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Abstract

We present a case study based on a multi-terminal container operation in Antwerp, Belgium,
where a set of cyclically calling container vessels is processed. The operator faces the problem
of strategically allocating a terminal, a berthing interval, and a variable number of quay cranes
to the vessels in the set. Restricting properties are terminal quay lengths, number of quay
cranes and storage capacities. Currently, the operator’s objective is to satisfy the preferences
of the vessel lines, with respect to a terminal and berthing time, as much as possible. We
are interested in the benefit of modifying a given allocation, i.e. the potential crane and
inter-terminal costs savings if specific changes to a given allocation are allowed. An MILP
is implemented in a two-step optimization, which enables us to efficiently investigate the
benefit of modification. Experimental results suggest that small changes in a given allocation
may lead to significant cost savings.



Introduction

In 1960 people started using containers for international transport of sea freight for the first
time. Since then the containerization has grown rapidly. Nowadays, deep-sea vessels can
carry up to 14 thousand TEU'’s (Twenty feet Equivalent Units) and mega container ports are
processing up to 26 million TEU’s a year. In order to cope with these tremendous amounts
of cargo, port operators have to develop efficient logistics systems. Discussions on and classi-
fications as well as solution methods for the main logistics processes in container ports can
be found in [1], [2] and [3]. In the literature, the berth allocation problem (BAP) is seen as one
of the key issues in a container port. We explicitly distinguish between i) the single-terminal
BAP, which is concerned with the allocation of a set of vessels to one terminal and ii) the
multi-terminal BAP, which is concerned with the allocation of a set of vessels to a cluster of
interrelated terminals.

In the last two decades intensive research has been conducted on the single-terminal BAP.
In this paper, however, we focus on the multi-terminal BAP. To our knowledge and as stated
in [4], hardly any research has been conducted towards the multi-terminal BAP.

The studies concerning the single-terminal BAP all consider two interrelated allocation prob-
lems: allocate i) a berthing position at the terminal, ii) a time interval of berthing, and some-
times iii) a number of quay cranes to each vessel. The problem can be represented in a
two-dimensional space, where each vessel is a rectangle, whose dimensions are the vessel’s
length and handling time. These rectangles have to be placed within a larger rectangle, with
dimensions quay length and considered time horizon, such that the smaller rectangles are
not overlapping and satisfy some additional, case-related constraints. A vessel’s handling
time depends on both the amount of containers to be loaded and unloaded and the number
of quay cranes assigned to the vessel. The objective of the single-terminal BAP is usually to
minimize the total weighted handling time. In this paper, however, we allocate i) a terminal,
ii) a time interval of berthing, and iii) a time-slot dependent crane capacity to each vessel.
Although we guarantee that the sum of the lengths of all vessels berthing at the same time
instance in the same terminal does never exceed the total quay length, the exact berthing po-
sition at a terminal is not allocated yet. In the same vein, the total crane capacity of a terminal
is never exceeded, but the exact integer-valued crane allocation is yet to be determined. This
implies that we reduce the problem to a number of interrelated, one-dimensional packing
problems, which allow capacitated parallel processing.

Both static and dynamic BAPs are considered in the literature. The static case assumes that
all vessels can be allocated to the berth at each point in time. Different solution methods for
the static single-terminal BAP are addressed in [s5], [6], [7], [8], [9], [1o], [11], [12], [13], [14], [15],
and [16]. In the dynamic case, vessels arrive while work is in progress. Different solution
methods for the dynamic single-terminal BAP are addressed in [17], [18], and [9]. In this
paper, we consider a static multi-terminal allocation problem.

Furthermore, in the single-terminal BAP, both time and space dimensions can be modeled
either discrete or continuous. If the space dimension is considered to be discrete, the termi-
nal is divided into a finite set of segments. A vessel can only berth at one (or more) of these
segments, which means that the length is only partially taken into consideration. Different
solution methods for the discrete space BAP are addressed in [19], [20], [6], [17], [18].[14], [15],
[7], [8], [9], and [16]. In the continuous space BAP, vessels can berth anywhere along the termi-
nal ([10], [11], [12], [13], and [16]). Since we only allocate a terminal to each vessel, the allocation
of a specific berth position within the terminal is not taken into consideration. This reduces
the problem to a one-dimensional packing problem, which can be solved much faster. The
exact position allocation within a terminal is solved in a different study. Preliminary findings
suggest that in all practical cases this position allocation is feasible.



Most studies of the single-terminal BAP allocate a real-valued start and end time of berthing
to each vessel ([19], [20], [17], [18}(14], [15]. [7]. (8], [o], [16], [t0], [xt], [12], [13], and [16]). A
restricted number of studies of the single-terminal BAP considers time to be discrete, where
a vessel is allocated to a berth position for a number of discrete time slots [6]. In this paper,
we consider time to be discrete and allocate a vessel to a terminal for a number of discrete
time slots.

