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Predicting Cycle Time Distributions for Integrated
Processing Workstations: An Aggregate

Modeling Approach
C. P. L. Veeger, L. F. P. Etman, E. Lefeber, I. J. B. F. Adan, J. van Herk, and J. E. Rooda

Abstract—To predict cycle time distributions of integrated
processing workstations, detailed simulation models are almost
exclusively used; these models require considerable development
and maintenance effort. As an alternative, we propose an ag-
gregate model that is a lumped-parameter representation of the
workstation. The aggregate model is a single server with a work-
in-process dependent aggregate process time distribution and
overtaking distribution. The lumped parameters are determined
directly from arrival and departure events measured at the
workstation. An extensive simulation study and an industry case
demonstrate that the aggregate model can accurately predict the
cycle time distribution of integrated processing workstations in
semiconductor manufacturing.

Index Terms—Cycle time distribution, discrete-event simu-
lation, factory dynamics, manufacturing systems, performance
evaluation, queueing.

I. Introduction

IN PRODUCTION planning for semiconductor worksta-
tions, there is a tradeoff between productivity and the

cycle time. A workstation consists of a group of machines
that perform similar operations, and that share the same input
buffer. Workstation productivity is expressed as the number
of lots processed per time unit, which is also referred to as
throughput. High productivity is desirable due to the capital
intensive equipment used. On the other hand, high productivity
causes long “cycle times,” defined as the sum of the process
time and the waiting time at the workstation. High cycle times
may negatively influence the on-time delivery performance
of the semiconductor manufacturing system, or the time-to-
market of new products.
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To make a tradeoff between productivity and cycle times, an
accurate prediction of the cycle time distribution as a function
of the throughput is required. For this prediction, a model
may be used that has to incorporate semiconductor workstation
behavior such as integrated processing, outage delays, and
dispatching rules. Integrated processing machines can process
multiple lots at the same time in the various process chambers.
Examples of integrated processing machines are lithography
machines, and cluster tools. For planning purposes it is de-
sirable that the model requires little development and mainte-
nance effort, and that model evaluations are computationally
cheap.

To predict cycle time distributions, simulation models are
almost exclusively used. Application of classical queueing
models, such as the G/G/m queue [1], is mostly restricted
to relatively simple systems, and implementation in the semi-
conductor industry has been unsatisfactory [2]. Alternatively,
statistical analysis of historical data (e.g., data mining) may
be used to predict future expected cycle times [3]–[6], but
these approaches do not focus on cycle time distribution
prediction.

Predictions of the cycle time distribution may be obtained
using a detailed simulation model. For example, [7] and [8]
estimated a set of quantiles from a detailed simulation model
by processing simulation output using a Cornish-Fisher ex-
pansion. Sivakumar and Chong [9] used a detailed simulation
model to analyze cycle time distributions in semiconductor
back-end manufacturing. Detailed simulation models allow
the inclusion of many details of the factory floor to arrive
at accurate predictions, and can be easily updated if the
factory conditions change (e.g., if an additional machine is
installed). On the other hand, detailed models are computa-
tionally expensive. Dangelmayer et al. [10] pointed out that
model abstraction is necessary to allow simulation experiments
of efficient runtime.

One way to make an abstraction of a detailed simulation
model is to carry out simulation runs according to a de-
sign of experiments, and use the responses to generate a
metamodel. For example, Yang et al. [11] and Chen [12]
built a metamodel from a detailed simulation model, which
they used to derive cycle time quantiles as a function of the
throughput.

Another approach to abstract a detailed simulation model
is aggregation. Brooks and Tobias [13], and Johnson et al.
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[14] used a simplification technique in which non-bottleneck
workstations are replaced by a constant delay, but they do
not use their simplified model for cycle time distribution
prediction. Rose [15] used delay distributions to aggregate
all workstations except the bottleneck station. He concluded
that the proposed model inaccurately estimates cycle time
distributions for certain scenarios. To improve the cycle time
estimations, Rose [16] replaced the delay distributions by
a first-come-first-served (FCFS) single-server system with
inventory-dependent process times, which are determined by
running a full-detail simulation model at various utilization
levels.

Model abstraction techniques as described above require
that a detailed simulation model is available beforehand.
Development of such a detailed simulation model requires
substantial resources to develop and maintain [2].

In this paper, we also propose an aggregate model, but we
do not need to model the system in full detail first. Unlike
[13]–[16], we consider single workstations in this paper,
instead of flow lines of workstations. Our intention is that
such aggregate workstation representations can also be used
as a building block in a model of the entire factory. This paper
proposes a new single-server aggregate queueing model for
integrated processing workstations in semiconductor manufac-
turing. The lumped parameters of the model are determined
from lot arrival times and lot departure times, measured at the
workstation in operation. We refer to the average throughput
level of the workstation during the measurement period as the
“training level.” We demonstrate that the aggregate model can
accurately predict cycle time distributions of workstations in
semiconductor manufacturing, also for throughput levels other
than the training level.

The process time distributions and outage delays in the
workstation are aggregated by means of a work in process
(WIP)-dependent aggregate process time distribution. By WIP
we mean the total number of lots in the workstation including
the input buffer. We refer to the aggregate process time as
the effective process time (EPT). The EPT was introduced
by Hopp and Spearman [17], who defined the EPT as “the
process time seen by a lot at a workstation.” They calculated
the mean and the variance of the EPT from the raw process
time, and the preemptive and non-preemptive outages. They
used the mean and variance of the EPT in closed-form G/G/m

equations to predict the mean cycle time. Because data of the
various distributions may not always be available, Jacobs et al.
[18] developed an algorithm to determine the EPT distribution
parameters directly from arrivals and departures measured at
the workstation.

For semiconductor workstations, the EPT-distribution pa-
rameters are typically WIP dependent, because wafers of
multiple lots may be in process at the same time. In this paper,
we consider workstations with cascading machines, in which
the process times of multiple lots partially overlap (e.g., a
lithography workstation and workstations with cluster tools).
We do not consider workstations with batching machines.
WIP-dependency of the EPT distribution parameters can also
be caused by outage delays that may occur when the machine
is idle [19], such as preventive maintenance. The attribution

of such delays to the EPT may be utilization-dependent [19].
Therefore, Kock et al. [20] proposed a G/G/m-like aggregate
simulation model with a WIP-dependent EPT-distribution to
predict the mean cycle time. Veeger et al. [21] demonstrated
that the method of [20] is able to predict the mean cycle
time as a function of the throughput for workstations in an
operating semiconductor environment. However, the aggregate
model of [20] does not necessarily yield accurate cycle time
distribution predictions, due to the FCFS rule in the aggregate
model.

In this paper, we use a WIP-dependent EPT distribution
similar to [20], but additionally take into account the order
in which lots are processed. Each lot that arrives in the
aggregate model has a probability to overtake a number
of other lots already in the system. The number of lots
to overtake is determined by a WIP-dependent overtaking
distribution. Like the EPT distribution, the lot overtaking
distribution is determined from measured arrival and departure
events.

