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ABSTRACT
Model Predictive Control (MPC) is a well established method
in control theory and engineering practice. It is often the
method of choice for systems that need to be controlled in
view of constraints. The main idea of MPC is to solve an op-
timization problem over a given time horizon at each control
epoch, and to use the obtained solution for controlling the
system until the next control epoch. In many cases this opti-
mization problem can be formulated as a tractable quadratic
programming problem.

In this paper we apply MPC to discrete-time queueing net-
works that incorporate multiple product routes, delays, self-
generated arrivals and multi-job processing. We compare
our MPC-based controller to simple threshold policies and
show improved performance. We take a first exploratory
step towards the application of MPC to queueing networks,
highlighting the method and some open problems.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory

General Terms
Queueing Networks, Model Predictive Control

1. INTRODUCTION
Queueing networks are often used to model communication,
manufacturing and service networks. Emphasis usually lies
on the performance analysis of a model for a given service
discipline and routing scheme. It is often challenging to
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determine the optimal way of scheduling capacity or routing
jobs. This paper explores methods for finding such dynamic
control rules.

When precise objectives are formulated, for example mini-
mizing steady-state queue sizes, the optimal control problem
can in principle be formulated as a Markov Decision Prob-
lem (MDP), but in practice, MDPs for larger networks often
prove numerically cumbersome. An alternative is to employ
much simpler control laws such as priority or threshold poli-
cies, but these typically fail to achieve the desired behavior.
Analysis and tuning of MDPs and simple control laws can
sometimes benefit from using asymptotic scaling regimes. In
such cases, there is often some simplification of the under-
lying stochastic process, and intractable MDPs can then be
approximated by more tractable Brownian control problems.
Nevertheless, even when using such asymptotic approxima-
tions, finding optimal controls is still challenging. For more
background see [2, 6, 11].

In this paper we present an alternative control methodology
which to the best of our knowledge has not been applied be-
fore to queueing networks. Our method uses the concept of
Model Predictive Control (MPC). A classic reference is [4].
MPC is a popular tool for generating feedback controllers for
dynamical systems (i.e. control laws that observe the current
state and use it to decide on the next control action). MPC
can deal with non-linearities and state constraints. Two re-
cent papers that apply MPC to logistical and manufacturing
networks are [8] and [9], but in general, MPC is not as well
known in the operations research community as it is in the
systems and control community.

The concept of MPC is simple: At every control epoch solve
an optimization problem for the optimal trajectory into the
future, then use the first step of the optimal trajectory as
the current control decision. At the next time step solve
the optimization problem again, and so on. This method
allows to incorporate predictions in the control mechanism
and has proven useful for systems with delayed feedback.
Some theoretical properties of this method have also been
established [1], [10]. Specifically, conditions for obtaining a
stabilizing controller in the case of deterministic systems are
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Figure 1: An example network. This network has 5
servers, 4 routes, 3 sinks, 4 infinite supply sources,
5 queues and a delay of 3 time units.

by now well known (and even implemented in commercial
control packages [7]). Contrary to the deterministic case,
quantifying the performance of stochastic systems controlled
by MPC is a largely unexplored area.

The network models we consider are discrete-time multi-
class queueing networks that allow for delays, multi-job pro-
cessing and self-generated arrivals. The latter is motivated
by both the acquisition queue [3] and multi-class queueing
networks with infinite virtual queues [12, 15]. In these types
of queueing models, a server in the network can generate
arrivals and is often faced with the control choice of either
letting new jobs enter the system or serving jobs that are
presently waiting for service.

Figure 1 depicts an example network. The five boxes rep-
resent servers. The circles represent job classes, numbered
1 to 15. Classes marked with the ∞ sign are called source
classes. These represent an infinite amount of jobs waiting
to enter the system. Classes marked with Q represent queue
classes; each queue class has an associated queue in which
jobs are waiting to be served. Classes marked with D rep-
resent delay classes. When jobs pass through a delay class
they are delayed for one time unit. Concatenating d delay
classes results in a delay of d time units. Finally, classes
marked with an S are sink classes and represent jobs that
have left the system. We choose to model these sink classes
in order to keep track of the departure processes.