Most of the studies of the single-terminal BAP assume a fixed processing time of each vessel
and leave required quay crane capacities aside. The study in [6] considers the single-terminal
BAP and allocates an integer number of quay cranes to each vessel during each time slot in
a first step. In a second step, a detailed quay crane allocation is constructed. Both steps are
solved using heuristic methods. In this paper, we allocate a terminal, a berthing interval, and
a time-slot dependent real-valued quay crane capacity to each vessel. Assuming a continuous
quay crane capacity does not introduce additional integer variables as in [6], which enables
us to solve the formulated MILP relatively fast. Transforming the real-valued crane capacity
allocations into integer-valued ones is solved in a different study. Also here, preliminary
findings suggest that in all practical cases this integer-valued crane allocation is feasible.

Previous studies of the single-terminal BAP consider a set of vessels within a certain linear
time horizon. The corresponding objective in these studies often reduces to fitting all vessels
within a time horizon and minimizing the total weighted handling time for all vessels. How-
ever, in practice most vessels run a regular service on their ports, for instance once a week,
which makes the horizon cyclic. Vessels can arrive at the end of the considered cycle and
leave at the beginning of the next cycle. Relating this to the packing problem implies that
rectangles (vessels) may need to be cut into two, where one piece is placed at the end and
the other piece at the beginning of a time period, both at the same position in space. In this
paper, this property is taken into consideration, while so far, to our knowledge, this has not
yet been studied for the BAP.

As mentioned before, the multi-terminal BAP has not yet been considered. So far, studies
present models and algorithms, which only solve some version of the single-terminal BAP.
However, present ports often consist of a cluster of terminals (see Figure 1), where inter-
terminal container transport is established by trucks and barges. Since most ports face a
significant amount of transshipment traffic, the allocations of vessels to different terminals
determine the amount of inter-terminal transport and these allocations should not be con-
sidered separately to obtain meaningful results.

Hence, in order to derive an optimal allocation, it is necessary to incorporate the total of
interrelated terminals and their inter-terminal container flow in one model: this is called
the multi-terminal BAP. Therefore, this model should also take into account the amount of
inbound and outbound containers and their corresponding destinations. Inbound contain-
ers of an arriving vessel for instance could be partly destined for the hinterland and partly
for another vessel. Hence, allocation of the two involved vessels to different terminals im-
plies inter-terminal traffic and thus additional costs. However, due to other objectives and
constraints this may still be the best or only solution.

In [21], two MILP formulations have been proposed to model and optimize this allocation
problem in a multi-terminal port, where a set of vessels arrives cyclically. Experiments showed
that a straightforward approach is outperformed by an alternative formulation from a com-
putational point of view. Furthermore, these experiments suggested that with the alternative
formulation, real-life problems can be solved within a couple of hours. In this paper we con-
firm this suggestion, and show how we can substantially further reduce the solution time for
practical cases.



/ Seaside “
Import Import
-———— P
Export “ Export
k{ m
*
Inter- termlnal I
i
I

Transport

Land side

Figure 1: A cluster of three interrelated terminals.

Contributions and Outline

In this paper, the MILP formulation of the cyclic multi-terminal BAP, addressed in [21], is
firstly considered. In the MILP formulation, a terminal, a berthing interval, and a variable
quay crane capacity is allocated to each vessel. The study aims for a strategic time table
and hence leaves system disturbances (e.g. vessel delays) aside. Although the constraints
guarantee that terminal quay lengths as well as quay crane capacities are never exceeded,
the exact berthing positions and the integer-valued quay crane allocation within a terminal
are still to be determined at a tactical level. Basically, we consider a number of interrelated,
one-dimensional packing problems, each of which allows capacitated parallel processing.
The actual assignment of berths and cranes is left to a tactical level. Separating strategic
and tactical levels (see Figure 2), we are able to construct an accurate allocation for real-life
instances (in the order of 3 terminals, 20 quay cranes and 40 vessels) at a strategic level
rather fast. Moreover, given such vessel allocations, fixing some where others are still to be
determined, as is often the case in practice, leaves an optimization problem that is solved in
a matter of seconds. This would also allow it to be applied at an operational level, e.g. in case
of delays. Work in progress suggests that for real-life data, feasible position and quay crane
allocations on a tactical level exist.
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Figure 2: Schematic illustration of the chosen cut.

In this paper, we investigate the benefit of modifying given allocations for a cyclic multi-



terminal container operation. The research is supported by the terminal operator PSA Hesse-
Noord Natie, located in Antwerp, Belgium.

A two-step optimization is introduced to efficiently investigate the benefit of modification. In
the first step, we adapt the alternative MILP formulation in [21] by allowing bounded flexibility
in arrival and departure times. For an arbitrarily selected set of vessels the terminal allocation
and the time position of the berthing interval can now be adapted to reduce the costs for quay
cranes and inter-terminal transport. The resulting allocation is generated on an 8-hours time
slot grid within minutes of computation time. In the second step of the optimization, a
similar MILP as in the first step is proposed to refine the obtained allocation to a one-hour
time slot grid within seconds. We perform two experiments, which suggest that with a small
modification significant cost reductions can be achieved. Whether such a reallocation is
practically and commercially feasible is beyond the scope of this paper.

