
Control of a reentrant manufacturing
system with setup times

Mathijs J.M. Dohmen

SE 420526

Master Thesis

Supervisor: prof.dr.ir. J.E. Rooda
Coach: dr.ir. A.A.J. Lefeber

Eindhoven University of Technology

Department of Mechanical Engineering

Systems Engineering Group

Eindhoven, January 2008

iv Assignment

Preface

Since I have a normal voice and not a typical pronunciation common for deaf people only a
few know that I have an invisible handicap. At the age of 1.5 years I suffered meningitis and
was balancing on the edge of life. I managed to survive but turned to be completely deaf.
Soon thereafter it became clear that on one ear only minimal hearing rests (-80dB) remained
in a narrow band around 4 kHz, the bandwidth of speech. With a dedicated hearing aid
and the emphasis of many people I managed to find my way in the “hearing world”. I can
only communicate directly by reading lips supported by the “noise” of my hearing aid. I am
unable to follow or participate any colleges, speeches, discussions, meetings, telephones and
mobiles. Also radio and TV without subtitles are inappropriate for me.

Especially for me a study at the university would be a great challenge which I accepted. In
September 2002, I enrolled the Mechanical Engineering program at TU/e. After completing
the bachelor phase I decided to specialize myself in the Systems Engineering (SE) group. This
group, headed by professor Rooda, aims at developing methods, techniques and tools for the
design and control of advanced manufacturing systems. Please be advised that it took me a
lot of energy to follow the colleges and meetings. But now I am proud to achieve a master
degree the way most of you did without any privileges or extenuating circumstances.

I take the opportunity to end with some personal notes. I worked together with several
people, whom I would like to thank for their support, assistance and contributions. First
of all, a special thanks to my coach dr.ir. A.A.J. Lefeber for his professional coaching and
support. Thanks to prof.dr.ir. J.E. Rooda, supervisor and responsible for creating a pleasant
environment in which students feel at home and get the best out of themselves. Thanks to
prof.dr.ir. J. van der Wal, who took the time to review this report. Also thanks to all my
friends from the university in general and more specific to my fellow students and PhD’s from
the SE-lab.

And last, but certainly not least, I want to thank my parents, my brother Guy and sister
Amy for their motivation, support and being there when needed!

Mathijs Dohmen
Eindhoven, January 2008

v

vi Preface

Summary

In this report, the control of a reentrant manufacturing system with setup times is studied.
In a manufacturing system using reentrant line processing, the incomplete job is conveyed
along a line of workstations and it may visit the same workstation several times during its
travels along the line. Reentrant line processing is commonly used in the semiconductor
industry, where each incomplete job may undergo the same processing steps several times at
each workstation before the job is complete. This type of systems can also be found in thin
film lines and systems with rework tasks.

The network topology of systems with reentrant lines makes the manufacturing planning and
scheduling problems difficult. Several jobs at different stages of processing may be in con-
tention with one another for service at the same workstation. Each workstation is processing
multiple job types and switching between these job types take time (setup time). During this
setup, the workstation is cleaned and re-adjusted which means that no jobs can be processed
at this workstation, so capacity is lost. The question now arises: When should a workstation
switch between the job types in an efficient way without instability of the system? A system
is unstable when the total number of jobs in the system explodes as time evolves. Whether
this happens depends on the policy used to control the flows through the network.

There is a large body of literature on production control of systems with reentrant lines.
A lot of research has been done on determining the best scheduling policies to control the
flows through the network. The goal of scheduling is to choose such policies to provide good
performance with respect to performance measures of interest. Such performance measures
may be the cost of the total work in process, the mean manufacturing lead time or cycle time,
or even the variance of the manufacturing lead time. Most of these papers have one thing in
common: first a policy (or a class of policies) is proposed, and then the resulting closed-loop
behavior of the system under this policy (these policies) is considered. Sometimes the system
behavior is optimized over the class of considered policies. A strength of these results is that
the approach can be applied to general networks. A drawback however is that it is usually
unclear if the presented policies result in optimal system behavior, or what to do to obtain
prescribed or desired system behavior.

Due to this drawback, an entirely different way of looking at the problem has been proposed
recently. Instead of starting from a policy and then analyzing the resulting closed-loop system
behavior, one can also start from a priori specified desired closed-loop behavior and then
design a policy which guarantees convergence of the system towards this desired behavior.
This feedback control strategy has been applied successfully to the Kumar-Seidman case in
[LR06a]. However, in that study costs for wip were assumed to be constant over the system,

vii

viii Summary

whereas downstream wip is more expensive due to added value. In this report, this feedback
control strategy is investigated further and the way to derive such a feedback policy has
been illustrated extensively for the Kumar-Seidman case but now with increasing costs for
downstream wip.

Before a feedback policy can be derived, the desired closed-loop system behavior is determined
first. For manufacturing systems this is not a problem, the network typically is fixed and given
a priori. In this report, the reentrant manufacturing system with setup times as introduced by
Kumar and Seidman — a reentrant manufacturing system where the single job-type revisits
the two workstations with one machine in a fixed predefined four step production process —
is considered. For this specific reentrant system, a closed-loop behavior is determined with
respect to minimal weighted work in progress level which minimizes the cycle period and the
weighted amount of jobs in the system. The analysis is performed using a hybrid fluid model
approximation and the behavior is proven analytically.

After this desired closed-loop system behavior is determined, a state feedback controller is
designed — based on Lyapunov’s direct method — which guarantees convergence of the
system towards this desired behavior from any initial condition. Based on the desired closed-
loop system behavior, an “energy” of the system can be defined by considering the mean
amount of work in the system. By controlling the system in a way that this “energy” is
never increasing, the system stabilizes at a fixed energy level and the controller will make
the system converge from the initial condition towards the desired behavior. The way to
derive this feedback controller from the closed-loop system behavior is illustrated extensively
in this report. Also, it has been proven mathematically, that this designed feedback controller
guarantees convergence of the system towards the desired behavior from any initial condition.

The designed controller is a non-distributed controller, each workstation in the system needs
to have global state information for determining when to switch. For manufacturing systems,
this so-called “global policy” is feasible, maybe also for some urban traffic networks. However,
for other networks, e.g. communication networks or computer networks, this global informa-
tion might not be available. For these networks, the designed non-distributed controller is
implemented successfully in a distributed way, i.e. such that each workstation only requires
local state information for determining when to switch.

An extensive case study demonstrates how both derived feedback controllers perform. Even
though both derived feedback policies have been designed for a deterministic system, the
derived feedback policies can also be applied in case inter-arrival times, setup times and
processing times are stochastic. The resulting responses of the controlled system show stable
closed-loop dynamics as well as convergence towards the desired behavior. In comparison with
gated policies and clearing policies, the derived feedback policy guarantees convergence of the
system from any initial condition towards desired behavior with a small weighted amount of
jobs in the system.

Though the way to derive a feedback policy has only been illustrated extensively for a case with
two workstations, this feedback control strategy works also for systems consisting of a single
workstation [LR06a]. However, for systems consisting of three or more workstations, this
feedback control strategy is not applied yet. In further research, this feedback control strategy
can be applied to systems with several workstations. Furthermore, it is maybe possible to
define a general method for these systems to make this strategy common applicable.

Samenvatting

Dit afstudeerverslag beschrijft de studie naar een optimale regeling van een fabricage systeem
met herintreedbare werkstations met omsteltijden. Bij een fabricage lijn met herintreedbare
werkstations wordt het onvoltooide produkt langs een lijn van werkstations gevoerd en kan
het produkt hetzelfde werkstation meermalen aandoen voordat een volledig fabricage pro-
ces bereikt is. Dit principe wordt veelvuldig toegepast in de halfgeleiderindustrie, waar elk
onvoltooide wafer specifieke processtappen meermalen kan doorlopen voordat het gereed is.
Dergelijke fabricage systemen vindt men ook in de dunne film technologie en aanverwante
systemen met herprocestaken.

De netwerktopologie van fabricage systemen met herintreedbare werkstations maakt de pro-
duktieplanning en -regeling complex. Verscheidene produkten in verschillende stadia van het
fabricage proces kunnen in conflict met elkaar komen voor de verwerking bij hetzelfde werk-
station. Elk werkstation verwerkt produkten in verschillende stadia van bewerking en het
switchen tussen deze produkten vergt tijd (omsteltijd). Tijdens deze omstelling wordt het
werkstation schoongemaakt en aangepast waardoor er geen produkten door dit werkstation
geproduceerd kunnen worden wat resulteert in capaciteitsverlies. De vraag is nu: Wanneer
zou een werkstation efficiënt moeten omschakelen zonder instabiel te worden. Een systeem is
instabiel wanneer het aantal produkten binnen het systeem blijft toenemen. Of dit wel of niet
gebeurd hangt af van de taktiek die wordt gebruikt om de goederenstromen in het netwerk
te regelen.

Er is veel literatuur over de regeling van fabricage lijnen met herintreedbare werkstations.
Veel onderzoek is gedaan naar het bepalen van de beste planningsmethode om de goederen-
stromen in het netwerk te regelen. Het doel van zo’n planning is het bereiken van een goede
balans tussen haalbare eisen en prestaties. Maatstaven kunnen de totale produktiekosten
zijn, de gemiddelde cyclustijd of zelfs de variatie in de gemiddelde produktietijd. De meeste
artikelen hebben één ding gemeen. Eerst wordt een taktiek (of een combinatie van taktieken)
gekozen en vervolgens wordt het resulterende gedrag van het gesloten systeem met deze tak-
tiek geanalyseerd. Soms wordt het systeemgedrag geoptimaliseerd aan de hand van de reeds
overwogen taktieken. Een voordeel van deze methode is dat het over het algemeen kan wor-
den toegepast. Een nadeel is echter dat het onduidelijk is of de gekozen taktiek in optimaal
systeemgedrag resulteert, of welke taktiek gekozen moet worden om een voorgeschreven of
gewenste systeemgedrag te verkrijgen.

Vanwege dit nadeel is onlangs voorgesteld dit probleem anders te bekijken. In plaats van
te beginnen met het kiezen van een taktiek om vervolgens het resulterende gesloten sys-
teemgedrag te analyseren, kan men ook uitgaan van de bepaling van een specifiek gewenst

ix

x Samenvatting

gesloten systeem gedrag en vervolgens de regelaar ontwerpen die ervoor zorgt dat het sys-
teem convergeert naar dit gewenste gedrag. Deze strategie van terugkoppelingscontrole is met
succes toegepast op de Kumar-Seidman case in [LR06a]. Echter, in deze studie werden de
kosten voor onderhanden werk (WIP) constant verondersteld over het gehele systeem, terwijl
in werkelijkheid voortschrijdende wip duurder is vanwege meer toegevoegde waarde. In dit
rapport wordt deze strategie van de terugkoppelingscontrole verder onderzocht en de manier
om een dergelijk terugkoppelingstaktiek af te leiden, maar nu met toenemende kosten voor
voortschrijdende wip, aan de hand van de Kumar-Seidman case.

Voordat de terugkoppellingstaktiek wordt bepaald, wordt eerst het gewenste gesloten system
gedrag bepaald. Voor fabricage systemen is dit geen probleem, een vastgelegd netwerk met
gegeven prioriteiten is typerend. In dit rapport wordt een systeem overwogen met herin-
treedbare werkstations met omsteltijd, zoals geintroduceerd door Kumar en Seidman. Meer
specifiek, een fabricage systeem met herintreedbare processtappen waarbij één type produkt
wordt gemaakt op twee werkstations met elk één machine met een vooraf vastgelegd vier-
stappenproces. Voor dit systeem is een gesloten systeemgedrag bepaald waarin de gewogen
wip is geminimaliseerd wat resulteert in een kleine periodieke procestijd met een laag aantal
produkten in het systeem.

Nadat dit gewenste gesloten systeemgedrag is bepaald, wordt een terugkoppelingsregelaar
ontworpen die gebaseerd is op de directe methode van Lyapunov en die vanuit elke begintoe-
stand convergentie van het systeem naar het gewenste gedrag verzekerd. Uitgaande van het
gewenste gesloten systeemgedrag kan een inspanning van het systeem bepaald worden aan de
hand van de gemiddelde wip. Door nu het systeem zodanig te regelen dat deze inspanning
nooit toeneemt zal het systeem stabiliseren op een vaste systeemtoestand en zal de regelaar
het systeem convergeren van het uitgangspunt naar het gewenste systeemgedrag. De methode
om vanuit de begintoestand van het gesloten systeemgedrag deze terugkoppelingsregelaar af
te leiden wordt uitgebreid in dit verslag beschreven. Ook wordt wiskundig bewezen dat de
ontworpen terugkoppelingsregelaar convergentie naar het gewenste gedrag vanuit elke begin-
toestand verzekerd.

De ontworpen regelaar is een niet gedistribueerde regelaar. Elk werkstation in het systeem
heeft globale toestandsinformatie nodig om het schakelmoment te bepalen. Voor fabricage
systemen is deze zogenaamde globale systeemtoestand beschikbaar. Misschien geldt dit ook
voor verkeersnetwerken. Echter voor andere netwerken zoals communicatie- en of computer-
netwerken zal deze globale informatie misschien niet beschikbaar zijn. Voor deze netwerken is
de ontworpen niet gedistribueerde regelaar succesvol toegepast op een gedistribueerde manier
waarbij elk werkstation alleen lokale toestandsinformatie nodig heeft om het schakelmoment
te bepalen.

Een uitgebreide case studie toont het gedrag aan van beide ontworpen terugkoppellingsrege-
laars. Ondanks dat beide verkregen terugkoppellingstaktieken ontworpen zijn voor een de-
terministisch systeem, kan de verkregen terugkoppellingstaktiek ook toegepast worden als
de aankomstintervallen, omsteltijden en procestijden stochastisch zijn. De resulterende re-
actie van het geregelde systeem laat een stabiel gesloten dynamisch gedrag zien met steeds
convergentie naar het gewenste systeemgedrag. In vergelijking met drempelniveau- en leeg-
maaktaktieken, verzekerd de verkregen terugkoppellingstaktiek convergentie van het systeem
naar het gewenste gedrag vanuit elke begintoestand met gemiddeld een laag aantal produkten
in het systeem.

xi

Hoewel de manier om een terugkoppelingstaktiek af te leiden slechts uitgebreid is beschreven
voor een case met twee werkstations, werkt deze strategie van de terugkoppelingscontrole
ook voor systemen die uit één enkel werkstation bestaat [LR06a]. Echter, voor systemen
die uit drie of meer werkstations bestaan, is deze strategie van de terugkoppelingscontrole
niet nog toegepast. In verder onderzoek, kan deze strategie van de terugkoppelingscontrole
op systemen met meer dan twee werkstations worden toegepast. Daarnaast is het misschien
mogelijk om een algemene methode voor deze systemen te bepalen om deze strategie algemeen
toepasbaar te maken.

xii Samenvatting

Contents

Assignment iii

Preface v

Summary vii

Samenvatting ix

Table of symbols xv

1 Introduction 1

1.1 Project objective . 3

1.2 Report outline . 4

2 Reentrant manufacturing system with setup times 5

2.1 The Kumar-Seidman case . 5

2.2 State, input and constraints . 7

2.3 Dynamics . 9

3 Desired periodic behavior 11

3.1 Minimal cycle period . 12

3.2 Increasing weights . 13

3.3 Optimal sequence of process rates for each system mode 14

3.4 Duration of every action in both workstations 25

3.5 Minimal buffer contents . 28

3.6 Desired periodic system behavior . 33

xiii

xiv Contents

4 Non-distributed controller 35

4.1 Desired periodic orbit of the system . 35

4.2 Mean amount of work in the system . 38

4.3 Feasible domain . 39

4.4 Controller design . 40

4.5 Derivation of the controller . 51

4.6 Proof of convergence . 60

4.7 Simulation experiments . 64

4.8 Comparison of derived feedback policy with other policies 67

5 Distributed controller 71

5.1 Derivation of the distributed controller . 71

5.2 Simulation experiments . 75

6 Conclusions and recommendations 77

Bibliography 81

A Non-distributed Controller 83

A.1 Continuous Matlab-script . 83

A.2 Discrete event χ-script . 87

A.3 Buffer regulator . 91

B Distributed Controller 95

B.1 Discrete event χ-script . 95

Table of symbols

Symbol Description

ci Weighting factor for buffer contents of buffer i
bp,i Job-type p stored in buffer i that works with machine m
Bm Set of buffers that works with machine m
δ Average number of jobs leaving the system per unit of time
dp Desired amount of processed jobs of job-type p
℘ Feasible domain
F Feasible area
J Weighted wip level function
km Number of buffers that works with machine m
λ Arrival rate of jobs into the system
m, mi System mode, mode of workstation i
μi Maximal process rate for jobs of buffer i
N Total number of buffers in the system
σij Setup time to switch from step i to step j
τ i
0 Idle duration of workstation i

τ i
j Process duration of step j at workstation i

T Cycle period
t0, tf Start, end time of a system mode
ui

0 Activity of workstation i
up,i Process rate for job-type p of buffer i at workstation m
uINi(t) Input rate of jobs into buffer i
uOUTi(t) Output rate of jobs that leave buffer i
ϕ Average time spent by a job in the system
V Lyapunov function candidate
vp,i Arrival rate of job-type p into the regulated buffer from the

regulator buffer
w Average number of jobs present in the system
x System state
xi

0 Remaining setup time of workstation i
xi Buffer contents of buffer i
ẋi(t) Nett rate of jobs in buffer i
x0

i Buffer contents of buffer i at the beginning of a system mode
xf

i Buffer contents of buffer i at the end of a system mode

xv

xvi Table of symbols

Chapter 1

Introduction

Most people are familiar with systems of mass-production which use flow shop processing. In
a production system using flow shop processing, a conveyor system carries the incomplete job
along a line of workstations. At each workstation, a different step in the fabrication of the
job is performed. For example, in an automobile assembly line using flow shop processing,
the chassis of the automobile may be conveyed along to a first workstation where the engine
is installed, a second workstation where the axles are installed, a third workstation where the
wheels are installed and so on. In theory, from beginning to end, the incomplete job visits
each workstation only once during its travel down the assembly line.

Most people are probably not familiar with systems of mass-production using a second type
of processing known as reentrant line processing. In a production system using reentrant line
processing, the incomplete job is conveyed along a line of workstations, but the incomplete
job may visit the same workstation several times during its travels along the line. Reentrant
line processing is commonly used in the semiconductor industry, where each incomplete job
may undergo the same processing steps several times at each workstation before the job is
completed. But these systems can also be found in thin film lines and systems with rework
tasks.

Systems with reentrant line processing have great advantages in economical and technological
points of view [KK01]. In reentrant lines, jobs may return more than once to the same
machine. It is therefore possible to process the jobs with fewer machines, which leads to a
reduction in capital investment. In the semiconductor industry for example, each machine
costs millions of euro. Also some technological advantages such as maintaining alignment can
be obtained by processing each job more than once on the same machine. For example in the
semiconductor industry, the same stepper may be used to expose wafers at different layers
for improving overlay accuracy.

Besides these advantages, systems with reentrant lines have certain characteristics that make
them very difficult to schedule. The most important is the complexity of process flow [KK01],
several jobs at different stages of processing may be in contention with one another for pro-
cessing at the same machine. An other characteristic is the diversity of equipment [ULMV92].
In a system with several workstations, the arrival rates, setup times and process rates are
often different for each workstation. Finally, stochastic variability, uncertainties in the form
of random arrivals, services or setup times, as well as random machine failures and repairs

1

2 Chapter 1. Introduction

makes these systems difficult to schedule. In the context of manufacturing systems, the term
‘scheduling’ refers to the control of the process flow.

There is a large body of literature on production control of systems with reentrant lines. A lot
of research has been done on determining the best scheduling or dispatching policies to control
the flow through the network. The goal of scheduling is to choose such policies to provide good
performance with respect to performance measures of interest. Such performance measures
may be the cost of the total work in process, the mean manufacturing lead time or cycle
time, or even the variance of the manufacturing lead time. Several researchers have studied
the design and performance analysis of scheduling policies for several problems in different
manufacturing reentrant systems. In general, there are two important decisions that have
significant effect on the performance of a reentrant manufacturing system [NK96].

• Input release policies — that decide when to release new jobs into the system

• Dispatching or scheduling policies — that decide which job has to be processed next
when a machine becomes available

Input release policies are for example the closed-loop release policy and the workload regula-
tion policy [Kum93]. If the total number of jobs, or work in progress (WIP), in the system
should be constant, the closed-loop release policy or Fixed WIP policy only releases a new
job into the system if a finished job leaves the system [NK96]. Another possibility is to try to
release new jobs into the system whenever the number of jobs, or work, destined for a certain
machine in the system, drops below a certain threshold. This policy is known as a workload
regulation policy. This is thoroughly investigated in [BG96] for single job types as well as for
multiple job types.

The scheduling or dispatching policies in reentrant lines become interesting because several
jobs at different stages of processing may be in contention with one another for service at the
same machine. The First Come First Serve (FCFS) scheduling policy — where a machine
provides service to the job which arrived first to that machine — is well known and used
by many researches [LK91]. Another class of scheduling policies discussed in the literature
[Kumar [Kum93], Uzsoy et al.[ULMV92], Kumar an Meyn [KM95], Lu and Kumar [LK91], Dai
et al.[DYZ97]] is the class of buffer scheduling policies. When a machine finishes processing
a job, a buffer policy selects the next job for processing from among the buffers in a fixed
priority order. Two prominent buffer priority-based policies are the Last Buffer First Serve
(LBFS) — where the jobs in the last buffer have the highest priority to processed first on a
machine and the jobs in the first buffer have the lowest priority — and the First Buffer First
Serve (FBFS) — where the jobs in the first buffer have the highest priority to processed first
on a machine and the jobs in the last buffer have the lowest priority — policies.

Reentrant manufacturing systems with setup times — time needed for switching between
the buffers with stored jobs at the same machine — are investigated by Kumar and Seidman
[KS90] and Perkins et al. [PJK94]. They have developed stable distributed scheduling policies
and analyzed the stability and performance of these type of systems.

This report will not provide much coverage of the extensive general historical developments
in dispatching policies and input release policies. A lot of these policies for reentrant systems
with references to other thorough surveys can be seen in [Bis97]. However, most of the papers

1.1. Project objective 3

have one thing in common: first a policy (or a class of policies) is proposed, and then the
resulting behavior of the network under this policy (these policies) is considered. Sometimes
the system behavior is optimized over the class of considered policies. A strength of these
results is that they can be applied to general networks. A drawback however is that it is
usually unclear if the presented policies result in optimal behavior, or what to do to obtain
prescribed or desired system behavior. In particular, if a network is known a priori (and
not subject to change), which typically is the case for manufacturing systems, one has the
possibility of taking a global viewpoint and design a controller for the network which imposes
desired network performance [LR06a].

1.1 Project objective

The approach followed in this report is exactly the other way around as in the above men-
tioned papers. First the desired system behavior is determined. Next, this desired closed-loop
behavior of the system is used as a starting point and then, based on the ideas presented in
[ELR06], a global and local policy is presented which establishes convergence to this desired
behavior. This approach has been investigated on the Kumar-Seidman case in [LR06a]. In
this report, this approach is investigated further. First, the reentrant manufacturing system
with setup times in the Kumar-Seidman case is chosen again. But some system parameters
are changed — increasing costs for downstream wip instead of constant costs for wip over the
system — which results in another interesting system behavior which should be controlled by
a global and local policy.

The objective for this project is formulated as:

Project objective:
Control of a reentrant manufacturing system with setup times and increasing costs: the
Kumar-Seidman case.

The approach — starting from a certain policy which works for a general network and analyze
the resulting network behavior — is not investigated. The specific manufacturing system in
the Kumar-Seidman case is investigated for the approach starting from the desired system
behavior and then determining a feedback controller which makes the system converge towards
this desired behavior. Therefore, the first part of the research can be formulated as follows:

Research objective 1:
Determine the desired periodic system behavior.

When the desired periodic system behavior is determined, a feedback controller is developed
which makes the manufacturing system converge towards this desired steady state behavior
from any initial condition. This resulting controller is a non-distributed controller: each
workstation needs only global state information. For a manufacturing system this is not a
problem, since global information is available, the network typically is fixed and given a priori.
The second part of this research can be formulated as follows:

4 Chapter 1. Introduction

Research objective 2:
Determine a non-distributed controller (global policy) which makes the specific manufac-
turing system converge towards the desired system behavior from any initial condition.

Also a distributed controller is developed. With this feedback controller, each workstation
needs local state information. In the specific manufacturing system for example, which con-
tains two workstations (workstation A and B), workstation A does not require information
about the state at workstation B to determine its next task and workstation B does not
require information about the state at workstation A. The third part of this research can be
formulated as follows:

Research objective 3:
Determine a distributed controller (local policy) which makes the specific manufacturing
system converge towards the desired system behavior from any initial condition.

The desired periodic system behavior and both feedback controllers are determined for systems
with deterministic system parameters. But this approach can also be used for systems with
stochastic system parameters. The developed feedback controller is used for systems with
stochastic system parameters by performing simulations. The fourth part of this research can
be formulated as follows:

Research objective 4:
Check if the developed feedback controllers work for systems with stochastic system pa-
rameters by performing simulations.

1.2 Report outline

This report is structured as follows. The specific reentrant manufacturing system in the
Kumar-Seidman case is explained in Chapter 2. Also the state, input, constraints and dy-
namics of this system are presented. In Chapter 3, the desired periodic behavior of the system
is determined step by step and proved. After that, the desired periodic orbit of the system
is determined which can be used as a starting point for the controller design. In Chapter
4, a non-distributed controller where each workstation only needs global state information
is designed. Simulations are performed to show the convergence of the system from the ini-
tial system state towards the desired system behavior, both for deterministic as well as for
stochastic system parameters. Also, the improvements of this derived feedback policy are
shown by comparing the resulting responses of the controlled system with other commonly
used policies. In Chapter 5, the non-distributed controller is implemented in a distributed
way. Also, for this distributed controller, simulations are performed to show the conver-
gence of the system and the improvements. Finally, the conclusions and recommendations
for further research are described in Chapter 6.

Chapter 2

Reentrant manufacturing system
with setup times

To investigate the approach — starting from the desired periodic system behavior and then
determining a feedback controller which makes the system converge towards this desired
periodic system behavior — a specific manufacturing system is needed. As mentioned in the
introduction, the objective for this project was formulated as follows:

Project objective:
Control of a reentrant manufacturing system with setup times and increasing costs: the
Kumar-Seidman case.

First, the specific manufacturing system in the Kumar-Seidman case is explained in detail in
this chapter. When this specific system is known, all the data (i.e. arrival rate, number of
workstations, number of machines, process rates, setup times) are available to determine a
desired periodic system behavior. When this desired periodic system behavior is determined
a feedback controller can be derived which makes the specific system converge towards this
desired periodic system behavior.

2.1 The Kumar-Seidman case

The manufacturing system of interest to illustrate this approach is the case presented by
Kumar and Seidman [KS90], as mentioned in Chapter 1.

A B

λ
x1 x2

x3x4

σ14 | σ41 σ23 | σ32

μ1 μ2

μ3μ4

Figure 2.1: Reentrant manufacturing system with setup times.

5

6 Chapter 2. Reentrant manufacturing system with setup times

Table 2.1: System parameter values.

Arrival rate Workstation A Workstation B

λ [job
time-unit] 1 μ1 [jobs

time-unit]
1

0.3 μ2 [jobs
time-unit]

1
0.6

μ4 [jobs
time-unit]

1
0.6 μ3 [jobs

time-unit]
1

0.3
σ14 [time-unit] 50 σ23 [time-unit] 50
σ41 [time-unit] 50 σ32 [time-unit] 50

The system in Figure 2.1 is a reentrant manufacturing system. The single job-type revisits
the system with two workstations (workstation A and B) in a fixed predefined 4 step pro-
duction process. Each job-type is processed first at workstation A for the first step, then at
workstation B for the second step, then again at workstation B for the third step and finally
again at workstation A for the fourth step, before leaving the system. In this case, each work-
station contains one machine. The successive buffers visited will be denoted by 1, 2, 3 and
4 respectively, with its buffer contents of stored jobs x1, x2, x3 and x4. The single job-type
arrives the system with an arrival rate λ [job

time-unit] into buffer 1. The maximal process rates
required at the stored jobs in the buffers are μ1, μ2, μ3 and μ4 [jobs

time-unit] respectively. Before
a workstation can start processing jobs from another buffer a setup is required. During a
setup the machine in a workstation is cleaned and re-adjusted to be able to produce jobs from
another buffer. The times for setting up the machine to buffers 1 and 4 at workstation A will
be denoted by σ14 and σ41 [time-unit], while the times for setting up the machine to buffers
2 and 3 at workstation B are σ23 and σ32 [time-unit].
All parameter values of this reentrant system are presented in Table 2.1.

Switching between the buffers with stored jobs at the same workstation takes time (setup
time) and during that time no jobs can be processed at that workstation, so capacity is lost.
The question now arises: When should a machine switch between the jobs in an efficient way
without instability of the system? A system is unstable when the total number of jobs in the
system explodes as time evolves. Even though for this specific system each machine in each
workstation has enough capacity to process all jobs, λ

μ1
+ λ

μ4
< 1 and λ

μ2
+ λ

μ3
< 1, it has been

shown in [KS90] that since λ
μ2

+ λ
μ4

> 1 and setup times are all positive, using a clearing policy
— process the jobs in a buffer until it is empty, then switch to another buffer — for both
workstations results in an unstable system. This instability is not only under continuous
job-type flow but also if the job-types are discrete [PJK94]. A machine is processing jobs
from a buffer too long, this results in starvation of the other machine and therefore a waste
of its capacity. Due to this waste the effective capacity of the other machine is not sufficient
anymore, resulting in an unstable system.

In Chapter 4, a global policy is derived according to the approach that will stabilize this
reentrant system. Furthermore, the objectives of this approach are to keep the production
close to the demand and to keep the WIP inventory level and cycle times as low as possible.
This results in a stable reentrant system with a low average number of jobs in the system.
Since arrival rate λ is fixed in this case, Little’s Law [Lit61] (2.1) tells us that to reduce the
mean time spent in the system, i.e. the mean cycle-time, it suffices to reduce the mean number
of jobs in the system, i.e. WIP inventory level, if the system is in steady state (λ = δ).

w = δ · ϕ. (2.1)

2.2. State, input and constraints 7

With: w = average number of jobs present in the system,
δ = average number of jobs leaving the system per

unit of time (mean throughput),
ϕ = average time spent by a job in the system.

Therefore, the goal of reducing mean cycle-time ϕ is equivalent to the goal of reducing mean
number of jobs w in the system.

2.2 State, input and constraints

Before the approach is investigated, the state, input, constraints and dynamics of the specific
system have to be defined first. After that, a desired periodic system behavior of the reentrant
system can be determined. Then, a feedback controller is developed which makes the system
converge towards this desired periodic system behavior.

State

The state of this system is not only given by the buffer contents x1, x2, x3 and x4 but also
by the remaining setup time at workstation A, xA

0 , the remaining setup time at workstation
B, xB

0 , and the current mode of the system.
The current mode of this specific reentrant system (which contains two workstations and each
workstation has two buffers) can be defined as m = (mA,mB) ∈ {(1, 2), (1, 3), (4, 2), (4, 3)}.

With: m = (mA,mB) = (1, 2) : workstation A is processing or setting up for step 1
and workstation B is processing or setting up for step 2;

m = (mA,mB) = (1, 3) : workstation A is processing or setting up for step 1
and workstation B is processing or setting up for step 3;

m = (mA,mB) = (4, 2) : workstation A is processing or setting up for step 4
and workstation B is processing or setting up for step 2;

m = (mA,mB) = (4, 3) : workstation A is processing or setting up for step 4
and workstation B is processing or setting up for step 3.

The system state x is given by x = (m,x0,x) = (mA, mB, xA
0 , xB

0 , x1, x2, x3, x4).

Input

The input of this system is given by process rates and the current activity of the system. The
process rates are denoted by u1 ≤ μ1, u2 ≤ μ2, u3 ≤ μ3 and u4 ≤ μ4, at which respectively the
jobs in buffer 1, buffer 2, buffer 3 and buffer 4 are processed. A machine in a workstation can
process the jobs from buffer i (with i ∈ {1, 2, 3, 4}) at maximal process rate μi, if the machine
can continuously process jobs from buffer i without waiting times. If the machine can not con-
tinuously process jobs from buffer i — in case when buffer i is empty — the machine can not
process jobs at maximal process rate μi. It processes the jobs at process rate ui which is equal
to the arrival rate of the jobs into buffer i or equal to zero. When ui = 0, the machine is idling.

8 Chapter 2. Reentrant manufacturing system with setup times

Another input of this system is the required activity. Which activity has the system at a
certain moment of time? The following activities for workstation A can be distinguished:
uA

0 ∈ {�, �, �, �}.

With: uA
0 = � : setup workstation A for step 1;

uA
0 = � : process jobs for step 1 at workstation A;

uA
0 = � : setup workstation A for step 4;

uA
0 = � : process jobs for step 4 at workstation A.

The same holds for workstation B. The following activities can be distinguished: uB
0 ∈

{�, �, �, 	}.

With: uB
0 = � : setup workstation B for step 2;

uB
0 = � : process jobs for step 2 at workstation B;

uB
0 = � : setup workstation B for step 3;

uB
0 = 	 : process jobs for step 3 at workstation B.

The input of this system is given by (u0, u) = (uA
0 , uB

0 , u1, u2, u3, u4).

Constraints

In previous section, the inputs of the system are defined but they can not have every possible
value. For example, the rates could not be negative and during a setup no jobs can be
processed at the workstation. Also, only the jobs can be processed at a workstation for which
the workstation has been set up. Therefore, the inputs of this system are bounded by the
following constraints.

The process rates can never be negative, they are zero (in case of a setup) or positive. These
rates are also bounded by a maximal value, a machine can never process jobs at a rate higher
then its maximal rate (μ). These constraints are defined as: 0 ≤ u1 ≤ μ1, 0 ≤ u2 ≤ μ2,
0 ≤ u3 ≤ μ3 and 0 ≤ u4 ≤ μ4.

At each time instant, the inputs of workstation A are subject to the constraints:

constraint activity process rate process rate for system state:
for step 1 for step 4 remaining setup time

buffer content, mode
A1 uA

0 ∈ {�, �} u1 = 0 u4 = 0 xA
0 > 0

A2 uA
0 ∈ {�, �} u1 ≤ μ1 u4 = 0 xA

0 = 0, x1 > 0, mA = 1
A3 uA

0 ∈ {�, �} u1 ≤ λ u4 = 0 xA
0 = 0, x1 = 0, mA = 1

A4 uA
0 ∈ {�, �} u1 = 0 u4 ≤ μ4 xA

0 = 0, x4 > 0, mA = 4
A5 uA

0 ∈ {�, �} u1 = 0 u4 ≤ min(u3, μ4) xA
0 = 0, x4 = 0, mA = 4

Constraint A1 says that no jobs can be processed at workstation A (u1 = 0 and u4 = 0) when
workstation A is setting up (xA

0 > 0). In case a setup has been completed, only jobs can be

2.3. Dynamics 9

processed for which the workstation has been set up. At workstation A, this takes place at
process rate u1 ≤ μ1 if jobs are available (x1 > 0) in buffer 1 (constraint A2) and at process
rate u1 ≤ λ if no jobs are available (x1 = 0) in buffer 1 (constraint A3).
This holds also for production step 4 at this workstation. If jobs are available in buffer 4, the
process rate of the machine in workstation A is u4 ≤ μ4. Furthermore, when buffer 4 is empty
the process rate becomes u4 ≤ u3. With these constraints for the process rate of production
step 4, buffer 4 will never be negative.