Source and queue classes are associated with servers. In
Figure 1, three servers are associated with a single class and
two servers are associated with three classes each. All classes
associated with the same server have to share that server’s
capacity. The delay and sink classes are not associated with
servers. Jobs that finish processing in a source or queue
class, or a unit delay in a delay class, move to the next
downstream class. This is indicated by the arrows. All routes
are deterministic and end up in sink classes.

The networks evolve at discrete time points n = 0, 1, . . .. At
each time point all servers allocate their capacities among
their constituent source and queue classes. The way in which
this capacity is allocated is specified by the control law, the
main object of our study. Capacity is used by the source
classes to generate new jobs and by the queue classes to
process jobs in their queue. Every unit of capacity allocated
to a queue class results in the removal of a single job from

the queue. Every unit of capacity allocated to a source class
results in the generation of a random number of new jobs.
Delay classes simply pass, after one time unit, all of their
jobs to their downstream class. Thus the randomness in our
system is caused by the uncertainty in the number of jobs
generated by source classes.

The structure of the paper is as follows. Section 2 illus-
trates the basic concepts by means of an example. Section 3
describes in detail the queueing network model, presented
both as a controlled Markov chain and as a controlled linear
system with noise. Section 4 describes the MPC based con-
troller, including details of the implementation. Section 5
illustrates the applicability of MPC to arbitrary networks
such as that of Figure 1. We conclude in Section 6.

An extended version of this paper is available as the techni-
cal report [13].

2. AN ILLUSTRATIVE EXAMPLE:
THE ACQUISITION QUEUE

To demonstrate the MPC approach we consider the acqui-
sition queue that was introduced in [3]. In this stochastic
model, a server has to divide its capacity among the acqui-
sition of new jobs and the service of jobs that are presently
waiting in the queue. Within each time slot the server has
c ∈ N units of capacity to spend. Each unit spent on ac-
quisition in time slot n generates a random number of new
jobs that join the queue after a delay of d ∈ N time units.
Each unit spent on service removes one job from the queue.
Figure 2 presents a schematic representation of the model.
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Figure 2: The acquisition queue falls within our
framework. It is a single server that can either ac-
quire new jobs (by working on the source class ∞)
or service jobs in its queue. There is a delay of d
time units between the time a job is acquired and
its arrival to the queue. Serviced jobs accumulate
in the sink.

We denote by U(n) the number of acquisition efforts at time
n and refer to this choice as the control law of the system.
The queue length process {Q(n)}n∈N is then described by
the recursion equation

Q(n+1) =
(
Q(n)−(c−U(n))

)+
+

U(n−d)∑
i=1

ũn,i, n = 0, 1, . . . .

(2)






D1(n + 1)
D2(n + 1)
D3(n + 1)
Q(n + 1)
S(n + 1)


 =




0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1







D1(n)
D2(n)
D3(n)
Q(n)
S(n)


 +




m 0
0 0
0 0
0 −1
0 1




[
U∞(n)
UQ(n)

]
+ noise. (1)

Here, x+ = max(0, x) and {ũn,i} is a sequence of i.i.d. non-
negative integer-valued random variables. The initial con-
ditions are Q(0) and U(−d), U(−d + 1), . . . , U(−1). The
control U(n) ∈ N is a function of Q(n) that satisfies

(
c−Q(n)

)+ ≤ U(n) ≤ c.

Let S(n) be the number of jobs in the sink (jobs that have
received service) by time n, with S(0) = 0. If we assume that
the system is stable and well defined (see [3]), the through-
put of the system satisfies

δ = lim
n→∞

1

n
S(n) = m

c

1 + m
,

with m = E[ũ1,1]. In [3] the following simple control law
was analyzed in full detail:

U(n) = α + (c−Q(n))+, (3)

with α ∈ N some number for which α < c/(1 + m) (for
stability).