The outline of the paper is as follows: in Section 3, we formally phrase the problem of the
cyclic multi-terminal BAP. Then in Section 4, the alternative MILP formulation of [21] is used
in a case study: first, we expand the MILP formulation with additional constraints to model
the bounded flexibility. CPLEX is able to solve the MILP on an eight-hours time grid within
minutes for cyclic problems with 3 terminals, 20 cranes, and 40 vessels. Next, we show that
a similar model can be applied to refine the constructed allocation per terminal to a one-hour
time grid within less than a tenth of a second. With this approach we can choose any desired
level of flexibility and quickly determine the potential cost savings. In a first experiment, a
given terminal and time allocation is optimized by allowing a bounded time flexibility and a
different terminal allocation for only a couple of vessels. By varying the allowed deviations
in arrival times (the amount of flexibility), we construct Pareto frontiers of the number of
required quay cranes versus the inter-terminal transport costs. Results suggest that slightly
adapting the current allocation already leads to a saving of about 25% of the number of quay
cranes and at the same time a saving of over 3% of the costs for inter-terminal transport. In
a second experiment, the terminal allocation of all vessels is allowed to be adapted while the
time allocation is fixed. Results suggest that, with the current number of required quay cranes
but a different terminal allocation, about 40% of inter-terminal costs can be saved. Next, we
confirm that for all generated allocations, feasible position and quay crane allocations on a
tactical level exist. Finally, we draw conclusions and discuss ongoing research projects.

Mathematical Model

In this section, the multi-terminal allocation problem is formally defined. The accompanying
MILP formulation (without costs for deviating from the current schedule), described as the
alternative approach in [21], is presented in the Appendix.

System Description

For all of this paper the following holds, unless stated differently: t € {1, 2, ..., T}, the cluster
of terminals, v € {1,2,..., V}, the set of vessels, z € {o,1,2,..., V}, the set of container
destinations. Furthermore, we assume vessels to call cyclically, where each vessel in the
set arrives exactly once a week. We consider discrete time k and unless stated differently,
ke {1,2,..., K}, is the set of discrete time slots within the cycle.

In the cluster of terminals, the set of container vessels has to be unloaded and loaded. Vessel v
imports a pre-determined number of inbound containers I, € IN with destination(s) z, where
v /= z. In this context, z = 0 means that containers are destined for the hinterland, whereas



Zz = 1,2,..., V means that containers are destined for vessels v = 1,2,..., V respectively.
Besides import containers brought in by vessels, a certain amount of containers H, with
destination v is imported from the hinterland by trucks and trains. These containers have to
be distributed among the different terminals dependent on their destinations. Furthermore,
each vessel v exports a number of outbound containers O, € IN. Container transport between
the cluster of terminals is established by trucks.

Terminal t has a restricted quay length I, € R* and a number of quay cranes N; € IN to
unload and load the vessels. Once berthing, vessel v requires a certain amount of quay meters
l,. In addition, this length I, determines the maximum number of quay cranes S, € IN
processing vessel v and the efficiency #, € [o, 1] of the quay cranes on vessel v. In practice,
quay cranes with different processing rates are present in the terminals. We do not take the
specific allocation of quay cranes to vessels into account, but we use the average processing
rate A, € IN of all quay cranes in terminal t. Then the handling time of vessel v in terminal
t depends on i) the mean processing rate A, in terminal ¢, ii) the efficiency 7, of quay cranes
operating vessel v, iii) the number of quay cranes processing vessel v and iv) the number of
inbound and outbound containers I,, and O, of vessel v. We assume the processing time of
vessel v to be inversely proportional to the first three of these items and proportional to the
latter. Furthermore, the number of quay cranes processing vessel v may change from one
time slot to another.

After the unloading and before the loading, containers can temporarily be stored in the yard
of terminal t up to the yard’s capacity W;. The number of time slots it takes to transport
containers from terminal p to terminal r is defined as A, € IN, where p € {1,2,..., T},
r € {1,2,...,T} and p /= r. Furthermore, we assume that the total number of time slots
vessel v is actually berthing, is less than the number of time slots K in the cycle. In addition,
we assume that vessels arrive at the beginning of a time slot and depart at the end of a time
slot.

Our goal is to minimize the quay crane and inter-terminal costs when modifications to an
existing allocation are allowed. Hence, the current terminal allocation as well as the current
arrival and departure time (A, and D,, respectively) are taken as a starting point. Next, we
allow some modifications to the allocations of some arbitrarily chosen vessels. With respect
to the terminal allocation, this modification can be an allocation to a different terminal. With
respect to the modifications in the time position of the berthing interval, we define a flexibility
gap: although we demand that the length of the current berthing interval P, of vessel v is
retained, the time position of this interval can be placed maximally G, time slots earlier or
G, time slots later than in the current allocation. The resulting lower and upper bounds for
the arrival and departure time are defined as A} and DY, respectively. Consequently, the costs
for arriving and departing too late in [21] are left out. Two conflicting objectives remain: first
of all, costs are associated with the number of quay cranes required to perform the proposed
schedule. We define c; to be the costs of a quay crane in terminal ¢t. Second of all, a fixed
amount of money c,, has to be paid for each container that is transported from terminal p to
terminal r, where p € {1,2,..., T}, r€{1,2,...,T}andp /=r.