We demonstrate that the proposed method can quite ac-
curately predict cycle time distributions for semiconductor
workstations. We first validate the method using a simulation
test case of a workstation where we vary the number of
parallel machines, the number of integrated processes, the
dispatching rule, and the variability of the process time and
the interarrival time. In this simulation case, sufficient arrival
and departure events are available to accurately estimate the
EPT and overtaking distribution. However, in semiconductor
practice, typically a limited number of measured events is
available. In a second simulation case, motivated by a lithog-
raphy workstation, we show how accurate predictions can still
be made when a limited amount of data is available. We also
use the second case to investigate the prediction accuracy
when two different product types are produced. Finally, a
test case based on data from the Crolles2 wafer factory in
Crolles, France, demonstrates the applicability of the method
in semiconductor manufacturing practice.

The outline of this paper is as follows. The proposed
aggregate modeling method is explained in Section II. The
validation experiments are presented in Section III, and the
Crolles2 case is discussed in Section IV. Finally, we present
our conclusions in Section V.

II. Model Concept

We model a workstation as an infinitely buffered single-
server aggregate queueing model with a WIP-dependent pro-
cess time distribution and a WIP-dependent overtaking dis-
tribution. Fig. 1(a) illustrates a workstation consisting of
m parallel flow lines in which l lots can be processed simulta-
neously. Each flow line may represent an integrated processing
machine, such as a lithography track-scanner cell, which may
process wafers of up to four lots at the same time. Another
example is a cluster tool, which may typically process wafers
of up to two lots at the same time. Fig. 1(b) visualizes the
proposed aggregate model. In this section, we introduce the
aggregate model concept and explain how we determine model
parameters.



VEEGER et al.: PREDICTING CYCLE TIME DISTRIBUTIONS FOR INTEGRATED PROCESSING WORKSTATIONS 225

Fig. 1. (a) Example of a workstation. (b) Proposed aggregate model.

A. Aggregate Model

We propose the following aggregate model [Fig. 1(b)]. Note
that the structure of the aggregate model differs significantly
from the real workstation. Lots arrive in the queue of the
aggregate model according to some arrival process. Lot i is
defined as the ith arriving lot in the queue. The queue is
not a queue as in common queue-server models (such as the
G/G/1 model), but contains all lots that are currently in the
system including the lots that are supposed to be in process. So
during the process, lots stay in this queue. If the process time
has elapsed, the lot that is currently first in the queue leaves
the system. Upon arrival of a new Lot i, it is determined how
many lots already present in the queue w will be overtaken
by Lot i. The number of lots to overtake K ∈ {0, 1, ..., w} is
sampled from probability distribution FK(k; w), which defines
the probability P(K ≤ k; w) that at most k lots are overtaken.
Probability distribution FK(k; w) depends on the number of
lots w in the queue just before Lot i arrives (so not including
Lot i itself). The arriving Lot i is placed on position w − K

in the queue, where position 0 is the head of the queue. For
example, in Fig. 1(b), w = 3 upon arrival of Lot i. In this case,
there is a probability that 0, 1, 2, or 3 lots will be overtaken
(K = 0, 1, 2, or 3). If no lots are overtaken, Lot i is placed
at the end of the queue (position 3 − 0 = 3). If one lot is
overtaken, Lot i is placed after the first two lots in the queue,
and before the last lot in the queue (position 3 − 1 = 2), and
so on.

We emphasize that in the aggregate model, the server is not
a true physical server, but a timer that determines when the
next lot leaves the queue. We model the server as a timer to
allow newly arriving lots to overtake all lots in the system

Fig. 2. Lot-time diagrams of four lots processed by the aggregate model
including the EPTs sampled by the timer and the sampled number of overtaken
lots. (a) Without overtaking. (b) With overtaking.

while the timer is running. The timer starts when: 1) a lot
arrives while no lots are present in the queue or 2) a lot
departs while leaving one or more lots behind. When the timer
starts, a time period E is sampled from probability distribution
FE(t; w), which defines the probability P(E ≤ t; w) that E is
less than or equal to t. The probability distribution FE(t; w)
depends on number of lots w in the system just after the timer
start. So in case of a lot arrival (case 1), w includes the lot
that just arrived. In case of a lot departure (case 2), w does
not include the departed lot. Time period E is referred to as
an EPT. When the EPT is finished, the lot that is presently
first in the queue (position 0) leaves the system.

The input of the aggregate model consists of an EPT distri-
bution FE(t; w) per WIP-level w and an overtaking distribution
FK(k; w) per WIP-level w. We assume that all sampled EPT
realizations, and overtaking realizations are independent and
identically distributed within the same WIP-level.

B. Example

Fig. 2(a) shows four lots processed by the aggregate model
in FCFS order. The first row of Fig. 2(a) shows the arrivals ai

of each Lot i (i indicates the arrival number). The second row
depicts the numbers of overtaken lots K, which are sampled—
upon each lot arrival—from the overtaking probability dis-
tribution corresponding to number of lots in the queue w−

(depicted in between square brackets); we use w− in Fig. 2(a)
instead of w to point out that we mean here the WIP just
before the arrival of Lot i, not including Lot i. The third row
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in Fig. 2(a) depicts the EPT realizations E, which are sampled
upon each EPT start by the timer from the EPT distribution
corresponding to number of lots in the queue w+ (depicted in
between square brackets); w+ indicates the WIP just after the
event (an arrival or a departure) that triggered the EPT start.
The fourth row depicts the resulting departures di. Fig. 2(a)
shows that for each arrival the sampled number of overtaken
lots equals zero, which implies that no overtaking occurs, so
the order of arrival is equal to the order of departure.

Fig. 2(b) shows four lots with overtaking. The lot arrival
times, and the sampled EPTs are the same as in Fig. 2(a), but
the sampled values of K are different. Upon arrival of Lot 2,
K becomes 1 so Lot 2 overtakes one lot (Lot 1). Lot 3 also
overtakes one lot (Lot 1 again), and Lot 4 overtakes three lots
(Lots 1, 2, and 3). So when the timer first ends, Lot 4 is ahead
of the queue and departs. Next Lot 2 departs, then Lot 3, and
then Lot 1.

C. Calculating Model Parameters

To determine EPT distribution FE(t; w) and overtaking
distribution FK(k; w), the aggregate model is trained using
arrival and departure data measured at the workstation under
consideration. For each Lot i (which is the ith arriving lot)
departing from the workstation, departure time di is collected,
as well as the corresponding arrival time ai of the lot in
the buffer of the workstation. From the arrival and departure
data, we determine the EPT realizations, the number of lots
overtaken by each lot, as well as the corresponding WIP-levels
using the algorithm given in Appendix A. The algorithm input
consists of a lists of events; each event consists of time τ,
event type ev , and lot arrival number i. The event type can
be an arrival or a departure of a lot. The events are sorted in
increasing time order.

The EPT algorithm takes the aggregate model viewpoint.
The algorithm keeps track of the momentary WIP-level and
reconstructs the EPT realizations from the measured event list.
A new EPT is started when: 1) an arrival event occurs while the
system is empty or 2) a departure event occurs while at least
one lot remains in the system. An EPT ends when a departure
event occurs. The algorithm then calculates the duration of the
EPT by subtracting the EPT start time from the departure time
(event time τ). The EPT is written to an output file along with
the number of lots w in the system upon the EPT start of Lot
i. Upon the departure of Lot i, the algorithm also reconstructs
how many lots (k) were overtaken by the departing Lot i. A
lot has been overtaken by Lot i when it arrived earlier than Lot
i (so has a lower arrival number i), but departs later than Lot
i. Hence, the value of k is calculated by counting the number
of lots still in the system upon departure of Lot i that have a
lower arrival number lower than i. The number of overtaken
lots k and the number of lots w in the system upon arrival of
Lot i are written to an output file.

