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Summary

The international conveyance of sea freight using containers has grown rapidly the last
decennia, and this growth is expected to continue for the next decennia. In order to
be able to cope with these increasing amounts of cargo, port operators have to develop
efficient logistics processes.
This report investigates the berth allocation problem (BAP) and the quay crane alloca-
tion problem (QCAP) embedded in the large multi-step approach of [Hen08] to solve
the periodic multi-terminal BAP and QCAP. The overall solution approach consists of
two steps. In the first step, i) a terminal, ii) a time window, and iii) a time variant quay
crane capacity are allocated to the vessels in the vessel set. The exact berth position
allocation and the integer-valued quay crane allocation for each individual terminal are
still to be determined in the second step. In this report, for both problems in the second
step, a separate MILP optimization problem is proposed and a case study is performed.

It is shown that as a result of the chosen solution approach the BAP is reduced to
a one-dimensional packing problem. Only the position of the vessels along the terminal
is to be determined. The proposed formulation minimizes the weighted deviation from
the lowest-cost berthing position without vessels overlapping each other.
Another result of the chosen solution approach is that a first step allocation might turn
out to be infeasible in the second step. However, experiments suggest that for typical
terminal quay utilizations first step allocations are always feasible in the second step.
Moreover, the same experiments suggest that the computational effort to solve the pro-
posed MILP is very small.

An existing MILP formulation for the QCAP [Liu06] is continuous in time, which
has some restrictions. As a result of these restrictions it might be that allocations can
be constructed in which vessels are departing later than their desired departure time,
and the crane rate has to be equal for each quay crane. To avoid these restrictions, an
QCAP formulation, which is discrete in time is proposed.
Experiments suggest that the proposed discrete MILP formulation results in a reduc-
tion in the number of allocations in which vessels are departing later than their desired
departure time. Moreover, the proposed formulation enables to incorporate quay cranes
with different quay crane rates.
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viii Summary

The objective of the discrete formulation is extended to minimize i) the departure time
of the vessels, ii) the number of required quay cranes, iii) the movement of the quay
cranes along the quay iv) the possibility of process interruptions, and v) the isolation
of idle cranes between processing quay cranes.
The discrete QCAP formulation requires a lot of computational effort. Therefore, a
heuristics procedure, which cuts the complete problem into smaller subproblems is pro-
posed. Experiments suggest that the heuristics procedure performs on average 5% worse
than the complete formulation with respect to the objective function value. However,
the same experiments suggest that the performance with respect to the computational
effort improves with on average 80%.

The proposed formulations for the BAP and the QCAP are used to solve the second
step optimization problems for a representative first step allocation. The results suggest
that with a reasonable amount of computational effort, it is possible to construct and
optimize a second step allocation on the strategic level and implement it in an model-
based predictive (MPC) approach [Vul08] for the operational level.



Samenvatting

De hoeveelheid overzees containertransport is sterk gestegen de afgelopen decennia en
zal de komende decennia blijven stijgen. Om deze groei te kunnen verwerken, zullen de
dienstverleners in de haven efficiënte logistieke processen moeten ontwikkelen.
In dit verslag worden het berth allocation problem (BAP) en het quay crane alloca-
tion problem (QCAP) onderzocht. Deze problemen zijn opgenomen in de stapsgewijze
aanpak van [Hen08] om de periodieke multi-terminal BAP en QCAP op te lossen. De
stapsgewijze aanpak bestaat uit twee stappen. In de eerste stap worden een terminal,
een tijdsinterval en een tijdsafhankelijke kraancapaciteit toegewezen aan de schepen.
De exacte aanmeerlocatie binnen de individuele terminals en de exacte toewijzing van
kranen aan schepen moeten nog bepaald worden in de tweede stap. Voor beide prob-
lemen in de tweede stap wordt een apart MILP optimalisatie probleem voorgesteld in
dit verslag. Daarnaast wordt er voor beiden een representatieve case uitgevoerd.

Er wordt aangetoond dat dankzij de gekozen stapsgewijze aanpak, de BAP tot een
één-dimensionaal probleem gereduceerd kan worden. Alleen de positie van de schepen
langs de kade moet dan nog bepaald worden. De voorgestelde formulering minimaliseert
de gewogen afwijking van de optimale aanmeerlocatie zonder dat schepen elkaar over-
lappen.
Het feit dat terminal- en tijdstoewijzingen uit de eerste stap mogelijk niet feasible zijn
in de tweede stap is een ander gevolg van de stapsgewijze aanpak. Experimenten sug-
gereren echter dat, voor typische kade-utilisatie , de terminal- en tijdstoewijzingen uit
de eerste stap altijd feasible zijn in de tweede stap. Daarnaast suggereren dezelfde ex-
perimenten dat de rekentijd van de voorgestelde MILP erg laag is.

Een bestaande MILP formulering voor de QCAP [Liu06] is continu in de tijd, wat
een tweetal beperkingen met zich meebrengt. Ten gevolge van de eerste beperking kun-
nen er onnodig kraantoewijzingen gevormd worden, waarin schepen later vertrekken
dan hun gewenste vertrektijd. Ten tweede moet de werksnelheid van iedere kraan gelijk
verondersteld worden. Om deze beperkingen te voorkomen, wordt er een QCAP formu-
lering voorgesteld, die discreet in de tijd is.
Experimenten suggereren dat de voorgestelde discrete MILP formulering minder vaak
leidt tot kraantoewijzingen waarin schepen later vertrekken dan hun gewenste vertrek-
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tijd. Daarnaast maakt de formulering het gebruik van verschillende werksnelheden voor
kranen mogelijk.
De doelfunctie van de discrete formulering is dusdanig uitgebreid dat het mogelijk is
om i) de vertrektijd van de schepen, ii) het aantal benodigde kranen, iii) de beweging
van de kranen langs de kade, iv) het aantal werkonderbrekingen en v) het aantal idle
kranen opgesloten tussen werkende kranen te minimaliseren.
De rekentijd voor de discrete QCAP formulering is relatief hoog. Daarom wordt er een
heuristiek voorgesteld die het totale probleem opdeelt in kleinere problemen. Experi-
menten suggereren dat de heuristiek een doelfunctie waarde oplevert die gemiddeld 5%
slechter is dan de doelfunctie waarde van de gehele formulering. Echter, de rekentijd
neemt gemiddeld met 80% af.

De voorgestelde formuleringen voor de BAP en de QCAP zijn gebruikt om de tweede
stap van de gekozen aanpak op te lossen voor een representatieve oplossing van de
eerste stap. De resultaten suggereren dat het mogelijk is om de tweede stap op te
lossen en te optimaliseren op zowel een strategisch als een operationeel niveau. Dit
alles kan gerealiseerd worden binnen een dusdanige rekentijd, dat het mogelijk is om de
problemen per uur online op te lossen.
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Chapter 1

Introduction

The last decennia, the international conveyance of sea freight using containers has grown
rapidly. This growth is expected to continue for the next decennia. Nowadays, mega-
vessels are capable of carrying 15.000 TEU’s1 and large container ports are processing
up to 27 million TEU’s a year. In order to cope with the current amounts of cargo
and to anticipate the growth of these amounts, port operators have to develop efficient
logistics systems. In [Ste04, Vis03, Sta08] an overview of descriptions, classifications
and solution methods for the main logistics processes in container ports is given. The
berth allocation problem (BAP) has been identified as one of the key issues in these
studies. There is an explicit difference between i) the single-terminal BAP, which is
concerned with the allocation of a set of vessels to one terminal and ii) the multi-
terminal BAP, which is concerned with the allocation of a set of vessels to a cluster of
interrelated terminals. The quay crane allocation problem (QCAP) is another key issue
in a container port. Each terminal has a fixed number of quay cranes, which have to
be allocated to berthing vessels. The research discussed in this report is embedded in
a larger multi-step solution approach for multi-terminal container operations. In the
next section the multi-step solution approach is discussed in general, and the BAP and
QCAP in particular.

1.1 Container Operations

As stated in [Ott06] hardly any research has been conducted towards the multi-terminal
BAP. Only in [Hen08] a solution approach is proposed to solve the multi-terminal BAP.
In this section the problem and the solution approach of [Hen08] are described.

1TEU: twenty-foot equivalent unit
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2 Chapter 1. Introduction

Problem description

Present mega-ports often consist of a cluster of terminals as depicted in Figure 1.1.
Each terminal has a restricted quay length and quay crane capacity. Containers are
exported from the hinterland to one of the terminals and vice versa. Since the mega-
ports also face a significant amount of transshipment containers and it is not always
possible to allocate the vessels which carry containers for each other to the same ter-
minal, there is inter-terminal transport established by trucks or barges. As a result of
the inter-terminal transport the different terminals become interdependent and cannot
be considered separately anymore.
This interdependency has to be incorporated in one model in order to derive the optimal
allocation. In addition, the in- and outbound containers and their destinations have to
be taken into consideration. For example, inbound containers from an arriving vessel
could be partly destined for the hinterland and partly for another vessel. Allocating
the two involved vessels to different terminals implies inter-terminal traffic and thus
additional costs. However, due to other objectives and constraints this may still be the
best or only solution. This kind of trade-offs have to be weighted in the multi-terminal
BAP.
In practice most vessels run a regular service on their ports, for instance once a week,
which turns the problem into a cyclic problem. Vessels can arrive at the end of the
considered time period (cycle) and leave at the beginning of this time period (next cy-
cle). An example of a cyclic schedule of one week for a terminal is given in Figure 1.2.
Vessels 1 – 6 are indicated by rectangles with dimensions length and processing time
of the vessel. Hence, the horizontal axis indicates the position of the vessels along the
terminal quay, and the vertical axis indicates the arrival and departure times of the
vessels. For example, vessel 1 is arriving on Tuesday and departs on Wednesday; its
left-most side is positioned at 162.5 m. Vessel 6 is colored differently, since it arrives
at the end of the cycle (i.e. on Sunday) and departs at the beginning of the next cycle
(i.e. on Tuesday).
The desired arrival and departure times of vessels are agreed on between the port op-
erator and the shipping lines. In this report, unless stated differently, those contractual
arrival and departure times are referred to as desired berthing time intervals. The op-
erator pays a fine when a vessel is leaving after its desired departure time.

Multi-step solution approach

In short, the problem consists of the allocation of i) a vessel to a terminal, ii) a time
interval to a vessel, iii) a vessel to a berthing position, and iv) quay cranes to a vessel.
Incorporating all these decisions in a single model would result in a complex model. A
multi-step approach is proposed in [Hen08] in which the sequential steps represent a
part of the complete multi-terminal BAP. The different steps are depicted in Figure 1.3;
two steps (1 and 2) are indicated. In the first step the vessel is allocated to a terminal
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and a time window is allocated to the vessel. In the second step the vessel is allocated
to an exact berthing position and quay cranes are allocated to the vessel. Hence, the
second step introduces more detail to the allocation constructed in the first step. Below
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the steps are described in more detail.

Terminal allocation

Time window allocation

Position allocation
Crane-to-vessel

assignment

Vessel to terminal
Quay crane capacity to

vessel
Infeasibility

1

2

Figure 1.3: Multi-step solution strategy for the multi-terminal BAP

First step

In the first step, i) a terminal, ii) a time window, and iii) a time variant quay crane
capacity are allocated to each vessel in the vessel set. The model of [Hen08] is discrete
in time: For example, a week is divided in 168 time intervals of one hour. A vessel
can be berthing during multiple of those time intervals. The problem is formulated as
a multi-objective optimization problem. A straightforward and an alternative Mixed
Integer Linear Programming (MILP) problem are proposed. There are four objectives:
minimizing i) the amount of inter-terminal traffic, ii) the total weighted deviation from
the desired berthing time intervals, iii) the amount of stored containers in each indi-
vidual terminal, and iv) the required quay crane capacity in each individual terminal.
Restricting properties are the terminal quay lengths and the available quay crane ca-
pacity in each individual terminal. In this model, it is guaranteed that the terminal
quay length and the quay crane capacities are never exceeded. However, the exact po-
sition allocation and the exact quay crane allocation are still to be determined in the
second step. In the first step an average quay crane rate is used, which means that each
quay crane has the same average rate. In each time interval, quay crane capacity can
be allocated to a vessel. The decision making in [Hen08] is of a strategic nature: The
arrival and departure times of vessels are assumed to be deterministic. The formulation
of the optimization problem is extended in [Vul08] to be able to use the method on an
operational level, where disturbances are taken into consideration. Disturbances can
be late arrival of a vessel or the breakdown of a quay crane. Model-based predictive
control (MPC) is used to construct the operational allocation.
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Second step

The exact berth allocation of the vessels and the exact quay crane allocation are deter-
mined in the second step. For both of them an optimization problem is formulated. In
this report, these optimization problems are the subject of investigation.
After allocating vessels to terminals in the first step, the actual position allocation can
be considered for each terminal separately. Since in the first step the arrival and depar-
ture times of the vessels have already been determined, the single-terminal BAP’s are
one-dimensional packing problems. Namely, only the position of the vessels along the
terminal quay has to be determined. The most important constraint is that the rectan-
gles (vessels) cannot overlap each other. Each vessel has its own lowest-cost berthing
position within the terminal, which is related to issues as the distance to the stacking
area, the capacity of the quay cranes at that quay location or the amount of traffic that
is generated by the vessel. The objective of the single-terminal BAP is to minimize the
weighted deviation from the lowest-cost berthing positions.
The first step terminal allocation may turn out to be infeasible in the second step allo-
cation. In the first step it is only guaranteed that the sum of the lengths of the vessels,
that are berthing simultaneously at one terminal, does never exceed the total terminal
length. However, this is not a guarantee for a feasible 2D-packing. When the position
allocation is infeasible, the first step problem has to be adapted and solved again to
construct a new allocation. This is depicted in Figure 1.3.
In addition, quay cranes are allocated to vessels in the second step: The quay crane
allocation problem (QCAP). As mentioned before, quay cranes can have different capac-
ities and, moreover, they can have a different capacity on different vessels. In the first
step allocation it is guaranteed that the total capacity in a terminal is never exceeded,
however existence of a feasible integer quay crane allocation is not guaranteed. Never-
theless, since switching a quay crane from one vessel to another is possible, feasibility
issues are not expected for the quay crane allocation. The problem can be formulated
as a multi-objective optimization problem. The objectives can be the minimization of i)
the departure time of each vessel, ii) the required quay cranes in an individual terminal,
iii) the number of movements of the cranes along the terminal quay. In addition, the
position of the quay cranes can be optimized. It is preferred to prevent that an idle
quay crane is isolated between two processing quay cranes, since then the correspond-
ing capacity cannot be used anywhere else along the terminal quay without moving the
other quay cranes. The fact that the quay cranes cannot cross each other is the most
important constraint of the optimization problem.
As shown in Figure 1.3, the two optimization problems in the second step are coupled.
This enables a more accurate representation of reality. For example, when a vessel
is processed by a number of quay cranes with a large capacity, the process time of
this vessel decreases. This changes the dimension of the rectangle corresponding with
the process time used in the one-dimensional packing problem: By solving the single-
terminal BAP again, the allocation of some vessels may change due to this dimension
change.
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1.2 Contributions and Outline

In this report the problems in the second step are addressed. In this step the single-
terminal BAP and the QCAP are still to be solved.
Firstly, a formulation for the BAP is proposed which fits in the considered multi-step
solution approach. To achieve this, an extensive literature study has been performed
and existing formulations are used to come up with a new one. The need for a new
formulation is a result of the considered solution approach: As described before, the
BAP in the solution approach is one-dimensional while in literature the formulations
are two-dimensional. The proposed formulation is used to conduct a statistical study
into the feasibility of the first step allocation in the second step. The performance of
the formulation with respect to the computational effort is also investigated.
Secondly, for the QCAP a formulation that fits the multi-step solution approach is pro-
posed. The formulation of [Liu06], which is continuous in time, fits (partly) within the
solution approach. First of all, a few adjustments have to be made to able to solve
cyclic systems with the formulation of [Liu06]. However, this formulation has a few
restrictions. First of all, a quay crane is allocated to a vessel until it has completely
been processed. In addition, the assumption of equal quay crane rates for each quay
crane is made. Both restrictions are a result of the fact that the formulation is contin-
uous in time. In this report, a different formulation for the QCAP is proposed. This
formulation is discrete in time and does not require the above mentioned restrictions.
However, this discrete formulation requires more computational effort. Therefore a
heuristics procedure is proposed for the discrete QCAP formulation. The performance
of both formulations and the heuristics procedure are compared in an extensive numer-
ical study.
The above described formulations consider problems on a strategic level, in which all
desired arrival and departure times of the vessels are deterministic. However, on an
operational level, vessels are sometimes early or late. The obtained strategic allocations
are not valid anymore then. Therefore, adjustments are made to the BAP and QCAP
formulations in the second step to be able to solve operational problems. The results
of the extended formulation for the first step problem of [Vul08] is then used as input
for the second step.
This research is supported by the terminal operator PSA HNN, located in Antwerp,
Belgium where they run a multi-terminal container operation.

This report is structured as follows: In Chapter 2, an extensive literature review for
the BAP is given and it is clearly indicated why a new formulation is required in the
considered solution approach. After that, the BAP is formally phrased and an exam-
ple is used to explain how a first step allocation may turn out to be infeasible in the
second step. Since the existence of feasible solutions in the second step depends on the
utilization of a terminal, it is investigated what the performance of the formulation is
for different terminal quay utilizations. In addition, a representative case is solved.
Chapter 3 describes both the continuous and discrete formulation for the QCAP. A
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comparison is made between the proposed discrete formulation and the continuous for-
mulation of [Liu06]. In addition, the performance of the discrete formulation is investi-
gated when a heuristics procedure is used to solve the discrete QCAP.
In Chapter 4, a representative case is used to generate results on both a strategic level
and an operational level. Based on data from terminal operator PSA HNN the strategic
allocation is determined. The allocations from the first step are used as inputs for the
BAP and QCAP in the second step. A simulation model is used to generate distur-
bances on the arrival times of the vessels. In that case, the model-based predictive
approach of [Vul08] is used to construct the first step allocation.
Finally, conclusions are drawn and recommendations are given in Chapter 5.
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Chapter 2

Berth Allocation Problem (BAP)

In this chapter, the BAP is explained in more detail. In Section 2.1, a literature review
is given. In Section 2.2, it is explained why the considered multi-step solution approach
requires an adapted formulation. An MILP for the BAP is formulated in Subsection
2.3.2. The possibility on infeasibility in the second step is explained in more detail
in Section 2.4. In that section, a statistical study into the feasibility of the first step
allocation in the second step is performed. In addition, a possible solution for when
a first step allocation turns out be infeasible in the second step is described. The
performance of the formulation with respect to computational effort is investigated in
Subsection 2.4.4. In Section 2.5, a case study is performed to investigate how the
formulation performs in a representative case.

