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Summary

So far, no satisfactory control approach for re-entrant production systems has been
presented. In spite of the increasing complexity of these production systems, the com-
monly applied control approaches are mainly based on simple heuristics and operator
experience. During the past years, research on re-entrant production control resulted in
several theoretical advances, yielding improved accuracy and computational tractability.
These findings, however, have not had a lasting impact on the manufacturing floor.

Production control is commonly implemented at various levels of operation. The inter-
action between the different levels is essential in achieving the goals of the production
system. However, research on layered control frameworks that combines approaches at
different levels is rare. This research project presents a two layer hierarchical control
framework for re-entrant production systems. Different levels are used to subdivide an
otherwise intractable control problem into multiple smaller problems (layers). The main
objective of this framework is to translate actual demand into controllable events, e.g.
dispatching of lots.

The high level control layer computes production targets based on the aggregated state
and on the predicted behavior of the production system (Model Predictive Control,
MPC). An accurate prediction of the non-linear system dynamics is obtained by deploy-
ing resource capacity relations based on approximations from queuing theory (‘effective
clearing functions’). The parameters required for the definition of the effective clearing
functions are determined by an Effective Process Time (EPT) algorithm. A partitioning
algorithm is introduced to adequately distribute capacity over lots at different stages of
production.

The low level control layer consists of a distributed composite dispatching rule. The
use of a composite dispatching rule guarantees a good, yet suboptimal, solution in a
short time. This rule determines which lot must be processed (dispatched) next, based
on the local state of the production system and the issued production targets. The rule
sequences lots based on the difference between the issued due date and the time it could
be ready. The lot with the smallest difference (slack) is dispatched.

The performance of the MPC framework is analyzed using a simulation model of a
characteristic semiconductor production system. The MPC framework is implemented
on two different cases.
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vi Summary

The first case encompasses three production steps on three different workstations. This
case is used to analyze the performance without the partitioning of capacity over the
different production steps. The second case utilizes a similar production system with a
re-entrant product flow. In this case, six production steps are performed on workstations
identical to those of the first case. The second case is used to analyse the performance
of the MPC framework in a re-entrant environment.

To place the performance into perspective, the simulation results are compared to that
of the commonly encountered ‘Material Resources Planning’ (MRP-C) approach. This
approach assumes a constant flow time independent of workstation utilization, resulting
in a linear relation between production capacity and utilization. Consequently, many
standard approaches, such as MRP-C, neglect the influence of variability and overesti-
mate production capacity.

Both cases are subjected to three different simulation experiments. These experiments
differ from one another by the enforced demand trajectory. The results of these simula-
tion experiments indicate that the presented MPC framework outperforms MRP-C in
the sense that the enforced demand trajectory is followed closely without creating a
(permanent) backlog. Both the mean and the variability in the number of backorders
are lower for the presented MPC framework than for MRP-C. These results also show
that the MRP-C approach is not always able to attain the new demand level on time,
introducing a permanent backlog.

The simulation results indicate that the difference in performance increases with in-
creasing utilization. This difference is caused by the fact that MRP-C approximates
the resource capacity by two linear constraints. Conversely, the new framework deploys
approximations of the actual non-linear behavior. The difference between these two
approximations increases with increasing utilization. Consequently, the production tar-
gets issued by the MPC framework will better correspond to the actual behavior of the
production system at high utilization levels.

Effectively, the reduction in mean and variation of the number of backorders is procured
by maintaining a (security) WIP level to counteract the observed variability is the
process times. Consequently, a tradeoff will be made with regard to the mean total flow
time and the mean WIP level.

In spite of the promising results, several encountered complications, should be resolved.



Samenvatting (in Dutch)

Tot op heden is er nog geen toereikende regelstrategie ontwikkeld voor re-entrant pro-
ductiesystemen. Ondanks de toenemende complexiteit van productiesystemen, zijn de
regelstrategieën die tegenwoordig worden toegepast voornamelijk gebaseerd op een-
voudige heuristieken en op de ervaring van operators. Onderzoek naar regelstrate-
gieën voor re-entrant productiesystemen heeft de laatste jaren verschillende theoretische
vooruitgangen opgeleverd, met name wat betreft de nauwkeurigheid en de benodigde
rekenkracht. Deze nieuwe bevindingen hebben echter geen blijvende indruk achterge-
laten op de fabrieksvloer.

Regeltechniek wordt doorgaans toegepast op verschillende lagen binnen een produc-
tiesysteem. De interactie tussen de verschillende lagen is essentieel voor het bereiken
van de doelstellingen van het productiesysteem. Desondanks is onderzoek naar regel-
raamwerken die verschillende strategieën op verschillende lagen met elkaar combineren,
schaars. In dit onderzoek wordt daarom een twee-laags hiërarchisch regelraamwerk voor
re-entrant productiesystemen gepresenteerd. Meerdere lagen worden toegepast om een
anders onhandelbaar probleem op te delen in meerdere kleinere problemen (lagen). Het
doel van dit raamwerk is het vertalen van concrete vraag naar regelbare gebeurtenissen,
zoals bijvoorbeeld het vrijgeven (starten) van productie.

In de bovenste laag van het regelraamwerk worden de productiedoelen bepaald op basis
van de geaggregeerde toestand en het middels een model voorspelde gedrag van het
productiesysteem (Model Predictive Control, MPC). Een nauwkeurige voorspelling van
de niet-lineaire systeemdynamica wordt verkregen door de capaciteit van een machine
of werkstation te baseren op benaderingen uit de wachttijd theorie (‘effective clearing
functions’). De parameters die nodig zijn voor het definiëren van de ‘effective clearing
functions’ worden bepaald met behulp van een Effectieve Process Tijd (EPT) algoritme.
Een algoritme wordt gebruikt om de capaciteit op een juiste manier over de lots, in
verschillende stadia van het productieproces, te verdelen.

De onderste laag van het regelraamwerk bestaat uit een samengestelde ordervrijgave
regel die gebruik maakt van informatie van het productiesysteem. Het gebruik van een
samengestelde regel garandeert een goede, doch suboptimale, oplossing met minimale
rekenkracht. Op basis van de locale toestand van het productiesysteem en de afgegeven
productiedoelen wordt met behulp van deze regel bepaald welk lot als volgende vrij-
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gegeven dient te worden. Deze regel sorteert lots op het verschil tussen het tijdstip
waarop een lot klaar moet zijn, en het vroegste tijdstip waarop het klaar kan zijn. Het
lot waarvoor dit verschil het kleinste is wordt vrijgegeven.

De prestatie van het gepresenteerde MPC regelraamwerk is onderzocht door gebruik te
maken van een simulatiemodel van een representatieve productielijn. Het MPC raam-
werk is gëımplementeerd op twee verschillende cases. De productielijn die voor de eerste
case gebruikt is bestaat uit drie bewerkingsstappen op drie verschillende werkstations.
Deze case is gebruikt om de prestatie van het MPC raamwerk te beoordelen zonder
dat capaciteit verdeeld hoeft te worden over de verschillende bewerkingsstappen. De
tweede case maakt gebruik van een vergelijkbare productielijn, waarbij de lots echter
meerdere malen op hetzelfde werkstation terugkeren (re-entrant productstroom). In
deze case worden zes bewerkingsstappen uitgevoerd op dezelfde werkstations als bij de
eerste case. De resultaten van deze case zijn gebruikt om de werking van het MPC
raamwerk in een re-entrant omgeving te beoordelen.

Om de prestatie van het raamwerk te evalueren, wordt het vergeleken met de prestatie
van de veel toegepaste ‘Manufacturing Resources Planning’ (MRP-C) strategie. Deze
strategie gaat uit van een constante bewerkingstijd, ongeacht de bezettingsgraad van
de machine of werkstation. Deze aanname impliceert een lineaire relatie tussen produc-
tiecapaciteit en bezettingsgraad. Door deze aanname wordt de invloed van variabiliteit
verwaarloosd, waardoor de productiecapaciteit overschat wordt.

Simulatie experimenten duiden erop dat het MPC raamwerk beter presteert dan MRP-C
wanneer gelet wordt op het correct volgen van de opgelegde vraag zonder permanent
productietekort (of productieoverschot). Zowel het gemiddelde van, als de variabiliteit
in, het productietekort is lager voor het MPC raamwerk dan voor MRP-C. Voorts blijkt
MRP-C niet altijd in staat is om op tijd aan de nieuwe vraag te voldoen, waardoor een
permanent productietekort ontstaat.

De simulatie experiments geven daarnaast aan dat het verschil in prestatie, tussen de
twee strategieën, toeneemt bij toenemende bezettingsgraad. Dit kan verklaard worden
doordat MRP-C de machine capaciteit benaderd met twee lineaire constraints. Het
gepresenteerde MPC raamwerk maakt daarentegen gebruik van een benadering van het
werkelijke niet-lineaire gedrag. Aangezien het verschil tussen beide benaderingen toe-
neemt met toenemende bezettingsgraad, zullen de door het MPC raamwerk vrijgegeven
productiedoelen, bij een hoge bezettingsgraad, beter overeenkomen met het werkelijke
gedrag van het productiesysteem.

Het behaalde resultaat - het reduceren van zowel het gemiddelde van als de variabiliteit
in het productietekort - wordt bewerkstelligd door het aanhouden van een veiligheids-
voorraad dat de geobserveerde variabiliteit in de bewerkingstijden moet compenseren.
Hierdoor wordt echter een concessie gedaan met betrekking tot de gemiddelde totale
doorlooptijd en het gemiddelde aantal lots dat in het productiesysteem verblijft.

Ondanks de veelbelovende resultaten moeten enkele ondervonden complicaties nog ver-
holpen worden.



Contents

Assignment i

Preface iii

Summary v

Samenvatting (in Dutch) vii

List of Definitions xiii

List of Acronyms and Symbols xv

1 Introduction 1

2 Literature survey 5

2.1 High level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Low level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Intermediate level control . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Control framework 19

3.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 High level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Low level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



x Contents

4 Cases 33

4.1 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Intel case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Case I: No reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Case II: Re-entrant product-flow . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experiments 43

5.1 Setup of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Validation of individual parts . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Case II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusions 61

7 Recommendations 65

Bibliography 69

A Effective clearing functions 75

A.1 Queuing theoretic approximation . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Linear approximation of the effective clearing function . . . . . . . . . . 77

A.3 Newton-Raphson method . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B Simulation framework 79

B.1 Framework structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C Case I Description 85

C.1 Matlab functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.2 χ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents xi

D Case II Description 109

D.1 Matlab functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.2 χ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E Experiments 117

E.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.2 Simulation results Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.3 Simulation results Case II . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xii Contents



List of Definitions

Clearing function Expression for the expected output of (a part of) the
production system as a function of the WIP over a
given period of time

Condition blocking All types of blocking that occur since a certain con-
dition on the resources is not (yet) met.

