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ABSTRACT. This paper considers adaptability for robust periodic capacity allocation problems, using
the example of crane capacity allocation in container terminals. A new model is presented that allows
to compute an adaptive plan via formulation of a linear program over a scenario graph. Computational
results are given that quantify to the value of adaptability for reducing the price of robustness, i.e, the
total capacity that is necessary to guarantee all service times for all considered realizations of the dis-
turbances.
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1. INTRODUCTION

As transportation systems are operated closer to their resource margins, uncertainties play an increas-
ing role. If not handled adequately, small disturbances or disruptions might propagate and become
amplified, with severe consequences for the service level provided to the customers.

To cope with disturbances and disruptions, several related research directions have emerged in op-
erations research and decision science, such as robust optimization, disruption management, or robust
control. Their intention is to provide advanced planning methods that support planners in better man-
aging systems whose operation is subject to uncertainty or disturbances.

While first works about incorporating robustness into planning problems appeared already in the
1970s, a particular research area on robust optimization emerged only during the last decade with the
works of Ben-Tal and Nemirovski [2], El Ghaoui et al. [8] and Bertsimas and Sim [4, 5]. The main
focus of these works is on identifying tractable robust counterparts, including efficient characterizations
of uncertainty sets, of linear and convex optimization problems as well as characterizing the “price” of
robustness in terms of its higher cost when compared to the solution of the nominal model.

In the transportation field, like in railway or airline operations planning, approaches to incorpora-
tion robustness are mainly concerned with allocating buffers times or additional resources, which can
be used to absorb disturbances during operation [11, 6]. Yet, the two most prominent approaches
to incorporate adaptivity into robust optimization, the affine adaptability approach of [1] and the fi-
nite adaptability approach of [3], have not yet been used in robust transportation planning models.
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While affine adaptability reacts by definition to infinitesimal changes in the (uncertain) input param-
eters and in therefore only suited to continuous recourse variables, the finite adaptability approach
works with piecewise constant reaction functions and would thus be suited to adapt, for instance, dis-
crete structures. On the other end of the spectrum of available techniques is robust control, in particular
discrete-time constrained robust control. For certain classes of linear systems with additive or polytopic
disturbances, the optimal state-feedback control is known to be a piecewise affine function of the state,
to which both the affine adaptability as well as the finite adaptability with piecewise constant functions
can be seen as approximations. Of course, the state space of complex transportation systems is typically
of such high dimension that robust control techniques are only in principle applicable but normally in-
tractable for all practical purposes. Nevertheless, the open question remains how adaptability, or online
reactivity, can be integrated into offline, pro-active planning models.

In this paper, we develop a new way to compute adaptive capacity allocation plan in a periodic,
infinite-horizon setting. Using the example of quay crane allocation in container terminals, we first
introduce the problem via the nominal (deterministic) problem and then present the static robust prob-
lem, which is, as discussed above, concerned with allocating extra capacity (buffers) in order to absorb
a certain range of disturbances. In the robust problem, the central trade-off will be between the range
of the uncertainties versus the necessary amount of allocated resources. We address this problem by
minimizing the necessary resources (crane capacity) for a given fixed uncertainty set. Then an adap-
tive robust planning model is developed, based on the notion of a scenario graph. The scenario graph
models the underlying stochastic process of the uncertain vessel arrivals and hence represents the infor-
mation sets that the decisions can be adapted to. Computational results are given to quantify the value
of adaptability, i.e., the reduction in resource usage that the adaptive robust model achieves over the
static robust model for guaranteeing feasiblity for the same uncertainty sets.

2. NOMINAL CRANE CAPACITY ALLOCATION MODEL

Consider a container terminal operator who serves a number of shipping lines by discharging and
loading their periodically arriving container vessels according to an agreed timetable. Deviations of
vessels’ travel times lead to stochastic arrivals in the port around the scheduled arrival time. To manage
these disturbances, the operator and each shipping line have contractual service agreements that we
model as follows. If a vessel arrives within its window, the terminal operator guarantees to process this
vessel within an agreed service time. If a vessel arrives out of its window, the operator is not bound to
any guaranteed process time. Nevertheless, the terminal operator still tries to handle the vessel as soon
as possible in a best effort, without jeopardizing his ability to meet the service times for other vessels
that are on time.

Besides the planned arrival times (and corresponding arrival windows), the berth plan includes a
resource allocation for each vessel to be served. Here, we consider a tactical berth plan that allocates
a certain crane capacity for each vessel over time. The assignment of actual berth positions and cranes
as well as constraints resulting from the operations in the yard (e.g. container stacking) are neglected
here to focus on the techniques to incorporate robustness and keep the problem tractable also for the
adaptive robust formulation.