2.1 Literature Review

Intensive research has been conducted on the single-terminal BAP. The single-terminal
BAP consists of two interrelated allocation problems. A berthing position and a time
interval of berthing have to be allocated to each vessel. Therefore the problem can be
viewed as a two-dimensional packing problem, where each vessel is represented by a
small rectangle. The process time of a vessel depends on both the amount of containers
to be processed and the number of quay cranes allocated to it. In general, the objective
of the single-terminal BAP is to minimize the total weighted processing time.
Either a static or dynamic, single-terminal BAP is considered. In the static case, it is
assumed that the set of vessels is known before the construction of the allocation takes
place. This turns the problem into an assignment problem and makes it solvable in
polynomial time with the Hungarian method [Pap82]: Jobs are assigned to machines
by sequentially computing shortest paths until each job is assigned to a machine. In
the dynamic case, vessels arrive while work is in progress. In addition, a division is
made between a discrete and continuous, single-terminal BAP. In the discrete case, the
terminal is divided into a finite set of segments. The length of a vessel is not or partly

9
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taken into consideration, since a vessel can only berth at one or more of these segments.
Each vessel can then be modeled as a job and each berth as a machine. This turns the
problem into a parallel machine scheduling problem [Pin95]. In the continuous case,
vessels can berth anywhere along the terminal. Both the discrete and the continuous
case have been proven to be NP-hard [Gar79].
In [Lim98] the continuous, single-terminal BAP is transformed into a two-dimensional
packing problem. This problem is formulated as a graph-theoretical problem and solved
with a heuristic. In [Moo06] the continuous, single-terminal BAP is viewed as a cyclic
problem. The two-dimensional packing problem is therefore performed on a cylinder
and solved with a sequence based simulated annealing method. [Dai04] formulates
the continuous, static BAP as a two-dimensional packing problem with release time
constraints. The problem is solved using a local search algorithm. In [Li98] the single-
terminal BAP is transformed into a bin packing problem, which results in a discrete
approach of the problem. Several variants of the problem are solved with the First Fit
Decreasing Heuristic.
A nonlinear integer programming problem is formulated for the discrete, single-terminal
BAP in [Nis01, Cor05]. Since such a nonlinear programming problem requires a lot of
computational effort, heuristics procedures are proposed to solve the problem. [Nis01]
proposes a heuristics procedure based on a genetic algorithm and [Cor05] uses tabu
search heuristics to solve the single-terminal BAP.
In [Ima01, Par03, Han08], an MILP problem is formulated to solve the discrete, single-
terminal BAP. Since the proposed MILP formulations require much computational effort
when they are solved, different heuristics procedures are proposed to be able to solve
problems of practical size within a reasonable amount of time. In [Ima01], the original
problem is relaxed by a Lagrangian penalty function. A heuristics procedure based
on a simulated annealing method is used to solve the single-terminal BAP in [Par03].
[Han08] presents a variable neighborhood search heuristic and shows that it outperforms
three other heuristics.
The continuous, single-terminal BAP is also formulated as an MILP problem in [Kim03,
Cor05, Ima05, Wan07]. To reduce the computational effort, again heuristics procedures
are proposed to solve the MILP problems. In [Kim03] simulated annealing is used to
solve the problem and it is shown that the solutions are close to optimal. A tabu search
heuristics is proposed to solve the single-terminal BAP in [Cor05]. [Ima05] presents
a heuristics procedure that solves the problem in two stages: In the first stage the
algorithm for the discrete, single-terminal BAP identifies a solution given the number
of partitioned berths, and in the second stage a procedure reallocates vessels that may
overlap or are located far-away from each other. In [Wan07] a heuristics procedure
based on a stochastic beam search is proposed to solve the problem.
In [Ima07] mega-ports with intended berths in which quay cranes can process a vessel
from both sides are formulated as an MILP problem and solved with a genetic algorithm.
Results suggest that while the intended berths serve mega-vessels faster, the total lead
time of all the vessels at ports with intended berths is larger than the one at conventional
ports.
As described above, all BAP formulations are two-dimensional; both the position and
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the berthing time interval are determined. In all cases a heuristics procedure is necessary
to be able to solve the BAP within a reasonable amount of time.

2.2 Problem Statement

The first step allocation is used as input for the BAP in the second step. Hence, the
vessel set is known before the construction of the allocation, which means that a static
BAP is solved. It is enabled that a vessel can berth anywhere along the terminal, since
in that case the length of the vessels is completely taken into consideration. Hence, a
static, continuous BAP is solved.
Since the first step allocation is used as input, both the arrival and the departure time
of each vessel have already been determined. This means that the vessels have already
been fixed in time, and only the position allocation has to be constructed. As a result the
two-dimensional BAP, as presented in literature, can be reduced to a one-dimensional
BAP.
Each vessel has a lowest-cost berthing position, which is related to issues as the distance
to the stacking area, the quay crane rate, or the amount of traffic that is generated by
the vessel. The objective is to minimize the deviation from the lowest-cost berthing
position.

2.3 Mathematical Model

Firstly, the static, continuous BAP is described in more detail. Secondly, the BAP is
formally phrased.

2.3.1 System Description

Unless stated differently, the following set of vessels is considered: v ∈ {1, ..., V }. Fur-
thermore, it is assumed that vessels call cyclically, where each vessel in the set arrives
exactly once each cycle. In general, the cycle length is in the order of one week for such
a container operation.
As mentioned before, the arrival and departure times of each vessel (Av and Dv respec-
tively) have already been determined in the first step optimization. In the formulations
of [Kim03, Cor05, Ima05, Wan07] for the continuous BAP, binary variables are used to
indicate whether vessels are berthing at the same time. In addition, binary variables
are used to indicate on which side a vessel is positioned with respect to another vessel.
Hence, the first type of binary variables from those formulations can be eliminated,
since it is already known which vessels are berthing simultaneously. Instead, a set U
is defined, which contains the indices pairs of vessels that are berthing simultaneously
during at least one time interval.
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Table 2.1: Model parameters

Parameters Definition
V Number of vessels [-]
lv Length of vessel v [m]
Lt Length of terminal t [m]
Rv Lowest-cost berthing position of vessel v [m]
Av Actual arrival time of vessel v (start of processing of vessel v) [-]
Dv Actual departure time of vessel v (end of processing of vessel v) [-]
Cv Cost per unit distance introduced by vessel v
N Sufficiently large positive number [-]

Terminal t has a restricted quay length Lt. Once berthing, vessel v requires a certain
amount of quay meters lv. A safety gap is added to each vessels’ length.
Vessel v has its own lowest-cost berthing position Rv. The position of vessel v is repre-
sented by the position of its center. The origin for this position is the left-most boundary
of the terminal quay. Hence, the value for the position of the center of vessel v is at
least half of its length. For vessel v, costs are assigned for deviating from the lowest-cost
berthing position, indicated by Cv. The goal is to minimize the costs of the system.
Hence, the deviation from the lowest-cost berthing position is minimized for all vessels.
In addition, a sufficiently large number N is introduced. The sets and parameters
discussed above are conveniently arranged in Table 2.1. Below, the variables of the
problem are stated first. After that, the constraints and the objective function are
derived. Then, it becomes clear why the sufficiently large number N is needed.

2.3.2 MILP

Here, first the variables of the problem are defined. After that, the constraints and the
objective function are derived.

Continuous variable

pv : Position of the center of vessel v [m]. The origin for this position is
the left-most boundary of the terminal quay.

Binary variable

sij =
{

1 if vessel i is positioned to the left of vessel j (i.e. pi < pj) (i, j) ∈ U ,
0 otherwise.
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In Figure 2.1, an illustration of notations for a berth-schedule on the (terminal,time)-
space is given. Since vessel i and vessel j are berthing at the same time, this vessel pair
(i, j) is included in set U .

Vessel i

Vessel j

ip jp

jA

iA

jD

iD

T
im

e

Terminal position [m]

tL

iL

jL

Figure 2.1: An illustration of a berth allocation of two vessels

Constraints

When berthing, vessel v should entirely be allocated in between the terminal ends:

lv
2
≤ pv ≤ Lt − lv

2
∀v. (2.1)

Two vessels, which are berthing simultaneously cannot overlap each other:

pi − pj ≥ li + lj
2

− sij ·N ∀(i, j) ∈ U , (2.2)

and

pj − pi ≥ li + lj
2

−
(

1− sij

)
·N ∀(i, j) ∈ U . (2.3)

Vessel i is always allocated to the right or left of vessel j. Suppose that vessel i is
allocated to the right of vessel j. In that case, pi − pj < 0. Constraint (2.2) can only
be fulfilled when sij = 1 since then the sufficiently large number N is deducted. Using
sij = 1 in Constraint (2.3) ensures that the centers of vessels i and j are at least half
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of the vessels’ lengths away from each other. When the vessels would be allocated the
other way around, the value of sij would be forced to 0 by Constraint 2.3, and the
position of the vessels would be determined by Constraint 2.2. An appropriate choice
for N is the terminal length Lt.

Objective function

In the objective the distance of each vessel to its own lowest-cost berthing position Rv

is minimized:

min
V∑

v=1

Cv · |pv −Rv|. (2.4)

Since the problem is solved as a linear optimization problem, the absolute value has
to be eliminated. Therefore, the auxiliary variable ov is introduced. As a result, the
objective is reformulated and two constraints are added:

min
V∑

v=1

Cv · ov, (2.5)

where

ov ≥ pv −Rv ∀v, (2.6)

and

ov ≥ Rv − pv ∀v. (2.7)

The additional constraints ensure that auxiliary variable ov is always equal to or larger
than 0.

2.4 Statistical Study

As mentioned in Section 1.1, the first step allocation may turn out to be infeasible
in the second step. This is illustrated by a small example. Since it is expected that
the percentage of feasible allocations depends on the utilization of the terminal quay,
experiments are performed to investigate the influence of the terminal quay utilization
on the feasibility.
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2.4.1 Infeasibility

In Table 2.2 the length, arrival and departure times are given for a set of 5 vessels.
This set represents a part of the output of the optimization problem in the first step:
The allocated time variant crane capacity is left out, since this is not relevant for the
BAP. The considered cycle is one week, consisting of 7 time intervals of one day. The
seventh time interval ends at discrete time step 7, which is equal to the discrete time
step 0. This means that vessel 5 berths at discrete time step 6 of the cycle and departs
at discrete time step 2 of the next cycle. The terminal quay length is 350 m. The total
terminal quay occupation is at most 300 m: There is no time interval were the combined
lengths of the vessels which are berthing simultaneously is larger than 300 m. Hence,
one would expect that it is possible to construct a feasible allocation in the second
step. Nevertheless, this is impossible, since the time intervals and the dimensions of
the vessels make a non-overlapping fit impossible. In Figure 2.2, it is depicted that
the vessels do not fit in between the terminal ends. Since in this step it is impossible
to change the arrival and departure times of the vessels, vessels 1 and 4 have to be
positioned left or right to vessel 3. This also sets the position of vessel 5, which makes
a feasible allocation of vessel 2 impossible due to the cyclic nature of vessel 5. There
are more possibilities of arranging the vessels than depicted in Figure 2.2, however no
feasible packing exists.

Table 2.2: Set of vessels

Vessel lv [m] Av [-] Dv [-]
1 100 2 4
2 150 0 3
3 200 3 6
4 100 5 7
5 150 6 2

2.4.2 Feasibility Experiments

Looking at Figure 2.2, one can image that the terminal quay utilization has an influence
on the probability of infeasibility in the second step. In a ’packed’ terminal, it is more
difficult to construct a non-overlapping fit. Hence, it is expected that for a larger
terminal quay utilizations, it is more often not possible to construct a feasible allocation
in the second step from a feasible first step allocation.
Herein, the terminal utilization is defined by:

ut =

V∑
v=1

Ov

A
, (2.8)
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Figure 2.2: Allocation infeasibility in the second step

where
A : Product of the terminal length Lt and the number of time intervals K,
Ov : Product of the vessel length lv and the processing time of vessel v.

For example, A = 7 · 350 and O1 = 100 · 2 in Figure 2.2. When for all vessels Ov is
determined, this results in a terminal utilization of 0.77.
In addition, it is expected that the mean length and the mean processing time of the
vessels have an influence too. When both are decreased, the dimensions of the rectangles
which represent a vessel become smaller (i.e. Ov is decreasing). Constructing a non-
overlapping fit is expected to be easier with smaller rectangles.
Hypothesis: For larger terminal utilizations, it is more often not possible to construct a
feasible allocation in the second step from a feasible first step allocation. Decreasing the
average dimensions of vessels (rectangles) in time and space makes it easier to construct
a feasible allocation in the second step from a first step allocation.

Experiments setup

Since the aim of the experiments is to check the feasibility of first step allocations in
the second step, it is not necessary to include the objective function in the implementa-
tion of the formulation of Subsection 2.3.2. Hence, (2.4) – (2.7) are neglected in these
experiments, and only a feasibility check is performed. Computation time is gained by
doing this.



2.4. Statistical Study 17

In the experiments, a cyclic period of one week is considered with time intervals of
one hour, resulting in K = 168. The terminal quay length is chosen 1000 m (i.e.
Lt = 1000 m). Vessel sets with different terminal utilization are generated randomly.
The utilization is varied by generating sets with a different number of vessels. The
mean processing time P v and the mean length lv of the vessels are not changed between
the different sets. Vessel sets are generated for a terminal quay utilization up to 0.85.
When the utilization is around 0.85, it is only possible to increase the utilization by
introducing smaller vessels which are berthing for a shorter time interval since there has
to be guaranteed that the terminal quay occupation is never larger than the terminal
length. This would not be a correct representation of reality. The generated vessel sets
have to represent first step allocations; meaning that the arrival and departure time of
each vessel (Av and Dv, respectively) have already been determined.
The arrival time is drawn from an uniform distribution between k = 0 and k = K. The
processing time and the length of the vessels are determined with the help of represen-
tative data of container terminal operator PSA HNN. In Appendix A, it is described
how the representative data is used to generate the processing times and lengths of the
vessels for the vessel sets. The departure time is determined by the arrival time and the
processing time. The length of the vessels lv includes a safety gap of 50 m. Since the
system is cyclic, a vessel can arrive at the end of the cycle and leave at the beginning
of the next cycle.
Since the influence of the dimensions of the rectangles is also investigated, different
experiments are performed. In each experiment, vessels in the generated vessel sets
have a different mean length lv and mean processing time P v. The parameters lv and
Pv are assumed to be related: Large vessels can carry more containers and require
therefore more processing time. The different experiments are given in Table 2.3. The
mean vessel length and mean processing time of the vessels in experiment 2 are based
on representative averages of the vessels berthing at PSA HNN. The mean length and
processing times of the vessels in the other experiments are scaled down or up with
respect to the averages in experiment 2.
The generated vessel sets are used as input data, and together with the model of Sub-
section 2.3.2, fed into CPLEX. CPLEX indicates whether a feasible solution is found or
not by giving a different solution code. In addition, the CPU time which is required to
check whether a feasible solution exists, is monitored for each vessel set.

Table 2.3: Experiments setup

Experiment lv [m] P v [h]
1 200 14
2 250 18
3 300 22
4 350 26
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Results

The results of the experiments are depicted in Figure 2.4. Figure 2.4a shows the per-
centage of feasible solutions dependent on the terminal quay utilization. In Figure 2.4b
the mean CPU time and 95% confidence interval are depicted. The markers represent a
collection of vessel sets of which the terminal quay utilization is within a certain range.
For example, the first marker of all experiments represents the vessel sets with terminal
quay utilization between 0 and 0.05, and the second marker represents the vessel sets
with terminal quay utilization between 0.05 and 0.10, etc. Typically, the terminal quay
utilization is on average between 0.2 and 0.5 in container terminals, which is indicated
by the dashed vertical lines.
From Figure 2.4a, it can be concluded that for typical terminal quay utilizations it is
not likely to encounter problems with infeasibility. For utilizations larger than 0.5 the
the percentage of feasible allocations is decreasing gradually. From utilizations larger
than 0.7 the percentage of feasible solutions decreases rapidly. These results are as
expected. For larger utilizations the terminal is more ’packed’, and the probability of
violating the non-overlapping constraints increases with the terminal quay utilization.
It has to be remarked that not all infeasible allocations are caused by the cut in the
chosen multi-step solution approach. Suppose that the same vessel sets would be used,
but that the vessels would not be fixed in time. In that case, a two-dimensional packing
problem is solved. It is still possible that a non-overlapping allocation does not exist.

Although the sum of the areas of all small rectangles (
V∑

v=1
Ov) is less than the area of

the large rectangle (A), it is still possible that the small rectangles are not fitting in the
large rectangle. This is caused by the fixed dimensions of each small rectangle, resulting
from the vessel length lv and the processing time Pv. A very simple example of such a
situation is a large rectangle with dimensions 2 by 2, and two smaller rectangles with
dimensions 1.5 by 1 and 1 by 1.5, respectively. The area of the large rectangle is 4, and
the sum of the areas of the two smaller rectangles is 3. Since it is not allowed to rotate
the small rectangles, it is not possible to find a feasible fit. This example is depicted in
Figure 2.3.