At each time instant, the inputs of workstation B are subject to the following constraints:

constraint activity process rate process rate for system state:
for step 2 for step 3 remaining setup time,

buffer content, mode
B1 uB

0 ∈ {�, �} u2 = 0 u3 = 0 xB
0 > 0

B2 uB
0 ∈ {�, �} u2 ≤ μ2 u3 = 0 xB

0 = 0, x2 > 0, mB = 2
B3 uB

0 ∈ {�, �} u2 ≤ min(u1, μ2) u3 = 0 xB
0 = 0, x2 = 0, mB = 2

B4 uB
0 ∈ {�, 	} u2 = 0 u3 ≤ μ3 xB

0 = 0, x3 > 0, mB = 3
B5 uB

0 ∈ {�, 	} u2 = 0 u3 = 0 xB
0 = 0, x3 = 0, mB = 3

Constraint B1 says that if workstation B is setting up (xB
0 > 0), no jobs can be processed

at workstation B (u2 = 0 and u3 = 0). In case a setup has been completed, only jobs can
be processed for which the workstation has been set up. At workstation B, this takes place
at process rate u2 ≤ μ2 if jobs are available (x2 > 0) in buffer 2 (constraint B2) and at
process rate u2 ≤ u1 if no jobs are available (x2 = 0) in buffer 2 (constraint B3). With these
constraints for the process rate of production step 2, buffer 2 will never be negative.
This holds also for production step 3 at this workstation. If jobs are available in buffer 3,
the process rate of the machine in workstation B is u3 ≤ μ3. Furthermore, when buffer 3 is
empty the process rate becomes u3 ≤ u2. Workstation B can only process jobs for which the
machine has been set up. In this case buffer 3 instead of buffer 2. Therefore, u2 equals zero.

2.3 Dynamics

The dynamics of this reentrant system are discrete event and continuous, also called hybrid.

The discrete event dynamics of this system can be found in the inputs uA
0 and uB

0 which define
the activity of the system. A change in one of these inputs generates an event. For example,
if the system is currently in mode m = (mA,mB) = (1, 2) and according to the input the
current activity becomes “setup to mode m = (mA,mB) = (4, 2)”, then the remaining setup
time xA

0 becomes σ14 and the system operates in mode (4, 2). This is true for all modes and
for every workstation as can be seen in Table 2.3.

10 Chapter 2. Reentrant manufacturing system with setup times

remaining setup time setting up for mode current activity and mode

Workstation A
xA

0 := σ14

xA
0 := σ41

mA := 4
mA := 1

uA
0 = � and mA = 1

uA
0 = � and mA = 4

Workstation B
xB

0 := σ23

xB
0 := σ32

mB := 3
mB := 2

uB
0 = � and mB = 2

uB
0 = � and mB = 3

The continuous dynamics can be found in some of the states of the system. For example, the
dynamics of the buffer contents and remaining setup times are continuous. During a time
interval, the total number of jobs in a buffer propagates over time. Jobs are stored in a buffer
or leaving this buffer for processing at a workstation. In general, the nett rate of jobs into a
buffer can be denoted by the following continuous time equation:

ẋi(t) = uINi(t) − uOUTi(t). (2.2)

With: ẋi(t) = nett rate of jobs in buffer i,
uINi(t) = input rate of jobs into buffer i,
uOUTi(t) = output rate of jobs that leave buffer i.

The nett rate of jobs into buffer i is equal to the difference between the incoming rate of jobs
and the outcoming rate of jobs of this buffer. In case of the reentrant system, the equations
for every buffer content can easily be derived while looking at Figure 2.2. These equations
can be found in the second column of Table 2.3.

A B

λ

˙ ˙

˙˙

x2(t)

x3(t)x4(t)

x1(t)
u1(t) u2(t)

u3(t)u4(t)

Figure 2.2: Continuous dynamics: Buffer contents.

The dynamics in the calculation of the remaining setup time is also continuous. These equa-
tions can be found in the second column of Table 2.3. If a workstation is setting up, i.e.
uA

0 ∈ {�, �} and/or uB
0 ∈ {�, �}, the remaining setup time is decreased by one unit of time

every time instant later, i.e. ẋi
0(t) = −1 for (i ∈ {A,B}). If the workstation has been set up,

i.e. uA
0 ∈ {�, �} and/or uB

0 ∈ {�, 	}, no calculation is needed for the remaining setup time,
i.e. ẋi

0(t) = 0 for (i ∈ {A,B}).

remaining setup time buffer contents

Workstation A ẋA
0 (t) =

{ −1 if uA
0 ∈ {�, �}

0 if uA
0 ∈ {�, �}

ẋ1(t) = λ − u1(t)
ẋ4(t) = u3(t) − u4(t)

Workstation B ẋB
0 (t) =

{ −1 if uB
0 ∈ {�, �}

0 if uB
0 ∈ {�, 	}

ẋ2(t) = u1(t) − u2(t)
ẋ3(t) = u2(t) − u3(t)

2.3. Dynamics 11

The structure of the network, the state, input, constraints and hybrid dynamics of the reen-
trant system are defined. In Chapter 3, this information can be used to derive the desired
behavior of the system, which is a starting point of the controller design, i.e. designing an
input u which satisfies the constraints and achieves this desired behavior.

12 Chapter 2. Reentrant manufacturing system with setup times

Chapter 3

Desired periodic behavior

In previous chapter, the specific reentrant system with setup times has been explained in
detail. According to the approach, a desired periodic system behavior should be determined.
As already mentioned in the Introduction, the project objective is split into four research
objectives. This chapter deals with the first research objective, which was formulated as
follows:

Research objective 1:
Determine the desired periodic system behavior.

As mentioned in Section 2.1, a desired periodic system behavior should be determined for
which the mean amount of jobs in the system is minimal. From Little’s law (2.1) and a
constant arrival rate λ for this specific system, it is known that when the mean amount of
jobs in the system is minimal, this results in the smallest mean flow time or mean cycle time
for this system.
More precisely, a steady state cycle should be derived with respect to minimal weighted work
in progress (wip) level to reduce the cycle time and the mean number of jobs in the system.

In general, the weighted wip level function (J) is defined as:

J =
1
T

∫ T

0

N∑
i=1

cixi(t)dt. (3.1)

With: T = cycle period,
N = total number of buffers in the system,
xi(t) = buffer contents of buffer i at time t,
ci = weighting factor for buffer contents of buffer i.

For the specific reentrant system with 4 buffers (N := 4), this function becomes:

J =
1
T

∫ T

0
c1x1(t) + c2x2(t) + c3x3(t) + c4x4(t) dt. (3.2)

To determine a desired periodic behavior with a small mean number of jobs in the system
(wip level), (3.2) with ci = 1 should be minimized over the set of feasible periodic cycles.

13

14 Chapter 3. Desired periodic behavior

3.1 Minimal cycle period

The minimal cycle period is determined first. During a cycle period, the number of jobs that
is released into the system has to leave the system too. Otherwise, the total number of jobs
in the system is increasing which results in an unstable system.

In the specific reentrant system, each job has to be processed twice at each workstation.
At workstation A, this takes 1

μ1
+ 1

μ4
= 0.3 + 0.6 = 0.9 time-units. During a cycle period,

workstation A needs at least two setups to process the jobs for step 1 and step 4. Therefore,
in total σ14 + σ41 = 50 + 50 = 100 time-units are lost due to setups. With a constant arrival
rate λ of 1 [job

time-unit], during a cycle period of 1000 time-units, the 1000 jobs that arrive in
this reentrant system can also be processed by this system.
Since the parameters of workstation B are identical, this analysis holds also for workstation
B.

This minimal cycle period can also be found in the literature. For example, Savkin [Sav03]
has derived a theorem that calculates the minimal cycle period for deterministic systems with
setup times. According to this theorem, the minimal cycle period T is defined by:

T = max
m=1,...,M

⎡
⎣ kmσm +

∑
b(p,i)∈{Bm}

dp

up,i

⎤
⎦ . (3.3)

With: km = number of buffers that works with machine m,
σm = setup time of machine m,
bp,i = job-type p stored in buffer i that works with machine m,
Bm = set of buffers that works with machine m,
dp = desired amount of processed jobs of job-type p,
up,i = process rate for job-type p of buffer i at machine m.

For the specific reentrant manufacturing system, this theorem says that the minimal cycle
period of a system equals the largest minimal cycle period of a workstation in that system.
This workstation is also called the bottleneck of the system, i.e. the slowest step in the
production process. This bottleneck has the largest influence on the minimal cycle period of
the system.

In the specific reentrant system, each workstation contains one machine and both workstations
are processing two job-types, i.e. each workstation has to process the jobs for two production
steps. For the specific reentrant system with two identical workstations, the minimal cycle
period becomes:

T = 2 · 50 +
1000
(1
0.3)

+
1000
(1
0.6)

= 100 + 300 + 600 = 1000 time-units. (3.4)

This minimal cycle period is equal to the cycle period determined earlier. But a periodic
cycle with the smallest period does not necessarily have the smallest mean amount of jobs in
the system [ELR06]. In some cases, a longer period reduces the mean amount of jobs in the

3.2. Increasing weights 15

system. But a longer period implies that a workstation does not always process the jobs at
its highest possible rate which reduces the production efficiency of the system. On the other
hand, a periodic cycle with a smaller period implies that on average more time is wasted
on setups. Which cycle period T minimizes the weighted wip level function J? It turns out
that a trade-off should be made. A periodic cycle which has to waste capacity by frequent
switching or by processing jobs at a rate lower than the maximal process rate.
Therefore, in the analysis for determining the cycle period which minimizes the weighted wip
level function J , not only the minimal cycle period (T = 1000 time-units) is used, also a
longer cycle period (T ≥ 1000 time-units) is taken into account.

3.2 Increasing weights

After determining the minimal cycle period, several periodic cycles exist which minimize (3.2)
(for ci = 1). This number of possible periodic cycles decreases when the weight for each buffer
is defined.

In [LR06a], the weight for each buffer is associated with the mean amount of work, i.e. the
total remaining process time of a job stored in that buffer. A job which is in buffer 1 needs
0.3 time-units processing for step 1, 0.6 time-units for step 2, 0.3 time-units for step 3 and
0.6 time-units for step 4, see also Figure 2.1. So the weight or amount of work associated
with a job in buffer 1 equals [0.3 + 0.6 + 0.3 + 0.6 =] 1.8. The same calculation can be done
for all buffers in this 4 steps production process. For this case, weighted wip level function J
becomes:

J =
1
T

∫ T

0
1.8x1(t) + 1.5x2(t) + 0.9x3(t) + 0.6x4(t) dt. (3.5)

In case of [LR06a], during a cycle period the weights for each buffer in the 4 steps production
process are decreasing (c1 > c2 > c3 > c4 � 1.8 > 1.5 > 0.9 > 0.6). In this report, the same
case is considered but now with increasing weights. This case can be found in manufacturing
systems where more value is added to the products after every step during a production
cycle. This case most likely leads to another “weighted wip level function J” which should
be minimized to find the new periodic system behavior. The weights are associated with
holding costs for storing a job in a buffer. A periodic cycle should be found for which the
mean amount of jobs in buffer 4 is as low as possible. Buffer 4 is the most expensive buffer,
while buffer 1 is the cheapest one. This case leads to another system behavior than the case
investigated in [LR06a]. For simplicity, the following holding costs as weights are defined:
c1 < c2 < c3 < c4 � 1 < 2 < 3 < 4. But other values which satisfy c1 < c2 < c3 < c4 can be
used as well. The weighted wip level function J becomes:

J =
1
T

∫ T

0
1x1(t) + 2x2(t) + 3x3(t) + 4x4(t) dt. (3.6)

16 Chapter 3. Desired periodic behavior

3.3 Optimal sequence of process rates for each system mode

In the four steps production process of the specific reentrant system, only the jobs can be
processed at a workstation for which the workstation has been set up. Therefore, the system
can only operate in one of the four modes each time, as explained in Section 2.2. Each
workstation can process the jobs for step i in a mode with rate ui(t) which is subject to the
constraint 0 ≤ ui(t) ≤ μi. The question now arises: “Which sequence of process rates ui(t)
in each system mode leads to a system behavior for which the weighted amount of jobs is as
low as possible?”. In this section, each system mode in this production cycle is investigated
independently of each other and in random order to determine the optimal sequence of process
rates. In next section, the duration of every action is calculated for each workstation. When
these durations are known, the system modes can be scheduled into one schedule which results
in good desired system behavior.

In this section, each system mode in this production cycle is investigated independently of
each other and in random order to determine the optimal sequence of process rates for which
the weighted amount of jobs in the system is minimal. For each system mode, an optimization
problem is defined with the weighted wip level function J as objective function. Also, some
constraints are defined which describes the conditions of the process rates and buffer contents.
Each optimization problem has to be solved by finding a solution in the feasible region —
where each solution satisfies all the constraints — which has the minimum value of the
objective function. In this case, the optimal sequence of process rates for the production
steps in the system mode should be determined subject to the constraints to minimize the
weighted amount of jobs in the system.

System mode = (4,3)

In Figure 3.1, the specific reentrant system operates in mode (mA,mB) = (4, 3). Workstation
A processes the jobs for step 4 and workstation B processes the jobs for step 3. In this mode,
the arrival rates into buffer 2 and buffer 3 are zero (λ = 0). While the arrival rate into buffer
1 is always equal to λ = 1 [job

time-unit].

A B

λ = 1
u2 = 0

u3(t)

x3(t)

u1 = 0

x1(t)

u4(t)

λ = 0

x4(t)

x2(t)
λ = 0

Figure 3.1: System operates in mode (4,3).

To minimize the weighted wip level function J (3.6) for this mode, the following optimization

3.3. Optimal sequence of process rates for each system mode 17

problem has to be solved, for given t0, tf , x0
3, xf

3 , x0
4 and xf

4 .

min
u3(t),u4(t)

∫ tf

t0

c3x3(τ) + c4x4(τ) dτ,

with c3 < c4 and μ3 > μ4.

s.t. x3(t0) = x0
3, x3(tf) = xf

3 , 0 ≤ u3(t) ≤ μ3, x3(t) ≥ 0,

x4(t0) = x0
4, x4(tf) = xf

4 , 0 ≤ u4(t) ≤ μ4, x4(t) ≥ 0.

where 0 ≤ x0
3 − xf

3 ≤ μ3(tf − t0),

0 ≤ (x0
3 + x0

4) − (xf
3 + xf

4) ≤ μ4(tf − t0).

During mode (mA,mB) = (4, 3) which has a duration of (tf − t0), the process rates u3(t) and
u4(t) should be determined subject to the constraints to minimize the weighted amount of
jobs in buffers 3 and 4, i.e. min

∫ tf
t0

c3x3(τ) + c4x4(τ) dτ . One of the constraints says that
the buffer contents of buffer 3 can never decrease faster than the case when workstation B
processes the jobs for step 3 at maximal rate, i.e. x0

3−xf
3 ≤ μ3(tf − t0). Due to an arrival rate

equal to zero into buffer 3 in this case, the buffer contents of buffer 3 will never increase during
this mode. The initial amount of jobs at t0 in this mode is never smaller than the amount of
jobs at tf , i.e. x0

3 − xf
3 ≥ 0. The same analysis holds for the total buffer contents of buffers 3

and 4. The nett amount of jobs in buffers 3 and 4 can never decrease faster than the case when
workstation A processes the jobs at maximal rate, i.e. (x0

3+x0
4)−(xf

3 +xf
4) ≤ μ4(tf −t0). Also,

the nett amount of jobs in buffers 3 and 4 can never be negative, i.e. (x0
3+x0

4)−(xf
3 +xf

4) ≥ 0.

Before this optimization problem will be solved, the weighted wip level function J in this
optimization problem is rewritten as:

min
u3(t),u4(t)

(
c4

∫ tf

t0

x3(τ) + x4(τ) dτ − (c4 − c3)
∫ tf

t0

x3(τ) dτ

)
,

with c3 < c4 and μ3 > μ4.

s.t. x3(t0) = x0
3, x3(tf) = xf

3 , 0 ≤ u3(t) ≤ μ3, x3(t) ≥ 0,

x4(t0) = x0
4, x4(tf) = xf

4 , 0 ≤ u4(t) ≤ μ4, x4(t) ≥ 0.

where 0 ≤ x0
3 − xf

3 ≤ μ3(tf − t0),

0 ≤ (x0
3 + x0

4) − (xf
3 + xf

4) ≤ μ4(tf − t0).

In this form, we can see that the weighted wip level function J is minimized when the first part
of this function, i.e. c4

∫ tf
t0

x3(τ) + x4(τ) dτ is minimal and the second part of this function,
i.e. (c4 − c3)

∫ tf
t0

x3(τ) dτ , is maximal.

Solving this optimization problem for system mode (4, 3), workstations A and B can process
the jobs depending on the amount of jobs in the buffers at the following process rates with
the corresponding requirements.

(u4(t), u3(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, μ3) if x3(t) − xf
3 = μ3(tf − t) and x34(t) = xf

34;
(μ4, μ3) if x3(t) − xf

3 = μ3(tf − t) and x34(t) > xf
34;

(0, 0) if x3(t) − xf
3 < μ3(tf − t) and x34(t) = xf

34;
(μ4, μ4) if x3(t) − xf

3 < μ3(tf − t) and x34(t) > xf
34 and x4(t) = 0;

(μ4, 0) if x3(t) − xf
3 < μ3(tf − t) and x34(t) > xf

34 and x4(t) > 0.

18 Chapter 3. Desired periodic behavior

where x34(t) = x3(t) + x4(t) and xf
34 = xf

3 + xf
4 .

All these possible process rates with the corresponding requirements for both workstations
are solutions of the optimization problem. But which sequence of process rates lead to a
system behavior in mode (mA, mB) = (4, 3) for which the weighted amount of jobs in this
mode is as low as possible? A proof of this statement is given after Lemma 3.1.

Lemma 3.1. The optimal behavior for the system in Figure 3.1 which operates in mode
(mA,mB) = (4, 3) is achieved when the system processes the jobs during this system mode in
the following sequence of process rates.

(μ4 , 0)

(μ4 , μ4)

(μ4 , μ3)(0 , 0)

(0 , μ3)

During this system mode, workstation A processes the jobs for step 4 at maximal rate μ4 and
then it idles. Workstation B idles first and processes then the jobs for step 3 eventually at
rate μ4 — this action only occurs when buffer 4 is empty and workstation A processes the
jobs for step 4 — and at the end of this mode workstation B processes the jobs for step 3
at maximal rate μ3. Given the boundary wip levels, both sequences can result in an optimal
behavior for this system mode for which the weighted wip level is as low as possible.

Proof. For system mode (4, 3), an optimal behavior has to be determined for which the
weighted amount of jobs in buffers 3 and 4 is minimal. Looking at the optimization problem,
the first part of the weighted wip level function — c4

∫ tf
t0

x3(τ)+x4(τ) dτ — has to minimized
and the second part of this function — (c4 − c3)

∫ tf
t0

x3(τ) dτ — has to maximized. For each
sequence of process rates in Lemma 3.1, both parts of the weighted wip level function are
sketched in Figure 3.2.

First, the left sequence of process rates in Lemma 3.1 is considered. Suppose a behavior is
given for the buffer contents of buffers 3 and 4 which is sketched in the left hand side of Figure
3.2. After having completed the setup to process the jobs for steps 3 and 4, buffers 3 and 4
contain an amount of x0

3 and x0
4 jobs respectively at t0 and at the end of this mode, i.e. at tf ,

buffers 3 and 4 contain an amount of xf
3 and xf

4 jobs respectively. The amount of jobs at t0
and tf are known and fixed. The behavior between t0 and tf should be optimized for which
the weighted amount of jobs in buffers 3 and 4 is minimal.

In the left hand side of Figure 3.2, the buffer contents of buffer 3 and the sum of the buffer
contents of buffers 3 and 4 is sketched. Due to the fact that the arrival rate into buffer 3
equals zero, the total number of jobs in buffers 3 and 4 can never increase during this mode.
This total amount of jobs only decreases when the jobs are processed for step 4. Workstation
B idles first for a duration until buffer 4 becomes empty. Then, workstation B processes the
jobs of buffer 3 at process rate μ4 until the constraint x34(t) = xf

34, i.e. the total number of

3.3. Optimal sequence of process rates for each system mode 19

jobs at t is equal to total number of jobs at tf , is satisfied. During this action, workstation
A processes also the jobs of buffer 4 at maximal rate μ4 and the sum between x3 and x4

decreases during these actions with rate μ4. When the total number of jobs at t is equal
to total number of jobs at tf , both workstations idle for a duration until workstation B can
process an amount of xf

4 jobs in (tf − t) time-units. At the end of this mode, workstation B
processes the jobs of buffer 3 at maximal rate μ3 until buffer 4 contains an amount of xf

4 jobs
at tf . During the last two actions, workstation A idles and no jobs are leaving the system.
Therefore, the sum between x3 and x4 remains constant. Clearly, during this mode the total
number of jobs in buffers 3 and 4 can not decrease faster than in this case. Therefore, the first
part of the weighted wip level function J — c4

∫ tf
t0

x3(τ) + x4(τ) dτ — is minimized. Also,
the second part of this weighted wip level function — (c4 − c3)

∫ tf
t0

x3(τ) dτ — is maximized
for this case. With the optimal behavior of buffer 4 in mind and the fact that the holding
cost for storing a job in buffer 4 is more expensive than in buffer 3, the jobs stay in buffer 3
in the beginning of this mode and at the end the jobs can not leave buffer 3 faster than in
this case. Given the boundary wip levels, this sequence of process rates leads to an optimal
behavior for this system mode.

t

(t)+x4(t)

0

t

tft0

0

u4 = μ4

x3(t)

u4 = μ4 u4 = 0 u4 = 0

u3 = 0 u3 = μ4 u3 = 0 u3 = μ3

x3(t0)

x3(tf)

0)+x4(t0)

tf)+x4(tf)

x3(t)+x4(t)

0
tft0

0

u4 = μ4

x3(t)

u4 = μ4 u4 = 0

u3 = 0 u3 = μ4 u3 = μ3

x3(t0)

x3(tf)

x3(t0)+x4(t0)

x3(tf)+x4(tf)

u4 = μ4

t

t

u3 = μ3

Figure 3.2: Optimal sequence of process rates for system mode (4,3).

According to Lemma 3.1 and depending on the boundary wip levels, the right sequence of
process rates can also lead to optimal behavior for this mode. Looking better at the sequences
in Lemma 3.1, the only difference between these two sequences can be found in the third
action, i.e. when both workstations are idling in the left sequence or when both workstations
are processing the jobs at maximal rate in the right sequence. Depending on the fact which
of the two constraints — x34(t) = xf

34 or x3(t) − xf
3 = μ3(tf − t) — is satisfied first, the left

or right sequence in Lemma 3.1 can result in optimal behavior for this mode. In case when
the total amount of jobs in buffers 3 and 4 at time t equals the amount at the end of this

20 Chapter 3. Desired periodic behavior

mode, i.e. when the constraint x34(t) = xf
34 is satisfied first, the left sequence of process rates

in Lemma 3.1 will result in optimal behavior for this mode as explained earlier. In case when
workstation B can process an amount of xf

4 jobs at maximal rate μ3 in (tf − t) time-units
while the constraint x34(t) = xf

34 is not satisfied, then the right sequence of process rates of
Lemma 3.1 will result in optimal behavior for this system mode. This is behavior is sketched
in the right hand side of Figure 3.2. To make sure that buffer 4 contains at the end of this
mode an amount of xf

4 jobs, workstation B has to process the jobs for step 3 during the third
action instead of idling. During this action, workstation A also processes the jobs for step 4
to reduce the weighted wip level in this mode. When the total amount of jobs in buffers 3
and 4 at time t are equal to the amount at the end of this mode, i.e. when the constraint
x34(t) = xf

34 is satisfied, workstation A idles and workstation B continues processing the jobs
for step 3 at maximal rate μ3 to make sure that buffer 4 contains an amount of xf

4 jobs at
the end of this mode. Also for this case, the total number of jobs in buffers 3 and 4 can not
decrease faster during this mode. Therefore, the first part of the weighted wip level function
J — c4

∫ tf
t0

x3(τ) + x4(τ) dτ — is minimized. Also, the second part of this weighted wip level
function — (c4 − c3)

∫ tf
t0

x3(τ) dτ — is maximized for this case. With the optimal behavior
of buffer 4 in mind and the fact that the holding cost for storing a job in buffer 4 is more
expensive than in buffer 3, the jobs stay in buffer 3 in the beginning of this mode and at the
end the jobs can not leave buffer 3 faster than in this case. Given the boundary wip levels,
this sequence of process rates leads to an optimal behavior for this system mode.

System mode (4,2)

In Figure 3.3, the specific reentrant system operates in mode (mA,mB) = (4, 2). Workstation
A processes the jobs for step 4 and workstation B processes the jobs for step 2. In this case,
the arrival rates into buffers 2 and 4 are zero and the arrival rate into buffer 3 depends on the
process rate at workstation B. While the arrival rate into buffer 1 is always equal to λ = 1
[job
time-unit].

A B

λ = 1

u3 = 0

u2(t)

x3(t)

u1 = 0

x1(t)

u4(t)
λ = 0

x4(t)

x2(t)
λ = 0

Figure 3.3: System operates in mode (4,2).

To minimize the weighted wip level function J (3.6) for this mode, the following optimization

3.3. Optimal sequence of process rates for each system mode 21

problem has to be solved, for given t0, tf , x0
2, x0

3, x0
4, xf

2 , xf
3 and xf

4 .

min
u2(t),u4(t)

∫ tf

t0

c2x2(τ) + c3x3(τ) + c4x4(τ) dτ,

with c2 < c3 < c4 and μ2 = μ4.

s.t. x2(t0) = x0
2, x2(tf) = xf

2 , 0 ≤ u2(t) ≤ μ2, x2(t) ≥ 0,

x3(t0) = x0
3, x3(tf) = xf

3 , u3(t) = 0, x3(t) ≥ 0,

x4(t0) = x0
4, x4(tf) = xf

4 , 0 ≤ u4(t) ≤ μ4, x4(t) ≥ 0.

where 0 ≤ x0
2 − xf

2 ≤ μ2(tf − t0),

0 ≤ x0
4 − xf

4 ≤ μ4(tf − t0),

x0
2 + x0

3 = xf
2 + xf

3 .

During mode (mA,mB) = (4, 2) which has a duration of (tf − t0), the process rates u2(t) and
u4(t) should be determined subject to the constraints to minimize the weighted amount of jobs
in buffers 2, 3 and 4, i.e. min

∫ tf
t0

c2x2(τ) + c3x3(τ) + c4x4(τ) dτ . One of the constraints says
that the buffer contents of buffer 2 can never decrease faster than the case when workstation
B processes the jobs for step 2 at maximal rate, i.e. x0

2 − xf
2 ≤ μ2(tf − t0). Due to an arrival

rate equal to zero in this case, the buffer contents of buffer 2 will never increase during this
mode. Thus, the initial amount of jobs at t0 is never smaller than the amount of jobs at tf ,
i.e. x0

2 − xf
2 ≥ 0. During this mode, no jobs will leave buffer 3. Therefore the total number

of jobs in buffers 2 and 3 at t0 equals the total number of jobs in buffers 2 and 3 at tf , i.e.
x0

2 + x0
3 = xf

2 + xf
3 . The same analysis holds for the buffer contents of buffer 4.

In this mode, the arrival rates between the workstations are zero. This means that both
workstations can operate independently of each other and the optimization problem can be
solved for each workstation separately.

First, consider workstation B for which the following optimization problem should be solved
for given t0, tf , x0

2, x0
3, xf

2 and xf
3 .

min
u2(t)

c2

∫ tf

t0

(x2(τ) + x3(τ)) dτ + (c3 − c2)
∫ tf

t0

x3(τ) dτ,

with c2 < c3.

s.t. x2(t0) = x0
2, x2(tf) = xf

2 , 0 ≤ u2(t) ≤ μ2, x2(t) ≥ 0,

x3(t0) = x0
3, x3(tf) = xf

3 , u3(t) = 0, x3(t) ≥ 0.

where 0 ≤ x0
2 − xf

2 ≤ μ2(tf − t0),

x0
2 + x0

3 = xf
2 + xf

3 .

Lemma 3.2. The optimal behavior for which the weighted wip level is minimal for workstation
B which operates in mode (mA,mB) = (4, 2) is achieved when workstation B processes the
jobs in the following sequence.

u2(t) = 0 if xf
3 − x3(t) < μ2(tf − t);

u2(t) = μ2 if xf
3 − x3(t) = μ2(tf − t).

22 Chapter 3. Desired periodic behavior

Given the boundary wip levels, this optimal behavior results in the smallest weighted wip level
for this system mode.

Proof. The total amount of jobs in buffers 2 and 3 remains constant during this system mode.
The arrival rate into buffer 2 is equal to zero and no jobs are leaving buffer 3 in this case.
Looking at the optimization problem for workstation B, the sum between x2(t) and x3(t) in
the first part of the function is constant and can not be minimized. But the second part,
which contains the buffer contents of buffer 3, can be minimized. Therefore, Workstation B
should adapt its process rate for step 2 to minimize the weighted amount of jobs in buffer 3.
In Figure 3.4, the buffer contents of buffer 3 is sketched during this mode. With the sequence
of process rates in Lemma 3.2 in mind, workstation B first idles for a duration until the
constraint xf

3 − x3(t) = μ2(tf − t) — the desired amount of jobs in buffer 3 can be processed
at maximal rate μ2 at the end of this mode — is satisfied. Then, workstation B processes the
jobs for step 2 at maximal rate μ2 until buffer 3 contains an amount of xf

3 jobs at the end of
this mode. In this case, the buffer contents of buffer 3 is as low as possible in the beginning
of this mode and at the end buffer 3 can never increase faster than in this case. Therefore,
the weighted amount of jobs in buffer 3 is minimal and this sequence of process rates leads
to optimal behavior for workstation B in this mode.

ttft0

u2 = 0 u2 = μ2

0

x3(t)

x3(t0)

x3(tf)

Figure 3.4: Optimal buffer behavior of buffer 3 in mode (4,2).

The same analysis can be done for workstation A for which the following optimization problem
should be solved for given t0, tf , x0

4 and xf
4 .

min
u4(t)

∫ tf

t0

c4x4(τ) dτ.

s.t. x4(t0) = x0
4, x4(tf) = xf

4 , 0 ≤ u4(t) ≤ μ4, x4(t) ≥ 0,

0 ≤ x0
4 − xf

4 ≤ μ4(tf − t0).

Lemma 3.3. The optimal behavior for which the weighted wip level is minimal for workstation
A which operates in mode (mA,mB) = (4, 2) is achieved when workstation A processes the
jobs in the following sequence.

u4(t) = μ4 if x4(t) > xf
4 ;

u4(t) = 0 if x4(t) = xf
4 .

Given the boundary wip levels, this optimal behavior results in the smallest weighted wip level
for this system mode.

3.3. Optimal sequence of process rates for each system mode 23

tft0 t

0

u4 = μ4x4(t) u4 = 0

x4(t0)

x4(tf)

Figure 3.5: Optimal buffer behavior of buffer 4 in mode (4,2).

Proof. Suppose a behavior is given for the buffer contents of buffer 4 which is sketched in
Figure 3.5. After having completed the setup to process the jobs for step 4, buffer 4 contains
an amount of x0

4 jobs at t0 and at the end of this mode, at tf , buffer 4 contains an amount
of xf

4 jobs. Consider now the case when the sequence of process rates in Lemma 3.3 is used.
This result should lead to an optimal behavior for this mode for which the weighted amount
of jobs in buffer 4 is as low as possible. Workstation A starts processing the jobs for step
4 at maximal rate μ4 until buffer 4 contains an amount of xf

4 jobs. Then, workstation A
idles. This case is also sketched in Figure 3.5. Clearly, during this mode the number of jobs
in buffer 4 can not decrease faster than in this case. Therefore, at each time instant the wip
level in buffer 4 is minimal for this case which results in optimal behavior for workstation A
in this mode.

The optimal sequence of process rates is determined for each workstation separately in this
system mode. But with the results in Lemma 3.2 and 3.3 in mind, the optimal sequence of
process rates for this system for which the weighted wip level is minimal is achieved when
both workstations process the jobs in the following sequence of process rates depending on
the wip levels in the beginning and at the end of this system mode.

(μ4 , 0)

(μ4 , μ2)(0 , 0)

(0 , μ2)

Figure 3.6: Optimal sequence of process rates for system mode (4,2).

System mode (1,2)

In Figure 3.7, the specific reentrant system operates in mode (mA,mB) = (1, 2). Workstation
A processes the jobs for step 1 and workstation B processes the jobs for step 2. In this case,
the arrival rate into buffer 4 is zero and the arrival rates into buffers 2 and 3 depend on the
process rates at the workstations. Whereas the arrival rate into buffer 1 is always equal to
λ = 1 [job

time-unit].

To minimize the weighted wip level function J (3.6) for this mode, the following optimization

24 Chapter 3. Desired periodic behavior

A B

λ = 1

u3 = 0

u2(t)

x3(t)

u4 = 0

x1(t)

u1(t)

λ = 0

x4(t)

x2(t)

Figure 3.7: System operates in mode (1,2).

problem has to be solved, for given t0, tf , x0
1, x0

2, x0
3, xf

1 , xf
2 and xf

3 .

min
u1(t),u2(t)

∫ tf

t0

c1x1(τ) + c2x2(τ) + c3x3(τ) dτ,

with c1 < c2 < c3 and μ1 > μ2.

s.t. x1(t0) = x0
1, x1(tf) = xf

1 , 0 ≤ u1(t) ≤ μ1, x1(t) ≥ 0,

x2(t0) = x0
2, x2(tf) = xf

2 , 0 ≤ u2(t) ≤ μ2, x2(t) ≥ 0,

x3(t0) = x0
3, x3(tf) = xf

3 , u3(t) = 0, x3(t) ≥ 0,

where (λ − μ1)(tf − t0) ≤ xf
1 − x0

1 ≤ λ(tf − t0),

(λ − μ2)(tf − t0) ≤ (xf
1 + xf

2) − (x0
1 + x0

2) ≤ λ(tf − t0),

x0
1 + x0

2 + x0
3 + λ(tf − t0) = xf

1 + xf
2 + xf

3 .

During mode (mA,mB) = (1, 2) which has a duration of (tf − t0), the process rates u1(t) and
u2(t) should be determined subject to the constraints to minimize the weighted number of
jobs in buffers 1, 2 and 3, i.e. min

∫ tf
t0

c1x1(τ) + c2x2(τ) + c3x3(τ) dτ . During a cycle period,
the buffer contents of buffer 1 always increases with rate λ. Therefore, this buffer contents
can never increase faster than with this rate, i.e. xf

1 − x0
1 ≤ λ(tf − t0). Also, this buffer

contents can never decrease faster than the case when workstation A processes the jobs at
maximal rate, i.e. x0

1 − xf
1 ≤ (μ1 − λ)(tf − t0). The total amount of jobs in buffers 1 and

2 increases with rate λ and it only decreases when workstation B is processing the jobs for
step 2. Therefore, the total amount of jobs in buffers 1 and 2 can never increase faster than
rate λ and it can never decrease faster than the case when workstation B processes the jobs
at maximal rate, i.e. (λ− μ2)(tf − t0) ≤ (xf

1 + xf
2)− (x0

1 + x0
2) ≤ λ(tf − t0). It is also known,

that the total amount of jobs in buffers 1, 2 and 3 can never decrease during this mode, no
jobs are leaving buffer 3. But this total amount of jobs is always increasing with rate λ. This
is denoted by x0

1 + x0
2 + x0

3 + λ(tf − t0) = xf
1 + xf

2 + xf
3 .

Solving the optimization problem for this system, workstations A and B can process the
jobs depending on the amount of jobs in the buffers at the following process rates with the
corresponding requirements.