A sensible control law U(·) should stabilize the system, and
in addition, keep the queue lengths relatively small. Con-
sider the sink error Se(n) = S(n) − δn. If we are able to
produce at rate δ then limn→∞ Se(n)/n = 0. The time-
dependent behavior of Se(n) is also of interest: highly fluc-
tuating or periodic behavior is considered undesirable. Fi-
nally, it is desirable for the control law to be computed rela-
tively quickly. The threshold policy (3) certainly meets this
criterion. As opposed to that, an MDP formulation of the
acquisition queue (or more complex networks) typically does
not. The MPC based controller presented in this paper does
allow for quick evaluation.

Comparison to MPC
We now compare the threshold policy in (3) to MPC.

Figure 3(a) considers the threshold policy and shows the evo-
lution of Q(n) (above the axis) and Se(n) (below the axis).
In this example, the system is deterministic (i.e. Var

(
ũ1,1

)
=

0), and c = 10, d = 10, m = 3. The figure compares α = 0
and α = 2. It appears that α = 2 performs better, both
in terms of queue lengths and fluctuations in sink error. In
Figure 3(b) we compare the threshold policy with α = 2 and
MPC1. The latter clearly performs better. Figure 4 further
compares the threshold policy and MPC, but this time for
stochastic acquisition sizes. Again, MPC outperforms the
threshold controller.

We now briefly outline how our MPC control for the acquisi-
tion queue comes about. For simplicity, take d = 3, so that
the complete state at time n is described by Q(n), S(n), and
the acquisition during the last three time units denoted by
D1(n), D2(n) and D3(n).

1With Q = I, R = I and N = 30, see Section 4.
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Figure 4: Trajectories of the acquisition queue with
geometrically distributed acquisition sizes, d = 10
and m = 3. Trajectories above the axis are the queue
level. Trajectories below the axis are the sink error.
The thin solid curves are for the threshold policy
with α = 2. The dotted curves are for the MPC
based controller.

Assume now that our control law is a general function of the
state, and given by both the acquisition effort U∞(n) ≥ 0
and the service UQ(n) ≥ 0, which satisfy

U∞(n) + UQ(n) ≤ c and UQ(n) ≤ Q(n). (4)

The evolution of our system is as described in the linear
system (1). The noise term is implicitly specified: its first
coordinate is

U∞(n)∑
i=1

ũn,i − U∞(n)m,

while all its other coordinates are zero.

The first step of our approach is to identify a reference tra-
jectory by studying the system without noise. In principle
we may choose any reference trajectory. For the acquisi-
tion queue, to make a fair comparison with the controller
in (3), we choose as a reference the trajectory in which the
sink grows linearly at rate δ and all other quantities remain
constant. That is,

D̄r
1(n) = D̄r

2(n) = D̄r
3(n) = Q̄r(n) = Ūr

∞(n) = Ūr
Q(n) = δ,

S̄r(n) = δ n.

We now seek to formulate a state feedback control law that
attempts to drive the system to the reference. MPC does
this by solving, at each time n, the following optimization
problem:

min
∑n+N−1

i=n

(
||X̂(i + 1)− X̄r(i + 1)||+ ||U(i)− Ūr(i)||

)

s.t. constraints (4).
(5)
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Figure 3: Trajectories of the acquisition queue with deterministic acquisition sizes, d = 10 and m = 3.
Trajectories above the axis are the queue level. Trajectories below the axis are the sink error. (a) Compares
the threshold policy with α = 0 (dots with line) and α = 2 (dots only). (b) Compares the threshold policy
with α = 2 (dots only) and an MPC based controller (dots connected by a line).

Here X̂(n) is the prediction of the state at time n (a vector
of dimension d + 2 for the acquisition queue), X̄r(·) is the
state part of the reference trajectory, U(·) is the vector of
controls (2-dimensional for the acquisition queue) and || · ||
is some norm or some norm-like measure (in this paper we
consider a 2-norm, i.e. quadratic costs). The minimization
is over the controls which are to be applied over the time
horizon n, n + 1, . . . , n + N − 1. This is a 2N -dimensional
vector for the present case. The predicted state X̂(·) is a
function of the decision variables and the current state.

MPC operates as follows: At each time point the optimal
solution of (5) is used to control the system for the next
time unit. Note that as opposed to “myopic control” which
attempts to make the next “best step”, MPC is “look ahead
control”. It appears to be very suitable for queueing net-
works of the type we describe. The full details of the con-
troller are surveyed in Section 4.