21

1

2

0

Figure 2.3: Example

In Figure 2.4a not all results are as expected. It is actually not the case that vessels
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Figure 2.4: Results for the feasibility experiments

that are on average smaller and are berthing on average for a shorter period of time
result in less infeasible allocations. For the largest utilization range (i.e. 0.8 to 0.85) it
is even the other way round. For terminal quay utilizations larger than 0.55, it is even
the case that smaller vessels on average more often result in infeasible allocations than
the larger ones. For terminal quay utilizations from 0.6 there is actually not a clear re-
lationship between the mean vessel length and mean berthing time, and the percentage
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of infeasible allocations. It is expected that two factors play an important role.
In the first place, the number of vessels that are berthing during the considered time pe-
riod. When both the mean vessel length and mean berthing time decrease, the number
of vessels increases quadratically. Both the mean length and mean width of the small
rectangles decreases. The growth in vessels results also in an increase of non-overlapping
constraints. The number of constraints increases with 1

2V (V −1), where V is the number
of vessels. Hence, with the increase of the number of vessels, the number of constraints
also increases, which makes it more difficult to construct a non-overlapping fit. In the
second place, the mean length and mean berthing time of the vessels (rectangles) have
an influence. Although the relation between vessel size and the percentage of infeasible
allocations is not as expected, this has to play a role. As mentioned before, it is ex-
pected that smaller rectangles are easier to fit in the large rectangle. For example, for a
terminal quay utilization between 0.6 and 0.75 the vessels with the largest mean length
(lv = 350 m) and the largest mean berthing time (P v = 26 h) result in more infeasible
allocations than the vessels with mean lengths of 250 and 300 m, respectively.
The above-mentioned factors are conflicting. For larger utilizations one would expect
that it is easier to fit the smaller rectangles in the large rectangle. On the other hand,
smaller rectangles result in more non-overlapping constraints, which makes it more dif-
ficult to construct a non-overlapping fit. The conflict between the two factors most
probably causes the unexpected differences as depicted in Figure 2.4a.
In Figure 2.4b, it is shown that the required CPU time to find a feasible solution de-
pends on the mean vessel length and mean berthing time. The smaller the mean vessel
length and mean berthing time, the more CPU time is required. This is most prob-
ably caused by the fact that when the vessels are smaller and berthing for a shorter
period of time, the number of vessels increases quadratically to reach the same terminal
quay utilization. As described above, the number of non-overlapping constraints also
increases. It is expected that when the number of vessels reaches a certain value, the
required CPU time is increasing rapidly. In this case, that number is around 20 vessels.
For the vessel sets with lv = 200 m and Pv = 14 h a terminal quay utilization of around
0.5 is reached with 20 vessels. That is also the utilization where the CPU time for those
vessel sets starts increasing stronger. The mean maximum CPU time for those vessel
sets is 23 s. Also for the vessel sets with lv = 250 m and P v = 18 h, the CPU time
starts increasing in the utilization region (i.e. 0.70 to 0.85) where 20 vessels are berthing
in the considered time period. For the two other experiments, less than 20 vessels are
required to reach large quay utilizations. In those experiments no sharp increase of the
required CPU time is observed, which confirms that when the problem size stays below
a certain value no sharp increase in CPU time is observed.
From the experiments, it can be concluded that for typical terminal quay utilizations
in real-life ports, the number of infeasible allocations is statistically negligible. The
required CPU time to find a feasible allocation is also very small. When the utilization
increases, not a lot of problems are to be expected with infeasibility issues and the
required CPU time to find a feasible allocation.
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2.4.3 Dealing with Infeasibility

As described in the previous section, for typical terminal quay utilizations there are no
problems expected with infeasibility. However, for increasing terminal quay utilization
the probability of infeasibility in the second step is also increasing. In such case, this has
to be factored into the optimization problem in the first step as depicted in Figure 1.3.
In the first step optimization problem, adjustments have to be made to prevent the
allocation to be infeasible in the second step. An approach is to minimize the maximum
quay occupation during the considered time period. The infeasibility is most probably
caused by some consecutive time intervals in which the quay occupation is very large. By
minimizing the maximum quay occupation, the vessels are balanced out over time, and
the probability of infeasibility decreases. A variable for the maximum quay occupation
has to be added to the allocation problem in the first step.
However, this proposed solution does not guarantee that infeasibility does not occur
anymore in the second step optimization. Further research is required to investigate
the impact of this proposed approach.

2.4.4 Parameter Sensitivity

In the previous section no optimization is performed; there is only checked whether a
feasible solution can be found for a certain vessel set. In this section, for the feasible
data sets from Subsection 2.4.2 an optimization is performed. The required CPU time
to perform the optimization is investigated dependent on the utilization of the terminal
quay. It is expected that the required computational effort is small for all terminal
utilizations since, as mentioned before, the considered problem is a one-dimensional
problem. It is more easy to solve than the two-dimensional formulations in literature.
Off course, the required CPU time is expected to increase with increasing terminal quay
utilization.
In addition, the average distance of each vessel to its lowest-cost berthing position Rv,
and the objective function value for the different experiments are monitored. It is ex-
pected that the average distance to the lowest-cost berthing position and the mean
objective function value are dependent on both the terminal utilization and the vessels’
length and berthing time. Most probably both values increase with the terminal utiliza-
tion, since in a ’packed’ terminal more vessels are berthing and more non-overlapping
constraints have to be fulfilled. The possibility that one vessel is blocking the lowest-
cost berthing position of another vessel is increasing with the terminal utilization. This
possibility is also increasing when the average vessels’ length and berthing time are de-
creasing, since then the number of vessels and non-overlapping constraints are increased
as it has been observed in the previous section.
Hypothesis: Since a one-dimensional packing problem is solved, the required CPU time
is expected to be small. The CPU time, the average distance to Rv and the average
objective function value increase with the terminal quay utilization. They are also
increasing when the average vessels’ length and berthing time are decreased.
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Experiments setup

Since in these experiments an optimization is performed, the objective function (2.5)
and the additional constraints (2.6) and (2.7) are added to the model. The lowest-cost
berthing position Rv for each vessel is a randomly chosen position along the terminal
quay. The cost per unit distance of a vessel Cv depends on the length of the vessel. In
these experiments the large vessels introduce more costs when berthing on a non-optimal
berthing position than small vessels since it is assumed that large vessels introduce more
work than small vessels.
The vessel sets which result in a feasible allocation from Subsection 2.4.2 are used as
input data. Together with the model, they are fed into CPLEX. The mixed integer
optimization is terminated as soon as it has found an integer solution proven to be
within 1% of optimal. The CPU time is monitored again. The objective function value
and the mean distance to Rv of each vessel in each vessel set is stored.

Results

In Figures 2.5 and 2.6 the results of the experiments are depicted. The mean CPU
time and 95% confidence intervals are depicted in Figure 2.5a. In Figure 2.5b the same
results are depicted on a different time scale to show the results with a small required
CPU time in more detail. In Figure 2.6a, the average distance of the vessels to Rv and
the 95% confidence intervals dependent on the terminal quay utilization are depicted.
The average objective function values and 95% confidence intervals of the different ex-
periments are depicted in Figure 2.6b. The dashed vertical lines again indicate the
typical terminal quay utilization.
As expected, for typical quay utilizations the MILP problem is solved very rapidly; for
all experiments a solution is constructed within 10 seconds for typical terminal quay
utilizations. For the vessel sets with lv = 200 m and P v = 14 h the overall largest CPU
time is monitored at a terminal utilization between 0.75 and 0.8; it takes then up to
two minutes to construct an optimal position allocation.
In Figure 2.5a, it is shown that for this vessel size the required CPU time is significantly
larger than for the other vessel sizes. In Subsection 2.4.1 has already been observed that
the problem size has most probably its influence on the required computational effort.
As mentioned there, decreasing the mean length and the mean process time of the ves-
sels in a vessel set results in a quadratic increase of the number of vessels to reach the
same utilizations, and an increase of 1

2V (V − 1) in non-overlapping constraints. In ad-
dition, more vessels in a vessel set means also more possibilities of allocating the vessels
with respect to each other. Hence, there are more possible allocations which have to be
compared with each other. The problem size and the number of allocation possibilities
are most probably also the explanation for the relation between the different required
CPU times in Figure 2.5b; the on average largest vessels require the least CPU time.
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Figure 2.5: CPU time for the optimization experiments

For the vessel sets with lv = 200 m or lv = 250 m and P v = 14 h or P v = 18 h, the
same behavior is observed. They both have a certain terminal quay utilization where
the CPU time is at its peak, and decreases again for larger terminal quay utilizations.
This is most probably caused by the fact that the number of possibilities to allocate
the vessels with respect to each other only increases up to a certain terminal quay
utilization. For the vessel sets with lv = 200 m and P v = 14 h this certain terminal
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quay utilization is between 0.75 and 0.8, and for the vessel sets with lv = 250 m and
P v = 18 h this utilization is between 0.65 and 0.7. For quay utilizations larger than
this value, the number of possibilities to allocate the vessels with respect to each other
most probably decreases. Because the terminal becomes more ’packed’, there are less
feasible allocations possible.
The results with respect to the average distance of the vessels to Rv are as expected. In
Figure 2.6a, it is shown that from a terminal quay utilization of 0.5, the mean distance
of each vessels to Rv is larger for vessel sets with vessels that are on average smaller
and berthing for a shorter period of time. As mentioned before, this is most probably
caused by the fact that the number of vessels and non-overlapping constraints increase
with the decrease of the vessels’ length and berthing time in the vessel sets. Hence, the
possibility that a vessel is blocking the lowest-cost berthing position of another vessel
is increased. The mean objective function value is also significantly larger for the vessel
sets with vessels that are on average smaller, as depicted in Figure 2.6b. This is exactly
as expected, since the average distance of each vessel to Rv is increased and the number
of vessels in the vessel sets is larger.
From these experiments, it can be concluded that the BAP solves very fast for typical
terminal quay utilizations. The required CPU time, the mean distance of the vessels to
the lowest-cost berthing position and the mean objective function value most probably
increase with the problem size. Hence, when the average length and berthing time
of the vessels in the vessel set are small, the CPU time, the distance of each vessel
to Rv and the objective function value are large in comparison with other vessel sets.
However, in the performed experiments the maximum mean CPU time is not exceeding
the 2 minutes.

2.5 Case Study

A case study is considered with representative data for the port of Antwerp. For the
data, an allocation has been constructed manually by experienced planners of PSA
HNN. Furthermore, an allocation has been constructed using the proposed formulation
in Section 2.3.
The model parameter Rv, the lowest-cost berthing position, is defined in more detail
in [Ove08] by using data about straddle carrier driving distances. The objective is to
minimize the total amount of straddle carrier driving distance. The generated berth
position allocation is compared with the manually constructed berth position allocation.
Comparison suggests that a significant reduction in the driving distances can be achieved
by using the proposed formulation.

2.5.1 Straddle Carrier Driving Distances

For each container, a straddle carrier has to cover a certain distance to put it from
vessel to stack or vice versa. This distance depends on the position of the vessel at
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Figure 2.6: Results for the optimization experiments

the terminal quay and the position of the container in the stack. Different types of
containers can be distinguished, of which some have a fixed position in the yard:

1. Empty containers: Stacked at two fixed positions in the yard; at the center of the
terminal and at the right-most side of the terminal. For each vessel, it is known
to which of the two empty-stacks the empty containers have to go.
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2. Refrigerated containers: Stacked at one fixed position in the yard; at the right-
most side of the terminal.

3. Containers with dangerous goods: Stacked at three fixed positions in the yard; all
three positions are located at the right side of the terminal.

4. Export containers: Stacked somewhere at the yard during the days before the
arrival of the vessel. Most of the export containers are stacked in the center of
the terminal. This is a result of the fact that the left side of the terminal is still
under construction.

5. Import containers: Stacked somewhere in the yard nearby the berthing position
of the vessel.

6. Transshipment containers: Temporarily stacked and then loaded onto another
vessel.

The container types 2 and 3 have fixed positions in the stacking area due to regulations
and facilities. There are strict regulations about stacking containers with dangerous
goods and the refrigerated containers require for instance electricity connections. With
container categories 4 to 6 full containers are meant, which are not falling in categories 2
or 3. Off course, the containers in categories 2 and 3 can also be imported, exported
or transshipped. However, they always have to go to their fixed position in the yard.
For example, consider a refrigerated, transshipment container. This container has to go
temporarily to the fixed yard position for refrigerated containers, since it requires elec-
tricity to stay refrigerated. Category 1 is an exception, since an empty container is only
moved from or to its fixed yard position when the container is exported or imported.
When an empty container is transshipped, it falls under category 6 since it does not
require special facilities.
In Figure 2.7a, representative straddle carrier driving distances for containers with dan-
gerous goods are depicted as a function of the terminal position of a vessel. Since the
three fixed stacking positions for the containers with dangerous goods are on the right
side of the terminal, the driving distance for the straddle carriers is smallest at the right
side of the terminal. An approximation of the measured driving distances is constructed
by using piecewise linear functions, which are indicated by the dashed lines in the fig-
ure. The driving distance functions for container types 1 and 2 are approximated in the
same way.
It is assumed that the stacking position of export containers for a certain vessel is fixed.
With respect to container category 4, therefore an approximation of the straddle carrier
driving distances has to be made for each vessel separately. In Figure 2.7b, represen-
tative driving distances dependent on the terminal position for one of the vessels are
depicted. Apparently, most export containers for this vessel are stacked somewhere
between position 700 and 1000 m. Namely, the mean driving distance for straddle car-
riers is smallest for this region. The driving distance of the straddle carriers is again
approximated by piecewise linear functions. This is done for all vessels in the vessel set.
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The driving distance for import containers is chosen independent of the berthing posi-
tion of a vessel since the containers are stacked at the berthing position of that vessel.
Finally, the driving distance of a straddle carrier for a transshipment container is equal
to the distance between the berthing positions of the two involved vessels.
Most vessels ship containers from different categories. The total amount of straddle
carrier distance of a vessel is assumed equal to the sum of the mean driving distances
for the containers of each category multiplied by the number of containers.
As mentioned before, the MILP formulation of Subsection 2.3.2 is used to solve the case
study. The objective is to minimize to total amount of straddle carrier distance. Hence,
the objective function for this case study is given by:

min
V∑

v=1

(
N empt

v ·Dempt(pv) + N ref
v ·Dref (pv) + Ndang

v ·Ddang(pv) + N exp
v ·Dexp(pv)

+N imp
v ·Dimp(pv)

)
+

V∑
x=1

V∑
y=1

N trans
xy · |px − py|,

(2.9)

where N empt
v , N ref

v , Ndang
v , N exp

v and N imp
v indicate the number of containers to be

processed for vessel v of container categories 1 to 5. The parameter N trans
xy gives the

number of containers from vessel x that are destined for vessel y. The indices of vessel
pairs that ship containers for each other are placed in set T S. The functions Dempty(pv),
Dref (pv), Ddang(pv), Dexp(pv) and Dimp(pv) are the approximations for the straddle
carrier distances of the different container categories as derived in [Ove08].
Similar to (2.4), the absolute values are eliminated by introducing auxiliary variable
tsxy and two additional constraints:

min
V∑

v=1

(
N empt

v ·Dempt(pv) + N ref
v ·Dref (pv) + Ndang

v ·Ddang(pv) + N exp
v ·Dexp(pv)

+N imp
v ·Dimp(pv)

)
+

V∑
x=1

V∑
y=1

N trans
xy · tsxy,

(2.10)

where

tsxy ≥ px − py, ∀(x, y) ∈ T S, (2.11)

and

tsxy ≥ py − px, ∀(x, y) ∈ T S, (2.12)

A vessel set of 38 vessels (i.e. V = 38) is considered during a time period of 251 time
intervals of one hour (i.e. K = 251). The terminal length Lt is 1750 m. Of each vessel
the arrival time, departure time and length are known (Av, Dv and lv respectively) in
advance.
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Figure 2.7: Mean straddle carrier distances as a function of the berth position of a vessel

The allocation from the proposed MILP is compared to the manually constructed allo-
cation in means of straddle carrier distance. The total driving distance for the manually
constructed allocation is also determined from the piecewise-linear approximations. In
this way, a fair comparison can be made.
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2.5.2 Results

In Figure 2.8, the results of the case study are depicted. The manually constructed
berth position allocation is depicted in Figure 2.8a, and the generated berth position
allocation is depicted in Figure 2.8b. The manually constructed allocation results in a
total straddle carrier driving distance of 8595 km, and the generated allocation results
in a total straddle carrier driving distance of 7842 km. Hence, the generated allocation
leads to an improvement of 8.8%. The MILP is solved in 1.63 s.
When the allocations are compared, it is noticed that in the generated allocation more
vessels are allocated to the center and the right side of the terminal than in the man-
ually constructed allocation. This has been expected since most containers have to be
stacked at the right side of the terminal.
The decrease of the driving distance is mainly caused by a combination of i) a small
reallocation of a vessel that loads and/or unloads a lot of containers, and ii) a large
reallocation of a vessel that loads and/or unloads a small amount of containers. An
example of the first situation is vessel 2. This vessel is only reallocated over 118.5 m,
but this results in an improvement of 70 km (= 9.3% of the total improvement) in
straddle carrier driving distance. This is caused by the fact that vessel 2 loads and/or
unloads 10% (= 2025 containers) of all the processed containers during the considered
time period. An example of the second situation is vessel 14. This vessel is reallocated
over 1221.5 m, and results in an improvement of 71 km. This improvement is completely
caused by 10 refrigerated containers, 10 containers with dangerous goods and 53 empty
containers. All these containers are stacked at the right side of the terminal. In ad-
dition, the vessel imports 498 containers, however those do not influence the position
allocation of the vessel. Hence, although the number of containers is small for vessel
14, it is beneficial to reallocate it for such a large distance.
The results of the case study are very convincing: They suggest that with little compu-
tational effort an improved berth position allocation can be constructed. A significant
decrease in straddle carrier driving distance is observed for the generated allocation.
It has to be criticized that the generated allocation is constructed with full knowledge
on all vessels’ load in advance. In practice however, the composition of the vessels’
load and the transhipment amounts (i.e. N trans

xy ) are sometimes only available 8 hours
before the arrival of the vessel. A solution could be that the BAP is solved more often
a week, which is possible because the MILP requires not much computational effort.
Then, historical data on load composition could be used for the vessels of which no
information is available yet, and this data can be updated while the vessel approaches
the port and more information becomes available. This would fit very well in the MPC
approach of [Vul08].
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(a) Manually constructed berth position allocation
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(b) Generated berth position allocation

Figure 2.8: Berth position allocation



Chapter 3

Quay Crane Allocation Problem
(QCAP)

The QCAP is the problem in the second step of the solution approach in which quay
cranes are allocated to vessels. First, a short literature review about the QCAP is given.
From literature, the formulation of [Liu06] is presented and adapted in Section 3.3 to
be able to solve the cyclic QCAP in the second step. This formulation is continuous
in time, which requires a few assumptions. These assumptions can be eliminated by
choosing a formulation, which is discrete in time. Therefore, a discrete QCAP for-
mulation is proposed in Section 3.4. However, the discrete formulation requires more
(integer) variables than the continuous formulation, which increases the required com-
putational effort. Therefore, a heuristics procedure for the discrete QCAP is proposed
in Section 3.4. In Section 3.5, a comparison is made between the continuous en discrete
formulation with respect to the objective function value and the computational effort.
In Section 3.6, it is presented how the objective function of the discrete formulation can
be extended to incorporate the minimization of i) the departure time of the vessels, ii)
the number of required quay cranes, iii) the movement of the quay cranes along the quay
iv) the possibility of process interruptions, and v) the isolation of idle cranes between
processing quay cranes.