Due to the cyclic property of the considered system, we require conservation with respect to
the arriving and departing containers:

\4
Z Iy +H,=0, W (1)
i=1

The sets and parameters discussed above are conveniently arranged in Table 1.



Parameter | Definition

T Number of terminals in the cluster

\% Number of vessels in the set

K Number of discrete time slots within the cycle

L, Quay length [m]

L Quay length required for vessel [m]

I, # inbound containers to be unloaded from vessel v with destination zand v /= z
O, # outbound containers to be loaded onto vessel v

H, # containers with destination v arriving from the hinterland during the cycle
A, Current arrival time of vessel v

D, Current departure time of vessel v

G, Flexibility gap for time allocation of vessel v [hrs]

Al Earliest arrival time of vessel v

Dy Latest departure time of vessel v

p, Contractual berthing/ process time of vessel v

E, Parameter to distinguish between the cases A, < D, and A, = D,

N, # quay cranes available in terminal ¢

Sy Maximum # quay cranes, which can process vessel v

A Mean processing rate of quay cranes in terminal ¢ [containers/time slot]
1y Vessel efficiency with respect to quay crane rate [-]

Apr # time slots needed to transport containers from terminal p to r

W, # containers that can be stored in terminal ¢

Cor Costs for transportating a container from terminal p to r [euro/ container]
Ct Costs per quay crane in terminal ¢ [euro/ quay crane]

Table 1: Model parameters

Case Study

In practice, a vessel line owns a number of (identical) container vessels, which follow the
same route, leading along several ports all over the world. This route may take the vessels a
couple of weeks or even months. We assume that the number and the time phasing of the
vessels of a line is such that exactly once a week, one vessel of this line calls at a port at a
fixed time. Additionally, we assume that all vessels of a line have the same length and carry
the same number of inbound and outbound containers. It therefore suffices to construct a
one-week allocation, which is repeated over and over again.

We consider three interacting terminals (T = 3) in the port of Antwerp, where thirty-seven
vessel lines have one of their vessels processed exactly once a week (V = 37). Furthermore,
we assume that each vessel line has a preferred terminal and a preferred arriving and depar-
ture time, which fit best to their schedule. The current policy of PSA HNN is commercially
driven and aims to satisfy the preferred allocation as good as possible. The costs for the
corresponding number of quay cranes and inter-terminal traffic are of lower priority in this
policy.

We think significant cost savings that can be obtained if these two objectives are of higher
importance. The quay cranes for instances are the most expensive devices in a container port.
A small reduction in the number of quay cranes would therefore already lead to substantial
cost savings.

As an illustration, Figure 3 depicts the scaled number of used quay crane capacity in one
of the terminals for each hour in a one week cycle (K = 168) according to the allocation
as currently applied in Antwerp. The black line represents the scaled mean crane capacity



usage per hour. From the high fluctuations in crane usage, the following can be concluded:
i) during a couple of time slots, a certain amount of quay cranes is needed and ii) during a
lot of time slots a large percentage of this amount is simply not used.

# Quay cranes

© o o o
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o

Figure 3: Current quay crane usage in terminal 1 during the hours of a one-week cycle.

We are interested in the benefit of modifying the current allocation, i.e. the potential reduc-
tion of the required number of quay cranes and the costs for inter-terminal transport when
both the current terminal and time allocation are adapted. We expand the existing MILP of
[21], such that for an arbitrarily chosen level of flexibility, the cost reduction is maximized.

Nowadays, the allocations in ports are constructed on a one or two hour(s) time grid. Since
these sizes of time slots lead to large computation times when solving the MILP, the opti-
mization is performed in two steps: First, the MILP is solved for time slots of eight hours.
For a weekly cycle this means K = 21. The model can then be solved within minutes while
allocations are generated quite accurately, since port employees work in shifts and vessels
commonly berth during multiples of a shift. In a second step, a similar MILP is built to re-
fine the constructed allocation per terminal to a one-hour time grid. Solving this MILP takes
less than a tenth of a second.

The resulting two-step optimization approach enables us to efficiently investigate the depen-
dency of the cost savings on the level of flexibility: a number of vessels and their level of
flexibility can arbitrarily be selected. Next, these settings can easily be implemented in the
model to determine possible savings in quay crane and inter-terminal transport costs. In
Section 4.1, we discuss the two-step optimization in detail and apply it in two experiments
presented in Sections 4.2 and 4.3.

In the first experiment, our hypothesis is that a slight adaptation of the allocation of only
a couple of vessels already leads to large cost reductions. Hence, the terminal allocation
of a small part of the vessels is chosen to be flexible and the time position of the berthing
interval can be shifted between some pre-specified bounds. For different values of these
bounds, we construct Pareto frontiers of the number of required cranes versus the inter-
terminal transport costs, which confirm the hypothesis. One of the points from one of the
Pareto-frontiers is highlighted to further illuminate the hypothesis. This point represents the
allocation after selecting less than one third of the vessels and allowing i) a change in their
terminal allocation and ii) a shift in the time position of the berthing interval of these vessels
of maximal 24 hours (G, = 24). The results of the two-step optimization suggest that about
25% of the number of quay cranes can be saved while at the same time the inter-terminal
transportation costs are reduced by 3%.