The EPT-realizations calculated by the algorithm are
grouped according to the number of lots w in the system
upon the EPT start. For implementation reasons, we define
a maximum WIP-level wmax, in which all EPT realizations
are grouped that started with w ≥ wmax lots in the system.
For each WIP-level w, we obtain a distribution, which is used

in the aggregate model for the EPT distribution FE(t; w) of the
corresponding WIP-level. For the various experiments in this
paper, we assume that the EPT distributions for each WIP level
are gamma distributed, with mean EPT te(w) and coefficient of
variation of the EPT ce(w). We choose the gamma distribution
because it fits the empirical data well in the considered cases,
and it is characterized by two parameters only, being its mean
te(w) and its coefficient of variation ce(w). It is advised to
practitioners to validate which distribution is the most suitable
for the workstation being modeled.

Overtaking realizations are also grouped, but now according
to the number of lots in the system w upon arrival. In this
case, we do not define a maximum WIP-level. For each WIP-
level, we again obtain a distribution which is used for the
overtaking distribution FK(k; w).

D. Implementation Issues

To obtain arrival and departure events for an operational
workstation, a procedure similar as described in [21] is used.
From the data storage system in the fab, typically the man-
ufacturing execution system (MES), the status history of lots
processed during some time period is obtained. Most lots that
arrive at a workstation first have to wait in a buffer, and
are subsequently processed on one of the machines in the
workstation. For these “regular” lots, we define an arrival as
the start of the waiting period, and the departure as the end
of the processing period.

However, exceptions to this common situation may occur.
One exception occurs when a lot temporarily gets the status
“on hold” while it is in the buffer; the “on hold” status means
that the lot is unavailable for processing because of a quality
problem. For such a hold lot, we define the lot arrival to occur
after the “on hold” status has finished, and the lot starts waiting
uninterruptedly for processing. As for normal lots, a departure
is defined as the time the lot departs from the workstation.
Another exception is merging of lots. Wafers arrive in different
front opening unified pods (FOUPs) but are (re)united into one
FOUP and processed together. In this case, the arrival of the
(re)united lot is defined to occur when the last set of wafers
arrives. The departure occurs when the reunited lot has finished
processing.

In semiconductor practice only a limited number of arrival
and departure events may be available. MES data may be
stored only for a couple of weeks, or structural changes to
the workstation occurred (e.g., an additional machine was
installed), which makes data of only a few weeks represen-
tative for the workstation’s behavior. As a consequence, it
is more difficult to accurately estimate the mean EPT te(w),
the coefficient of variation of the EPT ce(w), and FK(k; w).
Consequently, the cycle time predictions may deteriorate. In
particular, we observe that an accurate estimate of te for maxi-
mum WIP-level wmax is crucial. The reason is that 1/te(wmax)
determines the predicted maximum throughput of the work-
station. To arrive at an accurate te(wmax) estimate, we take
for wmax the WIP-level above which te(w) is approximately
constant. If we set wmax to this WIP-level, we obtain the largest
number of EPT realizations for wmax, while we do not discard
the WIP-dependency of te.
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Also for WIP-levels smaller than wmax we observe noise in
te(w) and ce(w) due to the small number of EPT realizations
that may have been collected for certain WIP-levels. It may
even occur that for some WIP levels, no EPT realizations are
obtained at all. To overcome this difficulty, a curve fitting
approach similar to [21] is introduced. We approximate the
measured te(w) values by t̂e(w), for which we use the following
exponential function [21]:

t̂e(w) = θ + (η − θ)e−λ(w−1) (1)

where θ represents the value of t̂e(w) at w = ∞. Variable η

represents the value of t̂e(w) at w = 1. Variable λ represents the
“decay constant” of the exponential curve. We set θ equal to
the measured te for w = wmax. Variables η and λ are estimated
using a nonlinear least-squares fitting procedure, in which the
te(w) estimates are weighted according to

√
n(w), with n(w)

the number of EPT realizations obtained for WIP level w.
Similarly, we approximate ce(w) by ĉe(w) for which we also

use exponential function (1). For the overtaking probabilities,
we do not introduce a curve fit, but use the measured over-
taking probabilities directly in the aggregate model. For WIP
levels lower than the lowest WIP level for which we obtained
overtaking probabilities, we assume that no overtaking occurs.
For higher WIP levels, we use the same overtaking probabil-
ities as measured for the highest WIP level.

In principle, curve fitting is also desirable to represent
the overtaking probabilities. In [22], discrete distributions are
fitted for which the stochastic variable has values in the range
[0, 1, . . . ,∞]. However, in our case a sampled K value is
always less than or equal to a finite value (w). For this
particular type of distribution, very few results on distribution
fitting procedures are available.

III. Validation

Two simulation test cases are presented to validate the
proposed method. The first case is used to investigate the
accuracy of the method in predicting cycle time distributions
for various workstation configurations. In this case, it is
assumed that sufficient measured arrivals and departures
are available to accurately estimate the aggregate model
parameters. The second case is used to investigate the
predictions for a workstation representing a lithography
workstation that produces two different product types, and
for which a limited amount of measured arrival and departure
events is available. The two simulation cases, and the
aggregate model used in this section are implemented as a
discrete-event simulation model in the language χ [23].

A. Case I

1) Description: Case I is depicted in Fig. 1(a). The
workstation consists of m identical parallel machines. Each
machine consists of l sequential integrated processes so may
be viewed as a cascading machine. Each integrated process has
a gamma-distributed process time with mean t0 and coefficient
of variation c0. Lots arrive at the infinite buffer preceding the
workstation; the interarrival times are independent and follow

Fig. 3. Mean EPT te and CV ce as a function of WIP level w for case I for
different values of m, and constant l = 1, c0 = ca = 1.0, and d = FCFS.

a gamma distribution with mean ta and coefficient of variation
ca. The order in which lots in the buffer are processed is
defined by dispatching rule d. If more than one machine is
available for processing, the lot is sent to the machine of which
the first process has the longest idle time (fairness).

We experiment with different values of m, l, c0, and ca.
For the dispatching rule d, we consider FCFS, non-preemptive
last-come-first-served (LCFS), and priority (Pr) dispatching.
For FCFS and LCFS dispatching, we assume that all lots
have the same mean process time t0 = 1.0, and coefficient
of variation of the process time c0 in the various processes.
For Pr dispatching, we use two lot classes. Class A requires
t0 = 1.0, whereas class B requires t0 = 2.0. Coefficient of
variability c0 is again the same for all lots. Class A has non-
preemptive priority over class B.

2) Estimating Model Parameters: To estimate the WIP-
dependent EPT distribution FE(t; w) and overtaking distribu-
tion FK(k; w) for a workstation configuration, we obtained
arrivals and departures of 106 lots at a throughput ratio δ/δmax

of 0.8, with δ = 1/ta the throughput of the workstation and
δmax the maximum obtainable throughput of the workstation.