(u1(t), u2(t)) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0) if xf
3 − x3(t) < μ2(tf − t) and xf

23 − x23(t) < μ1(tf − t);
(μ2, μ2) if xf

3 − x3(t) = μ2(tf − t) and xf
23 − x23(t) < μ1(tf − t) and x2(t) = 0;

(μ1, μ2) if xf
3 − x3(t) = μ2(tf − t) and xf

23 − x23(t) = μ1(tf − t);
(μ1, 0) if xf

3 − x3(t) < μ2(tf − t) and xf
23 − x23(t) = μ1(tf − t);

(0, μ2) if xf
3 − x3(t) = μ2(tf − t) and xf

23 − x23(t) < μ1(tf − t) and x2(t) > 0.

3.3. Optimal sequence of process rates for each system mode 25

where x23(t) = x2(t) + x3(t) and xf
23 = xf

2 + xf
3 .

All these possible process rates with their corresponding requirements for both workstations
are solutions of the optimization problem. But which sequence of process rates lead to a
system behavior in mode (mA, mB) = (1, 2) for which the weighted amount of jobs in this
mode is minimal? A proof of this statement is given after Lemma 3.4.

Lemma 3.4. The optimal behavior for the system in Figure 3.7 which operates in mode
(mA,mB) = (1, 2) is achieved when the system processes the jobs during this system mode in
the following sequence of process rates.

(μ1 , 0)

(0 , μ2)

(0 , 0)

(μ1 , μ2)

(μ2 , μ2)

During this system mode, workstation A first idles for a duration. Then, it processes the
jobs for step 1 eventually at rate μ2 — this action only occurs when buffer 2 is empty and
workstation B processes the jobs for step 2 — and at the end of this mode workstation A
processes the jobs for step 1 at maximal rate μ1. Workstation B also idles first for a duration
and then it processes the jobs for step 2 at maximal rate μ2. Given the boundary wip levels,
both sequences can result in an optimal behavior for which the weighted wip level is minimal
for this system mode.

Before the sequences in Lemma 3.4 is proved, the weighted wip level function is rewritten
while the constraints are not changed. This rewritten function is used for determining the
optimal behavior for this system mode.

min
u1(t),u2(t)

c1

∫ tf

t0

(
x1(τ) + x2(τ) + x3(τ)

)
dτ +

(c2 − c1)
∫ tf

t0

(
x2(τ) + x3(τ)

)
dτ + (c3 − c2)

∫ tf

t0

x3(τ) dτ.

Proof. The total amount of jobs in buffers 1, 2 and 3 will never decrease during this system
mode, no jobs are leaving buffer 3. With an arrival rate equal to λ = 1 [job

time-unit] into buffer 1,
the total amount of jobs is always increasing with this rate. The first part of the optimization
function, which contains the sum of x1(t), x2(t) and x3(t) is fixed and can not be minimized.
The second part of this function, which contains the sum of x2(t) and x3(t) can be minimized.
The sum of x2(t) and x3(t) during this mode is sketched in Figure 3.8. Workstation B should
adapt its process rate for step 2 to minimize the weighted amount of jobs in buffer 3. When
the weighted amount of jobs in buffer 3 is minimized, then the third part of the optimization
function is also minimized which is also sketched in the figure.

Consider now the case when the right sequence of process rates in Lemma 3.4 is used. This
case should lead to an optimal behavior for this system mode for which the weighted wip level

26 Chapter 3. Desired periodic behavior

ttft0
0

u2 = μ2

)+x3(t)

u2 = 0

u1 = 0 u1 = μ1

)+x3(t0)

0

x3(t)

x3(t0)

x3(tf)

)+x3(tf)

t

ttf
t0

0

u2 = μ2

x2(t)+x3(t)

u2 = μ2u2 = 0

u1 = 0 u1 = μ1

x2(t0)+x3(t0)

u1 = μ2

0

x3(t)

x3(t0)

x3(tf)

x2(tf)+x3(tf)

t

u1 = 0

u2 = μ2u2 = 0

u1 = μ1

Figure 3.8: Optimal buffer behavior of buffers 2 and 3 in mode (1,2).

is minimal. This behavior is sketched in the left hand side of Figure 3.8. To minimize the
weighted amount of jobs in buffers 2 and 3, both workstations idle first for a duration until
the constraint xf

3 − x3(t) = μ2(tf − t), i.e. the amount of xf
3 − x3(t) jobs can be processed

at maximal rate μ2 during (tf − t), is satisfied. Then workstation B processes the jobs for
step 2 at maximal rate μ2. Workstation A starts only processing the jobs for step 1 at rate
μ2 if buffer 2 is empty and workstation B processes the jobs for step 2 at rate μ2 otherwise it
idles. Workstation A starts processing the jobs for step 1 at maximal rate μ1 if the constraint
xf

23 − x23(t) = μ1(tf − t), i.e. the amount of xf
23 − x23(t) jobs can be processed at maximal

rate μ1 during (tf − t), is satisfied. In this case, the weighted amount of jobs in buffers 2 and
3 are as low as possible in the beginning of this mode and at the end they can never increase
faster than in this case. Therefore, the weighted wip level function J for this system mode is
minimized. Given the boundary wip levels, the right sequence of process rates in Lemma 3.4
leads to an optimal behavior for this system mode for which the weighted amount of jobs in
buffers 2 and 3 is minimal.

According to Lemma 3.4 and depending on the boundary wip levels, the left sequence of
process rates can also lead to optimal behavior for this system mode. Depending on the fact
which of the two constraints — xf

3 − x3(t) = μ2(tf − t) or xf
23 − x23(t) = μ1(tf − t) —-

is satisfied first, the left or right sequence in Lemma 3.4 can result in optimal behavior for
this mode. The case when the constraint xf

3 − x3(t) = μ2(tf − t) is satisfied earlier than the
constraint xf

23 − x23(t) = μ1(tf − t) is sketched in the right hand side of Figure 3.8. In this
case, workstation B starts processing the jobs earlier at maximal rate than workstation A.
This behavior is explained above and given the boundary wip levels, the right sequence of
process rates in Lemma 3.4 will result in optimal behavior for this mode. The case when the
constraint xf

23−x23(t) = μ1(tf−t) is satisfied earlier than the constraint xf
3−x3(t) = μ2(tf−t)

is sketched in the left hand side of Figure 3.8. In this case, workstation A starts processing the

3.3. Optimal sequence of process rates for each system mode 27

jobs earlier at maximal rate than workstation B. To minimize the weighted amount of jobs in
buffers 2 and 3, both workstations idle for a duration in the beginning of this mode. All buffer
contents remain then constant and jobs arrive into buffer 1 with arrival rate λ. After this idle
duration, workstation A processes the jobs for step 1 at maximal rate μ1 to make sure that
buffer 2 contains an amount of xf

2 at the end of this mode. Workstation B continues idling
until it can process an amount of xf

3 − x3(t) jobs at maximal rate μ2 in (tf − t) time-units.
With this sequence of process rates and given the boundary wip levels, the weighted amount
of jobs in buffers 2 and 3 are as low as possible which results in an optimal behavior for this
system mode.

System mode (1,3)

In Figure 3.9, the specific reentrant system operates in mode (mA,mB) = (1, 3). Workstation
A processes the jobs for step 1 and workstation B processes the jobs for step 3. In this case,
the arrival rate into buffer 3 is zero and the arrival rates into buffers 2 and 4 depend on the
process rate at the workstations. Whereas the arrival rate into buffer 1 is always equal to
λ = 1 [job

time-unit].

A B

λ = 1
u2 = 0

u3(t)

x3(t)

u4 = 0

x1(t)

u1(t)

λ = 0

x4(t)

x2(t)

Figure 3.9: System operates in mode (1,3).

In this mode, both workstations can process the jobs independently of each other. Therefore,
to minimize the weighted wip level function J (3.6) for this mode, the optimization problem
can be split into an optimization problem for each workstation. First consider workstation
A, for which the following optimization problem should be solved for given t0, tf , x0

1, x0
2, xf

1

and xf
2 .

min
u1(t)

c1

∫ tf

t0

(x1(τ) + x2(τ)) dτ + (c2 − c1)
∫ tf

t0

x2(τ) dτ,

with c1 < c2.

s.t. x1(t0) = x0
1, x1(tf) = xf

1 , 0 ≤ u1(t) ≤ μ1, x1(t) ≥ 0,

x2(t0) = x0
2, x2(tf) = xf

2 , u2(t) = 0, x2(t) ≥ 0.

where (λ − μ1)(tf − t0) ≤ xf
1 − x0

1 ≤ λ(tf − t0),

x0
1 + x0

2 + λ(tf − t0) = xf
1 + xf

2 .

During mode (mA,mB) = (1, 3) which has a duration of (tf −t0), the process rate u1(t) should
be determined subject to the constraints to minimize the weighted number of jobs in buffers 1
and 2, i.e. min

∫ tf
t0

c1x1(τ)+c2x2(τ) dτ . As already mentioned in mode (mA,mB) = (1, 2), the
buffer contents of buffer 1 always increases with rate λ during a cycle period. Therefore, this
buffer contents can never increase faster than with this rate, i.e. xf

1 − x0
1 ≤ λ(tf − t0). Also,

28 Chapter 3. Desired periodic behavior

this buffer contents can never decrease faster than the case when workstation A processes the
jobs at maximal rate, i.e. xf

1 − x0
1 ≥ (λ − μ1)(tf − t0). Besides this, the total number of jobs

in buffer 1 and 2 can never decrease during this mode, no jobs are leaving buffer 2. This total
amount of jobs only increases with rate λ, i.e. x0

1 + x0
2 + λ(tf − t0) = xf

1 + xf
2 .

Lemma 3.5. The optimal behavior for which the weighted wip level is minimal for workstation
A which operates in mode (mA,mB) = (1, 3) is achieved when workstation A processes the
jobs in the following sequence.

u1(t) = 0 if xf
2 − x2(t) < μ1(tf − t);

u1(t) = μ1 if xf
2 − x2(t) = μ1(tf − t).

Given the boundary wip levels, this optimal behavior results in the smallest weighted wip level
for this system mode.

Proof. In system mode (mA,mB) = (1, 3), no jobs are leaving buffer 2. Therefore, the total
amount of jobs in buffers 1 and 2 will never decrease. With an arrival rate of λ into buffer 1,
the total amount of jobs in buffers 1 and 2 is increasing with this rate. The sum of the buffer
contents of buffers 1 and 2 is known and fixed and the first part of the optimization function
which contains the sum of x1 and x2 can not be minimized. But the second part which contains
the buffer contents of buffer 2 can be minimized. Consider now the case when the sequence
of process rates in Lemma 3.5 is used. This result should lead to optimal behavior for this
mode for which the weighted amount of jobs in buffer 2 is as low as possible. In the beginning
of this mode, workstation A idles for a duration until the constraint xf

2 − x2(t) = μ1(tf − t)
is satisfied. Then, workstation A processes the jobs for step 1 at maximal rate μ1 until buffer
2 contains an amount of xf

2 jobs. In this case, the buffer contents of buffer 2 is as low as
possible in the beginning of this mode and at the end buffer 2 can never increase faster than
in this case. Therefore, the weighted amount of jobs in buffer 2 is minimal and lead to optimal
behavior in this mode. This optimal behavior is sketched in Figure 3.10.

tft0

u1 = 0 u1 = μ1

0

x2(t)

x2(t0)

x2(tf)

t

Figure 3.10: Optimal buffer behavior of buffer 2 in mode (1,3).

The same analysis holds for workstation B for which the following optimization problem

3.3. Optimal sequence of process rates for each system mode 29

should be solved for given t0, tf , x0
3, x0

4, xf
3 and xf

4 .

min
u3(t)

c3

∫ tf

t0

(x3(τ) + x4(τ)) dτ + (c4 − c3)
∫ tf

t0

x4(τ) dτ,

with c3 < c4.

s.t. x3(t0) = x0
3, x3(tf) = xf

3 , 0 ≤ u3(t) ≤ μ3, x3(t) ≥ 0,

x4(t0) = x0
4, x4(tf) = xf

4 , u4(t) = 0, x4(t) ≥ 0.

where 0 ≤ x0
3 − xf

3 ≤ μ3(tf − t0),

x0
3 + x0

4 = xf
3 + xf

4 .

Lemma 3.6. The optimal behavior for which the weighted wip level is minimal for workstation
B which operates in mode (mA,mB) = (1, 3) is achieved when workstation B processes the
jobs in the following sequence.

u3(t) = 0 if xf
4 − x4(t) < μ3(tf − t);

u3(t) = μ3 if xf
4 − x4(t) = μ3(tf − t).

Given the boundary wip levels, this optimal behavior results in the smallest weighted wip level
for this system mode.

Proof. In this system mode, the total amount of jobs in buffers 3 and 4 is constant. No jobs
arrive into buffer 3 and no jobs are leaving buffer 4 during this system mode. The sum of the
buffer contents of buffers 3 and 4 is constant and the first part of the optimization function
can not be minimized. But the second part, which contains the buffer contents of buffer 4
can be minimized. Consider now the case when the sequence of process rates in Lemma 3.6
is used. This result should lead to optimal behavior for this mode for which the weighted
amount of jobs in buffer 4 is as low as possible. First, workstation B idles for a duration until
the constraint xf

4 − x4(t) = μ3(tf − t) is satisfied. Then, workstation B processes the jobs for
step 3 at maximal rate μ3. In this case, the buffer contents of buffer 4 is as low as possible in
the beginning of this mode and at the end buffer 4 can never increase faster than in this case.
Therefore, the weighted amount of jobs in buffer 4 is minimal and lead to optimal behavior
in this mode. This optimal behavior is sketched in Figure 3.11.

tft0

u3 = 0 u3 = μ3

0

x4(t)

x4(t0)

x4(tf)

t

Figure 3.11: Optimal buffer behavior of buffer 4 in mode (1,3).

The optimal sequence of process rates is determined for each workstation separately in this
system mode. But with the results in Lemma 3.5 and 3.6 in mind, the optimal sequence of

30 Chapter 3. Desired periodic behavior

process rates for this system, see Figure 3.12, for which the weighted wip level is minimal is
achieved when both workstations process the jobs in the following sequence of process rates
depending on the wip levels in the beginning and at the end of this system mode.

(0 , 0)

(0 , μ3)(μ1 , 0)

(μ1 , μ3)

Figure 3.12: Optimal sequence of process rates for system mode (1,3).

3.4 Duration of every action in both workstations

In previous section, the optimal sequence of process rates in each system mode for which
the weighted wip level is as low as possible is determined. This optimal sequence of process
rates for each system mode depends on the boundary wip levels and it is explained for each
system mode independently of each other and in a random order. Before good desired system
behavior can be determined, the duration of every action in a system mode is determined
first. When these durations are known, the system modes can be scheduled into one schedule.
In Table 3.1, the optimal sequence of process rates for each workstation in a system mode is
summarized which is explained in the previous section.

Table 3.1: Optimal sequence of process rates for each system mode.

System mode Workstation A Workstation B
(mA,mB) = (4, 3) μ4 0

0 μ4
∗

μ3

(mA,mB) = (4, 2) μ4 0
0 μ2

(mA,mB) = (1, 2) 0 0
μ2

∗∗ μ2

μ1

(mA,mB) = (1, 3) 0 0
μ1 μ3

* This only occurs when workstation A processes the jobs for step 4 at μ4 and x4 = 0.
** This only occurs when workstation B processes the jobs for step 2 at μ2 and x2 = 0.

Workstation A

Before the periodic cycle behavior of workstation A is determined, the duration of every
activity is calculated. Workstation A can process the jobs for step 1 at 0, μ2 and μ1 and
processes the jobs for step 4 at 0 and μ4. Also, only the jobs can be processed at a workstation
for which the workstation has been set up. Therefore, if workstation A should process the

3.4. Duration of every action in both workstations 31

jobs for another step a setup is required. In Table 3.2, these activities and the corresponding
setup times and process rates are presented. The sum of all these durations is equal to the
cycle period T , which is presented in the first column of the table.

Table 3.2: Duration of every activity for workstation A.

duration setup/process rate
τA
0 u1 = u4 = 0

τA
2 u1 = μ2 = 1

0.6
τA
1 u1 = μ1 = 1

0.3
τA
4 u4 = μ4 = 1

0.6
σ41 50
σ14 50
T

+

Only the durations of the setup times σ41 and σ14 are known. But with a constant arrival rate
λ of 1

[
job

time-unit

]
into buffer 1, during a cycle period of T time-units, both step 1 and step

4 need to process T jobs to create a stable system. For step 4, this means that the released
amount of jobs into buffer 1 should also be processed for step 4 during a cycle period. This
can be denoted by the following equation:

μ4 τA
4 = λT. (3.7)

Similarly for step 1 where the jobs can be processed at two different rates, workstation A can
process an amount of μ1 τA

1 jobs in duration τA
1 . In duration τA

2 workstation A can process
an amount of μ2 τA

2 jobs. In a cycle period of T time-units, workstation A has to process T
jobs for step 1. This can be denoted by the following equation:

μ1 τA
1 + μ2 τA

2 = λT. (3.8)

Besides these 2 equations, from the first column in Table 3.2 the following equation can be
derived which gives the cycle period T as a function of all theses durations.

T = τA
0 + τA

1 + τA
2 + τA

4 + σ41 + σ14. (3.9)

With these equations, the durations of every step for workstation A can be determined as a
function of the cycle period T and the idling duration τA

0 :

τA
1 =

1
5
T + τA

0 + 100, time-units, (3.10)

τA
2 =

1
5
T − 2τA

0 − 200, time-units, (3.11)

τA
4 =

3
5
T time-units. (3.12)

For any given cycle period T and idling duration τA
0 , the duration of every activity can easily

be determined for workstation A.

32 Chapter 3. Desired periodic behavior

Workstation B

The same analysis holds for workstation B. Workstation B can process the jobs for step 2 at 0
and μ2 and processes the jobs for step 3 at 0, μ4 and μ3. Also, only the jobs can be processed
at this workstation for which the workstation has been set up. Therefore, if workstation B
should process the jobs for another step a setup is required. In Table 3.2, these activities and
the corresponding setup times and process rates are presented. The sum of all these durations
is equal to the cycle period T , which is presented in the first column of the table.

Table 3.3: Duration of every activity for workstation B.

duration setup/process rate
τB
0 u2 = u3 = 0

τB
2 u2 = μ2 = 1

0.6
τB
3 u3 = μ3 = 1

0.3
τB
4 u3 = μ4 = 1

0.6
σ23 50
σ32 50
T

+

Only the durations of the setup times σ23 and σ32 are known. But during a cycle period of T
time-units, both step 2 and step 3 need to process T jobs to create a stable system. For step
2, this can be denoted by the following equation:

μ2 τB
2 = λT. (3.13)

Similarly for step 3, workstation B can process an amount of μ3 τB
3 jobs in a duration of τB

3

time-units. Also, in a duration of τB
4 time-units, workstation B can process an amount of

μ4 τB
4 jobs. In a cycle period of T time-units, workstation B has to process T jobs for step 3.

This can be denoted by the following equation:

μ3 τB
3 + μ4 τB

4 = λT. (3.14)

Besides these 2 equations, from the first column in Table 3.3 the following equation can be
derived which gives the cycle period T as a function of all these durations:

T = τB
0 + τB

2 + τB
3 + τB

4 + σ23 + σ32. (3.15)

With these equations, the durations of every step for workstation B can be determined as a
function of the cycle period T and the idling duration τB

0 :

τB
2 =

3
5
T time-units, (3.16)

τB
3 =

1
5
T + τB

0 + 100 time-units, (3.17)

τB
4 =

1
5
T − 2τB

0 − 200 time-units. (3.18)

3.5. Minimal buffer contents 33

For any given cycle period T ≥ 1000 time-units and idle durations τA
0 ≥ 0 and τB

0 ≥ 0, the
duration of every activity in both workstations can be determined. But with these constraints
it is possible that the durations τA

2 and τB
4 are negative while the constraints are satisfied.

For example, if the cycle period T is equal to 1000 time-units, any given positive idle duration
results in a negative duration for τA

2 and τB
4 . Therefore, the constraints have to be improved

to neglect this problem of negative durations. First consider the duration τA
2 ≥ 0 and (3.11).

After rewriting this equation, a new constraint can be made which will never result in negative
durations of the activities in both workstations if this new constraint is satisfied. This new
constraint becomes:

τA
2 =

1
5
T − 2τA

0 − 200 ≥ 0 → τA
0 ≤ 1

10
T − 100. (3.19)

With this result and the requirement that the idle duration can never be negative, the new
constraint for the idle duration τA

0 becomes:

0 ≤ τA
0 ≤ 1

10
T − 100. (3.20)

This analysis holds also for the idle duration τB
0 which becomes after rewriting (3.18) and

with the requirement τB
4 ≥ 0:

0 ≤ τB
0 ≤ 1

10
T − 100. (3.21)

When these adaptations are made, for any given cycle period T and idle durations τA
0 and τB

0

— which satisfy the constraints T ≥ 1000, 0 ≤ τA
0 ≤ 1

10T − 100 and 0 ≤ τB
0 ≤ 1

10T − 100 —
the durations of every activity in both workstations can be determined which will probably
lead to an optimal system behavior.

3.5 Minimal buffer contents

With the duration of every activity in both workstations and the optimal sequence of process
rates for each system mode, the mean number of jobs in each buffer during a cycle period can
be determined. When these buffer contents are known, the weighted wip level function J can
be calculated for any given cycle period T and idle durations τA

0 and τB
0 .

Lemma 3.7. During a cycle period of T time-units, each buffer contains at least the following
mean amount of jobs:

1
T

∫ T
0 x1(t) dt ≥ 350,

1
T

∫ T
0 x2(t) dt ≥ 150,

1
T

∫ T
0 x3(t) dt ≥ 500,

1
T

∫ T
0 x4(t) dt ≥ 150.

In this section, the mean amount of jobs in each buffer is explained.

34 Chapter 3. Desired periodic behavior

Workstation A

The buffer contents of buffers 1 and 4 are sketched in Figure 3.13. During the first 50 time-
units, workstation A is setting up for processing the jobs for step 4. After this setup has been
completed, workstation A starts processing the jobs for step 4 at maximal rate μ4. From
(3.12), it is known that production step 4 takes 3

5T time-units. For buffer 4, this duration is
sketched in more detail in Figure 3.15. When workstation A has processed all the jobs for
step 4, workstation A idles for a duration of τA

0 time-units. Then, workstation A is setting
up for processing the jobs for step 1 which takes again 50 time-units. During this setup and
during the idling duration, workstation A can not process jobs, therefore it does not matter
if workstation A idles first for a duration and then setting up for step 3 or first setting up
and then idling for a duration. After this setup has been completed, workstation A processes
the jobs for step 1 at maximal rate μ1 and eventually at process rate μ2.

3

5
T + τ0

A
100+

1

5
T + τ0

A
100+

1

5
T - τ0

A
200-2

x1 , x4

2

15
T - τ0

A 400-4
3 3

u1 = μ1u1 = 0

T

1

3
T + τ0

B 500+5

3 3

3

5
T τ0

A
50

u1 = μ2

50

x1

x4

Figure 3.13: Buffer contents of buffers 1 and 4.

First consider the buffer contents of buffer 1 and the case where T ≥ 1000 time-units and
0 ≤ τA

0 ≤ 1
10T − 100. From previous section, it is known that workstation A can process the

jobs for step 1 at process rates 0, μ2 and μ1. The duration of every action for workstation A is
also known. Due to the fixed arrival rate λ of 1

[
job

time-unit

]
into buffer 1 in this case, the buffer

contents of buffer 1 always increases with this rate during a cycle period. During a setup, an
idle duration or when workstation A processes the jobs for step 4, which take 100 + τA

0 + 3
5T

time-units in total, the buffer contents of buffer 1 increases with a rate equal to λ to an amount
of 100 + τA

0 + 3
5T jobs. The buffer contents of buffer 1 only decreases when workstation A

processes the jobs for step 1 at rate μ2 or μ1. To minimize the weighted amount of jobs in
buffer 1, workstation A processes first the jobs at maximal rate μ1 and then eventually at
process rate μ2. Workstation A processes for a duration of 1

5T + τA
0 + 100 the jobs for step 1

at maximal rate μ1. During this action, jobs are released into this buffer with rate λ and jobs
are leaving this buffer with a rate equal to the maximal process rate. After this action, buffer
1 contains an amount of

[(
3
5T + τA

0 + 100
) − (

1
5T + τA

0 + 100
)
(μ1 − λ) =

]
2
15T − 4

3τA
0 − 400

3
jobs and workstation A starts processing the jobs for step 1 eventually at process rate μ2 for
a duration of 1

5T − 2τA
0 − 200 time-units. This action only occurs when buffer 2 is empty and

3.5. Minimal buffer contents 35

workstation B processes the jobs for step 2 at maximal process rate μ2. After this action,
buffer 1 contains an amount of

[(
2
15T − 4

3τA
0 − 400

3

) − (
1
5T − 2τA

0 − 200
)
(μ2 − λ) =

]
0 jobs.

The buffer contents of buffer 1 is sketched in Figure 3.13 as a function of the cycle period T
and the idle duration τA

0 .

The average number of jobs in buffer 1 during a cycle period of T time-units can be determined.
This is equal to the area under the graph of buffer 1 in Figure 3.13 divided by the cycle period
T , which becomes:

1
T

∫ T

0
x1(t) dt =

4
15

T +
200
3

+
2
3
τA
0 +

50000
3T

+
1000
3T

τA
0 +

5
3T

(
τA
0

)2
. (3.22)

In Figure 3.14, the solutions of (3.22) are plotted for several values of T and τA
0 . Only the

solutions which lies in area F are feasible solutions. These solutions satisfy the constraints
T ≥ 1000 and 0 ≤ τA

0 ≤ 1
10T − 100 which are the boundaries of the feasible area F .

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

200

F

350

400

450

500

550

600

300

250

650

700

A=0.1T−100

A

T

PSfrag replacements
τA
0

τA
0 = 1

10 T − 100

F
Figure 3.14: Minimal average amount of jobs in buffer 1.

With Figure 3.14, we see that buffer 1 contains at least an average amount of 350 jobs during
a cycle period of 1000 time-units without an idle duration (τA

0 = 0).

The same analysis can be done for the buffer contents of buffer 4. This buffer contents is also
sketched in Figure 3.13. During setups, idle durations and when workstation A processes the
jobs for step 1, the buffer contents of buffer 4 remains empty.

Jobs arrive into buffer 4 with a rate equal to the process rate for step 3 at workstation
B and leave this buffer with a rate equal to the process rate for step 4 at workstation A.
From (3.12), it is known that production step 4 takes 3

5T time-units. For buffer 4, this
activity is sketched in more detail in Figure 3.15. Workstation B processes the jobs during
1
5T + τB

0 + 100 time-units at maximal rate μ3. Due to the fact that the process rate μ3

is two times larger than the process rate μ4, the buffer contents of buffer 4 increases to

36 Chapter 3. Desired periodic behavior

3

5

1

5
T+ τ0

B
100+

1

5
T - τ0

B
200-2

x4
u4 = μ4

1

5
T+ τ0

B
100+

T

1

3
T + τ0

B 500+5

3 3

Figure 3.15: Buffer contents of buffer 4.

[(
1
5T + τB

0 + 100
)
(μ3 − μ4) =

]
1
3T + 5

3τB
0 + 500

3 jobs. When workstation B has processed the
jobs for step 3 at maximal rate μ3, workstation A needs again 1

5T + τB
0 + 100 time-units to

process the 1
3T + 5

3τB
0 + 500

3 jobs. After this action, buffer 4 becomes empty. As mentioned in
previous section, workstation B can process the jobs for step 3 at process rate μ4 which takes
1
5T − 2τB

0 − 200 time-units. This action only occurs when buffer 4 is empty and workstation
A processes the jobs for step 4. The buffer contents of buffer 4 remains empty during this
action. All the jobs that are processed at workstation B for step 3 can immediately processed
at workstation A for step 4 before leaving the system.

The average number of jobs in buffer 4 during a cycle period of T time-units can be determined.
This is equal to the area under the graph in Figure 3.15 divided by the cycle period T , which
becomes:

1
T

∫ T

0
x4(t) dt =

1
15

T +
200
3

+
2
3
τB
0 +

50000
3T

+
1000
3T

τB
0 +

5
3T

(
τB
0

)2
. (3.23)

In Figure 3.16, the solutions of (3.23) are plotted for several values of T and τB
0 . Only

the solutions which lies in area F are feasible solutions. Solutions in this area satisfy the
constraints T ≥ 1000 and 0 ≤ τB

0 ≤ 1
10T − 100.

The minimal average number of jobs in buffer 4 is achieved when the cycle period T is equal
to 1000 time-units. The idle duration τB

0 is then equal to 0. In this case, buffer 4 contains at
least an average amount of 150 jobs.

Workstation B

The buffer contents of buffers 2 and 3 are sketched in Figure 3.17. During the first 50 time-
units, workstation B is setting up for processing the jobs for step 2. After this setup has been
completed, workstation B idles for a duration before it starts processing the jobs for step 2
at maximal rate μ2. From (3.16), it is known that production step 2 takes 3

5T time-units.
For buffer 2, this duration is sketched in more detail in Figure 3.19. When workstation B has

3.5. Minimal buffer contents 37

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

F

150

175

200

225

250

275

300

B=0.1T−100

B

T

PSfrag replacements
τB
0

τB
0 = 1

10 T − 100

F
Figure 3.16: Minimal averaged amount of jobs in buffer 4.

processed all the jobs for step 2, a setup for processing the jobs for step 3 is needed which
takes again 50 time-units. After this setup has been completed, workstation B processes the
jobs for step 3 at maximal rate μ3 and eventually at process rate μ4.

T

1

5
T+ τ0

B
100+ 1

5
T- τ0

B
200-2

x2 , x3 u3 = μ3u3 = 0

T

1

3
T+ τ0

A 500+5
3 3

3

5
Tτ0

B
50

u3 = μ4

50

x3

x21

3
T - τ0

B 1000-10

3 3

Figure 3.17: Buffer contents of buffers 2 and 3.

Consider the buffer contents of buffer 3. Jobs arrive into buffer 3 with a rate equal to
the process rate for step 2 at workstation B and leave this buffer with a rate equal to the
process rate for step 3 at workstation B. During the first setup and idle duration, buffer 3
remains empty. During the next 3

5T time-units, workstation B processes the jobs for step 2
at maximal rate μ2. Buffer 3 increases with this rate to an amount of [

(
3
5T

)
μ2 =]T jobs.

Then, this buffer contents remains at T for a duration of 50 time-units due to the setup from

38 Chapter 3. Desired periodic behavior

jobs for step 2 to jobs for step 3. After this setup has been completed, workstation B can
process the jobs of buffer 3 at maximal rate μ3 and eventually at rate μ4. To decrease the
weighted wip level of buffer 3, it is more optimal to start processing at maximal rate μ3 and
then eventually at rate μ4. Workstation B processes for a duration of 1

5T + τB
0 + 100 the

jobs for step 3 at maximal rate μ3. During this activity, buffer 3 decreases to an amount
of

[
T − (

1
5T + τB

0 + 100
)
μ3 =

]
1
3T − 10

3 τB
0 − 1000

3 jobs. When this activity is completed,
workstation B processes the jobs for step 3 eventually at process rate μ4 for a duration of
1
5T − 2τB

0 − 200 time-units. This action only occurs when buffer 4 is empty and workstation
A processes the jobs for step 4 at maximal process rate μ4. After this action buffer 3 contains
an amount of

[(
1
3T − 10

3 τB
0 − 1000

3

) − (
1
5T − 2τB

0 − 200
)
μ4 =

]
0 jobs. The buffer contents of

buffer 3 is sketched in Figure 3.17 as a function of the cycle period T and the idle duration
τB
0 .

The average number of jobs in buffer 3 during a cycle period of T time-units can be determined.
This is equal to the area under the graph in Figure 3.17 divided by the cycle period T , which
becomes:

1
T

∫ T

0
x3(t) dt =

7
15

T +
50
3

− 1
3
τB
0 +

50000
3T

+
1000
3T

τB
0 +

5
3T

(
τB
0

)2
. (3.24)

In Figure 3.18, the solutions of (3.24) are plotted for several values of T and τB
0 . Only the

solutions which lies in area F are feasible solutions. These solutions satisfy the constraints
T ≥ 1000 and 0 ≤ τB

0 ≤ 1
10T − 100 which are the boundaries of the feasible area F .

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

450

500

F

B=0.1T−100

B

T

300

400

500

600

700

800

900

PSfrag replacements
τB
0

τB
0 = 1

10 T − 100

F
Figure 3.18: Minimal amount of jobs in buffer 3.

With the constraints T ≥ 1000 and 0 ≤ τB
0 ≤ 1

10T − 100, the minimal average number of jobs
in buffer 3 is achieved when the cycle period T is equal to 1000 time-units. The idle duration
τB
0 is then equal to 0. In this case, buffer 3 contains at least an average amount of 500 jobs

during a cycle period of 1000 time-units.

3.5. Minimal buffer contents 39

The same analysis can be done for the buffer contents of buffer 2. This buffer contents is also
sketched in Figure 3.17. During setups, idle durations and when workstation B processes the
jobs for step 3, the buffer contents of buffer 2 remains empty.

3

5

1

5
T+ τ0

A
100+

1

5
T - τ0

A
200-2

x2

u2 = μ2

1

5
T+ τ0

A
100+

T

1

3
T + τ0

A 500+5

3 3

Figure 3.19: Buffer contents of buffer 2.

Jobs arrive into buffer 2 with a rate equal to the process rate for step 1 at workstation
A and leave this buffer with a rate equal to the process rate for step 2 at workstation B.
From (3.16), it is known that production step 2 takes 3

5T time-units. For buffer 2, this
activity is sketched in more detail in Figure 3.19. Workstation A processes the jobs during
1
5T + τA

0 + 100 time-units at maximal rate μ1. Due to the fact that the process rate μ1

is two times larger than the process rate μ2, the buffer contents of buffer 2 increases to[(
1
5T + τA

0 + 100
)
(μ1 − μ2) =

]
1
3T + 5

3τA
0 + 500

3 jobs. When workstation A has processed the
jobs for step 1 at maximal rate μ1, workstation B needs again 1

5T + τA
0 + 100 time-units

to process the 1
3T + 5

3τA
0 + 500

3 jobs. After this action, buffer 2 is empty. As mentioned in
previous section, workstation A can process the jobs for step 1 at process rate μ2 which takes
1
5T − 2τA

0 − 200 time-units. This action only occurs when buffer 2 is empty and workstation
B processes the jobs for step 2. The buffer contents of buffer 2 remains empty during this
action. All the jobs that are processed at workstation A for step 1 can immediately processed
at workstation B for step 2 before leaving the system.

The average number of jobs in buffer 2 during a cycle period of T time-units can be determined.
This is equal to the area under the graph in Figure 3.19 divided by the cycle period T , which
becomes:

1
T

∫ T

0
x2(t) dt =

1
15

T +
200
3

+
2
3
τA
0 +

50000
3T

+
1000
3T

τA
0 +

5
3T

(
τA
0

)2
. (3.25)

In Figure 3.20, the solutions of (3.25) are plotted for several values of T and τA
0 . Only the

solutions which lies in area F are feasible solutions. These solutions satisfy the constraints
T ≥ 1000 and 0 ≤ τA

0 ≤ 1
10T − 100 which are the boundaries of the feasible area F .

With the constraints T ≥ 1000 and 0 ≤ τA
0 ≤ 1

10T − 100, the minimal average number of jobs
in buffer 2 is achieved when the cycle period T is equal to 1000 time-units. The idle duration

40 Chapter 3. Desired periodic behavior

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

F

150

175

200

225

250

275

300

A=0.1T−100

A

T

PSfrag replacements
τA
0

τA
0 = 1

10 T − 100

F
Figure 3.20: Minimal amount of jobs in buffer 2.

τA
0 is then equal to 0. In this case, buffer 2 contains at least an average amount of 150 jobs

during a cycle period of 1000 time-units.