Dispatched work Set of lots (work) released into the production sys-
tem

Dispatching Determine which lot to process next, at the moment
a resource becomes idle

Effective clearing function Clearing function based on exact relations or on ap-
proximations from queuing theory

Effective Process Time The total time seen (claimed or consumed) by a lot
on a workstation

EPT realization The time a lot was in process plus the time a lot (not
necessarily the same lot) could have been in process

Estimated clearing function Clearing function based (fitted) on historical data
Planning Allocation of (forecasted) demand to available re-

source capacity
Possible work Set of lots (work) that are allowed to be processed,

with respect to the issued production targets
Re-entrant production system Production systems where lots may return more

than once to the same resource for repeated stages
of processing

Scheduling Allocation of a specified lot process action to a re-
source at a specified time segment

Sequencing Sorting of the available work with respect to a pre-
defined algorithm

xiii



xiv List of Definitions



List of Acronyms and Symbols

Acronyms

BOM Bill of Materials
BOR Bill of Resources
CONWIP CONstant Work-In-Process
CRP Capacity Requirements Planning
DES Discrete Event System
DESM Discrete Event Simulation Model
EDD Earliest Due Date
EPT Effective Process Time
FIFO First-In-First-Out
FRC Flow Rate Control
FS Fluctuation Smoothing
LDM Linear Discrete Model
LP Linear Programming
LS Least Slack
LS/n Least Slack per remaining process step
LSC Least Setup Cost
MPC Model Predictive Control
MPS Master Production Schedule
MRP-I Material Requirements Planning
MRP-II Manufacturing Resources Planning
MRP-C Capacitated MRP
mSLM multiple Single Lot Machine
RCCP Rough Cut Capacity Planning
RHS Rolling Horizon Scheme
SA Starvation Avoidance
SB Shifting Bottleneck
SBH Shifting Bottleneck Heuristic
SCLP Separated Continuous Linear Program
SLQ Stochastic Linear Quadratic
SRPT Shortest Remaining Process Time

xv



xvi List of Acronyms and Symbols

VPP Variable Priority Policy
WIP Work-In-Process
WR Workload Regulating
WSPT Weighted Shortest Process Time

Symbols

c Linearization index
i Lot index
j Server index
k Workstation index
l Step index
? Point of linearization

AAi,j,k Actual arrival of lot i on server j of workstation k
ADi,j,k Actual departure of lot i on server j of workstation k
bl Batch size of step l
BOt Backorders at the end of period t
c2
0 Squared coefficient of variation of the clean process time

c2
a Squared coefficient of variation of the inter arrival time

c2
d Squared coefficient of variation of the inter departure time

c2
e Squared coefficient of variation of the effective process time

di Due date of lot i
dt Demand for lots, during period t
Dini Initial period of the demand trajectory, prior to the demand transition
Dmax Demand value after demand transition
Dmin Demand value before demand transition
Dper Transition period length of the demand trajectory
Dt Actual departures during period t
f Clearing function
g Column vector defining cost allocation in the LDM
It Inventory of finished lots at the end of period t
lb Lower bound of linear discrete model variables x
m Number of (identical) parallel servers of a workstation
nk Number of process steps for workstation k
N Total number of process steps
Nk Total number of EPT realizations on workstation k
ORi,j,k Time instance of order-release of lot i on server j of workstation k
Rt Actual releases during period t
si Slack of lot i
sk Physical storage capacity of workstation k
Sk Set of steps belonging to workstation k
t0 Mean clean process time



xvii

t0,1st Mean clean process time of the first step
t0,2nd Mean clean process time of the second step
te Mean effective process time
th,k Lot handling (load/unload) time for workstation k
u Utilization
ub Upper bound of linear discrete model variables x
w Work-in-process
wn Weight factor for EPT realization Yn

w̄t Average WIP during period t
Wl,t WIP of step l, at the end of period t
x Column vector with the Linear Discrete Model variables
Xl,t Production quantity of step l, during period t
Yn The nth EPT realization

α (fixed) clearing factor
α(w) Non-linear clearing function
αc

k,t c-th gradient parameter for workstation k during period t

α Set of linear gradient parameters
βi Least slack parameter
βc

k,t c-th scaling parameter for workstation k during period t

β Set of linear scaling parameters
γi Least slack parameter
δ Throughput
δmax Maximum throughput of a resource
∆0 Offset of the clean process time distribution
ζl Estimate of the remaining flow time from process step l
ι Inventory holding cost
λ Arrival rate
o Backorder cost
σ2

e Variance of the mean effective process time te
τ Time of occurrence
τ f
i,j,k End time of the EPT realization of lot i on server j of workstation k

τ s
i,j,k Start time of the EPT realization of lot i on server j of workstation k

ϕb Mean wait-in-batch-time at a batching workstation
ϕq Mean queuing time at a workstation
ϕ Mean flow time
ωl Holding cost of step l



xviii List of Acronyms and Symbols



Chapter 1

Introduction

Semiconductor wafer fabrication is one of the most complex, competitive and capital
intensive production processes. The complexity is brought about by, the number of
process steps and the product-specific re-entrant flow across a number of unique tool
groups (multiple, identical machines operating in parallel), some of which process jobs in
batches, while other require sequence-dependent setups. The re-entrant behavior along
the most prominent tool groups within a semiconductor production facility is illustrated
by Figure 1.1. Here, the lithography tool group forms the pivot of the facility.
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Figure 1.1: Re-entrant nature of semiconductor manufacturing (Campen, van 2001)

The semiconductor industry has experienced a tumultuous development in the last
decade and has become more competitive. Different control approaches are deployed to
maintain a high throughput, low total flow time (time to process a lot from start to com-
pletion) and high on-time delivery performance. These control approaches significantly
affect the performance of the production process.

In spite of the importance of this control process, applied control approaches have
not changed substantially throughout the years. Though there has been important
theoretical advances, much research in this field has not had a lasting impact on the
manufacturing floor (Uzsoy et al. 1992).
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2 Chapter 1. Introduction

Whether implemented in home-grown spreadsheets or commercial software packages,
current production control is based on simple strategies obtained on the basis of (oper-
ator) experience, trial-and-error, simplified static models and heuristics.

Control is commonly deployed at various levels of production system, ranging from
(short-term) tool level to (long-term) aggregate production planning. In general, these
control levels operate separately without interaction. However, the interaction between
different levels is essential in achieving the goals of the production system, especially in
complex production environments with a high degree of variability. Most research on
control of re-entrant lines focusses on one specific level. Control of multiple levels has
mostly been neglected.

Objective

So far, no satisfactory control framework for re-entrant production facilities has been
presented. The goal of this research is to develop such a framework. The framework
should be able to cope with variability, it should be conceptually simple and it should
be applicable to a full-scale production environment.

The performance of the framework should be analyzed by comparing its performance
to that of several widely used approaches.

Approach and outline

In order to meet the objective, the following approach, which also defines the outline of
this report, is used.

Chapter 2 surveys several control approaches encountered in literature. The chap-
ter starts with a decomposition of control approaches into three levels: high-level,
intermediate-level and low-level. Different control approaches will be reviewed with
respect to the decomposition.

Subsequently, in Chapter 3 a two layer hierarchical control framework is presented. The
general structure and objectives of the control framework are presented. Next, an in-
depth description of the control approaches incorporated in the two layers is provided.

In Chapter 4, two different cases are presented. They will be used to evaluate the
performance of the presented control framework. Both cases are based on the ‘Intel
Case’ (Kempf 2003) and feature characteristics commonly encountered in a re-entrant
semiconductor production line.

In Chapter 5, first a set of simulation experiments is defined that will be used to eval-
uate the performance of the control framework. The simulation results of the control
framework with respect to the two cases defined in Chapter 4 are discussed.
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To place the performance of the control framework into perspective, the simulation re-
sults are compared with the results of a production system controlled by the ‘traditional’
MRP-C approach (Tardif and Spearman 1997).

Finally, in Chapters 6 and 7, conclusions of this research are drawn and recommenda-
tions for future research are made.
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Chapter 2

Literature survey

A characteristic feature of re-entrant production systems (Kumar 1993) is the compe-
tition between lots, each at a different stage of production, to claim capacity of the
same machine. This feature complicates the control of re-entrant production systems.
Typical application area of re-entrant systems is the semiconductor industry, with a
tumultuous development in the past two decades. Consequently, control of re-entrant
systems has become a relevant topic in the past decades.

Uzsoy et al. (1992, 1994) present an extensive review on various control strategies at
different levels of the (re-entrant) semiconductor production process. The subsequent
sections of this chapter provide an overview of significant contributions to re-entrant
production control systems.

span

sc
op
e

global

local
short long

High level control

Intermediate level control

Low level control

resolutionhigh low

Figure 2.1: Distinguishing characteristics of control decomposition

In literature, control systems are generally decomposed according to their natural hi-
erarchical structure. Rather than opting for a decomposition based on the organiza-
tional structure, emphasis, within this thesis, is placed on the decisional (i.e. span,
scope and resolution) aspects of control systems (Weber 2003). The use of a high-level,
intermediate-level and low-level control is advocated as a governing decomposition, il-
lustrated by Figure 2.1.
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Figure 2.2: Decomposition of production control.
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Here, high level control focusses on global, system wide, optimization of the aggregated
production system (i.e. long horizon, low resolution) whereas low level control aims
at short term, local optimization of the production system (i.e. short horizon, high
resolution). Intuitively, intermediate level control forms the grey area in between.

Another distinguishing characteristic between control approaches is whether they can
be applied on-line or off-line. Both at high and low level on-line approaches can be
deployed, i.e. the time required to optimally solve the control problem is small compared
to the resolution. Typical example of such approaches are sequencing rules (Uzsoy
et al. 1994). Other approaches are forced to solve the optimization problem off-line, due
to the involved computational effort. An example of off-line deployment is the Rolling
Horizon Scheme (Toba 2000). The Rolling Horizon Scheme (RHS) solves its control
problem, with a limited time horizon, using up-to-date data, at a fixed rescheduling
interval. The most recent schedule is then applied to the underlying production system.

In the following sections, several commonly encountered production control approaches
will be described briefly. The used decomposition, supplemented with respective refer-
ences, is illustrated by Figure 2.2.

2.1 High level control

Typically high level, long-term, production control systems translate predefined goals
into meaningful assignments for underlying controller(s), based on the aggregated state
of the system. These control approaches can be characterized according to their assumed
relationships between throughput (δ) and work in process (w); the finite or infinite
capacity relation.

Infinite capacity control systems, such as Material Requirements Planning, MRP-I
(Graves 1985, Vollmann et al. 1997), and some mathematical programming ap-
proaches (e.g. Johnson and Montgomery 1974) assume constant flow times, independent
of the workstation utilization. According to Little’s law (Little 1961), these control sys-
tems implicitly assume a linear relation between δ and w, reflected by Figure 2.3.

0

non-linear characteristic curve

maximum throughput

constant flow time

Figure 2.3: Relation between δ and w for a G/G/2-workstation.
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MRP-I generates a Master Production Schedule (MPS), containing a detailed schedule
of individual jobs, based on the Bill of Materials (BOM) for each (sub)product and
(fixed) lead times to satisfy demand estimates. Though conceptually simple, scheduling
all jobs is still computationally demanding. Therefore, many MRP-I systems tradeoff
accuracy for computational tractability by using discrete time-buckets (intervals) and
linearized (capacity-) constraints. However since production planning is the task of
determining factory load and product mix over time, it can be difficult to ascertain the
validity of a production plan derived using constant flow times.

Finite capacity systems, on the other hand, explicitly model the relationship between
δ and w, although they may do so in different levels of detail. Models incorporating
a maximum throughput rate δmax (Figure 2.3) obtain the lowest level of detail. Issue
with this relation is that it implies instant production.

Supported by both academic literature (Hung and Leachman 1996, Horiguchi et al.
2001) and industrial practice, the characteristic relationship between δ and w is assumed
to be highly non-linear, owing to the queueing dynamics involved. Therefore, accurate
system dynamics is obtained by models describing the ‘characteristic’ behavior between
δ and w, reflected by Figure 2.3. In queueing theory this relation is described by the
formula of Pollaczek–Khinchin (Pollaczek 1930).

A common used subdivision of the finite capacity high level control class is based on the
type of (optimization) approaches used (Uzsoy et al. 1994, Toba 2000, Habenicht and
Mönch 2002). Subclasses are formed by approaches deploying Manufacturing Resources
Planning (MRP-II) type solution approaches, search heuristics and mathematical pro-
gramming to solve the optimization problem. The presented subclasses, together with
several commonly used approaches, will be described in more detail in the subsequent
subsections.

MRP-II type

Unlike the original MRP-I type approaches, MRP-II type approaches incorporates finite-
capacity modules like ‘Rough Cut Capacity Planning’ (RCCP) and ‘Capacity Require-
ments Planning’ (CRP). Both modules work with the principle of capacity-feasibility;
enforcing a maximum throughput rate (recall Figure 2.3) on the resources.