In the nominal version of the resource allocation problem, we consider V vessels v ∈ V = {1, 2, . . . , V }
with periodic1 arrival times av ∈ T = {1, . . . , T}, their contractual service times σv and load λv. The
task is to allocate crane capacity xv(t) to each vessel v for all time steps t ∈ {av, . . . , av + σv} such
that the total installed crane capacity is minimized. This can be expressed as the linear program

1Whenever a time index is used in this paper, it is to be interpreted modulo the period length T . We generally refrain from
stating the modulo operation to improve readability of the expressions.
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Minimize c (1)

subject to
∑
v∈V

xv(t) ≤ c ∀t ∈ T (2)

av+σv+1∑
t=av

xv(t) ≥ λv ∀v ∈ V (3)

xv(t) ≤ ρv ∀v ∈ V,∀t ∈ T (4)

The first set of inequalities ensures that the allocated capacity doesn’t exceed the available capacity.
The second set ensures that the cumulative capacity allocated to each vessel is sufficient for the total
load of that vessel. Finally, the upper bounds ρv limit the maximal capacity that can be allocated to a
vessel, depending on the vessel’s size and superstructure. This formulation is a simplified version of
the model proposed in [9].

3. THE STATIC ROBUST MODEL

The main goal we consider for a robust formulation of the berth scheduling problem is to be robust
against a bounded set of disturbances of the arrival times of the vessels. These are in fact the major
uncertainties faced in practise due to all kinds of events during travel (e.g., tailwind, adverse weather
conditions, technical problems). Thus, vessels might arrive respectively earlier or later than their sched-
uled arrival time. To cope with these disturbances, the terminal operator and each of the vessel lines
agree on an arrival window, which is placed around the scheduled arrival time.

In the following, we assume that each vessel has an agreed uncertainty range Wv, which is the
maximum number of time steps a vessel is allowed to be delayed with respect to its earliest considered
arrival time av. If a vessel arrives even earlier than av, it simply has to wait until it can for sure
berth at time av. In practise, the terminal operator might allow a vessel to start berthing outside of its
window it the situation allows and the other service agreements are not endangered. This, however, is
an operational decision that is not modeled in the tactical planning models considered here.

The decision variables in the static robust model are the same as in the nominal model, but it will
become necessary to allocate more crane capacity overall in order to have sufficient capacity to meet
the service time constraint for every vessel and every possible arrival time realization from its arrival
window. The corresponding robust counterpart of the nominal problem 1 can then be stated as follows.

Minimize c (5)

subject to
∑
v∈V

xv(t) ≤ c ∀t ∈ T (6)

τ+σv+1∑
t=τ

xv(t) ≥ λv ∀v ∈ V, ∀τ ∈ {av, . . . , av +WV } (7)

xv(t) ≤ ρv ∀v ∈ V, ∀t ∈ T (8)

The uncertainty in the arrival time enters the second set of constraints, where the cumulative al-
located capacity must be sufficient for any realization of the arrival time from the arrival window
{av, . . . , av + WV }. Thus, while the number of variables remains the same as in the nominal model,
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the number of constraints is increased by replacing one single constraint of the nominal problem with
Wv + 1 constraints in the robust model. The robust model is called static as the capacity allocations are
independently of the realization of the uncertain arrival time. Nevertheless, the constraints will hold
for every possible arrival time realization and enforce that sufficient capacity is allocated to meet the
service time bound.

4. AN ADAPTIVE ROBUST MODEL

The main property of the static robust model was to reserve a certain capacity of the available resources
independently for each vessel. This capacity was exclusively dedicated for each vessel and never
shared. It might happen, though, that there is no arrival scenario that uses the total available capacity c
completely. In other words, there might always be some positive slack left in each possible situation,
as the capacity allocation for one vessel does not take into account the realized arrival time of other
vessels. To exploit this remaining slack is the motivation to devise a more flexible, adaptive capacity
allocation plan.

We aim to integrate adaptivity by making the capacity allocation xv(t) dependent on the state of
the stochastic arrival process at any given moment in time. To this end, finding a suitable notion of
what constitutes an arrival state (which is the information set that a decision should be adapted to) is
essential. Of course, the total number of arrival combinations realized over one period is exponential
in the number of vessels, and it seems to be prohibitive to ask for a potentially different solution for
each of these situations. But the potential benefit to base the capacity allocation on current information
(whether other vessels have already arrived or not) is enticing. In fact, this is rather natural and therefore
current practise in operation [10]. Moreover, the realized arrival times of the vessels it the crucial factor
that determines at which time each vessel has to be processed to fulfill its service time agreements. A
further difficulty is the periodic nature of the problem, which does neither allow for a unique starting
state, nor for a termination of the system after a finite number of time steps. Hence, a standard multi-
stage recourse formulation seems not possible.