3.6 Desired periodic system behavior

In previous section, the desired periodic behavior of each workstation is determined for which
the mean amount of jobs is as low as possible. This behavior is achieved when the cycle
period T is 1000 time-units. The idle durations τA

0 and τB
0 are then equal to zero. This

desired behavior is sketched for each workstation in Figure 3.21.

0
50

● 1○●14○4

50

T

x1(t)

x4(t)

x1(t) x4(t)

700

500

600 300
0

50 50

T

x3(t)

x2(t)

1000

500

600 300

● 3○● 32x3(t)x2(t), 2○

Figure 3.21: Desired behavior of each workstation.

In this section, the desired system behavior is determined by scheduling the behavior of both

3.6. Desired periodic system behavior 41

workstations in Figure 3.21 into one schedule. As mentioned in previous section, this desired
behavior is achieved when workstation A starts processing the jobs for step 4 and workstation
B starts processing the jobs for step 3 at the same moment of time. In this case, the initial
amount of jobs in the most expensive buffer is as low as possible. Also, when workstations A
and B start processing the jobs for step 1 and step 2 at the same moment of time results in
a system behavior for which the mean amount of jobs in the system is small.

When both requirements — steps 1 and 2 start at the same time and steps 3 and 4 start at
the same time — should be fulfilled into one schedule, the system only operates in modes
(4, 3) and (1, 2). But in a cycle period of T = 1000 time-units, the system can not only
operate in modes (4, 3) and (1, 2). Therefore, both requirements can not be fulfilled in one
schedule. Looking better at the durations of every production step in Figure 3.21, the largest
durations are production steps 2 and 4 which have both a duration of [35T =]600 time-units.
When these durations are scheduled in a cycle period of T = 1000 time-units, both durations
always overlap each other for at least 1

5T time-units, which is sketched in Figure 3.22.

T

3

5
T

3

5
T

2○

4○
Workstation A

Workstation B

2

1

5
T

Figure 3.22: At least system mode (4,2) for 1
5
T time-units.

This means that the system always operates for at least 1
5T time-units in system mode (4, 2)

and not only in mode (4, 3) and mode (1, 2). Both requirements — steps 1 and 2 start
at the same time and steps 3 and 4 start at the same time — can not be fulfilled in one
schedule. But a system behavior where both workstations process the jobs according to the
desired behavior sketched in Figure 3.21 can be obtained. Depending on which requirement
is fulfilled in a schedule, the initial amount of jobs in buffer 2 or buffer 4 should be increased.
When workstation A processes first step 4, this case is sketched in Figure 3.22, buffer 2 should
contain an initial amount of jobs. If the case is considered when workstation B processes first
step 2, then buffer 4 should contain an initial amount of jobs. In both cases, the increased
initial amount of jobs is the same. But to minimize the weighted wip level function J for this
system, the case where buffer 2 contains an initial amount of jobs is considered due to the fact
that buffer 4 is the most expensive buffer in this system. The complete schedule of this case is
sketched in Figure 3.23. After the first 50 time-units, workstation A and B start processing the
jobs for step 4 and step 3 at the same moment of time and the system fulfills a requirement.
Workstation B completes its production step two times faster than workstation A. When
workstation B has completed production step 3 and has been set up for processing the jobs
for step 2, this workstation can not start processing because buffer 2 is empty. According
to the behavior explained in previous section, workstation A should start processing the jobs
for step 1 exactly at the time moment that buffer 2 is empty and workstation B is processing
the jobs for step 2. But this is not possible because workstation A is still processing the jobs

42 Chapter 3. Desired periodic behavior

for step 4. When both workstations have to process the jobs according to the behavior in
Figure 3.21, this problem can be solved by increasing the initial amount of jobs in buffer 2.
In that case, workstation B can start processing the jobs for step 2 while workstation A still
processes the jobs for step 4. To minimize the mean amount of jobs in the system, the initial
amount of jobs in buffer 2 should be as low as possible. From the start of processing the jobs
for step 2 until the time moment that workstation A can start processing the jobs for step
1, buffer 2 should contain an initial amount of

[(
3
5T − (

2
5T − 100

))
μ2 =

]
1
3T − 500

3 jobs. At
the time moment that workstation B has processed this initial amount of jobs, workstation
A starts processing the jobs for step 1 and workstation B can continue processing the jobs
for step 2. This desired system behavior is sketched in Figure 3.24.

T

3

5
T

3

5
T

2

5
T

2○

4○Workstation A

Workstation B

1○

3○●3 ●2

●4 ●1

50 50

5050 - 100

2

5
T - 100

Figure 3.23: Scheduling the system modes.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

B
uf

fe
r c

on
te

nt
s

x1A
x4A
x2B
x3B

Figure 3.24: Desired periodic system behavior.

The weighted wip level function J becomes:

J =
1
T

∫ T

0
1x1(t) + 2x2(t) + 3x3(t) + 4x4(t) dt = 3150. (3.26)

In next chapter, this desired system behavior is used as a starting point for the controller
design. A non-distributed controller is designed which has to make the system converge from
any initial condition to this desired periodic orbit. The way to derive this feedback controller
is explained in next chapter.

Chapter 4

Non-distributed controller

In Chapter 2, the specific reentrant system with setup times has been explained in detail. In
Chapter 3, the desired periodic system behavior is derived. In this chapter, a non-distributed
controller is designed which makes this reentrant system converge towards this desired periodic
behavior from any initial condition. As already mentioned in the Introduction, this chapter
deals with the second research objective, which was formulated as follows:

Research objective 2:
Design a non-distributed controller (global policy) which makes the specific manufacturing
system converge towards the desired system behavior from any initial condition.

Before a non-distributed controller is designed, the desired closed-loop behavior of the system
is determined first. The designed controller which is based on Lyapunov’s direct method has
to make the system converge from any initial condition to this desired periodic orbit. Based
on the given desired periodic orbit, an “energy” of the system can be defined by considering
the mean amount of work in the system [LR06b]. Depending on the initial condition, either
one or more translated desired periodic orbits can be obtained which go through this initial
condition. The translated desired periodic orbit with the smallest mean amount of work in
the system which go through this initial condition is used as a starting point for the controller.
The “energy” in the system of the translated desired periodic orbit is always higher than the
“energy” in the system of the desired periodic orbit. By controlling the system in a way that
this “energy” is never increasing, the system stabilizes at a fixed energy level and the controller
has to make the system converge from the initial condition to the desired periodic orbit. In
this chapter, the way to derive this feedback controller from the given desired periodic orbit
is explained.

4.1 Desired periodic orbit of the system

The desired periodic system behavior, sketched in Figure 3.24, can also be depicted as a
desired closed-loop behavior in a four dimensional space. In this space, the buffer contents
of every buffer is plotted against each other which results in a desired periodic orbit of the
specific system. However, a four dimensional space is difficult to show. Therefore, two views

43

44 Chapter 4. Non-distributed controller

of this desired periodic orbit, namely the desired periodic orbit of each workstation, are shown
in Figure 4.1.

First, consider the desired periodic orbit of workstation A for which the buffer contents of
buffer 1 is plotted against the buffer contents of buffer 4. The arrows in this figure give the
direction in which the periodic orbit is passed through. Looking at the buffer contents of
buffers 1 and 4 in Figure 3.24, this periodic orbit can easily be derived. In the first 50 time-
units, the system is setting up for processing the jobs for step 4. During this setup, buffer
4 remains empty and buffer 1 increases with a rate λ = 1

[
job

time-unit

]
to 50 jobs. After this

setup has been completed, i.e. at point (x1, x4) = (50, 0), workstation A is processing the jobs
for step 4 at maximal rate μ4 = 1

0.6

[
job

time-units

]
. According to the behavior in Figure 3.24,

buffer 4 increases first to 500 jobs and decreases then to 0 jobs. During this action, buffer 1
increases with rate λ = 1

[
job

time-unit

]
to 650 jobs. When buffer 4 becomes empty, i.e. at point

(x1, x4) = (650, 0), workstation A is ready with processing the jobs for step 4 and is setting
up for processing the jobs for step 1. During this setup, buffer 4 remains empty and buffer
1 increases with rate λ = 1

[
job

time-unit

]
to 700 jobs. After this setup has been completed,

i.e. at point (x1, x4) = (700, 0), workstation A is processing the jobs for step 1 at maximal
rate μ1 = 1

0.3

[
job

time-units

]
. Buffer 1 decreases then to 0 jobs and buffer 4 remains empty.

Workstation A completes then production step 1 and is again setting up for processing the
jobs for step 4 which completes the cycle of this periodic orbit.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

x1

x4

workstation A

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

x2

x3

workstation B

Figure 4.1: Desired periodic orbit of each workstation.

The desired periodic orbit of workstation B is presented in the right hand side of Figure 4.1.
The buffer contents of buffer 2 is plotted against the buffer contents of buffer 3. This periodic
orbit can also easily be derived from Figure 3.24. In the first 50 time-units, workstation B
is setting up for processing the jobs for step 3. During this setup, the buffer contents of
buffer 2 and buffer 3 remains constant, i.e. the system stays in point (x2, x3) = (500, 1000).
After this setup has been completed, workstation B processes the jobs for step 3 at maximal
rate μ3 = 1

0.3

[
job

time-units

]
until buffer 3 becomes empty. During this action, buffer 2 remains

constant at 500 jobs due to the fact that workstation B is processing the jobs for step 3 and
no jobs are entering buffer 2. When buffer 3 becomes empty, i.e. at point (x2, x3) = (500, 0),
workstation B has completed production step 3 and is setting up for processing the jobs

4.1. Desired periodic orbit of the system 45

for step 2. During this setup, buffer 2 remains constant at 500 jobs and buffer 3 remains
empty. After this setup has been completed, workstation B is processing the jobs for step
2 at maximal rate μ2 = 1

0.6

[
job

time-units

]
. According to the behavior in Figure 3.24, buffer 2

decreases first to 0 jobs and increases then to 500 jobs. During this production step, buffer
3 increases from 0 to 1000 jobs. After this production step, the periodic orbit operates then
again in point (x2, x3) = (500, 1000) jobs which completes the cycle of this periodic orbit.

The desired periodic orbits in Figure 4.1 minimize the weighted amount of jobs in the specific
reentrant system. Every initial condition (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2,

x3, x4) which lies on the desired periodic orbit of the system results in desired periodic system
behavior. Any other initial condition which does not lie on the desired periodic orbit, can
result in a translated desired periodic orbit of the system. The desired periodic orbit of the
system is then translated in the positive x1, x2, x3 and/or x4 direction. It turns out, that
either one or more translated desired periodic orbits of the system are possible. When the
initial condition says that one or both workstations in the system are performing a setup, only
one translated desired periodic orbit of the system is possible. In case the initial condition says
that both workstations are processing the jobs at maximal rate, more than one translated
desired periodic orbits can be obtained. Both cases are explained further by means of an
example.

First, consider the case that only one translated desired periodic orbit of the system is possible.
This case can only occur when the initial condition says that one or both workstations in the
system are performing a setup. According to the remaining setup time, only one translated
desired periodic orbit of the system is possible. Consider workstation A and suppose that
an initial condition is given which says that workstation A is starting a setup, i.e. xA

0 = 50,
and the system is setting up for processing the jobs for step 1 with initial buffer contents
(x1, x4) = (1400, 800). The desired periodic orbit of workstation A and the point (x1, x4) =
(1400, 800) is presented in the left hand side of Figure 4.2. With the initial condition which
says that workstation A is starting a setup for step 1, only the translated desired periodic
orbit presented in the right hand side of Figure 4.2 can be obtained.

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

x1

x4

workstation A

(x1, x4) =
(1400, 800)

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

x1

x4

workstation A

Figure 4.2: If the system is performing a setup, only one translated desired periodic orbit is possible.

In general, every initial condition which says that one or both workstations in the system are
performing a setup results in only one possible translated desired periodic orbit of the system.

46 Chapter 4. Non-distributed controller

Consider now the case that more than one translated desired periodic orbit of the system
is possible. This case can only occur when the initial condition says that both workstations
in the system are processing the jobs. Assume the periodic orbit of workstation B and
the initial condition that workstation B is processing the jobs for step 3 with initial buffer
contents (x2, x3) = (1500, 2000). In the left hand side of Figure 4.3, the desired periodic obit
of workstation B and the point (x2, x3) = (1500, 2000) are shown. This initial condition says
only that workstation B is processing the jobs for step 3. It is not known where the system
operates during this production step. The point (x2, x3) = (1500, 2000) can be either a start
point or an end point for this production step. These two extreme translated desired periodic
orbits of workstation B are presented in the right hand side of Figure 4.3. For the translated
desired periodic orbit above this point, workstation B just finished processing the jobs for
step 3. While for the other translated desired periodic orbit, workstation B just started
processing the jobs for step 3. Besides these two extreme translated desired periodic orbits,
more translated desired periodic orbits can be obtained which lies between these extreme
ones.

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

x2

x3

workstation B

(x2,x3) =
(1500,2000)

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

x2

x3

workstation B

Figure 4.3: Two possible translated desired periodic orbits which through point (x2, x3) = (1500, 2000).

As mentioned earlier, a non-distributed controller has to be designed which brings the reen-
trant system towards the desired periodic orbit from any initial condition. For the case when
more than one translated desired periodic is possible, the following question arises: “Which
translated desired periodic orbit that goes through the point of the initial condition is taken
as a starting point for the controller?”. This question can be answered, when every trans-
lated desired periodic orbit is associated with the mean amount of work in the system which
is explained in next section.

4.2 Mean amount of work in the system

The amount of work in the system is defined as the remaining process time of all jobs present
in the system. Jobs stored in different buffers have different weights in amount of work. A
job which is stored in buffer 1 needs

(
1
μ1

=
)

0.3 time-units for processing step 1,
(

1
μ2

=
)

0.6

time-units for step 2,
(

1
μ3

=
)

0.3 time-units for step 3 and
(

1
μ4

=
)

0.6 time-units for step 4.
The amount of work associated with a job stored in buffer 1 equals [0.3+0.6+0.3+0.6 =]1.8

4.2. Mean amount of work in the system 47

time-units. The same calculation can be done for a job stored in buffers 2, 3 and 4. The
amount of work in the system at a certain moment of time is given by 1.8x1(t) + 1.5x2(t) +
0.9x3(t) + 0.6x4(t). With this equation and with the desired periodic system behavior, the
amount of work in the system can easily be determined which is presented in the right hand
side of Figure 4.4.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

T(t)

B
uf

fe
r c

on
te

nt
s

x1A
x4A
x2B
x3B

m = (4,3) m = (4,2) m = (1,2)

0 200 400 600 800 1000
1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

T(t)

am
ou

nt
 o

f w
or

k

m = (4,3) m = (4,2) m = (1,2)

Figure 4.4: Amount of work of the desired periodic system behavior.

Table 4.1: System state and amount of work in the system at important time moments.

t mA mB xA
0 xB

0 x1 x2 x3 x4 amount of work
0 4 3 50 50 0 500 1000 0 1650
50 4 3 0 0 50 500 1000 0 1740
350 4 2 0 50 350 500 0 500 1680
400 4 2 0 0 400 500 0 1250

3 1720
650 1 2 50 0 650 250

3
1250

3 0 1670
700 1 2 0 0 700 0 500 0 1710
1000 4 3 50 50 0 500 1000 0 1650

In both figures, the system modes are also presented. Every system mode can be split into
two parts, a setup part where the system is setting up to another mode which always takes
50 time-units and a processing part where each workstation is processing the jobs at maximal
rate. For simplicity, the system state when a new part starts is presented in Table 4.1. Also,
the amount of work in the system is presented in the last column of this table. When a
workstation is performing a setup, no jobs can be processed at this workstation. But during
this setup, jobs can arrive into the buffers of this workstation which results in an increasing
amount of work in the system. In case, when both workstations are processing the jobs at
maximal rate, the amount of work in the system decreases. The processed jobs move to a
buffer with a lower weight in amount of work.

During a cycle period T , the mean amount of work in the specific reentrant system can be
determined with (4.1).

1
T

∫ T

0
1.8x1(t) + 1.5x2(t) + 0.9x3(t) + 0.6x4(t) dt. (4.1)

48 Chapter 4. Non-distributed controller

The mean amount of work in the system which is presented in Figure 4.4 is equal to 1695
time-units. This value — which is associated with the periodic orbit that results in the
smallest mean amount of jobs in the system — is used in the controller design. Depending
on the initial condition, the desired periodic orbits in Figure 4.1 are translated in the positive
x1, x2, x3 and/or x4 direction. This translation results in another feasible translated desired
periodic orbit for the system with a higher mean amount of work. Due to the fact that more
jobs are present in the system. As already mentioned, either one or more translated desired
periodic orbits can be obtained which go through the point of the initial condition. The
mean amount of work in the system of all these possible translated desired periodic orbits
can be determined with (4.1). The translated desired periodic orbit with the smallest mean
amount of work in the system is taken as a starting point for the controller. The designed
controller will bring this translated desired periodic orbit towards the desired periodic orbit
of the system by continuously subtracting the value 1695 from the mean amount of work of
the translated desired periodic orbit until this difference is equal to zero. In that case, the
controller has to make the system converge from the initial condition to the desired periodic
orbit.
Before this controller is designed, first a set is defined which contains all possible translated
desired periodic orbits which go through the point of the initial condition. This set is used in
the controller design as the feasible domain. Every initial condition which lies in this domain
results in a feasible translated desired periodic orbit.

4.3 Feasible domain

In this section, the feasible domain is determined. Every arbitrary point in this domain results
in a feasible periodic orbit of the system. It is known that depending on the initial condition,
one or more translated desired periodic orbits can be obtained. The desired periodic orbits
in Figure 4.1 are translated in the positive x1, x2, x3 and/or x4 direction. As a result, if the
system is in a state defined by the initial condition which can be on a translated desired
periodic orbit, it is possible for the system to stay on that translated desired periodic orbit.
In particular, this means that if the state of the system is in the set of points through which
at least one translated periodic orbit goes, it is possible to stay in that set. Before this set is
defined, the periodic orbits in Figure 4.1 are characterized first mathematically.

As already mentioned in Section 2.2, the system state x is given by (m, x0,x) = (mA,mB, xA
0 ,

xB
0 , x1, x2, x3, x4). The desired periodic orbits in Figure 4.1 can be expressed in these system

state variables. The desired system behavior in the left hand side of Figure 4.4 is used for this
characterization. This desired system behavior is divided into six parts and the start of every
part is attended with a change in the state of the system. For each part in each system mode
the buffer contents of each buffer can be expressed in these state variables. While looking at
Table 4.1, the buffer contents in each part can be characterized as:

for m = (4, 3)

⎧⎪⎪⎨
⎪⎪⎩

if xA
0 > 0 ∧ xA

0 = xB
0 :

x1 = 50 − xA
0 ∧ x2 = 500 ∧ x3 = 1000 ∧ x4 = 0;

if xA
0 = 0 ∧ xB

0 = 0 ∧ x1 ≥ 50 :
x1 + 3

10x3 = 350 ∧ x2 = 500 ∧ 1
2x3 + x4 = 500;

4.4. Controller design 49

for m = (4, 2)

⎧⎪⎪⎨
⎪⎪⎩

if xA
0 = 0 ∧ xB

0 > 0 :
x1 = 400 − xB

0 ∧ x2 = 500 ∧ x3 = 0 ∧ x4 = 1250
3 + 5

3xB
0 ;

if xA
0 = 0 ∧ xB

0 = 0 ∧ x1 ≥ 400 ∧ x2 ≥ 250
3 :

x1 + 3
5x4 = 650 ∧ x2 + x3 = 500 ∧ x3 + x4 = 1250

3 ;

for m = (1, 2)

⎧⎪⎪⎨
⎪⎪⎩

if xA
0 > 0 ∧ xB

0 = 0 :
x1 = 700 − xA

0 ∧ x2 = 5
3xA

0 ∧ x3 = 500 − 5
3xA

0 ∧ x4 = 0;
if xA

0 = 0 ∧ xB
0 = 0 ∧ x3 ≥ 500 :

5
7x1 + x2 = 500 ∧ 5

7x1 + x3 = 1000 ∧ x4 = 0.

As a translated desired periodic orbit is only possible in positive x1, x2, x3 and/or x4 direction,
the set of states through which at least one translated desired periodic orbit is possible can
be determined by changing the equality-signs ‘=’ in above-mentioned equations for the buffer
contents by inequality-signs ‘≥’. Then, the feasible domain or the set of states through which
at least one translated desired periodic orbit is possible can be characterized as:

℘ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m,x0,x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if m = (4, 3), xA
0 > 0, xA

0 = xB
0 :

x1 ≥ 50 − xA
0 ∧ x2 ≥ 500 ∧ x3 ≥ 1000 ∧ x4 ≥ 0;

if m = (4, 3), xA
0 = xB

0 = 0, x1 ≥ 50 :
x1 + 3

10x3 ≥ 350 ∧ x2 ≥ 500 ∧ 1
2x3 + x4 ≥ 500;

if m = (4, 2), xA
0 = 0, xB

0 > 0 :
x1 ≥ 400 − xB

0 ∧ x2 ≥ 500 ∧ x3 ≥ 0 ∧ x4 ≥ 1250
3 + 5

3xB
0 ;

if m = (4, 2), xA
0 = xB

0 = 0, x1 ≥ 400, x2 ≥ 250
3 :

x1 + 3
5x4 ≥ 650 ∧ x2 + x3 ≥ 500 ∧ x3 + x4 ≥ 1250

3 ;
if m = (1, 2), xA

0 > 0, xB
0 = 0 :

x1 ≥ 700 − xA
0 ∧ x2 ≥ 5

3xA
0 ∧ x3 ≥ 500 − 5

3xA
0 ∧ x4 ≥ 0;

if m = (1, 2), xA
0 = xB

0 = 0, x3 ≥ 500 :
5
7x1 + x2 ≥ 500 ∧ 5

7x1 + x3 ≥ 1000 ∧ x4 ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This set of translated desired periodic orbits going through an arbitrary point x ∈ ℘ is used
in the controller design which is explained in next section.

4.4 Controller design

In previous sections, the desired periodic orbit of the system, the mean amount of work in
the system and the feasible domain are explained. The next step is to design a controller
which brings the system from any initial condition towards the desired periodic orbit. This
controller design is based on Lyapunov’s direct method. In general, the basic idea behind
this method is that if the total energy of a mechanical or electrical system is continuously
dissipated, then the system has to settle down to an equilibrium point or state in which the
energy remains constant. The system operates then in steady state and stability of the system
is concluded. If such an “energy-function” can be found for the system and a controller is
designed such that this energy is decreasing all the time, the system converges then from the
initial condition to steady state [LR06b].

In the remainder of this section, first a candidate for this energy function is proposed, a so
called Lyapunov function candidate V . This candidate is defined for a large subset of the

50 Chapter 4. Non-distributed controller

state space. In next section, the time derivative of the Lyapunov function candidate (V̇) is
considered along solutions of the system. Clearly, this time derivative depends on the input.
This input is chosen such that in each point the time derivative of the Lyapunov function
candidate is minimized over the set of all allowed inputs. Since the minimizing input depends
on the current state, a state feedback is obtained. As a next step, since the controller which
has been derived by means of the Lyapunov function candidate is valid for a subset of the
state space (for x ∈ ℘), it needs to be extended to one which is defined for the entire state
space.

Lyapunov function candidate

For defining the Lyapunov function candidate V , the feasible domain ℘ or the set of possible
translated desired periodic orbits is used. More precisely, for an arbitrary initial condition
x = (m, x0,x) ∈ ℘, consider the set of all translated desired periodic orbits going through
this point. Each translated desired periodic orbit in this set is associated with the mean
amount of work in the system. The translated desired periodic orbit in this set with the
smallest mean amount of work in the system is used as a starting point. The mean amount
of work of the desired periodic orbit is subtracted from this smallest mean amount of work.
This difference is associated with an arbitrary point x ∈ ℘, i.e. this defines V (x).

The Lyapunov function candidate V (x) for the system should have the following properties:

• V (x) = 0, if and only if x lies on the desired periodic orbit;

• V (x) > 0, if x lies on a translated desired periodic orbit;

• V (x) is continuous;

• V̇ (x) ≤ 0 along solutions of the system.

If an arbitrary point x ∈ ℘ lies on the desired periodic orbit of the system, the Lyapunov
function candidate equals zero. For any other point x ∈ ℘ which does not lie on the desired
periodic orbit, the Lyapunov function candidate V (x) is defined as the extra amount of work
in comparison with the amount of work of the desired periodic orbit which results in V (x) > 0.
If this Lyapunov function candidate for the system is continuous, the controller can make the
system continuously converge from the initial condition to the desired periodic orbit. This
convergence is done by minimizing V̇ (x) over the set of allowed inputs that assure that the
system remains in the feasible domain ℘.

During a cycle period, the system operates in three different system modes, see Figure 4.4.
For each system mode, the Lyapunov function candidate V (x) is derived step by step. Also,
the translated desired periodic orbit in the set ℘ with the smallest mean amount of work in
the system is determined for an arbitrary point x ∈ ℘.

System mode (4,3)

In the beginning of this system mode, both workstations are performing a setup. According
to the remaining setup time, only one translated desired periodic orbit is possible through

4.4. Controller design 51

an arbitrary point x ∈ ℘. For this system state, the Lyapunov function candidate V (x) is
defined as the extra amount of work in the system in point x ∈ ℘ compared to the desired
periodic orbit. For this case, the Lyapunov function candidate V (x) is defined as:

V (x) = 1.8
(
x1 − 50 + xA

0

)
+ 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 (x4)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 +

9
5
xA

0 − 1740,

for m = (4, 3) ∧ xA
0 > 0 ∧ xA

0 = xB
0 ∧ x1 ≥ 50 − xA

0 ∧ x2 ≥ 500 ∧
x3 ≥ 1000 ∧ x4 ≥ 0.

(4.2)

After this setup has been completed, both workstations are processing the jobs at maximal
rate. For this system state, the set ℘ contains a lot of translated desired periodic orbits
which go through an arbitrary point x ∈ ℘. Looking better at Figure 4.4, only the buffer
contents of buffer 3 decreases during this system mode. During this system mode, only the
buffer contents of buffer 3 becomes empty and reaches the boundary of the feasible domain.
Therefore, buffer 3 is taken into account for finding a valid Lyapunov function candidate for
this system state. Depending on the initial buffer contents of buffer 3 in an arbitrary point
x ∈ ℘, two Lyapunov function candidates have to be defined. A Lyapunov function candidate
where buffer 3 implies an extra amount of work in comparison with the desired periodic orbit
and a Lyapunov function candidate where buffer 3 does not imply an extra amount of work
in comparison with the desired periodic orbit.

First, consider the case when buffer 3 implies an extra amount of work in comparison with
the desired periodic orbit. This case only occurs when the initial buffer contents of buffer 3 is
larger than the maximal buffer contents of buffer 3 in the desired periodic orbit. From Figure
4.4, it is known that the maximal buffer contents of buffer 3 in the desired periodic orbit
contains 1000 jobs. If the initial buffer contents of buffer 3 is larger than or equal to 1000
jobs in an arbitrary point x ∈ ℘, then a lot of translated desired periodic orbits are possible
which all have a higher amount of work in comparison with the desired periodic orbit. The
translated desired periodic orbit which starts processing the jobs for step 3 in point x ∈ ℘ is
the one with the smallest mean amount of work in the system, see also Figure 4.2. For this
case, i.e. for x3 ≥ 1000 jobs, the Lyapunov function candidate V (x) is defined as the extra
amount of work in comparison with the amount of work of the desired periodic orbit:

V (x) = 1.8 (x1 − 50) + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 (x4)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 − 1740,

for m = (4, 3) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 50 ∧ x1 +
3
10

x3 ≥ 350 ∧ x2 ≥ 500 ∧

x3 ≥ 1000 ∧ 1
2
x3 + x4 ≥ 500.

(4.3)

In case when the initial buffer contents of buffer 3 is smaller than or equal to 1000 jobs in an
arbitrary point x ∈ ℘, then buffer 3 does not imply an extra amount of work in comparison
with the desired periodic orbit. For this case, the set ℘ contains a lot of possible translated
desired periodic orbits. The translated desired periodic orbit with the smallest mean amount
of work in the system is the periodic orbit which starts processing the jobs for step 3 in point
x3 = 1000. To make this more clear, consider the case for point (x2, x3) = (800, 500) which

52 Chapter 4. Non-distributed controller

is sketched in Figure 4.5. For this case, the translated desired periodic orbit which finishes
processing the jobs for step 3 in this point is moved in the direction of the arrow — which
indicates a decrease in amount of work in the system — to the translated desired periodic
orbit with the smallest mean amount of work in the system. This translated desired periodic
orbit is the one which starts processing the jobs for step 3 in point x3 = 1000. For this system
state, the buffer contents of buffer 3 does not imply an extra amount of work in comparison
with the desired periodic orbit. Buffer 3 of the translated desired periodic orbit is bounded by
the same values as the desired periodic orbit. For this system state, the Lyapunov function
candidate is defined as:

V (x) = 1.8
(

x1 +
3
10

x3 − 350
)

+ 1.5 (x2 − 500) + 0.6
(

1
2
x3 + x4 − 500

)

=
9
5
x1 +

3
2
x2 +

21
25

x3 +
3
5
x4 − 1680,

for m = (4, 3) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 50 ∧ x1 +
3
10

x3 ≥ 350 ∧ x2 ≥ 500 ∧

x3 ≤ 1000 ∧ 1
2
x3 + x4 ≥ 500.

(4.4)

0 200 400 600 800 1000
0

500

1000

1500

x2

x3

workstation B

Figure 4.5: Finding the translated desired periodic orbit with the smallest mean amount of work in the system.

The Lyapunov function candidate V (x) has to be continuous during the desired periodic
orbit. This continuity between two successive Lyapunov function candidates can be checked
by comparing the same system state. Lyapunov function candidate (4.3) should have the
same expression as Lyapunov function candidate (4.2) when the system completes the setup.
Filling in xA

0 = 0 in (4.2) leads to the same expression as (4.3) which proves continuity. The
same holds for Lyapunov function candidates (4.3) and (4.4). (4.3) is defined for the case
when the initial buffer contents of buffer 3 is larger than or equal to 1000 jobs in system mode
(4, 3) while (4.4) is defined for the case when x3 ≤ 1000 jobs. Filling in x3 = 1000 in both
Lyapunov function candidates lead to the same expressions of V (x) which proves continuity
of V (x).

4.4. Controller design 53

System mode (4,2)

After the system has completed production step 3, the system is switching to mode (4, 2).
In the beginning of this system mode, workstation B is performing a setup. According to
this remaining setup time, only one translated desired periodic orbit is possible through an
arbitrary point x ∈ ℘. For this system state, the Lyapunov function candidate V (x) is defined
as the extra amount of work in the system in point x ∈ ℘ compared to the desired periodic
orbit which becomes:

V (x) = 1.8
(
x1 − 400 + xB

0

)
+ 1.5 (x2 − 500) + 0.9 (x3) + 0.6

(
x4 − 1250

3
− 5

3
xB

0

)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 +

4
5
xB

0 − 1720,

for m = (4, 2) ∧ xA
0 = 0 ∧ xB

0 > 0 ∧ x1 ≥ 400 − xB
0 ∧ x2 ≥ 500 ∧

x3 ≥ 0 ∧ x4 ≥ 1250
3

+
5
3
xB

0 .

(4.5)

After this setup has been completed, both workstations are processing the jobs at maximal
rate. In this system state, a lot of translated desired periodic orbits are possible through an
arbitrary point x ∈ ℘. Looking better at Figure 4.4, the buffer contents of buffers 2 and 4
decrease during this system mode. Depending on the initial condition, buffer 2 and/or buffer
4 can reach the boundary of the feasible domain. Therefore, buffers 2 and 4 are taken into
account for finding a valid Lyapunov function candidate for this system state. From Figure
4.4, it is known that the buffer contents of buffers 2 and 4 of the desired periodic orbit are
bounded by 250

3 ≤ x2 ≤ 500 and 0 ≤ x4 ≤ 1250
3 . But depending on the initial buffer contents

of buffers 2 and 4 in an arbitrary point x ∈ ℘, it turns out that different 5 cases can occur
which are presented in Table 4.2.

Table 4.2: System mode (4,2): 5 different cases.

case 1 x2 ≥ 500 x4 ≥ 1250
3

case 2 x2 ≥ 500 0 ≤ x4 ≤ 1250
3

case 3 250
3 ≤ x2 ≤ 500 x4 ≥ 1250

3
case 4 250

3 ≤ x2 ≤ 500 0 ≤ x4 ≤ 1250
3 x2 − x4 ≤ 250

3
case 5 250

3 ≤ x2 ≤ 500 0 ≤ x4 ≤ 1250
3 x2 − x4 ≥ 250

3

Before a Lyapunov function candidate V (x) is defined for every case, another view of the
desired periodic orbit of the system is presented first. In Figure 4.1, the desired periodic orbit
of each workstation is shown. But for this system state, the desired periodic orbit presented
in Figure 4.6 — where buffer 2 is plotted against buffer 4 — is more usable for determining
the translated desired periodic orbit with the smallest mean amount of work in the system.

According to the desired periodic system behavior presented in Figure 4.4, this view of the
desired periodic orbit of the system can easily be determined. In the first 50 time-units,
the system is setting up for mode (4, 3). After this setup has been completed, i.e. at point
(x2, x4) = (500, 0), both workstations are processing the jobs at maximal rate. During this
action, buffer 2 remains constant and buffer 4 increases to 500 jobs. The system operates then

54 Chapter 4. Non-distributed controller

in point (x2, x4) = (500, 500) and workstation B has completed production step 3 and the
system is setting up for mode (4, 2). During this setup, workstation A continues processing
the jobs for step 4. After this setup has been completed, i.e. at point (x2, x4) = (500, 1250

3),
both workstations are processing the jobs at maximal rate until buffer 4 becomes empty.
The system operates then in point (x2, x4) = (250

3 , 0) and workstation A has completed
production step 4 and the system is setting up for mode (1, 2). During this setup, workstation
B continues processing the jobs for step 2. After this setup has been completed, i.e. at point
(x2, x4) = (0, 0), workstation A processes the jobs for step 1 and workstation B processes the
jobs for step 2. During this action, buffer 4 remains empty and buffer 2 increases to 500 jobs.
The system operates then in point (x2, x4) = (500, 0) and both workstations have completed
the production step and the system is setting up for mode (4, 3) which completes the cycle of
this periodic orbit.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

550

x2

x4

Figure 4.6: Desired periodic orbit of the system.

For every case in Table 4.2, this desired periodic orbit of the system is used for determining
a Lyapunov function candidate V (x). Also, the translated desired periodic orbit through an
arbitrary point x ∈ ℘ with the smallest mean amount of work in the system is determined.

First consider case 1, where the initial buffer contents of buffer 2 is larger than or equal
to 500 jobs and the initial buffer contents of buffer 4 is larger than or equal to 1250

3 jobs
in an arbitrary point x ∈ ℘. For this case, both buffers imply an extra amount of work in
comparison with the desired periodic orbit. The set ℘ contains a lot of possible translated
desired periodic orbits which go through an arbitrary point x ∈ ℘. The translated desired
periodic orbit where point x ∈ ℘ corresponds with the maximal buffer contents of buffer 4
is the one with the smallest mean amount of work in the system. For this system state, the
Lyapunov function candidate V (x) is defined as the extra amount of work in the system in
point x ∈ ℘ compared to the desired periodic orbit:

4.4. Controller design 55

V (x) = 1.8 (x1 − 400) + 1.5 (x2 − 500) + 0.9 (x3) + 0.6
(

x4 − 1250
3

)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 − 1720,

for m = (4, 2) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 400 ∧ x1 +
3
5
x4 ≥ 650 ∧

x2 ≥ 500 ∧ x3 + x4 ≥ 1250
3

∧ x4 ≥ 1250
3

.

