Four situations can be distinguished:

A : no active constraints, iteration as in (A.21);
B: no active constraints, iteration as in (A.19);
C : one active buffer constraint during iteration;
D: two active buffer constraints during iteration.

The endpoint of one iteration using the feedback law of Proposition 5.15 now becomes

x � n � 1 �
2

� max

������
�

x̄ �2 � A �
ρ1ρ2� 1 � ρ1 � � 1 � ρ2 � � x � n �2 � x �2 ��� x �2 � B �

x � n �2 � 1 � ρ1 � ρ2� 1 � ρ1 � � 1 � ρ2 � � Z � C �� 1 � ρ1 � � 1 � ρ2 �
ρ1ρ2

�
x � n �2 � � xmax

1 � x̂ �1 � � � � xmax
1 � x̂ �1 � � D �

�������
� (A.29)

where the calligraphic capital refers to one of the four situations. The evolution of an arbitrary
point � 0, x � n �2 � along the x1 � 0 axis where ❷ starts can now be visualized, see Figure A.5.
The arrows indicate the direction in which x � n �2 evolves. The distance between the arrows is a
measure for the rate of the evolution.
First consider residing in region D . Note that for x � n �2 � xmax

1 � x̂ �1 (projected), i.e. the trajectory
starts right from the upper right bow tie (see Figure A.4), the trajectory diverges, because it is
known that � 1 � ρ1 � � 1 � ρ2 �

ρ1ρ2
� 1, cf. (A.24). When starting exactly on the upper right bow tie, the

trajectory stays on it (if it is decided to switch earlier than planned by this curve, the trajectory
becomes infeasible, which can be seen on geometrical grounds in Figure A.4). This completes
the proof of Lemma 5.14. For x � n �2 � xmax

1 � x̂ �1 the trajectory moves away from the upper right
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bow tie in the correct direction, i.e. towards the bottom left in Figure A.4, and region D is left
after a finite number of steps. If the trajectory is in C , it also moves in the desired direction
with equidistant jumps and therefore after a finite number of steps leaves region C . So after a
finite number of steps the trajectory is either in region A or in region B. From the proof of
Proposition 5.13, convergence to x̄ �2 follows.

A.5 Proof of Proposition 5.19 (page 128)

The following sections give a detailed derivation of the expressions for the mean wip levels in a
steady state process cycle for the workstation with piecewise constant arrival rates, as specified
in Section 5.8. The derivation is split up into four parts:

• first type 1 lots are considered for the situation where during time span φ1P, lots arrive at
rate λ̂1, which is higher than the maximum process rate µ1;

• then type 1 lots are considered for the situation where the maximum process rate is higher
than the maximum arrival rate of lots;

• afterwards, expressions are derived for type 2 lots where they arrive quicker than the
machine can process;

• and finally, mean wip level expressions are derived for the situation where type 2 lots can
be processed quicker than they arrive.

Mean work in process level for type 1 lots, λ̂1 � µ1

The incoming lot flow starts at t � 0 and ends at t � φ1P, with 0 � φ1
� 1. Processing type 1

starts at t � t1. Different situations can occur, due to overlap, as can be seen in Figure A.6. The
capital letters in the figure are auxiliary variables, representing buffer levels or time instants at
important points. For each situation, the mean wip level equals the area underneath the (dotted)
buffer level curve, divided by the period length P. The area underneath the buffer level curve
is computed by splitting up the curve into triangles, rectangles and trapezoids and summing
up the individual areas. The expressions of these basic shapes can easily be recognized in the
mean wip level expressions. The time span during which lots are processed is denoted by τ1.
Since λ̂1

� µ1, lots can always be processed at maximum rate µ . Processing λ̂1φ1P lots at this
rate µ1 takes ρ̄1P time units. For all situations I–IV, the process interval length τ1 � ρ̄1P.

• Situation I: Domain: 0 �
t1

� φ1P. Auxiliary variables A � t1λ̂1
and B � A � � φ1P � t1 � � λ̂1 � µ1 � . The mean wip level w̄1 becomes:

w̄1 � t1 � � 1
P

�
1
2

� t1 � A � � φ1P � t1 � � A � B
2 � 1

2
� � t1 � τ1 � φ1P � � B �

� 1
2µ1ρ̄1P � ρ̄1 � φ1 � � µ1ρ̄1t1.
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Figure A.6: Different situations for type 1 and λ̂1 � µ1. Input rate profile (solid), process rate profile
(dashed gray) and buffer level curve (dotted).

Note that the first term (constant) in the mean wip level expression is positive (ρ̄1
� φ1)

since λ̂1
� µ1 and ρ̄1 � φ1λ̂1 � µ1.

• Situation II: Domain: φ1P
�

t1
� � 1 � ρ̄1 � P. The mean wip level w̄1 becomes:

w̄1 � t1 � � 1
P

�
1
2

� φ1P � λ̂1φ1P � � t1 � φ1P � � φ1Pλ̂1 � 1
2

� τ1 � φ1Pλ̂1 �
� 1

2µ1ρ̄1P � ρ̄1 � φ1 ��� µ1ρ̄1t1.

• Situation III: Domain: � 1 � ρ̄1 � P �
t1

� � 1 � φ1 � ρ̄1 � P.
Auxiliary variables Z � � ρ̄1 � 1 � P � t1, A � Z � λ̂1 � µ1 � and B � φ1Pλ̂1 � Zµ1. Note that A
and B are amounts of lots and Z is a time instant. The mean wip level w̄1 becomes:

w̄1 � t1 � � 1
P

�
1
2

� Z � A � � φ1P � Z � � A � B
2 � � t1 � φ1P � � B � 1

2
� � P � t1 � � B �

� 1
2µ1ρ̄1P � ρ̄1 � φ1 � � µ1 � 1 � ρ̄1 � � P � t1 � .

• Situation IV: Domain: � 1 � φ1 � ρ̄1 � P �
t1

�
P.

Auxiliary variables A � φ1Pλ̂1, Z � � ρ̄1 � 1 � P � t1 and B � A � � Z � φ1P � µ1. Again, Z
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represents a time instant, whereas A and B represent amounts of jobs. The mean wip
level w̄1 becomes:

w̄1 � t1 � � 1
P

�
1
2

� φ1P � A � � Z � φ1P � � A � B
2

� � t1 � Z � � B � 1
2

� � P � t1 � � B �
� 1

2µ1ρ̄1P � ρ̄1 � φ1 ��� µ1 � 1 � ρ̄1 � � P � t1 � .

It can easily be verified that at the boundaries of adjacent intervals, the mean wip level values
are equal. Situations I and II have the same expressions for the mean wip level and process
interval τ1. Situations III and IV also have the same expressions for mean wip level and process
interval. The domains of these situations can therefore be unified.

Summarizing, the mean wip level and process length interval expressions for type 1 lots and
maximum arrival rate λ̂1

� µ1 are:

w̄1 � t1 � �

�
1
2 µ1ρ̄1P � ρ̄1 � φ1 ��� µ1ρ̄1t1 for 0 �

t1
� � 1 � ρ̄1 � P

1
2 µ1ρ̄1P � ρ̄1 � φ1 ��� µ1 � 1 � ρ̄1 � � P � t1 � for � 1 � ρ̄1 � P �

t1
�

P

τ1 � ρ̄1P.

Remark A.4. It is possible to stay in mode 1 longer than σ21 � ρ̄1P. The workstation is then
idling, processing no jobs. This is discussed when optimization takes place over both lot types.
Instead of requiring that the sum of the setup times and process interval lengths equals period
length P, it is required that this sum is less than or equal to the period length P. This inequality
facilitates the possibility of idling in a mode after having completed the jobs.
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Figure A.7: Different situations for type 1 and λ̂1
� µ1. Solid line: input rate profile. Gray dashed line:

process rate profile. Dotted line: buffer level.
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Mean work in process level for type 1 lots, λ̂1
� µ1

When the process rate of type 1 lots is greater than the arrival rate, a slow-mode may occur,
depending on the start time of the process interval. It is even possible to make a choice at
certain time instants: process at maximum rate or at arrival rate. The different situations that
may occur are depicted in Figure A.7. All situations are described below. For each situation,
the mean wip level has been plotted against the start time of processing type 1 jobs, t1, and the
duration of this process interval, τ1. In order to make these plots, the following parameters have
been used: λ̂1 � 2, µ1 � 3, φ1 � 3

8 and P � 12. This results in ρ̄1 � 1
4 .

• Situation I: Domain: 0 �
t1

� � φ1 � ρ̄1 � P and ρ̄1P
� τ1

� φ1P � t1. A slow-mode may
occur. Auxiliary variable A denotes the buffer level for t � φ1P, A � � P � � t1 � τ1 � � λ̂1
and B represents the top buffer level, B � A � t1λ̂1. The mean wip level can be computed:

w̄I
1 � t1, τ1 � � 1

P

�
t1 � A � B

2
� 1

2
� B

µ1 � λ̂1

� B � 1
2

� � φ1P � � t1 � τ1 � � � A � � P � φ1P � � A �
� µ1ρ̄1

2φ1 � φ1 � ρ̄1 � P
�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1 � 2P � 1 � φ1 � � φ1 � ρ̄1 � t1
� φ1P2 � 2 � φ1 � ρ̄1 � � 1 � φ1 ��� φ 2

1 � � .
This function is investigated further to determine whether it is a convex function. Convex
functions have a global optimum, which can be determined efficiently in optimization
routines. The Hessian matrix of a function f � x, y � is defined as:

H �

�������
� 2 f

�
x2

� 2 f
�
x

�
y

� 2 f
�
y

�
x

� 2 f
�
y2

� ������ .

For this mean wip level function w̄I
1 � t1, τ1 � , the Hessian matrix HI is:

HI � � 0 0
0 µ1ρ̄1� φ1 � ρ̄1 � P 	

which is always positive semi-definite, since φ1
� ρ̄1. This means that the mean wip

level function is a convex function, which is an important and convenient property for
the optimizations that are to be performed. The mean wip level has been plotted for the
feasible domain. In Figures A.8 and A.9 a three-dimensional plot and a contourplot are
shown respectively. The gray shaded area shows the feasible domain. The black lines in
the contourplot are lines with equal wip level (isolines) and the color gradient shows in
which direction the mean wip level decreases (darker) or increases (lighter).

• Situation II: Domain: � φ1 � ρ̄1 � P �
t1

� φ1P and P � t1
� τ1

�
P and τ1

� ρ̄1P. A process
interval that was started during the arrivals of type 1 lots may take so long that during the
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Figure A.9: Contourplot of w̄I
1

in the � t1, τ1 � -plane (situation I).

process interval, the next arrival period of type 1 jobs starts. At t � t1, jobs are processed
(possibly at maximum rate) and the buffer is emptied before φ1P. A slow-mode may
occur then. When the arrivals of lots come to an end, the machine idles until the arrivals
start over again. From that point (t � P), the machine processes lots in slow-mode until
the required amount of lots in one process cycle has been completed. Auxiliary variable A
denotes the buffer top level, A � � P � τ1 � λ̂1. An additional condition for this situation to
guarantee that the buffer is empty before t � φ1P is that � P � τ1 � λ̂1

� � φ1P � t1 � � µ1 � λ̂1 � .
This can be rewritten as: τ1

�
�

φ1
ρ̄1
� 1 � t1 �

�
1 � φ1

�
φ1
ρ̄1
� 1 � � P.

w̄II
1 � τ1 � � 1

P

�
1
2

�
�

P � τ1 � A

µ1 � λ̂1 � � A �
� µ1ρ̄1 � P � τ1 � 2

2P � φ1 � ρ̄1 � .

Note that the mean wip level is independent of starting point t1, within the domain for t1.
The Hessian matrix for this mean wip level function, HII, equals the Hessian matrix of
situation I, so this function is also convex. The mean wip level function has been plotted
in Figures A.10 and A.11.

• Situation III: Domain: � φ1 � ρ̄1 � P �
t1

� φ1P and τ1
� ρ̄1P. Notice the overlap in do-

main of t1 with situation II. The only difference is that now the buffer cannot be emptied
before time instant t � φ1P. The number of lots that flows into the buffer when it is not
processing type 1 lots, λ̂1 � P � τ1 � , must be greater than (or equal to) the number of jobs
that can be processed before t � φ1P, i.e. � µ1 � λ̂1 � � φ1P � t1 � so this situation has the



206 APPENDIX A. PROOFSPSfrag replacements

w̄II
1

τ1

t1
0

0.1

0.2

0.3

0.4

0.5

2

3

4

10.5

11

11.5

12
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the � t1, τ1 � -plane (situation II).

complementary additional constraint:

τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�
1 � φ1

�
φ1
ρ̄1

� 1 � � P.

Another upper bound on the process time interval exists. Before t � φ1P, the number
of lots that has been processed is � φ1P � t1 � � µ1 � λ̂1 � . The total number of jobs that
has to be processed during one cycle equals µ1ρ̄1P. The number of lots that has to be
processed when the arrivals start again therefore equals µ1ρ̄1P � � φ1P � t1 � � µ1 � λ̂1 � .
Maximum duration of processing these lots is completely in slow-mode. This takes an-
other � µ1ρ̄1P � � φ1P � t1 � � µ1 � λ̂1 � � � λ̂1 time units. The total process interval τ1 then has
as lower bound:

τ1
�

P � t1 � µ1ρ̄1P � � φ1P � t1 � � µ1 � λ̂1 �
λ̂1

�
�

φ1
ρ̄1

� 2 � t1 �
�

1 � 2φ1 � φ 2
1

ρ̄1 � P.

Auxiliary variable A denotes the top buffer level: A � � P � τ1 � λ̂1 and variable B denotes
the buffer level at t � φ1P: B � A � � φ1P � t1 � � µ1 � λ̂1 � . In the expressions for these
variables, the additional constraints for situations II and III can be recognized. The ex-
pressions for the mean wip level now becomes:

w̄III
1 � t1, τ1 � � 1

P

�
1
2

� � P � τ1 � � A � � φ1P � t1 � � A � B
2 � 1

2
� B
µ1

� B �
� µ1ρ̄1

2φ 2
1 P

� � � 1 � φ1 � P � τ1 � t1 � � � φ1 � ρ̄1 � t1 � � φ1 � ρ̄1 � τ1

� P � ρ̄1 � φ1 � ρ̄1φ1 � φ 2
1 � � � .
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The mean wip level function has been plotted in Figures A.12 and A.13. Further analysis
of this situation (and situation VI) is carried out after the presentation of all situations.
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Figure A.12: Surface plot of mean wiplevel w̄III
1 against t1
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the � t1, τ1 � -plane (situation III).

• Situation IV: Domain: � φ1 � ρ̄1 � P �
t1

� φ1P. Auxiliary variable A � t1λ̂1 denotes the
top buffer level and B � A � � φ1P � t1 � � µ1 � λ̂1 � is the buffer level at t � φ1P. The mean
wip level is:

w̄IV
1 � t1 � � 1

P

�
1
2

� t1 � A � � φ1P � t1 � � A � B
2

� 1
2

� � t1 � ρ̄1P � φ1P � � B �
� � 1

2
µ1ρ̄1P � φ1 � ρ̄1 ��� µ1ρ̄1t1

τ1 � ρ̄1P

which is a linear (i.e. convex) function in t1.