The work of Horiguchi et al. (2001) is an example of an MRP-II system with RCCP
module, applied to a re-entrant production system. Within the RCCP module, the
time required to produce a particular end product at workstations is determined based
on the Bill Of Resources (BOR). Jobs are allocated to a time-bucket only if sufficient
capacity is available according to the MPS. In Horiguchi et al.’s (2001) approach, only
the available capacity of the (near-)bottleneck stations is considered explicitly while
developing the plan. Intuitively this yields a finite-capacity plan assuming all other
stations have infinite capacity.



2.1. High level control 9

The approach is driven by the need to trade off the increased solution accuracy of a
finite-capacity model to the increased computational time required to obtain capacity
feasible plans at different stations.

Both MRP-I and MRP-II are implemented in many commercial software packages used
in semiconductor manufacturing. An example of industrial applications of MRP-II type
systems is ReDS (Hadavi and Voigt 1994).

Search heuristics

The second subclass of finite capacity high level control consists of approaches using
search heuristics to solve the optimization problem. Examples of commonly used algo-
rithms are the ‘branch and bound’ and ‘beam search’ algorithms. In essence, a branch
and bound-algorithm creates branches by selecting a partial schedule and computing
lower limits (bounds) based on the total flow time. If the bound on a branch exceeds the
total flowtime of the best (complete) schedule found so far, it is no longer considered.
The beam search algorithm is a derivative of the branch and bound- algorithm . However
instead of checking each branch, the beam search algorithm checks only branches that
satisfy predefined criteria. Although solution speed is increased, obtaining an optimal
solution is not guaranteed.

Fargher and Smith (1994) and Fargher et al. (1994) use a beam search-algorithm in
combination with backtracking steps for lot release and for determination of schedules.
Habenicht and Mönch (2002) developed a finite-capacity beam search-algorithm, to de-
termine the start and end dates of the jobs. The algorithm ranks the lots by their
importance (outer loop) and uses a beam search-algorithm to determine the start and
end dates of the lot (inner loop). Due to the existence of parallel tools, the capacity
of the tool groups is reviewed as the sum of the individual tool capacities. The pro-
posed algorithm is considered for integration in a more general framework or distributed
hierarchical production control (Vargas-Villamil and Rivera 2001).

Mathematical programming

Many production control systems are based on optimization approaches that deploy
mathematical programming to determine production parameters. A large variety of
optimization goals is available, examples are; achieve improved short-term production
rates of all products at each equipment unit (Gershwin et al. 1985), cost minimum
production rates of each product (Bai et al. 1990) and processing operations at each
equipment unit to minimize inventory (Liao et al. 1996).

Hung and Leachman (1996) proposed an alternative for the prevailing use of the fixed
lead time assumption many high level control systems use. They introduce an approach
for automated control based on iterative Linear Programming (LP) optimization and
discrete event simulations (Figure 2.4).
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The goal of this approach is to plan rates of product release over a varying time horizon.
Discrete event simulation is used to approximate the characteristic relation between w
and δ as shown in Figure 2.3. Iteration continues until a satisfactory agreement between
simulation and LP models is obtained.

LP planning Model

Flow time
estimates

Release
schedule

Simulation Model

Figure 2.4: Iterative scheme to obtain approximated system dynamics

Leachman (2001) proposes an alternative to the use of discrete event simulation calcula-
tions to approximate the characteristic relation. If many products are to be processed,
it is impractical to formulate a model incorporating variables and constraints for each
process step. Instead, Leachman (2001) formulates a model including only variables
representing the release of raw material for processing each product. Flow time param-
eters are deployed to estimate subsequent workloads associated with the release of raw
material at each downstream process step. The model includes capacity constraints for
multiple resource types and inventory balance constraints on completed products.

Another approach is used by Asmundsson et al. (2003). Here, an accurate capacity con-
straint within a mathematical programming model is introduced via non-linear clearing
functions (Asmundsson et al. 2003). These functions enable accurately capturing of the
characteristic non-linear lead time dynamics, into a ‘text-book’ mathematical program-
ming model. Based on a combination of commonly used approximations from queuing
theory and empirical data obtained from either simulation models or historical data,
the approach is implemented into a small scale mathematical model. Simulation results
show that the approach yields computational tractable and accurate results.

2.2 Low level control

Low level control of a production process aims at local optimization based on the short-
term state of the system. A state–of–the–art review of low level control, applied to the
semiconductor production process, is presented by Fowler et al. (2002).

Research on low level control is commonly decomposed into four different classes. The
different subclasses are formed by ‘sequencing rules and input control’, ‘deterministic
scheduling algorithms’, ‘control-theoretic approaches’ and approaches deploying ‘search
heuristics’. The presented subclasses, together with several commonly encountered
approaches, will be described in more detail in the subsequent subsections.
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Sequencing rules and input control

Sequencing rules and input control form the major contribution to low level control sys-
tems and are widely used in commercially available control systems. These approaches
are used to determine the optimal sequence of lots (to be processed next) and the
optimal moment of lot release into the facility.

Scheduling all jobs on all machines is hard, both from a theoretical and practical point
of view. The computational cost involved in scheduling a semiconductor production
facility are too high. Furthermore, in a highly dynamic environment, a schedule is
practically obsolete at the moment of release. A traditional alternative to scheduling,
that is commonly applied to the semiconductor shop-floor, is the use of local sequencing
rules. These rules are used to determine the optimal job to process next, at the moment
a workstation becomes available.

A characteristic feature of sequencing rules is their myopic nature; sequencing rules re-
view only the local state of the workstation, sometimes including pre-defined bottleneck
stations. Since the choice on what to process next at a certain workstation significantly
influences the performance of the downstream workstations, sequencing rules are not
likely to obtain a global optimum.

Many different sequencing rules have been proposed by researchers as well as practition-
ers. Blackstone et al. (1982) and Wein (1988) provide a survey of such rules. Commonly
used sequencing rules include: First-In, First-Out (FIFO), Earliest Due Date (EDD),
Weighted Shortest Process Time (WSPT), Shortest Remaining Process Time (SRPT),
Least Slack (LS), and Least Setup Cost (LSC). More complex dispatching rules are es-
sentially an amalgam of the constructs mentioned above in the form of ratios, truncated
forms, composite dispatching rules, conditional combinations, or multilevel rules.

In complex, re-entrant, production systems, simple sequencing rules like First-In-First-
Out (FIFO) do not function well. Alternatives that have proven to work well are the
Shortest remaining Process Time (SPT) or Earliest Due Date (EDD) rules. Both with
different objectives, respectively reducing the average total flow time and the average
tardiness. Note that the performance of the sequencing rules under observation depends
highly on the objective of the rule.

Several sequencing rules are designed for case specific application. An example is a set of
family-based sequencing rules (Chern and Liu 2003), introducing positive discrimination
for lots of the same family (type). Goal of the family-based sequencing rules is to reduce
the unnecessary setup times for systems with multiple (product-)types.

Sequencing rules are usually complemented by some form of input control. These ap-
proaches aim to determine the optimal moment to release lots into the facility and
are based on the observation that an increase of work in progress results in increased
mean flow times (Little’s law). These types of policies attempt to achieve shorter, more
predictable flow times by releasing work in a controlled manner.
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Traditionally, input control can be classified into push and pull orientated philosophies.
Coarsely put, push systems schedule the release of work based on the (forecasted) de-
mand, whereas pull systems authorize the release of work based on the system status
(upstream information) (Hopp and Spearman 2000). Within complex production sys-
tems, such as highly re-entrant semiconductor production lines, the choice between push
or pull is not always straight forward (Krishnamurthi and Suri 2000).

Falling between the pure push and pull philosophy, the robust CONWIP (constant WIP
level) control policy (Spearman et al. 1990) focusses on WIP control and requires an
understanding of the characteristic non-linear relation between w and δ (Figure 2.3).
New lots are released in a pull manner, machines start process in a push manner.
CONWIP attempts to keep the WIP level on target, which is set according to the
desired throughput rate.

Wein (1988) examined, through the use of a simulation model, four different input
control approaches (random and uniform interarrival times, CONWIP and a Bottleneck
approach) combined with several sequencing rules. The Workload Regulating (WR)
policy, introduced by Wein (1988), tends to release a lot into the system whenever the
total amount of remaining work in front of a bottleneck station falls below a predescribed
level. Goal of this policy is to reduce both mean and variance of flow time.

Glassey and Resende (1988) developed an input control policy similar to WR; the Star-
vation Avoidance (SA) policy. This policy focusses on a single bottleneck station and
determines a virtual inventory measured over a lead time, which is used to regulate
work release. SA attempts to release work into the fab in such a manner that it will
arrive at the bottleneck just before it could become idle (starve). Glassey and Petrakian
(1989) complement the Starvation Avoidance policy with a new sequencing rule to in-
crease effectiveness of SA. Furthermore, SA has been expanded for multiple bottlenecks
systems by Leachman et al. (1988).

Simulation results of both Wein (1988) and Glassey and Resende (1988) indicate that
the use of sequencing and input control rules have a significant impact on the average
total flow time. The performance of the sequencing rules used dependents on both the
number of bottleneck stations and the type of input control used.

Deterministic scheduling algorithms

Deterministic scheduling algorithms are based on the deterministic scheduling paradigm.
These algorithms assume discrete, deterministic data, known a priori.

The Shifting Bottleneck (SB) algorithm (Adams et al. 1988) was developed for the
problem of minimizing makespan in a job shop where the sequence of machines to be
visited is known in advance. The SB approach is an approximation approach to the
general job shop problem, which proceeds by optimally solving a sequence of single–
machine problems using a branch and bound-algorithm.
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First the problem (facility) is divided into several subproblems (workstations). A dis-
junctive graph representation is used to capture the interactions between the subprob-
lems. Subsequently, each subproblem is scheduled and ranked in order of criticality,
based on a predefined performance measure. Iterative rescheduling, based on updated
rankings, continues until all subproblems have been scheduled.

Similar to the original SB algorithm, the Shifting Bottleneck Heuristic (SBH) (Mason
and Fowler 2000) deploys a ‘divide and conquer’ approach by decomposing the wafer
fab scheduling problem into smaller, more tractable subproblems. A difference with the
original SB algorithm is the dependency upon the type of tool group being evaluated
(e.g. single lot, multiple lot and batch machines). Different approaches are applied
during the solution of the tool group subproblems.

Control-Theoretic approaches

Concepts from optimal control theory have been used to develop sequencing rules and
input regulating rules for semiconductor fabrication facilities.

Lou and Kager (1989) presented an order release strategy called Flow Rate Control
(FRC) to reduce WIP and improve due date performance. Here, FRC is based on
a two-region control system model that either ceases input or introduces orders at the
maximum rate based on a calculation of surplus inventory. The novel suggestion of FRC
is the decomposition of the re-entrant flow process into a strictly serial production line
using a virtual buffer concept, illustrated by Figure 2.5. An interesting feature is that,
instead of using only local information at the workstations, more global information is
taken into account by calculating surplus for a workstation as the summation of the
downstream inventories.

Workstation 1

Workstation 4

Workstation 2

b2

5

3

7

9

Workstation 3

b5

b8

b3

b9

b6

1

b1

b4

b7

4

2

68

Figure 2.5: A re-entrant flow line decomposed into a virtual buffer (serial) flow line.

Other approaches build on the virtual buffer concept and use e.g. the Least slack (LS)
policy (Conway et al. 1967). The Least Slack (LS) policy assigns highest priority to a
lot i whose slack si, calculated by (2.1), is smallest. Whenever a machine becomes idle,
it scans the buffers and chooses lot i, with smallest si for processing.

si = βi − γi (2.1)
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The values for parameters βi and γi depend on the optimization goal. If the goal is to
reduce the variance of the lateness of all lots, βi is equal to the due date of lot i and γi

is equal to an estimate of the amount of time remaining until the lot is completed. Lu
and Kumar (1991) and Kumar (1993) have proven that the entire class of LS policies
are stable in a deterministic setting.