In the second experiment, we assume that all vessel lines prefer to stay with their current time
position of the berthing interval (G, = o), while they allow a different terminal allocation.
Consequently, the terminal allocation of all vessels is chosen to be flexible while the time
positioning of the berthing interval is fixed to the existing one. Results suggest that with the



same number of quay cranes as in the current allocation, 40% of the costs for inter-terminal
transport can be saved by adapting the terminal allocation.

Two-step optimization
Step 1

We want to minimize the number of quay cranes required for the current throughput, and at
the same time reduce the costs for inter-terminal transport by adapting the current terminal
and time allocation. We expect that changing the current terminal allocation of a couple of
vessels and slightly shifting their current berthing interval in time already leads to a signifi-
cant reduction in both these objectives. Hence, we select 11 vessels (out of the total set) from
the busy peaks arbitrarily and define two sets: the set S to be the set of 11 vessels, which
current terminal and berthing allocation can be adapted, and the set Fj; to be the set of index
pairs of all the other vessels together with their current terminal. We have to specify addi-
tional constraints for the vessels in the different sets. First of all, for the vessels in Fj;, the
time-position of the berthing interval should be fixed:

ai = Aj, i€ F (2)
di= D, 1€ Fy )
Furthermore, the current terminal allocation for the vessels in Fj; should be fixed:

%=1, Vij € Fy, (4)

The vessels in set S on the other hand are free to be allocated to any of the terminals according
to (16). Additionally, we allow some freedom in the time allocation of their berthing interval:
although the length of the berthing interval should be equal to P, according to:

K
> by(k) =P, W, (5)
k=1

where b, (k) is 1 iff vessel v berths during time interval [k, k+1) and o otherwise. Furthermore,
the time position of the berthing interval of the vessels in S can be placed maximally G,
time slots earlier or G, time slots later with respect to its current time position as shown in
Figure 4.

<
v
A
A 4
A
<

< D
a, d,

Figure 4: Flexibility in the time-position of the berthing interval P, of vessel v € S.

The corresponding lower and upper bounds for berthing of vessel v € S, Al and D* respec-
tively, are then given by:
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A - A, -G, if A,-G,=1, 6
v A, -G, + K otherwise Y e S, (©)
DY - D, + G, if D, +G, <K,

v D, + G,— K otherwise Vv e S. (7)

Due to the cyclic property of the system, we distinguish two cases and derive appropriate
constraints for the vessels in S accordingly:

1. Al < D*:
€, =0, (®)
az A, (9)
d, = D}. (10)

2. D¥ < Al (additional binary variables ¢? and e are introduced):

K-ef=A—aq, (1)
“K-(1-¢) <A —a, (12)
K-el=D,-d, (13)
-K-(1-¢)) = D, —d, (14)
dy=a,+K-e"—K- ¢ (15)

Experiments show that, with the resulting MILP, allocations on a grid of eight-hours time
slots are generated within minutes. Further decreasing the width of the time slots turns out
to lead to large computation times. Hence, as a first step, the model is built of eight hours
time slots. The actual berthing time is therefore rounded up to a multiple of a shift to express
the parameter P, of vessel v in the model.

Step 2

Since in today’s ports most allocations are constructed on a two-hours or even on a one-hours
grid, we introduce a second step to refine the constructed allocation per terminal from eight-
hours time slots into one-hour time slots. We define p} to be the berthing time of vessel v
on the refined time grid and thus p < P,. Additionally, we require that the refined berthing
time interval is positioned between the allocated arrival and departure time (optimal values
ay and d of the first step optimization) on the coarse time grid. Hence, we introduce the
variables a]} and d}} to be the arrival and departure time of vessel v on the refined time grid,
respectively. Hence in the second step, we build an MILP with similar constraints as given
in (8) through 515), where Al is substituted by a, D* by dZ, a, by a’, d, by d”, and €% and
e by €™ and ¢, respectively. The computation time turns out to be less then a second per
terminal.
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Experiment 1

For each value of G, € {0, 8,106, 24, 48} (in hours) for the vessels in S, a Pareto frontier of
the total number of required quay cranes versus the costs for inter-terminal transport is con-
structed. Each point in a frontier results from a single two-step optimization with a specific
ratio between costs for quay cranes and costs for inter-terminal transport. The results are
depicted in Figure 5a. The cross represents the state of the allocation currently applied in
Antwerp. From Figure 5a the following can be concluded:

+ For G, = o for v € S yet the costs for inter-terminal transport or the number of required
quay cranes can be reduced. Apparently, an adaptation in the terminal allocation of the
vessels in S suffices to achieve this.

« For G, = o for v € S yet a reduction in the number of quay cranes is possible at the
expense of higher inter-terminal costs.

« The improvements going from G, = o to G, = 8 are relatively large, whereas the im-
provements going from G, = 24 to G, = 48 are approximately zero.

« All fronts intersect (the upper left point) where the crane costs are zero. Apparently,
the inter-terminal costs cannot be further reduced even if G, grows and the maximum
number of cranes is used.