(4.6)

For case 2, where the initial buffer contents of buffer 2 is larger than or equal to 500 jobs
and the initial buffer contents of buffer 4 is equal to 0 ≤ x4 ≤ 1250

3 jobs in an arbitrary point
x ∈ ℘, buffer 2 implies an extra amount of work in comparison with the desired periodic orbit.
The set ℘ contains a lot of possible translated desired periodic orbits which go through an
arbitrary point x ∈ ℘. The translated desired periodic orbit which starts processing the jobs
for step 2 in point x ∈ ℘ is the one with the smallest mean amount of work in the system.
For this system state, the Lyapunov function candidate V (x) is defined as the extra amount
of work in the system in point x ∈ ℘ compared to the desired periodic orbit:

V (x) = 1.8
(

x1 +
3
5
x4 − 650

)
+ 1.5

(
x2 − x4 − 250

3

)
+ 0.9

(
x3 + x4 − 1250

3

)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
87
25

x4 − 1670,

for m = (4, 2) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 400 ∧ x1 +
3
5
x4 ≥ 650 ∧

x2 ≥ 500 ∧ x3 + x4 ≥ 1250
3

∧ 0 ≤ x4 ≤ 1250
3

∧ x2 − x4 ≥ 250
3

.

(4.7)

For case 3, where the initial buffer contents of buffer 2 is equal to 250
3 ≤ x2 ≤ 500 jobs and the

initial buffer contents of buffer 4 is larger than or equal to x4 ≥ 1250
3 jobs in an arbitrary point

x ∈ ℘, buffer 4 implies an extra amount of work in comparison with the desired periodic orbit.
The set ℘ contains a lot of possible translated desired periodic orbits which go through an
arbitrary point x ∈ ℘. The translated desired periodic orbit where point x ∈ ℘ corresponds
with the maximal buffer contents of buffer 4 is the one with the smallest mean amount of
work in the system. For this system state, the Lyapunov function candidate V (x) is defined
as the extra amount of work in the system in point x ∈ ℘ compared to the desired periodic
orbit:

V (x) = 1.8
(

x1 +
3
5
x2 − 700

)
+ 0.9 (x2 + x3 − 500) + 0.6

(
x4 − x2 +

250
3

)

=
9
5
x1 +

69
50

x2 +
9
10

x3 +
3
5
x4 − 1660,

for m = (4, 2) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 400 ∧ x1 +
3
5
x4 ≥ 650 ∧

250
3

≤ x2 ≤ 500 ∧ x3 + x4 ≥ 1250
3

∧ x4 ≥ 1250
3

∧ x2 − x4 ≤ 250
3

.

(4.8)

For case 4 and case 5, where both initial buffer contents are bounded by 250
3 ≤ x2 ≤ 500

and 0 ≤ x4 ≤ 1250
3 , a Lyapunov function candidate is defined for the buffer which reaches

56 Chapter 4. Non-distributed controller

the minimal buffer contents as first. This buffer implies less amount of work in comparison
with another buffer. Depending on the initial condition, the buffer which reaches the minimal
buffer contents as first can be determined with the equation presented in the last column of
Table 4.2. Consider case 4 with x2 − x4 ≤ 250

3 . In this case, the buffer contents of buffer 4
can be larger than the buffer contents of buffer 2. Therefore, buffer 2 reaches the minimal
buffer contents as first and implies less amount of work in comparison with buffer 4. For
this case, a Lyapunov function candidate has to be defined where buffer 2 does not imply an
extra amount of work in comparison with the desired periodic orbit. The Lyapunov function
candidate which is defined for case 3 is also a suitable Lyapunov function candidate for case 4.
In both cases, buffer 2 does not imply an extra amount of work in comparison with the desired
periodic orbit.

To make case 4 more clear, an example is given. Consider the point (x2, x4) = (1250
3 , 1250

3)
which is sketched in Figure 4.7. In this point the initial buffer contents of buffers 2 and 4
are bounded by 250

3 ≤ x2 ≤ 500, 0 ≤ x4 ≤ 1250
3 and x2 − x4 ≤ 250

3 . For this case, the
set ℘ contains a lot of possible translated desired periodic orbits which goes through this
point. When the desired periodic orbit is translated in the positive x4 direction until the
point (x2, x4) = (1250

3 , 1250
3) lies on this desired periodic orbit, a translated desired periodic

orbit with the smallest mean amount of work in the system is founded.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

x2

x4

(x2, x4) =
(1250/3, 1250/3)

Figure 4.7: Translated desired periodic orbit through (1250
3

, 1250
3

).

Consider case 5 with x2 − x4 ≥ 250
3 . In this case, the initial buffer contents of buffer 2 can

be larger than the buffer contents of buffer 4. Therefore, buffer 4 reaches the minimal buffer
contents as first and implies less amount of work in comparison with buffer 2. The Lyapunov
function candidate which is defined for case 2 is also a suitable Lyapunov function candidate
for case 5. In both cases, buffer 4 does not imply an extra amount of work in comparison
with the desired periodic orbit.

To make case 5 more clear, an example is given. Consider the point (x2, x4) = (450, 200)
which is sketched in Figure 4.8. In this point the initial buffer contents of buffers 2 and 4
are bounded by 250

3 ≤ x2 ≤ 500, 0 ≤ x4 ≤ 1250
3 and x2 − x4 ≥ 250

3 . For this case, the
set ℘ contains a lot of possible translated desired periodic orbits which goes through this
point. When the desired periodic orbit is translated in the positive x2 direction until the
point (x2, x4) = (450, 200) lies on this desired periodic orbit, a translated desired periodic
orbit with the smallest mean amount of work in the system is founded.

4.4. Controller design 57

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

x2

x4
(x2, x4) =
(450, 200)

Figure 4.8: Translated desired periodic orbit through (450, 200).

The Lyapunov function candidate V (x) has to be continuous during the desired periodic
orbit. This continuity between two successive Lyapunov function candidates can be checked
by comparing the same system state. Lyapunov function candidate (4.4) should have the same
expression as Lyapunov function candidate (4.5) when the system completes production step
3 and starts setting up for mode (4, 2). Filling in x3 = 0 and xB

0 = 50 in both Lyapunov
function candidates lead to the same expressions of V (x) which proves continuity. After this
setup has been completed, the system can operate in one of the 5 cases presented in Table
4.2. Therefore, depending on the initial buffer contents of buffers 2 and 4, Lyapunov function
candidate (4.5) should have the same expression as (4.6), (4.7) and (4.8) when the same
system state is considered. Lyapunov function candidate (4.6), where both buffers imply an
extra amount of work, should have the same expression of V (x) as (4.5) when the system
completes the setup for mode (4, 2). Filling in xB

0 = 0 in (4.5) leads to the same expression
as (4.6). Lyapunov function candidates (4.5) and (4.7) should have the same expressions of
V (x) when xB

0 = 0 and x2 = 500. This is the case which proves continuity. Also, Lyapunov
function candidates (4.5) and (4.8) should have the same expressions of V (x) when xB

0 = 0
and x4 = 1250

3 . This is also the case which proves continuity of V (x).
When the system operates in case 1 after the setup to mode (4, 2) has been completed, the
initial buffer contents of buffers 2 and 4 decrease. The system can operate in one of the other
4 cases. Therefore, Lyapunov function candidate (4.6) should have the same expression as
(4.7) and (4.8) for V (x) when x2 = 500 and x4 = 1250

3 . Filling in these values, all Lyapunov
function candidates lead to the same expression of V (x) which proves continuity.

System mode (1,2)

After the system has completed production step 4, the system is switching to mode (1, 2).
In the beginning of this system mode, workstation A is performing a setup. According to
this remaining setup time, only one translated desired periodic orbit is possible through an
arbitrary point x ∈ ℘. For this system state, the Lyapunov function candidate V (x) is defined
as the extra amount of work in the system in point x ∈ ℘ compared to the desired periodic
orbit. For this case, the Lyapunov function candidate V (x) is defined as:

58 Chapter 4. Non-distributed controller

V (x) = 1.8
(
x1 − 700 + xA

0

)
+ 1.5

(
x2 − 5

3
xA

0

)
+ 0.9

(
x3 − 500 +

5
3
xA

0

)
+ 0.6 (x4)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 +

4
5
xA

0 − 1710,

for m = (1, 2) ∧ xA
0 > 0 ∧ xB

0 = 0 ∧ x1 ≥ 700 − xA
0 ∧ x2 ≥ 5

3
xA

0 ∧

x3 ≥ 500 − 5
3
xA

0 ∧ x4 ≥ 0.

(4.9)

After this setup has been completed, both workstations are processing the jobs at maximal
rate. In this system state, a lot of translated desired periodic orbits are possible through
an arbitrary point x ∈ ℘. Looking better at Figure 4.4, only the buffer contents of buffer
1 decreases during this system mode. Buffer 1 can only reach the boundary of the feasible
domain. Therefore, buffer 1 is taken into account for finding a valid Lyapunov function
candidate for this system state. Depending on the initial buffer contents of buffer 1 in an
arbitrary point x ∈ ℘, two Lyapunov function candidates have to be defined. A Lyapunov
function candidate where buffer 1 implies an extra amount of work in comparison with the
desired periodic orbit and a Lyapunov function candidate where buffer 1 does not imply an
extra amount of work in comparison with the desired periodic orbit.

First, consider the case when buffer 1 implies an extra amount of work in comparison with
the desired periodic orbit. This case only occurs when the initial buffer contents of buffer
1 is larger than the maximal buffer contents of buffer 1 in the desired periodic orbit. From
Figure 4.4, it is known that the maximal buffer contents of buffer 1 in the desired periodic
orbit contains 700 jobs. If the initial buffer contents of buffer 1 is larger than or equal to 700
jobs in an arbitrary point x ∈ ℘, then a lot of translated desired periodic orbits are possible
which all have a higher amount of work in comparison with the desired periodic orbit. The
translated desired periodic orbit which starts processing the jobs for step 1 in point x ∈ ℘
is the one with the smallest mean amount of work in the system. For this system state, the
Lyapunov function candidate V (x) is defined as the extra amount of work in comparison with
the amount of work of the desired periodic orbit:

V (x) = 1.8 (x1 − 700) + 1.5 (x2) + 0.9 (x3 − 500) + 0.6 (x4)

=
9
5
x1 +

3
2
x2 +

9
10

x3 +
3
5
x4 − 1710,

for m = (1, 2) ∧ xA
0 = xB

0 = 0 ∧ x1 ≥ 700 ∧ 5
7
x1 + x2 ≥ 500 ∧

5
7
x1 + x3 ≥ 1000 ∧ x3 ≥ 500 ∧ x4 ≥ 0.

(4.10)

In case when the buffer contents of buffer 1 is smaller than or equal to 700 jobs in an arbitrary
point x ∈ ℘, buffer 1 does not imply an extra amount of work in comparison with the desired
periodic orbit. The translated desired periodic orbit with the smallest mean amount of work
in the system is the periodic orbit which started processing the jobs for step 1 the latest. See
Figure 4.9, where this case is sketched for point (x1, x4) = (500, 250). The mean amount of
work of the translated desired periodic orbits decreases in the direction of the arrow from

4.4. Controller design 59

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

x1

x4

(x1, x4) =
(500, 250)

Figure 4.9: Finding the translated desired periodic orbit with the smallest mean amount of work in the system.

the translated desired periodic orbit which ended processing the jobs for step 1 in point
(x1, x4) = (500, 250) to the translated desired periodic orbit which started processing the jobs
for step 1 the latest. For this case, the buffer contents of buffer 1 does not imply an extra
amount of work in comparison with the desired periodic orbit. For this system state, the
Lyapunov function candidate is defined as:

V (x) = 1.5
(

5
7
x1 + x2 − 500

)
+ 0.9

(
5
7
x1 + x3 − 1000

)
+ 0.6 (x4)

=
12
7

x1 +
3
2
x2 +

9
10

x3 +
3
5
x4 − 1650,

for m = (1, 2) ∧ xA
0 = xB

0 = 0 ∧ x1 ≤ 700 ∧ 5
7
x1 + x2 ≥ 500 ∧

5
7
x1 + x3 ≥ 1000 ∧ x3 ≥ 500 ∧ x4 ≥ 0.

(4.11)

The Lyapunov function candidate V (x) has to be continuous during the desired periodic
orbit. This continuity between two successive Lyapunov function candidates can be checked
by comparing the same system state. Lyapunov function candidate (4.9) should have the
same expression as Lyapunov function candidates (4.7) and (4.8) when the system completes
production step 4 and starts setting up for mode (1, 2). For (4.7), filling in x4 = 0 and
xA

0 = 50 in both Lyapunov function candidates lead to the same expressions of V (x) which
proves continuity. For (4.8), filling in x2 = 250

3 and xA
0 = 50 in both Lyapunov function

candidates lead to the same expressions of V (x) which proves continuity. Lyapunov function
candidate (4.10) should have the same expression as (4.9) when the system completes the
setup for mode (1, 2). Filling in xA

0 = 0 in (4.9) leads to the same expression as (4.10). When
x1 = 700, Lyapunov function candidates (4.10) and (4.11) should have the same expressions
of V (x). This is the case which proves continuity. Also, Lyapunov function candidate (4.11)
should have the same expression as Lyapunov function candidate (4.2), when the system
completes production step 1 and is setting up to system mode (4, 3). Filling in x1 = 0 and
xA

0 = 50 in both Lyapunov function candidates lead to the same expressions of V (x) which
proves continuity of the Lyapunov function candidate V (x) for the complete system.

As a result, the Lyapunov function candidate is defined for this system as:

60 Chapter 4. Non-distributed controller

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 + 9
5xA

0 − 1740 m = (4, 3) ∧ xA
0 > 0 ∧ xA

0 = xB
0 ∧

x1 ≥ 50 − xA
0 ∧ x2 ≥ 500 ∧

x3 ≥ 1000 ∧ x4 ≥ 0;
9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 − 1740 m = (4, 3) ∧ x0 = (0, 0) ∧ x1 ≥ 50 ∧
x1 + 3

10x3 ≥ 350 ∧ x2 ≥ 500 ∧
x3 ≥ 1000 ∧ 1

2x3 + x4 ≥ 500;
9
5x1 + 3

2x2 + 21
25x3 + 3

5x4 − 1680 m = (4, 3) ∧ x0 = (0, 0) ∧ x1 ≥ 50 ∧
x1 + 3

10x3 ≥ 350 ∧ x2 ≥ 500 ∧
x3 ≤ 1000 ∧ 1

2x3 + x4 ≥ 500;
9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 + 4
5xB

0 − 1720 m = (4, 2) ∧ xA
0 = 0 ∧ xB

0 > 0 ∧
x1 ≥ 400 − xB

0 ∧ x2 ≥ 500 ∧ x3 ≥ 0 ∧
x4 ≥ 1250

3 + 5
3xB

0 ;
9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 − 1720 m = (4, 2) ∧ x0 = (0, 0) ∧ x1 ≥ 400 ∧
x1 + 3

5x4 ≥ 650 ∧ x2 ≥ 500 ∧
x3 + x4 ≥ 1250

3 ∧ x4 ≥ 1250
3 ;

9
5x1 + 3

2x2 + 9
10x3 + 87

25x4 − 1670 m = (4, 2) ∧ x0 = (0, 0) ∧ x1 ≥ 400 ∧
x1 + 3

5x4 ≥ 650 ∧ x2 ≥ 500 ∧
x3 + x4 ≥ 1250

3 ∧ 0 ≤ x4 ≤ 1250
3 ∧

x2 − x4 ≥ 250
3 ;

9
5x1 + 69

50x2 + 9
10x3 + 3

5x4 − 1660 m = (4, 2) ∧ x0 = (0, 0) ∧ x1 ≥ 400 ∧
x1 + 3

5x4 ≥ 650 ∧ 250
3 ≤ x2 ≤ 500 ∧

x3 + x4 ≥ 1250
3 ∧ x4 ≥ 1250

3 ∧
x2 − x4 ≤ 250

3 ;
9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 + 4
5xA

0 − 1710 m = (1, 2) ∧ xA
0 > 0 ∧ xB

0 = 0 ∧
x1 ≥ 700 − xA

0 ∧ x2 ≥ 5
3xA

0 ∧
x3 ≥ 500 − 5

3xA
0 ∧ x4 ≥ 0;

9
5x1 + 3

2x2 + 9
10x3 + 3

5x4 − 1710 m = (1, 2) ∧ x0 = (0, 0) ∧ x1 ≥ 700 ∧
5
7x1 + x2 ≥ 500 ∧ 5

7x1 + x3 ≥ 1000 ∧
x3 ≥ 500 ∧ x4 ≥ 0;

12
7 x1 + 3

2x2 + 9
10x3 + 3

5x4 − 1650 m = (1, 2) ∧ x0 = (0, 0) ∧ x1 ≤ 700 ∧
5
7x1 + x2 ≥ 500 ∧ 5

7x1 + x3 ≥ 1000 ∧
x3 ≥ 500 ∧ x4 ≥ 0.

Having defined the Lyapunov function candidate for the specific system for all x ∈ ℘, in next
section it is used to derive a feedback controller which brings the system from an arbitrary x

to the desired periodic orbit.

4.5. Derivation of the controller 61

4.5 Derivation of the controller

The Lyapunov function candidate defined in previous section can be used to derive a controller
which settles down the system from the initial condition to the desired periodic orbit. For
each point x ∈ ℘, first the set of allowed inputs is defined, which assures that the system
remains in the feasible domain ℘. Depending on the initial system state in point x ∈ ℘, the
system can finish the setups, idling for a duration, processing the jobs or switch to another
system mode. The best action is determined by minimizing V̇ (x) over the set of allowed
inputs that assure that the system remains in the feasible domain ℘. Since the minimizing
input depends on the current state, a state feedback is obtained.

In this section, the conditions at which the system is allowed to switch to another mode are
determined first. Then, a feedback controller is derived for x ∈ ℘. Finally, this feedback
controller needs to be extended to one which is defined for the entire state space.

Allowed switching actions

Before presenting the controller, the conditions at which the system is allowed to switch to
another mode are determined. From the desired periodic system behavior, depicted in Figure
4.4, it is known that the system cyclically visits the modes (4, 3), (4, 2) and (1, 2). The system
stays in a mode where both workstations are processing the jobs at maximal rate until a buffer
becomes empty. Then, the system switches to another mode by performing a setup. These
three modes and their actions are sketched in Figure 4.10.

m = (1,2) m = (4,2)

m = (4,3)

switch

sw
itc

h
sw

itch

Figure 4.10: Overview of the system modes and their actions according to desired system behavior.

This overview is related to desired system behavior. For any arbitrary point x ∈ ℘, there
are maybe another switching actions possible which minimize V̇ (x). These actions are only
allowed if the system remains in the feasible domain ℘. In Table 4.3, another possible switching
actions are presented. Also, the setup times needed for these switching actions and the setup
times by definition of the feasible domain are presented.

Table 4.3: Another switching actions.

switch action setups needed setups by definition of ℘

mode (1,2) → mode (4,2) xA
0 = 50, xB

0 = 0 xA
0 = 0, xB

0 > 0
mode (4,2) → mode (4,3) xA

0 = 0, xB
0 = 50 xA

0 > 0, xB
0 > 0

mode (4,3) → mode (1,2) xA
0 = 50, xB

0 = 50 xA
0 > 0, xB

0 = 0

62 Chapter 4. Non-distributed controller

All these possible switching actions are investigated further on their allowance. First consider
the case that the system switches from mode (1, 2) to mode (4, 2). In this case, workstation A
needs a setup to process the jobs for step 4 whereas workstation B can continu processing the
jobs for step 2, i.e. xA

0 = 50, xB
0 = 0. According to the description of the feasible domain, the

setup to mode (4, 2) is characterized as xA
0 = 0, xB

0 > 0. If the system want to switch from
mode (1, 2) to mode (4, 2), workstation A needs a setup but that is not allowed according to
the description of the feasible domain. Therefore, it can be concluded that it is not allowed
to switch from mode (1, 2) to mode (4, 2).
In case, when the system switches from mode (4, 2) to mode (4, 3), workstation B needs a
setup to process the jobs for step 3 whereas workstation A can continu processing the jobs
for step 4, i.e. xA

0 = 0, xB
0 = 50. According to the description of the feasible domain, the

setup to mode (4, 3) is characterized as xA
0 > 0, xB

0 > 0. Looking at both cases, it can be
concluded that it is allowed to switch from mode (4, 2) to mode (4, 3). Maybe this switching
action is not optimal, but workstation A can perform again a setup for step 4 which is allowed
according to the description of the feasible domain.
In case, when the system switches from mode (4, 3) to mode (1, 2), workstations A and B need
both a setup to process the jobs for another step, i.e. xA

0 = 50, xB
0 = 50. According to the de-

scription of the feasible domain, the setup to mode (1, 2) is characterized as xA
0 > 0, xB

0 = 0.
Looking at the setup for workstation B in both cases, it can be concluded that this switching
action is not allowed. Workstation B needs a setup when the system want to switch from
mode (4, 3) to mode (1, 2), but that is not allowed according to the description of the feasible
domain.

Only the second action — switching from mode (4, 2) to mode (4, 3) — of Table 4.3 is allowed.
But should this switching action be implemented in the controller design? This question can
be answered by comparing the energy of the system for every case when the system operates
in mode (4, 2) with the energy of the system after switching to mode (4, 3). The controller will
only switch to another mode when the energy in the system decreases more than in current
mode. In that way, the system converges to the desired periodic orbit. Therefore, if the
energy of the system after switching to mode (4, 3) is always higher than the energy of the
system for every case when the system operates in mode (4, 2), then this switching action can
be neglected.

The energy of the system after switching from mode (4, 2) to mode (4, 3) can be determined
with Lyapunov function candidate (4.2). After this setup, i.e. xA

0 = 0, the energy of the
system becomes:

V43(x) = 1.8 x1 + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 x4. (4.12)

The energy of the system for every case when the system operates in mode (4, 2) is compared
with (4.12). For each case, the Lyapunov function candidate is rewritten as:

V42(x) = V43(x) + �V. (4.13)

When the Lyapunov function candidate defined for each case — when the system operates in
mode (4, 2) — is rewritten in this form, the state with the smallest energy can be determined

4.5. Derivation of the controller 63

by means of �V . The system should operate in the state with the smallest energy in the
system.

• �V > 0 : the system can better switch to mode (4, 3) instead of staying in mode (4, 2)

• �V ≤ 0 : the system can better stay in mode (4, 2) instead of switching to mode (4, 3)

First consider the case when the system is performing a setup to mode (4, 2). Lyapunov
function candidate (4.5) is defined for this case and rewritten with (4.13) as:

V42(x) = 1.8
(
x1 − 400 + xB

0

)
+ 1.5 (x2 − 500) + 0.9 (x3) + 0.6

(
x4 − 1250

3
− 5

3
xB

0

)

= 1.8 x1 + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 x4

+ 1.8 (xB
0 − 400) + 0.9 (1000) − 0.6

(
5
3

xB
0 +

1250
3

)

= V43(x) − 70 + 0.8 xB
0 .

(4.14)

With 0 ≤ xB
0 ≤ 50, �V is always negative. This means that the system can better continue

setting up to mode (4, 2) instead of switching to mode (4, 3). The energy of the system when
it is setting up to mode (4, 2) is always smaller than the energy of the system after switching
to mode (4, 3).

For the case when the system is processing the jobs while the initial buffer contents are
x2 ≥ 500 and x4 ≥ 1250

3 , i.e. case 1 in Table 4.2, Lyapunov function candidate (4.6) is defined
for this case and rewritten with (4.13) as:

V42(x) = 1.8 (x1 − 400) + 1.5 (x2 − 500) + 0.9 (x3) + 0.6
(

x4 − 1250
3

)

= 1.8 x1 + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 x4

− 1.8 (400) + 0.9 (1000) − 0.6
(

1250
3

)

= V43(x) − 70.

(4.15)

In this case, �V is always negative. This means that the system can better continue process-
ing the jobs in mode (4, 2) instead of switching to mode (4, 3).

For case 2 and case 5 in Table 4.2, Lyapunov function candidate (4.7) is rewritten with (4.13)
as:

V42(x) = 1.8
(

x1 +
3
5
x4 − 650

)
+ 1.5

(
x2 − x4 − 250

3

)
+ 0.9

(
x3 + x4 − 1250

3

)

= 1.8 x1 + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 x4

+ 1.8
(

3
5
x4 − 650

)
+ 1.5

(
1250

3
− x4

)
+ 0.9

(
x4 + 500 +

250
3

)
− 0.6 x4

= V43(x) − 3
25

x4 − 20.

(4.16)

64 Chapter 4. Non-distributed controller

With x4 ≥ 0, �V is always negative. This means that the system can better continue
processing the jobs in mode (4, 2) instead of switching to mode (4, 3).

For case 3 and case 4 in Table 4.2, Lyapunov function candidate (4.8) is rewritten with (4.13)
as:

V42(x) = 1.8
(

x1 +
3
5
x2 − 700

)
+ 0.9 (x2 + x3 − 500) + 0.6

(
x4 − x2 +

250
3

)

= 1.8 x1 + 1.5 (x2 − 500) + 0.9 (x3 − 1000) + 0.6 x4

+ 1.8
(

3
5
x2 − 700

)
+ 1.5 (500 − x2) + 0.9 (500 + x2) + 0.6

(
250
3

− x2

)

= V43(x) − 3
25

x2 − 10.

(4.17)

With x2 ≥ 250
3 in this mode, �V is always negative. This means that the system can better

continue processing the jobs in mode (4, 2) instead of switching to mode (4, 3).

After these comparisons, it can be concluded that the switching action from mode (4, 2) to
mode (4, 3) can be neglected. The energy of the system for each action in mode (4, 2) is
always smaller than the energy of the system after switching to mode (4, 3). Therefore, it is
better to stay in mode (4, 2) instead of switching to mode (4, 3). So, only the actions depicted
in Figure 4.10 are allowed.

Feedback controller for all x ∈ ℘

The allowed switching actions are explained in previous section. In this section, the conditions
at which the system is allowed to switch to an other mode have to be determined. After that,
the controller which makes use of these conditions can be derived.

All the conditions for the actions presented in Figure 4.10 can be determined with the Lya-
punov function candidate for the system defined in previous section which assures that the
system remains in the feasible domain.

• If the system operates in mode (4, 3), stay in this mode until buffer 3 is empty. Then
switch to mode (4, 2).

• If the system operates in mode (4, 2), stay in this mode until either x2 ≤ 250
3 or x4 = 0.

Then switch to mode (1, 2).

• If the system operates in mode (1, 2), stay in this mode until buffer 1 is empty. Then
switch to mode (4, 3).

With this feedback description and with the Lyapunov function candidate, a controller can
be designed which makes the system converge to a periodic orbit and which assures that the
system remains in the feasible domain.

4.5. Derivation of the controller 65

The designed feedback controller for all x ∈ ℘ which makes use of the above-mentioned con-
ditions can be described as:

• If the system operates in mode (4, 3), process all the jobs at maximal rate at both
workstations until x3 = 0. Then switch to mode (4, 2). According to the Lyapunov
function candidate, the other buffer contents are then equal to x1 ≥ 350, x2 ≥ 500 and
x4 ≥ 500.

• If the system operates in mode (4, 2), process all the jobs at maximal rate at both
workstations until either x2 ≤ 250

3 or x4 = 0. Then switch to mode (1, 2). According to
the Lyapunov function candidate, the other buffer contents are then equal to x1 ≥ 650,
x2 ≥ 250

3 , x3 ≥ 1250
3 and x4 ≥ 0.

• If the system operates in mode (1, 2), process all the jobs for step 1 and 2 at maximal
rate until x1 = 0. Then switch to mode (4, 3). According to the Lyapunov function
candidate, the other buffer contents are then equal to x2 ≥ 500, x3 ≥ 1000 and x4 ≥ 0

The feedback controller which makes use of the above-mentioned conditions will make the
system converge from any arbitrary point x ∈ ℘ to a periodic orbit. Unfortunately, this is not
always the desired periodic orbit. To make this more clear, consider the case where the above-
mentioned conditions are used as a feedback for an initial condition where only the buffer
contents of buffer 4 does not lie on the desired periodic orbit. Suppose that buffer 4 contains
an extra amount of 1000 jobs. According to the desired periodic system behavior in Figure
4.4, lets start in mode (4, 3). The initial condition is now (x1, x2, x3, x4) = (0, 500, 1000, 1000)
instead of (0, 500, 1000, 0). Since the initial value of x3 which determines the departure from
mode (4, 3) is the same as for the desired periodic orbit, the duration of mode (4, 3) is the
same. Next, since the initial value of x2 is the same but the initial value of x4 is higher, the
departure from mode (4, 2) is now determined by the event that x2 ≤ 250

3 . Therefore, the
duration of mode (4, 2) is also the same. Finally, since the initial value of x1 is the same as
for the desired periodic orbit, the duration of mode (1, 2) is also the same. This shows that
using the above-mentioned feedback the system will converge to a translated desired periodic
orbit instead of to the desired periodic orbit. In this case, buffer 4 contains always at least the
extra amount of 1000 jobs, whereas in the desired periodic orbit, buffer 4 contains maximal
500 jobs.

The same analysis holds for the case when x2 > 250
3 and x4 = 0. In this case, the departure

from mode (4, 2) is determined by the event that buffer 4 becomes empty (x4 = 0). The
controller which uses the above-mentioned conditions will also converge the system for this
case to a translated desired periodic orbit.

From these two cases, it can be concluded that the controller which makes use of the above-
mentioned conditions will not always make the system converge to the desired periodic orbit.
This means that the above-mentioned conditions have to be changed if the feedback controller
has to make the system converge for every x ∈ ℘ to the desired periodic orbit. The conditions
for switching from mode (4, 2) to mode (1, 2) has to be changed: “The controller has to switch
from mode (4, 2) to mode (1, 2) until both conditions — x2 ≤ 250

3 and x4 = 0 — are met”. If

66 Chapter 4. Non-distributed controller

one of the two conditions is met, which was the case as considered above, the other workstation
has to idle until both conditions are met. As a result, during that period V (x) is actually
increasing. While a controller has to be designed where the energy in the system is never
increasing. Nevertheless, this temporary increase of V (x) makes that later on, V (x) can
decrease more. With this adaptation, the controller will always make the system converge
from the initial condition which lies in the feasible domain to the desired periodic orbit.

The feedback controller which makes use of the following conditions will always make the
system converge from the initial condition which lies in the feasible domain to the desired
periodic orbit.

• If the system operates in mode (4, 3), stay in this mode until buffer 3 is empty. Then
switch to mode (4, 2).

• If the system operates in mode (4, 2), stay in this mode until both x2 ≤ 250
3 and x4 = 0

are met. Then switch to mode (1, 2).

• If the system operates in mode (1, 2), stay in this mode until buffer 1 is empty. Then
switch to mode (4, 3).

With these conditions, the following feedback controller can be derived for x ∈ ℘ where the
input of this system is given by (u0, u) = (uA

0 , uB
0 , u1, u2, u3, u4).

(u0, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�, �, 0, 0, 0, 0) if m = (4, 3), xA
0 > 0, xA

0 = xB
0 ;

(�, 	, 0, 0, μ3, μ4) if m = (4, 3), x0 = (0, 0), x3 > 0;
(�, �, 0, 0, 0, μ4) if m = (4, 3), x0 = (0, 0), x3 = 0;
(�, �, 0, 0, 0, μ4) if m = (4, 2), xA

0 = 0, xB
0 > 0, x4 > 0;

(�, �, 0, μ2, 0, μ4) if m = (4, 2), x0 = (0, 0), x2 > 250
3 , x4 > 0;

(�, �, 0, 0, 0, μ4) if m = (4, 2), x0 = (0, 0), x2 ≤ 250
3 , x4 > 0;

(�, �, 0, μ2, 0, 0) if m = (4, 2), x0 = (0, 0), x2 > 250
3 , x4 = 0;

(�, �, 0, μ2, 0, 0) if m = (4, 2), x0 = (0, 0), x2 ≤ 250
3 , x4 = 0;

(�, �, 0, μ2, 0, 0) if m = (1, 2), xA
0 > 0, xB

0 = 0, x2 ≥ 0;
(�, �, μ1, μ2, 0, 0) if m = (1, 2), x0 = (0, 0), x1 > 0;
(�, �, 0, 0, 0, 0) if m = (1, 2), x0 = (0, 0), x1 = 0.

The controller is derived for all x ∈ ℘ which means that the controller can make the system
converge from any initial condition which lies in this feasible domain to the desired periodic
orbit. But the controller has to make the system converge from any arbitrary initial condition
towards the desired periodic orbit. Therefore, the controller needs to be extended to one which
is defined for the entire state space.

Feedback controller for all x

After having defined the feedback controller for all x ∈ ℘, this controller has to be extended
to one which is defined for the entire state space. If this extension has been made then the

4.5. Derivation of the controller 67

controller will make the system converge from any arbitrary initial condition towards the
desired periodic orbit.

It is possible that the initial condition says that there are no jobs in the system, i.e. x1 =
x2 = x3 = x4 = 0. This initial condition lies outside the feasible domain for which the
feedback controller is designed. For this case and for every another case with an initial
condition which lies outside the feasible domain, the extended feedback controller has to
make the system converge into the feasible domain. From that point, the designed feedback
controller in previous section will make the system converge towards the desired periodic
orbit. The convergence of the designed feedback controller for an initial condition which lies
in the feasible domain is proven in next section. This proof is also valid for initial conditions
which do not lie in the feasible domain. Only the moment — the kth start of mode (4, 3) —
in which the system state reaches the feasible domain should be determined.

Lets consider the case with initially empty buffers. According to the feedback controller
description in previous section, the controller will switch the system first immediately to
another mode instead of finishing the setups. If the system starts initially in mode (1, 2), the
controller will switch the system immediately to mode (4, 3) because buffer 1 is empty. But
then, the controller will switch the system immediately to mode (4, 2) due to the fact that
buffer 3 is empty. The controller will switch the system then again immediately to mode (1, 2)
cause both conditions — x4 = 0 and x2 ≤ 250

3 — are met. But, the system operates now some
time-units later in mode (1, 2) for the second time (k = 2), which means that buffer 1 is not
empty anymore. It has received some jobs from the inter arrival rate λ. The controller stays
now in mode (1, 2) and the system will finish the setups to mode (1, 2). After this setup has
been completed, the buffer contents are (x1, 0, 0, 0) with x1 ≥ 50 and the system can process
the jobs until buffer 1 is empty. Clearing buffer 1 takes 3

7x1 time-units and at the start of
mode (4, 3), the buffer contents become (0, 5

7x1,
5
7x1, 0).