A subset of the Least Slack policy are the Fluctuation Smoothing (FS) policies (Lu
et al. 1994), featuring particular choices for βi and γi. If the goal would be to minimize
the mean and variance of the cycle time, slack is estimated by n/λ−γi for the n-th lot to
enter the fab. Here, λ denotes the arrival rate of lots to the fab. The delay estimate γi

is estimated through the use of iterative simulation. The fluctuation smoothing policy
is expanded for multi-process systems by Sohl and Kumar (1995).

Only a few policies have been developed to deal with the situation of demand, yield
and (resource-)capacity uncertainty, which are persistent in most semiconductor facili-
ties. Shen and Leachman (2003) use a solution methodology based on Stochastic Linear
Quadratic (SLQ) optimal control theory. Based on the paradigm of SLQ, the proposed
methodology balances WIP flows with respect to production targets in the presence of
uncertainties, for a small theoretical case inspired by wafer manufacturing application.
Although the approach seems promising, Shen and Leachman (2003) make recommen-
dations for future research to test the SLQ methodology in a more general production
network.

Search heuristics

The last class of low level control approaches deploy search heuristics to generate de-
tailed optimal and feasible production schedules. Although the search heuristics, imple-
mented at both low level and high level, are comparatively the same, the level of detail
differs. At high level, products are allocated to available workstation capacity (plan-
ning), whereas at low level individual operations (jobs) are allocated to a particular
machine at a particular time frame (scheduling).

Examples of applied low level search heuristics are the branch and bound and beam
search as described earlier, as well as heuristic neighborhood search (Uzsoy et al. 1991).
The goal of the latter is to minimize the average maximum lateness of each product.
An overview of control approaches for re-entrant flow lines is presented by Uzsoy et al.
(1994).

2.3 Intermediate level control

The intermediate level control class forms a grey area between low and high level control.
Within this thesis the intermediate level will encompass two types of control policies;
hierarchical control frameworks and fluid models, which are briefly described in the
following subsections.
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Hierarchical control framework

Hierarchical control frameworks typically use a naturally hierarchical structure, as
described in the beginning of this chapter, for the decomposition of control lev-
els (Gershwin 1989, Sethi and Zhang 1994). Within a production facility, the frequency
of events is ‘low’ at the highest level and ‘high’ at the lowest level. At the highest
level, targets are determined based on economic factors and partial state information.
These targets are passed on to the lower level controller which ensures that the appro-
priate decisions are made, based on the state of the factory, so that the desired targets
are achieved to the best possible extend. Ultimately, it is the low level controller that
decides how resources are allocated within the production facility. The framework is
illustrated by Figure 2.6.

High-Level
Controller

Low-level Decision
Variables

Desired Shift
Target

Desired Weekly
Target

Actual Shift
Yields

State of Factory

Partial State Information

Low-level
Controller

Factory
Dynamics

Figure 2.6: Hierarchical control framework

Tsakalis et al. (1997) describes issues concerning hierarchical modeling and control
within a mini-fab based on the time scale theory of Sethi and Zhang (1994) and Gershwin
(1989). At the high level controller, low resolution flow models are used based on average
variables, e.g. average cycle times, of the underlying system. Whereas the low level
controller encompasses a high resolution model requiring more data, often obtained by
sampling the original discrete event system.

Another example of a hierarchical control framework, developed for a (re-entrant) semi-
conductor wafer fab, is presented by Bai et al. (1990). This framework uses hierarchical
decomposition and control-theoretic approaches to control flexible production systems.
The objective is to meet defined throughput goals. The approach is based on classifying
the events that take place in a wafer fab, using the frequency of occurrence and the fact
that they are controllable.

Vargas-Villamil and Rivera (2001) developed a three layer hierarchical framework which
relies on the use of Model Predictive Control (MPC), online parameter estimation and
a distributed control policy. At the top level, the parameters of the underlying discrete
event system are obtained on-line (‘parameter estimation layer’). In the intermediate
level an l1-norm MPC, which uses a discrete linear model, addresses the long-term
inventory and production control problem (‘optimization layer’). The rolling horizon
feature of MPC allows the algorithm to simultaneously act as a long-term optimizer
and as a controller. At the lower level, a variable priority policy (VPP) is used to make
the appropriate discrete event decisions, based on the desired aggregated targets issued
by the optimizer (‘direct control layer’).
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Vargas-Villamil et al. (2003) applied the framework to a discrete event model of a
small scale re-entrant production line, consisting of five-machines and six process steps,
developed by the Intel Corporation (Kempf 2003). Although results from this discrete
event model seem promising, many questions remain to be answered by future research.

Fluid models

A fluid model can be regarded as a continuous representation of the discrete stochastic
queueing network. These type of models are defined by a set of equations based on the
mass balance principle. The fluid approach presented by Weiss (1999) incorporates a
complete framework, high and low level control, of an entire production facility.

The high level controller, based on a Rolling Horizon Scheme (RHS), uses a multi-class
fluid network to approximate the production system. The fluid control problem is a
Separated Continuous Linear Program (SCLP) and can be solved numerically, with the
use of a simplex based algorithm. Due to this feature, fluid control problems are more
tractable than combinatorial optimization problems. An newly developed simplex-based
finite algorithm is used to solve the SCLP problem. Similar to the MPC approach, a
low level controller translates continues targets into discrete events.

While the above mentioned control framework seems promising, research on fluid models
is still in their early stages. Hence the various theorems, models, and results for a full
scale re-entrant environment are incomplete.

2.4 Discussion

This chapter surveys several commonly encountered control approaches, both stan-
dard and recent developments. The survey illustrates that the majority of research is
focussed on single level approaches only. Research on layered control frameworks, com-
bining different approaches at their intended level, is rare. A decomposition of control
approaches, based on the decisional aspects, is used to introduce three different control
levels; high-level, intermediate-level and low-level.

High level control approaches are typically characterized by their assumed relation for
resource capacity. Many commonly implemented ‘traditional’ approaches, e.g. MRP-I,
assume fixed or linear capacity relations. Consequently, they neglect the influence of
variability, thus overestimating production capacity and underestimating average flow
times.

More recent approaches tend to approximate the characteristic non-linear resource dy-
namics in various ways. An example of such approach is the iterative simulation pro-
posed by Hung and Leachman (1996). However, convergence is not guaranteed for this
approach and is likely to depend on the structure of the underlying production system.
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The approach presented by Asmundsson et al. (2003) combines the tractable character-
istics of a mathematical programming model with an accurate approximation of resource
capacity by deploying approximations from queuing theory. If deployed in an MPC-like
structure (Vargas-Villamil and Rivera 2001), adaptability is gained by the parameter
estimating layer.

A large variety of different low level control approaches have been introduced , ranging
from simple sequencing approaches to extensive control-theoretic approaches. Sequenc-
ing rules form the major contributor to the low level control approaches since they guar-
antee a reasonably good (typically) suboptimal solution in a short time (Pinedo 2001).

Not all sequencing rules work efficiently or result in a stable production system, espe-
cially in a complex (re-entrant) production environment. Appropriate sequencing rules
are the Earliest Due Date (EDD) and Least Slack (LS) policies. Another promising
contribution is the Stochastic Linear Quadratic (SLQ) optimal control theory (Shen
and Leachman 2003). Although small-scale experiments show promising results, this
approach is still in the early stages of development and can not yet be applied to real-life
production systems.

The same holds for the fluid model control approaches (Dai and Weiss 1996, Weiss 1999).
They are one of the approaches of the intermediate level control; the grey area between
high and low level control approaches. A promising recent contribution to this level
of control is the three layer model predictive control framework of Vargas-Villamil and
Rivera (2001) and Vargas-Villamil et al. (2003).
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Chapter 3

Control framework

As discussed in Chapter 2, most previous research focusses on single level control ap-
proaches. Due to the involved computational effort, it is practically impossible to control
a full scale re-entrant production environment with these approaches.

The interaction between approaches at different levels is essential in effectively achieving
the goals of these production systems. However, research on layered control frameworks
combining different approaches at their intended levels is rare. The sole contribution is a
three layer Model Predictive Control (MPC) framework, recently presented by Vargas-
Villamil et al. (2003).

In this chapter, a two layer framework for Model Predictive Control (MPC) is pre-
sented. This framework deploys and integrates different approaches in their intended
environment. The general structure and objectives of the control framework are pre-
sented in Section 3.1. In the subsequent sections, an in-depth description of the control
approaches incorporated in the two layers is provided.

3.1 General framework

Within this thesis, high and low level control are implemented in a hierarchical con-
trol framework. Different levels are used to subdivide an otherwise intractable control
problem into multiple smaller problems. Although the solution is suboptimal, the com-
putational effort and the frequency of the control decisions are reduced significantly.
Control levels are distinguished by both the decisional aspects of the control system
(i.e. span, scope and resolution) and the frequency separation of the (controllable)
events (Kimemia and Gershwin 1983).

The main objective of the control framework is to translate actual demand into control-
lable events for a re-entrant production environment. The objective is attained in two
steps (layers).

19
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First, the high level controller performs a planning task. This task encompasses ‘the
allocation of actual demand to available workstation capacity within a period of time,
based on the aggregated state of the underlying production system’ (planning). The
objective is to globally optimize the performance measures. The low level controller is
accordingly provided with a feasible set of short–term production targets.

The second step is performed by the low level controller. This step encompasses ‘the
generation of controllable events (e.g. release of material) based on the set of production
targets and on the actual state of the underlying workstation’ (direct control). The
objective of this level is to locally optimize the production system by striving to achieve
the globally determined production targets.

Figure 3.1 reflects the described hierarchical control framework. All control decisions
(e.g. equipment acquisition) with a scope beyond the control boundary (dashed line)
are assumed to be given.

Discrete event system
(Re-entrant production line)

High level control

Low level control

Actual
demand

Production targets

Controllable events

Aggregated
state

Direct control

Planning

State

Figure 3.1: Hierarchical two layer control framework

The presented control framework is further explored in the subsequent sections. Sec-
tion 3.2 and Section 3.3 describe respectively the high level control layer and the low
level control layer. Although several approaches have already been introduced in Chap-
ter 2, a more thorough description of the approaches used to attain the objectives of
the individual layers is presented. Together with the definitions of the approaches, sev-
eral commonly encountered issues are discussed, illustrated and resolved. Finally, the
complete control framework, encompassing all approaches, is discussed in Section 3.4.

3.2 High level control

As described in the previous section, the high level control layer is used as the primary
step in the translation of actual demand into controllable events. Within this layer,
planning approaches are used to derive a set of feasible production targets based on the
actual demand and the aggregated state of the production system. To accomplish the
planning task, high level control approaches commonly deploy an aggregated model of
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the production system. The performance of the planning approaches depends heavily
on the assumed relation for the resource capacity.

Asmundsson et al. (2003) argue that many planning approaches suffer from a funda-
mental circularity. Within each planning cycle, the number of lot releases into the
production environment is determined based on the flow time estimates (embedded in
the resource capacity constraint). The amount of WIP determines the workstation uti-
lization, which in turn influences the realized flow times. In other words, a different
(linear) resource capacity constraint (function of estimated flow time) is defined each
planning cycle. Eventually, this circularity will converge for steady state environments.
However, for dynamic environments convergence is not guaranteed.

The convergence of the resource capacity constraint in a steady state situation is illus-
trated by Figure 3.2. Here, the development of the linear resource capacity constraint
after each planning cycle is shown. Here, the thick black line describes the capacity
constraint after convergence.

0

convergence

capacity constraint

characteristic curve

Figure 3.2: Convergence for a steady state environment

Within literature, several approaches exist to circumvent the fundamental circularity.
The most commonly encountered approach assumes fixed flow times, independent of
system utilization. Many mathematical programming approaches append an additional
constraint on the total capacity consumed within a time period. According to this
approach, system performance only degrades once the resource capacity constraint is
saturated (i.e. 100% utilization). However, both queueing models and industrial ex-
perience suggest that system performance should degrade long before reaching 100%
utilization.