The algorithm in Appendix A is used to calculate EPT
realizations, which are grouped according to WIP-levels, as
explained in Section II-C. Recall that the EPT distribution for
each WIP-level is represented by a gamma distribution with
mean te and coefficient of variation ce. Distribution parameters
te and ce are obtained directly from the measured data. Also
recall that maximum WIP-level wmax groups all EPTs that
started with WIP-level w ≥ wmax. In this simulation case, we
use an automated procedure to determine wmax; we choose
wmax as high as possible, under the condition that the half-
width of the 95% confidence interval of te,wmax is less than 1%
of the sample mean.

The algorithm in Appendix A also yields overtaking re-
alizations k, which are grouped according to WIP-levels as
well. For each WIP-level, we use the empirical overtaking
distribution directly in the aggregate model so we do not use
a distribution fit here (see Section II-D).

To illustrate the proposed method, we now present the mea-
sured EPT-distribution parameters and the measured overtak-
ing probabilities for a selection of workstation configurations.
Fig. 3 shows mean EPT te (left-hand side) and coefficient of
variation of the EPT ce (right-hand side) as a function of the
WIP w for m = 2, 4, and 6, with l = 1, c0 = ca = 1.0,
and d = FCFS. Mean EPT te decreases for increasing w,
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Fig. 4. Case I: cumulative probability for a newly arrived lot to overtake K lots already in the system for various WIP-levels w and for different dispatching
rules, with m = l = 1, and c0 = ca = 1.0.

Fig. 5. Case I: cumulative probability for a newly arrived lot to overtake K lots already in the system for various WIP-levels w and for different values of
arrival coefficient of variability c0, with m = 6, l = 1, ca = 1.0, and d = FCFS.

until w ≈ m. For w > 1 the mean EPT may be interpreted
as the mean interdeparture time of lots at the workstation.
For increasing w, more parallel machines are processing, up
to the maximum number of machines m. Hence, the mean
interdeparture time decreases up to w = m.

Coefficient of variation ce increases until w ≈ m, where
ce reaches the value 1.0 corresponding to an exponential
interdeparture time. Intuitively, the standard deviation of the
EPT σe is expected to decrease. The behavior of ce, however,
is less obvious, since it depends on both te and σe. Apparently,
in this particular case, ce increases because te decreases faster
than σe, but we also observed that in other examples ce may
even exhibit non-monotonous behavior.

Next, we show that the overtaking distribution FK(k; w)
depends on the dispatching rule. Fig. 4 shows the cumulative
overtaking probabilities P(K ≤ k; w) as a function of k for
several values of WIP-level w. We consider FCFS, LCFS, and
Pr dispatching with m = l = 1, and c0 = ca = 1.0. For m = 1,
overtaking only occurs due to the dispatching rule and not
due to parallel processing. In the FCFS case (the left-hand
plot) P(K ≤ k; w) = 1 for all values of k and w, so lots do not
overtake. In the (non-preemptive) LCFS case (the middle plot),
P(K ≤ k; w) jumps from 0 to 1 for k = w−1, so each arriving
lot overtakes all lots in the system, except the one in process.
For Pr dispatching (the right-hand plot), the probability to
overtake no lots is 0.5 for w > 1, because 50% of the arriving

lots is of type B (with long process times), which do not
overtake. The type A lots may overtake one or more type B
lots in the buffer, with a maximum of the total amount of
lots in the system, minus the lot in process. Therefore, the
cumulative probability reaches 1.0 for k = w − 1.

Fig. 5 shows that the overtaking probabilities depend on c0.
In Fig. 5 we consider c0 = {0.5, 1.0, 1.5}, with m = 6, l = 1,
ca = 1.0, and d = FCFS. For this configuration, overtaking
only takes place due to parallel processing. Hence, in all three
plots of Fig. 5 the maximum number of lots that can be
overtaken is 5. For c0 = 1.0 (the middle plot), there is an equal
probability to overtake K = 0, ..., min(w, 5) lots already in
the system due to the exponential process times, which makes
the cumulative probability to increase linearly. For c0 = 0.5
(the left-hand plot), the slope of the cumulative overtaking
probability curve decreases for increasing k, indicating that
the overtaking probability decreases for increasing k. This is
because the process time variability is low compared to the
case in which c0 = 1.0, so less overtaking occurs. For c0 = 1.5
(the right-hand plot), the slope of the curves increases for
increasing k, because the servers have a relatively high process
time variability, so more overtaking occurs.

3) Cycle Time Predictions: The detailed simulation model
of the considered workstation is used to measure the “real”
cycle time distribution for various workstation configurations
for throughput ratios δ/δmax ranging from 0.3 to 0.95. For each
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Fig. 6. Cycle time distribution of the workstation (the solid curves), and predicted by the aggregate model (the dashed curves) for c0 = {0.5, 1.0, 1.5}, with
m = 5, d = FCFS, l = 3, and ca = 1.0. The black curves consider c0 = 0.5, the dark grey curves consider c0 = 1.0, and the light grey curves represent c0 = 1.5.

throughput ratio, 30 simulation replications of 105 processed
lots are performed. For each replication run, the first 2 · 104

lots are discarded to account for the start-up phenomenon.
For each considered workstation configuration, we use the

aggregate model depicted in Fig. 1(b) to predict cycle time
distributions. The aggregate model is trained at δ/δmax = 0.8
using 106 arrivals and departures measured at the detailed
workstation model. We predict the cycle time distribution
for the same throughput levels for which we calculated the
real cycle time distribution, using again 30 replications, a
simulation length of 105 lots, and a start-up period of 2 · 104

lots. For the arrival process in the aggregate model we use a
gamma distribution with mean ta depending on the considered
throughput level. For the coefficient of variation ca we choose
the same value as in the workstation. In the aggregate model
we use gamma EPT distributions for each WIP level, of
which the shape and scale parameters are determined from
the measured te and ce values for the corresponding WIP
levels w. For the overtaking distributions in the aggregate
model, we directly use the empirical overtaking distribution.
We measure the empirical overtaking distribution for WIP-
levels up to a certain value. For higher WIP-levels, we assume
in the aggregate model that the overtaking probabilities are the
same as for the highest measured WIP-level.

First, we investigate the influence of the process time
variability (c0) on the prediction accuracy of the cycle time
distribution by the aggregate model. The results are depicted
in Fig. 6 and Table I. Fig. 6 depicts cycle time distributions of
the workstation (the solid curves), and cycle time distributions
predicted by the aggregate model (the dashed curves) for work-
station configurations with c0 = {0.5, 1.0, 1.5}, with m = 5,
l = 3, d = FCFS, and ca = 1.0. We do not show the confidence
intervals on the cycle time distributions because they are very
small. From left to right the figure shows distributions for
throughput ratios of 0.6, 0.8, and 0.9, respectively. Recall that
δ/δmax = 0.8 is the training level. The different curves in the
plots correspond to different values of c0: the top solid and
dashed black curves in each plot correspond to c0 = 0.5, the
middle dark grey curves correspond to c0 = 1.0, and the bottom
light grey curves correspond to c0 = 1.5. The x-axis denotes
the cycle time ϕ, whereas the y-axis denotes the probability
P(ϕ − ε < X < ϕ), where ε denotes the size of an interval,
for which we choose 0.25.