• Situation V: Domain: φ1P
�

t1
� � 1 � ρ̄1 � P. The process interval starts after the complete

arrivals interval and if processed at maximum rate for the whole process interval, it ends
before the period P is over. No slow-mode occurs. The mean wip level w̄1 � t1 � is:

w̄V
1 � t1 � � 1

P

�
1
2

� � φ1P � ρ̄1P � � φ1Pλ̂1 � � t1 � φ1P � � φ1Pλ̂1 �
� � 1

2µ1ρ̄1P � φ1 � ρ̄1 ��� µ1ρ̄1t1

τ1 � ρ̄1P

which is the same convex linear function as in situation IV. The mean wip level for situ-
ations IV and V is plotted in Figure A.14.
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Figure A.14: Mean wip levels w̄IV
1 and w̄V

1 over their united domains.

• Situation VI: Domain: φ1P
�

t1
�

P and P � t1
� τ1

� � 1 � φ1 � P � t1 and τ1
� ρ̄1P.

Notice that an overlap exists with the domain of situation V. Another realization of the
process rate profile is to use a slow-mode when the arrivals interval starts again. At t � t1
a small number of lots is processed at rate µ1 until the buffer is empty. Then the machine
idles (slow-mode with arrival rate 0) until the arrival of new lots starts again. From
that point (t � P) the machine processes lots at their arrival rate λ̂1. In a limit case,
the machine starts with idling and processes all incoming lots in slow-mode. The idling
period before processing of lots starts can be used by the other type, but is blocked in
this situation. However, the same process rate profile is possible without the idling, in
situation I. So if losing the idling period in front of the process interval results in a lower
mean wip level, the evaluation of situation I reveals this. The duration of the slowmode
in situation V is τλ

1
� τ1 � � P � t1 � . The length of this slow-mode has a lower bound. The

time before the arrivals start again, P � t1 provides a maximum number of lots that can
be processed within that time span: µ1 � P � t1 � . Each cycle, a total number of ρ̄1P lots
has to be processed. This means the duration of the slow-mode is at least the difference
of these two quantities divided by the arrival rate λ̂1. This constraint thus becomes:

τ1
�

P � t1 � µ1 � t1 � � 1 � ρ̄1 � P �
λ̂1

�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P.

Auxiliary variable A � � φ1P � τλ
1 � λ̂1 denotes the top buffer level for a given t1 and τ1.

The mean wip level for this situation is:

w̄VI
1 � t1, τ1 � � 1

P

�
1
2

� � φ1P � τλ
1 � � A � � t1 � φ1P � � A � 1

2
� A
µ1

� A �
� µ1ρ̄1

2φ 2
1 P

� � � 1 � φ1 � P � τ1 � t1 � � � φ1 � ρ̄1 � t1 � � φ1 � ρ̄1 � τ1

� P � ρ̄1 � φ1 � ρ̄1φ1 � φ 2
1 � � � .

This mean wip level function has been plotted in Figures A.15 and A.16. Further analysis
of this situation is given after presentation of all situations.
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• Situation VII: Domain: � 1 � ρ̄1 � P �
t1 � P and ρ̄1P

� τ1
�

�
φ1
ρ̄1
� 1 � t1 �

�
1 � φ1 � φ1

ρ̄1
� P.

Again notice that an overlap exists with the domain of situation VI. In situation VI, pro-
cessing type 1 lots starts towards the end of period P and all lots cannot be processed
before P is over. Until P is reached, lots are processed at maximum process rate. The
remainder of lots has to be processed while new lots arrive. Again, a choice is possible:
using a slow-mode or not using a slow-mode. Two limit realizations are shown in Fig-
ure A.7 in situations VII-a and VII-b. The former does not use a slow-mode (τ1 � ρ̄1P),
the latter uses maximum slow-mode duration (τ1 � P � t1 � � λ̂1φ1P � µ1 � P � t1 � � � λ̂1).
All other durations of slowmode between these limits are possible realizations. Auxiliary
variables are: Y � B � � µ1 � λ̂1 � (start time of slowmode), Z � τ1 � � P � t1 � (end time
of slowmode), A � � φ1P � Z � λ̂1 (top buffer level) and B � A � � P � t1 � µ1 (buffer level
at t � 0). The mean wip level depends on the start time of processing t1:

w̄V II
1 � t1, τ1 � � 1

P

�
1
2

� Y � B � 1
2

� � φ1P � Z � � A � � t1 � φ1P � � A � � P � t1 � � A � B
2 �

� µ1ρ̄1
2φ1 � φ1 � ρ̄1 � P

�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1

� 2P � 1 � φ1 � � φ1 � ρ̄1 � t1 � P2 � 2ρ̄1 � 2φ1 � φ 3
1 � 2φ 2

1 ρ̄1 � � .
The Hessian matrix of this mean wip level function, HVII is equal to the Hessians of
situations I and II, which is positive semi-definite. Therefore, w̄V II

1 is a convex function.

Situations IV and V have the same expressions for the mean wip level and the process interval
length, so they can be combined with domain � φ1 � ρ̄1 � P �

t1
� max � φ1P, � 1 � ρ̄1 � P � .
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If � 1 � ρ̄1 � P � φ1P then situation IV does not occur (empty domain). Since φ1
� 1, µ1

� λ̂1
and λ̂1 � ρ̄1µ1 � φ1, it is never possible that situation IV overlaps the domain of situation I,
because it follows that � φ1 � ρ̄1 � P � � 1 � ρ̄1 � P.

Situations III and VI also have the same expressions for the mean wip level, so it is useful to
investigate a possible merge of these situations. The mean wip level expression is a hyper-
bolic paraboloid in t1 and τ1, which has a saddle point at t1 � φ1P and τ1 � P. The Hessian
matrix HIII � HVI is given by:

HIII � HVI �

�� µ1ρ̄1 � ρ̄1 � φ1 �
φ2

1 P
µ1ρ̄2

1
φ2

1 P
µ1ρ̄2

1
φ2

1 P
µ1ρ̄1 � ρ̄1 � φ1 �

φ2
1 P

��
which is not positive (semi)-definite. Maybe, the function is convex in its feasible domain. To
determine whether this is the case, the eigenvalues e1, e2 and eigenvectors e1, e2 belonging to
the mean wip level function are derived:

e1 �
µ1ρ̄1

�
ρ̄1 �

�
φ 2

1 � ρ̄2
1 �

φ 2
1 P

e1 �
�
1 φ1 � � φ2

1 � ρ̄2
1

ρ̄1
� T

e2 �
µ1ρ̄1

�
ρ̄1 �

�
φ 2

1 � ρ̄2
1 �

φ 2
1 P

e2 �
�
1 φ1 � � φ2

1 � ρ̄2
1

ρ̄1
� T

.

Note that the eigenvectors of the mean wip level function are always perpendicular to each
other: e1 � e2 � 0. The slope of e1 is greater than 1, while the slope of vector e2 is smaller than
zero. To check the convexity of the mean wip level function in its feasible domain, first the
borders of these domains are examined further. The domains of t1 can easily be merged, since
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they have a common boundary point φ1P. The constraints on τ1 for situation III are:

τ1
� ρ̄1P (A.30)

τ1
�

P � t1 (A.31)

τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ 2
1

ρ̄1 � P (A.32)

τ1
�

�
φ1
ρ̄1

� 2 � t1 �
�

1 � 2φ1 � φ 2
1

ρ̄1 � P (A.33)

τ1
�

P. (A.34)

The constraints on τ1 for situation VI are:

τ1
� ρ̄1P (A.35)

τ1
�

P � t1 (A.36)

τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P (A.37)

τ1
� � 1 � φ1 � P � t1 (A.38)

τ1
�

P. (A.39)

Note that the first two and final constraints appear in both situations and that (A.37) is not the
same as (A.32). The intersection of constraints (A.32), (A.33) and (A.34) is at t1 � φ1P. Since
this is the border of the domain of situation III and (A.32) lies below (A.33) for t1 � φ1P, the
consequence is that (A.33) is only active at t � φ1P, together with (A.32). The intersection of
constraints (A.38) and (A.39) with (A.32), (A.33) and (A.34) also lies at t1 � φ1P.
Since φ1

� ρ̄1, constraint (A.38) is always active on the domain of situation VI. For the lower
bounds, constraints (A.30), (A.31), (A.35), (A.36) and (A.37) have a common intersection point
at t1 � � 1 � ρ̄1 � P. The slopes of these constraints indicate that the constraints are never active
outside the domains of their own situation. A graphical representation of all constraints is given
in Figure A.19, with the same parameter values as before. The gray shaded area represents
the feasible area. An important observation is that constraint line (A.38) is a line where wip
level w̄1 � t1, τ1 � � 0. The two lines in the hyperbolic paraboloid for which the mean wip level
is 0 are:

τ1 � � 1 � φ1 � P � t1

τ1 � φ1 � ρ̄1
φ1 � ρ̄1

t1 � φ 2
1 � φ1 � ρ̄1φ1 � ρ̄1

φ1 � ρ̄1
P.

As mentioned, the first equation is the border of constraint (A.38). The second equation of
course also crosses the saddle point � φ1P, P � and has a slope which is always lower than the
slope of constraint (A.32), which proves that the mean wip level is only zero at the border of the
feasible area which is defined by constraint (A.38). The slope of eigenvector e1 is greater than
the slope of constraint (A.32), which means that the mean wip level is not a convex function
over the feasible area. Special attention needs to be given to this issue in the optimization of
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Figure A.19: Unification of situations III and VI is justified. Saddle point of the hyperbolic paraboloid
is the top point of the feasible area.

the whole workstation with two lot types. Finally, it can be concluded that situations III and VI
can be merged to one situation, with the extended domain for t1: � φ1 � ρ̄1 � P �

t1
�

P and all
constraints (A.30)–(A.39).

Situations I and VII have almost the same expression for the mean wip level, except for the
constant term. This constant term does not influence solution of an optimization problem.
Therefore, it would be possible to join situations I and VII. However, two issues have to be
kept in mind then. First, depending on the solution of the optimization problem, one should
compensate for the constant term to obtain the correct mean wip level and second, the domains
of the two situations cannot be merged, since the constraints of both situations rule out each
other. The domain of t1 however can be shifted down one period length P to obtain a feasible
area, immediately solving the issue of the constant factor difference, but then the domain of
the design variable t1 is different than for all other optimization subproblems. Since the mean
wip level is a convex function which can easily be solved in polynomial time (even by hand!),
the choice is made not to combine situations I and VII. The optimization problem remains
transparent and insightful in this way.

For some parameter settings, it is easy to verify that the mean wip level must equal zero. In
addition, at the borders of the domains of the situations, the mean wip levels must be equal,
since they correspond to the same physical situation. The following properties are easy to
verify (an intuitive check can be performed with Figure A.7):
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w̄I
1
�
t1 � 0, τ1 � φ1P

� 0
w̄II

1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P

� 0
w̄VI

1
�
t1 � P, τ1 � φ1P

� 0
w̄VII

1
�
t1 � P, τ1 � φ1P

� 0
w̄I

1
�
t1 � � φ1 � ρ̄1 � P, τ1 � ρ̄1P

� w̄II
1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P � t1

w̄III
1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P � t1

� w̄II
1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P � t1

w̄IV
1
�
t1 � � φ1 � ρ̄1 � P � w̄III

1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P � t1

w̄IV
1
�
t1 � � φ1 � ρ̄1 � P � w̄II

1
�
t1 � � φ1 � ρ̄1 � P, τ1 � P � t1

w̄IV
1
�
t1 � φ1P

� w̄V
1
�
t1 � φ1P

w̄V
1
�
t1 � � 1 � ρ̄1 � P, τ1 � ρ̄1P

� w̄V I
1
�
t1 � � 1 � ρ̄1 � P, τ1 � P � t1

w̄VI
1
�
t1 � � 1 � ρ̄1 � P, τ1 � ρ1P

� w̄V II
1
�
t1 � � 1 � ρ̄1 � P, τ1 � ρ1P.

The first four properties show that the mean wip level can become zero in these cases, contrary
to the situation where λ̂ � µ , where the mean wip level in general does not equal zero.

Summarizing, for type 1 lots and λ̂1
� µ1, all possible situations and their mean wip level

expressions can be stated as:

w̄I
1 � t1, τ1 � � µ1ρ̄1

2φ1 � φ1 � ρ̄1 � P
�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1

� 2P � 1 � φ1 � � φ1 � ρ̄1 � t1 � φ1P2 � 2 � φ1 � ρ̄1 � � 1 � φ1 � � φ 2
1 � �

for 0 �
t1

� � φ1 � ρ̄1 � P and ρ̄1P
� τ1

� φ1P � t1

w̄II
1 � τ1 � � µ1ρ̄1 � P � τ1 � 2

2P � φ1 � ρ̄1 �
for � φ1 � ρ̄1 � P �

t1
� φ1P and P � t1

� τ1
�

P and τ1
� ρ̄1P

and τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ 2
1

ρ̄1 � P

w̄III � VI
1 � t1, τ1 � � µ1ρ̄1

2φ 2
1 P

� � � 1 � φ1 � P � τ1 � t1 � � � φ1 � ρ̄1 � t1
� � φ1 � ρ̄1 � τ1 � P � ρ̄1 � φ1 � ρ̄1φ1 � φ 2

1 � � �
for τ1

�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ 2
1

ρ̄1 � P and τ1
�

P � t1

and τ1
�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P and τ1

� � 1 � φ1 � P � t1

w̄IV � V
1 � t1 � � � 1

2
µ1ρ̄1P � φ1 � ρ̄1 � � µ1ρ̄1t1 and τ1 � ρ̄1P
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for � φ1 � ρ̄1 � P �
t1

� max � φ1P, � 1 � ρ̄1 � P �

w̄VII
1 � t1, τ1 � � µ1ρ̄1

2φ1 � φ1 � ρ̄1 � P
�
φ1τ2

1 � 2P � φ1 � ρ̄1 � φ1ρ̄1 � τ1

� 2P � 1 � φ1 � � φ1 � ρ̄1 � t1 � P2 � 2ρ̄1 � 2φ1 � φ 3
1 � 2φ 2

1 ρ̄1 � �
for � 1 � ρ̄1 � P �

t1 � P and ρ̄1P
� τ1

�

�
φ1
ρ̄1

� 1 � t1 �
�

1 � φ1 � φ1
ρ̄1 � P.
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Mean work in process level for type 2 lots, λ̂2 � µ2

The difference with type 1 lots is that the inflow does not start at t � 0, but at t � s2. The
mean wip level for λ̂2

� µ2 follows the same curve as for type 1 lots, but shifted in time. This
property is used for obtaining expressions for the mean wip level for type 2 lots. In Figure A.20
the mean wip level curve for type 1 lots has been plotted as a function of the start time of the
process interval (solid line). For now, assume that this line represents the mean wip curve for
type 2 lots, with s2 � 0. All subscripts 1 can then be regarded as subscripts 2. The dashed
line represents a shifted variant for type 2 lots, where 0 � s2 � P indicates the start time of
type 2 arrivals. t2 denotes the start time of processing type 2 lots. As Figure A.20 shows, two
situations can occur:

• Situation I: 0 �
s2 � ρ̄2P (left hand side graph). The expression for the mean wip level

and process interval are obtained by shifting the expressions for type 1 in time:

w̄2 � t2 � �

���� ���
1
2 µ2ρ̄2P � ρ̄2 � φ2 ��� µ2 � 1 � ρ̄2 � � s2 � t2 � for 0 �

t2 � s2
1
2 µ2ρ̄2P � ρ̄2 � φ2 ��� µ2ρ̄2 � t2 � s2 � for s2

�
t2 � s2 � � 1 � ρ̄2 � P

1
2 µ2ρ̄2P � ρ̄2 � φ2 ��� µ2 � 1 � ρ̄2 � � P � t2 � s2 � for s2 � � 1 � ρ̄2 � P �

t2
�

P

τ2 � ρ̄2P.