« The grey bullet suggests that if G, = 24 for v € S the number of required quay cranes
can be reduced by almost 25% and the costs for inter-terminal by about 3%. This means
that besides a possible change in terminal allocation, the time allocation of only 1
vessels has to be shifted one day maximally to gain significant improvements.

The quay crane usage of the allocation, represented by the grey bullet in Figure 5a, is depicted
in Figures Gb, 6d and 6f. The results are scaled to the quay crane usage in the current
allocation as shown in Figures 6Ga, G6c and Ge. The black lines represent the mean quay
crane usage per hour in the different terminals. If we compare Figures 6a, 6¢, Ge with
Figures 6D, 6d, 6f, the following can be noticed:

+ The workload in the generated allocation is better balanced than in the current alloca-
tion. This results in the previously mentioned reduction of almost 25% of the required
quay cranes.

« At some points in time still some quay cranes are not working in the generated al-
location. Introducing either a higher level of flexibility (by increasing G,, v € S) or
including more vessels into the set S would probably fill up these gaps and lead to an
even better workload balance and a smaller number of required cranes.

« The mean quay crane usage in a specific terminal can differ for the current allocation
and the generated allocation. This can be explained by a difference in terminal alloca-
tion of the vessels in S. The total quay crane usage however is equal for both allocations.

Additionally, we depict the benefit of modification in a different way. For a constant ratio of
quay crane costs and inter-terminal costs, the scaled total costs are plotted versus the level of

flexibility G,. Figure 5b presents the results for 10 ratios (= € {0, 20, 40, 60, 80, 100, 120, 140, 160, 0}).
pr

From this figure, the following is noticed:



12

ir -|-”_ X Current Allocation I === =O === O === Q= === == === - -
1 Highlighted Allocation LR
1 G 098 ®

095 | y 1 S
$ 1 / 0.96 \‘\\ N o, Crane costs : IT costs
c L 1 | )
g 09 ! B 0.94f
o 1 8
> | L
© o085 | = 092
=) -
o —_ S oof
-
o o
— 08f @
o} S 0.88f
£ ®
g 075} 086
4

084f
orr TTTmTmETETTETETTTTTT
082f
0.65 . . . . . . . . . . 08;
05 055 06 065 07 075 08 08 09 095 1
Inter-terminal Costs
(a) Pareto frontiers.. (b) Costs vs flexibility level G, for different cost ratios.

Figure 5: Improvements of introducing a flexibility level.

« For the ratio equal to o (no costs for quay cranes), the total costs (for this ratio only inter-
terminal costs) are not affected as the level of flexibility increases. Apparently, the inter-
terminal costs are not affected by G,, because the terminal length and crane capacity
are not binding at G, = o, so that the ’best’ (lowest inter-terminal traffic) solution is
already obtained.

For all ratios larger than zero the total costs decrease as the level of flexibility increases.

« As the ratio grows between zero and forty, the total costs-decrease becomes relatively
large. Apparently, these are the sensitive ratios, where a slide increase of the crane costs
already leads to a significant reduction in quay cranes. This suggests that the current
number of quay cranes is far from minimal.

« After the cost ratio of forty, the scaled cost curve approximately stays in steady-state. For
these ratios, the relative quay crane costs are that large, that further increasing them
does not significantly affect the costs.

Experiment 2

In this experiment we assume that none of the vessel lines is prepared to change their
berthing times in Antwerp, however a change in terminal allocation is allowed by all lines.
We are interested in decreasing the current costs for inter-terminal transport, while the cur-
rent berthing times are remained. Additionally, we require that the number of quay cranes
needed is at most equal to the number of quay cranes required for the current allocation.
Hence, we allow a terminal adaptation for each vessel and fix its berthing interval in time to
the current allocation (G, = o). Figure 7 shows the cumulative costs for inter-terminal trans-
port for the current allocation and the generated allocation for each hour in the weekly cycle.
The costs are scaled to the total costs in the current allocation. These results suggest that,
with the same number of quay cranes, about 40% of the costs for inter-terminal transport
can be saved.

Feasibility

Although the proposed method allocates a terminal, a time interval of berthing and an time
varying number of quay cranes to a vessel, the actual position within that terminal as well
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Figure 6: Current and generated quay crane usage during the hours of a one-week cycle.
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Figure 7: Current and generated cumulative inter-terminal costs for a one-week cycle.

as the actual quay cranes processing that vessel are not specifically generated (see also Fig-
ure 2). The omission of these allocations allows to solve the model relatively fast, at the
expense of possible infeasibility of the found solution on a tactical level. If the terminals
would continuously be utilized against their quay lengths capacities, this could lead to a sit-
uation where (24) is fulfilled, but a feasible two-dimensional packing solution does not exist.
In practice however, ports require a significant utilization margin to compensate for distur-
bances (e.g. early/late arrivals and departures) on an operational level. In a related study, we
are currently developing an algorithm to optimize the position and quay crane allocation after
the generation of the strategic allocation. With the current status of these algorithms, we are
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already able to construct a feasible two-dimensional packing solution and a feasible crane al-
location for the strategic allocations generated in the experiments shown in this paper. Since
we focus on an allocation at a strategic scale, an (arbitrary) feasible solution on an operational
level is satisfactory at this point in time. The ongoing study can possibly i) optimize the posi-
tion and quay crane allocation at a second level or ii) incorporate the position and quay crane
allocation in the top-level optimization.