3.1 Literature Review

In each terminal a restricted number of quay cranes is available to process the vessels.
The quay cranes are able to move along the terminal and thus along the vessels. Since
they are all situated on the same track, it is not possible for the quay cranes to cross
each other.
In [Par03], the QCAP is incorporated in the solution procedure for the single-terminal
BAP. This problem is solved in two phases: In the first phase, the position allocation

31
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of the vessels is constructed as well as the number of quay cranes allocated to each
vessel. In the second phase, a simple heuristics procedure is proposed to construct a
more detailed allocation for each individual quay crane. Such a procedure implies that
each quay crane has the same capacity since in the first phase only the number quay
cranes is determined for each individual vessel.
[Dag89] considers the static QCAP for a set of vessels, which are all available at time
0. The berth length limit and crane traveling time are ignored. The objective is to
minimize the total weighted completion time.
In [Liu06], the QCAP is formulated as an MILP problem to minimize the maximum
relative tardiness of the vessel departures. The result of the single-terminal BAP is
used as an input for the QCAP. The authors assume that a quay crane, allocated to a
certain vessel, is occupied until that vessel has completely been processed. A vessel is
divided in several bays, each having their own number of containers; each bay can be
processed by exactly one quay crane. To reduce the computational effort a heuristics
decomposition procedure is proposed to breakdown the model into two smaller, linked
models. In the first model, the optimal process time for each vessel is determined, using
different numbers of allocated quay cranes. In the second model, specific quay cranes are
allocated to each vessel. Both the MILP problem and the heuristics procedure require
the assumption of equal crane rates for each quay crane. Furthermore, the formulation
of [Liu06] is not suitable to solve cyclic systems.
Since [Liu06] solves to a great extent the same problem as the QCAP that is solved in
the second step of the solution approach, the formulation is adapted en presented in
the next sections.

3.2 Problem Statement

The adapted, continuous formulation of [Liu06] and the proposed discrete formulation
are presented in this chapter. Both QCAP’s take the result of the BAP, as presented in
Chapter 2, as their input. Hence, the position, the scheduled arrival time Av and the
desired departure time Dv have already been determined for each vessel. Let dv be the
processing completion time of the vessel in the QCAP; the processing completion time
dv can be earlier or later than the desired departure time Dv. As mentioned before,
both QCAP’s have the objective to minimize the maximum relative tardiness of a set
of vessels. The relative tardiness of a vessel v is defined as:

max(0, dv −Dv)
Dv −Av

. (3.1)

The min-max criterion is chosen rather than the total-tardiness criterion because the
former ensures that the tardiness is spread evenly over the vessels. It avoids scenarios
where a few vessels are delayed a lot, while others are leaving on time or earlier. Such
sharing fits the application: It is better to delay all vessels a little than delaying a few
vessels a lot [Liu06].
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3.3 Continuous QCAP

The continuous formulation is an adaptation of the formulation of [Liu06]. The main
difference is that [Liu06] adds more detail to the problem; a vessel is divided into bays
to which a single quay crane can be assigned. Since in the second step of the solution
approach it is only determined which quay cranes are allocated to a certain vessel v,
this level of detail is eliminated from the formulation. In addition, the formulation of
[Liu06] is discrete in the position of the vessels and the position of the quay cranes.
Since quay cranes are not allocated to the bays of the vessels anymore, it is possible to
present a formulation which is continuous in the position of the vessels and the position
of the quay cranes. Those two adjustments probably have a positive effect on the com-
putational effort that is required by the formulation since the problem becomes smaller
in size, and the number of integer variables is decreased. Finally, constraints are added
to be able to consider a cyclic system. For the completeness of this report the adapted
formulation of [Liu06] is given in Appendix B.
The formulation requires two assumptions as a result of the fact that the formulation
is continuous in time:

• Once a quay crane starts processing a vessel, it is allocated to that vessel until
the processing of the vessel is completed. The processing start and end time are
determined per vessel. As a result, each quay crane allocated to a certain vessel
has the same processing time on that particular vessel.

• The capacity of each quay crane is the same. The processing times of a vessel
are calculated for different numbers of allocated quay cranes in advance. These
processing times are considered as parameters in the continuous formulation. Since
it is not known in advance which quay cranes and which number of quay cranes
are allocated to a vessel, it is necessary to assume that the processing rates of the
quay cranes are identical.

3.4 Discrete QCAP

In this section, a discrete formulation for the QCAP is formally phrased. Experimental
results show that the computational effort is large for realistic sized problems. Therefore,
a heuristics procedure is proposed to decrease the required computational effort.

3.4.1 System Description

In the discrete formulation, unless stated differently, the following sets are considered:
i ∈ {1, ...,M}, the set of quay cranes, v ∈ {1, ..., V }, the set of vessels, and k ∈ {1, ..., K},
the set of discrete time intervals in de considered time period.
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By using discrete time intervals instead of continuous time, it is possible to allocate
each quay crane i to vessel v during time interval [k, k + 1〉. Hence, a quay crane can
change vessels from one time interval to another. For example, a quay crane can start
on vessel 1, move to vessel 2, and after a while move back to vessel 1. The processing
rate λiv may differ per quay crane i and vessel v. Hence, this formulation enables to
incorporate quay cranes with different quay crane rates. This suits the application: The
quay cranes in container terminals do not have equal process rates due to usage of twin
loads. In such a twin load the quay crane is able to pick up two twenty feet containers
at once. In addition, the quay cranes at the boundaries of the terminal often operate at
a smaller process rate. This is a result of the fact that they are more difficult to reach
with the straddle carriers than the middle ones. The process rate of a quay crane also
varies with the vessel length; a large vessel is processed at a larger rate than a small
vessel. Each vessel v requires a certain amount of quay crane capacity to be processed,
indicated by Qv. This value is determined in the optimization of the first step. When,
for example, 3.4 quay cranes are allocated to a certain vessel in the first step allocation,
Qv is simply the product of 3.4 and the average quay crane rate. Each vessel v can be
processed simultaneously by a maximum number of quay cranes Sv.
The position of each vessel v along the quay has already been determined in the BAP.
The left-most position is indicated by X l

v and the right-most position is indicated by
Xr

v . The origin for the left- and right-most positions of vessel v is the left-most bound-
ary of the terminal quay. Quay cranes have to be positioned along the vessel which
they are processing. The terminal quay has length Lt. Between two neighboring quay
cranes there has to be a minimal gap G.
In the first step allocation, the desired arrival and departure time (Av and Dv respec-
tively) have already been determined. The processing of a vessel cannot start before Av

since the vessel is not present in the terminal yet. Since the maximum relative tardiness
is minimized, it is preferred that the actual departure of vessel v is before or equal to
Dv.
With respect to the cyclic property of the considered system, a remark has to be made:
Both Av ≥ Dv and Av < Dv are possible. Therefore, the auxiliary parameter Ev is
introduced, which explicitly distinguishes between both cases:

Ev =
{

1 ifAv ≥ Dv ∀v,
0 ifAv < Dv.

The sets and parameters discussed above are conveniently arranged in Table 3.1. Below,
the variables of the problem are stated first. After that, the constraints and the objective
function are derived. Then, it becomes clear why the auxiliary parameter Ev is needed.

3.4.2 MILP

Firstly, the variables of the problem are stated. Then, the constraints and the objective
function are derived.
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Table 3.1: Model parameters

Parameter Definition
M Number of quay cranes [-]
V Number of vessels [-]
K Number of discrete time intervals in the considered time cycle [-]
λiv Processing rate of quay crane i on vessel v [containers/time interval]
Qv Required quay crane capacity for vessel v [containers]
Sv Maximum number of quay cranes, which can process vessel v simultaneously [-]
X l

v Left-most position of vessel v [m]
Xr

v Right-most position of vessel v [m]
Lt Length of terminal t [m]
G Minimal gap between to neighboring quay cranes [m]
Av Desired berth time of vessel v (start of processing of vessel v) [-]
Dv Desired departure time of vessel v (end of processing of vessel v) [-]

Continuous variables

li(k) : Position of quay crane i during time interval [k, k + 1〉 [m].
t : The maximum relative tardiness of all vessels [-].

Integer variable

av : The service start time of vessel v [-].
dv : The service completion time of vessel v [-].
∆d

v : Number of time intervals that vessel v departs too late or too early [-].

Binary variables

xiv(k) =
{

1 if crane i is allocated to vessel v during time interval [k, k + 1〉,
0 otherwise.

bv(k) =
{

1 if vessel v is berthing during time interval [k, k + 1〉,
0 otherwise.

ev =





1 if av > dv,
0 if av < dv,
1 if av = dv and vessel v is continuously berthing,
0 if av = dv and vessel v does not berth at all.
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ea
v =

{
1 if av < Av,
0 if av > Av.

Constraints

Vessel v berths between its arrival and departure time (av and dv respectively). Generic
constraints [Hen08] are required to relate av and dv to bv(k) as well as bv(k) to av and
dv for the cases where av < dv, av = dv and av > dv. The latter case follows from the
cyclic nature of the problem. The auxiliary variable ev ensures that the three different
cases are captured in the constraints (3.2), (3.3), and (3.4):

K∑

k=1

(
bv(k)− ev

)
= dv − av ∀v, (3.2)

and

1− av ≤ k · (bv(k)− ev

) ≤ dv − 1 ∀k, v, (3.3)

and

dv −K ≤ (
K − k

) · (bv(k)− ev

) ≤ K − av ∀k, v. (3.4)

Constraint (3.2) sets variable ev to one, when a vessel v is arriving at the end of the
cycle and leaves at the beginning of the next cycle. In that case, dv − av < 0; the left
term can only be negative when ev = 1. Constraints (3.3) and (3.4) ensure that bv(k)
is only set to 1 between av and dv. The binary variable ev ensures that bv(k) is set to 1
between av and K and between 0 and dv for a vessel that arrives at the end of the cycle
and leaves at the beginning of the next cycle.
Each quay crane i is allocated to maximally one vessel v during time interval [k, k + 1〉:

V∑

v=1

xiv(k) ≤ 1 ∀i, k. (3.5)

The total number of quay cranes allocated to vessel v has to be less or equal to the
maximal number of quay cranes, which can process vessel v simultaneously. In addition,
quay cranes can only be allocated to vessel v when it is actual berthing during time
interval [k, k + 1〉:

M∑

i=1

xiv(k) ≤ Sv · bv(k) ∀k, v. (3.6)
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The quay crane capacity allocated to vessel v has to be larger or equal to the required
quay crane capacity of vessel v:

K∑

k=1

M∑

i=1

λivxiv(k) ≥ Qv ∀v. (3.7)

When quay crane i is allocated to vessel v during time interval [k, k + 1〉, it has to be
positioned along vessel v. When quay crane i is idle, it has to be positioned somewhere
along the terminal quay:

xiv(k) · X l
v ≤ li(k) ≤ Xr

v · xiv(k) +
(
1− xiv(k)

) · Lt ∀i, k, v. (3.8)

Quay crane i cannot cross quay crane i + 1, and there has to be a gap G between quay
crane i and quay crane i + 1:

li(k) ≤ li+1(k)−G ∀i < M, k. (3.9)

The actual processing start time of vessel v has to be larger or equal to the desired arrival
time. Due to the cyclic property of the considered system, the auxiliary variable ea

v is
required to indicate whether the actual arrival av takes place in the same cycle as the
desired arrival time Av:

av ≥ Av −K · ea
v ∀v. (3.10)

With respect to departing too early or too late there are four possible permutations of
dv and Dv. Each vessel can depart earlier or later than Dv. However, since a cyclic
system is considered the actual departure time dv can shift between cycles. A vessel
of which the desired departure time Dv is at the end of a cycle can also leave at the
beginning of the next cycle or a vessel of which the desired departure time Dv is at the
beginning of a cycle can also leave at the end of the previous cycle. With the help of the
introduced auxiliary variables ev and ea

v and the auxiliary parameter Ev, it is possible
to construct appropriate constraints for ∆d

v to satisfy each of those four cases:

∆d
v ≥ −(

(Dv − dv)−K · ea
v + K · Ev −K · ev

) ∀v. (3.11)

The maximum relative tardiness of the complete vessel set is larger or equal to the
relative tardiness of the individual vessels. Again, the auxiliary parameter Ev is required
to indicate whether the desired berthing times of a vessel are cyclic:

t ≥ ∆d
v

Dv −Av + K · Ev
∀v. (3.12)

Objective

The objective of the problem is to minimize the maximum relative tardiness of the
complete vessel set:

min t. (3.13)
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3.4.3 Heuristics Procedure

Since the discrete QCAP formulation requires a lot of computational effort, a heuristics
procedure is proposed to reduce the number of variables. In the heuristics procedure,
the QCAP is not solved at once. The complete QCAP is cut into smaller subproblems,
which are linked with each other. Instead of solving the QCAP for the complete con-
sidered time period, multiple subproblems are solved sequentially. Each subproblem
represents only a part of the considered time period, reducing the number of vessels
and time intervals that are considered at once. The discrete QCAP formulation of Sub-
section 3.4.1 is used to solve the subproblems. Below, it is explained which adjustments
have to be made to that formulation to enable the heuristics procedure.

In Figure 3.1, an illustration of the heuristics procedure is given; subproblems I
and II are partly depicted. This figure shows that the subproblems are linked, since
vessels can be present in more than one subproblem, and it is possible that a vessels’
departure time exceeds the subproblems’ end time. A vessel that is present in multiple
subproblems is divided into parts. Vessel 2 consists of parts 2A and 2B, for instance.
In Algorithm 1, the heuristics procedure is formulated globally. With the help of the
example in Figure 3.1 and Algorithm 1, the heuristics procedure is explained in more
detail.
Although vessel 1 is berthing in the first subproblem, it is possible that its processing
is finished later than its desired departure time (i.e. D1 ≥ 7). Then, tardiness is intro-
duced. In that case there are two possibilities: i) The actual departure time is before
or at the end of the considered time period of the first subproblem (i.e. d1 ≤ 8), or ii)
The actual departure time is after the end of the considered time period of the first sub-
problem (i.e. d1 > 8). These two possibilities are clearly indicated in Algorithm 1. For
the first possibility nothing different from the complete QCAP occurs in the heuristics
step; vessel 1 simply introduces tardiness.
To enable the second possibility, it is necessary to solve the first subproblem for more
time intervals than the subproblem actually consists of. This means that each subprob-
lem is solved for twice the number of time intervals that it consists of to make the late
departure possible. When vessel 1 departs later than the end of the first subproblem
(i.e. d1 > 8), this has to be taken into account in the second subproblem. The new,
delayed departure time and the number of containers that are not processed before
discrete time step 8 of vessel 1 are transferred to the second subproblem. Hence, when
part 2B is processed in the second subproblem it is taken into consideration that vessel 1
still requires quay crane capacity to be finished. It is assumed that it is always possible
to finish such a delayed vessel in the next subproblem.
Vessel 2 and 3 are berthing in both subproblems. Hence, they are split into multiple
parts. Each part has its own desired arrival and departure time. The desired arrival
time for vessel part 2A is equal to the desired arrival time of vessel 2 (i.e. A2A = 5), but
the desired departure time of part 2A is equal to the end of the considered time period
of the first subproblem (i.e. D2A = 8). For part 2B it is exactly the other way around,
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the desired arrival time is equal to the end of the first subproblem (i.e. A2B = 8) and
the desired departure of part 2B is equal to the desired departure time of vessel 2 (i.e.
D2B = 11). The desired arrival and departure times of vessel 3 are determined in the
same way.
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Figure 3.1: Illustration of the heuristics procedure

The first time that a vessel is present in a subproblem (i.e. part A) the total required
quay crane capacity Qv is allocated to it. Hence, in the first subproblem Q2 is assigned
to part 2A, and Q3 is assigned to part 3A. This is possible since there is solved for more
time intervals than the number of time intervals of which the subproblems consist.
In the case of part 2A, there are two possibilities for its departure: i) Part 2A is com-
pleted before or at the end of the considered time period of the first subproblem (i.e.
d2A ≤ 8), or ii) Part 2A is completed after the end of the considered time period of the
first subproblem (i.e. d2A > 8). The first possibility yields that vessel 2 is processed
completely in the first subproblem. In that case, vessel 2 is not present anymore in the
second subproblem. This is also the reason for assigning the total required quay crane
capacity Qv to the vessel part in the first subproblem where the vessel appears in. By
minimizing the tardiness, it is enforced that in the first subproblem as much as possible
of the required capacity is processed. In this approach it is necessary to minimize the
tardiness of each individual vessel, and weigh the importance of minimizing the tardi-
ness of the vessels with respect to each other.
For the second possibility the capacity that remains after the end time of the first sub-
problem is transferred to the second subproblem. Hence, part 2B appears then in the
second subproblem. The two possibilities are equal to the two possibilities for vessel 1
and are again clearly indicated in Algorithm 1: Whether a vessel is processed completely
in subproblem s or a vessel is present in the next subproblem since its processing is not
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completed. Vessel 3 is treated the same way as vessel 2.
To make the interdependency between the subproblems stronger, information from the
first step allocation is used. In the first step, the required quay crane capacity is deter-
mined per time interval, as mentioned in Chapter 1. For all vessel parts, it is attempted
to process at least the number of containers that is allocated to the vessel during the
corresponding time intervals in the first step allocation. This required capacity for a
subproblem is denoted by Q∗

v. The actual amount of containers that is processed in a
subproblem is denoted by qv. By minimizing the positive difference between Q∗

v and qv,
it is ensured that as much as possible of Q∗

v is processed in each subproblem. Hence,
the following constraint is added:

qv −
K∗∑

k=1

M∑

i=1

λivxiv(k) ≥ Q∗
v ∀v, (3.14)

where K∗ is the number of time intervals in a subproblem. The variable qv is added to
the objective function, since it has to be minimized.
Since the first step allocations guarantee that in each time interval sufficient quay crane
capacity is present, the likelihood on discrepancies between different vessel parts is min-
imized. For example, when in part 2A at least the containers that are allocated to
vessel 2 in the first step optimization between discrete time steps 5 and 8 are processed,
it is most likely that it is possible to process the remainder of the required capacity in
part 2B before the desired departure time.
This is not a hard constraint, since the size of the time intervals also has an important
role. For example, when for part 3A 4.2 quay cranes are necessary to process Q∗

v in
the first subproblem, but only 4 quay cranes are simultaneously available to do this
job, there are two options. First, the required capacity of 0.2 is transferred to part 3B.
And second, the time intervals can be chosen smaller which makes it possible for an-
other quay crane to switch from another vessel. The first option is kept possible, since
the value for Q∗

v can also be very objectionable when using the second possibility. For
example, when Q∗

3A = 4.01, the original time intervals should be divided by at least a
factor 100 to be able to meet Q∗

v.
In case of a vessel arriving at the end of the considered cycle and leaving at the begin-
ning of the next cycle, part A is present in the last subproblem. When not all containers
are processed in part A in the last subproblem, all subproblems are solved again. The
number of containers that have not been processed in part A are assigned to a part B
of the vessel in the first subproblem. For part A of such a vessel also Constraint (3.14)
holds. The same situation occurs when a vessel in the last subproblem is not processed
completely before the end of the last subproblem. Then all subproblems are solved
again, and in the first subproblem a vessel part is created for the vessel that cannot
be processed completely in the last subproblem. In Algorithm 1, this is indicated by
the variable loop. When in the last subproblem (i.e. s = NS) a vessel is not processed
completely, loop = 0, which results in solving all subproblems again.