• Situation II: ρ̄2P
�

s2 � P (right hand side graph). The mean wip level and process
interval become:

w̄2 � t2 � �

���� ���
1
2 µ2ρ̄2P � ρ̄2 � φ2 � � µ2ρ̄2 � P � t2 � s2 � for 0 �

t2 � s2 � ρ̄2P
1
2 µ2ρ̄2P � ρ̄2 � φ2 � � µ2 � 1 � ρ̄2 � � s2 � t2 � for s2 � ρ̄2P

�
t2 � s2

1
2 µ2ρ̄2P � ρ̄2 � φ2 � � µ2ρ̄2 � t2 � s2 � for s2

�
t2

�
P

τ2 � ρ̄2P.

w̄

� t 1

� ,
w̄

� t 2

�
�

0 P
�
1 � ρ̄1 � Pρ̄1Ps2

t1, t2 �

situation I

w̄

� t 1

� ,
w̄

� t 2

�
�

0 P
�
1 � ρ̄1 � Pρ̄1P s2

t1, t2 �

situation II

Figure A.20: Different situations for type 2 and λ̂2 � µ2. Determination of mean wip curve based on
time shifting of the type 1 curve. Solid line: s1 � 0. Dashed line: s2 � 0.
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Mean work in process level for type 2 lots, λ̂2
� µ2

Similar to the previous section, the mean wip level expressions for type 2 lots are the time-
shifted equivalents of expressions the type 1 mean wip level expressions for λ̂1 � µ1. Due to
the time shifting, case distinction takes place, yielding more expressions and conditions. The
resulting mean wip level expressions for type 2 lots with λ̂2 � µ2 are as given below. The dotted
lines separate the expressions with a different domain for s2 (which is known beforehand and
not a design variable).

w̄I
2 � t2, τ2 � �

����������������������������������� ����������������������������������

µ2ρ̄2
2φ2 � φ2 � ρ̄2 � P �

φ2τ2
2 � 2P � φ2 � ρ̄2 � φ2ρ̄2 � τ2

� 2P � 1 � φ2 � � φ2 � ρ̄2 � � t2 � s2 ��� φ2P2 � 2 � φ2 � ρ̄2 � � 1 � φ2 ��� φ 2
2 � �

for s2
�

t2
� � φ2 � ρ̄2 � P � s2

ρ̄2P
� τ2

� φ2P � t2 � s2
0 �

s2
� � 1 � � φ2 � ρ̄2 � � P

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
µ2ρ̄2

2φ2 � φ2 � ρ̄2 � P �
φ2τ2

2 � 2P � φ2 � ρ̄2 � φ2ρ̄2 � τ2

� 2P � 1 � φ2 � � φ2 � ρ̄2 � � t2 � s2 � P ��� φ2P2 � 2 � φ2 � ρ̄2 � � 1 � φ2 ��� φ 2
2 � �

for 0 �
t2

� � � 1 � � φ2 � ρ̄2 � � P � s2
ρ̄2P

� τ2
�

s2 � t2 � � 1 � φ2 � P
� 1 � � φ2 � ρ̄2 � � P �

s2 � P

µ2ρ̄2
2φ2 � φ2 � ρ̄2 � P �

φ2τ2
2 � 2P � φ2 � ρ̄2 � φ2ρ̄2 � τ2

� 2P � 1 � φ2 � � φ2 � ρ̄2 � � t2 � s2 ��� φ2P2 � 2 � φ2 � ρ̄2 � � 1 � φ2 ��� φ 2
2 � �

for s2
�

t2
�

P
ρ̄2P

� τ2
�

s2 � t2 � φ2P
� 1 � � φ2 � ρ̄2 � � P �

s2 � P



APPENDIX A. PROOFS 217

w̄II
2 � τ2 � �

����������������������������������������������������� ����������������������������������������������������

µ2ρ̄2 � P � τ2 � 2
2P � φ2 � ρ̄2 � for � φ1 � ρ̄2 � P � s2

�
t2

� φ2P � s2
P � � t2 � s2 � � τ2

�
P

τ2
� ρ̄2P

τ2
�

�
φ2
ρ̄2
� 1 � � t2 � s2 ���

�
1 � φ2 � φ2

2
ρ̄2

� P

0 �
s2

� � 1 � φ2 � P
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

µ2ρ̄2 � P � τ2 � 2
2P � φ2 � ρ̄2 � for � φ1 � ρ̄2 � P � P � s2

�
t2

� � � 1 � φ2 � P � s2
s2 � t2

� τ2
�

P
τ2

� ρ̄2P

τ2
�

�
φ2
ρ̄2
� 1 � � P � t2 � s2 � �

�
1 � φ2 � φ2

2
ρ̄2

� P

� 1 � φ2 � P �
s2

� � 1 � � φ2 � ρ̄2 � � P
µ2ρ̄2 � P � τ2 � 2
2P � φ2 � ρ̄2 � for � φ1 � ρ̄2 � P � s2

�
t2

� φ2P � s2
P � � t2 � s2 � � τ2

�
P

τ2
� ρ̄2P

τ2
�

�
φ2
ρ̄2
� 1 � � t2 � s2 ���

�
1 � φ2 � φ2

2
ρ̄2

� P

� 1 � φ2 � P �
s2

� � 1 � � φ2 � ρ̄2 � � P
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

µ2ρ̄2 � P � τ2 � 2
2P � φ2 � ρ̄2 � for � φ1 � ρ̄2 � P � P � s2

�
t2

� � � 1 � φ2 � P � s2
s2 � t2

� τ2
�

P
τ2

� ρ̄2P

τ2
�

�
φ2
ρ̄2
� 1 � � P � t2 � s2 � �

�
1 � φ2 � φ2

2
ρ̄2

� P

� 1 � � φ2 � ρ̄2 � � P �
s2 � P
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w̄III � VI
2 � t2, τ2 � �

������������������������������������������������������������������������������� ������������������������������������������������������������������������������

µ2ρ̄2
2φ2

2 P

� � � 1 � φ2 � P � τ2 � � P � t2 � s2 � � � � φ2 � ρ̄2 � � P � t2 � s2 �
� � φ2 � ρ̄2 � τ2 � P � ρ̄2 � φ2 � ρ̄2φ2 � φ 2

2 � ���
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�
�
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�
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�
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�
�

φ2
ρ̄2
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0 �
s2

� ρ̄2P

µ2ρ̄2
2φ2

2 P

� � � 1 � φ2 � P � τ2 � � t2 � s2 � � � � φ2 � ρ̄2 � � t2 � s2 �
� � φ2 � ρ̄2 � τ2 � P � ρ̄2 � φ2 � ρ̄2φ2 � φ 2

2 � ���
for τ2

�
�

φ2
ρ̄2
� 1 � � t2 � s2 ���

�
1 � φ2 � φ2

2
ρ̄2

� P

τ2
�

P � � t2 � s2 �
τ2

�
�

φ2
ρ̄2
� 1 � � t2 � s2 ���

�
1 � φ2 � φ2

ρ̄2
� P

τ2
� � 1 � φ2 � P � � t2 � s2 �

0 �
s2

� ρ̄2P
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�
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τ2

�
�
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ρ̄2P
�

s2
� � 1 � φ2 � P
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ρ̄2

� P

τ2
�
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τ2

�
�
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� 1 � � t2 � s2 ���

�
1 � φ2 � φ2

ρ̄2
� P

τ2
� � 1 � φ2 � P � � t2 � s2 �

ρ̄2P
�

s2
� � 1 � φ2 � P

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(continued on next page)
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w̄III � VI
2 � t2, τ2 � �

����������������������������������������������������������� ����������������������������������������������������������

(continued from previous page)
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�
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w̄IV � V
2 � t2 � �

������������������������������ �����������������������������

� 1
2 µ2ρ̄2P � φ2 � ρ̄2 � � µ2ρ̄2 � t2 � s2 � and τ2 � ρ̄2P

for � φ2 � ρ̄2 � P � s2
�

t2
� max � φ2P, � 1 � ρ̄2 � P � � s2

0 �
s2

�
P � max � φ2P, � 1 � ρ̄2 � P �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 1
2 µ2ρ̄2P � φ2 � ρ̄2 � � µ2ρ̄2 � P � t2 � s2 � and τ2 � ρ̄2P

for 0 �
t2

� max � φ2P, � 1 � ρ̄2 � P � � P � s2
P � max � φ2P, � 1 � ρ̄2 � P � �
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A.6 Proof of Remark 5.20 (page 131)

The claim is that for a single switching server with piecewise constant arrival rates, the op-
timization problem as formulated in Section 5.8 leads to the condition for occurrence of a
slow-mode, as stated in Theorem 5.10, when the arrival time span fractions φi are set to one
(i � � 1, 2 
 ).

Physically, both arrival rates become constant when φi
� 1 � i, since no room is left between two

successive arrival time spans. For a given period P, it means that all ti lie between 0 and φiP. The
maximum process rate µi must be larger than (or equal to) the arrival rate λ̂i, to ensure stability
(as explained in Section 5.1). For both types, it means that the expressions for the mean wip
level for λ̂i

� µi, i ��� 1, 2 
 have to be used. Reviewing the possible different situations, as
discussed in Appendix A.5, the expressions for the mean wip level for type 1 and type 2 lots
are obtained by taking the mean wip expressions of situation I and II, substituting φi

� 1:

w̄1 � t1, τ1 � � ρ̄1µ1 � P � τ1 � 2
2P � 1 � ρ̄1 � with ρ̄1P

� τ1
�

P

w̄2 � t2, τ2 � � ρ̄2µ2 � P � τ2 � 2
2P � 1 � ρ̄2 � with ρ̄2P

� τ2
�

P

with the constraints:

t2 � τ2 � σ21
�

t1

t1 � τ1 � σ12
�

t2 � P
(A.40)

or

t1 � τ1 � σ12
�

t2

t2 � τ2 � σ21
�

t1 � P.

(A.41)

When φi
� 1 � i, no fixed period exists, given by the arrival pattern. Therefore, it is also im-

possible to distinguish start times of processing lots within the period length t1 and t2. The
expressions for mean wip level confirm this: they are independent of t1 and t2. On the other
hand, the period length P has now become a design variable in the optimization problem! The
problem that is to be solved reads: find the process cycle period length and individual type
specific process interval lengths for the switching server which ensure minimal weighted work
in process levels.

For reasons of simplicity, let ρi
� ρ̄i

�
φi � 1 � λ̂i � µi. With φi

� 1, the mean wip level expressions
and constraints can be written as:

w̄1 � τ1, P � � µ1ρ1 � P � τ1 � 2
2P � 1 � ρ1 �

w̄2 � τ2, P � � µ2ρ2 � P � τ2 � 2
2P � 1 � ρ2 �
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with the constraints:

ρ1P
� τ1

�
P

ρ2P
� τ2

�
P

τ1 � τ2 � σ12 � σ21
�

P.

The first and second constraint denote the minimal and maximum duration of the process in-
terval lengths and the third constraint is obtained by combining either of the two constraint
sets (A.40) or (A.41), losing t1 and t2. Lemma 5.17 states that lots are always served at the
highest currently possible rate, after which the server might idle. As long as the server is not
setting up for a lot type, serving at the highest possible rate means that as long the buffers con-
tain lots or as long lots keep arriving, the highest possible rate � 0. A consequence for φi

� 1
is that lots keep arriving all the time, so the server never idles. The period length P obviously
equals the sum of the process interval lengths and setup times then. So the final constraint must
hold with equality. Rewriting the constraints thus yields:

ρ1P
� τ1

�
P � σ12 � σ21 � τ2

ρ2P
� τ2

�
P � σ12 � σ21 � τ1

which in turn can be simplified into (with σ � σ12 � σ21):

ρ1P
� τ1

� � 1 � ρ2 � P � σ
ρ2P

� τ2
� � 1 � ρ1 � P � σ .

The equality P � τ1 � τ2 � σ allows for elimination of 1 design variable, so with µiρi
� λi the

optimization problem becomes:

min
τ1, P

J � min
τ1, P

c1
λ1 � P � τ1 � 2
2P � 1 � ρ1 � � c2

λ2 � σ � τ1 � 2
2P � 1 � ρ2 �

subject to:

ρ1P
� τ1

� � 1 � ρ2 � P � σ

P
� σ

1 � ρ1 � ρ2
.

Without loss of generality, it is assumed that c1λ1
�

c2λ2, as it had been assumed in Section 5.2.
The optimization problem is solved below. Based on the parameter choices, constraints can be
active (hold with equality) or inactive (hold with inequality). The optimization problem is
solved for the unconstrained case, with one active constraint and with two active constraints.
This yields conditions for the occurrence of possible slow-modes.

• Unconstrained optimization
The optimal values of P and τ1 are obtained by solving the following set of equations:� �

J
�
P

� 0,

�
J

�
τ1

� 0 �
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which has as solutions:

� P � � � σ , τ �1
� � σ 
 or

�
P � � σ , τ �1

� σ � c2λ2 � 1 � ρ1 ��� c1λ1 � 1 � ρ2 � �
� c2λ2 � 1 � ρ1 � � c1λ1 � 1 � ρ2 � � .

Both solutions clearly violate the constraints, so at least one constraint of the original
problem is active.

• One active constraint
First assume that τ �1

� ρ1P. Substituting this in the objective function and solving � J

� P
� 0

gives as solutions:

P � � σ
�

c2λ2�
c1λ1 � 1 � ρ1 � � 1 � ρ2 ��� c2λ2ρ2

1

or P � � � σ
�

c2λ2�
c1λ1 � 1 � ρ1 � � 1 � ρ2 � � c2λ2ρ2

1

.

The first solution can be a valid solution, while the second solution is negative and there-
fore rejected.

The other possibility for one active constraint is: τ �1
� � 1 � ρ2 � P � σ . Substituting this in

the objective function and solving for P gives as solutions:

P � � σ
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2

2

or P � � � σ
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 � � c1λ1ρ2

2

.

Again, only the first solution can be a valid solution. Notice the symmetry with the
solutions of the previous optimization, which is not surprising, when realizing that in fact
the objective function is symmetric for type 1 and type 2 lots. In the first term of the
objective function, P � τ1 can be replaced with σ � τ2 to recognize the symmetry.

• Two active constraints
The constraints hold with equality: τ1 � ρ1P and τ1 � � 1 � ρ2 � P � σ . Automatically, the
third constraint of the original problem (P � σ

1 � ρ1 � ρ2
) becomes active. The set of two

equalities has as a solution:

P � � σ
1 � ρ1 � ρ2

and τ �1
� ρ1σ

1 � ρ1 � ρ2

which is the solution for the pure bow tie curve (see Section 5.2). In this case, no slow-
modes occur.

Now that the optimization problem has been solved (or at least the solution has been character-
ized), the question arises: when are the constraints active?