In case when the system is not started initially in mode (1, 2), the system will also operate
some time-units later in mode (1, 2) where buffer 1 is not empty anymore. But the controller
stays in this case in mode (1, 2) which is visit for the first time instead of the second time when
the system starts initially in mode (1, 2). Although the controller will stay earlier in mode
(1, 2), the case when the system is started initially in mode (1, 2) is considered for determining
the kth start of mode (4, 3) in which the system state reaches the feasible domain. For that
case, the proof of the convergence of the designed feedback controller is always valid for any
arbitrary initial condition.
To achieve desired system behavior, the system has to visit the modes (4, 3), (4, 2) and (1, 2)
cyclically. The condition for leaving mode (4, 3) and mode (1, 2) are depending on only one
buffer contents which can always be satisfied. However, the condition for leaving mode (4, 2)
— when both x4 = 0 and x2 ≤ 250

3 are met — depends on two buffer contents which can not
always be satisfied at the right moment of time. For example, it is possible that x2 ≤ 250

3
and buffer 4 becomes empty during the setup from mode (4, 3) to mode (4, 2). According
to the designed feedback controller, the system switches then to mode (1, 2) which is not
allowed. As already mentioned in section 4.5, the system has to finish the setup to mode
(4, 2) instead of switching immediately to mode (1, 2) during this setup. To exclude this
case during the convergence proof, the buffer contents of buffers 2 and 3 should satisfy the
condition max(x2,

1
2x3) > 250

3 at the start of mode (4, 3). Workstation B only processes the
jobs for step 3 in mode (4, 3) and at the end of mode (4, 3), when buffer 3 becomes empty,
buffer 4 contains 1

2x3 jobs. When this condition is satisfied at the start of mode (4, 3), buffer

68 Chapter 4. Non-distributed controller

2 and/or buffer 4 contains at the end of mode (4, 3) which is the start of mode (4, 2) more
than 250

3 jobs. In that case, the condition for leaving mode (4, 2) will never satisfied during
the setup from mode (4, 3) to mode (4, 2). If the condition max(x2,

1
2x3) > 250

3 on the buffer
contents of buffers 2 and 3 has to fulfilled at the start of mode (4, 3), the condition on x2 at
the start of mode (4, 3) should be at least 5

7x1 > 250
3 . This means that workstation A has

to process at least 117 jobs for step 1 which is satisfied when mode (4, 3) is started for the
third time (k ≥ 3). If mode (4, 3) is started for the second time, two setups which takes both
50 time-units are needed to start mode (4, 3) for the third time. With the process times in
each mode and an inter arrival rate λ into buffer 1, workstation A has processed at the end of
mode (1, 2) at least 117 jobs. Therefore, the convergence of the designed feedback controller
for any arbitrary initial condition is proven in next section by considering k ≥ 3.

It is also possible that, at the startup of the controller, the system is in mode (1, 3), which
does not occur in the desired periodic orbit. In this case, the system has to switch to one
of the three allowed modes. To determine the best choice, the energy of each mode after 50
time-units is compared. The one with the largest decrease in energy is taken as the switching
action when the system is initial in mode (1, 3). with this choice, the controller will make
the system converge faster towards the desired periodic orbit. In Table 4.4, all the possible
switching actions and their buffer contents after 50 time-units are presented.

Table 4.4: Possible switching actions when the system is initially in mode (1,3).

switch action buffer contents after setup buffer contents after setup
and/or processing and/or idling

mode (1,3) → mode (1,2) x1 + 50 − 500
3 , x2 + 500

3 , x3, x4 x1 + 50, x2, x3, x4

mode (1,3) → mode (4,2) x1 + 50, x2, x3, x4

mode (1,3) → mode (4,3) x1 + 50, x2, x3 − 500
3 , x4 + 500

3 x1 + 50, x2, x3, x4

First consider the case that the system switches from mode (1, 3) to mode (1, 2). In this
case, workstation A can continu processing the jobs and workstation B is setting up. Dur-
ing this setup, jobs arrive into buffer 1 with an arrival rate λ of 1

[
job

time-unit

]
. After 50

time-units, workstation A has processed [50μ1 =]500
3 jobs which are stored in buffer 2. The

buffer contents of the buffers are denoted as x1 + 50 − 500
3 , x2 + 500

3 , x3, x4. The dissipated
energy after 50 time-units for this mode is determined by V (1, 2, 0, 0, 50 − 500

3 , 500
3 , 0, 0) =

9
5(50 − 500

3) + 3
2(500

3) − 1710 = −1670. But workstation A can also idling during this setup
instead of processing the jobs for step 1. In that case, the buffer contents of the buffers after
50 time-units are denoted as x1 + 50, x2, x3, x4. The dissipated energy after 50 time-units
for this case is determined by V (1, 2, 0, 0, 50, 0, 0, 0) = 9

5(50) − 1710 = −1620.
In case, when the system switches from (1, 3) to mode (4, 2), both workstations are performing
a setup and no jobs can be processed. After 50 time-units, the buffer contents of the buffers
are denoted as x1 + 50, x2, x3, x4 and the dissipated energy for this mode is determined by
V (4, 2, 0, 0, 50, 0, 0, 0) = 9

5(50) − 1720 = −1630.
In case, when the system switches from (1, 3) to mode (4, 3), workstation A is setting up and
workstation B can process the jobs for step 3. After 50 time-units, the buffer contents of the
buffers are denoted as x1 +50, x2, x3 − 500

3 , x4 + 500
3 and the dissipated energy for this mode

is determined by V (4, 3, 0, 0, 50, 0,−500
3 , 500

3) = 9
5(50) + 9

10(−500
3) + 3

5(500
3) − 1740 = −1700.

In this case, workstation B can idle during this setup instead of processing the jobs for
step 3. In that case, the buffer contents of the buffers after 50 time-units are denoted as

4.5. Derivation of the controller 69

x1 + 50, x2, x3, x4. The dissipated energy after 50 time-units for this case is determined by
V (4, 3, 0, 0, 50, 0, 0, 0) = 9

5(50) − 1740 = −1650.

The dissipated energy of each action after 50 time-units is presented in Table 4.5. The largest
decrease in dissipated energy is obtained when the system switches from mode (1, 3) to mode
(4, 3) and workstation B is processing the jobs for step 3 instead of idling during this setup.
Therefore, if the system is initially in mode (1, 3) in an arbitrary point x �∈ ℘, the system has
to switch to the allowed mode (4, 3) and process the jobs for step 3.

Table 4.5: Dissipated energy after 50 time-units.

switch action after processing after idling
mode (1,3) → mode (1,2) −1670 −1620
mode (1,3) → mode (4,2) −1630
mode (1,3) → mode (4,3) −1700 −1650

When this switching action will be added to the feedback controller in previous section, the
extended feedback controller will always make the system converge from any initial system
state to the desired periodic orbit. This proof is given in the next section.

For completeness, the feedback controller which will always make the system converge from
any arbitrary x to the desired periodic orbit can be described as:

• If the system operates initially in mode (1, 3), switch immediately to mode (4, 3).

• If the system operates in mode (4, 3), stay in this mode until buffer 3 is empty. Then
switch to mode (4, 2).

• If the system operates in mode (4, 2), stay in this mode until both x2 ≤ 250
3 and x4 = 0

are met. Then switch to mode (1, 2).

• If the system operates in mode (1, 2), stay in this mode until buffer 1 is empty. Then
switch to mode (4, 3).

After determining the conditions under which the system is allowed to switch for an arbitrary
point x �∈ ℘, the following feedback controller is derived for the entire state space. With an
input of this system which is given by (u0, u) = (uA

0 , uB
0 , u1, u2, u3, u4), the feedback controller

for all x is defined as:

70 Chapter 4. Non-distributed controller

(u0, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�, �, 0, 0, 0, 0) if m = (4, 3), xA
0 > 0, xA

0 = xB
0 ;

(�, 	, 0, 0, μ3, μ4) if m = (4, 3), x0 = (0, 0), x3 > 0;
(�, �, 0, 0, 0, μ4) if m = (4, 3), x0 = (0, 0), x3 = 0;
(�, �, 0, 0, 0, μ4) if m = (4, 2), xA

0 = 0, xB
0 > 0, x4 ≥ 0;

(�, �, 0, μ2, 0, μ4) if m = (4, 2), x0 = (0, 0), x2 > 250
3 , x4 > 0;

(�, �, 0, 0, 0, μ4) if m = (4, 2), x0 = (0, 0), x2 ≤ 250
3 , x4 > 0;

(�, �, 0, μ2, 0, 0) if m = (4, 2), x0 = (0, 0), x2 > 250
3 , x4 = 0;

(�, �, 0, μ2, 0, 0) if m = (4, 2), x0 = (0, 0), x2 ≤ 250
3 , x4 = 0;

(�, �, 0, μ2, 0, 0) if m = (1, 2), xA
0 > 0, xB

0 = 0, x2 ≥ 0;
(�, �, μ1, μ2, 0, 0) if m = (1, 2), x0 = (0, 0), x1 > 0;
(�, �, 0, 0, 0, 0) if m = (1, 2), x0 = (0, 0), x1 = 0;
(�, �, 0, 0, 0, 0) if m = (1, 3), xA

0 ≥ 0, xB
0 > 0;

(�, 	, 0, 0, μ3, 0) if m = (1, 3), xA
0 ≥ 0, xB

0 = 0, x3 ≥ 0.

4.6 Proof of convergence

Before simulations are executed with this designed feedback controller, the convergence of the
controller is proven in this section.

It is known that the system cyclically visits the modes (4, 3), (4, 2) and (1, 2). Let t
(k)
43 denote

the time at which the system started mode (4, 3) for the kth time (k ≥ 1) with buffer contents(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
for buffers 1, 2, 3 and 4 respectively. Let t

(k)
42 and t

(k)
12 denote the time

moment at which the system started mode (4, 2) respectively mode (1, 2) for the kth time.
The durations of these modes are then defined as τ

(k)
43 = t

(k)
42 − t

(k)
43 , τ

(k)
42 = t

(k)
12 − t

(k)
42 and

τ
(k)
12 = t

(k+1)
43 − t

(k)
12 respectively.

If the convergence of the controller has to be proven, the buffer contents at which the system
started mode (4, 3) for the kth time with k → ∞ should be equal to the buffer contents at the
start of mode (4, 3) of the desired periodic orbit. Looking at Table 4.1, it needs to be shown
that

lim
k→∞

(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
= (0, 500, 1000, 0). (4.18)

From Table 4.1, it is also known that at the beginning of mode (1, 2), i.e. at t = t
(k)
12 , buffer 4

is emptied (x4 = 0) and x2 ≤ 250
3 . In mode (1, 2), workstation A needs to process at least 1000

jobs before the system can switch again to mode (4, 3) for the next time. This means that
x

(k)
1 = 0, x

(k)
2 ≥ 500 and x

(k)
3 ≥ 1000 at t = t

(k+1)
43 when the system operates in the feasible

domain (i.e. k ≥ 3). From these observations it follows that without loss of generality we
can assume x

(k)
1 = 0, x

(k)
2 ≥ 500, x

(k)
3 ≥ 1000, x

(k)
4 = 0 by considering k ≥ 3. Under these

assumptions we would like to determine x
(k+1)
2 and x

(k+1)
3 . When these buffer contents are

determined, we can give the expressions for k → ∞ which proves the convergence of the
derived feedback controller towards the desired periodic orbit.

4.6. Proof of convergence 71

At t
(k)
43 — the start of entering mode (4, 3) for the kth time (with k ≥ 3) — the buffer contents

are
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
0, x

(k)
2 , x

(k)
3 , 0

)
. During mode (4, 3), first both workstations need

a set up which takes 50 time-units. After this setup, i.e. at t
(k)
43 + 50, only the buffer contents

of buffer 1 is increased with rate λ. This results in
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
50, x

(k)
2 , x

(k)
3 , 0

)
.

If workstation B processes the jobs for step 3 at maximal rate, buffer 3 reduces at a rate of(
μ3 = 1

0.3 =
)

10
3 jobs per time-unit. Therefore, clearing buffer 3 takes 3

10x
(k)
3 time-units and

mode (4, 3) has a duration of τ
(k)
43 = 50+ 3

10x
(k)
3 time-units. During this mode, workstation A

processes the jobs for step 4 at maximal rate μ4, with μ3 = 2μ4. Therefore, at the beginning
of mode (4, 2), i.e. at t

(k)
42 = t

(k)
43 + τ

(k)
43 , it is known that the buffer contents are equal to(

x
(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
50 + 3

10x
(k)
3 , x

(k)
2 , 0, 1

2x
(k)
3

)
.

During mode (4, 2), workstation B needs first a setup which takes 50 time-units before it can
process the jobs for step 2 at maximal rate. Workstation A continues processing the jobs for
step 4 at maximal rate. At the end of this setup, workstation A has processed 50μ4 = 250

3 jobs

and
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
100 + 3

10x
(k)
3 , x

(k)
2 , 0, max

(
1
2x

(k)
3 − 250

3 , 0
))

. It is known that

mode (4, 2) is ready when both conditions — x4 = 0 and x2 ≤ 250
3 — are met. Therefore, the

duration of mode (4, 2) is defined by the duration of the condition which is reached as last.
From the condition on x4 in mode (4, 3), clearing buffer 4 takes τ

(k)
42 ≥ 3

5 max
(

1
2x

(k)
3 − 250

3 , 0
)

time-units. While clearing buffer 2 takes τ
(k)
42 ≥ 3

5

(
x

(k)
2 − 250

3

)
time-units. So, the duration of

mode (4, 2) takes τ
(k)
42 = max

(
3
5

(
x

(k)
2 − 250

3

)
, 3

5 max
(

1
2x

(k)
3 − 250

3 , 0
))

time-units. For k ≥ 3,

it is known that x
(k)
1 = 0, x

(k)
2 ≥ 250

3 , x
(k)
3 ≥ 0 and x

(k)
4 = 0. This means that the duration of

mode (4, 2) takes τ
(k)
42 = max

(
3
5x

(k)
2 , 3

10x
(k)
3

)
− 50 time-units.

At the start of mode (1, 2), we have
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
50+ 3

10x
(k)
3 +max

(
3
5x

(k)
2 , 3

10x
(k)
3

)
,

250
3 , x

(k)
2 − 250

3 , 0
)

. In the beginning of this mode, workstation A needs a setup before it can

process the jobs for step 1 which takes 50 time-units. During this setup, workstation B
continues processing the jobs for step 2 and buffer 1 increases with rate λ. At the end of

this setup (at t
(k)
12 + 50), the buffer contents are

(
x

(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4

)
=

(
100 + 3

10x
(k)
3 +

max
(

3
5x

(k)
2 , 3

10x
(k)
3

)
, 0, x

(k)
2 , 0

)
. If workstation A processes the jobs for step 1 at maxi-

mal rate, buffer 1 effectively reduces at a rate of (μ1 − λ =) 7
3 jobs per time-unit. There-

fore, clearing buffer 1 takes 3
7

(
100 + 3

10x
(k)
3 + max

(
3
5x

(k)
2 , 3

10x
(k)
3

))
time-units, during which

10
7

(
100 + 3

10x
(k)
3 + max

(
3
5x

(k)
2 , 3

10x
(k)
3

))
jobs are being processed by workstation A. During

this mode, workstation B processes the jobs for step 2 at maximal rate μ2, with μ1 = 2μ2.

Therefore at the end of this mode, buffer 2 contains 5
7

(
100 + 3

10x
(k)
3 + max

(
3
5x

(k)
2 , 3

10x
(k)
3

))

jobs and buffer 3 contains x
(k)
2 + 5

7

(
100 + 3

10x
(k)
3 + max

(
3
5x

(k)
2 , 3

10x
(k)
3

))
jobs.

72 Chapter 4. Non-distributed controller

For k ≥ 3, it follows that the buffer contents are:

x
(k+1)
1 = 0;

x
(k+1)
2 =

5
7

(
100 +

3
10

x
(k)
3 + max

(
3
5
x

(k)
2 ,

3
10

x
(k)
3

))
;

x
(k+1)
3 = x

(k)
2 +

5
7

(
100 +

3
10

x
(k)
3 + max

(
3
5
x

(k)
2 ,

3
10

x
(k)
3

))
;

x
(k+1)
4 = 0.

(4.19)

To prove the convergence of the controller, it needs to be shown that (4.18) holds when
k → ∞.

Before this proof is given, new variables are introduced to simplify the analysis. As mentioned
earlier, it is assumed that for k ≥ 3 the buffer contents are x

(k)
1 = 0, x

(k)
2 ≥ 500, x

(k)
3 ≥ 1000

and x
(k)
4 = 0. Instead of using the buffer values of buffers 2 and 3, another variables are

introduced such that the value zero corresponds with these buffer contents.

y
(k)
2 =

1
5
x

(k)
2 − 100 → x

(k)
2 = 5y

(k)
2 + 500;

y
(k)
3 =

1
10

x
(k)
3 − 100 → x

(k)
3 = 10y

(k)
3 + 1000.

With these new variables, x
(k)
2 = 500 corresponds with y

(k)
2 = 0 and x

(k)
3 = 1000 corresponds

with y
(k)
3 = 0. Using these new variables for (4.19), the following equations for y

(k+1)
2 and

y
(k+1)
3 are obtained:

y
(k+1)
2 =

1
5
x

(k+1)
2 − 100

=
1
5

[
5
7

(
100 +

3
10

x
(k)
3 + max

(
3
5
x

(k)
2 ,

3
10

x
(k)
3

))]
− 100

=
1
7

(
100 +

3
10

[
10y

(k)
3 + 1000

]
+ max

(
3
5

[
5y

(k)
2 + 500

]
,

3
10

[
10y

(k)
3 + 1000

]))
− 100

=
1
7

(
3y

(k)
3 + 3 max

(
y

(k)
2 , y

(k)
3

)
+ 700

)
− 100

=
3
7
y

(k)
3 +

3
7

max
(
y

(k)
2 , y

(k)
3

)

≤ 3
7

max
(
y

(k)
2 , y

(k)
3

)
+

3
7

max
(
y

(k)
2 , y

(k)
3

)

≤ 6
7

max
(
y

(k)
2 , y

(k)
3

)
.

With x
(k)
2 ≥ 500 and x

(k)
3 ≥ 1000 at t

(k)
43 for k ≥ 3, it is known that y

(k)
2 ≥ 0. This means that

y
(k+1)
2 can also be written as:

0 ≤ y
(k+1)
2 ≤ 6

7
max

(
y

(k)
2 , y

(k)
3

)
. (4.20)

4.6. Proof of convergence 73

Also, for y
(k+1)
3 :

y
(k+1)
3 =

1
10

x
(k+1)
3 − 100

=
1
10

[
x

(k)
2 +

5
7

(
100 +

3
10

x
(k)
3 + max

(
3
5
x

(k)
2 ,

3
10

x
(k)
3

))]
− 100

=
1
10

([
5y

(k)
2 + 500

]
+

5
7

(
100 +

3
10

[
10y

(k)
3 + 1000

]
+

max
(

3
5

[
5y

(k)
2 + 500

]
,

3
10

[
10y

(k)
3 + 1000

])))
− 100

=
1
10

(
5y

(k)
2 + 500 +

5
7

(
3y

(k)
3 + 3 max

(
y

(k)
2 , y

(k)
3

)
+ 700

))
− 100

=
1
2
y

(k)
2 +

3
14

y
(k)
3 +

3
14

max
(
y

(k)
2 , y

(k)
3

)

≤ 1
2

max
(
y

(k)
2 , y

(k)
3

)
+

3
14

max
(
y

(k)
2 , y

(k)
3

)
+

3
14

max
(
y

(k)
2 , y

(k)
3

)

≤ 13
14

max
(
y

(k)
2 , y

(k)
3

)
.

With x
(k)
2 ≥ 500 and x

(k)
3 ≥ 1000 at t

(k)
43 for k ≥ 3, it is known that y

(k)
3 ≥ 0. This means that

y
(k+1)
3 can also be written as:

0 ≤ y
(k+1)
3 ≤ 13

14
max

(
y

(k)
2 , y

(k)
3

)
. (4.21)

With (4.20) and (4.21), we can determine y
(k+2)
2 and y

(k+2)
3 :

0 ≤ y
(k+2)
2 ≤ 6

7
max

(
6
7

max
(
y

(k)
2 , y

(k)
3

)
,
13
14

max
(
y

(k)
2 , y

(k)
3

))
≤ 6

7
max

(
y

(k)
2 , y

(k)
3

)
, (4.22)

0 ≤ y
(k+2)
3 ≤ 13

14
max

(
6
7

max
(
y

(k)
2 , y

(k)
3

)
,
13
14

max
(
y

(k)
2 , y

(k)
3

))
≤ 13

14
max

(
y

(k)
2 , y

(k)
3

)
.

(4.23)

From (4.22) and (4.23), it follows that:

0 ≤ max
(
y

(k+2)
2 , y

(k+2)
3

)
≤ 13

14
max

(
y

(k)
2 , y

(k)
3

)
. (4.24)

From (4.24), we can conclude that:

lim
k→∞

y
(k)
2 = lim

k→∞
y

(k)
3 = 0. (4.25)

With the fact that y
(k)
2 = 0 corresponds with x

(k)
2 = 500 and y

(k)
3 = 0 corresponds with

x
(k)
3 = 1000, this last conclusion shows that (4.18) holds which proves the convergence of the

controller towards the desired periodic orbit.

74 Chapter 4. Non-distributed controller

4.7 Simulation experiments

In previous sections, a non-distributed controller has been designed which will make the
system converge from any arbitrary initial condition towards the desired periodic orbit. Also,
it is proven that the derived feedback policy guarantees convergence of the system to the
desired periodic orbit. In this section, the resulting responses of the controlled system are
shown by performing simulations. As the non-distributed controller has been derived using
continuous values of the buffer contents, first continuous simulations are performed to shown
the stable closed-loop dynamics, as well as the convergence of the system to the desired system
behavior. Also a discrete event model is presented, as in reality buffer contents can only have
natural values. First, the results of a deterministic simulation are compared to the results of a
continuous simulation. After that, a more interesting simulation is performed using stochastic
system parameters. Finally, the improvements of this derived feedback policy is compared
with other policies.

Continuous simulation

As the non-distributed controller has been designed using continuous values of the buffer
contents, first continuous simulations are performed to shown the stable closed-loop dynamics,
as well as the convergence of the system towards the desired periodic orbit. The continuous
model is implemented in Matlab and is presented in Appendix A.1.

In the first simulation, a case with an empty system is considered and where the controller
for workstation A and B is initiated in respectively “processing step 1” and “processing step
2”. For this initial system state, i.e. for (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) =

(1, 2, 0, 0, 0, 0, 0, 0), the resulting responses of the controlled system are shown. In Figure 4.11
and Figure 4.12, the resulting closed-loop dynamics, as well as the behavior of each work-
station are presented. In Figure 4.13, the amount of work in the system and the weighted
wip-level for this case are shown.

The simulation results of workstation A for this case are shown in Figure 4.11. When the graph
in the right hand side of this figure is passed through like the periodic orbit of Figure 4.1 from
light grey to black, then it is clear that the controller will make the behavior of workstation
A converge towards the desired periodic orbit of Figure 4.1. Once workstation A operates
according to this desired periodic orbit, workstation A reaches desired steady state behavior.
This can be seen in the left hand side of Figure 4.11, where the buffer contents of buffers 1
and 4 are shown during this convergence.

The same analysis holds for workstation B, the controller will make the behavior of this
workstation converge towards the desired periodic orbit of Figure 4.1 which is presented in
the right hand side of Figure 4.12. Once workstation B operates according to this desired
periodic orbit, workstation B also reaches desired steady state behavior. This can be seen
in the left hand side of Figure 4.12, where the buffer contents of buffers 2 and 3 are shown
during this convergence.

In Figure 4.13, simulation results of the amount of work and the weighted wip-level are shown.
The amount of work in the system settles down exactly to the amount of work of the desired
periodic system behavior, which is presented in Figure 4.4. When the system operates in

4.7. Simulation experiments 75

0 1 2 3 4 5

x 104

0

100

200

300

400

500

600

700

800

900

1000

time

bu
ffe

r c
on

te
nt

s

x1
x4

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

x1

x4

Figure 4.11: Continuous simulation results of workstation A for an empty system.

0 1 2 3 4 5

x 104

0

100

200

300

400

500

600

700

800

900

1000

time

bu
ffe

r c
on

te
nt

s

x2
x3

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

x2

x3

Figure 4.12: Continuous simulation results of workstation B for an empty system.

steady state, the mean amount of work in the system equals 1695 time-units, as should be
the case (see (4.1)). Also, the weighted wip-level of the system settles down exactly to the
weighted wip-level of the desired periodic system behavior. When the system operates in
steady state, the weighted wip-level equals 3150, as should be the case (see (3.26)).

In the second simulation, a case with initially 1000 jobs in each buffer is considered and
where the controller for workstation A and B is initiated in respectively “setting up for
processing step 4” and “setting up for processing step 3”. For this initial system state,
i.e. for (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (4, 3, 50, 50, 1000, 1000, 1000, 1000),

the resulting responses of the controlled system are shown. In Figure 4.14 and Figure 4.15,
the resulting closed-loop dynamics, as well as the behavior of each workstation are presented.
In Figure 4.16, the amount of work in the system and the weighted wip-level for this case are
shown.

The controller will make the behavior of each workstation converge towards the desired pe-
riodic orbit of Figure 4.1. In steady state, the system operates according to desired periodic
system behavior of Figure 4.4.

In Figure 4.16, simulation results of the amount of work and the weighted wip-level are
presented. The amount of work in the system converges exactly to the amount of work of

76 Chapter 4. Non-distributed controller

0 1 2 3 4 5

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

time

am
ou

nt
 o

f w
or

k

0 1 2 3 4 5

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

time

w
ei

gh
te

d
w

ip
−l

ev
el

Figure 4.13: Continuous simulation results of amount of work and weighted wip-level for an empty system.

0 2 4 6 8 10

x 104

0

500

1000

1500

2000

2500

time

bu
ffe

r c
on

te
nt

s

x1
x4

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

x1

x4

Figure 4.14: Continuous simulation results of workstation A for a ‘full’ system.

the desired periodic system behavior, which is presented in Figure 4.4. Also, the weighted
wip-level of the system converges exactly to the weighted wip-level of the desired periodic
system behavior. When the system operates in steady state, the mean amount of work equals
1695 time-units and the weighted wip-level equals 3150, as should be the case.

Discrete event simulation

As in reality buffer contents can only have natural values, in this section a discrete event
model is presented. This discrete event model is made using the specification language χ.
This χ-script is presented in Appendix A.2.

Before a more interesting simulation is performed with stochastic system parameters, first
deterministic simulations are performed to make sure that this discrete event model is correct.
This verification is made by comparing the results of the discrete event model with the
results of the continuous model using the same deterministic system parameters. Although
the same system parameters are used, some differences are possible due to the difference —
continuous and discrete — in job-type flow. But, the resulting responses of the controlled
system obtained with the discrete event model are the same as that with the continuous

4.7. Simulation experiments 77

0 2 4 6 8 10

x 104

0

500

1000

1500

2000

2500

3000

time

bu
ffe

r c
on

te
nt

s

x2
x3

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

x2

x3

Figure 4.15: Continuous simulation results of workstation B for a ‘full’ system.

0 2 4 6 8 10

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

time

am
ou

nt
 o

f w
or

k

0 2 4 6 8 10

x 104

0

2000

4000

6000

8000

10000

12000

time

w
ei

gh
te

d
w

ip
−l

ev
el

Figure 4.16: Continuous simulation results of amount of work and weighted wip-level for a ‘full’ system.

model which proves correctness of the discrete event model. For both models, the resulting
responses of the controlled deterministic system with an initial system state (m,x0,x) =
(mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (4, 2, 0, 50, 500, 500, 500, 500) are shown in Figure 4.17. The

overall system behavior is the same for both models which proves correctness of the models.

After this verification, more interesting simulations can be performed using stochastic system
parameters. All previous simulations are obtained with deterministic system parameters. In
the next simulations, all the system parameters are not fixed but they are made stochastic
by drawing them from independent exponential distributions. All the process times, setup
times and the inter arrival time λ into buffer 1 are made stochastic. The process times for
step 1 are drawn from an exponential distribution with mean 0.3, process times for step 2 are
drawn from an exponential distribution with mean 0.6, process times for step 3 are drawn
from an exponential distribution with mean 0.3 and the process times for step 4 are drawn
from an exponential distribution with mean 0.6. Also, all the setup times are drawn from
independent exponential distributions with mean 50 and the inter arrival times are drawn
from an exponential distribution with mean 1. The case with initially a lot of jobs in the
buffers — the case where each buffer contains initially 1000 jobs and where the controller
for workstation A and B is initiated in respectively “setting up for processing step 4” and

78 Chapter 4. Non-distributed controller

0 1 2 3 4 5 6 7 8

x 104

0

500

1000

1500

2000

2500

time

am
ou

nt
 o

f w
or

k

Continuous
Discrete event

0 1 2 3 4 5 6 7 8

x 104

0

1000

2000

3000

4000

5000

6000

time

w
ei

gh
te

d
w

ip
−l

ev
el

Continuous
Discrete event

Figure 4.17: Comparison continuous model with discrete event model.

“setting up for processing step 3” — is considered again. For this initial system state, i.e. for
(m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (4, 3, 50, 50, 1000, 1000, 1000, 1000), a resulting

response of the controlled system is given in Figure 4.18 and Figure 4.19.

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

x1

x4

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

x2

x3

Figure 4.18: Discrete event simulation results of each workstation for a stochastic system.

Due to the stochastic system parameters, the designed controller can not exactly make the
system converge towards the desired periodic orbit of Figure 4.1. The cycle period and
the number of jobs present in the system vary and are not periodically which means that
workstations are not always able to supply the buffers for the next step on time. As a
consequence the cycle period and the mean number of jobs present in the system are likely
to increase. While looking at Figure 4.19 this is the case, the mean amount of work and the
weighted wip-level of the system in steady state are higher than the cases using deterministic
system parameters. Although the system behavior varies over time due to this stochasticity,
the designed controller will make the system converge to steady state which results in a system
behavior with a small mean number of jobs in the system. This is proven in the next section,
where the resulting responses of the derived feedback policy are compared with other policies.

4.8. Comparison of derived feedback policy with other policies 79

0 5 10 15

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

time

am
ou

nt
 o

f w
or

k

0 5 10 15

x 104

0

2000

4000

6000

8000

10000

12000

time

w
ei

gh
te

d
w

ip
−l

ev
el

Figure 4.19: Discrete event simulation results of amount of work and weighted wip-level for a stochastic system.

4.8 Comparison of derived feedback policy with other policies

In the previous section, simulations are performed to check the designed non-distributed
controller both for cases with deterministic as well as for cases with stochastic inter arrival
times, process times and setup times. For cases with deterministic system parameters, we
can conclude that the derived feedback policy will always make the system converge from any
initial condition towards the desired periodic orbit which results in desired periodic system
behavior with the smallest mean number of jobs in the system. This is proven in previous
sections. Also for cases with stochastic system parameters, the derived feedback policy will
make the system converge from any initial condition towards a periodic orbit which closes
almost with the desired periodic orbit. That the derived feedback policy results in desired
system behavior for stochastic cases is shown in this section by comparing the resulting
responses of the controlled system with the derived feedback policy with other policies. Also,
the improvements of this derived feedback policy are shown.

Clearing policies

As mentioned earlier, it was shown analytically that using a certain clearing policy results
in an unstable reentrant system. Even though each machine in each workstation has enough
capacity to process all jobs, λ

μ1
+ λ

μ4
< 1 and λ

μ2
+ λ

μ3
< 1, it has been shown in [KS90]

and [PJK94] that since λ
μ2

+ λ
μ4

> 1 and setup times are all positive, using a clearing policy
— process the jobs in a buffer until it is empty, then switch to another buffer — for both
workstations results in an unstable system. This instability is not only under continuous
job-type flow but also if the job-types are discrete [PJK94]. A machine is processing jobs
from a buffer too long, this results in starvation of other machines and therefore a waste of
their capacity. Due to this waste the effective capacity of the other machines is not sufficient
anymore, resulting in an unstable system. This observation has led to the development of
so-called buffer regulators [PJK94] or gated policies which is presented in next section.

A system is unstable if the total number of jobs in the system explodes as time evolves. To
make this more clear, Figure 4.20 and Figure 4.21 show the discrete event simulation results

80 Chapter 4. Non-distributed controller

of an unstable system controlled by a clearing policy with initial system state (m, x0,x) =
(mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (4, 3, 50, 50, 1000, 1000, 1000, 1000).

0 0.5 1 1.5 2 2.5 3

x 104

0

1000

2000

3000

4000

5000

6000
Workstation A

time

B
uf

fe
r c

on
te

nt
s

x1A
x4A

0 0.5 1 1.5 2 2.5 3

x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Workstation B

time

B
uf

fe
r c

on
te

nt
s

x2B
x3B

Figure 4.20: Discrete event simulation results of each workstation for an unstable system.

0 0.5 1 1.5 2 2.5 3

x 104

4000

5000

6000

7000

8000

9000

10000

11000

12000

time

am
ou

nt
 o

f w
or

k

0 0.5 1 1.5 2 2.5 3

x 104

0

0.5

1

1.5

2

2.5

3

3.5
x 104

time

w
ei

gh
te

d
w

ip
−l

ev
el

Figure 4.21: Discrete event simulation results of amount of work and weighted wip-level for an unstable system.

Looking at Figure 4.20, we can conclude that the total number of jobs in the system explodes
as time evolves which results in an unstable system. In the next section, a gated policy is
used which will control the system to a periodic orbit.

Gated policies

Gated policies or buffer regulators will make the system converge to steady state system be-
havior. In this section, the resulting responses of the controlled system with buffer regulators
are compared with the results of the derived feedback policy. The main idea behind buffer
regulators is that each buffer in the system contains a gate, so that the buffer is split into
two parts. A part before the gate (a regulator buffer) and a part after the gate (a regulated
buffer), see also Figure 4.22. Instead of switching depending on the total buffer contents in a
buffer, switching is now determined based on the buffer contents after the gate. As a result,
a workstation might now switch earlier — the regulated buffer is emptied while the regulator

4.8. Comparison of derived feedback policy with other policies 81

buffer can contain some jobs — avoiding long periods of processing the jobs for one step which
was the case when a clearing policy is used.

WS

xi

regulator

buffer

regulated

buffer

vp,i up,i

m

Figure 4.22: A regulator buffer constrains the input of jobs available to workstation m.

To create a stable system, the arrival rate of jobs (vp,i) into the regulated buffer from the
regulator buffer has to satisfy the following condition [PJK94].

∑
b(p,i)∈{Bm}

vp,i

up,i
< 1. (4.26)

With: bp,i = job-type p stored in buffer i that works with workstation m,
Bm = set of buffers that works with workstation m,
vp,i = arrival rate of job-type p into the regulated buffer from the regulator buffer,
up,i = process rate for job-type p of buffer i at workstation m.

In this project, the system only processes the jobs at maximal rate to obtain desired periodic
system behavior. With an arrival rate vp,i equal to λ = 1

[
job

time-unit

]
, condition (4.26) is

satisfied. For this case, simulations are performed to compare the results with the derived
feedback policy.

With buffer regulators, the reentrant manufacturing system of Figure 2.1 becomes the system
presented in Figure 4.23. Note that buffer 1 does not need a buffer regulator, the inter arrival
rate λ into the buffer regulator of buffer 1 is the same as the arrival rate into the regulated
buffer. The model of this system is made using the specification language χ. This χ-script is
presented in Appendix A.3.

A B

λ
x1

x2

x3
x4

σ14 | σ41 σ23 | σ32

μ1 μ2

μ3μ4

λ

λ λ

Figure 4.23: Reentrant manufacturing system with buffer regulators.

First, simulations with deterministic system parameters are performed. The results of the
derived feedback policy is compared with the results of the buffer regulators. For both policies,
a case with empty buffers is considered and where the controller for workstation A and B is

82 Chapter 4. Non-distributed controller

initiated in respectively “processing step 1” and “processing step 2”. For this initial system
state, i.e. for (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (1, 2, 0, 0, 0, 0, 0, 0), the resulting

responses of the controlled system are shown in Figure 4.24.

0 1 2 3 4 5 6 7

x 104

0

500

1000

1500

2000

2500

time

am
ou

nt
 o

f w
or

k

buffer regulator
derived feedback policy

0 1 2 3 4 5 6 7

x 104

0

1000

2000

3000

4000

5000

6000

7000

time
w

ei
gh

te
d

w
ip

 le
ve

l

buffer regulator
derived feedback policy

Figure 4.24: Discrete event simulation results of amount of work and weighted wip-level.

Looking at Figure 4.24, we can see that both policies will make the system converge towards
a stable steady state system behavior. The derived feedback policy will make the system
converge towards a steady state system behavior with a smaller mean amount of work in the
system and a smaller weighted wip-level of the system than the case when buffer regulators
are used. From this chapter, it is known that the derived feedback policy will make the system
converge towards steady state system behavior. For buffer regulators, we only know that we
can achieve stable steady state system behavior. But we can not guarantee that the resulting
system behavior is desired. The conclusion is that the derived feedback policy guarantees
convergence of the system towards periodic system behavior with the smallest mean number
of jobs in the system.