Another approach to circumvent the fundamental circularity uses iterative Linear
Programming (LP) optimization and detailed simulation models (e.g. Hung and
Leachman 1996) to approximate the flow times. Iteration continues until a satisfac-
tory agreement between simulation and LP models is obtained. Convergence of such
models is not guaranteed and is likely to depend on the structure of the underlying
production system. Furthermore the computational tractability decreases rapidly with
the size of the underlying production system.
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To avoid the problem of fundamental circularity, the characteristic relation between
w and δ should be used as a resource capacity constraint by the planning approach.
This relation ensures the non-linear degrading of system performance with increasing
utilization.

Within this thesis, planning is achieved by a combination of the previously mentioned
approaches. Short-term production targets are derived via a Linear Discrete Model
(LDM). Within this model, a set of non-linear resource capacity constraints ensures
the capacity feasibility. This set of resource capacity constraints is based on clearing
functions. The essential parameters required by the clearing functions are estimated
using Effective Process Time (EPT) algorithms. Figure 3.3 illustrates the approaches
used to accomplish the planning part of the control framework. These approaches are
treated in detail in the subsequent subsections.

Linear discrete model

EPT algorithm

Planning

Actual
demand

Production targets Aggregated state

Clearing functions

Resource capacity constraint

te, ce, ca2 2

Figure 3.3: High level control layer

Clearing functions

In essence, clearing functions express the expected output as a fraction of the WIP over
a given period of time. The term ‘clearing functions’ was first introduced by Graves
(1985) to specify the fraction of the current WIP that can be processed to completion
within a period of time. He proposed the use of fixed clearing factors α in a closed
queueing analysis (3.1).

δ = α · w (3.1)

Srinivasan et al. (1988) and Karmarkar (1989) proposed to use clearing functions as
resource capacity constraints in planning models. They extend the idea by replacing
the fixed clearing factors α with a non-linear clearing function α(w), described by (3.2).
The right hand side of (3.2) is referred to as the clearing function f(w) and is interpreted
as a measure of resource capacity.

δ = α(w) · w (3.2)

Karmarkar (1989) presents an overview of clearing functions as encountered in literature.
A typical example is the ‘constant proportion’ clearing function, assuming fixed flow
time independent of system utilization (recall Figure 2.3).
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Secondly, he discusses the ‘constant level’ function, which introduces a fixed upper
bound on the throughput, as deployed in several mathematical programming mod-
els. This type of function, without an additional flow time constraint, implies instant
production. The third function, the ‘combined’, is a combination of both previously
described functions and is implemented in e.g. mathematical programming model of
Hackman and Leachman (1989) and the MRP-C approach (Tardif and Spearman 1997).

The described clearing functions all tend to overestimate the resource capacity. As a
solution the ‘effective clearing function’ is introduced by Asmundsson et al. (2003). This
type of clearing function approximates the (non-linear) characteristic curve by deploying
approximations from queuing theory.

The advantage of the effective clearing functions is its ability to capture the non-linear
resource capacity dynamics while retaining computational tractability. However, As-
mundsson et al. (2003) conclude that in general it isn’t possible to completely define
the effective clearing function due to the myriad of practical details. Instead, Asmunds-
son et al. (2003) suggest to use an estimate of the effective clearing function based on
empirical data; the ’estimated clearing functions’.

Although the estimated clearing functions do capture the practical details, they have
one disadvantage. In order to obtain credible results, these estimates can only be used
in a steady state environment, e.g. no variation in resource performance.

Within this thesis, essential parameters are estimated using an EPT algorithm (Jacobs
et al. 2003). A major advantage of this algorithm is that all sources of variability are
captured. This particular topic is discussed later.

The resource capacity can thus be described by approximations from queuing theory,
even in a dynamical environment. A commonly encountered approximation for the
WIP of a workstation with general inter-arrival and process times, m identical parallel
machines and a (parallel processing) batch of size b, is defined by (3.3).

w(G/Gk/m) =
b− 1

2
+ b · c2 ·

( t0
mb

)γ
· δγ

1− t0
mbδ

+ t0 · δ (3.3)

where c2 =
1
2
(c2

a/b + c2
0) and γ =

√
2(m + 1)

In accordance with the definition of the effective clearing function, (3.3) has to be solved
for δ (3.4). Here, the non-linear effective clearing function is denoted by f .

δ(G/Gb/m) = f(w,m, b, c) (3.4)

Two issues surround the non-linear behavior of (3.3). First of all it is not possible to
analytically derive (3.4). Therefore, (3.3) has to be solved numerically. Secondly, (3.4)
is non-linear, whereas it should be used in a Linear Programming model. Within this
model, the non-linear clearing functions (3.4) are captured by sets of linear approxima-
tions (3.5).



24 Chapter 3. Control framework

In turn, these linear approximations are used as resource capacity constraints.

δ = α · w + β (3.5)

In the dynamic environment studied here, the clearing functions should be re-determined
each period. Because the placement of the linearizations depends on the shape of the
underlying clearing function, a linearization-algorithm (described in Appendix A) is
embedded within the high level controller. The algorithm returns a set of linearization
parameters {α, β}, describing the individual linear constraints. Figure 3.4 illustrates
the approximation of the non-linear characteristic curve of a G/G/2-workstation (recall
Figure 2.3) by a set of linear approximations.

0

effective clearing function

linear approximation

Figure 3.4: Set of linear approximations capturing the effective clearing function

The linearization-algorithm enables the use of effective clearing functions as resource
capacity constraints within a linear discrete model. With the use of {α,β}, the non-
linear effective clearing function, f , can be replaced by (3.6).

f(wt) = min
∀c

{
αc

t · wt + βc
t

}
(3.6)

Here, the c-superscript represents the individual linear approximations, i.e. αc
t ∈ αt.

The non-linear clearing function will be described by taking the minimum of one or
at most two linearizations. The complete derivation of the effective clearing function
from standard approximations from queuing theory to resource capacity constraint is
described in Appendix A.

Effective Process Time-algorithm

In order to completely define the effective clearing functions, several parameters have
to be estimated each planning cycle. The mean effective process times te and the
corresponding squared coefficients of variation c2

e and the interarrival times c2
a, are

essential parameters (see (3.3)). Although c2
a can readily be measured, measurement of

te and c2
e is not as straightforward.
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Jacobs et al. (2003) proposed to use the Effective Process Time (EPT) as a performance
measure to quantify throughput losses and irregularities in process times. Hopp and
Spearman (2000) introduced the effective process time as the time ‘seen’ by a lot on a
server (machine) from a logistical point of view. EPT thus includes setups, down time,
repairs, operator unavailability and all other sources of variability.

EPT realizations for a multiple server workstation (G/G/m) are obtained by deploying
the ‘multiple Single Lot Machine’ (mSLM)-algorithm (Jacobs et al. 2003, Kock 2003).
The EPT realization of lot i on server j of workstation k will be started at τ s

i,j,k =

max(AAi,j,k,ADi,j,k−1). The EPT realization will be ended at τ f
i,j,k = ADi,j,k. With

AAi,j,k being the actual arrival and ADi,j,k the actual departure of lot i on server j of
workstation k. The EPT realization is represented by (3.7).

EPT i,j,k = ADi,j,k −max{AAi,j,k,ADi,j,k−1} (3.7)

Distributions are fitted on a set of EPT realizations, using distribution parameters
such as the mean effective process time te and its squared coefficient of variation c2

e.
Computation of the properties of the EPT distributions are carried out with the use of
(3.8). Here, Nk is the total number of EPT realizations on workstation k , Yn the nth
realization and σ2

e the variance of the mean EPT te.

te =
1

Nk

Nk−1∑
n=0

Yn (3.8a)

σ2
e =

Ni
∑Nk−1

n=0 Y 2
n −

(∑Nk−1
n=0 Yn

)2

Nk(Nk − 1)
(3.8b)

c2
e =

σ2
e

t2e
(3.8c)

Application of algorithm mSLM has some implications. Consider the influence that
individual EPT realizations have on the distribution properties. In a dynamical en-
vironment (fluctuating performance of the equipment), the latest realizations tend to
better reflect the state of the system, which is not captured by (3.8a). Accordingly,
disturbances in the past have the same influence on the average as recent disturbances.
Therefore, a weight factor wn is introduced. Here, wn describes the influence of realiza-
tion n. Figure 3.5 illustrates the weight factor wn for each realization Yn with regard
to different weight distributions; ‘normal’, ‘moving’ or ‘exponential weighted moving’.

The ‘normal’ and ‘moving’ average regards each realization to be equally important in
calculating the average. However, the ‘moving average’ only regards a limited number
of realizations (lookback period). The ‘exponential weighted moving’ average places
more emphasis on the most recent realizations and less on old realizations.
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Figure 3.5: Realization weight distributions

The weight factor is implemented by replacing (3.8a) with (3.9). The choice for a weigh-
ing distribution depends highly on the dynamical behavior of the underlying production
system. Therefore a suitable generic weighing function cannot be selected ‘a priori’.

te =
1

Nk

Nk−1∑
n=0

wn · Yn (3.9)

Implementation of the EPT algorithm within the control framework enables the use of
effective clearing functions as a resource capacity constraint. These resource capacity
constraints will form a vital part in the Linear discrete model, which will be discussed
in the remainder of this section.

Linear discrete model

In essence, the previous steps provide estimated parameters appertaining to the system
state. Based on the system state, the actual planning task of the high level control layer
will be performed by a Linear Discrete Model (LDM). Within this model, feasible short-
term production targets are derived based on a prediction of the (production) system
dynamics (Model Predictive Control). In this thesis, the system dynamics are captured
by the effective clearing functions. Since the exact definition of the LDM depends on
the underlying production system, an general form will be used to illustrate modeling
choices.

An LDM of a production system is a mathematical programming model that describes
the state transitions with respect to a set of (capacity) constraints. An LDM is based on
two assumptions. First of all, time is discretionalized into fixed periods. In other words,
the model describes the relation between model-variables x (state) of subsequent periods
t; xt = f(xt−1). Secondly, all relations (describing the state transition) are assumed to
be linear.

The general model is formulated as a cost minimization problem (3.10a) subject to a
set of constraints. Equation 3.10b reflects a set of equality constraints describing the
flow and mass conservation of the production system.
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A set of inequality constraints is described by (3.10c). A major contributor to this set
are the storage and production capacity constraints. Furthermore, (3.10d) defines a
limited range for the model-variables x.

min
x

gT · x (3.10a)

s.t. A · x = b (3.10b)
C · x ≤ d (3.10c)
lb ≤ x ≤ ub (3.10d)

The resource capacity is the most important constraint within an LDM of a production
system. In this thesis, the resource capacity constraint is defined as a set of linear
approximations of the effective clearing function (3.5).

To implement (3.5), an appropriate measure of WIP of a resource is required. Addition-
ally, the resource capacity needs to be partitioned to be able to address the presence of
different products (steps) that consume a resource.

The measure for WIP needs to be redefined since the linear discrete model divides the
planning horizon into a number of time periods. The model thus only distinguishes WIP
levels at the beginning of a period (i.e. the WIP level at the end of the previous period
wt−1) and at the end of a period. Clearly, in reality, the WIP level of a workstation
tends to fluctuate during the period, due to the inhomogeneous in- and outflux of the
workstation.

A number of alternatives have been proposed to address the issue surrounding the
definition of an unambiguous measure of WIP that can be used to represent the situation
over the entire period. Srinivasan et al. (1988) propose the use of the WIP at the
beginning of the period t, wt−1 in a clearing function to establish the capacity during
the entire period, i.e. δt ≤ ft(wt−1). Karmarkar (1989) suggests to use the WIP at
the end of a period t, wt as a measure of the WIP, i.e. δt ≤ ft(wt). In both cases,
fluctuations in WIP level within a period are omitted. Especially in relatively long
periods, these definitions may introduce a significant inaccuracy.