TABLE I

Mean and 95% Quantile of the Cycle Time Distribution

Measured at the Considered Workstation, and Predicted by

the Proposed Aggregate Model for c0 = {0.5, 1.0, 1.5}, with m = 5,

d = FCFS, l = 3, and ca = 1.0

Mean
c0 = 0.5 c0 = 1.0 c0 = 1.5

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.
0.3 3.02 2.92 3.08 2.82 3.18 2.61
0.6 3.21 3.25 3.48 3.51 3.80 3.77
0.7 3.37 3.41 3.74 3.79 4.18 4.23
0.8 3.66 3.65 4.21 4.21 4.90 4.95

0.85 3.93 3.84 4.65 4.54 5.59 5.54
0.9 4.47 4.08 5.50 5.02 7.02 6.51

0.95 6.08 4.47 7.90 5.81 11.48 8.52
95% Quantile

c0 = 0.5 c0 = 1.0 c0 = 1.5
δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.

0.3 4.57 5.68 6.40 6.63 8.48 7.18
0.6 4.84 5.67 6.98 7.45 9.51 9.41
0.7 5.10 5.81 7.41 7.79 10.17 10.17
0.8 5.69 6.12 8.29 8.45 11.54 11.44
0.85 6.33 6.44 9.21 9.04 13.06 12.62
0.9 7.76 6.92 11.26 9.97 16.60 14.73
0.95 12.47 7.80 17.71 11.71 29.44 19.67

Table I presents the mean and the 95% quantile of the cycle
time distribution of the workstation, and the mean and quantile
predicted by the aggregate model for varying process time
variability (c0). Results are given for throughput ratios δ/δmax

from 0.3 to 0.95. The half-width of the confidence interval of
the values in the table depends on the throughput ratio; for
δ/δmax ≤ 0.90 the half-widths of the confidence intervals are
smaller than 2.5% of the sample mean for all experiments. For
δ/δmax = 0.95, the confidence intervals are smaller than 6.5%.

Fig. 6 shows that for c0 = 1.0 and c0 = 1.5, the predicted
cycle time distributions are close to the cycle time distributions
measured at the workstation being modeled, for all considered
throughput levels. For c0 = 0.5, the accuracy of the predicted
cycle time distribution deteriorates for decreasing throughput
ratio, in particular for relatively short cycle times. The mea-
sured cycle time distribution shows less variability than the
predicted cycle time distribution. The reason may be that the
EPT and the number of overtaken lots in the aggregate model
are sampled independently for successive lots, which possibly
creates more variability than occurs in reality.
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TABLE II

Mean and 95% Quantile of the Cycle Time Distribution

Measured at the Considered Workstation, and Predicted by

the Proposed Aggregate Model for m = {1, 3, 5}, With d = FCFS,

l = 3, d = FCFS, and ca = 1.0

Mean
m = 1 m = 3 m = 5

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.
0.3 3.66 3.45 3.14 2.81 3.08 2.82
0.6 5.12 5.26 3.69 3.76 3.48 3.51
0.7 6.19 6.38 4.07 4.19 3.74 3.79
0.8 8.28 8.30 4.81 4.84 4.21 4.21
0.85 10.36 9.86 5.51 5.38 4.65 4.54
0.9 14.47 12.35 6.87 6.26 5.50 5.02
0.95 26.33 16.61 10.83 7.91 7.90 5.81

95% Quantile
m = 1 m = 3 m = 5

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.
0.3 7.77 8.30 6.52 6.74 6.40 6.63
0.6 11.50 12.56 7.44 8.11 6.98 7.45
0.7 14.53 15.47 8.19 8.83 7.41 7.79
0.8 20.64 20.75 9.90 10.08 8.29 8.45
0.85 26.72 25.14 11.65 11.36 9.21 9.04
0.9 38.95 32.10 15.48 13.67 11.26 9.97
0.95 74.44 43.50 26.94 18.61 17.71 11.71

Table I confirms the observations obtained from Fig. 6:
for c0 = 1.0 and c0 = 1.5 the mean and 95% quantile are
predicted with reasonable accuracy for throughput ratios from
0.6 to 0.9. For c0 = 0.5, the prediction accuracy of the 95%
quantile deteriorates. Note, however, that this dependency of
the prediction accuracy on c0 seems not to be present for
the mean cycle time. Furthermore, Table I indicates that the
predictions of the mean and 95% quantile become inaccurate
for δ/δmax = 0.95. For this throughput ratio, the prediction is
very sensitive to the measured EPT and overtaking distribu-
tion. There is clearly a range of throughput levels around the
training point where accurate predictions are obtained; further
away from the training point, the accuracy deteriorates.

Next, we investigate the influence of the number of par-
allel machines in the workstation on the prediction accuracy.
Table II presents the means and 95% quantiles of the cycle
time distribution of the workstation, and the means and 95%
quantiles predicted by the aggregate model. The half-widths of
the confidence intervals of the values in the table are similar to
the those of the values in Table I. We consider m = {1, 3, 5},
with l = 3, d = FCFS, and c0 = ca = 1.0. Table II shows that
for throughput ratios δ/δmax > 0.8, the prediction errors of the
mean and 95% quantile in case m > 1 are less than in case
m = 1. So for this type of workstation, the throughput range for
which accurate predictions can be made is larger for a multi-
machine workstation than for a single machine workstation.

Table III visualizes the effect of various dispatching rules
on the prediction accuracy of the mean and 95% quantile.
We experimented with d = {FCFS, LCFS, Pr}, with constant
m = 3, l = 3, and c0 = ca = 1.0. Again, the half-widths of the
confidence intervals of the values in the table are similar to
those of the values in Table I. The table shows that the pre-
diction errors of the mean are similar for all three dispatching
rules. However, for δ/δmax ≥ 0.85, the prediction accuracy of
the 95% quantile is less accurate for the Pr dispatching rule

TABLE III

Mean and 95% Quantile of the Cycle Time Distribution

Measured at the Considered Workstation, and Predicted by

the Proposed Aggregate Model for d = {FCFS, LCFS, Pr}, with

m = 3, l = 3, c0 = 1.0, and ca = 1.0

Mean
d = FCFS d = LCFS d = Pr

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.
0.3 3.15 2.81 3.15 2.82 4.77 4.19
0.6 3.70 3.77 3.70 3.78 5.69 5.82
0.7 4.09 4.21 4.09 4.21 6.29 6.51
0.8 4.85 4.88 4.85 4.89 7.40 7.43

0.85 5.58 5.42 5.58 5.42 8.39 8.04
0.9 7.05 6.28 7.04 6.24 10.34 8.82
0.95 11.52 7.84 11.47 7.65 15.95 9.97

95% Quantile
d = FCFS d = LCFS d = Pr

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred.
0.3 6.52 6.74 6.52 6.75 11.13 10.56
0.6 7.45 8.13 7.50 8.26 12.75 13.37
0.7 8.25 8.86 8.29 9.13 14.15 14.72
0.8 9.99 10.20 9.90 10.89 17.48 16.93
0.85 11.87 11.40 11.68 12.56 21.06 18.60
0.9 15.96 13.65 15.68 15.32 29.38 21.01
0.95 28.77 17.97 25.84 19.92 54.61 25.13

Fig. 7. Case II representing a lithography workstation.

than for the FCFS and LCFS dispatching rules. The reason is
that for the workstation with Pr dispatching, the number of lots
overtaken by an arriving lot depends on its class, and on the
classes of the lots that are already present in the workstation.
These dependencies are not taken into account in the aggregate
model.