3. THE NETWORK MODEL
We consider multi-class queueing networks that evolve at
discrete time points n = 0, 1, 2, . . .. A network is composed
of four types of job classes: source (∞), queue (Q), delay
(D) and sink (S). Jobs originate in source classes, pass
through queue and delay classes, and eventually end up in
sink classes.

Let K∞, KQ, KD, KS denote the number of classes of each
type. Classes are indexed by k = 1, . . . , K. We denote
the classes of type j by Kj for j ∈ {∞, Q, D, S} and we
number the classes as follows: K∞ = {1, . . . , K∞}, KQ =
{K∞ + 1, . . . , K∞ + KQ}, etc. For convenience, we use the
notation K{j,j′} to indicate the union of Kj and Kj′ , for
j, j′ ∈ {∞, Q, D, S}, sometimes extending the notation to
three indices. For example, K{∞,Q,D} are all classes except
the sink classes. Let K{j,j′} = |K{j,j′}|.

The jobs are processed by L servers indexed by i = 1, . . . , L.
These servers perform activities on the source and queue
classes. The activity of each such class is performed by a

unique server σ(k). Let

C(i) = {k ∈ K{∞,Q} : σ(k) = i}
denote the constituency of server i. Let C denote the L ×
K{∞,Q}-dimensional constituency matrix. Element (i, k) of
this matrix is 1 if k ∈ C(i), and 0 otherwise. We partition
C as

C =
[

C∞ CQ

]
.

At each time point, each server i must divide its effort be-
tween the constituency activities C(i), generating new ma-
terial from the source classes, processing existing material in
queue classes, idling or performing a combination of these.
The number of activities that server i can perform in one
time unit is given by the integer ci ≥ 1. Let c denote the
vector of these elements. Let Uk(n), k ∈ K{∞,Q} denote the
number of activities that are actually applied to class k at
time n. We thus have the constraints∑

k∈C(i)

Uk(n) ≤ ci, i = 1, . . . , L. (7)

With each source class k ∈ K∞, we associate a sequence
of non-negative i.i.d. inputs: {ũk(`), ` = 1, 2, . . .}, with
E[ũk(1)] = mk. Let M∞ be a diagonal matrix with the
elements mk, k ∈ K∞. We denote generic random variables
of these i.i.d. sequences by ũk, k ∈ K∞. Further, use ũ∗v

k

to denote generic random variables whose distribution is the
v-fold convolution of the distribution of ũk. The action of
performing an activity on class k ∈ K∞ is the creation of ũk

new jobs. Thus the application of Uk(n) units of processing

on class k results in the creation of ũ
∗Uk(n)
k jobs. Obviously,

the mean of this quantity is Uk(n)mk.

Jobs that leave a class move to downstream classes using
some routing scheme. Downstream classes may be of the
queue, delay, or sink type. If it is a queue class, number k
say, the job joins the queue and awaits service from server
σ(k). If it is a delay class the job is delayed for one time
unit, before moving onto the next downstream class in the
next time unit. If it is a sink class, the job has reached its
final destination.



Xk(n + 1) =





Xk(n) +
∑

k′∈KD
Xk′(n)pk′k +

∑
k′∈K{Q,∞}

ũ
∗Uk′ (n)

k′ pk′k − Uk(n), k ∈ KQ (queue),
∑

k′∈KD
Xk′(n)pk′k +

∑
k′∈K{Q,∞}

ũ
∗Uk′ (n)

k′ pk′k, k ∈ KD (delay),

Xk(n) +
∑

k′∈KD
Xk′(n)pk′k +

∑
k′∈K{Q,∞}

ũ
∗Uk′ (n)

k′ pk′k, k ∈ KS (sink).

(6)

In this paper we assume that routing is deterministic. We let
pkk′ = 1 if jobs that move out of class k ∈ K{∞,Q,D} move
into class k′ ∈ K{Q,D,S}. Otherwise pkk′ = 0. These values
are arranged in a matrix P = (pkk′), which we partition as

P =




P∞Q P∞D P∞S

PQQ PQD PQS

PDQ PDD PDS


 .