First, the activity of the constraint τ1 � � 1 � ρ2 � P � σ is investigated (with the other constraint
inactive). The optimal period length P is given by:

P � � σ
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2

2
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so the process interval τ1 becomes:

τ �1
� � 1 � ρ2 � P � σ � � 1 � ρ2 � σ

�
c1λ1�

c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2
2

� σ .

The other constraint (ρ1P
� τ1) is inactive, so it holds with strict inequality: ρ1P � � τ �1 :

ρ1σ
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2

2

�
� 1 � ρ2 � σ

�
c1λ1�

c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2
2

� σ .

Division by σ � 0 and some rewriting gives:
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 � � c1λ1ρ2

2

�
1

1 � ρ1 � ρ2
.

All numerators and denominators are positive, so it is allowed to write:
�

c1λ1 � 1 � ρ1 � ρ2 ���
�

c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2
2

and after squaring and some basic algebra:

c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 ��� 0.

Because of the symmetry of the optimization problem, it is possible to immediately write down
the condition for the activeness of constraint τ1 � ρ1P and strict inequality τ1 � � 1 � ρ2 � P � σ :

c2λ2 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ1 ��� 0.

Since it was assumed that c1λ1
�

c2λ2, the latter condition is never fulfilled, leaving the follow-
ing conclusion:

• Unconstrained optimum: infeasible.

• One active constraint: τ1 � � 1 � ρ2 � P � σ is the only candidate. This situation occurs
when c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 � � 0.

• Two active constraints: pure bow tie curve: no occurrence of slowmodes.

The only possible steady state process cycle which is not the bow tie curve, is the one with one
or more slowmodes. If constraint τ1 � � 1 � ρ2 � P � σ is active, then the lengths of the period
and the process intervals are:

P � � σ
�

c1λ1�
c2λ2 � 1 � ρ1 � � 1 � ρ2 ��� c1λ1ρ2

2

τ �1
� � 1 � ρ2 � P � σ

τ �2
� P � � σ � τ �1 .
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For this solution, mass conservation tells which lot type(s) is/are processed in a slow-mode.
Since the machine does not idle and lots are always processed at the highest possible rate, the
only process rates that occur are maximum rate µi and arrival rate λi. The duration of processing
at µi is denoted by τµ

i while the slow-modes take τλ
i . The following set of equations needs to

be solved:

τ �1
� τµ

1 � τλ
1

τ �2
� τµ

2 � τλ
2

λ1P � � µ1τµ
1 � λ1τλ

1

λ2P � � µ2τµ
2 � λ2τλ

2

which has as solution:

τµ
1

� ρ1
1 � ρ1

� P � � τ �1 � � 0

τλ
1

� τ �1 � ρ1P �

1 � ρ1
� 0

τµ
2

� ρ2
1 � ρ2

� P � � τ �2 � � 0

τλ
2

� τ �2 � ρ2P �

1 � ρ2
� 0.

From this solution one can conclude that the only possible slowmode that may occur is for
type 1 lots (under the assumption that c1λ1

�
c2λ2). A slowmode occurs in the optimal steady

state cycle if c1λ1 � ρ1 � ρ2 � � � c1λ1 � c2λ2 � � 1 � ρ2 ��� 0.

A.7 Proof of Proposition 6.3 (page 145)

Initially, the workstations have to get into the same mode m � � mA
, mB � . Without loss of

generality, the mode of B is adjusted to equal the mode of A (if necessary). This is done by
means of the following initial control action:

�������������
�

uA
0

uB
0

uA
1

uA
2

uB
1

uB
2

��������������
�

T

�

�������������	 ������������


� ❶, ❶, 0, 0, 0, 0 � if m � � 1, 2 � , xA
0 � 0

� ①, ❶, µA
1 , 0, 0, 0 � if m � � 1, 2 � , xA

0 � 0, xA
1 � 0

� ①, ❶, λ1, 0, 0, 0 � if m � � 1, 2 � , xA
0 � 0, xA

1 � 0

� ❷, ❷, 0, 0, 0, 0 � if m � � 2, 1 � , xA
0 � 0

� ②, ❷, 0, µA
2 , 0, 0 � if m � � 2, 1 � , xA

0 � 0, xA
2 � 0

� ②, ❷, 0, λ2, 0, 0 � if m � � 2, 1 � , xA
0 � 0, xA

2 � 0

(A.42)
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Immediately after this action (if necessary), the following feedback is used:

�������������
�

uA
0

uB
0

uA
1

uA
2

uB
1

uB
2

� ������������
�

T

�

�������������������������������������������������������	 ������������������������������������������������������


� ❶, ❶, 0, 0, 0, 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0

� ❶, ①, 0, 0, µB
1 , 0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xB

1 � 0

� ❶, ①, 0, 0, 0, 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xB
1 � 0

� ①, ❶, µA
1 , 0, 0, 0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xA

1 � 0

� ①, ❶, λ1, 0, 0, 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0

� ①, ①, µA
1 , 0, µB

1 , 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � 0

� ①, ①, λ1, 0, µB
1 , 0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xA

1 � 0, xB
1 � 0

� ①, ①, µA
1 , 0, µA

1 , 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � 0

� ①, ①, λ1, 0, λ1, 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � 0, xA
2

� xA �
2

� ❷, ❷, 0, 0, 0, 0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � 0, xA
2 � xA �

2

� ❷, ❷, 0, 0, 0, 0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0

� ❷, ②, 0, 0, 0, µB
2 � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xB

2 � 0

� ❷, ②, 0, 0, 0, 0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xB
2 � 0

� ②, ❷, 0, µA
2 , 0, 0 � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xA

2 � 0

� ②, ❷, 0, λ2, 0, 0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0

� ②, ②, 0, µA
2 , 0, µB

2 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2 � 0

� ②, ②, 0, λ2, 0, µB
2 � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xA

2 � 0, xB
2 � 0

� ②, ②, 0, µA
2 , 0, µA

2 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2 � 0

� ②, ②, 0, λ2, 0, λ2 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2 � 0, xA
1

� xA �
1

� ❶, ❶, 0, 0, 0, 0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2 � 0, xA
1 � xA �

1

(A.43)

in which xA �1 and xA �2 are given by the expressions in (5.10).

Recall that µB
i

� µA
i for i � � 1, 2 
 and that setup times σ B

12
� σ A

12 and σ B
21

� σ A
21. This means

that if workstation B always serves at the highest possible actual process rate, it is always able
to keep a buffer empty once it is empty. The controller loops the lines as explained above in the
informal description of the controller. After one complete loop the buffers in workstation B are
empty, since switching only takes place when both buffers of that specific job type are empty.
The maximum process rates of workstation B are greater than the maximum process rates of A
and these are in turn greater than the arrival rates of lots, so eventually the buffers of a lot type
are empty during the first cycle. After having completed one process cycle, workstation B does
not influence the evolution of the trajectory anymore: it is never restrictive in the controller.
Therefore, after one cycle, the controlled system behaves as if it were only the first workstation.
Convergence of the controller is then exactly similar to the proof of Proposition 5.13.
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A.8 Proof of Theorem 6.5 (page 154)

The following is the proof op Theorem 6.5. Goal is to show that the following equations (which
are (6.9a) and (6.9b)) are necessary and sufficient conditions for workstation A to make the flow
line consisting of two workstations behave as if it were the downstream workstation B stand-
alone.

R2

�
τµB

1 � τλB
2 � σ B

21 � σ A
21 � T � R1 � τλB

1 � T � � � τµB
2 � σ B

12 � σ A
12

� 0

R1

�
τµB

2 � τλB
1 � σ B

12 � σ A
12 � T � R2 � τλB

2 � T � � � τµB
1 � σ B

21 � σ A
21

� 0

with R1 � max � ρA
1 ,ρB

1 � and R2 � max � ρA
2 ,ρB

2 � .

The proof consists of two parts. First, if a periodic orbit of A makes the flow line of work-
stations A and B behave like B stand-alone, it fulfills (6.3)–(6.8). During τ µA

i � θ �i , A has to
process µB

i τµB
i � λiθ

�
i

� λi � T � θ �i � τλB
i � lots. This takes at least λi � T � θ �i � τλB

i � � µA
i time

units (if θ �i � 0). As a consequence:

τµA
i � θ �i � ρA

i � T � θ �i � τλB
i � . (A.44)

Note that the mass conservation requirement has been replaced with inequality constraints.
Combining this result with (6.5) results in:

σ B
21 � σ A

21 � τµB
1 � θ �2

� ρA
1 � T � θ �1 � τλB

1 � (A.45)

which can be rewritten as:

ρA
1 � θ �1 � τλB

1 � T ��� τµB
1 � θ �2

� σ A
21 � σ B

21 (A.46a)

and similar for the other lot type:

ρA
2 � θ �2 � τλB

2 � T ��� τµB
2 � θ �1

� σ A
12 � σ B

12. (A.46b)

From (6.8) it is known that:
τµB

i � ρB
i � τλB

i � T � � 0. (A.47)

Adding this to (6.7) results in:

ρB
1 � θ �1 � τλB

1 � T ��� τµB
1 � θ �2

� σ A
21 � σ B

21 (A.48a)

ρB
2 � θ �2 � τλB

2 � T ��� τµB
2 � θ �1

� σ A
12 � σ B

12 (A.48b)

which looks rather similar to (A.46a) and (A.46b). Combining (A.46) and (A.48) results in:

max � ρA
1 ,ρB

1 � � θ �1 � τλB
1 � T ��� τµB

1 � θ �2
� σ A

21 � σ B
21 (A.49a)

max � ρA
2 ,ρB

2 � � θ �2 � τλB
2 � T ��� τµB

2 � θ �1
� σ A

12 � σ B
12. (A.49b)

These inequalities, together with θ �1
� 0 and θ �2

� 0, enclose a feasible area in the � θ �2 , θ �1 � -
plane (Figure A.21).
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θ �1
�

θ
�

2

�

0

(A.49b)

(A.49a)

Figure A.21: � θ �2 ,θ �1 � -plane with feasible area (gray). The diagonal lines represent constraints (A.49a)
and (A.49b).

The intersection point of the two linear borders defined by (A.49) lies in the positive/positive
quarter of this plane. The intersection point is given by:

θ �1 �
R2

�
τµB

1 � τλB
2 � σ B

21 � σ A
21 � T � R1 � τλB

1 � T � � � τµB
2 � σ B

12 � σ A
12

1 � R1R2
(A.50a)

θ �2 �
R1

�
τµB

2 � τλB
1 � σ B

12 � σ A
12 � T � R2 � τλB

2 � T � � � τµB
1 � σ B

21 � σ A
21

1 � R1R2
(A.50b)

which are only both non-negative if (6.9a) and (6.9b) are fulfilled.

The second part of the proof is to show that conditions (6.9) are sufficient to guarantee that A
can make the flow line of workstations A and B behave like B stand-alone. For arbitrary θ �i
(the amount of time a slowmode in workstation A of type i takes after the slowmode of B has
ended), the values for the processing intervals τ µA

i and τλA
i can be computed. These can be

solved from (6.3), (6.5a), (6.5b) and (6.8), guaranteeing mass conservation and the requirement
that the process cycle of A fits in the process cycle of B for both lot types:

τµA
1

� ρA
1 � σ B

12 � τµB
2 � τλB

2 � θ �1 � θ �2 � σ A
21 �

1 � ρA
1

(A.51)

τµA
2

� ρA
2 � τµB

1 � τλB
1 � σ B

21 � θ �2 � θ �1 � σ A
12 �

1 � ρA
2

(A.52)

θ �1 � σ B
21 � θ �2 � σ A

21 � τµB
1 � ρA

1 � θ �1 � τµB
1 � τµB

2 � τλB
2 � σ B

21 � σ B
12 �

1 � ρA
1

(A.53)

θ �2 � σ B
12 � θ �1 � σ A

12 � τµB
2 � ρA

2 � θ �2 � τµB
1 � τµB

2 � τλB
1 � σ B

21 � σ B
12 �

1 � ρA
2

(A.54)

τλA
1

� θ �1 � τλB
1 � θ �1 (A.55)

τλA
2

� θ �2 � τλB
2 � θ �2 . (A.56)
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If θ �1 and θ �2 are chosen in such a way that τ µA
1 , θ �1 , τµA

2 and θ �2 are non-negative and more-
over, the buffer levels do not become negative ((6.7a) and (6.7b)), then a feasible solution has
been found. From (A.55) and (A.56), it can easily be seen that τ λA

1 and τλA
2 are also non-

negative then. If (6.9a) and (6.9b) hold, then (A.50) gives feasible values for θ �1 and θ �2 ,
since they are non-negative. In (A.50) the period length T and the process intervals τ µB

i are
substituted with:

τµB
i

� ρB
i � T � τλB

i � (follows from (6.8)) (A.57)

T � τµB
1 � τµB

2 � τλB
1 � τλB

2 � σ B
12 � σ B

21. (A.58)

Substituting (A.50) in (A.51)–(A.54) gives expressions for τ µA
1 , τµA

2 , θ �1 and θ �2 :

τµA
1

� ρA
1 � 1 � R1 �

� 1 � ρA
1 � � 1 � R1R2 � � 1 � ρB

1 � ρB
2 �

� �
1 � ρB

1 � ρB
2 � σ A

12

� R2
�
1 � ρB

1 � ρB
2 � σ A

21 �
�
R2 � 1 � ρB

1 � � ρB
1 � σ B

12 �
�
1 � ρB

2 � R2ρB
2 � σ B

21

� �
R2 � 1 � ρB

1 � � ρB
1 ρB

2 � 1 � R2 � � τλB
1 � �

ρB
1 ρB

2 � R2 � 1 � � 1 � ρB
2 � τλB

2 �
τµA

2
� ρA

2 � 1 � R2 �
� 1 � ρA

2 � � 1 � R1R2 � � 1 � ρB
1 � ρB

2 �
�
R1

�
1 � ρB

1 � ρB
2 � σ A

12

� �
1 � ρB

1 � ρB
2 � σ A

21 �
�
1 � ρB

1 � R1ρB
1 � � σ B

12 �
�
R1 � 1 � ρB

2 ��� ρB
2 � σ B

21

� �
ρB

1 ρB
2 � R1 � 1 ��� 1 � ρB

1 � τλB
1 � �

R1 � 1 � ρB
2 � � ρB

1 ρB
2 � 1 � R1 � � τλB

2 �
θ �1 � R1 � ρA

1
� 1 � ρA

1 � � 1 � R1R2 � � 1 � ρB
1 � ρB

2 �
� �

1 � ρB
1 � ρB

2 � σ A
12

� R2
�
1 � ρB

1 � ρB
2 � σ A

21 �
�
ρB

1 � R2 � 1 � ρB
1 � � σ B

12 �
�
1 � ρB

2 � R2ρB
2 � σ B

21

� �
R2 � 1 � ρB

1 � � ρB
1 ρB

2 � 1 � R2 � � τλB
1 � �

ρB
1 ρB

2 � R2 � 1 � � 1 � ρB
2 � τλB

2 �
θ �2 � R2 � ρA

2
� 1 � ρA

2 � � 1 � R1R2 � � 1 � ρB
1 � ρB

2 �
�
R1

�
1 � ρB

1 � ρB
2 � σ A

12

� �
1 � ρB

1 � ρB
2 � σ A

21 �
�
1 � ρB

1 � R1ρB
1 � σ B

12 �
�
ρB

2 � R1 � 1 � ρB
2 � � σ B

21

� �
ρB

1 ρB
2 � R1 � 1 � � 1 � ρB

1 � τλB
1 � �

R1 � 1 � ρB
2 ��� ρB

1 ρB
2 � 1 � R1 � � τλB

2 � .
Each expression above consists of six terms. Recalling that workload 0 � ρ j

i � 1, � i ρ j
i � 1

and that Ri
� max � ρA

i , ρB
i � , one can easily verify that all six terms in each expression are non-

negative. Finally, (6.7a) and (6.7b) are checked, resulting in:

R1 � ρB
1

� 1 � R1R2 � � 1 � ρB
1 � ρB

2 �
�
� �

1 � ρB
1 � ρB

2 � σ A
12 � R2

�
1 � ρB

1 � ρB
2 � σ A

21

� �
ρB

1 � R2 � 1 � ρB
1 � � σ B

12 �
�
1 � ρB

2 � 1 � R2 � � σ B
21

� �
ρB

1 ρB
2 � 1 � R2 ��� R2 � 1 � ρB

1 � � τλB
1 � �

ρB
1 ρB

2 � R2 � 1 � � 1 � ρB
2 � τλB

2 � � 0
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and

R2 � ρB
2

� 1 � R1R2 � � 1 � ρB
1 � ρB

2 �
�
� R1

�
1 � ρB

1 � ρB
2 � σ A

12 �
�
1 � ρB

1 � ρB
2 � σ A

21

� �
1 � ρB

1 � 1 � R1 � � σ B
12 �

�
ρB

2 � R1 � 1 � ρB
2 � � σ B

21

� � � ρB
1 ρB

2 � R1 � 1 ��� 1 � ρB
1 � τλB

1 � �
ρB

1 ρB
2 � 1 � R1 ��� R1 � 1 � ρB

2 � � τλB
2 � � 0.