A few adjustments are made to the discrete QCAP formulation of Subsection 3.4.1
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Algorithm 1 Heuristics procedure for discrete QCAP
Require: loop = 0

while loop = 0 do
loop = 1
for s = 1 : NS do

if s 6= NS then
Solve the subproblem
for v = 1 : V do

if
m∑

i=1

K∗∑
k=1

xivλiv ≥ Qv then

Processing of vessel v is completed
else

Vessel v has to be added partly to the next subproblem
end if

end for
else if s = NS then

Solve the subproblem
for v = 1 : V do

if
m∑

i=1

K∗∑
k=1

xivλiv ≥ Qv then

Processing of vessel v is completed
else

Vessel v has to be added partly to the next subproblem
loop = 0

end if
end for

end if
end for

end while

where
NS : Number of subproblems
s ∈ {1, ..., NS} : Set of subproblems
K∗ : Number of time intervals in a subproblem
loop : Indicator whether all subproblems have to be solved again

to make it suitable to solve the subproblems. The parameter Ev and the variables ev

and ea
v are not necessary anymore, since within the same subproblem none of the vessels

arrive at the end of the subproblem and leave at the beginning of it, assuming that the
end and beginning of the cycle coincides with a subproblem boundary. By eliminating
the parameter and the variables which are introduced due to the cyclic nature of the
problem, a few constraints are adjusted. Parameter K denotes the number of considered
time intervals in one subproblem in the heuristics procedure, and K∗ is the number of
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time intervals before the subproblem end time. It should be noted that K > K∗. In
addition, each vessel part is considered as a vessel with its own starting and end time,
as described above.
Constraints (3.2 – 3.4) can be reformulated, since the variable ev is eliminated:

K∑

k=1

bv(k) = dv − av ∀v, (3.15)

and

k · bv(k) ≤ dv − 1 ∀k, v, (3.16)

and

(K − k) · bv(k) ≤ K − av ∀k, v. (3.17)

Constraint (3.10) can be reformulated, since variable ea
v is eliminated:

av ≥ Av ∀v. (3.18)

Constraints (3.11) and (3.12) are also reformulated due to the elimination of the pa-
rameter and the variables:

∆d
v ≥ (Dv − dv) ∀v, (3.19)

and

tv ≥ ∆d
v

Dv −Av
∀v. (3.20)

The tardiness in (3.20) is now calculated per vessel. As mentioned before, the impor-
tance of minimizing the tardiness of vessels is weighted with respect to each other. The
objective of each subproblem s is formulated as:

min
V∑

v=1

Ct
v · tv +

V∑

v=1

Ca
q · qv, (3.21)

where Ct
v represents the cost for tardiness introduced by vessel part v, and Ca

q represents
the cost for not meeting Q∗

v by vessel part v.
This change in objective is introduced to be able to give priority to certain vessel parts.
For example, consider vessel 1 and vessel part 2A in the first optimization problem in
Figure 3.1. When vessel 1 departs later than its desired departure time, this introduces
tardiness in the first subproblem and in the complete problem. When vessel part 2A
departs later than its desired departure time, this only introduces tardiness in the first
subproblem. However, the containers that could not be processed in the first subprob-
lem are processed in the second subproblem. Then, it is still possible that vessel 2 meets
its overall desired departure time. Hence, it is preferred that vessel 1 meets its desired
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departure time over vessel part 2A in the first subproblem.
This is enforced by introducing more costs for vessel 1 than for vessel part 2A (i.e.
Ct

1 > Ct
2A, and Cq

1 > Cq
2A). Vessel parts 2A and 3A are also weighted with respect to

each other. The relation between those two weighting factors is dependent on how long
they are berthing in the next subproblem(s) and how large the total required capac-
ity Qv is. However, this does not guarantee that vessel parts are weighted correctly in
all possible combinations of vessels. The situation exists that too few containers of a
part A are processed in a subproblem, resulting in a late departure of that particular
vessel in the next subproblem.

For the above mentioned reasons, the subproblems have to be defined carefully. Two
issues have to be regarded with respect to defining the subproblems: It is beneficial i)
to eliminate the cyclic nature of the problem when possible, and ii) to avoid that a
vessel is present in more than one subproblem. Eliminating the cyclic nature decreases
the possibility that all subproblems have to be solved twice. And avoiding that a vessel
appears in two subproblems prevents difficulties in weighting the importance of two
vessel parts with respect to each other.
How to choose time intervals for the subproblems is explained in more detail with the
help of the example in Figure 3.2. In Figure 3.2a, the typical output of a BAP is
depicted. This result could be used as input for QCAP. However, in the heuristics pro-
cedure the output of the BAP is processed a little bit.
First, it is tried to eliminate the cyclic nature of the problem. By repositioning the
vessels in time, it is possible to produce an input for the QCAP without vessels that
are arriving at the end of the cycle and leaving at the beginning of the next cycle. In
the example, the arrival and departure times are all decreased with two time intervals,
resulting in the berth position allocation in Figure 3.2b. This allocation is completely
the same as the original one; only the starting point is changed. For example, when
discrete time step 0 in Figure 3.2a represents Monday morning, the same time interval
represents Tuesday morning in Figure 3.2b. Repositioning the vessels in time is only
possible when there is at least one point in time where no vessels are processed. Hence,
in Figure 3.2a examples of such points in time are discrete time steps 1, 2 and 10.
After eliminating the cyclic nature of the problem, an appropriate choice has to be
made about the start and end times of the subproblems. As mentioned before, it is
beneficial to avoid that a vessel is present in more than one subproblem. Therefore,
the first subproblem is ended at discrete time step 8 in Figure 3.2b. By choosing that
point in time, none of the vessels is present in more than one subproblem. Again, the
possibility to avoid the presence of a vessel in multiple subproblems is dependent on
whether a point in time can be found where none of the vessels is processed.
To make sure that the size of the subproblems is not becoming too small or too large, a
minimal number of vessels Vmin, and a maximum number of vessels Vmax in a subprob-
lem is defined. When Vmax is exceeded between two points in time where no vessels are
processed, a standard subproblem size TI is chosen. Hence, when there is no point in
time where no vessel is processed, all subproblems have the standard size TI. When
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Figure 3.2: Example of cutting the QCAP
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the number of vessels that are berthing in the considered time period is less than Vmin

the original, cyclic discrete QCAP is solved.

3.5 Comparison of the Discrete and Continuous QCAP

In Section 3.3, two required assumptions for the continuous QCAP are described, which
are not necessary in the discrete QCAP. In Subsection 3.5.1 a situation is sketched in
which it is a disadvantage that in the continuous formulation a quay crane remains
allocated to a vessel until the complete vessel is processed. In Subsection 3.5.2, it is
investigated whether this example situation has a large influence on the performance of
the continuous formulation in comparison with the discrete formulation and its heuristics
procedure.

3.5.1 Example Situation

In this section, a terminal where K = 7 is considered. Three identical quay cranes with
process rate λiv = 25 containers

time interval are present in the terminal. Two vessels are berthing
in the considered time period. The desired arrival and departure times of the vessels
(Av and Dv, respectively) have already been determined in the first step allocation and
the position of the vessels within the terminal has already been determined in the BAP
(i.e. X l

v and Xr
v are known). Both vessels require a certain quay crane capacity Qv and

can be processed by a maximum number of quay cranes Sv at the same time. These
parameters are given in Table 3.2.

Table 3.2: Parameters for vessels 1 and 2

Parameter vessel 1 vessel 2
Av [-] 1 2
Dv [-] 5 4
lv [m] 200 125
X l

v [m] 25 225
Xr

v [m] 225 350
Sv [-] 3 2
Qv [containers] 250 50

In Figure 3.3, the results of both formulations for this example are depicted. As the
results in Figure 3.3a show, vessel 1 departs later than its desired departure time for the
continuous formulation. This results in a maximum relative tardiness of 0.25. Vessel 1
departs too late since only two quay cranes are allocated to it while three quay cranes
are necessary. When three quay cranes would be allocated to vessel 1, vessel 2 would
be departing later than its desired departure time. In that case, vessel 1 would be
processed completely at 5.33, resulting in a departure time of 6.33 for vessel 2, and a
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maximum relative tardiness of 0.66. This is a consequence of the fact that in that case
the processing of vessel 2 can only start after the completion of vessel 1.
For the discrete formulation both vessels depart at their desired departure time, as
shown in Figure 3.3b. This is possible, since a quay crane can be allocated to a certain
vessel in one time interval and to another vessel in the next time interval, and then
back to the first vessel again. Where in the continuous case the capacity of quay
crane 3 cannot be used during time interval 1 and time interval 4, capacity is optimally
used during the berthing times of the vessels in the discrete case. Hence, this example
illustrates one advantage of the discrete formulation. It has to be remarked that this
advantage only comes into play when cranes are used against the total capacity.
Although in the discrete case both vessels are departing in time, the depicted solution
is not the most preferred one, since both quay crane 2 and quay crane 3 are moved to
process vessel 2. It makes sense to move only quay crane 3. In Section 3.6 the objective
of the discrete QCAP formulation is extended in such a way that this allocation can be
enforced.

3.5.2 Experiments

In this section, the two QCAP formulations are compared for many different vessel sets.
Two performance indicators are used. The first performance indicator is the percentage
of allocations without tardiness. This is an important performance indicator, because it
is profitable for the container port operator that vessels depart before or at their desired
departure time. The second performance indicator is the computational time which is
required to solve the QCAP. As one can image both are most probably a function of
the quay crane utilization.
Each vessel set has its own quay crane utilization. For all vessel sets in the experiments
the same number of quay cranes M is available. Those quay cranes are all available
for the entire cycle, and all have the same process rate λiv since the continuous QCAP
is not suitable for different quay crane rates. Each vessel requires a certain amount of
quay crane capacity Qv. Hence, the quay crane utilization in a terminal for a certain
time cycle is given by:

uQC =

V∑
v=1

Qv

Nt · Tend · λiv

. (3.22)

It is expected that for a large quay crane utilization the continuous QCAP results more
often in allocations with tardiness than the discrete QCAP. This tardiness is introduced
by the situation as described in Subsection 3.5.1. However, it has to be remarked that
the performance of the discrete QCAP is highly dependent on the size of the time inter-
vals. For example, when a week is divided in time intervals of 8 hours the probability
on solutions with tardiness is much larger than when is chosen for time intervals of 4
hours.
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(b) Solution for the discrete formulation

Figure 3.3: Results for the example situation

In the case of smaller time intervals more flexibility is introduced to deal with the ex-
ample situation as described in Subsection 3.5.1. In addition, when the time intervals
are too large it is more difficult to deal with the fact that in the optimization in the
first step of the solution approach a continuous number of quay cranes is allocated to a
vessel. This problem is also described in Subsection 3.4.3. For example, 4.2 quay cranes
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are allocated to a vessel in the first step allocation, and there are only 4 of 5 quay cranes
continuously available. The other required capacity has to be compensated by another
quay crane, which switches from another vessel. When the time intervals are too large,
there might be not enough freedom to make this switch possible. When for example,
the time intervals make an accuracy of 0.5 possible, at least 4.5 quay cranes have to
be allocated to the vessel. When another vessel requires 0.6 quay cranes, this is not
possible. This subject is most probably mainly an issue when the quay crane utilization
is large.
Since in the discrete QCAP more (integer) variables are required than in the continuous
QCAP, it is expected that much more computational effort is required to solve the dis-
crete QCAP. However, experiments suggest that the heuristics procedure as described in
Subsection 3.4.3 requires much less computational effort. In addition, it is not expected
that the heuristics procedure does not generate significantly fewer solutions without
tardiness as the complete discrete QCAP.
Hypothesis: For large quay crane utilizations the continuous QCAP results more often
in allocations with tardiness than the discrete QCAP. However, the discrete QCAP re-
quires more computational effort than the continuous QCAP. The proposed heuristics
procedure for the discrete QCAP decreases the computational effort significantly.

Experiments setup

In the experiments, a cycle of 15 time intervals of 8 hours are considered. In the discrete
QCAP formulation this means that K = 15. In the continuous formulation the time
is continuous between 0 and 15, since the last time interval of the discrete formulation
ends at discrete time step 15, as depicted for the example in Figure 3.2. The following
parameters are set: Lt = 1000 m, M = 6, and λiv = 27 containers

time interval .
Vessel sets are generated in the same way as the vessel sets for the experiments in Sub-
section 2.4.2. Hence, vessel sets of which each vessel has its own arrival and departure
time and length are generated to represent a first step allocation. Each vessel v is allo-
cated a certain required capacity Qv. Initially, a number of containers is allocated per
time interval, since in the optimization problem in the first step it is guaranteed that in
each time interval sufficient quay crane capacity is available to process the vessels that
are berthing during that time interval. The number of containers allocated to a vessel
in a certain time interval is determined in the same way as the length and the process
time of a vessel in Subsection 2.4.2. From representative data from terminal operator
PSA HNN a histogram is constructed in which is depicted which percentage of the
maximum available capacity for that vessel is used. In Appendix A, it is described how
the histogram is used to generate a number of containers for each vessel in each time
interval. The sum of the assigned containers in the time intervals is the total required
capacity Qv for a vessel.
For these sets the BAP, as described in Section 2.3 is solved. Each vessel in each vessel
set is now fixed in time and space. These results are used as input for the different for-
mulations of the QCAP: the continuous QCAP, the discrete QCAP, and the heuristics
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procedure for the discrete QCAP. For the discrete formulations, the size of the time in-
tervals is varied. Experiments are conducted in which the time intervals are not divided
into smaller time intervals, and experiments in which the time intervals are divided into
two smaller time intervals (i.e. K = 30).
As described in Subsection 3.4.3, the size of the subproblems of the heuristics proce-
dure depends on the minimum and maximum number of vessels in a subproblem. In
the experiments, the minimum number of vessels Vmin = 3, and the maximum number
of vessels Vmax = 6. The weight factors Ct

v and Ca
q are chosen to be equal. They are

set to 1 in a subproblem which includes the desired departure time Dv of a vessel v. In
the other cases, they are given by:

C =
1

Kn
v

·Qv, (3.23)

where Kn
v is the number of time intervals that the vessel is berthing in the next sub-

problem, and Qv is scaled to max(Qv). Hence, the weight factors for vessels that are
not departing in a subproblem are always less than 1.
The mixed integer optimization is stopped as soon as it has found an integer solution
proven to be within 5% of optimal. For each vessel set, it is monitored if the solution
includes tardiness. In addition, the CPU time, which is required to find a solution is
monitored.