Conclusions and Future Work

We have considered a cluster of interrelated terminals, at which a set of container vessels
calls cyclically. By abstracting from specific position and quay crane allocations, an MILP for-
mulation enables us to strategically allocate a terminal, a berthing interval, and a time-slot
dependent real-valued crane capacity to each of the vessels in the cycle. A two-step optimiza-
tion approach was introduced adapting the MILP to perform a case study, based on a multi-
terminal port in Antwerp. This approach enabled us to efficiently investigate the benefit of
modifying an existing allocation, i.e. the potential crane and inter-terminal transport cost
savings if the existing terminal and time allocations were to be adapted. Pareto frontiers were
presented to give insights in the possible reduction of quay cranes at the expense of higher
inter-terminal transportation costs, and vice versa. Results suggest that a small adaptation of
an existing allocation suffices to gain significant improvements: a reduction of almost 25% of
the number of cranes and at the same time a reduction of more than 3% of the inter-terminal
costs. Furthermore, if the current terminal allocation of all vessels is allowed to be adapted
while the current time allocation is fixed, costs for inter-terminal transport can be reduced
by 40%. Whether such a reallocation is practically and commercially feasible is beyond the
scope of this paper. Finally, work in progress confirms that the generated strategic allocations
are feasible on an operational level meaning that actual position and quay crane allocations
exist.

We make the following remarks with respect to current and future research:

« Usually a contract between a terminal operator and a shipping line stipulates that the
terminal operator has to process a vessel within a certain time, provided that the ves-
sel arrives within a certain agreed time window around the scheduled arrival time.
We have recently developed a model to analyze the sensitivity of a strategic allocation
to these time windows. This means that we can determine the maximum number of
quay cranes needed in the worst-case scenario of all possible arrival patterns for a strate-
gic allocation. Additionally, we have expanded this model to minimize this worst-case
scenario, if adaptations to this strategic allocation are allowed.

- As mentioned before, in an ongoing study algorithms are being developed to show the
feasibility of the strategic allocation at a tactical level, and to further optimize these
position and quay crane allocations.

« The current strategic allocation assumes all parameters to be deterministic. At an op-
erational level however, the considered processes, e.g. arrival of vessels and quay crane
productivity, are stochastic. Due to these stochastic properties, the strategic allocation
has to be continuously adapted. We are currently developing a method to quickly adjust
a given allocation, if operational disturbances occur.

« In the current paper, we assumed all vessels to arrive exactly once during the cycle,
implying that all vessels have the same period. However, in practice it can happen that
some vessels have different cycle lengths. An extension of the model, which incorpo-
rates this phenomenon, is an interesting future study.
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« In today’s ports, inter-terminal transport is not only established by trucks, but also by
barges. In the current approach we model the resource utilization of the barges by
simply reducing the quay lengths by 200 meters and dedicating one quay crane in each
terminal to barge operations. It is worth investigating the trade-off between the amount
of inter-terminal transport by trucks and barges and therefore worthwhile extending the
current model with the actual loading and unloading of barges.
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Appendix I: MILP formulation

Integer decision variables

1 if in terminal ¢ vessel v berths,
Xty = .
o otherwise.

Continuous decision variables

ay
dy
Gw(k) =

Actual berth time slot of vessel v (start of processing vessel v)
Actual departure time slot of vessel v
Amount of quay cranes processing vessel v in terminal ¢ during time slot [k, k + 1)

Integer auxiliary variables

1 if vessel vis berthing during time slot [k, k + 1),
boik) = o otherwise.
1 ifa,>d,
o = o ifa,<d,
v 1 ifa, = d, and vessel v is continuously berthing,
o ifa, = d, and vessel v does not berth at all.
. 1 ifa, < Af,
v o ifa,=Al
i 1 ifd, < Dy,
“ = o ifd,=Du
ne = Number of quay cranes required in terminal ¢

Continuous auxiliary variables

iy, (k)

Gev (k)
By (k)

o)
3

<

s
=

=
[

>
I

Amount of quay meters consumed in terminal ¢ by vessel v during
time slot [k, k + 1) [m]

Amount of quay cranes processing vessel v in terminal ¢ during time slot [k, k + 1)
Amount of containers from hinterland transported into terminal ¢
with destination v during time slot [k, k + 1) [containers/ time slot]
Amount of containers transported from terminal p to terminal r with
destination v during time slot [k, k + 1) [containers/ time slot], p /=7
WIP in terminal ¢ with destination v at time k

Number of time slots vessel v berths too late

Number of time slots vessel v departs too early

Number of time slots vessel v departs too late



Constraints

Vessel v berths at only one terminal ¢:

T
Z Xp=1 Y (16)
t=1
The arrival and departure times (4, and d, respectively) of vessel v are within the cycle:
Isa, <K W (7)
and
1=sd, =K W (18)