For these two inequalities, it can easily be verified that all terms at the left hand side are non-
positive, so the inequalities hold. With these results, it has been proven that (6.9a) and (6.9b) are
sufficient conditions to guarantee that workstation A can make the flow line of workstations A
and B perform like B stand-alone with respect to work in process levels.

A.9 Proof of Proposition 6.6 (page 155)

The following Lemma is needed in the proof of Proposition 6.6:

Lemma A.5. Under conditions (6.9a) and (6.9b), i.e. workstation A can make flow line of
workstations A and B behave like B stand-alone, the following inequality holds: R1 � R2 � 1.

Proof. Choose θ �i as small as possible, but within the feasible area (cf. Figure A.21). The
feasible area may have three different shapes, as presented in Figure A.22. The smallest values

(A.49b)

(A.49a)

θ �1
�

θ

�

2

� (A.49b)

(A.49a)

θ �1
�

θ

�

2

�

(A.49b)
(A.49a)

θ �1
�

θ

�

2

�

Figure A.22: Possible shapes of the feasible area in the � θ �2 , θ �1 � -plane.

for θ �1 is the intersection point of (A.49a) with the horizontal axis, or zero if the intersection
point is negative. A similar reasoning goes for θ �2 , the vertical axis and constraint line (A.49b).
This leads to the following expressions for θ �i , i � � 1, 2 
 :

θ �1 � max � 0, R2 � τλB
2 � T � � τµB

2 � σ A
12 � σ B

12 � (A.59a)

θ �2 � max � 0, R1 � τλB
1 � T � � τµB

1 � σ A
21 � σ B

21 � . (A.59b)

Rewriting (6.9) gives:

� 1 � R1 � R2 � � τµB
1 � τµB

2 � σ B
12 � � � σ A

21 � σ A
12 � R1 � τλB

2 � σ B
21 � � R2τλB

2 � �

� 1 � R2 � � R1 � τλB
1 � T � � τµB

1 � σ A
21 � (A.60a)
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� 1 � R1 � R2 � � τµB
1 � τµB

2 � σ B
21 ��� � σ A

21 � σ A
12 � R2 � τλB

1 � σ B
12 ��� R1τλB

1 � �

� 1 � R1 � � R2 � τλB
2 � T � � τµB

2 � σ A
12 � . (A.60b)

Suppose that R1 � R2
� 1, implying that the left hand sides of (A.60) are negative. Combining

this with (A.59), this results in θ �1 � σ B
12 and θ �2 � σ B

21, meaning that A and B are never working
at different lot types simultaneously (cf. Figure 6.10) if working at the desired process cycles.
A consequence is that a virtual station can be put between workstations A and B, with maxi-
mum process rates min � µA

1 ,µB
i � and min � µA

2 ,µB
2 � , which does not influence the process cycles

of A and B (the virtual station paradigm has been elaborated in [27, Ch.8]). In Figure A.23, the

period T

σ B
21 τµB

1 τλB
1 σ B

12 τµB
2 τλB

2

θ �2

σ A
21 τµA

1

θ �
1

τλA
1

θ �1

σ A
12 τµA

2

θ �
2

τλA
2

σ VS
21 τVS

1 σ VS
12 τVS

2

Figure A.23: Virtual station between workstations A and B.

virtual station (VS) has been put between the time lines of A and B. During τ VS
i , the virtual sta-

tion processes type i lots (with maximum process rate min � µA
i ,µB

i � ). The process intervals τVS
i

start with the first start of τµ j
i and end at the same moment as θ �i . For reasons of stability, the

utilization of the virtual station must not exceed 1: R1 � R2 � 1. This is in contradiction with
our assumption, so under conditions (6.9), R1 � R2 � 1.

Before convergence of the trajectory to the desired (optimal) trajectory is proven, first the formal
feedback law of Proposition 6.6 is given.

Initially, the workstations have to get into the same mode m � � mA
, mB � . Without loss of

generality, the mode of A is adjusted to equal the mode of B (if necessary). This is done by
means of the following initial control action:������������

�

uA
0

uB
0

uA
1

uA
2

uB
1

uB
2

�������������
�

T

�

������������� ������������

� ❶, ❶, 0, 0, 0, 0 � if m � � 2, 1 � , xB
0 � 0

� ❶, ①, 0, 0, µB
1 , 0 � if m � � 2, 1 � , xB

0
� 0, xB

1 � 0

� ❶, ①, 0, 0, λ1, 0 � if m � � 2, 1 � , xB
0

� 0, xB
1

� 0

� ❷, ❷, 0, 0, 0, 0 � if m � � 1, 2 � , xB
0 � 0

� ❷, ②, 0, 0, 0, µB
2 � if m � � 1, 2 � , xB

0
� 0, xB

2 � 0

� ❷, ②, 0, 0, 0, λ2 � if m � � 1, 2 � , xB
0

� 0, xB
2

� 0.

(A.61)
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Immediately after this initial action (if necessary), the following feedback is used:

�������������
�

uA
0

uB
0

uA
1

uA
2

uB
1

uB
2

� ������������
�

T

�

��������������������������������������������������������������������������������������������	 �������������������������������������������������������������������������������������������


� ①,①,µA
1 ,0,µB

1 ,0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � 0

� ①,①,µA
1 ,0,min � µA

1 ,µB
1 � ,0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xA

1 � 0, xB
1 � 0

� ①,①,λ1,0,µB
1 ,0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xA

1 � 0, xB
1 � 0

� ①,①,λ1,0,λ1,0 � if m � � 1,1 � , xA
0 � xB

0 � xA
1 � xB

1 � 0, xA
2

� xA �
2

� ①,②,λ1,0,0,µB
2 � if m � � 1,2 � , xA

0 � 0, xB
0 � 0, xA

1 � 0, xB
2 � 0

� ①,②,λ1,0,0,0 � if m � � 1,2 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

2 � 0

� ①,❶,µA
1 ,0,0,0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xA

1 � 0

� ①,❶,λ1,0,0,0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xA
1 � 0

� ①,❷,λ1,0,0,0 � if m � � 1,2 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1
� xB �

1

� ①,❷,λ1,0,0,0 � if m � � 1,1 � , xA
0 � xB

0 � xA
1 � xB

1 � 0, xA
2 � xA �

2

� ②,①,0,λ2,µB
1 ,0 � if m � � 2,1 � , xA

0 � xB
0 � xA

2 � 0,xB
1 � 0, xB

2
� xB �

2

� ②,①,0,λ2,0,0 � if m � � 2,1 � , xA
0 � xB

0 � xA
2 � xB

1 � 0, xB
2

� xB �
2

� ②,②,0,µA
2 ,0,µB

2 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2 � 0

� ②,②,0,µA
2 ,0,min � µA

2 ,µB
2 � � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xA

2 � 0, xB
2 � 0

� ②,②,0,λ2,0,µB
2 � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xA

2 � 0, xB
2 � 0

� ②,②,0,λ2,0,λ2 � if m � � 2,2 � , xA
0 � xB

0 � 0,xA
2 � xB

2 � 0, xA
1

� xA �
1

� ②,❶,0,λ2,0,0 � if m � � 2,2 � , xA
0 � xB

0 � 0,xA
2 � xB

2 � 0, xA
1 � xA �

1

� ②,❶,0,λ2,0,0 � if m � � 2,1 � , xA
0 � 0, xB

0 � 0, xA
2 � 0, xB

2
� xB �

2

� ②,❷,0,µA
2 ,0,0 � if m � � 2,2 � , xB

0 � 0, xA
2 � 0

� ②,❷,0,λ2,0,0 � if m � � 2,2 � , xB
0 � 0, xA

2 � 0

� ❶,①,0,0,µB
1 ,0 � if m � � 1,1 � , xA

0 � 0, xB
0 � 0, xB

1 � 0

� ❶,①,0,0,µB
1 ,0 � if m � � 2,1 � , xA

0 � xB
0 � xA

2 � 0,xB
1 � 0, xB

2 � xB �
2

� ❶,①,0,0,0,0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0, xB
1 � 0

� ❶,①,0,0,0,0 � if m � � 2,1 � , xA
0 � 0, xB

0 � 0, xB
1 � 0, xB

2 � xB �
2

� ❶,❶,0,0,0,0 � if m � � 1,1 � , xA
0 � 0, xB

0 � 0

� ❶,❶,0,0,0,0 � if m � � 2,1 � , xA
0 � 0, xB

0 � 0, xB
2 � xB �

2

� ❷,②,0,0,0,µB
2 � if m � � 2,2 � , xA

0 � 0, xB
0 � 0, xB

2 � 0

� ❷,②,0,0,0,µB
2 � if m � � 1,2 � , xA

0 � 0, xB
0 � 0, xB

2 � 0, xB
1 � xB �

1

� ❷,②,0,0,0,0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0, xB
2 � 0

� ❷,②,0,0,0,0 � if m � � 1,2 � , xA
0 � 0, xB

0 � 0, xB
2 � 0, xB

1 � xB �
1

� ❷,❷,0,0,0,0 � if m � � 2,2 � , xA
0 � 0, xB

0 � 0

� ❷,❷,0,0,0,0 � if m � � 1,2 � , xA
0 � 0, xB

0 � 0, xA
1 � 0, xB

1 � xB �
1

(A.62)

in which xB �1
� λ1θ �1 , xB �2

� λ2θ �2 , xA �1
� λ1 � σ A

12 � τµA
2 � τλA

2 � θ �2 � and
xA �2

� λ2 � σ A
21 � τµA

1 � τλA
1 � θ �1 � .
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In both the desired (optimal) trajectory and the transient, the system loops the following modes
m � � mA

, mB � : � 1,1 � � � 1,2 � � � 2,2 � � � 2,1 � � � 1,1 � � . . . For the desired trajectory, the
buffer levels after leaving modes � mA

, mB � are:

After mode � 1,1 � :

��������
xA

1

xB
1

xA
2

xB
2

� ������� �

��������
0

0

xA �2

xB �2

� �������
After mode � 1,2 � :

��������
xA

1

xB
1

xA
2

xB
2

� ������� �

��������
0

xB �1

xA �2 � λ2θ �1
xB �2 � µB

2 max � θ �1 � σ B
12,0 �

� �������
After mode � 2,2 � :

��������
xA

1

xB
1

xA
2

xB
2

��������� �

��������
xA �1

xB �1

0

0

���������
After mode � 2,1 � :

��������
xA

1

xB
1

xA
2

xB
2

� ������� �

��������
xA �1 � λ1θ �2

xB �1 � µB
1 max � θ �2 � σ B

21,0 �
0

xB �2

� ������� .

(A.63)

The duration of mode m � � 1,1 � is xA �2 � λ2, whereas the duration of mode � 2,2 � equals xA �1 � λ1.
Furthermore, mode � 1,2 � always takes θ �1 and mode � 2,1 � always takes θ �2 (this follows di-
rectly from the controller description).

Suppose that mode � 1,2 � is entered in the transient for the nth time � n � 1 � . The buffer levels
are at this point: �

xA
1 xB

1 xA
2 xB

2 � �
�
0 0 xA �2 � X � n � xB �2 � (A.64)

where X � n � � 0 represents the additional buffer content with respect to the steady state value,
when starting mode � 1,2 � for the nth time. What are the buffer levels after mode � 2,2 � , and
consequently after mode � 1,1 � ? Basically, the map X � n � 1 � � f � X � n � � is looked for. With this
map, convergence might be proven. However, instead of deriving the map f explicitly, an easy
to find upper bound for X � n � 1 � is determined here by means of an alternative control strategy.

Consider the alternative control strategy that first goes through mode � 1,2 � during θ �1 and then
stays in mode � 2,2 � during xA �1 � λ1, as if it were on the desired orbit. The resulting buffer levels
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are then: �
xA

1 xB
1 xA

2 xB
2 � �

�
0 0 X � n � xB �2 � . (A.65)

Assume that A and B both process type 2 lots at rate min � µA
2 ,µB

2 � to empty buffer xA
2 . This takes

another X � n � � � min � µA
2 ,µB

2 ��� λ2 � time units. The resulting buffer levels after this step are then:�
xA

1 xB
1 xA

2 xB
2 � �

�
xA �1 � λ1

min � µA
2 ,µB

2 � � λ2
X � n � xB �1 0 0 � . (A.66)

With the original controller of Proposition 6.6, different values for the buffer levels are obtained.
However, the original controller processes at least as much lots as the alternative controller, at
each time instant, because the original controller always processes lots at the highest possible
rate (cf. Lemma 5.2). For this reason, it is known that for the real controller at the end of
mode � 2,2 � , � xB

1 xA
2 xB

2 � � � xB �1 0 0 � and for xA
1 :

xA �1
�

xA
1

�
xA �1 � λ1

min � µA
2 ,µB

2 � � λ2
X � n � . (A.67)

Completing the controller cycle for modes � 2,1 � and � 1,1 � , similar reasoning leads to the fol-
lowing result:

0 �
X � n � 1 � � λ1

min � µA
2 ,µB

2 ��� λ2
� λ2
min � µA

1 ,µB
1 ��� λ1

� X � n � (A.68)

or rewritten:
0 �

X � n � 1 � � R1
1 � R1

� R2
1 � R2

� X � n � . (A.69)

Since R1 � R2 � 1 (result of Lemma A.5), the following can be concluded:

lim
n � � X � n � � 0 (A.70)

which means that the system converges to the desired (optimal) periodic orbit (cf. (A.64) with
the result of (A.70)).
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Matlab and χ models

B.1 Chapter 4: Receding horizon control using (multi-

parametric) linear programming

MPLP problem formulation for flow line of multiple workstations

The following MATLAB script computes the feedback control law for a flow line consisting of
multiple workstations. Each workstation consists of a buffer with finite capacity and a single-lot
machine. The code has been commented shortly. A more elaborate explanation is given here.