Results

The results of the experiments are depicted in Figure 3.4. Figure 3.4a shows the per-
centage of allocations without tardiness dependent on the quay crane utilization for each
QCAP formulation. In Figure 3.4b, the mean CPU time and 95% confidence interval
dependent on the quay crane utilization are depicted for each QCAP formulation. For
each QCAP formulation, the markers represent a collection of vessel sets of which the
quay crane utilization is within a certain range. For example, the first marker of each
QCAP formulation includes all vessel sets with a quay crane utilization between 0 and
0.05, and the second marker includes all vessel sets with a quay crane utilization between
0.05 and 0.10, etc. The vertical dashed lines represent the range of the typical quay
crane utilizations at container ports; the typical quay crane utilizations vary between
0.45 and 0.7.
The results in Figure 3.4a are as expected: Especially for larger quay crane utilizations,
the continuous formulation constructs more allocations with tardiness than the discrete
formulation. The discrete formulation constructs in at most 0.3% of the experiments
an allocation with tardiness, while the continuous formulation constructs allocations
with tardiness for up to 8% of the experiments with the same quay crane utilization.
This difference is the result of the occurrence of a situation like the one described in
Subsection 3.5.1. In most cases, the discrete formulation is able to deal with this sit-
uation, where the continuous formulation is not. The performance of the continuous
formulation is already decreasing at a quay crane utilization of 0.25. This is caused by
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the fact that the described situation can also occur at smaller quay crane utilizations.
In those cases most of the vessels from the vessel set are berthing in the same time
intervals, which causes a large quay crane utilization during a restricted number of time
intervals.
The tardiness in allocations of the discrete formulation is caused by the time interval
size being too large. When the discrete formulation is solved for K = 15, sometimes
not enough flexibility is introduced to deal with the described situation or with the fact
that in the first step of the solution approach a real number of quay cranes is allocated
to vessels, as described before in this section. Decreasing the size of the time intervals
is a possible solution to prevent tardiness. However, a large number of experiments for
the discrete formulation with K = 30 did not solve within a reasonable amount of time.
Solution times of more than 4 hours have been observed. This might be due to the
large number of integer variables. For example, the number of binary variables bv(k)
and xiv(k) gets twice as large when the time intervals are divided into two time inter-
vals. Therefore, the results for the discrete formulation with K = 30 are not depicted
in Figure 3.4.
An import remark is that the continuous formulation results on average in a smaller
tardiness than the discrete formulation. This is caused by the fixed time interval size of
the discrete formulation. When a vessel departs later than its desired departure time
the delay is at least one time interval, which in this case is 8 hours. In these experi-
ments, for all allocations of the discrete formulation with tardiness, the departure of a
vessel is at most delayed with one time interval, resulting in a average tardiness of 0.37
In the continuous case, the average tardiness over all allocations with tardiness is 0.1.
In these experiments, this means that a delayed vessel departs an average 2.16 hours
after its desired departure time.
The heuristics procedure for the discrete formulation is solved for K = 15 and K = 30.
As expected, the required CPU time is significantly less than for the discrete formu-
lation itself, as shown in Figure 3.4b. The percentage of allocations without tardiness
for the heuristics procedure is not more than 1% less than for the discrete formulation.
The difference is caused by vessels that are present in multiple subproblems. When
multiple vessels are present in more than one subproblem, the importance of the vessel
parts have to be weighted with respect to each other. In some cases, the preference
to process one vessel over another vessel is not strong enough, resulting in tardiness
for that particular vessel in the next subproblem. In that case, too few containers are
processed in the first subproblem. As shown in Figure 3.4a, this situation also occurs
for K = 30. In those cases choosing even smaller time intervals (e.g. K = 45) results
in allocations without tardiness, since again more flexibility is added. However, using
K = 45 still results in allocations with tardiness for other vessel sets.
For the heuristics procedure also holds the remark that the tardiness of the heuristics
procedure for the discrete formulation is on average larger than the tardiness of the con-
tinuous formulation. However, since it is possible to construct allocations for K = 30
and K = 45, the tardiness becomes smaller. In these experiments, for all allocations of
the heuristics procedure with tardiness the departure of a vessel is at most delayed by
one time interval. For K = 30, this results in an average tardiness of 0.19. Hence, the
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Figure 3.4: Results for the comparison

possibility of using smaller time intervals reduces the average tardiness of the discrete
formulation.
Another important remark is that especially in the case of the discrete formulation
and the heuristics procedure for the discrete formulation less preferred allocations are
constructed. Namely, in time intervals where the quay crane utilization is small, the
processing of vessels is interrupted, unnecessary quay crane switches are performed and
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idle quay cranes are isolated between two processing cranes. The possibility of allo-
cating a quay crane to another vessel in each time interval causes these situations. In
Section 3.6, examples of those situations are given, and it is shown how the formulation
is changed to prevent the construction of such allocations.
These experiments suggest that the discrete formulation outperforms the continuous
formulation with respect to constructing allocations without tardiness. However, when
tardiness is introduced in an allocation of the discrete formulation, this tardiness is
on average larger than in the continuous formulation. It is shown that the heuristics
procedure does not construct significantly fewer allocations without tardiness than the
complete discrete formulation. In addition, since in the heuristics procedure smaller
time intervals can be used, the average tardiness is smaller for the heuristics proce-
dure. The heuristics procedure requires significantly less computational effort than the
complete discrete formulation and the continuous formulation. However, decreasing the
time interval size in the heuristics procedure does not always prevent the construction
of allocations with tardiness.

3.6 Extensions to the Discrete QCAP

As mentioned in Section 3.5, for the discrete QCAP less preferred allocations are con-
structed. In this section, it is first explained which particular allocations are excluded.
Both the discrete QCAP and the heuristics procedure for the discrete QCAP are ad-
justed in such a way that the described situations are (partly) excluded. In addition,
two other features are added to the discrete formulation. In the first place, the pos-
sibility of vessels departing after their desired departure time is excluded, since in the
previous section it is shown that in most cases it is possible to generate allocations
without tardiness with the heuristics procedure for the discrete QCAP. It becomes also
possible to minimize the processing time of the vessels. Secondly, it becomes possible to
minimize the number of required quay cranes. Experiments are conducted to investigate
the performance of the adjusted discrete QCAP and its heuristics procedure.

3.6.1 Example Quay Crane Allocations

In this subsection a terminal is considered, where K = 5. Four identical quay cranes
with process rate λiv = 25 containers

time interval are present in the terminal. Two vessels are
berthing in the considered time period. The desired arrival and departure times of the
vessels have already been determined in the first step optimization and the position of
the vessels within the terminal has already been determined in the BAP. Both vessels
require a certain quay crane capacity Qv and can be processed by a maximum number
of quay cranes Sv. These parameters are given in Table 3.3.
In Figure 3.5a, a possible allocation of the discrete QCAP, as described in Section 3.4, is
depicted. Although the allocation is without any delay, some less preferred allocations
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are noticed and indicated by the rectangles. Quay crane 1 is processing vessel 1 with an
interruption. During this interruption, capacity cannot be used anywhere else along the
quay without moving all other quay cranes. The same holds for quay crane 2 during the
4th time interval; quay crane 2 is idle, but the capacity of it cannot be used anywhere
else without moving quay cranes 3 and 4. Both quay crane 3 and quay crane 4 are
switching between vessel 1 and vessel 2. It is not really optimal to move two quay
cranes to another vessel, while interrupting the processing of another vessel. Movement
of cranes is not preferred since during movement also capacity is wasted.

Table 3.3: Parameters for vessels 1 and 2

Parameter vessel 1 vessel 2
Av [-] 0 1
Dv [-] 4 3
lv [m] 200 120
X l

v [m] 20 250
Xr

v [m] 220 370
Sv [-] 4 2
Qv [containers] 275 50

In Figure 3.5b, a preferred allocation is depicted. Quay cranes 1 – 3 process vessel 1
continuously and vessel 2 is only processed by quay crane 4. The position of the quay
cranes when they are idle is also more preferred. They are positioned alongside or
near empty quay lengths, where it is possible to use them for unexpected events or for
processing small barges.

3.6.2 Adjustment of the Discrete QCAP

Since it is enforced that vessels depart before or at their desired departure time, an up-
per bound of 0 is set to variables ∆d

v. Then, it is only possible to leave at or before the
desired departure time (i.e. dv ≤ Dv). This automatically means that Constraint (3.12)
is not needed anymore, because tardiness is not possible anymore. The variables ∆d

v are
added to the objective function, which enforces that the processing time of the vessels
is minimized.
To be able to minimize the maximum number of quay cranes that are used simultane-
ously in the terminal, an additional auxiliary integer variable is introduced:

nt : The maximum number of quay cranes that is used simultaneously in
terminal t [-].
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Figure 3.5: Quay crane allocation

The variable nt is actually a soft upper bound on the required number of quay cranes
in the terminal. This variable is added to the objective function:

M∑

i=1

V∑

v=1

xiv(k) ≤ nt ∀k. (3.24)

Up till now, it is possible to minimize the processing time of the vessels, and to minimize
the required number of quay cranes in the terminal. By adding more additional terms
to the objective, it is possible to exclude less preferred allocations of the quay cranes.
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The objective function of the discrete QCAP formulation is then given by:

min
V∑

v=1
Ca

v ·∆d
v + Cb

q · nt +
K∑

k=1

M∑
i=1

Cb
v · |li(k + 1)− li(k)|

+
K∑

k=1

M∑
i=1

V∑
v=1

Cc
v · |xiv(k + 1)− xiv(k)|

+
K∑

k=1

M−1∑
i=1

Cd
v · |

V∑
v=1

(x(i+1)v(k)− xiv(k))|.

(3.25)

The first term maximizes the early departure of all the vessels in the vessel set. The
parameter Ca

v represents the benefits per time interval that a vessel is departing before
its desired departure time [-].
The second term minimizes the number of quay cranes that are used simultaneously.
The parameter Cb

q represents the cost introduced per quay crane [-].
The third term minimizes the movement of all the quay cranes in the terminal over all
time intervals. The difference between the position of a quay crane between two consec-
utive time intervals is minimized. By minimizing the movements of the quay cranes in
Figure 3.5, it is enforced that not both quay crane 3 and 4 are moving to vessel 2, but
that vessel 2 is only processed by quay crane 4. The parameter Cb

v represents the cost
introduced by the movement of the quay cranes per meter [ 1

m ]. It has to be mentioned
that if k = K, then the difference |li(0)− li(K)| is evaluated due to the cyclic nature of
the problem.
The fourth term minimizes the difference in quay crane activity between consecutive
time intervals for each vessel v. The activity of a quay crane is indicated by the vari-
able xiv(k), which can be 0 (’idle’) or 1 (’processing’). Minimizing this difference in
activity enforces that once a quay crane started processing a vessel, it keeps processing
that vessel as long as possible. This soft constraint is added to prevent useless process
interruptions of a vessel by a quay crane, as depicted in Figure 3.5a for quay crane 1.
The parameter Cc

v represents the cost for a change in activity between two consecutive
time intervals of a quay crane processing vessel v. Again, it has to be mentioned that
if k = K, then the difference |xiv(0) − xiv(K)| is evaluated due to the cyclic nature of
the problem.
The fifth term minimizes the difference in quay crane activity between two consecu-
tive quay cranes in the same time interval. The activity of the quay cranes is again
indicated by the variable xiv(k). This soft constraint enforces that active quay cranes
are grouped as much as possible; it is prevented that an idle crane is isolated between
processing quay cranes. For example, in Figure 3.5b quay cranes 3 and 4 are both
idle, instead of that quay crane 2 is isolated between quay cranes 1 and 3. The param-
eter Cd

v represents the cost for a change in activity between two consecutive quay cranes.

It is important to notice that in such a multi-objective optimization problem, the
weight factors Cb

q , and Ca
v to Cd

v determine which component of the objective is decisive.
For example, when Cb

q >> Ca
v the emphasis is on minimizing the number of required

quay cranes in the terminal, meaning that the process times of the vessels may be rela-
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tively large. When, as another example, Ca
v >> Cb

v the emphasis is on minimizing the
process times of the vessels, it might be beneficial for the processing time of a vessel
to make a large move with a quay crane. In that particular case, it is possible that in
Figure 3.5 still two cranes are moved from vessel 1 to vessel 2.

Similar to the objective of the BAP in Section 2.3 the absolute values in (3.25)
have to be eliminated. Therefore, the auxiliary variables ai(k), biv(k), and ci(k) are
introduced. Consequently, the objective is reformulated and six additional constraints
are added:

min
V∑

v=1
Ca

v ·∆d
v + Cb

q · nt +
K−1∑
k=1

M∑
i=1

Cb
v · ai(k) +

K∑
k=1

M∑
i=1

V∑
v=1

Cc
v · biv(k)

+
K∑

k=1

M−1∑
i=1

Cd
v ·

V∑
v=1

ci(k),
(3.26)

where

ai(k) ≥ li(k + 1)− li(k) ∀i, k, (3.27)

ai(k) ≥ li(k)− li(k + 1) ∀i, k, (3.28)

biv(k) ≥ xiv(k + 1)− xiv(k) ∀k, v, (3.29)

biv(k) ≥ xiv(k)− xiv(k + 1) ∀k, v, (3.30)

ci(k) ≥
V∑

v=1

(x(i+1)v(k)− xiv(k)) ∀i < M, k, v, (3.31)

and

ci(k) ≥
V∑

v=1

(xiv(k)− x(i+1)v(k)) ∀i < M, k, v. (3.32)

The additional constraints ensure that the auxiliary variables are always equal to or
larger than 0. Also in (3.27) – (3.30) holds that, when k = K, the variable values are
compared with the variable values in the first time interval of the problem due to the
cyclic nature of the problem.

3.6.3 Adjustment of the Heuristics Procedure

The heuristics procedure for the discrete QCAP is adjusted in the same way as the
discrete QCAP itself. Hence, variables ∆d

v get an upper bound of 0, and constraint
(3.20) is eliminated from the constraint set. The auxiliary variables nt, ai(k), biv(k)
and ci(k) are added to the variable set. The Constraint (3.24) is also necessary in the
heuristics procedure.
However, more adjustments are required. Two terms in (3.25) are minimizing the value
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between two consecutive time intervals: Minimizing i) the difference in position of a
quay crane between two consecutive time intervals, and ii) the activity of quay cranes
between two consecutive time intervals. These soft constraints are also valid between
consecutive subproblems in the heuristics procedure. Hence, additional terms have to
be added to the objective function to ensure that the soft constraints are also imposed
between the last time interval of one subproblem and the first time interval of the next
subproblem.
The position of a quay crane in the last time interval of a subproblem is indicated
by Ls−1

i , and the activity of quay crane i on vessel v in the last time interval of a
subproblem is indicated by Xs−1

iv .
The adjusted objective for subproblem s is given by:

min
V∑

v=1
Ca

v ·∆d
v + Ca

q · qv + Cb
q · nt +

K−1∑
k=1

M∑
i=1

Cb
v · |li(k + 1)− li(k)|

+
K∑

k=1

M∑
i=1

V∑
v=1

Cc
v · |xiv(k + 1)− xiv(k)|

+
K∑

k=1

M−1∑
i=1

Cd
v · |

V∑
v=1

(x(i+1)v(k)− xiv(k))|+
M∑
i=1

Cb
v · |Ls−1

i − li(ks
0)|

M∑
i=1

V∑
v=1

Cc
v · |Xs−1

iv − xiv(ks
0)|,

(3.33)

where ks
0 is the initial time interval of subproblem s. The seventh and eight term are

added to link the subproblems, as described above. These are also used to ensure the
cyclic nature of the problem. In the last subproblem is also counted for |X0

iv − xiv(K)|
and |L0

i − li(K)|, where X0
iv and L0

i are the quay crane activity and the position of the
quay cranes at k = 0, respectively.

Again, the absolute values have to be eliminated. Therefore, the auxiliary variables
di and eiv are introduced. As a result, the objective function is reformulated and four
additional constraints are added:

min
V∑

v=1
Ca

v ·∆d
v + Ca

q · qv + Cb
q · nt +

K−1∑
k=1

M∑
i=1

Cb
v · ai(k) +

K∑
k=1

M∑
i=1

V∑
v=1

Cc
v · biv(k)

+
K∑

k=1

M−1∑
i=1

Cd
v ·

V∑
v=1

ci(k) +
M∑
i=1

Cb
v · di +

M∑
i=1

V∑
v=1

Cc
v · eiv,

(3.34)

where

di ≥ Ls−1
i − li(ks

0) ∀i, (3.35)

di ≥ li(ks
0)− Ls−1

i ∀i, (3.36)

eiv ≥ Xs−1
iv − xiv(ks

0) ∀i, v, (3.37)

eiv ≥ xiv(ks
0)−Xs−1

iv ∀i, v. (3.38)

These additional constraints ensure that the auxiliary variables are always equal to or
larger than 0.
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3.6.4 Experiments

In this section, the results of the heuristics procedure for the discrete QCAP are com-
pared to the results of the complete discrete formulation. Both objective function value
and required CPU time are compared. In addition, the influence of the size of the sub-
problems in the heuristics procedure is investigated.
It is expected that the heuristics procedure results in allocations with a larger objec-
tive function value. One reason is that each subproblem only considerers restricted
information on the data. A decision in subproblem s might be bad for the allocation
in subproblem s + 1, but this cannot be detected in subproblem s yet. In addition,
when vessels are present in multiple subproblems, the importance of processing them is
weighted with respect to each other as described in Subsection 3.4.3. There are cases
where this weighting of importance results in larger departure times than in the com-
plete formulation. Finally, in the subproblems it is not known how many quay cranes
are used in the other subproblems. For example, when in the first subproblem already
the maximum number of quay cranes is used, it is still possible that in the second sub-
problem the number of quay cranes is minimized resulting in larger departure times.
The performance of the heuristics procedure with respect to the objective function
value is expected to be dependent on the size of the subproblems. The smaller the sub-
problems are chosen, the less information is considered at once. Hence, the heuristics
procedure results most probably in a larger objective function value than the complete
formulation when the subproblems are chosen small.
Although the complete discrete formulation finds an optimal allocation and the heuris-
tics procedure finds only this optimal allocation in the best case, it is most probably still
beneficial to use the heuristics procedure. As shown in Subsection 3.5.2, the heuristics
procedure requires significantly less computational effort. In addition, it is expected
that choosing appropriate cost factors in the objective function results in a better per-
formance of the heuristics procedure.
Hypothesis: The objective function value of the heuristics procedure is equal to or
larger than the objective function value for the complete discrete formulation, since in
the heuristics procedure the problem is not considered at once. Therefore, it is expected
that when the subproblems in the heuristics procedure are chosen large, the performance
of the procedure increases. In addition, the heuristics procedure is expected to solve
significantly faster than the complete discrete formulation.