We have also experimented with different numbers of in-
tegrated processes l, being l = 2, and l = 4, and different
values of the coefficient of variability of the interarrival times
ca, being 0.5 and 1.5. We observe that l and c0 have little
influence on the accuracy of the cycle time predictions. The
value of ca has little influence, because we also use ca for the
arrival process in the aggregate model.

B. Case II

1) Description: Case II is depicted in Fig. 7. The setup of
Case II may be viewed as a group of track-scanner lithography
tools. Lots arrive at the infinite buffer according to a Poisson
process: 50% of the arriving lots is of type A, whereas the
other 50% is of type B. Lots are processed in FCFS order
taking into account machine recipe qualification. The first
machine is qualified only for recipe A, the second and third
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Fig. 8. Measured and fitted mean EPT te (left), coefficient of variability ce (middle), and cumulative overtaking probabilities (right) for case II using 104

arrivals and departures.

Fig. 9. Measured and fitted mean EPT te for case II using 102, 103, and 104 arrivals and departures.

machine are qualified for recipe A and B, and the fourth
machine is qualified only for recipe B. If more than one
qualified machine is available for processing, the lot is sent to
the machine of which the first process has been idle longest
(fairness). Each machine consists of three sequential process
steps, with a one-place buffer between the first and second
process. The first and third process step of each machine can
be viewed as the track and are assumed to have a constant
process time of 1.0. The second process step may be viewed
as the scanner and is assumed to have an exponential process
time distribution with mean 2.0.

Unlike case I, we now measure arrivals and departures of
far less than 106 lots, because this amount of lots is typi-
cally not available in semiconductor manufacturing practice.
We denote the number of measured arrival and departure
events by n; we experiment with different values of n, being
n = {102, 103, 104, 105}, respectively.

2) Calculating Model Parameters: For each value of n,
arrival and departure events were obtained at a throughput ratio
of δ/δmax = 0.8. We again use the algorithm given in Appendix
A to calculate EPT realizations and overtaking realizations K,
which were grouped according to WIP-levels, as explained in
Section II-B. We also use gamma distributions to represent the
EPT distributions for each WIP-level.

Fig. 8 shows the estimated model parameters using n = 104

measured arrivals and departures. The left plot in Fig. 8 shows
te(w) (the black curve). The middle plot of Fig. 8 shows ce(w)
(the black curve). We choose wmax = 15, because for w > 15,
te(w) is approximately constant. The dashed grey curves in

the left and middle plots represent the fitted curves t̂e(w) and
ĉe(w), respectively, which are calculated using the curve fitting
procedure explained in Section II. For t̂e(w), the values of
curve fit parameters θ, η, and λ become 2.224, 0.548, and
0.4716, respectively. For ĉe(w), θ, η, and λ become 2.224,
0.548, and 0.4716, respectively.

The right plot of Fig. 8 shows the cumulative overtaking
probabilities P(K ≤ k; w) as a function of k for several values
of w, using n = 104. We do not introduce a curve fit; we use
the measured overtaking distribution directly in the aggregate
model. For WIP levels lower than the WIP levels for which
we measured the overtaking probabilities, we again assume
that no overtaking occurs; for higher WIP levels we assume
that the overtaking probabilities are the same as for the highest
measured WIP-level.

Fig. 9 depicts te(w) and t̂e(w) estimated using, from left to
right, n = 102, n = 103, and n = 104. The figure shows that
for a decreasing amount of measured events, the noise in the
values of te(w) increases. Also, for the lowest n = 102 no EPT
estimates were obtained at low WIP levels. The fitted curve
smooths the noise and provides estimates for the mean EPT
at the low WIP levels at n = 102 for which no te(w) estimates
were measured (by means of extrapolation). The figure shows
that for n = 102, the mean EPT estimated by the fitted curve
at wmax = 15, t̂e(15), is considerably lower than t̂e(15) for
n = 103 and n = 104. The cause is that for decreasing n,
it becomes increasingly difficult to accurately estimate the
mean EPT at wmax = 15, because few EPT realizations are
obtained for wmax.
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For ce(w) and ĉe(w), the amount of noise increases for
decreasing n as well, and ce(w) are also missing for low WIP
levels in case n = 102.

3) Cycle Time Predictions: The detailed simulation model
of the case II workstation is used to calculate the workstation’s
cycle time distribution for throughput ratios δ/δmax ranging
from 0.3 to 0.95. Recall that the training level is δ/δmax = 0.8.
We use the same number of replications, simulation length,
and start-up period as in case I.

The aggregate model depicted in Fig. 1(b) is used to predict
cycle time distributions, using n = 102, n = 103, n = 104, and
n = 105 measured arrival and departure events, respectively,
to estimate the aggregate model parameters. We again use the
same number of replications, simulation length, and start-up
period as in case I. In the aggregate model, we use Poisson
arrivals as we did in the detailed simulation model, but assume
all lots are the same (no recipes are used). We use gamma EPT
distributions in the aggregate model for each WIP level w, with
the fitted mean t̂e(w) and coefficient of variability ĉe(w). For
the overtaking distributions in the aggregate model, we use the
empirical overtaking distributions (as we did in case I).

Table IV presents the mean and 95% quantile of the
workstation, and the mean and 95% quantile predicted by the
aggregate model for n = {102, 103, 104, 105} for throughput
ratios ranging between 0.3 and 0.95. For δ/δmax ≤ 0.90
the half-widths of the confidence intervals are typically
smaller than 2.5% of the sample mean for all experiments.
For δ/δmax = 0.95, the confidence intervals are smaller than
5.5%. The horizontal bars for δ/δmax = 0.95 and n = 103

indicate that the aggregate model simulation was instable
(the arrival rate is higher than the maximum processing
rate). The reason is that when relatively few EPT realizations
are obtained, the curve fit may overestimate the maximum
capacity of the system. The table shows that at the training
level (δ/δmax = 0.80), the prediction accuracy of the mean and
95% quantile seems to be independent of n. Even if n is only
102, the mean and 95% quantile can still be predicted within
10% accuracy at the training level. However, for n = 102, the
throughput range for which the mean and 95% quantile are
predicted accurately is very small. In particular, the accuracy
of predictions higher than the training level benefits from
increasing n. The fact that the workstation processes two
different product types does not seem to influence the results.

In the various experiments performed in this section, we ob-
served that the calculation time required to evaluate the aggre-
gate simulation model is about 20 times shorter than the calcu-
lation time required to evaluate the detailed simulation model.