We assume that all routes end up in sink classes. Note that
routes may merge.

The state of the network is the number of jobs in the queue,
delay and sink classes. We denote it by the K{Q,D,S} - di-
mensional vector X(n) partitioned as [ XQ(n) XD(n) XS(n) ].
The state evolves according to the recursion (6). Here we
use the convention ũk = 1 for k ∈ KQ, i.e. for these classes

ũ
∗Uk(n)
k = Uk(n). This allows us to represent the job inflow

resulting from Uk(t) in the same manner for both the queue
and the source classes.

Queue activities require material to be in the queue for the
activity to be performed. We thus have the constraints

Uk(n) ≤ Xk(n), k ∈ KQ. (8)

When the control U(n) is a well specified function of the
state X(n) that satisfies constraints (7) and (8) we refer
to it as a state feedback control. This makes {X(n)}∞n=0 a
Markov chain.

Description as a linear system with noise
As an alternative to the Markov chain representation, we
now represent our network as a linear system with control-
dependent zero-mean non-Gaussian noise. That is,

X(n + 1) = AX(n) + BU(n) + Gũ
(
U(n)

)
. (10)

Here, A, B and G are matrices to be defined below and
ũ
(
U(n)

)
denotes a K∞-dimensional zero-mean random vec-

tor with the kth element distributed as

ũ
∗Uk(n)
k − Uk(n)mk.

Observe that the elements of this noise vector are always
zero when ũk is deterministic. Further, when the control
action Uk(n) is a large number, the kth noise element is
approximately Gaussian distributed.

The matrices A, B and G are spelled out in (9), I is the
identity matrix.

The control U(n) needs to satisfy linear constraints of the
form

F

[
X(n)
U(n)

]
≤ g,

with F and g further specified as




0 0 0 −I 0
0 0 0 0 −I
−I 0 0 0 I
0 0 0 C∞ CQ







XQ(n)
XD(n)
XS(n)
U∞(n)
UQ(n)


 ≤




0
0
0
c


 . (11)

In addition we require that U(n) is integer.

The fluid relaxation and reference trajectories
For the MPC approach, it is useful to consider an auxiliary
system that is a deterministic fluid relaxation of (10). For
this, assume that the noise component does not exist and
that the control effort (and thus the queue lengths) need
not satisfy integrality constraints. The resulting system is
then

X̄(n + 1) = AX̄(n) + BŪ(n) (12)

subject to

F

[
X̄(n)
Ū(n)

]
≤ g, (13)

with the matrices A, B, F and the vector g as defined above.
For this system we define a reference trajectory as a pair of
sequences {X̄r(n), Ūr(n)} such that when the control Ūr(·)
is applied to the fluid relaxation dynamics (12), the state
X̄r(·) is obtained. In addition, the reference trajectory needs
to adhere to the constraints (13). In general, the choice of
the reference trajectory may depend on the desired through-
put of the system. We discuss this briefly in Section 5.

Given a reference trajectory, we define the error dynamics
as

Xe(n) = X(n)− X̄r(n), Ue(n) = U(n)− Ūr(n). (14)

Combining (14), (12) and (10) then yields

Xe(n + 1) = AXe(n) + BUe(n) + Gũ
(
Ue(n) + Ūr(n)

)

= AXe(n) + BUe(n) + noise. (15)

This representation proves useful in the next section.

4. THE MPC BASED APPROACH
We now describe the MPC approach in more detail. The
controller is parameterized by a discrete time horizon N > 0
and two positive definite matrices Q and R of dimensions
K{Q,D,S} and K{∞,Q}, respectively. At time n, the con-
troller uses the optimal solution of a quadratic programming
(QP) problem in which the decision variables are the controls
over the time horizon: n, n+1, . . . , n+N−1. Given the cur-
rent state X(n) and the controls U(i), i = n, . . . , n + N − 1,
the prediction of the state over the time horizon, denoted
by X̂(·), is generated (details below) and appears in the ob-
jective and constraints of the QP.