In the next simulation, a case with stochastic system parameters and where each buffer
contains initially 1000 jobs is considered. When buffer regulators are used, all these 1000 jobs
are initially stored in the regulator buffer of each buffer. All process times, setup times and
the inter arrival rate into buffer 1 are made stochastic by drawing them from independent
exponential distributions. The controller for workstation A and B is initiated in respectively
“setting up for processing step 4” and “setting up for processing step 3”. For this initial system
state, i.e. for (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (1, 2, 0, 0, 1000, 1000, 1000, 1000),

the resulting responses of the controlled system are shown. In Figure 4.25, the amount of
work in the system and the weighted wip-level for this case are shown.

Although the system behavior varies over time due to the stochasticity, both policies will
make the system converge to a stable steady state system behavior. Looking at Figure 4.25,
it can be concluded that the derived feedback policy will make the system converge towards
a steady state system behavior with a smaller mean amount of work in the system and a
smaller weighted wip-level of the system than the case when buffer regulators are used. From
previous sections, it is known that the derived feedback policy will make the system converge
towards steady state system behavior. For buffer regulators, it is not known when the system
reaches steady state system behavior.

4.8. Comparison of derived feedback policy with other policies 83

0 5 10 15

x 104

0

1000

2000

3000

4000

5000

6000

time

am
ou

nt
 o

f w
or

k

buffer regulator
derived feedback policy

0 5 10 15

x 104

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

time

w
ei

gh
te

d
w

ip
 le

ve
l

buffer regulator
derived feedback policy

Figure 4.25: Discrete event simulation results of amount of work and weighted wip-level.

At the end of this chapter, we can conclude that the derived non-distributed controller guar-
antees convergence of the system towards desired periodic system behavior from any arbitrary
initial condition.

84 Chapter 4. Non-distributed controller

Chapter 5

Distributed controller

In Chapter 4, a non-distributed controller is designed which will make the system converge
from any arbitrary initial condition towards the desired periodic system behavior. This con-
troller is non-distributed, each workstation needs to have global state information for deter-
mining when to switch. For manufacturing systems, this so-called “global policy” is feasible,
maybe also for some urban traffic networks. However, for other networks, e.g. communi-
cation networks or computer networks, this global information might not be available. For
these networks, a distributed controller is designed.
As already mentioned in the Introduction, this chapter deals with the third research objective,
which was formulated as follows:

Research objective 3:
Determine a distributed controller (local policy) which makes the specific manufacturing
system converge towards the desired system behavior from any initial condition.

With this feedback controller, each workstation needs only local state information. In the
specific manufacturing system, workstation A does not require information about the state
at workstation B to determine its next task and workstation B does not require information
about the state at workstation A. In this chapter, a distributed controller is designed which
achieves a similar result as the non-distributed controller.

5.1 Derivation of the distributed controller

The non-distributed controller of previous chapter is taken as a starting point for deriving a
distributed controller.

• If the system operates in mode (1, 3), switch immediately to mode (4, 3).

• If the system operates in mode (4, 3), stay in this mode until buffer 3 is empty. Then
switch to mode (4, 2).

• If the system operates in mode (4, 2), stay in this mode until either x2 ≤ 250
3 and x4 = 0.

Then switch to mode (1, 2).

85

86 Chapter 5. Distributed controller

• If the system operates in mode (1, 2), stay in this mode until buffer 1 is empty. Then
switch to mode (4, 3).

Before a distributed controller is derived, first the above non-distributed controller description
is defined for each workstation separately. After that, the description can be adapted to a
distributed controller.

First, the non-distributed controller is described for each workstation separately. Lets consider
workstation A. From the desired periodic system behavior in Figure 4.4, it is known that the
system always processes the jobs at maximal rate and it cyclically visits the modes (4, 3),
(4, 2) and (1, 2). If workstation A is processing the jobs for step 4, it continues processing the
jobs until both x2 ≤ 250

3 and x4 = 0. Then the controller switches workstation A to step 1.
The controller description for step 4 of workstation A can be defined as: “If workstation A is
processing the jobs for step 4, continue processing the jobs until both x2 ≤ 250

3 and x4 = 0.
Then switch to step 1.” If workstation A is processing the jobs for step 1, continue processing
the jobs until buffer 1 is empty. The controller description for step 1 of workstation A can be
defined as: “If workstation A is processing the jobs for step 1, continue processing the jobs
until x1 = 0. Then switch to step 4.”
Lets consider now workstation B. If workstation B is processing the jobs for step 3, it continues
processing the jobs until buffer 3 is empty. The controller switches then the workstation to step
2. The controller description for step 3 of workstation B can be defined as: “If workstation
B is processing the jobs for step 3, continue processing the jobs until buffer 3 is empty.
Then switch to step 2.” If workstation B is processing the jobs for step 2, according to the
non-distributed controller description, the controller will only switch again to step 3 when
workstation A finishes step 1. The controller description for step 2 of workstation B can be
defined as: “If workstation B is processing the jobs for step 2, continue processing the jobs
until buffer 1 is empty. Then switch to step 3.”

The non-distributed controller description for each workstation separately is defined as:

• Controller for workstation A:

- If processing step 1, continue until x1 = 0. Then switch to step 4.

- If processing step 4, continue until both x4 = 0 and x2 ≤ 250
3 . Then switch to step

1.

• Controller for workstation B:

- If processing step 2, continue until x1 = 0. Then switch to step 3.

- If processing step 3, continue until x3 = 0. Then switch to step 2.

Both workstations — step 4 of workstation A and step 2 of workstation B — need global
state information. If a distributed controller is needed, the controller description should be
adapted. Lets first consider workstation B. According to the proof of convergence in previous
chapter, a distributed controller for workstation B exists. The controller needs to make sure
that the system behavior still satisfies condition (4.19) for k ≥ 3. This condition depends
only on the buffer contents of buffers 2 and 3, which means that a distributed controller for

5.1. Derivation of the distributed controller 87

workstation B exists. According to the steady state system behavior in Figure 4.4, the system
starts setting up to mode (4, 3). When the setup to mode (4, 3) has completed, workstation B
processes all the jobs for step 3 until buffer 3 is empty. Then workstation B switches to step
2 and processes the jobs for step 2 until buffer 2 is empty. At the time moment that buffer 2
becomes empty, workstation A starts processing the jobs for step 1 at maximal rate. In this
case, workstation B can continue processing the jobs for step 2 at maximal rate until buffer 1
is empty. With μ1 = 2μ2, workstation B processes the jobs two times slower than workstation
A. This means that half of the number of processed jobs of step 1 is stored in buffer 2 and
the other half of the number of processed jobs is stored in buffer 3. When x̄1 denotes the
number of processed jobs for step 1 during a cycle period and x̄2 denotes the number of jobs
in buffer 2 after the setup to step 2 has completed, then it is known that when workstation
A finishes step 1, buffer 2 contains at least 1

2 x̄1 jobs and buffer 3 contains at least x̄2 + 1
2 x̄1

jobs. This means that workstation B finishes step 2 when at least x̄2 + 1
2 x̄1 jobs have been

processed. Workstation B still need global state information. But according to the steady
state system behavior in Figure 4.4, it is known that both workstations have to process at
least 1000 jobs for every step during a cycle period. Therefore, workstation A finishes step 1
when x1 = 0 and at least 1000 jobs have been processed. Also, workstation B has processed
at least 1000 jobs for step 2 when workstation A finishes step 1. At the start of mode (4, 3),
buffer 3 contains at least 1000 jobs. According to the desired system behavior, the number
of processed jobs of step 1 is equal to the number of processed jobs of step 3 during a cycle
period, i.e. x̄1 = x̄3. Therefore, the controller for step 2 of workstation B can be defined as
“If processing step 2, continue until max

(
1000, x̄2 + 1

2 x̄3

)
have been processed. Then switch

to step 3.” If the system starts initially in mode (4, 2) or in mode (1, 2), then no jobs have
been processed for step 3 and x̄3 = 0.

With the above analysis for step 2, the controller description for each workstation can be
defined as:

• Controller for workstation A:

- If processing step 1, continue until both x1 = 0 and at least 1000 jobs have been
processed. Then switch to step 4.

- If processing step 4, continue until both x4 = 0 and x2 ≤ 250
3 . Then switch to step

1.

• Controller for workstation B:

- Let x̄2 denote the number of jobs in buffer 2 when the setup to step 2 has completed
and let x̄3 denote the number of processed jobs for step 3 in previous mode. If
processing step 2, continue until max(1000, x̄2 + 1

2 x̄3) jobs have been processed.

- If processing step 3, continue until x3 = 0. Then switch to step 2.

Note, that step 1 and step 2 are finished when at least 1000 jobs have been processed respec-
tively. In case when x1 = 0 and workstation A has not processed at least 1000 jobs for step
1, workstation A is waiting until buffer 1 receives a job from the inter arrival rate λ. This job
is then send to workstation A, where it is processed at maximal rate. Workstation A repeats
these actions until x1 = 0 and at least 1000 jobs have been processed. Workstation A switches
then to step 4. The same analysis holds for step 2 of workstation B. Whereas, step 3 and step

88 Chapter 5. Distributed controller

4 can not always process at least 1000 jobs during a cycle period. If the system operates in
the feasible domain, both workstations will always process at least 1000 jobs for step 3 and
step 4. But when the system operates outside the feasible domain, we can not guarantee that
both workstations process at least 1000 jobs for steps 3 and 4. Consider the case that buffer
3 is empty and workstation B has not processed at least 1000 jobs. In this case, workstation
B will never process at least 1000 jobs, because no jobs are entering buffer 3. The controller
can better switch to step 2 instead of waiting until 1000 jobs have been processed which will
never happen. Therefore, the controller of workstation B switches only to step 2 when buffer
3 is empty. In case when x4 = 0, x3 = 0 and workstation A has not processed at least 1000
jobs for step 4, then workstation A can better switch to step 1 instead of waiting for a long
time until at least 1000 jobs have been processed.

Only step 4 of workstation A needs global state information. But this controller can also be
implemented in a distributed way. Consider the case when x4 = 0 and x2 > 250

3 . According to
the controller description, workstation A has to idle until x2 ≤ 250

3 . However, instead of first
idling and then processing step 1, workstation A can also first switch to step 1, processing the
jobs and then idle for the same duration. As long as workstation B finishes processing the jobs
for step 2 at the same time as in the non-distributed controller description, condition (4.19)
still holds. Therefore, the (possible) idle duration of workstation A can be shifted without
changing the behavior of workstation B. According to the steady state system behavior in
Figure 4.4, it is allowed to switch to step 1 when x4 = 0 and x1 ≥ 650. In case when x4 = 0
and x1 < 650, workstation A idles at the end of step 4 until x1 ≥ 650. This idle duration is
relatively short when the system operates in the feasible domain. In cases when the system
operates outside the feasible domain, it is better to switch to step 1 instead of idling for
a relatively long duration which results in a waste of capacity. For example, consider the
case when the system is initially empty and the controller for workstation A is initiated in
“processing step 4”. Workstation A has to idle first for at least 650 time-units — after that
x4 = 0 and x1 ≥ 650 — before it can switch to step 1. For this case, workstation A can better
switch to step 1, finishing the setup and processing the jobs. In that case, workstation B can
also process the jobs for step 2, instead of idling until buffer 2 receives a job from step 1.
Therefore, workstation A has not only finished step 4 when x4 = 0 and x1 ≥ 650. Step 4
is also finished when x4 = 0 and workstation A has processed at least an amount of jobs
for step 4. It is known that the system finishes mode (4, 3) when buffer 3 is empty. Buffer
4 contains then at least 1

2 x̄3 jobs with x̄3 the number of processed jobs of step 3 during a
cycle period. If workstation A has processed at least 1

2 x̄3 jobs for step 4, then workstation A
continues processing the jobs for step 4 in mode (4, 2) until buffer 4 is empty. Workstation
A still need global state information. But according to desired system behavior, the number
of processed jobs of step 1 is equal to the number of processed jobs of step 3 during a cycle
period, i.e. x̄1 = x̄3. Therefore, the controller for step 4 of workstation A can be defined as
“If processing step 4, continue until x4 = 0 and either at least 1

2 x̄1 jobs have been processed
or buffer 1 contains at least 650 jobs. Then switch to step 1.” The controller for step 4 of
workstation A is now a distributed controller, it contains only local state information.

The non-distributed controller in previous chapter is now implemented in a distributed way.
Each workstation has a separate controller where both controllers need only local state infor-
mation.

• Controller for workstation A:

5.2. Simulation experiments 89

- If processing step 1, continue until both x1 = 0 and at least 1000 jobs have been
processed. Then switch to step 4.

- Let x̄1 denote the number of processed jobs for step 1 in previous mode. If process-
ing step 4, continue until x4 = 0 and either at least 1

2 x̄1 jobs have been processed
or buffer 1 contains at least 650 jobs. Then switch to step 1.

• Controller for workstation B:

- Let x̄2 denote the number of jobs in buffer 2 when the setup to step 2 has completed
and let x̄3 denote the number of processed jobs for step 3 in previous mode. If
processing step 2, continue until max(1000, x̄2 + 1

2 x̄3) jobs have been processed.

- If processing step 3, continue until x3 = 0. Then switch to step 2.

In next section, simulations are performed to check the performance of the distributed feed-
back in closed-loop with the reentrant manufacturing system as depicted in Figure 2.1, both
for deterministic as well as for stochastic system parameters.

5.2 Simulation experiments

The reentrant manufacturing system as depicted in Figure 2.1 in closed-loop with the dis-
tributed controller is modeled using the specification language χ. This discrete event model
is presented in a χ-script in Appendix B.

First, discrete event simulations are performed to make sure that this discrete event model
is correct. This verification is made by comparing the results of this discrete event model
with the results of the continuous model in previous chapter using the same determinis-
tic system parameters. In previous chapter, this verification was also made for the non-
distributed controller. Although the same deterministic system parameters are used, some
differences are possible. On the one hand, differences in job-type flow — continuous and
discrete — are possible and on the other hand, differences in feedback — non-distributed and
distributed — are possible. For both models, the resulting responses of the controlled deter-
ministic system with an initial system state (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) =

(4, 3, 50, 50, 1000, 1000, 1000, 1000) are shown in Figure 5.1.

From Figure 5.1, it is clear that both simulations start from the same initial system state and
they will end up in the same steady state. Only, during the transient phase, i.e. during the
convergence from the initial system state towards the steady state, the resulting responses
of the controlled system are different. These differences are caused due to the difference in
job-type flow and feedback. Although the transient phase of both models is not exactly the
same, the overall system behavior is the same for both models which proves correctness of
the discrete event model.

Looking better at the resulting responses of the controlled system in Figure 5.1, it is clear
that the non-distributed controller from previous chapter will make the system converge faster
towards the desired periodic system behavior than the case when the distributed controller is
used. Also, the mean amount of work in the system and the weighted wip-level of the system
during this convergence are smaller when the non-distributed controller is used. Not only for

90 Chapter 5. Distributed controller

0 2 4 6 8 10 12

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

time

am
ou

nt
 o

f w
or

k

Distributed
Non−Distributed

0 2 4 6 8 10 12

x 104

0

2000

4000

6000

8000

10000

12000

time

w
ei

gh
te

d
w

ip
−l

ev
el

Distributed
Non−Distributed

Figure 5.1: Simulation results: distributed feedback and non-distributed feedback.

this initial system state, but for any arbitrary initial system state these two conclusions can be
drawn. This means that when the system can controlled by both feedbacks, a non-distributed
controller is preferred.

After this verification, more interesting simulations can be performed using stochastic system
parameters. Previous simulation results are obtained with deterministic system parameters.
In next simulation, all the system parameters are not fixed but they are made stochastic
by drawing them from independent exponential distributions. All the process times, setup
times and the inter arrival time λ are made stochastic. The case with initially 1000 jobs
in each buffer and where the controller for workstation A and B is initiated in respectively
“processing step 1” and “processing step 2” is considered again. For this initial system state,
i.e. for (m, x0,x) = (mA,mB, xA

0 , xB
0 , x1, x2, x3, x4) = (1, 2, 0, 0, 1000, 1000, 1000, 1000), the

resulting responses of the controlled system are given in Figure 5.2.

0 5 10 15

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

time

am
ou

nt
 o

f w
or

k

0 5 10 15

x 104

0

2000

4000

6000

8000

10000

12000

time

w
ei

gh
te

d
w

ip
−l

ev
el

Figure 5.2: Discrete event simulation results of the system controlled by a distributed feedback.

Due to the stochastic system parameters, the designed controller can not exactly make the
system converge towards the desired periodic orbit of Figure 4.1. The cycle period and
the number of jobs present in the system vary and are not periodically which means that
workstations are not always able to supply the buffers for the next step on time. As a
consequence the cycle period and the mean number of jobs present in the system are likely

5.2. Simulation experiments 91

to increase. While looking at Figure 5.2 this is the case, the mean amount of work and the
weighted wip-level of the system in steady state are higher than the cases using deterministic
system parameters where the mean amount of work equals 1695 time-units and the weighted
wip-level equals 3150. Although the system behavior varies over time due to this stochasticity,
the designed controller will make the system converge towards steady state behavior with a
small mean number of jobs in the system. In case when buffer regulators are used, the mean
amount of work in the system (5000 time-units) and the weighted wip-level in the system
(13000) are not reduced during the simulation. It remains constant instead of converging
towards the desired periodic orbit, see also Figure 4.25.

The non-distributed controller in previous chapter has been implemented successfully in a
distributed way. The distributed controller also guarantees convergence of the system from
any arbitrary initial condition towards the desired periodic orbit, both for deterministic as
well as stochastic system parameters.

92 Chapter 5. Distributed controller

Chapter 6

Conclusions and recommendations

In this project, the control of a reentrant manufacturing system with setup times as introduced
by Kumar and Seidman is investigated. Most literature on this control problem has one thing
in common: first a policy (or a class of policies) is proposed, and then the resulting behavior
of the system under this policy (these policies) is considered. Sometimes the system behavior
is optimized over the class of considered policies. A strength of these results is that they
can be applied to general networks. A drawback however is that it is usually unclear if
the presented policies result in optimal system behavior, or what to do to obtain prescribed
or desired system behavior. Therefore, an other approach is followed in this project which
guarantees desired system behavior. First, the desired system behavior is determined and
then a feedback policy is derived which achieves this desired behavior. The way to derive this
feedback policy has been illustrated extensively in this report. In this chapter, the conclusions
of this project are summarized, based on the research objectives that have been formulated
in Chapter 1.

The first research objective was formulated as follows:

Research objective 1:
Determine the desired periodic system behavior.

The approach followed in this project starts from desired system behavior. This implies that
we first need to define this desired system behavior. For manufacturing systems, this would
typically be behavior for which the mean amount of jobs in the system is minimal. From
Little’s law, it is known that this results in the smallest cycle period. After determining this
minimal cycle period, several periodic cycles exist which minimizes the mean amount of jobs
in the system. Therefore, we also consider the mean amount of work in the system. The
amount of work or weight is associated with holding costs for storing a job in a buffer. In the
specific reentrant manufacturing system, we are dealing with increasing weights which means
that more value is added to the jobs after every step during a production cycle. For this
specific reentrant system, an periodic cycle is determined with respect to minimal weighted
work in progress level which minimizes the cycle period and the mean amount of jobs in
the system. In Chapter 3, the desired behavior of the reentrant manufacturing system as
introduced by Kumar and Seidman is determined and proven step by step.

The second research objective was formulated as follows:

93

94 Chapter 6. Conclusions and recommendations

Research objective 2:
Determine a non-distributed controller (global policy) which makes the specific manufac-
turing system converge towards the desired system behavior from any initial condition.

After the desired periodic system behavior is determined, a feedback controller is designed —
based on Lyapunov’s direct method — which guarantees convergence of the system towards
this desired behavior from any initial condition. First, the desired closed-loop behavior of the
system is determined. Based on this given desired periodic orbit, an “energy” of the system
can be defined by considering the mean amount of work in the system. Depending on the
initial condition, either one or more translated desired periodic orbits can be obtained which
go through this initial condition. The translated desired periodic orbit with the smallest mean
amount of work in the system which go through this initial condition is used as a starting point
for the controller. By controlling the system in a way that this “energy” is never increasing,
the system stabilizes at a fixed energy level and the controller has made the system converge
from the initial condition towards the desired periodic orbit. In Chapter 4, the way to derive
this feedback controller from the given desired periodic orbit is illustrated extensively. Also,
it is proved analytically, that this designed feedback controller guarantees convergence of
the system towards the desired behavior from any initial condition. The derived feedback
controller is implemented successfully in a continuous as well as discrete event simulation.
After performing several simulations with different initial conditions, the resulting responses
of the controlled system always show stable closed-loop dynamics as well as convergence
towards the desired behavior. In comparison with buffer regulators and clearing policies,
the derived feedback policy guarantees convergence of the system from any initial condition
towards desired behavior with a small mean amount of jobs in the system.

The third research objective was formulated as follows:

Research objective 3:
Determine a distributed controller (local policy) which makes the specific manufacturing
system converge towards the desired system behavior from any initial condition.

The designed controller is a non-distributed controller, each workstation needs to have global
state information for determining when to switch. For manufacturing systems, this so-called
“global policy” is feasible, maybe also for some urban traffic networks. However, for other
networks, e.g. communication networks or computer networks, this global information might
not be available. For these networks, the designed non-distributed controller is implemented
successfully in a distributed way, i.e. such that each workstation only requires local state
information for determining when to switch. The way to derive this distributed controller is
presented in Chapter 5. The performance of the designed distributed controller is analyzed
by means of a discrete event simulation. The resulting responses of the controlled system
always show stable closed-loop dynamics as well as convergence towards the desired behavior.

In cases, when the system can be controlled by both derived controllers, the non-distributed
controller is preferred above the distributed controller. Although, both derived controllers will
make the system converge towards the same desired behavior, the non-distributed controller
will make the system converge faster towards this desired behavior. Also, the weighted amount
of work and the mean number of jobs in the system during the transient phase — the phase
between the initial condition and the desired behavior — are smaller.

The fourth research objective was formulated as follows:

95

Research objective 4:
Check if the developed feedback controllers work for systems with stochastic system pa-
rameters by performing simulations.

Even though the feedback policies have been derived for deterministic systems, the derived
feedback policies can also be applied in cases with stochastic system parameters. Instead of
fixed system parameters, all process times, setup times and the inter arrival time into the first
buffer are made stochastic by drawing them from independent exponential distributions. Also,
for this case with stochastic settings, the performance of the derived controllers is analyzed by
performing discrete event simulations. Due to the stochastic system parameters, the designed
controller can not exactly make the system converge towards the desired periodic orbit. The
cycle period and the number of jobs present in the system vary and are not periodically which
means that workstations are not always able to supply the buffers for the next step on time.
As a consequence the cycle period and the mean number of jobs present in the system are
likely to increase. Although the system behavior varies over time due to this stochasticity,
both feedback policies will make the system converge towards desired behavior with a small
mean number of jobs in the system.

Recommendations

In this report, the feedback control strategy has only been applied successfully to a reentrant
manufacturing system with setup times consisting of two workstations and processing a single
job-type. In this section, some recommendations for further research will be defined.

Controller design

The desired periodic orbit which is used as a starting point for the controller design is derived
using real buffer contents. In reality, buffer contents can only have natural values. This
difference in job-type can result in small changes of the desired periodic orbit of the system.
In further research, a desired periodic orbit of the system can be derived using buffer contents
which can only have natural values.

Lyapunov function

The controller design is based on Lyapunov’s direct method. Based on the derived desired
periodic orbit, an “energy” of the system can be defined by considering the mean amount of
work in the system. By continuously dissipating this energy, which is defined in the Lyapunov
function candidate, the derived feedback controller guarantees convergence of the system to
the desired periodic orbit in which the energy of the system stays constant. In further research,
an other Lyapunov function candidate can be derived which makes the system converge faster
to the desired periodic orbit.

96 Chapter 6. Conclusions and recommendations

Extended systems

The feedback control strategy is successfully applied to a reentrant manufacturing system
consisting of two workstations. Also for systems consisting of a single workstation, this
feedback control strategy is applied successfully [LR06a]. However, for systems consisting
of three or more workstations, this feedback control strategy is not applied yet. In further
research, this feedback control strategy can be applied to systems with several workstations.
Furthermore, it is maybe possible to define a general method for these systems to make this
feedback control strategy common applicable.

Bibliography

[BG96] S.X. Bai and S.B. Gershwin. Scheduling manufacturing systems with work-in-
progress inventory control: Reentrant systems. OR Spectrum, 18(4):187–195,
December 1996.

[Bis97] C.F.G. Bispo. Re-entrant flow lines. Technical report, Graduate school of in-
dustrial administration and the robotics institute, Carnegie Mellon University,
Pittsburgh, PA 15213, September 1997. http://users.isr.ist.utl.pt/ cfb/thesis.pdf.

[DYZ97] J.G. Dai, D.H. Yeh, and C. Zhou. The QNET method for re-entrant queueing net-
works with priority disciplines. Operation Research, 45(4):610–623, July-Augustus
1997.

[ELR06] J.A.W.M. van Eekelen, E. Lefeber, and J.E. Rooda. State feedback control
of switching servers with setups. SE Report 2006-03, Eindhoven University of
Technology, Systems Engineering Group, Department of Mechanical Engineering,
Eindhoven, The Netherlands, 2006. http://se.wtb.tue.nl/sereports.

[KK01] S. Kumar and P.R. Kumar. Queueing network models in the design and analysis
of semiconductor wafer fabs. IEEE Transactions on robotics and automation,
17(5):548–561, October 2001.

[KM95] P.R. Kumar and S.P. Meyn. Stability of queueing networks and scheduling poli-
cies. IEEE Transactions on Automatic Control, 40(2):251–260, February 1995.

[KS90] P.R. Kumar and T.I. Seidman. Dynamic instabilities and stabilization methods
in distributed real-time scheduling of manufacturing systems. IEEE Transactions
on Automatic Control, 35(3):289–298, March 1990.

[Kum93] P.R. Kumar. Re-entrant lines. Queueing Systems: Theory and Applications:
Special Issue on Queueing Networks, 13:87–110, May 1993.

[Lit61] J.D.C. Little. A proof of the queueing formula l = λw. Operations Research,
(9):383–387, 1961.

[LK91] S.H. Lu and P.R. Kumar. Distributed scheduling based on due dates and buffer
priorities. IEEE Transactions on Automatic Control, 36(12):1406–1416, December
1991.

97

98 Bibliography

[LR06a] E. Lefeber and J.E. Rooda. Control of a reentrant manufacturing system with
setup times: the Kumar-Seidman case. SE Report 2006-04, Eindhoven University
of Technology, Systems Engineering Group, Department of Mechanical Engineer-
ing, Eindhoven, The Netherlands, 2006. http://se.wtb.tue.nl/sereports.

[LR06b] E. Lefeber and J.E. Rooda. Controller design for switched linear systems with
setups. Physica A, 363(1):48–61, February 2006.

[NK96] Y. Narahari and L.M. Khan. Performance analysis of scheduling policies in re-
entrant manufacturing systems. Comput. Oper. Res., 23(1):37–51, January 1996.

[PJK94] J.R. Perkins, C. Humes Jr, and P.R. Kumar. Distributed scheduling of flexi-
ble manufacturing systems: Stability and performance. IEEE Transactions on
robotics and automation, 10(2):133–141, 1994.

[Sav03] A.V. Savkin. Optimal distributed real-time scheduling of flexible manufacturing
networks modeled as hybrid dynamical systems. Proceedings of the 42nd IEEE
conference on Decision and Control, 5:5468–5471, December 2003.

[ULMV92] R. Uzsoy, C.Y. Lee, and L.A. Martin-Vega. A review of production planning
and scheduling models in the semiconductor industry, part I. IIE Transactions,
24(4):47–60, September 1992.

Appendix A

Non-distributed Controller

A.1 Continuous Matlab-script

This script is made to perform continuous simulations of which the results are presented in
Chapter 4. The script consists of a main script which invokes a system function and a save
function.

Main script

The main script contains the non-distributed controller. Given an initial system state, this
script determines the next time moment in which the state of the system, except the buffer
contents, changes. In case when the system fulfills the conditions to switch to another system
mode or finishes a setup, the state of the system changes. This time moment is sent as a
time step with the current system state to the system function delta.m, which determines
the new system state. This new system state contains the recalculated buffer contents and
the remaining setup times which is sent back to the main script. Every time, when this new
system state is sent back to the main script, this system state and the current time is sent
to the save function savedata.m, which saves all the data. These data can be used to show
the resulting responses or to analyze the performance of the controlled system. These actions
are repeated for every time moment in which the system state, except the buffer contents,
changes until the number of cycle periods is exceed.

lambda = 1; % inter arrival rate

mu1 = 1/0.3; % process time for step 1

mu4 = 1/0.6; % process time for step 4

mu2 = 1/0.6; % process time for step 2

mu3 = 1/0.3; % process time for step 3

s41 = 50; % setup time to switch from step 4 to step 1

s14 = 50; % setup time to switch from step 1 to step 4

s32 = 50; % setup time to switch from step 3 to step 2

s23 = 50; % setup time to switch from step 2 to step 3

time = 0; % start time of the simulation

input(‘Give an initial system state for the reentrant manufacturing system with setup times’);

modeA = input(‘modeA (type 1 for step 1 or 4 for step 4): ’); % Give an initial mode for workstation A

modeB = input(‘modeB (type 2 for step 2 or 3 for step 3): ’); % Give an initial mode for workstation B

tauA = input(‘tauA: ’); % Give the initial setup for workstation A

tauB = input(‘tauB: ’); % Give the initial setup for workstation B

99

100 Appendix A. Non-distributed Controller

x1A = input(‘x1A: ’); % Give the initial buffer contents of buffer 1

x2B = input(‘x2B: ’); % Give the initial buffer contents of buffer 2

x3B = input(‘x3B: ’); % Give the initial buffer contents of buffer 3

x4A = input(‘x4A: ’); % Give the initial buffer contents of buffer 4

state = [time modeA modeB x1A x4A x2B x3B]; % define the initial state

for k = 1:50 % define the number of cycle periods

k = k + 1;

if modeA == 1 && modeB == 3 % if the system operates initially in mode (1,3), switch to mode (4,3)

modeA = 4;

tauA = s14;

end

if modeA == 4 && modeB == 3 % if the system operates in mode (4,3), stay in this mode until buffer 3

while x3B > 0 % is empty

if tauA == 0 && tauB == 0 % if buffer 3 is not empty, finish the setups (if needed) and process

timestep = x3B/mu3; % the jobs at maximal rate until buffer 3 is empty

elseif tauA == 0 && tauB > 0

if x4A > 0

timestep = min(x4A/mu4, tauB);

else

x4A = 0;

timestep = tauB;

end

elseif tauA > 0 && tauB > 0

timestep = min(tauA, tauB);

elseif tauA > 0 && tauB == 0

timestep = min(tauA, x3B/mu3);

end

[time x1A x4A x2B x3B tauA tauB] = delta(time,modeA,modeB,x1A,x4A,x2B,x3B,tauA,tauB,timestep);

[state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B);

end

modeB = 2; % if buffer 3 is empty, switch to mode (4,2)

tauB = s32;

end

if modeA == 4 && modeB == 2 % if the system operates in mode (4,2), stay in this mode until both

while x2B > 250/3 || x4A > 0 % conditions (x4A=0 AND x2B<=250/3) are met

if x2B > 250/3 && x4A > 0 % in case when both conditions are not met, finish the setups (if needed)

if tauA == 0 && tauB == 0 % and process then the jobs at maximal rate until one of the two

timestep = min(x4A/mu4, (x2B-(250/3))/mu2); % conditions is met

elseif tauA == 0 && tauB > 0

timestep = min(x4A/mu4, tauB);

elseif tauA > 0 && tauB > 0

timestep = min(tauA, tauB);

elseif tauA > 0 && tauB == 0

timestep = min(tauA, (x2B-(250/3))/mu2);

end

elseif x2B <= 250/3 && x4A > 0 % in case when only x2B<=250/3 is met, finish the setups (if needed) and

if tauA == 0 && tauB == 0 % process then the jobs for step 4 at maximal rate, while

timestep = (x4A/mu4); % workstation B idles, until buffer 4 is empty

tauB = timestep;

elseif tauA == 0 && tauB > 0

timestep = min(x4A/mu4, tauB);

elseif tauA > 0 && tauB > 0

timestep = min(tauA, tauB);

elseif tauA > 0 && tauB == 0

timestep = tauA;

tauB = timestep;

end

elseif x2B > 250/3 && x4A <= 0 % in case when only x4=0 is met, finish the setups (if needed) and process

if tauA == 0 && tauB == 0 % then the jobs for step 2 at maximal rate, while workstation A idles,

timestep = (x2B-(250/3))/mu2; % until x2<=250/3

elseif tauA == 0 && tauB > 0

timestep = tauB;

elseif tauA > 0 && tauB > 0

timestep = min(tauA, tauB);

elseif tauA > 0 && tauB == 0

timestep = min(tauA, (x2B-(250/3))/mu2);

end

end

[time x1A x4A x2B x3B tauA tauB] = delta(time,modeA,modeB,x1A,x4A,x2B,x3B,tauA,tauB,timestep);

[state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B);

end

modeA = 1; % if both conditions (x4A=0 AND x2B<=250/3) are met, switch to mode (1,2)

tauA = s41;

end

if modeA == 1 && modeB == 2 % if the system operates in mode (1,2), stay in this mode until x1=0

if x1A == 0 % in case when the system is initially empty, switch to mode (1,2)

if x2B == 0 && x3B == 0 && x4A == 0

tauA = 50;

timestep = tauA;

[time x1A x4A x2B x3B tauA tauB] = delta(time,modeA,modeB,x1A,x4A,x2B,x3B,tauA,tauB,timestep);

[state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B);

else

%

end

A.1. Continuous Matlab-script 101

else

while x1A > 0 % in case when x1>0, finish the setups (if needed) and process then

if tauA == 0 && tauB == 0 % the jobs at maximal rate until buffer 1 is empty

timestep = (x1A/(mu1-lambda));

elseif tauA == 0 && tauB > 0

timestep = min(x1A/(mu1-lambda), tauB);

elseif tauA > 0 && tauB > 0

timestep = min(tauA, tauB);

elseif tauA > 0 && tauB == 0

if x2B > 0

timestep = min(tauA, x2B/mu2);

else

timestep = tauA;

end

end

[time x1A x4A x2B x3B tauA tauB] = delta(time,modeA,modeB,x1A,x4A,x2B,x3B,tauA,tauB,timestep);

[state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B);

end

end

modeA = 4; % if buffer 1 is empty, switch to mode (4,3)

modeB = 3;

tauA = s14;

tauB = s23;

timestep = min(tauA,tauB);

[time x1A x4A x2B x3B tauA tauB] = delta(time,modeA,modeB,x1A,x4A,x2B,x3B,tauA,tauB,timestep);

[state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B);

end

end

System function delta.m

function [time x1A x4A x2B x3B tauA tauB] = delta(time, modeA, modeB, x1A, x4A, x2B, x3B, tauA, tauB, timestep)

lambda = 1; % inter arrival rate

mu1 = 1/0.3; % process time for step 1

mu4 = 1/0.6; % process time for step 4

mu2 = 1/0.6; % process time for step 2

mu3 = 1/0.3; % process time for step 3

time = time + timestep; % time moment of next event

mAmu1 = 0; % buffer 2 increases if workstation A is processing the jobs for step 1

mBmu2 = 0; % buffer 3 increases if workstation B is processing the jobs for step 2

mBmu3 = 0; % buffer 4 increases if workstation B is processing the jobs for step 3

if modeA == 1 % jobs are always entering buffer 1 with the inter arrival rate lambda

if tauA > 0 % in case when workstation A is setting up to step 1

x1A = x1A + lambda*timestep;

elseif tauA == 0 % in case when the setup to step 1 is finished

if x1A > 0 % in case when workstation A processes the jobs for step 1, the nett

x1A = x1A + (lambda - mu1)*timestep; % rate into buffer 1 is (lambda - mu1) until buffer 1 is empty

mAmu1 = 1;

elseif x1A == 0

x1A = x1A + lambda*timestep;

else

x1A = 0;

end

end

else

x1A = x1A + lambda*timestep; % in case when workstation A does not operate in mode 1

end

if modeB == 2

if tauB > 0 % if workstation B is setting up to step 2, the buffer contents of

if mAmu1 == 1 % buffer 2 only increases when workstation A processes the jobs

x2B = x2B + mu1*timestep; % for step 1 (mAmu1=1), otherwise buffer 2 remains the same

else

x2B = x2B;

end

elseif tauB == 0 % if the setup to step 2 has completed, buffer 2 will change

if modeA == 4 % if the system operates in mode (4,2), the buffer contents of

if x2B > 250/3 % buffer 2 decreases until x2<=250/3

x2B = x2B - mu2*timestep;

mBmu2 = 1;

else

x2B = x2B;

end

else % if the system operates in mode (1,2), the buffer contents of

if x2B > 0 % buffer 2 increases when workstation A processes the jobs

if mAmu1 == 1 % step 1 (mAmu1=1), otherwise it decreases until x2=0

x2B = x2B + (mu1 - mu2)*timestep;

mBmu2 = 1;

else

x2B = x2B - mu2*timestep;

mBmu2 = 1;

102 Appendix A. Non-distributed Controller

end

else % in case when x2=0 and workstation A processes the jobs for

if mAmu1 == 1 % step 1, workstation B continues processing the jobs for

x2B = x2B + (mu1 - mu2)*timestep; % step 2, otherwise buffer 2 remains empty

mBmu2 = 1;

else

x2B = 0;

end

end

end

end

else % in case when the system is not operating in step 2, the buffer

if mAmu1 == 1 % contents of buffer 2 only increases when workstation A is

x2B = x2B + mu1*timestep; % processing the jobs for step 1 (mAmu1=1)

else

x2B = x2B;

end

end

if modeB == 3

if tauB == 0 % if the setup to step 3 has completed, the buffer contents of

if x3B > 0 % buffer 3 decreases until buffer 3 is empty

x3B = x3B - mu3*timestep;

mBmu3 = 1;

else

x3B = x3B;

end

else % if workstation B is setting up to step 3, the buffer contents

x3B = x3B; % of buffer 3 remains constant until the setup has completed

end

else

if mBmu2 == 1; % if the system is not operating in step 3, the buffer contents

x3B = x3B + mu2*timestep; % of buffer 3 only increases when workstation B is processing

else % the jobs for step 2 (mBmu2=1), otherwise it remains constant

x3B = x3B;

end

end

if modeA == 4

if tauA > 0 % if workstation A is setting up to step 4, the buffer contents

if mBmu3 == 1 % of buffer 4 only increases when workstation B is processing

x4A = x4A + mu3*timestep; % the jobs for step 3, otherwise it remains constant

else

x4A = x4A;

end

elseif tauA == 0 % if the setup to step 4 has completed, the buffer contents of

if x4A > 0 % buffer 4 increases when workstation B is processing the

if mBmu3 == 1 % jobs for step 3 with nett rate (mu3 - mu4), otherwise it

x4A = x4A + (mu3 - mu4)*timestep; % decreases until buffer 4 is empty

else

x4A = x4A - mu4*timestep;

end

else % in case when x4=0 and workstation B is processing the jobs for

if mBmu3 == 1 % step 3, workstation A continues processing the jobs for step

x4A = x4A + (mu3 - mu4)*timestep; % 4 and buffer 4 increases with nett rate (mu3 - mu4),

else % otherwise it remains empty

x4A = 0;

end

end

end

else % if the system is not operating in step 4, the buffer contents

if mBmu3 == 1 % of buffer 4 only increases when workstation B is processing

x4A = x4A + mu3*timestep; % the jobs for step 3, otherwise it remains constant

else

x4A = x4A;

end

end

if tauA == 0 % if workstation A is setting up, continue until the setup has

tauA = 0; % been completed

elseif tauA > 0

tauA = tauA - timestep;

end

if tauB == 0 % if workstation B is setting up, continue until the setup has

tauB = 0; % been completed

elseif tauB > 0

tauB = tauB - timestep;

end

Save function savedata.m

function [state] = savedata(state, time, modeA, modeB, x1A, x4A, x2B, x3B)

state = [state; time modeA modeB x1A x4A x2B x3B]; % for every time step, the current time, the system mode and the

% buffer contents of each buffer is saved

A.2. Discrete event χ-script 103

A.2 Discrete event χ-script

This script is made to perform discrete event simulations of which the results are presented
in Chapter 4.
The discrete event model of the specific reentrant manufacturing system is presented in Figure
A.1. All the components and channels are explained in this appendix to clarify the functioning
of the model.