To overcome these difficulties, we present a new periodic infinite-horizon recourse formulation using
scenario graphs. The scenario graph describes the joint stochastic arrival process of all vessels with a
finite number of vertices that represent the different states of the process at the different time steps to
which the decisions can be adapted. Hence, the scenario graph is a compact description of all possible
scenarios than can occur. The directed edges represent transitions between states at successive time
steps that can occur with positive probability. Concrete probability values for the transition are not
needed since the capacity allocation plan must be feasible for any possible sample path.

The scenario graph is constructed as follows. Let Tv = {av, . . . , av +WV + σv} ⊂ T be the set of
time steps where capacity can be allocated to vessel v and ãv be the realization of the arrival time in the
current period. We define the arrival state of vessel v at time t as a random variable sv(t) ∈ Sv(t) =
{av, . . . , av +Wv} ∪ {0,−1,−2} as

sv(t) =


0 if t 6∈ Tv
−1 if t ∈ Tv and t < ãv

ãv if t ∈ Tv and ãv ≤ t ≤ ãv + σv

−2 if t ∈ Tv and t. > ãv

In other words, we denote the situation that a vessel has not yet arrived with the value −1 and the
situation that a vessel has already left with −2, while outside the interval Tv the vessel cannot be there
in any case, in which case the vessel is in state 0. The joint arrival state of all vessels at a given time t
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is then described by the vector s(t) = (s1(t), s2(t), . . . , sV (t)) ∈ S(t) :=
⋃
v∈V Sv(t). Transitions are

defined straightforward between the states of successive time steps the combinations following events
for all vessels (assuming that t ∈ Tv):

• if sv(t− 1) ∈ {0,−1} and t < av +Wv then sv(t) ∈ {−1, t} (a vessel might arrive at time t)

• if sv(t− 1) ∈ {0,−1} and t = av +Wv then sv(t) = t (a vessel must arrive at time t)

• if sv(t− 1) > 0 and sv(t− 1) + σv < t then sv(t) = sv(t− 1) (a vessel stays)

• if sv(t−1) > 0 and sv(t−1) +σv ≥ t then sv(t) = −2 (a vessel must depart if the service time
has elapsed).

We now give a linear programming formulation for the adaptive robust model in which the capacity
allocation decisions are adapted to the stochastic arrival process that is described by the above scenario
graph. Hence, a decision variable xv(s) is associated with each vertex s ∈ S :=

⋃
t∈T S(t).

To formulate the service time constraints, we have to enforce, for each vessel v, that the cumulative
allocated capacity is sufficient over all possible chains of length σv in the scenario graph that originate
in arrival vertices of v. Let AV ⊂ S the set of such vertices where sv(t) > 0 and in all predecessor
vertices s(t−1) ≤ 0 holds. Furthermore, let Pv be the set of paths of length σv that originate in vertices
of Av. The adaptive robust LP can now be stated as:

Minimize c (9)

subject to
∑
v∈V

xv(s) ≤ c ∀s ∈ S (10)∑
s∈Π

xv(s) ≥ λv ∀v ∈ V, ∀Π ∈ Pv (11)

xv(s) ≤ ρv ∀v ∈ V, ∀s ∈ S (12)

To illustrate the effect and the benefit of an adaptive plan, Figure 1 gives the results for a typical
berth schedule of V = 15 vessels for increasing arrival uncertainty Wv, which was chosen identical for
all vessels. It can be noticed that the adaptive solution can significantly reduce the price of robustness,
i.e., the necessary total capacity to fulfill all contractual service times for different uncertainty ranges.

The size of the linear program for the adaptive model is determined by the size of the scenario graph,
which grows exponentially in the maximum number of overlapping berthing time windows. For the
test instances considered here, the number of variables (respectively constraints) grow from 607 (548)
for the instance with Wv = 1 to around 470’000 (1.1 million) for Wv = 12. The computation time for
the latter was around 1 hour using IBM ILOG CPLEX 12.1 as the LP solver. We used the program to
generate the scenario graph developed in [7].

CONCLUSIONS

We have proposed the concept of adaptive robustness as a potential route to integrate reactive actions
into an tactical robust planning problem and thereby to reduce the conservatism of the strict static
robust optimization approach. A linear programming formulation over a scenario graph was presented
to compute adaptive plans, which can be seen as infinite-stage stochastic programming recourse model
or, from a different viewpoint, as a simultaneous formulation of a stochastic control problem. The
computational results show that the adaptive plan is able to reduce the price of robustness significantly,
compared to the static robust solution.
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static robust solution

adaptive robust solution

Necessary crane capacity c

Arrival uncertainty Wv0 1 2 3 4 5 6 7 8 9 10 11 12

capacity usage of nominal solution
1

1.58

1.39

Figure 1: Optimal value of the adaptive robust model versus the static robust model for increasing
arrival uncertainty Wv.
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