XQ(n + 1)
XD(n + 1)
XS(n + 1)


 =




I P ′DQ 0
0 P ′DD 0
0 P ′DS I







XQ(n)
XD(n)
XS(n)


 +




P ′∞QM∞ P ′QQ − I
P ′∞DM∞ P ′QD

P ′∞SM∞ P ′QS




[
U∞(n)
UQ(n)

]
+




P ′∞Q

P ′∞D

P ′∞S


 ũ

(
U∞(n)

)
. (9)

With X̂e(i) = X̂(i) − X̄r(i) denoting the prediction of the
error dynamics, we get the following QP:

min
∑n+N−1

i=n X̂e(i + 1)′QX̂e(i + 1) + Ue(i)′RUe(i)
s.t.∑

k∈C(j) Uk(i) ≤ ci, i = n, . . . , N − 1, j = 1, . . . , L,

Uk(n) ≤ Xk(n), k ∈ KQ,

Uk(i) ≤ X̂k(i), i = n + 1, . . . , N − 1, k ∈ KQ,
0 ≤ U(i), i = n, . . . , N − 1.

(16)
The objective function in (16) quadratically penalizes devi-
ations from the reference trajectory in both the state, using
the Q matrix, and the control, using the R matrix. The first
set of constraints are capacity constraints. Following that is
a constraint for the control at time n not to exceed the cur-
rent queue levels. It is followed by a set of constraints with
respect to the predicted queue levels and with non-negativity
constraints.

The QP always has a unique solution. To see this, first ob-
serve that there is always a feasible solution: U(i) = 0, i =
n, . . . , n + N − 1. Then, since Q and R are positive definite,
a unique solution is guaranteed (see [14] for background on
quadratic programming). Note that the solution of the QP
is an N ·K{∞,Q}-dimensional vector that specifies a control
over the whole time horizon. From this solution, we only
keep the first K{∞,Q} coordinates to specify the control de-
cision for the next time step. The remaining coordinates are
not used. At every time point, the process is repeated: At
time n, the current state is observed, the reference trajec-
tory is calculated, and Xe(n) is obtained. We denote it by
Xe

0 . Given a control over the time horizon, the prediction
for i > n is made by iterating the fluid relaxation dynam-
ics (12). Thus X̂e(i), which appears in the objective and
constraints of the QP, is a function of Xe

0 and the decision
variables Ue(i), i = n, . . . , n + N − 1.

We denote the first step of the optimal solution as the K{∞,Q}
- dimensional vector Ue

OPT(Xe
0). Once Ue

OPT(Xe
0) is deter-

mined, it is converted from the error dynamic coordinate
system to the control coordinate system. We finally repre-
sent our controller as

UMPC(n, X(n)) =[
min

(
max

([
Ue

OPT

(
X(n)−Xr(n)

)
+ Ur(n)

]$, 0
)
, XQ(n)

)]%

C
.

(17)

Here the max and min operators operate element-wise and
[x]$ denotes the element-wise nearest integer to x. In addi-

tion, [u]%C denotes the following operation: Check the valid-
ity of Cu ≤ c. Every coordinate for which the inequality is
invalid represents a server in which the capacity constraint
has been exceeded. In this case reduce the u by integer steps
until the inequality is met, by first reducing activities for
the source buffers and then reducing from the queue buffers.
Within each class one can follow some arbitrary specified
rule.

Note that UMPC(·) is a function of n since the reference tra-

jectory needs to be evaluated so that the current error is
plugged into Ue

OPT(·) and converted back into the coordi-
nate system of the control. Further observe that if we take
Ur(n) to be constant then Ue

OPT(·) is only a function of the
current error Xe

0 , and does not depend on the current time.

Detailed description of the QP
We now give a detailed description of the QP. The deci-
sion variables of the QP are organized in the N · K{∞,Q}-
dimensional vector Ue. The N ·K{Q,D,S}-dimensional vec-

tor X̂
e

is the predicted state error over the time horizon
n + 1, . . . , n + N , obtained by iterating (15) and assuming
no noise. The predicted error can be represented as

X̂
e

= AXe
0 + B Ue,

where

A =




A
A2

...
AN


 , B =




B 0 · · · 0

AB B
..
.

..

.
. . .

AN−1B · · · B




.