Alternatively, the average WIP level of a period can be used, approximated by the
average of the beginning and ending WIP in that period, i.e. w̄t = 1

2(wt−1 + wt). Now,
the clearing function is defined as a function of the average WIP during the period,
i.e. δt ≤ ft(w̄t). For this approach, the same average WIP level can be achieved
by many different beginning and ending WIP levels, the optimal WIP level tends to
oscillate. Preliminary experiments confirm the oscillating behavior as is illustrated by
Example 3.1.

Example 3.1 Consider a workstation with a constant demand trajectory
for product i. To meet the demand, an average WIP level (throughout the
period) is required. Figure 3.6 shows the output of the linear discrete model
if the resource capacity constraint would use w̄t = 1

2(wt−1 + wt) as measure
for the WIP.
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Figure 3.6: Oscillating behavior of the optimal WIP level wt

The oscillation behavior of wt around the ideal average WIP level (dashed
line) can clearly be seen. J

Finally, Asmundsson et al. (2003) propose to reformulate the linear discrete model by
offsetting the throughput by half a period from what is traditionally done. Hence δt

can be used as an estimate of the production rate at time t by dividing it by the length
of the time period.

Although the approach of Asmundsson et al. (2003) seems plausible, the alternative
presented by Srinivasan et al. (1988), i.e. δt ≤ ft(wt−1), is preferred to preserve the
formulation of (3.10). Note that this approach restricts the freedom to choose an
appropriate period size to avoid significant inaccuracy.

As stated above, the definition of the effective clearing functions involves the ability to
partition capacity. In this thesis, the resource capacity constraint for a workstation is
defined by a single effective clearing function. However, within a (re-entrant) production
system, several products compete for capacity at the same resource.

Note that when an unpartitioned constraint is used, capacity is possibly created for one
product by holding WIP for another. Example 3.2 clearly illustrates this problem.

Example 3.2 Consider a workstation producing a single product with a
number of re-entrant production steps l. Each step has an equal resource
consumption factor. If the resource capacity is un-partitioned, capacity is
allocated according to (3.11).∑

∀l
δl,t ≤ ft

∑
∀l

wl,t−1 (3.11)

In this case, the optimal solution maintains a high WIP level of the product
with least associated cost. The capacity generated by this product can be
used to reduce WIP levels of all other products. J

A number of alternatives have been proposed to address capacity partitioning. The
most commonly encountered alternative is to define a single clearing function for all
steps on a workstation and to partition it for each individual step.
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Here, the fraction of the total resource capacity consumed by step l is equivalent to its
fraction of the total WIP (3.12).

δl,t ≤
wl,t∑
∀l wl,t

· ft(wl,t) (3.12)

Although (3.12) introduces an adequate resource capacity partitioning approach, it
introduces non-linearity, and is thus not applicable to a linear discrete model.

Alternatively, a fixed ‘resource capacity consumption factor’, describing the capacity
consumption for a resource per unit produced, can be introduced (Asmundsson et al.
2003). Since such a factor would be based on historical data, similar to the clearing
functions as discussed previously, it would work in a steady state environment, but not
in a dynamic environment.

Another alternative would be to define a set of constraints that relates total resource
capacity to the total WIP (3.13a), and that relates the resource capacity of step l to
the corresponding WIP, wl, as denoted in (3.13b).∑

∀l
δl,t ≤ ft(

∑
∀l

wl,t) (3.13a)

δl,t ≤ ft(wl,t) (3.13b)

Here, (3.13) is defined for a two step environment. An environment with more than
two steps would require a set of constraints for every combination of layers. Therefore
an environment with n steps per workstation, would require a set of 2nk − 1 capacity
constraints for workstation k.

Although the number of constraints increases rapidly with the problem-size, the latter
alternative is used in the LDM. Due to the exploding number of constraints, more
research towards capacity partitioning is required.

In conclusion, this section introduces a detailed high-level control layer. This control
layer performs the first (planning) step by translating the actual demand into produc-
tion targets and, eventually, into controllable events. Here, fundamental circularity is
avoided by deploying the characteristic non-lineair system dynamics as a resource ca-
pacity constraint. Furthermore, these constraints ensure the derivation of predictable
and feasible short-term production targets which are fed to the low level control layer.

3.3 Low level control

The second step in the hierarchical control framework, direct control, is governed by
the low level control layer. This step encompasses the short-term decisions, based on
the current state of the production system, in order to achieve the production targets
issued by the high level control layer. A survey on commonly encountered low level
control approaches is provided in Section 2.2.
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Since the low level control layer focusses on local optimization, the low level control
layer is distributed over the production system (workstations). Here, a distributed
dispatching policy is used since it guarantees a good, yet suboptimal, solution in a
short time (Pinedo 2001). The deployed distributed dispatching policy is a combination
of two dispatching rules (composite dispatching rule).

First, the issued production targets are used to translate the current buffer content
(state) of the workstation into a set of possible work. Secondly, a sequencing policy
is used to determine which lot or batch should be dispatched next (dispatched work).
Figure 3.7 illustrates the approaches used in the distributed direct control part of the
control framework. Both approaches are detailed and discussed hereunder.

Sequencing policy

Distributed direct control

Production targets

Dispatched work

Flow rate control

state

Possible work

k

Figure 3.7: Distributed direct control for workstation k

Flow rate control

The targets issued by the high level control layer describe the desired flow of lots through
the Discrete Event System (DES). The inflow of the DES is captured by the number
of lot releases per unit of time, while lot departures form the outflow of lots. The
production targets describe the number of lots that should be processed during period
t for each individual workstation.

In essence, the flow rate control rule can be seen as a traffic signal. When (a server
of) a workstation becomes idle, the current buffer content is examined. Based on the
remainder of the issued production targets, the current buffer content (state) of the
workstation is translated into a set of possible work (lots that are allowed to be pro-
cessed during the current period). If the issued production targets are achieved, the
workstation must remain idle. If the workstation has not reached the desired target, a
sequencing policy selects the next lot or batch to be processed (dispatched).

Sequencing policy

Many sequencing approaches have been proposed (Blackstone et al. 1982). However, not
all sequencing rules perform well in complex (re-entrant) environments. Furthermore,
not all sequencing rules are ‘stable’ (Lu and Kumar 1991) in such an environment.
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A sequencing rule is said to be stable if the total flow time of a system does not exceed
an upperbound, provided the arrival rate is within the system capacity.

The choice for a sequencing policy depends on the desired optimization goal. In this
thesis, a Least Slack (LS) policy is used. The least slack sequencing policies are due
date based, with the objective to minimize the variance of the tardiness of all lots. LS
policies are proven to be stable in complex environments (Lu and Kumar 1991).

These policies take into account the due dates of the wafer lots and give priority to
those lots that have the least amount of slack si, i.e., the one that are closest to their
due dates or are the most past due. Here, the slack of lot i is defined by (3.14), as the
difference between the remaining time before the due date di− τ and an estimate of the
remaining flow time ζl. Where, ζl depends on the production step l of the lot.

si = di − τ − ζl (3.14)

A derivative of the Least Slack policy described above, is the ‘Least Slack per remaining
process step’ (LS/n). Here, slack si is defined with respect to the remaining number
of process steps (3.15). Various comparative studies show that LS/n performs well in
complex re-entrant production systems, and that it reduces both the variance and the
mean of the tardiness (Lu and Kumar 1991, Waikar et al. 1995).

si =
di − τ − ζl

N − l
(3.15)

LS/n (3.15) will be deployed, in the low level control layer, to determine which lot (or
batch) to dispatch next. Here, ζl will be defined based on either the outcome of the
LDM or approximations from queuing theory in combination with the effective process
times, te. This particular topic will be discussed during the implementation of the
control framework.

3.4 Discussion

In this chapter, a two layer hierarchical MPC framework is presented. Hierarchical de-
composition is used to subdivide an otherwise intractable control problem into multiple
smaller problems. The main objective of the MPC framework is to translate actual de-
mand into controllable events for a re-entrant production environment. This objective
is achieved in two steps, a high level control step and a distributed low level control
step.

The first step is performed by the high level control layer. Here, a Linear Discrete Model
is used to derive production targets based on the aggregated state and the predicted
behavior of the production system (Model Predictive Control).
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An accurate prediction of the non-linear system dynamics is obtained by implementing
resource capacity constraints based on the effective clearing functions (approximations
from queuing theory). Essential parameters, required for the definition of the effective
clearing functions, are determined by an EPT algorithm.

An advantage of the presented high level control layer is that it circumvents the funda-
mental circularity present in many other planning (optimization) approaches. Further-
more, essential parameters are based on an objective performance measure, rather than
on interpreted historical data.

The second step is performed by the low level control layer. Here, a distributed com-
posite dispatching rule is used to determine which lot (or batch) to process (dispatch)
next. First, flow rate control determines the possible work that can be dispatched next,
based on the issued production targets. Next, a Least Slack per remaining process step
(LS/n) sequencing policy is used to determine which lot or batch should be processed
next. The LS/n policy is used because it has been proven to be stable and effective in
a complex re-entrant environment.

The described hierarchical MPC framework is reflected by Figure 3.8.

Linear discrete model

EPT algorithm

LS/n sequencing policy

Discrete event system
(Re-entrant production line)

High level control

Low level control

Actual
demand

Production targets

Dispatched work

Aggregated
stateFlow rate control

Effective clearing functions

State

Possible work

Resource capacity constraint

te, ce, ca2 2
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Figure 3.8: Two layer Model Predictive Control framework

The presented control framework resembles the MPC framework as presented by Vargas-
Villamil et al. (2003), by distinguishing ‘parameter estimation’, ‘optimization’ and ‘di-
rect control’ sections. However, in contrast to the definition of Vargas-Villamil et al.
(2003) the parameter estimation section is considered to be a utility rather than a
distinct control layer.
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Cases

In this chapter, two cases are presented, that are used to analyze the performance of
the new MPC framework. First, a description of the simulation framework with which
the cases and control framework are simulated is presented. In Section 4.2, the ‘Intel
five-machine six-step Mini-Fab case’ and its underlying assumptions is presented. The
non-re-entrant case and its corresponding assumptions are discussed in Section 4.3. The
re-entrant case is introduced in Section 4.4.

4.1 Simulation framework

Both cases are embedded in a simulation environment deploying several programming
languages. The high level control layer is programmed in Matlab 6.1. The discrete event
system and low level control layer are programmed in the formalism χ-0.8 (Hofkamp and
Rooda 2002). The interaction between both parts is achieved by deploying the Pymat-
interface (Sterian 1999) in Python (Lutz and Ascher 1999). The simulation framework
is illustrated by Figure 4.1.

High level control

Low level control

parameters

Matlab

Python

Discrete event simulation model

Chi 0.8

Figure 4.1: Simulation framework
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A distinctive part of the simulation framework is formed by high level controller. Con-
versely, the borderline between the distributed low level control layer and Discrete Event
Simulation Model (DESM) is not clear. In fact, the distributed low level control layer is
implemented as a set of rules within the DESM. A detailed description of the simulation
framework used in this thesis is presented in Appendix B.