IV. Crolles2 Case

We finally apply the proposed method to an operational
workstation at the Crolles2 wafer fab. Crolles2 is a multi-
product 300 mm fab in which both high volume products
and small series and prototype products are produced. The
production lots are called FOUPs and can contain up to 25
wafers. In the data collection period, approximately 80% of
the FOUPs contained the maximum of 25 wafers; the other
20% of the FOUPs contained less than 25 wafers. In this
section, we first describe the considered Crolles2 workstation,

TABLE IV

Mean and 95% Quantile of the Cycle Time Distribution of the

case II Workstation, and Predicted by the Proposed Aggregate

Model for n = {102, 103, 104, 105}

Mean
n = 102 n = 103 n = 104 n = 105

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred.
0.3 4.26 6.43 4.26 4.46 4.26 3.90 4.26 3.80
0.6 5.13 6.60 5.13 5.33 5.13 5.04 5.13 5.01
0.7 5.67 6.43 5.67 5.86 5.67 5.48 5.67 5.48
0.8 6.60 6.28 6.60 7.13 6.60 6.27 6.60 6.35

0.85 7.48 6.22 7.48 8.80 7.48 7.02 7.48 7.25
0.9 9.15 6.16 9.15 14.25 9.15 8.35 9.15 8.99

0.95 14.00 6.12 14.00 – 14.00 12.31 14.00 14.56
95% Quantile

n = 102 n = 103 n = 104 n = 105

δ/δmax Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred.
0.3 8.72 15.36 8.72 9.50 8.72 8.68 8.72 8.59
0.6 10.80 13.89 10.80 10.76 10.80 10.32 10.80 10.32
0.7 11.91 13.14 11.91 11.92 11.91 11.14 11.91 11.22
0.8 13.88 12.63 13.88 14.95 13.88 12.85 13.88 13.08
0.85 15.89 12.41 15.89 19.41 15.89 14.64 15.89 15.28
0.9 20.04 12.18 20.04 35.14 20.04 17.88 20.04 19.88
0.95 33.35 11.95 33.35 – 33.35 29.71 33.35 35.94

which is the lithography workstation. Subsequently, we
explain how arrival and departure data was obtained and
filtered. Next, from the arrival and departure data we calculate
the EPT distributions and overtaking probability distributions.
Finally, cycle time distributions are predicted using the
aggregate model, which is implemented as a discrete-event
simulation model in the language χ [23].

A. Crolles2 Lithography Workstation

The lithography workstation consists of 14 track-scanner
machines of different types, with different recipe qualifica-
tions. Lots are loaded onto one of the load ports of a machine,
whereupon wafers are sequentially loaded into the machine.
First, wafers are cleaned, coated, and baked in the track. Then,
the wafers are exposed in the scanner. Finally, the exposed
wafers return to the track where they are developed and hard-
baked. After all wafers of a lot have been loaded, the track
starts loading the wafers of the next lot (if available on a load
port). A track-scanner has four load ports; thus wafers of at
most four lots can be in process at the same time, depending
on the number of wafers per lot.

B. Calculating Model Parameters

At the Crolles2 site, arrivals and departures of 42 141 lots
processed at the litho workstation were obtained from the
MES. The MES data is filtered as described in Section II.
After this filtering, the EPT algorithm in Appendix A is used
to calculate EPT realizations and lot overtaking realizations.
We choose wmax = 100, because for w > 100, te(w) does not
decrease further. Similar to Section III, we use the gamma dis-
tribution to represent the EPT distributions for each WIP-level.

The left plot of Fig. 10 shows the measured te values as a
function of the number of lots w in the system upon the EPT
start (the solid line). The middle plot depicts the measured ce

as a function of w. For reasons of confidentiality, no values
on the y-axes are given. The dashed grey lines in the left and
middle plot represents fitted curves, which we fit using the
procedure described in Section II using exponential function
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Fig. 10. Measured and fitted mean EPT te (left), coefficient of variability ce (middle), and cumulative overtaking probabilities (right) of the Crolles2
lithography workstation.

Fig. 11. Measured and predicted cycle time distribution of the litho workstation, for relative throughput levels of 0.8, 0.9, and 1.0.

(1). Note that we do not have EPT realizations for w < 18;
the te and ce estimates for these WIP levels are estimated by
the fitted curve by extrapolation.

The left plot of Fig. 10 clearly illustrates that the mean
interdeparture time decreases as w increases: the workstation
becomes more productive for increasing w (more lots are
in process), and approaches a minimum value for which the
system works at its full throughput.

The right plot of Fig. 10 shows the measured cumulative
overtaking probabilities P(K ≤ k; w). Note that for w ≥ 50
considerable overtaking occurs. We have not measured over-
taking realizations for WIP-levels either lower than 18 or
higher than 256. We assume that no overtaking takes place for
WIP-levels lower than 18. For WIP levels higher than 256, we
use the same overtaking probabilities as measured for a WIP-
level of 256.

C. Cycle Time Predictions

We use the aggregate model depicted in Fig. 1(b) to estimate
cycle time distributions of the lithography workstation, using
gamma-distributed EPT distributions based on fitted values
t̂e(w) and ĉe(w), and the empirical overtaking distribution as
model parameters. We again perform 30 simulation replica-
tions, a simulation run length of 105 lots, a start-up period of
2 · 104 lots, and the same arrival process as measured at the
lithography workstation.

Fig. 11 depicts cycle time distributions for the lithography
workstation at relative throughput levels 0.8, 0.9, and 1.0.

The relative throughput is defined here as the throughput δ

divided by the throughput at the training point δ∗. We use
the relative throughput instead of throughput ratio δ/δmax for
confidentiality reasons. We do not consider relative throughput
levels higher than 1.0, because δ∗ is already very high.

The rightmost plot represents the cycle time distribution at
the training point of the workstation (δ/δ∗ = 1). The x-axis
denotes cycle time ϕ, the y-axis probability P(ϕ−ε < X < ϕ)
(for some small ε > 0). The solid line in the rightmost
plot represents the measured cycle time distribution of the
workstation at the training point. The dashed lines represent
the cycle time distributions estimated by the proposed method.

Fig. 11 shows that in particular the tail of the cycle time
distribution is accurately estimated at the training point (the
rightmost plot). For a decreasing relative throughput level,
the accuracy of the predicted cycle times decreases. We can
only verify the cycle time distribution at the training point.
The simulation test cases described in Section III indicate
that accurate predictions can be made for throughput levels
other than the training point, in particular, for the tails of the
distributions. Therefore, we expect that accurate cycle time
distributions can be obtained for throughput levels in a range
around the training level.

D. Re-Estimation of Model Parameters

To effectively implement the EPT-based aggregate modeling
method in practice, the EPT and overtaking distribution need
to be occasionally re-estimated to account for the changing
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conditions in the workstation. In case the throughput of the
workstation changes, the EPT and overtaking distributions do
not have to be re-estimated. Throughput fluctuations actually
improve the aggregate model parameter estimates, because
EPT and overtaking realizations can be obtained for a larger
WIP range. In case conditions temporarily change (i.e., during
a period much shorter than the data collection period), such
as a machine that is down or in maintenance, the EPT and
overtaking distribution do not have to be re-estimated either.
These changes may be viewed as “stochastic” behavior of the
workstation. However, for long-term, or permanent changes,
such as an additional machine or a considerable change of the
product mix, the EPT and overtaking distribution have to be
re-estimated to characterize the new workstation behavior. The
throughput range in which accurate predictions are made will
then gradually increase over time.

V. Conclusion

The proposed aggregate modeling method provides a simple
and practical way to predict cycle time distributions for semi-
conductor workstations by means of simulation. The aggregate
model is a single-server representation of the workstation
that requires little development time and computational effort
compared to a full-detail simulation model. The process time
in the aggregate model, referred to as the EPT, is sampled
from an EPT distribution that depends on the momentary WIP.
The WIP-dependent EPT distribution includes semiconductor
behavior such as integrated processing, and outage delays.
The order in which lots are processed is modeled by means
of a WIP-dependent overtaking distribution; lots entering the
queue have a probability of overtaking other lots. Key to
our approach is that the WIP-dependent EPT distribution
and overtaking distribution are determined from arrival and
departure events, measured at the operational workstation.