• In lines 1–6 the parameters need to be supplied by the user. In vector N the number
of buffer places in each workstation is supplied, from upstream (first workstation) to
downstream (last workstation). Vector m contains the process times of the machines in
the workstations. Variable hor represents the control horizon (the number of lots that are
optimized).

• In lines 8–21 all subproblems are constructed. Each column in the resulting matrix
subproblems represents a subproblem, containing an instantiation of the numbers of
lots in the buffers and on the machines.

• Lines 23–228 deal with constructing all constraint matrices for each subproblem and
solving the MPLP problem.

• In lines 27–38 the dimensions of vectors u, v, w and y are computed for each workstation,
based on the subproblem configuration (numbers of lots in buffers and on machines) and
the control horizon hor, which is the dimension of vector z.

• In lines 40–177 the constraints are constructed which are present in each workstation. The

235
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constraints are divided into groups, starting with a capital letter. The small letter behind
it indicates on which design variable the submatrix has effect. For example, submatrix Bw
contains the elements for the w vector of a workstation, regarding the constraints that
say that jobs can only start after authorization. In several occasions, constraint submatri-
ces are grouped, e.g. in submatrix Jvwy, which contains the elements of constraints that
affect v, w and y.

• In lines 120–176 the submatrices are concatenated to each other. All if constructs ensure
that no errors occur due to bad concatenation (concatenation of empty matrices).

• Lines 178–202 construct the remaining constraints that affect the flow line as a whole:
bounds on the exploration space and constraints on dummy variables in vector z, that deal
with the absolute value function in the objective function.

• In lines 204–226 the big matrices are constructed that form the inequality GU
�

W � EX.
Also the objective function vectors and additional constraint matrices that bound the ex-
ploration space are constructed: AX

�
b.

• In line 227 the MPLP problem solver is invoked.
• Lines 228–229 are used to store the results of the solver, in order to have them available

in an implementation of the controller.

1 clear

lambda1=0.001; % Weighing factor for first subordinate control goal

lambda2=0.0001; % Weighing factor for second subordinate control goal

C=[2 4 2]; % Buffer capacities in workstations ( >=1 ).

5 d=[4 3 2]; % Process times of machines. Upstream -> downstream

hor=4; % Control horizon (>= 1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nws=length(C); % number of workstations

% Generate all subproblems.

10 nrsp=2^nws*prod(C+1); % number of subproblems

machinepart=repmat(de2bi(0:2^nws-1),prod(C+1),1);

bufferpart=[];

for temp=1:nws

step=prod(C(temp+1:end)+1)*2^nws;

15 column=[];

for j=0:C(temp)

column=[column;j*ones(step,1)];

end

bufferpart=[bufferpart repmat(column,nrsp/length(column),1)];

20 end

subproblems=[bufferpart machinepart]’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve the subproblems

xregionsset=[]; PN=[]; FI=[]; GI=[]; % initialization lumped solution matrices.

25 % X: due dates r (dim hor), time (dim 1) and remaining process times x3 (dim nws)

for p=subproblems

% Compute dimensions of u v w y z vectors

x1=p(1:nws); % number of jobs in buffers from upstream to downstream

x2=p(nws+1:end); % number of jobs on machines from upstream to downstream

30 dimu(nws+1)=hor;

for temp=nws:-1:1

dimy(temp)=dimu(temp+1);

dimv(temp)=max(dimy(temp)-x2(temp),0);
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dimw(temp)=dimv(temp);

35 dimu(temp)=max(dimw(temp)-x1(temp),0);

end

dimu=dimu(1:nws);

dimz=hor;

G={}; W={}; E={}; % initialization for each subproblem constraint matrices.

40 for ws=1:nws

% now construct the submatrices that apply to each workstation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% w>=u (jobs can only start after their arrival)

rA=dimu(ws);

45 Au{ws}=[eye(rA)]; Av{ws}=zeros(rA,dimv(ws));

Aw{ws}=-diag(ones(1,rA),x1(ws)); Aw{ws}=Aw{ws}(1:rA,1:dimw(ws));

Ay{ws}=zeros(rA,dimy(ws)); Ap{ws}=zeros(rA,1);

Artx3{ws}=zeros(rA,hor+1+nws);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 % w>=v (jobs can only start after authorization)

rB=dimv(ws);

Bu{ws}=zeros(rB,dimu(ws)); Bv{ws}=eye(rB);

Bw{ws}=-eye(rB); By{ws}=zeros(rB,dimy(ws));

Bp{ws}=zeros(rB,1); Brtx3{ws}=zeros(rB,hor+1+nws);

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y>=w+d (jobs can only leave after processing has finished)

rC=max(dimy(ws)-x2(ws),0);

Cuv{ws}=zeros(rC,dimu(ws)+dimv(ws)); Cw{ws}=eye(rC);

Cy{ws}=-diag(ones(1,rC),x2(ws)); Cy{ws}=Cy{ws}(1:rC,:);

60 Cp{ws}=-d(ws)*ones(rC,1); Crtx3{ws}=zeros(rC,hor+1+nws);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% w>=y (a new job can only start once the previous job has left)

rD=max(dimy(ws)-1,0);

Duv{ws}=zeros(rD,dimu(ws)+dimv(ws)); Dw{ws}=-diag(ones(1,rD),1-x2(ws));

65 Dw{ws}=Dw{ws}(1:rD,:); Dy{ws}=[eye(rD) zeros(rD,1)];

Dp{ws}=zeros(rD,1); Drtx3{ws}=zeros(rD,hor+1+nws);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% u>=w (incorporate buffer level constraints)

rE=max(dimy(ws)-C(ws)-x2(ws),0);

70 Eu{ws}=[zeros(rE,dimu(ws)-rE) -eye(rE)];Ev{ws}=zeros(rE,dimv(ws));

Ew{ws}=[eye(rE) zeros(rE,dimw(ws)-rE)]; Ey{ws}=zeros(rE,dimy(ws));

Ep{ws}=zeros(rE,1); Ertx3{ws}=zeros(rE,hor+1+nws);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y1>=x3+t (if x2==1, first lot can leave after remaining process time)

75 Hu={};Hv={};Hw={};Hy={};Hp={};Hr={};Ht={};Hx3={};

if x2(ws)==1 && dimy(ws)>0

rH=1;

Hu{ws}=zeros(rH,dimu(ws)); Hv{ws}=zeros(rH,dimv(ws));

Hw{ws}=zeros(rH,dimw(ws)); Hy{ws}=zeros(rH,dimy(ws));

80 Hp{ws}=zeros(rH,1); Hr{ws}=zeros(rH,hor);

Ht{ws}=zeros(rH,1); Hx3{ws}=zeros(rH,nws);

Hy{ws}(1,1)=-1; Ht{ws}(1,1)=-1;

Hx3{ws}(1,ws)=-1;

end

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% u>=t v>=t w>=t y>=t (we cannot change the past)

rI=dimu(ws)+dimv(ws)+dimw(ws)+dimy(ws);

Iuvwy{ws}=-eye(rI); Ip{ws}=zeros(rI,1);

Ir{ws}=zeros(rI,hor); It{ws}=-1*ones(rI,1);

90 Ix3{ws}=zeros(rI,nws);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% u_{i+1} >= u_i (jobs arrive in chronological order)

rJ=max(dimu(ws)-1,0);

Ju{ws}=[eye(rJ) zeros(rJ,1)]+[zeros(rJ,1) -eye(rJ)];

95 Jvwy{ws}=zeros(rJ,dimv(ws)+dimw(ws)+dimy(ws));

Jp{ws}=zeros(rJ,1); Jrtx3{ws}=zeros(rJ,hor+nws+1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% v_{i+1} >= v_i (jobs are authorized in chronological order)

rK=max(dimv(ws)-1,0);

100 Ku{ws}=zeros(rK,dimu(ws));

Kv{ws}=[eye(rK) zeros(rK,1)]+[zeros(rK,1) -eye(rK)];

Kwy{ws}=zeros(rK,dimw(ws)+dimy(ws));

Kp{ws}=zeros(rK,1);

Krtx3{ws}=zeros(rK,hor+nws+1);

105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% w_{i+1} >= w_i (jobs are started in chronological order)

rL=max(dimw(ws)-1,0);

Luv{ws}=zeros(rL,dimu(ws)+dimv(ws));

Lw{ws}=[eye(rL) zeros(rL,1)]+[zeros(rL,1) -eye(rL)];

110 Ly{ws}=zeros(rL,dimy(ws));

Lp{ws}=zeros(rL,1);

Lrtx3{ws}=zeros(rL,hor+nws+1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% y_{i+1} >= y_i (jobs leave in chronological order)

115 rM=max(dimy(ws)-1,0);

Muvw{ws}=zeros(rM,dimu(ws)+dimv(ws)+dimw(ws));

My{ws}=[eye(rM) zeros(rM,1)]+[zeros(rM,1) -eye(rM)];

Mp{ws}=zeros(rM,1);

Mrtx3{ws}=zeros(rM,hor+nws+1);

120 % construct the full matrices and vectors. If’s to prevent errors.

%G{ws}={}; W{ws}={}; E{ws}={};

if ~isempty([Iuvwy{ws}])

G{ws}=Iuvwy{ws};

W{ws}=Ip{ws};

125 E{ws}=[Ir{ws} It{ws} Ix3{ws}];

end

if ~isempty([Au{ws} Av{ws} Aw{ws} Ay{ws}])

G{ws}=[G{ws}; Au{ws} Av{ws} Aw{ws} Ay{ws}];

W{ws}=[W{ws}; Ap{ws}];

130 E{ws}=[E{ws}; Artx3{ws}];

end

if ~isempty([Bu{ws} Bv{ws} Bw{ws} By{ws}])

G{ws}=[G{ws};Bu{ws} Bv{ws} Bw{ws} By{ws}];

W{ws}=[W{ws};Bp{ws}];

135 E{ws}=[E{ws};Brtx3{ws}];

end

if ~isempty([Cuv{ws} Cw{ws} Cy{ws}] )

G{ws}=[G{ws};Cuv{ws} Cw{ws} Cy{ws}];

W{ws}=[W{ws};Cp{ws}];

140 E{ws}=[E{ws};Crtx3{ws}];

end

if ~isempty([Duv{ws} Dw{ws} Dy{ws}])

G{ws}=[G{ws};Duv{ws} Dw{ws} Dy{ws}];

W{ws}=[W{ws};Dp{ws}];

145 E{ws}=[E{ws};Drtx3{ws}];

end

if ~isempty([Eu{ws} Ev{ws} Ew{ws} Ey{ws}])
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G{ws}=[G{ws};Eu{ws} Ev{ws} Ew{ws} Ey{ws}];

W{ws}=[W{ws};Ep{ws}];

150 E{ws}=[E{ws};Ertx3{ws}];

end

if x2(ws)==1 && dimy(ws)>0

G{ws}=[G{ws};Hu{ws} Hv{ws} Hw{ws} Hy{ws}];

W{ws}=[W{ws};Hp{ws}];

155 E{ws}=[E{ws};Hr{ws} Ht{ws} Hx3{ws}];

end

if ~isempty([Ju{ws} Jvwy{ws}])

G{ws}=[G{ws};Ju{ws} Jvwy{ws}];

W{ws}=[W{ws};Jp{ws}];

160 E{ws}=[E{ws};Jrtx3{ws}];

end

if ~isempty([Ku{ws} Kv{ws} Kwy{ws}])

G{ws}=[G{ws};Ku{ws} Kv{ws} Kwy{ws}];

W{ws}=[W{ws};Kp{ws}];

165 E{ws}=[E{ws};Krtx3{ws}];

end

if ~isempty([Luv{ws} Lw{ws} Ly{ws}])

G{ws}=[G{ws};Luv{ws} Lw{ws} Ly{ws}];

W{ws}=[W{ws};Lp{ws}];

170 E{ws}=[E{ws};Lrtx3{ws}];

end

if ~isempty([Muvw{ws} My{ws}])

G{ws}=[G{ws};Muvw{ws} My{ws}];

W{ws}=[W{ws};Mp{ws}];

175 E{ws}=[E{ws};Mrtx3{ws}];

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct the remaining constraints %

180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% z>=y-r (dummy variable z to deal with |y-r| in objective function)

rF=hor;

Fy=eye(rF); Fz=-eye(rF); Fp=zeros(rF,1);

Fr=eye(rF); Ftx3=zeros(rF,1+nws);

185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% z>=r-y (dummy variable z to deal with |y-r| in objective function)

rG=hor;

Gy=-eye(rG); Gz=-eye(rG); Gp=zeros(rG,1);

Gr=-eye(rG); Gtx3=zeros(rG,1+nws);

190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% r_{i+1} >= r_i (due dates have to be in chronological order)

rN=max(hor-1,0);

Np=zeros(rN,1); Nr=[eye(rN) zeros(rN,1)]+[zeros(rN,1) -eye(rN)];

Nt=zeros(rN,1); Nx3=zeros(rN,nws);

195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x3<=d && x3>=0 (remaining proc. times >=0 and have an upper bound)

rO=2*nws; % In Op d 10* enlarged to handle stochastic implementation

Op=[10*d’;zeros(nws,1)]; Or=zeros(rO,hor);

Ot=zeros(rO,1); Ox3=[eye(nws); -eye(nws)];

200 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% r>=0, t>=0 (only positive times are considered)

Prt=-eye(hor+1); Pp=zeros(hor+1,1); Px3=zeros(hor+1,nws);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct the big matrices for the GG*U<=WW+EE*X form.
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205 % G matrices are put under each other while the y and u variables overlap

% to make them equal to each other. W and E matrices are concatenated.