4.2 Intel case description

Semiconductor production lines are one of the most complex production environments
available. The Intel Case (Kempf 2003) exhibits all characteristic features of such
a production line, i.e. reentrancy, different process times, batching, setups, loading
and unloading. The case contains six process steps (l ∈ {0, . . . , 5}) and five machines
(A,B, C, D, E) which are distributed over three workstations (k ∈ {0, 1, 2}). Moreover,
it distinguishes two product-flows (Pa, Pb) and one test-flow (TW ). All products follow
the same predefined route, illustrated by Figure 4.2.
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Figure 4.2: Intel Case product flow

The characteristics of the workstations are similar to diffusion (k = 0), ion implantation
(k = 1), and lithography (k = 2). Workstation 0 performs steps 0 and 4 and it processes
lots in batches of three. Workstation 1 serves steps 1 and 3 and it processes one lot at
a time. Workstation 2 serves steps 2 and 5 and requires setup times between step and
product change. Individual workstation characteristics are represented in Table 4.1.

k l t0,l th,k bl nk

0 0 225 60 3 2
4 255 60 3

1 1 30 30 1 2
3 50 30 1

2 2 55 20 1 1
5 10 20 1

Table 4.1: Intel Case specification
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Here, t0,l is the nominal step process time [min], th,k is the lot handling (load/unload)
time [min], bl is the batch size [lots] and nk is the number of machines per workstation.
In accordance to many semiconductor production lines, the lithography area (WS2) is
the bottleneck of the Intel Case.

In the Intel Case operators and technicians are used for respectively (un)loading and
maintenance. Transportation between workstations is handled by a transportation-
system capable of transporting a single lot at a time. Several other assumptions underly
the Intel Case, i.e.:

• Production occurs in 12 hour shifts; 24 hours per day and 7 days per week.
• Process times are deterministic.
• All resources require preventive maintenance.
• Equipment preemption is not allowed.
• No rework is present.
• The buffers of a workstation have a finite storage capacity, i.e. sk = [18, 12, 12].

Although the Intel Case is a relatively small scale problem, it features all characteristics
commonly encountered in a real semiconductor production facility. Therefore, it is
suitable to determine the potential of the control framework presented in the previous
chapter.

4.3 Case I: No reentrancy

The first case studies the first three steps of the Intel Case. However, instead of three
different product flows, only a single product flow is assumed. The objective of this
case is to verify the control framework without resource capacity partitioning.

Case description

Although the first case greatly resembles the Intel Case, several simplifications or alter-
ations have been made, while preserving the characteristic behavior of a semiconductor
production environment. A visual representation of the product-flow of the first case is
provided by Figure 4.3.
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Figure 4.3: Product flow of case I

The following (additional) assumptions underly the first case.

• Single non-re-entrant product flow.
• Sufficient technicians and operators are available.
• Machines are reliable.
• Machines do not require maintenance.
• Transportation time between workstations is negligible.
• After completing the final production step, lots are stored into an inventory buffer

BI, where they await customer demand.

The individual workstation characteristics correspond to those of the Intel Case and are
represented by Table 4.2.

k l t0 th bl nk

0 0 225.0 60.0 3 2
1 1 30.0 30.0 1 2
2 2 32.5 20.0 1 1

Table 4.2: Workstation characteristics for case I

The following subsections provide an overview of the particular modeling choices con-
cerning the two main components of the simulation framework; the linear discrete model
(LDM) and the discrete event simulation model (DESM). The other components of the
control framework do not require case-specific choices and are modeled in accordance
with their definition discussed in Chapter 3.

Linear discrete model

The actual planning task of the high level control layer is performed by solving the
optimization problem. This problem is formulated as a Linear Discrete Model (LDM)
of the underlying production system. The general form of this model has already been
introduced in Section 3.2.
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The linear discrete model of the first case closely follows the formulation of Hackman
and Leachman (1989) and Leachman (2001). The underlying production system is
modeled as a set of nodes representing the individual production steps.

min
∑
∀t

∑
∀l

(
ωl ·Wl,t + ι · It + o ·BOt

)
(4.1)

s.t. Wl,t = Wl,t−1 + Rt − bl ·Xl,t ∀t, l = 0 (4.2a)
Wl,t = Wl,t−1 + bl−1 ·Xl−1,t − bl ·Xl,t ∀t, l = {1, 2} (4.2b)
It = It−1 + bl−1 ·Xl−1,t −Dt ∀t, l = 3 (4.2c)
BOt = BOt−1 + dt −Dt ∀t (4.2d)

Xl,t ≤ αc
k,t ·Wl,t + βc

k,t ∀c, k, t, l ∈ Sk (4.3a)

Wl,t ≤ sk ∀k, t, l ∈ Sk (4.3b)

Xl,t, Wl,t, Dt, It, Rt, BOt ≥ 0, ∀l, t (4.4)

with c : index for linearization parameters
k : workstation index
l : step index
t : time period index
ι : inventory holding cost
o : backorder cost
ωl : holding cost of step l
BOt : backorders at the end of period t
Dt : actual departures during period t
It : inventory of finished lots at the end of period t
Rt : actual releases during period t
Wl,t : WIP of step l, at the end of period t
Xl,t : production quantity of step l, during period t
bl : batch size of step l
dt : demand for lots, during period t
sk : physical storage capacity of workstation k
αc

k,t : c-th gradient parameter for workstation k during period t, i.e. αc
k,t ∈ αk,t

βc
k,t : c-th scaling parameter for workstation k during period t, i.e. βc

k,t ∈ βk,t

Sk : set of steps belonging to workstation k, i.e. S0 = {0}, S1 = {1}, S2 = {2}

As described in the previous chapter, the LDM is formulated as a cost minimization
problem (4.1) subject to a set of equality and inequality constraints. Flow and mass
conservation of the production system are enforced by the equality constraints (4.2).
The ‘mass conservation’ for step l is defined by (4.2a) and (4.2b). Here, the change in
Wl,t is defined as the difference between influx and outflux of lots. The flow between
production steps is obtained by setting the influx of step l Xl,t equal to the outflux of
its predecessor Xl−1,t, illustrated by Figure 4.4.

The two remaining equality constraints, (4.2c) and (4.2d), are used to suppress ca-
pacity or demand fluctuations. These two constraints describe respectively the mass
conservation of the inventory buffer BI and the backlog of the production system BOt.
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Figure 4.4: Flow and mass conservation within a linear discrete model

Physical capacity limitations are enforced by the inequality constraints (4.3). Here, the
physical resource capacity and storage capacity are constrained by respectively (4.3a)
and (4.3b). Note that, (4.3a) is in accordance to the definition (3.13b).

Several modeling choices are emphasized briefly:

• The allocation of costs (penalties) to variables significantly influences the goal and
performance of the optimization problem. Therefore, cost should only be allocated
to variables associated with the performance of the optimization problem. In this
case, respectively the WIP of step l, Wl,t, the content of inventory buffer It and
the number of backorders BOt.

• Due to the assumed negative correlation between yield and flow time (Chen et al.
1988, Fowler et al. 2002) holding costs ω are related to production progress. Here,
production progress is represented by step id l. Due to the (increasing) holding
costs, lots are only released (or processed) if necessary.

• At the moment the production system is unable to meet demand dt a backlog
is created. The change in backorders BOt at the end of period t is defined as
the difference between demand dt and the actual departures Dt (4.2d). A large
penalty o is assigned to BOt to ensure that the LDM will avoid creating a backlog
and will prioritize the elimination of an already existing backlog.

• A (finished goods) inventory buffer is placed at the end of the production line to
meet demand dt temporarily exceeding the resource capacity of a single period.
Unused resource capacity of earlier periods can be deployed to work in advance to
supplement missing capacity. A cost definition consistent with the other buffers
(i.e. ι > max{ωl}) avoids unintended flow through the production system.

• The inventory buffer provides the ability to meet a demand temporarily exceeding
the short-term resource capacity. However, the demand-trajectory d should be
attainable over the complete planning horizon. That is, the total demand

∑
∀t dt

should be restricted to the total resource capacity
∑
∀t Xt |w=wmax .

Together with the other components of the high level control layer, the EPT algorithm
and the effective clearing functions, the linear discrete model is embedded within a set
of Matlab-files. A complete overview of these files and their interaction is presented in
Appendix C.
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Discrete event simulation model

For the first case the physical production system is replaced by a discrete event simula-
tion model (DESM). As mentioned in Section 4.1, the DESM is programmed in χ-0.8.
An advantage of χ-0.8 is that both the material flow as well as the control flow of a
production system can be modeled.

Here, the production system is modeled by subdividing it into several processes, based
on an organizational decomposition. Lots are released into the production line by the
generator (G). A transportation process (T) is used for lot handling between generator
(G), workstations (WS) and inventory buffer (BI). The route through the production
system is defined by the routing table, mapping production step l to workstation k.
For the first case the routing table is defined as [0, 1, 2, 3]. Here, step 3 refers to the
inventory buffer (BI). In this buffer the lot awaits customer demand and leaves the
production line (E). The flow of materials through the production line is illustrated by
the continuous arrows in Figure 4.5.
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Python
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G BI

MC
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state
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(a) System level
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M1
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(b) Workstation level

Figure 4.5: Material flow and control interaction within the DESM

All workstations are modeled according to the same general form. The workstation is
composed of two buffers, a set of identical machines and a workstation controller. A
lot enters the workstation through the inbound buffer (Bi). If a machine (M) runs idle,
the content of the inbound buffer is evaluated by the embedded low level controller
to determine the optimal lot (or batch) to process next. After the machine completes
production, the lot is stored in the outbound buffer (Bo), where it awaits transportation
to the next process step. The individual workstation characteristics, such as setup times,
are defined by a set of parameters. Figure 4.5(b) illustrates the material flow within a
workstation.
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The original Intel Case assumes a finite storage capacity for the buffers. Within this
case, the physical storage capacity is embedded as a constraint within the LDM (4.3b).
However, within the DESM the storage capacity is modeled as infinite. Therefore, the
content of the buffer can be used as a performance measure of the control framework.

As mentioned earlier, the distributed low level control layer is implemented in the
DESM. A hierarchical decomposition is used for the control framework. The heart of
the DESM is the centralized controller (MC). This controller triggers Matlab to solve
the planning problem based on the state of the production system. Furthermore, it
distributes the production targets to the workstations (WS), generator (G) and exit
process (E). The control flow within the production system is illustrated by the dashed
arrows by Figure 4.5(a).

The production targets are received by the workstation controller (WC). The function
of the workstation controller is twofold. First of all it redirects the production targets to
the incoming buffer (Bi), at which the actual low level control is embedded. Secondly,
triggered by the centralized controller (C), the workstation controller determines the
state (i.e. WIP and EPT realizations) of the workstation and sends it upwards. The
interaction between different control processes within a workstation is illustrated by
Figure 4.5(b). A detailed description of the first case, together with the individual files
of the DESM, is provided in Appendix C.

4.4 Case II: Re-entrant product-flow

The first case did not incorporate a re-entrant product flow. Since the applicability
of the control framework for a system with a re-entrant product flow still has to be
examined, a second case is presented.

Case description

The production system considered in the second case corresponds to the original Intel
Case, as illustrated by Figure 4.6.
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Figure 4.6: Re-entrant product flow of case II
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However, in accordance with the first case, the second case only regards a single product.
Apart from the product flow, all other assumptions correspond to those underlying the
first case. The workstation characteristics are presented in Table 4.3.

k l t0 th bl nk

0 0 240.0 60.0 3 2
4 240.0 60.0 3 2

1 1 30.0 30.0 1 2
3 50.0 30.0 1 2

2 2 55.0 20.0 1 1
5 10.0 20.0 1 1

Table 4.3: Workstation characteristics for case II

Linear discrete model

The Linear Discrete Model (LDM) of the second case closely follows that of the first case.
The LDM of the first case is adapted for a re-entrant production system by deploying
the capacity partitioning approach defined by (3.13). The LDM of the second case is
defined hereunder.

min
∑
∀t

∑
∀l

(
ωl ·Wl,t + ι · It + o ·BOt

)
(4.5)

s.t. Wl,t = Wl,t−1 + Rt − bl ·Xl,t ∀t, l = 0 (4.6a)
Wl,t = Wl,t−1 + bl−1 ·Xl−1,t − bl ·Xl,t ∀t, l = {1, . . . , 5} (4.6b)
It = It−1 + bl−1 ·Xl−1,t −Dt ∀t, l = 6 (4.6c)
BOt = BOt−1 + dt −Dt ∀t (4.6d)
Xl,t ≤ αc

k,t ·Wl,t + βc
k,t ∀c, k, t, l ∈ Sk (4.7a)∑

l∈Sk

Xl,t ≤ αc
k,t ·

∑
l∈Sk

Wl,t + βc
k,t ∀c, k, t (4.7b)

∑
l∈Sk

Wl,t ≤ sk ∀k, t (4.7c)

Xl,t, Wl,t, Dt, It, Rt, BOt ≥ 0, ∀l, t (4.8)
with Sk : set of steps belonging to workstation k, i.e. S0 = {0, 4}, S1 = {1, 3},

S2 = {2, 4}

The characteristic changes within the LDM with respect to that of the first case are
emphasized briefly.