We need some additional matrices. Denote by Q and R block
diagonal matrices of Q and R with dimensions N ·K{Q,D,S}
and N ·K{∞,Q}, respectively. Denote by C a block diagonal
matrix of C with dimension N · L × N ·K{∞,Q}, and let c
be a block vector that stacks the L-dimensional c vector N
times. Define

SUQ =
[

0 I
]
, SXQ =

[
I 0 0

]
.

The KQ × K{∞,Q} matrix SUQ is such that when multi-
plied by a control vector it selects the controls for the queue
classes. Similarly, SXQ can be multiplied by a state vector
to select the state of the queue classes. In addition, define

S
1
UQ =

[
SUQ0 · · · 0 ]

, S
+
UQ =




0 SUQ 0 · · · 0

.

.

.
. . .

.

.

.

.

.

.
. . . 0

0 SUQ




,

S
1
XQ =

[
SXQ0 · · · 0 ]

, S
−
XQ =




SXQ 0 · · · 0

. . .
.
.
.

0 SXQ 0


 .

Multiplying S1
UQ by the control vector over the whole time

horizon results in the control of the queue classes at the first
time step. Similarly, multiplying S1

XQ by the state vector
results in the state of the queue classes at the first time
step. The matrix S+

UQ is used to select the control of the
queue classes at all time steps other than the first time step.
The (N − 1)KQ × N · K{Q,D,S}-dimensional matrix S−XQ

selects the queue levels at times n + 1, . . . , n + N − 1 when
multiplied by the predicted state.

Given arbitrary reference trajectories, the QP is in general
time-dependent. Nevertheless, the required coordinates are
the controls (for both the source and queue classes) and



minUe Ue′(B′Q B + R
)
Ue + 2Xe′

0 A′Q BUe + Xe′
0 A′Q AXe

0

s.t.


C
S1

UQ

S+
UQ − S−XQB

−I


 Ue ≤




c
0
0
0


 +




0
S1

XQ

S−XQ

0


 Xr +




−C
−S1

UQ

−S+
UQ

I


 Ur +




0
SXQ

S−XQA
0


 Xe

0 .

(18)

the states (for only the queue classes). In many cases it
is sensible to choose constant values for these references
(yielding a linear reference trajectory for the sinks), so that
the QP becomes time-independent. We denote by Ur a
stacked N ·K{∞,Q}-dimensional vector of the reference con-
trols. Similarly, Xr is a stacked N · K{Q,D,S}-dimensional
vector of the reference states, of which only the coordinates
relevant to KQ are used in the QP.

The resulting QP is formulated in (18). It is straightforward
to verify that (18) agrees with the QP (16). Formulation
(18) is in the form that is required by most commercial QP
solvers.

5. AN ADDITIONAL EXAMPLE
We now wish to emphasize the applicability of our method
to arbitrary networks, showing how to systematically find a
reference trajectory. For this we use the example of Figure 1.
We employ a reference with constant queue levels and a
linear increase of the sink buffers. Such a trajectory can
always be found by solving a linear programming problem
(LP), similar to the so-called Static Planning Problem (cf.
[5]) used in multi-class queueing networks.

To find a reference trajectory, define the variables ri, i =
1, 2, 3, 4 to be the long range flow rate on each of the routes.
Here the route index corresponds to the source queue on
which the route begins. For example, route 4 is the route
passing through classes, 4, 10, 11, 12, 9 and ending in the sink
buffer 15. Now use the capacity constraints (7) to indicate
restrictions on the variables ri. For example, server 5 is
required to serve routes 1, 2 and 4:

r1 +
r2

m2
+

r4

m4
≤ c5.

Note that in the above constraint, the source classes (2 and
4) are normalized by the means m2 and m4, while the queue
class (class 8 on route 1) is not. Writing the constraints in
this manner, together with the non-negativity constraints,
defines a feasible polytope. Any point within this polytope
is associated with a reference trajectory.

We find a point on the boundary of the polytope by solv-
ing an LP that minimizes

∑4
i=1 wiri. In applications, the

weights wi reflect preference of routes. This is the resulting

LP:

max
∑4

i=1 wiri

s.t.