GG=G{1};WW=W{1};EE=E{1};

for temp=2:nws

zerosleftlower=zeros(size(G{temp},1),size(GG,2)-dimu(temp));

210 zerosrightupper=zeros(size(GG,1), dimv(temp)+dimw(temp)+dimy(temp));

GG=[GG zerosrightupper; zerosleftlower G{temp}];

WW=[WW; W{temp}]; EE=[EE; E{temp}];

end

% Add constraints on dummy variables z

215 GG=[GG zeros(size(GG,1),hor); zeros(2*hor,size(GG,2)-dimy(end)) [Fy Fz;Gy Gz]];

WW=[WW; Fp; Gp];

EE=[EE; Fr Ftx3; Gr Gtx3];

HH=-lambda1*ones(1,dimu(1)+dimv(1)+dimw(1));

for temp=2:nws

220 HH=[HH lambda2*ones(1,dimu(temp)) -lambda1*ones(1,dimv(temp)+dimw(temp))];

end

HH=[HH zeros(1,dimy(end)) ones(1,dimz)];

FF=[zeros(1,hor) 0 zeros(1,nws)]; % objective function does not depend on X

Matrices.H=HH; Matrices.F=FF; Matrices.G=GG; Matrices.W=WW; Matrices.E=EE;

225 Matrices.bndA=[Nr Nt Nx3; Or Ot Ox3; Prt Px3];

Matrices.bndb=[Np; Op; Pp];

[Pn,Fi,Gi,actCon,Phard,details] = mpt_mplp(Matrices, struct(’mplpver’, 6));

xregionsset=[xregionsset; x1’ x2’ details.nRegions];

PN=[PN Pn]; FI=[FI Fi]; GI=[GI Gi];

230 end

In order to compute control action vector U for arbitrary state, due dates and time, the following
MATLAB function can be used:

1 function U=computecontrolaction(xregionsset, PN, FI, GI, xsel, x)

% xsel: selects the solution of one of the MPLP problems based on [x1s x2s]

% x: parameter vector which is fed to function getOptimizer (from the MPT toolbox)

for j=1:size(xregionsset,1)

5 if xregionsset(j,1:end-1)==xsel

nr=j; break

end

end

if nr>1

10 beforenr=sum(xregionsset(1:nr-1,end));

else

beforenr=0;

end

tempPN=PN(beforenr+1:beforenr+xregionsset(nr,end));

15 tempFI=FI(beforenr+1:beforenr+xregionsset(nr,end));

tempGI=GI(beforenr+1:beforenr+xregionsset(nr,end));

U=mpt_getOptimizer(tempPN,tempFI,tempGI,x);

As an example, consider a flow line consisting of three workstations. At current time t � 0,
the numbers of lots in the buffers are (from upstream to downstream) 1, 4 and 2 respectively.
Machines 1 and 3 are empty and machine 2 is processing a product, with a remaining process
time of 2.5 hours. Suppose that the control horizon was 4 lots and the due dates are 10, 11, 12
and 13. The control action vector U can be computed with the following commands:
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1 x1s=[1 4 2];

x2s=[0 1 0];

xsel=[x1s x2s];

duedates=[10 11 12 13];

5 time=0;

x3s=[0 2.5 0];

x=[duedates time x3s];

U=computecontrolaction(xregionsset, PN, FI, GI, xsel, x)

B.2 Chapter 5: A switching server

Hybrid fluid model in Matlab

The following MATLAB script is an implementation of the hybrid fluid model that has been
developed in Chapter 5. It uses an internal discrete event simulation to compute the time instants
and state changes of all events that can take place given the current state and time. Then it takes
the earliest occurring event and updates the clock and state. A more detailed description of the
script is given first, followed by the code itself.

First all necessary system parameters are provided (lines 3–9). Then some auxiliary variables
are computed, like the partial relative workloads ρi (lines 11–15). The initial condition of the
system (buffer levels, mode and remaining setup time) are also needed before the simulation
can start (lines 17–25). The occurrence of a slowmode is investigated, based on the condition
in Theorem 5.10 (lines 26–34). As a final step before the actual simulation starts, the buffer
levels at which a setup to the other lot type has to take place are computed, taking into account
the maximum buffer capacities (lines 36–44). The simulator repeats the following steps:

• Based on the current state, the process rates of the lot types are determined, as speci-
fied in (5.1), taking into account that lots are always served at the highest possible rate
(Lemma 5.2). Lines 50–68.

• The process rates and current state determine which events can take place. The time
spans until the occurrence of these events are placed in the event matrix, together with
the values of the state elements in case this event would take place at that particular time
instant. Every time the simulator enters this step, the event matrix is emptied before all
possible new events are computed. Lines 69–103.

• The earliest occurring event is taken from the event matrix. Line 106.
• The state and time are updated according to the occurring event. Lines 107–111.

If multiple events can take place at a certain time instant, only one of them is executed (the
min-function in MATLAB returns only one element in case of multiple minima). In the next
loop, the events that can still take place will automatically show up in the new event vector and
will be executed then.
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1 clear

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% System parameters

lambda1=9;

5 lambda2=3;

mu1=24;

mu2=27;

sigma12=2;

sigma21=2;

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Auxiliary variables

rho1=lambda1/mu1;

rho2=lambda2/mu2;

sigma=sigma12+sigma21;

15 sigmas=[sigma21 sigma12];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial conditions

x0=0;

x1=50;

20 x2=20;

m=2;

x1max=70;

x2max=40;

c1=1;

25 c2=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Investigate slow-mode

if c1*lambda1*(rho1+rho2)+(c2*lambda2-c1*lambda1)*(1-rho2)>=0

alpha=0;

30 else

alpha=max(roots([c1*lambda1*rho2^2*(1-rho1)+c2*lambda2*(1-rho1)^2*(1-rho2)

2*(c1*lambda1*rho2^2+c2*lambda2*(1-rho1)*(1-rho2))

c1*lambda1*(rho1+rho2)+(c2*lambda2-c1*lambda1)*(1-rho2)]));

end

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The coordinates for m switching with buffer level constraints

x1sharp=lambda1*(sigma12+(sigma*rho2*(1+alpha*(1-rho1)))/(1-rho1-rho2));

x2sharp=lambda2*(sigma21+(sigma*(alpha*(1-rho1)*(1-rho2)+rho1))/(1-rho1-rho2));

x1barsharp=min([ x1max-lambda1*sigma21;

40 lambda1*(sigma21+x2max/(mu2-lambda2));

x1sharp ]);

x2barsharp=min([ (mu2-lambda2)/lambda1*(x1max-lambda1*sigma)-lambda2*sigma12;

x2max-lambda2*sigma12;

x2sharp ]);

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% START OF SIMULATION

t=0;

output=[t x0 x1 x2 m];

while t<50 % Duration of the simulation

50 % Compute process rates workstation

if m==1 && x0==0

if x1>0

u1=mu1;

elseif x1==0

55 u1=lambda1;

end

u2=0;
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elseif m==2 && x0==0

u1=0;

60 if x2>0

u2=mu2;

elseif x2==0

u2=lambda2;

end

65 elseif x0>0

u1=0;

u2=0;

end

% Clear the event matrix

70 events=[];

% Now compute which events can take place and when.

% Event matrix: [timestep x0 x1 x2 m]

if x0>0

events=[events; x0 0 x1+(lambda1-u1)*x0 x2+(lambda2-u2)*x0 m];

75 end

if x1>0 && u1>0

step=x1/(u1-lambda1);

events=[events; step 0 0 x2+(lambda2-u2)*(step) m];

end

80 if x1>0 && u1>0

step=(x2max-lambda2*sigma12-x2)/lambda2;

events=[events;

step sigmas(3-m) x1+(lambda1-u1)*step x2+(lambda2-u2)*step 3-m];

end

85 if x2>0 && u2>0

step=x2/(u2-lambda2);

events=[events; step 0 x1+(lambda1-u1)*step 0 m];

end

if x2>0 && u2>0

90 step=(x1max-lambda1*sigma21-x1)/lambda1;

events=[events;

step sigmas(3-m) x1+(lambda1-u1)*step x2+(lambda2-u2)*step 3-m];

end

if m==1 && x1==0 && u1>0

95 step=max([0; (x2barsharp-x2)/lambda2]);

events=[events;

step sigmas(3-m) x1+(lambda1-u1)*step x2+(lambda2-u2)*step 3-m];

end

if m==2 && x2==0 && u2>0

100 step=max([0; (x1barsharp-x1)/lambda1]);

events=[events;

step sigmas(3-m) x1+(lambda1-u1)*step x2+(lambda2-u2)*step 3-m];

end

% Take the earliest event, update buffer levels, mode, remaining setup

105 % time and put forward the clock.

[q,i]=min(events(:,1));

x0=events(i,2);

x1=events(i,3);

x2=events(i,4);

110 m=events(i,5);

t=t+q;

output=[output; t events(i,2:end)];

end
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One workstation with two lot types in χ

The following χ model represents a workstation consisting of buffer B and machine M. Jobs
are generated by generator G and arrive at the server with constant arrival rate. All process
times, setup times and interarrival times are constant.

The iconic representation of the χ model is shown in Figure B.1. Channels a, b, c and d are
used to send and receive lots between processes. Channel e (dashed line in the figure) is used
to switch the mode of the machine. The controller has been implemented in buffer B.

G

G

B M E

a

b
c d

e

Figure B.1: Iconic representation of χ model of a switching server with two queues.
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type lot � nat

proc G � chan a ! : lot, val λ : real � �
� �
var i : nat � 0

:: � � ∆1 � λ ; i : � i � 1; a ! i �� �
proc B � chan a?, b?, c ! : lot, d ! : nat, val x �2 : real, x1 � 0 � , x2 � 0 � , xmax

1 , xmax
2 , m � 0 � : nat,

λ1, λ2, σ21, σ12 : real � �
� �
var x1, x2 :

�
lot� � � � � , � � � , x : lot, m : nat � m � 0 �

:: x1 � 0 ��� 0 � � � x1 : � x1 � �
�
0 � ; x1 � 0 � : � x1 � 0 � � 1 �

; x2 � 0 ��� 0 � � � x2 : � x2 � �
�
0 � ; x2 � 0 � : � x2 � 0 � � 1 �

; � � len � x1 ��� xmax
1 � a?x; x1 : � x1 � �

�
x �

8 len � x2 ��� xmax
2 � b?x; x2 : � x2 � �

�
x �

8 m � 0 � len � x1 � � 0 � len � x2 ��� xmax
2 � λ2σ12 � c !hd � x1 � ; x1 : � tl � x1 �

8 m � 0 � len � x1 � � 0 � len � x2 � �
xmax

2 � λ2σ12 � d !1; m : � 1
8 m � 0 � len � x1 � � 0 � len � x2 � �

x �2 � d !1; m : � 1
8 m � 1 � len � x2 � � 0 � len � x1 ��� xmax

1 � λ2σ21 � c !hd � x2 � ; x2 : � tl � x2 �
8 m � 1 � � len � x2 � � 0 � len � x1 � �

xmax
1 � λ1σ21 � � d !0; m : � 0

�� �
proc M � chan a?, b ! : lot, c? : nat, val µ, σi j : 2 � real, m � 0 � : nat � �
� �
var x : lot, m : nat � m � 0 �

:: � � a?x; ∆1 � µ.m; b !x 8 c?m; ∆σi j.m �� � (B.1)

proc E � chan a? lot � �
� �
var x : lot

:: � a?x� �
model S � val λ1, λ2, µ1, µ2, σ21, σ12, x �2 : real, x1 � 0 � , x2 � 0 � , xmax

1 , xmax
2 , m � 0 � : nat � �

� �
chan a, b, c, d : lot, e : nat

:: G � a, λ1 �
‖G � b, λ2 �
‖B � a, b, c, e, x �2, x1 � 0 � , x2 � 0 � , xmax

1 , xmax
2 , m � 0 � , λ1, λ2, σ21, σ12 �

‖M � c, d, e,
�
µ1, µ2 � , �

σ21, σ12 � , m � 0 � �
‖E � d �� �

The following χ specification models a single switching server with two queues and switchover
times. The interarrival times and the process times of lots are exponentially distributed. The
graphical representation is similar to the deterministic case, Figure B.1.
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type lot � nat

proc G � chan a ! : lot, val λ : real � �
� �
var i : nat � 0, dta : � real, ta : real � 1 � λ , s : real

:: dta : � exponential � ta �
; � � s : � σdta ; ∆s; i : � i � 1; a ! i �� �
proc B � chan a?, b?, c ! : lot, d ! : nat, val x �2 : real, x1 � 0 � , x2 � 0 � , xmax

1 , xmax
2 , m � 0 � : nat,

λ1, λ2, σ12, σ21 : real � �
� �
var x1, x2 :

�
lot� � � � � , � � � , x : lot, m : nat � m � 0 �

:: x1 � 0 ��� 0 � � � x1 : � x1 � �
�
0 � ; x1 � 0 � : � x1 � 0 ��� 1 �

; x2 � 0 ��� 0 � � � x2 : � x2 � �
�
0 � ; x2 � 0 � : � x2 � 0 ��� 1 �

; � � len � x1 ��� xmax
1 � a?x; x1 : � x1 � �

�
x �

8 len � x2 ��� xmax
2 � b?x; x2 : � x2 � �

�
x �

8 m � 0 � len � x1 ��� 0 � len � x2 ��� xmax
2 � λ2σ12 � c !hd � x1 � ; x1 : � tl � x1 �

8 m � 0 � len � x1 ��� 0 � len � x2 � �
xmax

2 � λ2σ12 � d !1; m : � 1
8 m � 0 � len � x1 � � 0 � len � x2 � �

x �2 � d !1; m : � 1
8 m � 1 � len � x2 ��� 0 � len � x1 ��� xmax

1 � λ1σ21 � c !hd � x2 � ; x2 : � tl � x2 �
8 m � 1 � � len � x2 � � 0 � len � x1 � �

xmax
1 � λ1σ21 � � d !0; m : � 0

�� �
proc M � chan a?, b ! : lot, c? : nat, val µ, σi j : 2 � real, m � 0 � : nat � �
� �
var x : lot, dte,0, dte,1 : � real, te : 2 � real � �

1 � µ.0, 1 � µ.1 � , s : real, m : nat � m � 0 �
:: dte,0 : � exponential � te.0 �
; dte,1 : � exponential � te.1 �
; � � � a?x; � m � 0 � s : � σdte,0

8 m � 1 � s : � σdte,1
�

; ∆s
; b !x
�

8 � c?m; ∆σi j.m �
�� �

proc E � chan a? : lot � �
� �
var x : lot

:: � a?x� � (B.2)

model S � val λ1, λ2, µ1, µ2, σ12, σ21, x �2 : real, x1 � 0 � , x2 � 0 � , xmax
1 , xmax

2 , m � 0 � : nat � �
� �
chan a, b, c, d : lot, e : nat

:: G � a, λ1 � ‖G � b, λ2 �
‖B � a, b, c, e, x �2, x1 � 0 � , x2 � 0 � , xmax

1 , xmax
2 , m � 0 � , λ1, λ2, σ12, σ21 �

‖M � c, d, e,
�
µ1, µ2 � , �

σ12, σ21 � , m � 0 � � ‖E � d �� �
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Computation of mean weighted work in process levels for servers with

multiple lot types

The following MATLAB script computes the mean weighted work in process level for a server
that processes multiple lot types, given a process cycle order. A clearing policy is assumed,
meaning that buffers are always emptied completely before the switchover to the next lot type
takes place. Furthermore, a slow-mode (in time units) can be inserted after each mode, before
switching to the next mode.

1 % maximum process rates for type 1, 2, ...

mu=[16 16 16];

% setup times in (from,to)-type format

sigmas=[0 1 1;

5 1 0 1;

1 1 0];

% arrival rates for type 1, 2, ...

lambda=[4 2 1];

% weighting factors for type 1, 2, ...

10 c=[1 1 1];

% the process cycle order

cycle=[1 2 1 3];

% amount of slowmode after clearing of the process cycle step (in time units)

sm=[0 0 0 0];

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rho=lambda./mu;

rhocycle=lambda(cycle)./mu(cycle);

extcycle=[cycle cycle(1)];

totalsetup=0;

20 for j=1:length(cycle)

totalsetup=totalsetup+sigmas(extcycle(j),extcycle(j+1));

end

lc=length(cycle);

A=[]; B=[]; dblcycle=[cycle cycle]; dblsm=[sm sm];

25 for j=lc+1:length(dblcycle)

type=dblcycle(j);

ind=find(dblcycle==type);

laststep=ind(max(find(ind<j)));

slows=0; setups=0; a=zeros(1,lc);

30 for steps=laststep:j-1

slows=slows+dblsm(steps);

setups=setups+sigmas(dblcycle(steps),dblcycle(steps+1));

a(mod(steps,lc)+1)=lambda(cycle(j-lc));

end

35 a(j-lc)=lambda(cycle(j-lc))-mu(cycle(j-lc));

b=-lambda(cycle(j-lc))*(setups+slows-dblsm(laststep));

A=[A;a];B=[B;b];

end

taus=A\B;

40 area=-diag(A).*taus.*taus./rhocycle’/2;

ccycle=c(cycle);

period=sum(taus)+sum(sm)+totalsetup;

meanweightedwip=sum(area.*ccycle’/period)

asfraction=rats(meanweightedwip)



248 APPENDIX B. MATLAB AND χ MODELS

Chapter 6: Flow lines of switching servers

Two workstations with two lot types in a χ model

The following χ specifications (B.3) and (B.4) model a flow line consisting of two worksta-
tions, serving two different lot types (see Figure B.2). The state feedback controllers of Propo-
sitions 6.3 and 6.6 have been implemented in the buffer process B. With this model the control
goals are validated. A few notes on the χ specifications:

• The physical processes (four separate buffers, two workstations) have not all been mod-
elled or instantiated as separate processes in χ . The four individual buffers are part of
one buffer process B. An iconic model of the χ specifications is shown in Figure B.3.