Vessel v berths between its arrival and departure time, a, and d, respectively. We need generic
constraints, which relate a, and d, to b, (k) as well as b, (k) to a, and d, for the cases where
a, < dy, a, = d, and a, > d,. To incorporate the latter case, which follows from the cyclic
property of the system, we introduce an auxiliary binary variable e,:

K
(bo(k)—e) =dy—a, Wy (19)
k=1
and
1-a,<k-(b(k)-e)=sd -1 Wk (20)
and
dy— K= (K-k) - (byk)-e)<K-a, Wk (21)

The two possible scenarios resulting from the cyclic system property are depicted in Figure 8.
Vessel v requires an amount of quay meters I, at a terminal t during time slot [k, k + 1), iff

Day 1 Day 1

~
N
~
N

(@) ey =o0. (b) ey =1.

Figure 8: Possible arrival A, and departure D, scenarios of vessel v in a weekly cycle.

the vessel is actually berthing at that particular terminal ¢t and during that particular time slot

[k, k+1).
my(k) <l - x0  VEVE (22)
and
T
> mu(k) =1, - by(k) k. (23)
t=1

Furthermore, the sum of lengths of all vessels berthing at terminal ¢ during time slot [k, k+1)
should be less than or equal to the total quay length of terminal ¢:

14
> my(k)sL ik (24)

Vessel v can only be operated in terminal ¢ iff vessel v is berthing in terminal t. Furthermore,
a maximum number of quay cranes S, can be assigned to vessel v:

gw(k) = Sy - % Vi k (25)
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and
qw(k) = Sy - by(k) Vi k. (26)
Vessel v has to be fully processed during the cycle:

T K z

S ki aulk)=> L.+0, W (27)
=1 k=1 z=0

We want to minimize the maximum number of quay cranes in terminal t ever required dur-

ing the cycle. Therefore, we introduce an auxiliary variable n,;, which is a soft upper bound on

the number of quay cranes in terminal t. This variable n, is present in the objective function:

\4
Z quw(k) =n, Vi k. (28)

The maximum number of quay cranes ever required in terminal ¢ during the cycle cannot be
larger than the number of quay cranes actually available in terminal t:

m<N Vi (29)

The sum over the cycle’s time slots of the number of containers with destination v, trans-
ported from the hinterland into the different terminals, should be equal to the total number
of containers with destination v arriving from the hinterland during the cycle.

K T
S hwky=H, . (30)

k=1 t=1

Since the system is cyclic, the storage level in the terminals and the inter-terminal transport
during time slot [k, k+1) should equal the storage level in the terminals and the inter-terminal
transport during time slot (k — 1 + K, k + K], where « € IN:

ww(k) = wy(k+aK) Vv k (31)

and
Sorv(k) = forw(k +aK)  Vp, 1,1k, (32)

We assume that inbound containers with destination o ("hinterland") are transported into
the hinterland directly after they arrive in the terminal and are not counted as stack.

The amount of containers in terminal ¢ with destination v during time slot [k, k + 1) is equal
to the amount of containers in terminal ¢ with destination v during time slot [k, k + 1) plus
all incoming flows (inbound containers from vessels, containers from other terminals and
containers from the hinterland) minus all outgoing flows (outbound containers to vessels
and containers to other terminals). We assume that loading and unloading of containers
from vessel v with different destinations is divided proportionally among the time slots vessel

v is actually berthing. To this, we first define the constants f,, = w2=— and 7, = +%—,
Z I,,+0, Z I,,+0,
and derive appropriate constraints:
v
wolk) = wi(k=1)+ > Bunids - alk) = 1pAs - du(k) + hu(k) + 33)

=1

T T
Zﬁ‘tv(k - AP') - Zﬁrv(k) Vt, v, k.

If we start with bringing containers into the yard during time slot [k, k + 1), the following
constraint has to be satisfied:

\ \4 T
> (wilk—1)+ Z Buitide - qu(k) + hu(®) + > fink=Dp)) = Wi Ytk (34)



If we start with taking away containers from the yard during time slot [k, k + 1), the following
constraint has to be satisfied:

T
wi(k—1) =7 - dwk) = > fink) = o Vv k. (35)

Whatever order is applied during the cycle, (34) and (35) guarantee that never too much and
never too less (negative amount of) containers are in the yard.

Finally, we have some additional non-negativity constraints:

gw(k) = o (36)
ho(k) = o (37)
forz(k) = o, (38)

Objective function

A linear unit penalty cost is assigned when containers are transported from one terminal to
another (c,). Furthermore, linear costs are assigned to the number of required quay cranes in

terminal ¢ (¢"). The decision variables are represented in a vector w(k) = [y, Gy, dy, B (), g (k) ﬁm(k)]T
and the objective function is formulated as follows:

v K T T Z T
u(Il)’niil(K) Z Z Z Z Z Cprﬁ;rz(k) + Z Cthy (39)
""" V=I k=1 p=1 r=1 2z=I t=1

Remark: In the solution of this MILP it could be that an arbitrary amount of containers is
stored in a certain terminal during the entire cycle. This could be prevented by assigning a
small cost for each stored container
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