1 0 0 0
1 0 m3

−1 1
1 m2

−1 0 m4
−1







r1

r2

r3

r4


 ≤




c1m1 ∧ c3 ∧ c4

c2

c5


 ,

ri ≥ 0, i = 1, 2, 3, 4.
(19)

Denote the solution by r∗i , i = 1, 2, 3, 4. Further, let ρ be
an arbitrary number in the interval [0, 1]. We now have the
following reference trajectory:

Ūr
i (n) = ρr∗i /mi, i = 1, 2, 3, 4

X̄r
5 (n) = X̄r

6 (n) = X̄r
7 (n) = X̄r

8 (n) = Ūr
5 (n) =

Ūr
6 (n) = Ūr

7 (n) = Ūr
8 (n) = ρr∗1 ,

X̄r
10(n) = X̄r

11(n) = X̄r
12(n) = X̄r

9 (n) = Ūr
9 (n) = ρr∗4 ,

X̄r
13(n) = ρ(r∗1 + r∗2)n, X̄r

14(n) = ρr∗3n, X̄r
15(n) = ρr∗4n.

When ρ = 0 the reference indicates “no job flow” and when
ρ = 1 the reference indicates “maximal job flow” (i.e. the
reference is on the boundary of the polytope).

For a numerical example consider the following parameters:
c1 = 40, c2 = 60, c3 = c4 = c5 = 30, m15 = m13 = m12 = 1,
m14 = 1.8. Use the weights: w1 = 10, w2 = 5, w3 = 1,
w4 = 10. The solution of the LP is

r∗1 = 1.9081, r∗2 = 38.1992, r∗3 = 51.2218, r∗4 = 6.8702.

Every ρ ∈ [0, 1] defines a reference trajectory. We simulate
with ρ = 1. Figure 5 plots trajectories of Xk for k ∈ KQ

and Xe
k for k ∈ KS . The parameters of the MPC based

controller are Q = I, R = I and N = 3, 4, 5. We see that
when N = 5 both the queue levels and the sink errors are
stable over a long run of 20,000 time units. For N = 4 we
observe that Xe

15 is not stable. Finally, when N = 3, both
Xe

15 and X9 seem unstable (we only plot two coordinates in
(c)). Interestingly, the trajectory of X9 “leaves the axis” at
the same time when Xe

15 hits the axis, and from that point
onwards, the two trajectories closely follow each other. This
behavior appears to be consistent over several runs.

The classification of models that are able to operate at ρ = 1
in a stable manner is an interesting open question. To our
surprise we have seen that this is possible for Example 4. We
have also observed (as expected) that changing the value of
the time horizon produces different results and behaviors.
An alternative option is to use N = ∞. While in this case,
the QP (18) is not well defined, there are methods for im-
plementing such an MPC based controller, cf. [4]. The basic
idea is to partition the time horizon into a finite part and
an infinite part, and to use the Ricatti Equation to solve the
Linear Quadratic Regulator (LQR) problem for the infinite
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Figure 5: Trajectories of the model of Figure 1 using
an MPC based controller with Q = I, R = I and
N = 3, 4, 5. (a) N = 5. In this case the system appears
stable over a longer time horizon, and we only plot
the trajectory over the range 1000 to 1050. (b) N =
4. Queue levels are stable, but the sink error of 15
is not. (c) N = 3. The system is not stable. Only
Xe

15 and X9 are plotted.

part. It is possible that in this case, the structure of the
controller may be found for certain Q and R matrices. This
remains the subject of future work.

6. CONCLUSION
We have explored the applicability of MPC to stochastic
queueing networks operating in discrete time. We have out-
lined a methodological way of constructing controllers for
such networks. While our method appears to work well for
some examples, explicit performance analysis of the behavior
of the resulting stochastic processes remains an open ques-
tion and is the subject of ongoing research. In this respect,
one future research goal is to attempt to parallel the stabil-
ity results that are currently known for deterministic settings
[10] to our stochastic queueing network setting.

Of further interest is the study of queueing networks that

generate their own arrivals. A byproduct of our simulation
results is the observation that the discrete time networks can
often be operated on the boundary of the capacity region in
a stable manner.
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