• For modelling reasons, the lot types are labelled as lot type 0 and lot type 1, instead of 1
and 2 respectively. In addition, workstations are also labelled as workstation 0 and work-
station 1, representing A and B respectively. Capitals A and B are also used, especially in
model S, where all parameters are fed to the processes.

• Only the physical processes and controller have been modelled. All diagnostics have
been omitted here for clarity reasons.

• Apart from the discrete event nature of the χ model, the dynamics differs from the hybrid
fluid model dynamics (6.1). Setups cannot be interrupted in the χ model, while this is
possible in the hybrid fluid model dynamics. However, the controller of Proposition 6.3
never interrupts a setup, so this difference is not a problem.

• Buffer processes B (which also accommodates the state feedback controller) looks very
different from the buffer processes in χ specifications (B.1) and (B.2). In those χ spec-
ifications, the individual controller actions are recognizable, resulting in a readable but
quite large process. In specifications (B.3) and (B.4) however, folding techniques have
been used to make the specification as small as possible. Disadvantage of this approach
is that the specification is not intuitively readable anymore.

• Extension of this model to stochastic inter-arrival and process times goes in a similar way
as in the single switching server situation. Specifications of the stochastic models have
not been included here.
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Figure B.2: Flow line of two switching servers.
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type lot � nat

proc G � chan a ! : lot, val λ : real, i : nat � �
� �
� � ∆1 � λ ; a ! i � � �

proc B � chan a?, b ! : 2#lot, c? : lot, e ! : 2#nat, val xA � : 2 � real,
x � 0 � : 2 � � 2 � nat � , mA � 0 � , mB � 0 � : nat � �
� �
var xs : 2 � � 2 � � lot� � � � � � � , � � � , � � � , � � � � , x : lot, m : 2 � nat � �

mA � 0 � , mB � 0 � �
:: � ; , i � 0..1, � ; , j � 0..1, � x � 0 � .i. j � 0 � � � � xs.i. j : � xs.i. j � � � j � ; x � 0 � .i. j : � x � 0 � .i. j � 1 � � �
; � � � 8, i � 0..1, a.i?x; xs.0.i : � xs.0.i � � � x � �

8 c?x; xs.1.x : � xs.1.x � � � x �
8 � 8, i � 0..1, � 8, j � 0..1, m.i � j � len � xs.i. j � � 0 � b.i !hd � xs.i. j � ; xs.i. j : � tl � xs.i. j � � �
8 � 8, i � 0..1, m.0 � i � m.1 � i � len � xs.0.i � � 0 � len � xs.1.i � � 0

� len � xs.0. � 1 � i � � �
xA � . � 1 � i � � e.0! � 1 � i � ; e.1! � 1 � i � ; m : � �

1 � i, 1 � i � �
�� �

proc M � chan a?, b ! : lot, c? : nat, val µ, σ : 2 � real, m � 0 � : nat, x0 : real � �
� �
var x : lot, m : nat � m � 0 �

:: ∆x0
; � � a?x; ∆1 � µ.m; b !x

8 c?m; ∆σ .m
�� � (B.3)

proc E � chan a? : lot � �
� �
var x : lot

:: � a?x� �
model S � val λ1, λ2, µA
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1 � 0 � , xB

2 � 0 � , mA � 0 � , mB � 0 � : nat, xA
0 � 0 � , xB

0 � 0 � : real � �
� �
chan a, b : 2#lot, c, d : lot, e : 2#nat

:: G � a.0, λ1, 0 �
‖G � a.1, λ2, 1 �
‖B � a, b, c, e,

�
xA �1 , xA �2 � , � �

xA
1 � 0 � , xA

2 � 0 � � , �
xB

1 � 0 � , xB
2 � 0 � � � , mA � 0 � , mB � 0 � �

‖M � b.0, c, e.0,

�
µA

1 , µA
2 � , �

σ A
21, σ A

12 � , mA � 0 � , xA
0 � 0 � �

‖M � b.1, d, e.1,

�
µB

1 , µB
2 � , �

σ B
21, σ B

12 � , mB � 0 � , xB
0 � 0 � �

‖E � d �� �



250 APPENDIX B. MATLAB AND χ MODELS

The following χ specification models the flow line of two workstations (Figures B.2 and B.3),
with the controller of Proposition 6.6 implemented in buffer process B. Control goal in this
specification is to make the flow line behave as if it were the downstream workstation stand-
alone, with respect to work in process levels.

type lot � nat

proc G � chan a ! : lot, val λ : real, i : nat � �
� �
� � ∆1 � λ ; a ! i � � �

proc B � chan a?, b ! : 2#lot, c? : lot, e ! : 2#nat, val x � : 2 � � 2 � real � ,
x � 0 � : 2 � � 2 � nat � , mA � 0 � , mB � 0 � : nat � �
� �
var xs : 2 � � 2 � � lot� � � � � � � , � � � , � � � , � � � � , x : lot, m : 2 � nat � �

mA � 0 � , mB � 0 � �
:: � ; , i � 0..1, � ; , j � 0..1, � x � 0 � .i. j � 0 � � � � xs.i. j : � xs.i. j � � � j � ; x � 0 � .i. j : � x � 0 � .i. j � 1 � � �
; � � � 8, i � 0..1, a.i?x; xs.0.i : � xs.0.i � � � x � �

8 c?x; xs.1.x : � xs.1.x � � � x �
8 � 8, i � 0..1, � 8, j � 0..1, m.i � j � len � xs.i. j � � 0 � b.i !hd � xs.i. j � ; xs.i. j : � tl � xs.i. j � � �
8 � 8, i � 0..1, len � xs.0.i � � 0 � len � xs.1.i � � 0 � m.0 � i � m.1 � i

� len � xs.0. � 1 � i � � �
x � .0. � 1 � i � � e.1! � 1 � i � ; m : � �

i, 1 � i � �
8 � 8, i � 0..1, len � xs.0.i � � 0 � m.0 � i � m.1 � 1 � i � len � xs.1.i � �

x � .1.i
� e.0! � 1 � i � ; m : � �

1 � i, 1 � i � �
�� �

proc M � chan a?, b ! : lot, c? : nat, val µ, σ : 2 � real, m � 0 � : nat, x0 : real � �
� �
var x : lot, m : nat � m � 0 �

:: ∆x0
; � � a?x; ∆1 � µ.m; b !x

8 c?m; ∆σ .m
�� � (B.4)

proc E � chan a? : lot � �
� �
var x : lot

:: � a?x� �
model S � val λ1, λ2, µA
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:: G � a.0, λ1, 0 �
‖G � a.1, λ2, 1 �
‖B � a, b, c, e,

�
xA �1 , xA �2 � , � �

xA
1 � 0 � , xA

2 � 0 � � , �
xB

1 � 0 � , xB
2 � 0 � � � , mA � 0 � , mB � 0 � �

‖M � b.0, c, e.0,

�
µA

1 , µA
2 � , �

σ A
21, σ A

12 � , mA � 0 � , xA
0 � 0 � �

‖M � b.1, d, e.1,

�
µB

1 , µB
2 � , �

σ B
21, σ B

12 � , mB � 0 � , xB
0 � 0 � �

‖E � d �� �



Nederlandse samenvatting

De complexiteit van zowel producten als productieprocessen is de afgelopen jaren enorm toege-
nomen. Dit heeft geresulteerd in high-tech productiesystemen: het maken van ingewikkelde en
dure producten met nog duurdere en ingewikkeldere productiemiddelen. Fouten in de productie
worden hierdoor erg duur en dienen vermeden te worden om de doelstellingen van de fabrikant
te verwezenlijken: het maken van producten met een zo groot mogelijke winst. Over het
algemeen worden deze doelen bereikt door de bedrijfsprocessen, de machines, de voorraden en
het personeel goed onder controle te houden. Dit is makkelijker gezegd dan gedaan. Immers,
als het al mogelijk is controle te houden over alle processen in een fabriek is dat op zichzelf
al erg duur. Door delen van het fabricageproces te modelleren kan de complexiteit hiervan
teruggedrongen worden. Met behulp van het model kan toekomstig gedrag van het systeem
voorspeld worden. Bovendien kunnen met het model ingewikkelde regelstrategieën vooraf
getest worden, met een laag risico, zonder dat ze op het daadwerkelijke productiesysteem
geı̈mplementeerd hoeven te worden.

In dit proefschrift worden fabricagelijnen gemodelleerd met behulp van verschillende model-
leertechnieken. Deze technieken worden onderverdeeld in drie groepen: discrete gebeurtenis
(discrete event) modellen, continue modellen en hybride modellen. De opsomming van mo-
delvormen is geenszins bedoeld als totaaloverzicht van alle beschikbare modelvormen. De
behandelde modelvormen worden in dit proefschrift gebruikt.

Een toestandsrepresentatie voor een werkstation wordt geı̈ntroduceerd in dit proefschrift. Deze
toestand heeft een eindige dimensie, kan instantaan gemeten worden en bevat bovendien geen
enkele informatie over de gebruikte productie- of regelstrategie. Deze toestandsrepresenta-
tie wordt gebruikt om verschillende modelvormen aan elkaar te koppelen, waarmee analyse-
technieken van zowel het tijddomein als het eventdomein gebruikt kunnen worden. Daarnaast
wordt de toestandsrepresentatie gebruikt voor de ontwikkeling van een terugkoppelingsregelaar
(feedback controller) die continu in de tijd optimale productieplannen geeft, op basis van
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een voortschrijdende horizon. Deze regelaar is ontwikkeld voor een productielijn met een
willekeurig aantal werkstations, elk met een eigen capaciteit, en voor een willekeurige hori-
zonsafstand. De regelaar levert optimale productieplanningen, ook wanneer er onverwachts
verstoringen optreden.

Schakelende werkstations (switching servers) zijn er in vele vormen, zoals productiesystemen,
verkeersnetwerken en call-centers. Schakelende werkstations verwerken meerdere typen pro-
ducten (goederen, auto’s, telefoontjes) en moeten omstellen tussen het bewerken van verschil-
lende typen. Dit omstellen kost tijd. Een hybride vloeistof model (fluid model) wordt gebruikt
om de dynamica van zo’n werkstation te beschrijven, waarbij het continue deel van de dynamica
het verloop van de bufferniveaus in de tijd beschrijft, terwijl het discrete deel het omstellen
tussen producttypen beschrijft. Optimaal omstelbeleid met betrekking tot gemiddeld niveau van
onderhanden werk wordt vastgesteld voor een werkstation dat twee typen producten verwerkt
die met een constante snelheid aankomen bij het werkstation. Dit omstelbeleid is bepaald
voor werkstations met zowel onbegrensde buffercapaciteiten als begrensde buffercapaciteiten.
Een belangrijk verkregen inzicht is het mogelijk optreden van een langzaam-aan-modus (slow-
mode) in de gevonden optimale productiecyclus. Tijdens een langzaam-aan-modus is de buffer
van een bepaald type leeg en worden binnenkomende producten meteen verwerkt, in plaats
van om te stellen naar een ander type. Deze langzaam-aan-modus kan worden gezien als een
afweging tussen enerzijds capaciteit verliezen door langzamer te produceren dan de topsnelheid,
en anderzijds capaciteit te verliezen door relatief vaak om te stellen tussen producttypen. Con-
dities op het optreden van een dergelijke langzaam-aan-modus worden afgeleid.

In een netwerk van werkstations is de aankomstsnelheid van producten over het algemeen niet
constant. Voor een schakelend werkstation dat twee typen producten verwerkt, die aankomen
met een stuksgewijs constante snelheid (aan/uit), wordt in dit proefschrift een optimale schakel-
strategie bepaald. Het optimalisatieprobleem wordt dan opgesplitst in meerdere deelproblemen,
die afzonderlijk opgelost dienen te worden.

De optimale hoeveelheid onderhanden werk voor een enkel schakelend werkstation is tevens
een ondergrens voor de hoeveelheid onderhanden werk in een fabricagelijn waarvan dat spe-
cifieke werkstation deel uitmaakt. Voor een fabricagelijn met twee schakelende werkstations
die elk twee typen producten verwerken, worden de voorwaarden afgeleid waaronder dit op-
timale niveau van onderhanden werk bereikt kan worden. Een belangrijke conclusie is dat in
veel gevallen in een fabricagelijn een synchronisatiemechanisme tussen werkstations onderling
nodig is om het gewenste totaalgedrag van de fabricagelijn te bereiken.

Voor zowel een enkel schakelend werkstation als voor fabricagelijnen van schakelende werk-
stations met constante productaanvoer worden toestandsterugkoppelingsregelaars voorgesteld
die vanaf ieder toegestaan beginpunt de trajectorie van het systeem naar de gewenste trajectorie
brengen. In tegenstelling tot veel gebruikte regelmethoden in de literatuur wordt in dit onder-
zoek eerst gewenst (mogelijk optimaal) systeemgedrag gedefinieerd, waarna een regelaar wordt
ontworpen die dit gewenste gedrag kan bereiken.
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De vraag rijst of altijd gezocht moet worden naar optimaal systeemgedrag. Het onderzoek
in dit proefschrift toont aan dat momenteel alleen voor een kleine klasse van werkstations en
fabricagelijnen optimaal gedrag en bijbehorend omstelbeleid bepaald kunnen worden. Meer
dan twee producttypen of meer dan twee werkstations in een fabricagelijn leiden tot inge-
wikkelde optimalisatieproblemen. Los van deze complexiteit is het bovendien onbekend of
optimaal periodiek gedrag bestaat voor deze grotere systemen. Ondernemers zijn vaak niet
geı̈nteresseerd in de theoretisch optimale oplossing. Vaak zal een oplossing die ‘beter is dan
de huidige’ volstaan. Bovendien zal een ondernemer een suboptimale oplossing verkiezen
boven een optimale oplossing, als de suboptimale minder gevoelig is voor verstoringen of
onzekerheden.

Dit proefschrift kan als uitgangspunt dienen voor vervolgonderzoek op het gebied van mo-
delleren en regelen van fabricagenetwerken. De geı̈ntroduceerde toestandsrepresentatie kan
uitgebreid worden voor fabricagenetwerken en andere soorten machines dan hier behandeld.
Bovendien kunnen andere onderzoeksgebieden gekoppeld worden aan dit onderzoek, zoals
stochastische analyse en effectieve procestijden.

(Van enkele termen de Engelse vertaling toegevoegd, omdat de Engelstalige termen volledig ingeburgerd
zijn in het Nederlandse vakjargon.)
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