We have first validated the method using a simulation case
of a workstation in which we vary the number of parallel
machines, the number of integrated processes, the dispatching
rule, and the variability of the process time and the interarrival
time. We concluded that the mean and 95% quantile of
the cycle time distribution can be accurately predicted (i.e.,
prediction errors are typically less than 10%) in a throughput
region around the training level. For throughput levels higher
than the training level, the predictions of the mean and
95% quantile of the cycle time are more accurate for multi-
machine workstations than for a single machine workstation.
For throughput levels lower than the training level, the 95%
quantile prediction improves if the process time variability
increases. Furthermore, we observed that for the priority
dispatching rule, the throughput range for which accurate 95%
quantile predictions were obtained is smaller than for FCFS
and LCFS dispatching rules.

In a second experiment, we have investigated the effect of
limiting the size of data set using a simulation model that may
be viewed as a lithography workstation. In this experiment,
we predicted the cycle time distribution using 102, 103, 104,
and 105 measured arrivals and departures, respectively, to
estimate the EPT distribution and overtaking distribution. We

have introduced a curve fitting approach to overcome the
difficulties with noise that arise because of the limited amount
of data. We concluded that the mean and 95% quantile of the
cycle time can be accurately predicted at the training level,
independent of the number of measured arrival and departure
events. The range of throughput ratios around the training
level for which accurate predictions can be obtained increases
for an increasing number of measured events. Additionally,
the second experiment shows that the proposed method can
accurately predict the cycle time when multiple product types
are processed by the workstation.

For all simulation experiments, we have observed that the
calculation time required to evaluate the aggregate simulation
model is about 20 times shorter than the calculation time
required to evaluate the detailed simulation model.

We have demonstrated the applicability of the proposed
method in semiconductor practice by applying the method
to a Crolles2 lithography workstation. The results show that
the tail of the cycle time distribution is accurately predicted
at the actual throughput level of operation. The results of
the simulation test case suggest that accurate predictions can
also be made for throughput levels other than the operational
throughput.

The aggregate modeling method can be used for planning
purposes to make a tradeoff between the throughput and the
cycle time distribution of the workstation. Lithography is usu-
ally the main contributor to the cycle time of lots. We expect
that the method can also be used for other semiconductor
workstations, such as the metal or implant workstations. These
workstations also have wafers of multiple lots in process at the
same time.

The proposed aggregate model may be also be helpful in
areas other than production planning. In their survey, Taylor
and Robinson [24] stated that there is a need for higher
level modeling techniques that abstract away from low-level
model detail to justify the development of a detailed model.
The aggregate model presented in this paper may be helpful
in this respect. Furthermore, Fowler and Rose [25] stated
that reducing problem solving cycles is a grand challenge in
modeling and simulation of complex manufacturing systems.
The aggregate model proposed in this paper can be developed
much faster than a detailed simulation model.

In future research, we will show how the aggregate mod-
eling concept can be used to build a model of an entire
manufacturing network. The factory can be modeled as a
network of aggregate servers of the type presented in this
paper, where each aggregate server represents a workstation.
Such a model could be used to predict the on-time delivery
performance of the factory. In case the cycle time of each
individual lot is important (which is referred to as pegging),
the cycle times of lots processed in the aggregate model
could be directly coupled to the due dates of these lots. In
case customers are served in FCFS order, not caring which
particular lot they receive (netting), the aggregate model could
be used assuming FCFS, because the order in which lots are
processed is not relevant. No overtaking is required in the
model then; the model becomes the same as the single-server
aggregate model presented in [20].
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The EPT based aggregate model developed in this paper
could be extended to distinguish between multiple product
types; in the present model, all product types are aggregated
into a single product type (see case II in Section III). To
incorporate multiple product types in the aggregate model, the
measured EPT and overtaking realizations could be assigned
to product types, in addition to the assignment to WIP levels.
This poses additional challenges for the data collection, be-
cause the measured EPT and overtaking realizations have to
be spread over more groups.

In this paper, we focused on the prediction of the cycle time
distribution. Another relevant research topic is to investigate
how well the aggregate model captures correlations between
consecutive cycle times.

Appendix

The algorithm used to calculate EPT-realizations and over-
taking realizations is depicted in Fig. 12. The following
variables are used: variable τ denotes the event time, variable
ev the event type (either an arrival a or a departure d), and i the
lot arrival number (so Lot i is the ith arriving lot). Furthermore,
variable xs is a list that stores for each lot in the system its
arrival number, i, and the number of lots in the system just
before its arrival aw . Variable s is used to store the EPT start
time. Variable sw stores the number of lots in the system just
after the EPT start. Variable k denotes the number of lots
that a lot has overtaken. Function detOvert uses the following
additional variables: ys is a list that stores part of list xs .
Variable j stores a lot arrival number.

The EPT algorithm takes the aggregate model viewpoint.
Upon an arrival event, a new EPT is started if the lot arrives
in an empty system (len(xs) = 0). The start time s becomes τ

and the corresponding WIP-level is stored in variable sw . For
every arriving lot, the lot arrival number i and the number of
lots in the system just before arrival (len(xs)) are added to the
end of list xs (indicated by ++). When a departure event occurs,
an EPT ends, the EPT being current time τ minus EPT start
time s. The EPT is written to output along with number of lots
in the system just after the EPT start sw . Next, the algorithm
reconstructs how many lots k were overtaken by the departing
lot using function detOvert, and furthermore returns number
of lots aw in the system just before arrival of Lot i and list
xs with the information of Lot i removed. The number of
overtaken lots (k) and the number of lots in the system just
before the arrival of Lot i (aw ) are written. If there are still
lots in the system after the departure (len(xs) > 0), a new EPT
start time is stored in s, as well as the corresponding number
of lots currently in the system (len(xs)).

The input of function detOvert consists of list xs and the
arrival number i of the departing lot. The function iteratively
removes each lot from xs and assigns its arrival number and
the number of lots just before its arrival to variables j and aw
respectively. If the arrival number of the observed lot is lower
than the arrival number i of the departed lot, then (j, aw ) is
concatenated to ys . If the arrival number j of the observed
lot is equal to i, the function returns list ys ++ xs , which does
not include Lot i. Furthermore, the length of ys , and aw are
returned. Note that the length of ys is equal to the number

loop
read τ, ev , i
if ev = a :

if len(xs) = 0 :
(s, sw ) := (τ, 1)

end if
xs := xs ++[(i, len(xs))]

elseif ev = d :
write τ − s, sw
(xs, k, aw ) := detOvert(xs, i)
write k, aw
if len(xs) > 0 :

(s, sw ) := (τ, len(xs))
end if

end if
end loop

function detOvert(xs, i) :
ys := []
while len(xs) > 0 :

(j, aw ) := head(xs); xs := tail(xs)
if j < i :

ys := ys ++[(j, aw )]
elseif j = i :

return (ys ++ xs, len(ys), aw )
end if

end while

Fig. 12. EPT Algorithm (top) and function detOvert (bottom).

of lots that arrived earlier than Lot i, but that are still in the
system upon the departure of Lot i. In other words, the length
of ys is equal to the number of lots overtaken by Lot i.
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