Experiments setup

The same cycle and terminal as in Subsection 3.5.2 are considered. Hence, the following
parameters are set: K = 15, Lt = 1000 m and M = 6. The quay crane rates λiv however
are dependent on the quay crane and the vessel length. Each quay crane has its own
maximum quay crane rate as given in Table 3.4. This quay crane rate decreases with
the decrease of the vessel length.
Sets with 7 vessels are generated, exactly in the same way as in Subsection 3.5.2. For
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each experiment, 100 instances are solved.
The cost factors for the multi-objective are given in Table 3.5. As one can see, the
emphasis is on the early departure of vessels and not on the minimization of the number
of quay cranes. This suits the application, since in the first step optimization the
minimum number of quay cranes has already been determined. This number of quay
cranes is set as an upper bound in the second step of the solution approach. The values
for Ca

q and Cb
v seem to be large. However, the values for the variables qv and li(k) are

scaled to max(Qv) and Lt, respectively.
As described in Subsection 3.4.3, the size of the subproblems of the heuristics procedure
depends on the minimum and maximum number of vessels in a subproblem. This
minimum and maximum number of vessels is varied between the different experiments,
and are given in Table 3.6.
The mixed integer optimization is stopped as soon as it has found an integer solution
proven to be within 1% of optimal. For each vessel set, the objective function value and
the required CPU time are monitored.

Table 3.4: Quay crane rates

Quay crane 1 2 3 4 5 6
Rate

[
containers

time interval

]
25 26 27 27 26 25

Table 3.5: Cost factors

Cost factor value
Benefit for early departure (Ca

v ) 1.0
Cost for not meeting Q∗

v (Ca
q )1 1.0

Cost per quay crane (Cb
q) 0.4

Cost per meter movement (Cb
v) 0.1

Cost for interrupting processing (Cc
v) 0.1

Cost for closing in idle cranes (Cd
v ) 0.3

Table 3.6: Subproblem size in the different experiments

Experiment Vmin Vmax

1 2 4
2 3 5
3 3 6

1Only for the heuristics procedure
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Results and discussion

The results of the experiments are given in Table 3.7. The results are as expected, the
heuristics procedure results on average in a larger objective function value than the
complete discrete formulation. The mean difference is at most 7.1% in the disadvan-
tage of the heuristics procedure. On the other hand, the heuristics procedure requires
significantly less computational effort. On average the gain in computation time is up
to 80% of the required computation time of the complete discrete formulation.
The difference in objective function values is mainly caused by the movement of the
quay cranes and the difference in departure time. As mentioned before, this is prob-
ably caused by the fact that in the heuristics procedure only a part of the problem is
considered. The allocation of the vessels in the next subproblems is not considered,
which sometimes results in a non-optimal allocation of the quay cranes. In addition,
the weighting of vessels which are present in multiple subproblems sometimes results in
a later departure time than it is the case in the complete discrete formulation.
As shown in Table 3.7, the performance of the heuristics procedure decreases when
the subproblem size decreases. This is most probably caused by the fact that in small
subproblems less information of the complete problem is considered than in large sub-
problems. However, when a careful look is taken at the standard deviations on the
difference in objective function values, it can be concluded that the differences in these
experiments are not significant. The same holds for the small decrease in required com-
putational effort. The standard deviation on the difference in computational effort is
large, which makes the improvement not significant. In spite of this, it is advised to see
the decrease in performance of the heuristics procedure with respect to the objective
function value as a trend. Hence, it is preferred to keep the subproblems as large as
possible.
A critical remark about the results should be made. The accuracy of the optimization
has an important role in the presented results. The average objective function value of
the complete formulation is in the order of magnitude of 2.0, and the average objective
function value of the subproblems in experiment 3 is in the order of magnitude of 2.5.
With an accuracy of 1% this means that contributions to the objective function value
of respectively 0.02 and 0.025 are taken into consideration. Since the cost on the move-
ment of quay cranes is set to 0.1, this means that movements are minimized up to an
accuracy of 0.2, corresponding to 200 m due to scaling, in the complete formulation.
This distance is on average 250 m for the subproblems in the heuristics procedure. Ad-
ditional experiments where the cost factor Cb

v is larger are also performed. In those
experiments the difference in objective function value between the heuristics procedure
and the complete formulation was much larger, which is most probably caused by the
difference in accuracy with respect to the different objectives between the subproblems
and the complete formulation. Hence, this suggests that it is not preferred to use the
same cost factors in the subproblems of the heuristics procedure as in the complete
formulation. A more extensive numerical study into the influence of the cost factors on
the performance of both the heuristics procedure and the complete formulation would
therefore be an interesting future study.
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Table 3.7: Results

Objective function Standard CPU time Standard
Experiment value difference [-] % deviation difference [s] % deviation

1 0.15 7.1% 0.24 120 80% 230
2 0.13 6.1% 0.24 120 80% 230
3 0.094 4.5% 0.18 115 76% 230

These experiments suggest that with respect to computational effort it is beneficial to
use the heuristics procedure to solve the QCAP. The objective function value increase
is within an acceptable order of magnitude, however more insights on the influence of
the cost factors on the performance of the heuristics procedure are required to give a
better advice.
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Chapter 4

Case Study

In this chapter, the optimization problems in the second step of the solution approach are
solved for a representative first step allocation on both the strategic and the operational
level. It is shown that the solution approach, as depicted in Figure 1.3, can be solved
sufficiently fast in both the strategic and the operational case.

4.1 Strategic Allocation

In this section, it is explained how the strategic second step allocation is constructed.
The strategic allocation is constructed somewhere between once a month and once a
year. This weekly planning is then used as a reference allocation for a large time period.

4.1.1 Description

A cluster of 3 terminals where 38 vessels are berthing once each week is considered. A
time interval size of 1 hour is chosen. The formulation of [Hen08] is used to construct a
strategic first step allocation, where all desired arrival and departure times are consid-
ered deterministic.
As depicted in Figure 1.3, in the first step optimization i) a terminal, ii) a time window,
and iii) a time variant quay crane capacity are allocated to each vessel. There are four
objectives: Minimizing i) the amount of inter-terminal traffic, ii) the total weighted
deviation from the desired berthing time intervals, iii) the amount of stored containers
in each individual terminal, and iv) the number of required quay crane capacity in each
individual terminal.
To illustrate the second step allocation, one terminal to which 15 vessels are allocated
is considered. Furthermore, in the first step of the solution approach, it is determined
that at most 5 quay cranes are necessary to process the 15 vessels. This number is
used in the QCAP in the second step, although more quay cranes are available in the
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terminal.
The implementation of the second step of the solution approach for this strategic part
of the case study and its results are shortly discussed below.

4.1.2 Berth Allocation Problem

The BAP is solved with the formulation of Section 2.3. In this case study, the center
of the terminal is chosen as the lowest-cost berthing position for all vessels. Costs are
proportional to the deviation from the optimal position, where the cost factor increases
with the vessel length.
The terminal quay utilization u1 as defined in (2.8) is 0.26. Hence, looking at the re-
sults of the feasibility experiments in Subsection 2.4.2 and the results of the parameter
sensitivity experiments in Subsection 2.4.4, no problems are expected with infeasibility
and/or the required computational effort in the second step BAP in this case study.

Indeed, a feasible berth position allocation is constructed within 0.08 s. As expected,
the proposed BAP formulation is very suitable to construct a strategic berth position
allocation. However, the chosen lowest-cost berthing position is rather random. To
determine a more realistic berth position allocation the formulation of Section 2.5,
where the total straddle carrier distance is minimized, should be used. Then, historical
data about the stacking positions of different types of containers in the yard and the
vessels’ load composition are taken into consideration to construct the strategic berth
position allocation.

4.1.3 Quay Crane Allocation Problem

The QCAP is solved with the heuristics procedure for the discrete QCAP of Chapter
3. The heuristics procedure is used since the problem size is large, and a large com-
putational effort is expected. Since the strategic allocation is only constructed a few
times a year, a computation time in the order of magnitude of one hour is considered
acceptable. The complete problem is divided into 3 subproblems of respectively 44, 44
and 80 time intervals of 1 hour. One vessel is present in more than one subproblem. In
the subproblems respectively 4, 6 and 6 vessels are berthing.
Different quay crane rates are used in the different steps of the solution approach. In
the first step a quay crane rate of 70% of the maximum quay crane rate is used, and
in the second step a quay crane rate of 85% of the maximum quay crane rate is used.
This is necessary to be able to convert the real number of quay cranes allocated in the
first step into an integer-valued quay crane allocation in the second step. For example,
two vessels are berthing simultaneously and in each time interval respectively 2.3 and
2.7 quay cranes are allocated to them in the first step allocation. When in the second
step the same process rate is used as in the first step, a feasible second step quay crane
allocation can only be constructed when the time intervals are divided by 10 since the
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quay cranes should be able to switch between the two vessels. By using a larger quay
crane rate in the second step this is not necessary since more containers can be pro-
cessed in each time interval than it was accounted for in the first step. Then, the need
for switching a quay crane between vessels is decreased.
The aim of the optimization is minimizing i) the processing time of the vessels, ii) the
possibility for process interruptions, and iii) the isolation of an idle quay crane between
processing quay cranes. The mixed integer optimization of the subproblems is termi-
nated as soon as the solution is proven to be 1% of optimal.
The quay crane utilization uQC as defined in (3.22) is 0.59. Hence, looking at the re-
sults of the experiments in Section 3.5, it is expected that it is possible to construct
a quay crane allocation without any vessels that are departing later than their desired
departure time.

The quay crane allocation is constructed in 996 s. Hence, when the quay crane
utilization in the other terminals is in the same order of magnitude as in the considered
terminal, it is expected that the construction of quay crane allocations for three termi-
nals requires about one hour.
Since the aim of the optimization has been the minimization of the process time, all
vessels are processed during only a part of their berthing time. The end of the process-
ing time of the vessels is between 1 and 10 hours before their desired departure time.
The processing time of two vessels starts respectively 1 and 2 hours after the actual
arrival time of those vessels. The fact that the processing times are shorter than it is
determined in the first step of the solution approach is most probably a result of using
a larger quay crane rate in the second step than in the first step.
It is now possible to calculate the average utilization umean

QC of the quay cranes. This
utilization is defined as:

umean
QC =

V∑
v=1

Qv

V∑
v=1

K∑
k=1

MQC
v (k) · λmax

iv

, (4.1)

where MQC
v (k) is the number of quay cranes that is processing vessel v in time inter-

val [k, k + 1〉, and λmax
iv is the maximum quay crane rate of quay crane i on vessel v.

Hence, it is the total number of processed containers divided by the number of contain-
ers that the allocated quay cranes could have processed when they would have been
used for 100%. For the constructed allocation, umean

QC = 0.82. This is less than the
chosen 0.85. This is most probably caused by the fact that quay cranes are allocated
to a vessel for at least the time interval size. For example, a vessel has to be processed
for another 0.5 hour by one quay crane. However, the quay crane is allocated for one
hour to the vessel, since the time interval size is one hour.
The quay crane allocation is checked for less preferred quay crane allocations, as de-
scribed in Subsection 3.6.1. An idle quay crane is never isolated between processing
quay cranes, and the processing of a vessel is never interrupted unnecessarily.
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These results suggest that the discrete QCAP formulation is suitable to construct a
strategic quay crane allocation. When the heuristics procedure is used, the computa-
tional effort to solve the QCAP is within a reasonable amount of time. It is expected
that it is possible construct a quay crane allocation for three terminals within one hour.

4.2 Operational Allocation

In this section, it is explained how the second step allocation is constructed at the
operational level. The operational allocation is constructed using the model-based pre-
dictive control (MPC) approach of [Vul08]. This means that the second step operational
allocation is constructed multiple times a day.

4.2.1 Description

The same terminal and the same vessel set as in the strategic case are considered. How-
ever, the number of quay cranes that is used in the second step QCAP is increased to
7. In Section 4.1, the arrival and departure times are considered to be deterministic. In
practice however, vessels have stochastic arrivals (e.g. due to storm, break-downs, etc).
To cope with a part of these disturbances, terminal operators and shipping lines agree
on so-called arrival windows. In this case study, that means that a vessel is allowed to
arrive 4 hours before or after its desired arrival time.
When a vessel arrives within its arrival window, a certain maximal processing time is
guaranteed by the terminal operator. This maximal processing time is equal to the
processing time of the vessel on the strategic level. Hence, the first step allocation of
[Hen08] is used as the reference allocation on the operational level. It is determined that
in the worst case scenario 7 quay cranes are required to meet those processing times.
For the vessels that are arriving outside their arrival window, there are no guarantees
about their maximum processing time.
In this case only disturbances on the arrival times of vessels are taken into considera-
tion. The disturbances on the arrival times can be within the arrival windows, but also
out of the arrival windows. A simulation model is used to generate the disturbances
on the arrival times of the vessels. These disturbances are generated with respect to
the deterministic arrival times of the vessels on the strategic level. In total a period of
10 weeks is simulated.
As mentioned before, the MPC approach of [Vul08] is used to reallocate the first step
allocation under the described disturbances. In each iteration step the first step allo-
cation is reallocated for the next 48 hours with the latest available information on the
arrival times of the vessels. For this case study, each hour an iteration step is performed
in which the next 48 hours are taken into consideration. The objective of the MPC
approach is to minimize the departure times of the vessels.
The implementation of the second step of the solution approach into this MPC approach
and its results are described below.
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4.2.2 Berth Allocation Problem

The BAP is solved after each reallocation of the first step allocation with the formulation
of Section 2.3 for the complete horizon of 48 hours. One adaptation to the formulation is
necessary. Vessels that are already berthing at the beginning of the considered horizon
cannot change position anymore since they are already being processed. Hence, the
position of these vessels is not variable anymore:

pv = P b
v v ∈ Vb(kc), (4.2)

where P b
v is the actual berthing position of vessel v, and kc is the first time interval of

the considered horizon. The set Vb(kc) includes all vessels that are already berthing at
the beginning of the considered horizon.
The lowest-cost berthing position is chosen to be equal to the position to which the
vessel has been allocated in the strategic part of this case. Large vessels introduce more
cost when berthing on a non-optimal berthing position than small vessels.

The average computation time to construct the berth position allocation after each
first step iteration is 0.0044 s. The maximum computation time to construct the berth
position allocation was 0.02 s. No issues with respect to feasibility of the berth position
allocation in the second step are encountered.
These results suggest that the proposed BAP formulation is also suitable to construct
an operational berth position allocation within the MPC approach of [Vul08]. The
same remark as in the strategic case has to be made: The usage of the formulation in
Section 2.5 would result in a more realistic berth position allocation. In each iteration
the current forecast on the vessels’ load composition can be taken into consideration
to construct the operational berth position allocation. Then, the actual vessels’ load
composition would determine the berthing position of the vessels.

4.2.3 Quay Crane Allocation Problem

The QCAP is solved after each reallocation of the first step and berth position allocation
with the formulation of Section 3.6. Since the QCAP has to be solved each hour, it is
important that the QCAP is solved within a reasonable amount of time. Therefore, it
is decided to solve the QCAP only for the first 16 hours of the considered horizon. In
addition, the heuristics procedure of Subsection 3.4.3 is used when more than 4 vessels
are berthing in the considered horizon of 16 hours.
Since the quay crane allocation is constructed each hour it is preferred that quay cranes
that have been processing vessel v during the previous hour continue processing vessel v
in the first hour of the considered horizon. Otherwise, the possibility for unnecessary
quay crane switches exists. Therefore, the term Cc

v · giv and two additional constraints
are added to the objective function (3.34):

giv ≥ xiv(kc)−Xiv ∀i, v, (4.3)
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and

giv ≥ Xiv − xiv(kc) ∀i, v, (4.4)

where Xiv is the activity of quay crane i on vessel v during time interval kc − 1.
Similar to the strategic part of this case study, the process rate of the quay cranes is
taken 85% of the maximum process rate in the second step of the solution approach. In
the first step again a process rate of 70% of the maximum process rate is chosen.
The aim of the optimization is to minimize i) the possibility for useless processing in-
terruptions, and ii) isolation of an idle crane between two processing quay cranes. Both
the number of quay cranes and the departure time have already been minimized in the
first step of the solution approach and its reallocation. The mixed integer optimization
is terminated as soon as the solution is proven to be within 1% of optimal.

The average computation time to construct the quay crane allocation is 22 s. How-
ever, the maximum computation time to construct the quay crane allocation is 325 s.
In only 38 of the 1680 iterations, it has been necessary to use the heuristics procedure to
solve the QCAP since the number of vessels in the considered horizon was larger than
4. In those iteration steps, at most 2 subproblems have been formulated. The average
quay crane utilization as defined in (4.1) is equal to 0.83. Again, this is less than the
chosen 0.85 since quay cranes are allocated to a vessel for at least the time interval size.
The total quay crane allocation is checked for less preferred quay crane allocations, as
described in Subsection 3.6.1. An idle crane is never isolated between two processing
cranes. However, there are two situations where an unnecessary processing interruption
is noticed. When those particular iteration steps are conducted again with a larger
value for Cc

v, the unnecessary process interruptions are not noticed anymore. However,
if the value for Cc

v is set to that value for all iterations, it is more often observed that
an idle quay crane is isolated between two processing quay cranes. This confirms the
remark in Subsection 3.6.4 that the performance of the discrete QCAP is dependent on
the value of the cost factors. Up till now the value of the cost factors is set independent
on the problem size (e.g. the number of vessels in the vessel set or the number of time
intervals). It might be beneficial for the performance of the discrete QCAP when the
problem size is taken into consideration when assigning the cost factors.
These results suggest that the discrete QCAP is also suitable to construct the opera-
tional quay crane allocation. On average the computational effort is small, and therefore
it is possible to solve the QCAP each hour. However, as already remarked in the pre-
vious chapter, improvement can be made by assigning more appropriate cost factors.
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Conclusions and
Recommendations

Conclusions

This report investigates the berth allocation problem (BAP) and quay crane allocation
problem (QCAP) embedded in the large multi-step solution approach of [Hen08] to
solve the multi-terminal BAP and the QCAP. The overall solution approach consists
of two steps in which different optimization problems are formulated. In the first step,
i) a terminal, ii) a time window, and iii) a time variant quay crane capacity are allo-
cated to each vessel in the set. In [Hen08], a mixed integer linear programming (MILP)
problem is proposed to solve this first step allocation problem. Restricting properties
are the terminal quay lengths and the available quay crane capacity in each individual
terminal. The objectives are to minimize i) the amount of inter-terminal traffic, ii)
the total weighted deviation from the desired berthing time intervals iii) the amount
of stored containers in each individual terminal, and iv) the maximum required quay
crane capacity in each individual terminal.
In the second step, the exact berth position allocation of the vessels and the exact quay
crane allocations for each individual terminal are still to be determined. In this report,
the problems in the second step of the solution approach are addressed. For both prob-
lems, a separate MILP optimization problem is proposed and a case study is performed.