B1 M1
E

C

B2 M2
G

gb1

m1e

m1b2

b2m2b1m1

m2b2

m2b1

cb1

b1c
m1c

cm1 cb2

b2c

cm2

m2c

Figure A.1: Discrete event χ-model of the system controlled by a non-distributed controller.

Channels

The bold arrows in Figure A.1 represent the channels through which jobs are transferred. In
this model, each job is identified with its arrival time into the system, i.e. type job = real.
The thin arrows represent the channels through which the controller communicates with the
components. The controller sends the initial buffer contents to the corresponding buffers
through channels cb1 and cb2. If a workstation becomes available, it sends a signal to the
controller through channel m1c or m2c to ask the controller for their next task. The controller
will send a task (act = nat # real) through channel cm1 or cm2 to the workstation in which
the remaining setup is given or which step has to be processed at maximal rate. Every time
when a job enters or leaves a buffer, the total number of jobs stored in the buffer is sent to
the controller through channel b1c or b2c.

from std import *

from random import *

from fileio import *

type job = real // arrival time of a job into the system

, act = nat # real // action # remaining setup time

// action = 0 : setup, action = 1 : step 1 or step 3, action = 2 : step 2 or step 4

Controller

At startup of the model, the controller asks for an initial system state which has to be entered.
After that, every initial buffer contents is sent to the corresponding buffer and the production
cycle can start. If a workstation is available (m1av or m2av is true), it asks the controller
for a task. As the controller is always aware of the state of the system, it can decide what the
workstation has to do. If the state satisfies the conditions to perform a setup, the controller
tells the workstation to which step it must perform the setup, otherwise it tells a workstation
which step has to processed at maximal rate until the conditions are satisfied. Sometimes, it

104 Appendix A. Non-distributed Controller

is possible that a workstation becomes available but it is not allowed to perform a setup to
the next step. In that case, the workstation has to idle (inloopm1 or inloopm2 is false) for
a duration until the conditions are satisfied to perform the setup.

proc C(cb1,cb2 : (!nat)^2, b1c,b2c : (?nat)^2, m1c,m2c : ?void

, cm1,cm2 : !act, save : !file) =

|[modeA,modeB,x1A,x4A,x2B,x3B,x1Aold,x4Aold,x2Bold,x3Bold : nat

, mode : nat # nat

, s14A,s41A,s23B,s32B :-> real

, tauA,tauB,s41,s14,s32,s23,Simtime : real

, m1av,m2av,inloopm1,inloopm2 : bool

| !"Give an initial system state \n"

; !"System mode workstation A (type 1 or 4): " ; ?modeA ; !"\n"

; !"System mode workstation B (type 2 or 3): " ; ?modeB ; !"\n"

; !"remaining setup time workstation A: " ; ?tauA ; !"\n"

; !"remaining setup time workstation B: " ; ?tauB ; !"\n"

; !"buffer contents x1A: " ; ?x1A ; !"\n"

; !"buffer contents x4A: " ; ?x4A ; !"\n"

; !"buffer contents x2B: " ; ?x2B ; !"\n"

; !"buffer contents x3B: " ; ?x3B ; !"\n"

; !"Simulation time: " ; ?Simtime ; !"\n"

; (cb1.0)!x1A ; (cb1.1)!x4A ; (cb2.0)!x2B ; (cb2.1)!x3B

; < x1Aold, x4Aold, x2Bold, x3Bold > := < x1A, x4A, x2B, x3B >

; mode:= < modeA, modeB >

; *[time <= Simtime -> inloopm1 := true

; inloopm2 := true

; [true ; b1c.0?x1A -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A, "\t", x2B, "\t", x3B, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A ; x2Bold := x2B ; x3Bold := x3B

| true ; b1c.1?x4A -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A, "\t", x2B, "\t", x3B, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A ; x2Bold := x2B ; x3Bold := x3B

| true ; b2c.0?x2B -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A, "\t", x2B, "\t", x3B, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A ; x2Bold := x2B ; x3Bold := x3B

| true ; b2c.1?x3B -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A, "\t", x2B, "\t", x3B, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A ; x2Bold := x2B ; x3Bold := x3B

| true ; m1c? -> m1av := true

; s41A := exponential(50.0) ; s41:=sample(s41A)

; s14A := exponential(50.0) ; s14:=sample(s14A)

| true ; m2c? -> m2av := true

; s32B := exponential(50.0) ; s32:=sample(s32B)

; s23B := exponential(50.0) ; s23:=sample(s23B)

]

; *[m2av and inloopm2 -> [mode = < 1 , 3 > -> mode := < 4 , 3 >

; tauA := s14

| mode = < 4 , 3 > -> [x3B > 0 -> [tauB > 0.0 -> cm2!< 0 , tauB >

; tauB := 0.0

; m2av := false

| tauB <= 0.0 -> cm2!< 2 , 0.0 >

; m2av := false

]

| x3B = 0 -> mode := < 4 , 2 >

; tauB := s32

]

| mode = < 4 , 2 > -> [x2B > 250/3 -> [tauB > 0.0 -> cm2!< 0 , tauB >

; tauB := 0.0

; m2av := false

| tauB <= 0.0 -> cm2!< 1 , 0.0 >

; m2av := false

]

| x2B <= 250/3 -> [x4A = 0 -> mode := < 1 , 2 >

; tauA := s41

| x4A > 0 -> inloopm2 := false

]

]

| mode = < 1 , 2 > -> [x1A > 0 -> [tauB > 0.0 -> cm2!< 0 , tauB >

; tauB := 0.0

; m2av := false

| tauB <= 0.0 -> cm2!< 1 , 0.0 >

; m2av := false

]

| x1A = 0 -> [x2B < 250/3 and x3B = 0 and x4A = 0 -> inloopm2 := false

| x2B >= 0 -> mode := < 4 , 3 >

; < tauA , tauB > := < s14 , s23 >

]

]

]

]

; *[m1av and inloopm1 -> [mode = < 1 , 3 > -> mode := < 4 , 3 >

; tauA := s14

| mode = < 4 , 3 > -> [x3B > 0 -> [tauA > 0.0 -> cm1!< 0 , tauA >

; tauA := 0.0

; m1av := false

| tauA <= 0.0 -> cm1!< 2 , 0.0 >

; m1av := false

A.2. Discrete event χ-script 105

]

| x3B = 0 -> mode := < 4 , 2 >

; tauB := s32

; inloopm1 := false

]

| mode = < 4 , 2 > -> [x4A > 0 -> [tauA > 0.0 -> cm1!< 0 , tauA >

; tauA := 0.0

; m1av := false

| tauA <= 0.0 -> cm1!< 2 , 0.0 >

; m1av := false

]

| x4A = 0 -> [x2B <= 250/3 -> mode := < 1 , 2 >

; tauA := s41

| x2B > 250/3 -> inloopm1 := false

]

]

| mode = < 1 , 2 > -> [x1A > 0 -> [tauA > 0.0 -> cm1!< 0 , tauA >

; tauA := 0.0

; m1av := false

| tauA <= 0.0 -> cm1!< 1 , 0.0 >

; m1av := false

]

| x1A = 0 -> [x2B < 250/3 and x3B = 0 and x4A = 0 -> cm1!< 0 , 1.0 >

; m1av := false

| x2B >= 0 -> mode := < 4 , 3 >

; < tauA , tauB > := < s14 , s23 >

]

]

]

]

]

]|

Buffers B1 and B2

Both buffers can always receive jobs from the generator or workstation. Each buffer contains
two lists where jobs from a step are stored respectively. At startup of the model, the initial
buffer contents are stored in the corresponding buffers with arrival time 0.0 time-units. Every
time when a job from a step enters or leaves a buffer, the buffer sends the total number of
stored jobs of this step to the controller.

proc B1(cb1 : (?nat)^2, b1c : (!nat)^2, gb1,m2b1 : ?job, b1m1 : (!job)^2) =

|[joblist1,joblist4 : job*

, product : job

, x1Aini, x4Aini : nat

| joblist1 := []; joblist4 := []

; [true; (cb1.0)?x1Aini -> *[x1Aini > 0 -> joblist1 := joblist1 ++ [0.0]; x1Aini := x1Aini - 1]]

; [true; (cb1.1)?x4Aini -> *[x4Aini > 0 -> joblist4 := joblist4 ++ [0.0]; x4Aini := x4Aini - 1]]

; *[true; gb1?product -> joblist1 := joblist1 ++ [product] ; (b1c.0)!len(joblist1)

| true; m2b1?product -> joblist4 := joblist4 ++ [product] ; (b1c.1)!len(joblist4)

| len(joblist1) > 0; b1m1.0!hd(joblist1) -> joblist1:=tl(joblist1) ; (b1c.0)!len(joblist1)

| len(joblist4) > 0; b1m1.1!hd(joblist4) -> joblist4:=tl(joblist4) ; (b1c.1)!len(joblist4)

]

]|

proc B2(cb2 : (?nat)^2, b2c : (!nat)^2, m1b2,m2b2 : ?job, b2m2 : (!job)^2) =

|[joblist2,joblist3 : job*

, product : job

, x2Bini, x3Bini : nat

| joblist2 := []; joblist3 := []

; [true; cb2.0?x2Bini -> *[x2Bini > 0 -> joblist2 := joblist2 ++ [0.0]; x2Bini := x2Bini - 1]]

; [true; cb2.1?x3Bini -> *[x3Bini > 0 -> joblist3 := joblist3 ++ [0.0]; x3Bini := x3Bini - 1]]

; *[true; m1b2?product -> joblist2 := joblist2 ++ [product] ; b2c.0!len(joblist2)

| true; m2b2?product -> joblist3 := joblist3 ++ [product] ; b2c.1!len(joblist3)

| len(joblist2) > 0; b2m2.0!hd(joblist2) -> joblist2:=tl(joblist2) ; b2c.0!len(joblist2)

| len(joblist3) > 0; b2m2.1!hd(joblist3) -> joblist3:=tl(joblist3) ; b2c.1!len(joblist3)

]

]|

Workstations M1 and M2

Every time when a workstation becomes available (m1c! and/or m2c!), it asks the controller
for a task (cm1?action and/or cm2?action). Depending on this task, the controller tells the

106 Appendix A. Non-distributed Controller

workstation which step should be processed (action.0 > 0 defines the step) or to which
step a setup (action.0 = 0) must be performed. If a job is processed at maximal rate, it is
sent to the next buffer or to the exit.

proc M1(b1m1 : (?job)^2, m1b2,m1e : !job, m1c : !void, cm1 : ?act) =

|[action : act , product : job, proctime1, proctime4 :-> real

| proctime1 := exponential(0.3)

; proctime4 := exponential(0.6)

; *[true -> m1c!

; cm1?action

; [action.0 = 0 -> delta action.1

| action.0 = 1 -> b1m1.0?product

; delta sample(proctime1)

; m1b2!product

| action.0 = 2 -> b1m1.1?product

; delta sample(proctime4)

; m1e!product

]

]

]|

proc M2(b2m2 : (?job)^2, m2b2,m2b1 : !job, m2c : !void, cm2 : ?act) =

|[action : act , product : job, proctime2, proctime3 :-> real

| proctime2 := exponential(0.6)

; proctime3 := exponential(0.3)

; *[true -> m2c!

; cm2?action

; [action.0 = 0 -> delta action.1

| action.0 = 1 -> b2m2.0?product

; delta sample(proctime2)

; m2b2!product

| action.0 = 2 -> b2m2.1?product

; delta sample(proctime3)

; m2b1!product

]

]

]|

Generator

The generator will always send generated jobs with rate λ to the first list in buffer B1.

proc G(gb1 : !job) =

|[lambda :-> real, wait: real

| lambda := exponential(1.0)

; *[true -> gb1!time

; wait := sample lambda

; delta wait

]

]|

Exit

The exit E can always receive jobs from workstation m1. Every time when the exit has
received a job, the job leaves the system.

proc E(m1e : ?job) =

|[product : job

| *[true; m1e?product -> skip]

]|

Cluster

The cluster System connects all the components by channels as presented in Figure A.1.

A.3. Buffer regulator 107

clus System (save : ! file) =

|[cb1, cb2, b1c, b2c : (-nat)^2

, gb1, m1b2, m2b1, m2b2, m1e : -job

, b1m1, b2m2 : (-job)^2

, m1c , m2c : -void

, cm1 , cm2 : -act

|G (gb1)

||B1(cb1, b1c, gb1, m2b1, b1m1)

||M1(b1m1, m1b2, m1e, m1c, cm1)

||B2(cb2, b2c, m1b2, m2b2, b2m2)

||M2(b2m2, m2b2, m2b1, m2c, cm2)

||E (m1e)

||C (cb1, cb2, b1c, b2c, m1c, m2c, cm1, cm2, save)

]|

xper = |[System(fileout("Nondistributed_systemstates.txt"))]|

A.3 Buffer regulator

The discrete event model of the specific reentrant manufacturing system with buffer regulators
is presented in Figure A.2. All the components and channels are explained in this appendix
to clarify the functioning of the model.

G

M
E

M

Breg

C

Breg

B2

gb1

b4gc

b4gb1

b1m1 b2m2

m1b.1

m1b.0

m2b.0
m2b.1

b2gb2

b3gb2

cb4g

B1

reg

b1c

cb1

b2c

cb2
b2gc

cb2g

b3gccb3g

Figure A.2: Discrete event χ-model of the system controlled by buffer regulators.

Channels

The bold arrows in Figure A.2 represent the channels through which jobs are transferred. In
this model, each job is identified with its arrival time into the system, i.e. type job = real.
The thin arrows represent the channels through which the controller communicates with the
buffers. The controller can send the initial buffer contents to each buffer and every buffer
sends the total number of jobs stored in the buffer to the controller which saves all the data
that can be used to analyze the resulting responses of the controlled system.

from std import *

from random import *

from fileio import *

type job = real // arrival time of a job into the system

Generator

The generator will always send generated jobs with rate λ into the first buffer until the
simulation time is reached.

108 Appendix A. Non-distributed Controller

proc G(gb1: !job) =

|[lambda :-> real, wait: real

| lambda := exponential(1.0)

; *[time <= 150000.0 -> gb1!time

; wait := sample lambda

; delta wait

]

]|

Controller

For this model, the gated policy is used to control the system instead of the controller. The
controller is only aware of the buffer contents of each buffer in the system.
At startup of the model, the controller asks for the initial buffer contents which has to be
entered. After that, every initial buffer contents is sent to the corresponding buffer and the
production cycle can start. The system contains 3 regulator buffers (b2g, b3g and b4g) —
called Breg in Figure A.2 — and two regulated buffers (b1 and b2). Both regulated buffers
contain two lists to store the jobs of each step respectively. Every time when a job enters
or leaves a buffer, the controller receives the total number of jobs stored in this buffer. All
these data are saved in a file until the simulation time is reached. These data can be used to
analyze the performance of the system.

proc C(b1c,b2c: (?nat)^2, b2gc,b3gc,b4gc: ?nat, cb1,cb2g,cb3g,cb4g: !nat, save: !file) =

|[x1A,x2B,x2Bg,x3B,x3Bg,x4A,x4Ag,x1Aold,x4Aold,x2Bold,x3Bold : nat

| !"buffer contents x1A: " ; ?x1A ; !"\n"

; !"buffer contents x4A: " ; ?x4Ag ; !"\n"

; !"buffer contents x2B: " ; ?x2Bg ; !"\n"

; !"buffer contents x3B: " ; ?x3Bg ; !"\n"

; cb1!x1A ; cb4g!x4Ag ; cb2g!x2Bg ; cb3g!x3Bg

; x4A:=0; x2B:=0; x3B:=0

; < x1Aold, x4Aold, x2Bold, x3Bold > := < x1A, x4A+x4Ag, x2B+x2Bg, x3B+x3Bg >

; x1Aold:=x1A; x4Aold:=x4A+x4Ag; x2Bold:=x2B+x2Bg; x3Bold:=x3B+x3Bg

;*[time <= 150000.0 ->

[true ; b1c.0?x1A -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b1c.1?x4A -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b4gc?x4Ag -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b2c.0?x2B -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b2c.1?x3B -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b2gc?x2Bg -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

| true ; b3gc?x3Bg -> save! x1Aold, "\t", x4Aold, "\t", x2Bold, "\t", x3Bold, "\t", time, "\n"

; save! x1A, "\t", x4A+x4Ag, "\t", x2B+x2Bg, "\t", x3B+x3Bg, "\t", time, "\n"

; x1Aold := x1A ; x4Aold := x4A+x4Ag ; x2Bold := x2B+x2Bg ; x3Bold := x3B+x3Bg

]

]

]|

Gated policy

In this model, the gated policy is used to control the system. This policy contains a switching
function and regulator buffers in front of every buffer as depicted in Figure A.2. At startup
of the model, the initial buffer contents are stored in the corresponding regulator buffers
with arrival time 0.0 time-units. Every regulator buffer can always receive the jobs from a
workstation which are stored in a list. These jobs are sent with inter arrival time 1 job

time-unit to
the regulated buffer. Every time when a job enters or leaves this list in the regulator buffer,

A.3. Buffer regulator 109

the controller receives the total number of jobs stored in this list.
The gated policy only switches the system to another mode when a buffer becomes empty. The
switching function “next” determines this switching moment and switches the workstation to
the next step.

proc BufReg(mbg: ?job, cbg: ?nat, bgb: !job, bgc: !nat) =

|[x: job, xini: nat, xs: job*, next_job: bool, tnext: real

| next_job := true

; [true; cbg?xini -> *[xini > 0 -> xs := xs ++ [0.0]; xini := xini - 1]]

; *[true; mbg?x -> xs := xs ++ [x]; bgc!len(xs)

| len(xs) > 0 and next_job; bgb!hd(xs) -> xs := tl(xs); bgc!len(xs); next_job := false; tnext := time + 1.0

| not next_job; delta tnext - time -> next_job := true

]

]|

func next(xs: (job*)^2, k: nat) -> nat = // k is current step

|[i,m: nat // m is required step

| m := k; i := 0 // i is possible step

; *[i < 2 and len(xs.k) = 0

-> [len(xs.i) > len(xs.m) -> m := i

| len(xs.i) <= len(xs.m) -> skip

]

; i := i+1

]

; ret m

]|

Buffers B1 and B2

Both buffers can always receive jobs from the generator or regulator buffers. Each buffer
contains two lists (xs.0 and xs.1) where jobs from a step are stored respectively. Only the
initial amount of jobs for step 1 are stored in the corresponding list with arrival time 0.0 time-
units at startup of the model. During the simulation, all the jobs generated by the generator
are also stored in this list. All the other lists receive the jobs from their corresponding
regulator buffer. The jobs from a list are sent to the workstation until the list is empty.
Every time when a job enters or leaves a list, the buffer sends the total number of stored jobs
in this list to the controller.

proc B1(cb1: ?nat, gb1,b4gb1: ?job, b1m1: (!job)^2, b1c: (!nat)^2) =

|[xs: (job*)^2, x: job, k,xini: nat

| k := 0; *[k < 2 -> xs.k := []; k := k+1] // define for each production step a list

; k := 0

; [true; cb1?xini -> *[xini > 0 -> xs.0 := xs.0 ++ [0.0]; xini := xini - 1]] // initial amount of jobs is stored in the first buffer

; *[true; gb1?x -> xs.0 := xs.0 ++ [x]; b1c.0!len(xs.0)

| true; b4gb1?x -> xs.1 := xs.1 ++ [x]; b1c.1!len(xs.1)

| len(xs.next(xs,k)) > 0; b1m1.next(xs,k)!hd(xs.next(xs,k))

-> k := next(xs,k); xs.k := tl(xs.k); b1c.k!len(xs.k)

]

]|

proc B2(b2gb2,b3gb2: ?job, b2m2: (!job)^2, b2c: (!nat)^2) =

|[xs: (job*)^2, x: job, k: nat

| k := 0; *[k < 2 -> xs.k := []; k := k+1] // define for each production step a list

; k := 0

; *[true; b2gb2?x -> xs.0 := xs.0 ++ [x]; b2c.0!len(xs.0)

| true; b3gb2?x -> xs.1 := xs.1 ++ [x]; b2c.1!len(xs.1)

| len(xs.next(xs,k)) > 0; b2m2.next(xs,k)!hd(xs.next(xs,k))

-> k := next(xs,k); xs.k := tl(xs.k); b2c.k!len(xs.k)

]

]|

Workstation M

Every time when a workstation becomes available, it asks the buffer for a job, i.e. (bm.j?x).
If the job comes from the same list as the previous processed job (i.e. j = k), the workstation
continues processing the job at maximal rate. If the job does not come from the same list

110 Appendix A. Non-distributed Controller

as the previous processed job (i.e. not j = k), the workstation is first setting up to the next
step before it can process the job at maximal rate. If a job is processed at maximal rate, it
is sent either to the next buffer or to the exit.

proc M(bm: (?job)^2, mb: (!job)^2, t: real^2) =

|[k: nat, x: job

, setuptime: -> real, setup :real

, processtime: -> real, process :real

| k := 0 ; setuptime := exponential(50.0)

; *[j:nat <- 0..2: true; bm.j?x

-> processtime := exponential(t.j)

; [j = k // j is step of current job and k is step of previous processed job

-> process := sample processtime; delta process; mb.k!x

| not (j = k)

-> k := j; setup := sample setuptime; delta setup

; process := sample processtime; delta process; mb.k!x

]

]

]|

Exit

The exit E can always receive jobs from the workstation. Every time when the exit has
received a job, the job leaves the system.

proc E(m1b: ?job) =

|[x: job

| *[true -> m1b?x]

]|

Cluster

The cluster BufferRegulators connects all the components by channels as presented in Figure
A.2.

clus BufferRegulators() =

|[gb1, b2gb2, b3gb2, b4gb1: -job

, b1m1, b2m2, m1b, m2b: (-job)^2

, b1c, b2c: (-nat)^2

, cb1, cb2g, cb3g, cb4g, b2gc, b3gc, b4gc: -nat

| G(gb1)

|| B1(cb1, gb1, b4gb1, b1m1, b1c)

|| B2(b2gb2, b3gb2, b2m2, b2c)

|| BufReg(m1b.0, cb2g, b2gb2, b2gc)

|| BufReg(m2b.0, cb3g, b3gb2, b3gc)

|| BufReg(m2b.1, cb4g, b4gb1, b4gc)

|| M(b1m1, m1b, <| 0.3, 0.6|>)

|| M(b2m2, m2b, <| 0.6, 0.3|>)

|| E(m1b.1)

|| C(b1c, b2c, b2gc, b3gc, b4gc, cb1, cb2g, cb3g, cb4g, fileout("Results_BufferRegulators.txt"))

]|

xper = |[BufferRegulators()]|

Appendix B

Distributed Controller

B.1 Discrete event χ-script

The discrete event model of the specific reentrant manufacturing system controlled by a
distributed controller is presented in Figure A.1. For this model, each workstation M only
needs local state information. Therefore, the controller is divided into two parts by a dotted
line. The controller can decide the next task for a workstation without knowledge of the
state of the other workstation. The results of the simulations are presented in Chapter 5. All
the components and channels are explained in this appendix to clarify the functioning of the
model.

B

M

E

C

G
mav.0

step.0

bufcon

Bsend.4

M

mav.1

step.1

Brec.0

Brec.2

Brec.1

Bsend.0

Bsend.2

Bsend.1

Bsend.3

Figure B.1: Discrete event χ-model of the system controlled by a distributed controller.

Channels

The bold arrows in Figure B.1 represent the channels through which jobs are transferred.
In this model, each job is identified with its processing step, i.e. type job = nat. Step 1
corresponds with job = 0, step 2 corresponds with job = 1, step 3 corresponds with job = 2
and step 4 corresponds with job = 3.
The thin arrows represent the channels through which the controller communicates with the
components. If a workstation becomes available, it sends a signal to the controller through
channel mav.0 or mav.1 to ask the controller for their next task. The controller will send the
production step as a task through channel step.0 or step.1 to the workstation. Every time

111

112 Appendix B. Distributed Controller

when a job enters or leaves the buffer, the total number of jobs stored in the buffer is sent to
the controller through channel bufcon. All these buffer contents are saved with the current
time in a file which can be used to analyze the performance of the controlled system.

from std import *

from random import *

from fileio import *

type job = nat

Generator

The generator will always send generated jobs with rate λ to the first list in the buffer.

proc G(gb : !job) =

|[deltagen :-> real, wait: real

| deltagen := exponential(1.0)

; *[true -> gb!0

; wait := sample deltagen

; delta wait

]

]|

Controller

At startup of the model, the initial buffer contents are stored in the list xs:= xinit and the
production cycle can start. The controller receives a signal from a workstation (m1av.i?)

when it becomes available. As the controller is always aware of the state of the system, it can
decide what the workstation has to do. If the state satisfies the conditions to switch to another
step, the controller tells the workstation to which step it must perform the setup, otherwise
it tells a workstation which step has to processed at maximal rate until the conditions are
satisfied. All these conditions are defined in the function “determinemode” which are equal
to the distributed controller description as presented in Chapter 5.

proc C(bufcon: ?nat^4, mav: (?void)^2, step: (!nat)^2, xinit: nat^4, save: !file) =

|[mode: nat^2, xs,nrprod: nat^4, x2bar: nat, setuptwo: bool

| xs:= xinit

; mode:= <| 1, 2 |>; nrprod:= <|0,0,0,0|>; setuptwo:= false

; *[true -> [true; bufcon?xs -> skip

| i:nat<-0..2: true; mav.i?

-> nrprod.(mode.i-1):= nrprod.(mode.i-1)+1

; [not setuptwo -> skip

| setuptwo and xs.1 < x2bar -> setuptwo := false

| setuptwo and xs.1 >= x2bar -> x2bar := xs.1

]

; < mode, nrprod, setuptwo > := determinemode(mode, nrprod, xs, x2bar)

; [setuptwo -> x2bar:= xs.1 // setup to step 2 has been completed and the number of jobs in buffer 2 is defined

| not setuptwo -> skip

]

; step.i!mode.i

]

; save! xs.0, "\t", xs.1, "\t", xs.2, "\t", xs.3, "\t", time, "\n"

]

]|

func determinemode(mode: nat^2, nrprod,xs: nat^4,x2bar: nat) -> nat^2 # nat^4 # bool =

|[setuptwo: bool

| setuptwo:= false

; [mode.0=1 and xs.0>0 -> skip

| mode.0=1 and xs.0=0 and nrprod.0< 1000 -> skip

| mode.0=1 and xs.0=0 and nrprod.0>=1000 -> mode.0:= 4; nrprod.3:= 0

| mode.0=4 and xs.3>0 -> skip

| mode.0=4 and xs.3=0 and nrprod.3< (nrprod.0 div 2) and xs.0< 650 -> skip

| mode.0=4 and xs.3=0 and nrprod.3< (nrprod.0 div 2) and xs.0>=650 -> mode.0:= 1; nrprod.0:= 0

| mode.0=4 and xs.3=0 and nrprod.3>=(nrprod.0 div 2) -> mode.0:= 1; nrprod.0:= 0

]

B.1. Discrete event χ-script 113

; [mode.1=2 and nrprod.1< max(1000, x2bar+(nrprod.2 div 2)) -> skip

| mode.1=2 and nrprod.1>=max(1000, x2bar+(nrprod.2 div 2)) -> mode.1:= 3; nrprod.2:= 0

| mode.1=3 and xs.2>0 -> skip

| mode.1=3 and xs.2=0 -> mode.1:= 2; nrprod.1:= 0; setuptwo:= true

]

; ret < mode, nrprod, setuptwo >

]|

Buffer

The buffer can always receive jobs from the generator or workstation and contains 5 lists. In
the first 4 lists, jobs from each step are stored respectively. All jobs for step 1 are stored in
the first list, for step 2 in de second list, for step 3 in the third list and for step 4 in the fourth
list. All jobs that have been processed for step 4 are stored in the fifth list which are sent to
the exit when the exit can receive a job. At startup of the model, the initial buffer contents
are stored in the corresponding buffers with arrival time 0.0 time-units. Every time when a
job from a step enters or leaves a buffer, the buffer sends the total number of stored jobs from
each step to the controller.

proc B(Brec: (?job)^3, Bsend: (!job)^5, bufcon: !nat^4, xinit: nat^4) =

|[x: job, xs: nat^5

| xs := <| xinit.0, xinit.1, xinit.2, xinit.3, 0 |>

; *[true -> [i:nat<-0..3: true ; Brec.i?x -> xs.x:=xs.x+1

| i:nat<-0..5: xs.i > 0; Bsend.i!i -> xs.i:=xs.i-1

]

; bufcon!<| xs.0, xs.1, xs.2, xs.3 |>

]

]|

Workstation

Every time when a workstation becomes available (mav!), it asks the controller which step
should be processed (step?mode). Note that the mode of a workstation represents the pro-
cessing production step. If the previous processed job is from the same step as the processing
job, the workstation continues processing at maximal rate. Otherwise, it is first setting up to
the next step before it can process the jobs at maximal rate. If a job is processed at maximal
rate, it is sent to the next buffer or to the exit.

proc M(bm1,bm2: ?job, mb: !job, mav: !void, step: ?nat) =

|[mode,prevmode: nat, x:job

, setup,proctime13,proctime42:-> real

, wait,process13,process42: real

| prevmode := 0

; setup := exponential(50.0)

; proctime13 := exponential(0.3)

; proctime42 := exponential(0.6)

; *[true -> mav!; step?mode

; [mode =prevmode -> skip

| mode/=prevmode -> wait := sample(setup); delta wait

]

; prevmode:=mode

; [mode=1 -> bm1?x; process13 := sample(proctime13); delta process13

| mode=2 -> bm1?x; process42 := sample(proctime42); delta process42

| mode=3 -> bm2?x; process13 := sample(proctime13); delta process13

| mode=4 -> bm2?x; process42 := sample(proctime42); delta process42

]

; mb!x+1

]

]|

114 Appendix B. Distributed Controller

Exit

The exit E can always receive jobs from the buffer. Every time when the exit has received a
job, the job leaves the system.

proc E(be:?job) =

|[x: job

| *[true -> be?x]

]|

Cluster

The cluster Distributed connects all the components by channels as presented in Figure B.1.
Also, the initial buffer contents of each buffer is given.

clus Distributed(save: !file) =

|[Brec: (-job)^3, Bsend: (-job)^5, bufcon: -nat^4, mav: (-void)^2, step: (-nat)^2

| G(Brec.0)

|| B(Brec, Bsend, bufcon, <|1000,1000,1000,1000|>)

|| M(Bsend.0, Bsend.3, Brec.1, mav.0, step.0)

|| M(Bsend.1, Bsend.2, Brec.2, mav.1, step.1)

|| E(Bsend.4)

|| C(bufcon, mav, step, <|1000,1000,1000,1000|>, save)

]|

xper = |[Distributed(fileout("Distributed_Results.txt"))]|