Since in the first step of the solution approach the vessels have already been allocated
to a terminal, the actual position allocation can be determined for each terminal sepa-
rately. The single terminal BAP’s in this report can be considered as one-dimensional
packing problems since in the first step the arrival and departure times of the vessels
have already been determined. The positions of the vessels along the terminal quay
are still to be determined. In the proposed formulation, a lowest-cost berthing position
is defined for all vessels in the vessel set. The objective is to minimize the weighted
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deviation from the lowest-cost berthing position without vessels overlapping each other.
Due to the specific cut in the solution approach, an allocation constructed in the first
step might turn out to be infeasible in the second step. In the first step it is only
guaranteed that the sum of the lengths of the vessels, that are berthing simultaneously
at one terminal, never exceeds the total terminal length. However, this is a necessary
but not sufficient constraint for a feasible 2D-packing.
Experiments suggest that for typical terminal quay utilizations, first step allocations
are always feasible in the second step. In addition, the experiments suggest that the
computational effort to solve the proposed MILP is very small. This is most probably
a result of the fact that the packing problem is one-dimensional.
In a representative case, a berth position allocation constructed from the proposed
MILP is compared to a berth position allocation constructed manually. The results
suggest that with little computational effort an improved berth position allocation can
be constructed with respect to total driving distance of the straddle carriers.

The first step crane capacity allocation and the result of the single terminal BAP
are used as input for the QCAP. Enough quay cranes have to be allocated to a vessel
to be able to process all its containers in a timely fashion. An important constraint is
that the quay cranes cannot cross each other since they are situated on the same track.
An existing QCAP formulation [Liu06] is continuous in time, which has two restrictions:
i) A quay crane is allocated to a vessel until that vessel has completely been processed,
and ii) the quay crane rates are equal for each quay crane. The first restriction can
result in allocations in which vessels are departing later than their desired departure
time. Both restrictions are a result of the fact that the formulation is continuous in
time. Therefore, an QCAP formulation, which is discrete in time is proposed. Ex-
periments suggest that the proposed discrete formulation results in a reduction in the
number of allocations in which vessels are departing later than their desired departure
time. Moreover, it is possible to take quay cranes with different quay crane rates into
consideration with the discrete formulation.
The objective of the discrete formulation is extended to enable minimization of i) the
departure time of the vessels, ii) the number of required quay cranes, iii) the movement
along the quay of the quay cranes, iv) the possibility for process interruptions, and v)
the isolation of idle cranes between processing quay cranes. The different terms are
weighted by different cost factors.
Since the discrete formulation requires a lot of computational effort, a heuristics pro-
cedure is proposed. The complete problem is intelligently divided into smaller sub-
problems, which significantly reduces the number of variables and constraints that are
considered at once. Experiments suggest that the heuristics procedure performs on av-
erage 5% worse than the complete formulation with respect to the objective function
value. However, the performance with respect to the computational effort improves with
on average 80%. The same experiments also suggest that the performance of both the
complete formulation and the heuristics procedure is highly dependent on the chosen
values for the cost factors.
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The proposed formulations for the BAP and the QCAP are used to solve the second
step optimization problems for a representative first step allocation on both the strategic
and operational level. On the strategic level, the first step allocation of [Hen08] is used
as the input for the second step. The arrival and departure times of all vessels are
considered to be deterministic. A strategic allocation is used as a reference allocation
for a longer period of time. The strategic case has been solved for a cyclic period of one
week.
On the operational level, the first step allocation of [Hen08] is used as the reference
allocation. A model-based predictive control (MPC) approach [Vul08] reallocates the
first step allocation under disturbances. Both the BAP and the QCAP are solved each
time interval representing for a horizon of 48 and 16 hours during a time period of
10 weeks. The results suggest that with a reasonable amount of computational effort it
is possible to construct and optimize a second step allocation on both the strategic and
operational level.

Recommendations

Although experiments suggest that for typical quay utilizations feasibility issues in the
second step of the solution approach are not expected, it might be that for increasing
quay utilization, a first step allocation results in an infeasible second step allocation.
In that case, the first step problem has to be adapted and solved again. Since the
international conveyance of sea freight using containers is still growing rapidly, it may
be a useful future study how to adapt the first step problem.
For the representative case in Chapter 2, the berth position allocation is constructed
with the vessels’ load composition given in advance. In practice, this information is
sometimes only available 8 hours before arrival of a vessel. Implementing the BAP
formulation, which minimizes the total straddle carrier distance in the MPC approach
of [Vul08] would make it possible to take current forecasts on load compositions into
consideration while constructing the berth position allocation at an operational level.
Experiments suggest that the performance with respect to the objective function value
of the heuristics procedure for the discrete QCAP is highly dependent on the values of
the cost factors. Currently, the cost factors are assigned independent of the subprob-
lem sizes. It may be beneficial to investigate whether the performance of the heuristics
procedure improves when the size of the subproblems is taken into consideration for
assigning the cost factors. The information that is taken into consideration in a sub-
problem also has its influence on the performance of the heuristics procedure. One can
think of adding information to a subproblem about the position of the vessels in the
other subproblems and/or the number of quay cranes that is used in previous subprob-
lem(s).
Up till now the QCAP uses the results of the BAP as an input. However, the results of
the QCAP can also influence the BAP. The use of different quay crane rates introduces
the possibility that a vessel can leave before its desired departure time. In that case,
the dimension of the rectangle, representing the vessels’ processing time in the BAP,
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has become smaller. Thus, solving the BAP again could result in a different, more op-
timal berth position allocation, which for its part could result in a different quay crane
allocation, etc. Hence, it would be interesting to investigate whether iterating between
the BAP and the QCAP results in improved second step allocations.
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Appendix A

Vessel Set Generation

In this appendix is described how representative data from terminal operator PSA HNN
Antwerp can be used to generate vessel sets to experiment with. The vessel sets have to
serve as input for the single-terminal BAP and the different formulations of the QCAP.
To this end, the processing time Pv, the length lv and the required capacity Qv of the
vessels in the set have to be generated. In this appendix, the procedure is only explained
for generating the process times of the vessels since the procedure for generating the
lengths and the required quay crane capacity of the vessels is exactly the same.

Representative data

In Figure A.1a, a histogram is depicted for the representative process times for a set of
37 vessels. Each beam indicates how often the process time of a vessel is in between a
certain range. For example, the first beam in Figure A.1a indicates that 6 vessels have
a process time between 8.0 and 10.8 hours.

Generated data

The information from the histogram in Figure A.1a is used to generate process times
for vessels, which are distributed in the same way as in the representative vessel set.
A set of beams: b ∈ {1, ..., B}, and a set of vessels: v ∈ {1, ..., V } are considered. In
addition, the following parameters are defined:

V : The number of vessels in the set [-].
B : The number of beams in the histogram [-].
Vs : The number of vessels in the representative data set of PSA HNN [-].
Pub : The upper bound of beam b for the processing time [h].
MPb : The mean process time of beam b [h].
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LBb : The lower bound of beam b on the number of vessels [-].
UBb : The upper bound of beam b on the number of vessels [-].

The parameters LBb and UBb are cumulative with respect to the lower and upper bound
of the preceding beam. The relationship is given by LBb+1 = UBb, where 1 < b ≤ B.
For example, in Figure A.1a the lower bound of the first beam is 0 (i.e. LB1 = 0) and
its upper bound is 6 (i.e. UB1 = 6). For the second beam holds that LB2 = 6 and
UB2 = 9.

The variables are given by:

x : A real number between 0 and V [-].
pv : The process time of vessel v [h].

The following algorithm is used to determine the process time for the vessels in the set:

Algorithm 2 Algorithm to determine the process time pv

for v = 1 : V do
x = V · rand
if LBb

Vs
· V < x ≤ UBb

Vs
· V then

pv = MPb ± rand · (Pub −MPb);
else if LBb+1

Vs
· V < x ≤ UBb+1

Vs
· V then

pv = MPb+1 ± rand · (Pu(b+1) −MPb+1);
...

else if LBB
Vs

· V < x ≤ UBB
Vs

· V then
pv = MPB ± rand · (Pub −MPB);

end if
end for

where the function rand draws a random value between 0 and 1 from a uniform distri-
bution.
For each vessel a uniform distributed value is drawn and it is determined in which beam
of the histogram this value is captured. Then, a uniform distributed processing time is
determined between the lower and upper bound for the process time of that particular
beam of the histogram. The determined variable pv can be used as the parameter Pv

in the experiments.
In Figure A.1b the histogram is depicted for the generated process times of 100 vessel
sets, each consisting of 20 vessels. The distribution of the generated process time is
very similar to the distribution of the representative process times.

For the vessel length exactly the same approach is followed. Hence, first a histogram
is made of the representative data of PSA HNN. Then the same algorithm is used to
determine lv instead of Pv.
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For the required quay crane capacity Qv a histogram is plotted of how often a certain
percentage of the maximum quay crane capacity for a vessel per time interval is used
from the representative data of PSA HNN. The maximum quay crane capacity for a
vessel per time interval is given by the product of the maximum number of quay cranes
that can process a vessel at once Sv and the mean quay crane rate λiv. Then again
Algorithm 2 is used to determine Qv for each vessel.
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(a) Representative process times for a vessel set of 37 vessels
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(b) Generated process times for 100 vessel sets of 20 vessels

Figure A.1: Histograms of the representative process times and the generated process
times



Appendix B

QCAP Formulation of [Liu06]

In this appendix, the adapted QCAP formulation of [Liu06] is presented. Contrary to
the original formulation, the position of the vessels and the quay cranes is continuous
and the adapted formulation is suitable for cyclic systems. The notation is equal to the
notation of the discrete QCAP in Chapter 3 to make a comparison possible. For the
original formulation and a more detailed description of the formulation the reader is
referred to [Liu06].

B.1 System Description

Unless stated differently, the following sets are considered: i ∈ {1, ..., M}, the set of
quay cranes, v ∈ {1, ..., V }, the set of vessels. The set of vessels is also denoted by VS.
The end of the considered time cycle is denoted by Tend. In the first step optimiza-
tion the desired arrival and departure time (Av and Dv respectively) have already been
determined. The processing of a vessel cannot start before Av since the vessel is not
present in the terminal yet. Since the maximum relative tardiness is minimized, it is
preferred when the actual departure of vessel v is before or equal to Dv. Each vessel v
has a processing time fvl when l quay cranes are allocated to that vessel. Each vessel v
can be processed by a maximum number of quay cranes Sv.
The position along the quay of each vessel v has already been determined in the BAP.
The left-most position is indicated by X l

v and the right-most position is indicated by
Xr

v . The origin for the left- and right-most position of vessel v is the left-most boundary
of the terminal quay. Between two neighboring quay cranes there has to be a minimal
gap G.
With respect to the cyclic property of the considered system, a remark has to be made:
Both Av ≥ Dv and Av < Dv are possible. Therefore, auxiliary parameter Ev is intro-
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duced, which explicitly distinguishes between both cases:

Ev =
{

1 if Av ≥ Dv ∀v,
0 if Av < Dv.

The sets and parameters discussed above are conveniently arranged in Table B.1. In the
next section, first the variables of the problem are stated. After that, the constraints and
the objective function are derived. It becomes also clear why the auxiliary parameter
Ev is needed.

Table B.1: Model parameters

Parameter Definition
M Number of quay cranes [-]
V Number of vessels [-]
Tend End of the considered time cycle [h]
Sv Maximum number of quay cranes, which can process vessel v simultaneously [-]
X l

v Left-most position of vessel v [m]
Xr

v Right-most position of vessel v [m]
G Minimum gap between two neighboring quay cranes [m]
Av Desired berth time of vessel v (start of processing of vessel v) [-]
Dv Desired departure time of vessel v (end of processing of vessel v) [-]
fvl The processing time of vessel v when l quay cranes are allocated to it [h]
N Significant large positive number [-]

B.2 MILP

Continuous variables

av : The service start time of vessel v [h].
dv : The service completion time of vessel v [h].
lsiv : The position of quay crane i at the start time of vessel v [m].
lciv : The position of quay crane i at the completion time of vessel v [m].
t : The maximum relative tardiness of all vessels [-].
∆d

v : Time that vessel v departs too late or too early [h].

Binary variables

xiv =
{

1 if quay crane i is allocated to vessel v,
0 otherwise.
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φvl =
{

1 if l quay cranes are allocated to vessel v,
0 otherwise.

ev =





1 if av > dv,
0 if av < dv,
1 if av = dv and vessel v is continuously berthing,
0 if av = dv and vessel v does not berth at all.

ea
v =

{
1 if av < Av,
0 if av > Av.

yss
qr =

{
1 if aq is before ar (q, r) ∈ VS, q 6= r,
0 otherwise.

ysc
qr =

{
1 if aq is before dr (q, r) ∈ VS, q 6= r,
0 otherwise.

ycs
qr =

{
1 if dq is before ar (q, r) ∈ VS, q 6= r,
0 otherwise.

ycc
qr =

{
1 if dq is before dr (q, r) ∈ VS, q 6= r,
0 otherwise.

Constraints

1 <
M∑

i=1

xiv ≤ Sv ∀v, (B.1)

Sv∑

l=1

lφvl =
M∑

i=1

xiv ∀v, (B.2)

ar ≥ aq + N
(
yss

qr − 1) (q, r) ∈ VS, q 6= r, (B.3)

dr ≥ aq + N
(
ysc

qr − 1) (q, r) ∈ VS, q 6= r, (B.4)

ar ≥ dq + N
(
ycs

qr − 1) (q, r) ∈ VS, q 6= r, (B.5)

dr ≥ dq + N
(
ycc

qr − 1) (q, r) ∈ VS, q 6= r, (B.6)
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yss
qr + yss

rq = 1 (q, r) ∈ VS, q 6= r, (B.7)

ysc
qr + ycs

rq = 1 (q, r) ∈ VS, q 6= r, (B.8)

ycs
qr + ysc

rq = 1 (q, r) ∈ VS, q 6= r, (B.9)

ycc
qr + ycc

rq = 1 (q, r) ∈ VS, q 6= r, (B.10)

lsiv ≥ X l
v + G + N

(
xiv − 1

) ∀i, v, (B.11)

lsiv ≤ Xr
v −G + N

(
1− xiv

) ∀i, v, (B.12)

lciv ≥ X l
v + G + N

(
xiv − 1

) ∀i, v, (B.13)

lciv ≤ Xr
v −G + N

(
1− xiv

) ∀i, v, (B.14)

lsir ≥ X l
q + G + N

(
xiq + yss

qr + ysc
rq − 3

) ∀i, (q, r) ∈ V S, q 6= r, (B.15)

lsir ≤ Xr
q −G + N

(
3− xiq − yss

qr − ysc
rq

) ∀i, (q, r) ∈ V S, q 6= r, (B.16)

lcir ≥ X l
q + G + N

(
xiq + ysc

qr + ycc
rq − 3

) ∀i, (q, r) ∈ V S, q 6= r, (B.17)

lcir ≤ Xr
q −G + N

(
3− xiq − ysc

qr − ycc
rq

) ∀i, (q, r) ∈ V S, q 6= r, (B.18)

lsiv − ls(i−1)v ≥ G ∀i > 1, v, (B.19)

lciv − lc(i−1)v ≥ G ∀i > 1, v, (B.20)

av ≥ Av − Tend · ea
v ∀v, (B.21)

dv = av +
Sv∑

l=1

fvl · φvl + Tend · ev ∀v, (B.22)

∆d
v ≥ (Dv − dv)− Tend · ea

v + Tend · Ev − Tend · ev ∀v, (B.23)

t ≥ ∆d
v

dv −Av
∀v. (B.24)

Constraints (B.1) define the range for the number of quay cranes that can be allocated to
vessel v. Constraints (B.2) determine the number of quay cranes allocated to vessel v.
Constraints (B.3) and (B.7) ensure that yss

qr = 1 iff ar ≥ aq. From (B.3) for each
pair (q, r) there are two related constraints: i) ar ≥ aq + M

(
yss

qr − 1
)
, and ii) aq ≥

ar + M
(
yss

rq − 1
)
. From (B.7) follows that only one of yss

qr and yss
rq is one. For example,

if yss
qr = 1, i) becomes ar ≥ aq, and ii) is redundant due to the significant large number

M . The constraint couples
(
(B.4), (B.8)

)
,
(
(B.5), (B.9)

)
, and

(
(B.6), (B.10)

)
work the

same way to match with the definitions of ysc
qr, ycs

qr and ycc
qr, respectively.

Constraints (B.11) – (B.14) ensure that quay crane i is positioned alongside vessel v
at the service start and completion times of the vessel, if quay crane i is allocated to
the vessel (i.e., xiv = 1). These constraints are void if quay crane i is not allocated to
the vessel (i.e., xiv 6= 1). Constraints (B.15) – (B.18) ensure that, if quay crane i is
allocated to vessel v (i.e., xiv = 1), quay crane i stays alongside vessel v at all event
time points between the service start and completion times of this vessel v. Collectively,
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constraints (B.11) – (B.18) make sure that a quay crane can only work on one vessel at
any time, and once it starts processing a vessel it stays there until the processing of the
vessel is completed.
Constraints (B.19) and (B.20) ensure that quay cranes cannot cross each other.
The processing start time of a vessel cannot be earlier than the actual berthing time
of that vessel, which is ensured by constraint (B.21). The binary variable ea

v ensures
the cyclic nature of the system. Constraints (B.22) make sure that a vessel is processed
for the required duration with respect to the number of quay cranes allocated to it. In
this constraint, binary variable ev ensures the cyclic nature. With respect to departing
too early or too late there are four possible permutations of dv and Dv. With the help
of the introduced auxiliary variables ev and ea

v, and the auxiliary parameter Ev, it is
possible to construct appropriate constraints for ∆d

v to satisfy each of the four cases; as
formulated in Constraint (B.23).
The maximum relative tardiness of the complete vessel set is larger or equal to the
relative tardiness of the individual vessels, which is captured in Constraints (B.24).

Objective

The objective of the problem is to minimize the maximum relative tardiness of the
complete vessel set:

min t. (B.25)