• The single resource capacity constraint is replaced by a set of constraints (4.7a)
and (4.7b) in accordance with the definition in Section 3.2. Here, (4.7) not only
relates the total capacity to the total WIP, but also the step capacity Xl,t to the
available WIP Wl,t.
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• The set Sk, defining the allocation of steps l to workstation k, is changed appro-
priately.

The LDM is embedded within a set of Matlab-files, together with the other components
of the high level control layer. A complete overview of these files and their interaction
is presented in Appendix D.

Discrete event simulation model

The discrete event simulation model of the second case is identical to that defined for
the first case (recall Figure 4.5). The only alteration required is that of the routing table
with respect to the new product flow, i.e [0, 1, 2, 1, 0, 2, 3]. A detailed description of the
second case, together with the individual files of the DESM, is provided in Appendix D.

4.5 Discussion

In this chapter, a simulation framework and two cases are introduced. These cases
will be used to evaluate the performance of the hierarchical MPC framework, presented
earlier on. Both cases are based on the Intel Case and feature characteristics commonly
encountered in a semiconductor production line.

The first case resembles a three step flow line and will be used to evaluate the per-
formance of the control framework without resource capacity partitioning. The second
case resembles the original Intel Case and will be used to evaluate the performance in
a re-entrant environment (thus requiring resource capacity partitioning).



Chapter 5

Experiments

In this chapter, the performance of the presented MPC framework is evaluated for
the two cases described in the previous chapter. In the first section, the setup of
the experiments is described and a set of performance measures is defined. Section 5.2
discusses the validation of the individual parts of the control framework. The simulation
results of the first case are analyzed in Section 5.3. The second case is discussed in
Section 5.4. The chapter is concluded with a discussion on the performance of the
control framework.

5.1 Setup of experiments

The performance of the MPC framework is evaluated by conducting several simulation
experiment with the two cases, introduced in the previous chapter. Two cases are used
to investigate the performance of the MPC framework in both a non re-entrant and in a
re-entrant production system. The two cases are implemented in the general simulation
framework presented in Section 4.1.

To place the performance of the MPC framework into perspective, the simulation re-
sults are compared with the results of an identical production system controlled by the
MRP-C approach (Tardif and Spearman 1997). This approach assumes a constant flow
time independent of workstation utilization, resulting in a linear relation between pro-
duction capacity and utilization. In addition, the resource capacity is constrained by
an upperbound. Accordingly, the resource capacity constraint of the MRP-C approach
corresponds to the first and last linearization of the effective clearing functions.

The presented MPC framework is expected to maintain a higher WIP-level to counter-
act the effects of variation in interarrival times and process times. Consequently, the
variation on the number of backorders is likely to be less for the MPC framework than
for the MRP-C approach.

43
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In the remainder of this section, the experiments are specified and the performance
measures used to evaluate the control framework are introduced.

Experiments

Three different experiments are used to evaluate the performance of the presented MPC
framework. The experiments differ from one another in the predescribed demand tra-
jectory. In the first experiment, an instantaneous change (step) in demand trajectory
is enforced. After an initial period Dini, the demand follows a step change from the
initial demand Dmin to its new demand Dmax, illustrated by Figure 5.1(a). The goal of
this experiment is to determine the control framework’s ability to look-ahead, work in
advance and meet the instantaneous change in demand. Furthermore, the performance
in steady state can be evaluated.

In the second experiment, a more subtle change in demand trajectory is enforced. Dur-
ing the transition period Dper, the demand is raised linearly to the new steady state
value Dmax, illustrated by Figure 5.1(b). This experiment is used to evaluated the
performance during the transient period and the following steady state.

The third and last experiment is used to determine the performance in a continuous
transient state. Here, the enforced demand-trajectory describes a sine with period Dper

and amplitude 1
2 · (Dmax −Dmin), illustrated by Figure 5.1(c).
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Figure 5.1: Predescribed demand trajectory of the three experiments

The target demand after the transient state Dmax is set at a bottleneck utilization
of around 80%, a value commonly encountered in the semiconductor industry. This
bottleneck utilization corresponds to 12 lots per shift for the first case and 6 lots per
shift for the second case. In order to check the validity of the observations additional
simulation experiments are conducted at lower levels of utilization.

The following additional assumptions underly all experiments:

• Lots released into the production system are available at the beginning of a period.
Note that this assumption will induce a high squared coefficient of variation on
the inter-arrival time c2

a.
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• Process times are assumed to be stochastic according to a shifted gamma distri-
bution, with mean t0 and offset ∆0 = 0.8. The squared coefficient of variation of
the total distribution c2

0 is assumed to be 1.5.
• The resource capacity constraint of the first workstation WS0 is undefined for

w < 1. Therefore, an initial condition of w ≥ 1 is enforced.
• Due dates for lots are set as the sum of the effective process times te over all

process steps, i.e. di =
∑
∀l te,l. The estimate of the remaining flow time ζl for

step l is set appropriately, i.e. ζl =
∑N

l te,l. Clearly, queuing time at the individual
workstations is neglected. Therefore all lots are expected to arrive tardy, however
linearly to the due dates set.

• To ensure a fair comparison of simulation results, experiments are conducted with
equal process time distributions.

• Several simulation runs with different seeds are conducted to ensure reproducibil-
ity of results and observations.

Two steps are performed prior to the execution of the individual experiments. First, the
expectations of the outcome of the experiment are defined. Secondly, a brief analysis of
the output of the LDM is performed. Both steps are used to assist in the performance
evaluation of the MPC framework.

Performance measures

An important performance measure, while evaluating the control framework, is the
predictability. Therefore, prior to the simulation experiments the expectations of the
outcome of the experiments are mentioned, which are compared to the simulation re-
sults. Two questions are examined during the comparison:

• Do the simulation results concur with the expectations?
• If there exists a discrepancy between results and expectations, is it understand-

able?

In addition to the predictability, additional measures are defined to evaluate the per-
formance of the control framework:

• The total buffer level per workstation with respect to the physical storage capacity
of the cases.

• The buffer level per step with respect to the target-levels determined by the LDM.
• The (variation of the) number of exits per period with respect to the enforced

demand trajectory.
• The (variation of the) number of backorders (BO) at the end of a period.

These measures are used to enable a performance comparison between the presented
MPC framework and the MRP-C approach.
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5.2 Validation of individual parts

The performance of the presented MPC framework is investigated by conducting simula-
tion experiments. Before the performance of the MPC framework can be discussed, the
different parts of the simulation framework are validated. Three different parts of the
defined simulation framework are analyzed; the Dispatching policy, the Discrete Event
Simulation Model (DESM) and the Effective Process Time (EPT) algorithm. The cor-
rectness of these parts can be validated using three methods (Kleijnen 1995):

• Steady state calculations.
• Visualization of simulation results.
• Manual calculation.

Since the LDM, incorporating the Effective Clearing functions, forms the heart of the
control framework, its performance and correctness is reviewed during the experiments.

Dispatching policy

i l rti di si

9 1 145 373 0.7
8 1 145 373 0.7
7 1 140 367 -1.3
6 1 135 361 -3.3
5 2 105 330 29.5
4 2 100 324 26.5
3 3 15 238 2.0
2 3 10 232 -4.0
1 3 5 226 -10.0
0 3 0 220 -16.0

Table 5.1: Buffer content

Validation of the dispatching policy is conducted by
comparing the output of the dispatching policy with
manually derived output. Validation is conducted
with respect to various instantiations featuring different
characteristics. The validation process of the dispatch-
ing policy is illustrated by a small example.

Consider a general workstation at t = 151. The pro-
cess time of the three accompanying steps is defined as
100, 35 and 85. Therefore, the remaining process time
from step l, ζl, equals (220, 120, 85). Suppose that 10
lots, with different process steps l, release time rti and
due date di, are stored in the corresponding buffer, de-
scribed by Table 5.1. Here, the latest additions to the
buffer is displayed in top of the table.

For lot i, the slack per remaining step si is defined by (3.15). If the lots are sorted with
respect to the least slack per remaining step, the ‘optimal’ sequence (of lot id’s) would
be (0, 1, 2, 6, 7, 8, 9, 3, 4, 5). Note that, if lots have equal si, lots are sequenced according
to the FIFO principle.

If the workstation processes batches of 3 lots and the remaining target Xl,t equals
(2, 0, 2), the optimal batch sequence (with respect to production targets), would equal
(0, 1, 6), (7, 8, 9). Since the remaining production targets do not allow a third lot with
step id 3 to be processed, lot 2 is ignored. Therefore, the optimal batch to process next
would be composed of lot id 0, 1 and 6. Both sequencing policy and manual calculations
derive identical sequences.
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Discrete Event Simulation Model

The DESM is validated by comparing the output of a simulation experiment to manual
calculations. To obtain a better insight, the state of the system is visualized using
Gantt charts. Possible blocking or incorrect implementation of control strategies can
be noticed easily.

To rule out any influence of the high level control layer, validation experiments are
conducted using fixed (production-)targets. Furthermore, deterministic process times
ensure the reproducibility of the simulation results. Some examples of the Gantt charts
are presented in Appendix E.1.

The validation of the DESM, by comparing the output of a simulation experiment
to manual calculations, resulted in two identical Gantt charts. Therefore, the DESM
satisfies the expectations and behaves correctly with respect to the assumptions made.

Effective Process Time algorithm

Validation of the EPT algorithm is performed using two methods; visualization and
steady state calculation. Similar to the validation of the DESM, the output (realiza-
tions) of the EPT algorithm can be visualized via a Gantt chart. On the basis of
buffer-level information and a production Gantt chart, it is possible to manually de-
rive an EPT realization Gantt chart. This manually derived EPT Gantt chart can be
compared to a Gantt chart derived from simulation results.

A comparison between simulation output and manually derived EPT Gantt chart indi-
cated that the (controlled) system under observation is subject to ‘condition blocking’
(Weber 2003). Condition blocking encompasses all types of blocking that occur since a
certain condition on the resources is not (yet) met. The controlled production system
features condition blocking at the moment production is not allowed (condition X = 0)
while lots are available for processing.

Since condition blocking is a consequence of a control action, it should not be part of an
EPT realization. However, the implemented EPT algorithm (3.7) does not distinguish
any form of blocking. Consequently, the condition blocking time is allocated to an EPT
realization, thus corrupting the data. The occurrence of condition blocking is illustrated
in Figure 5.2. In this figure, the state of a workstation is expressed by the buffer content
per workstation and a production Gantt chart. At the moment production targets are
met (X = 0), production is halted until new targets are received (X > 0). The EPT
realization EPT k of lot k (after receiving a new target) is defined (3.7) as the difference
between ADk and ADk−1. Consequently, the condition blocking time is allocated to
the EPT realization, illustrated by the upper EPT Gantt chart.

The preferred situation is described by the lower EPT Gantt chart. Here, condition
blocking is correctly ignored by the EPT algorithm.



48 Chapter 5. Experiments

However, EPT algorithms for production systems subject to (other forms of) blocking
(Kock 2003) are still under development and not yet applicable.
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Figure 5.2: Condition blocking with the mSLM EPT algorithm

A suggestion to circumvent condition blocking, would be the introduction of a new
parameter, ORi,j,k, defined as the moment of order-release of lot i on server j of work-
station k. The start time of the EPT realization, τ s

i,k,l would then be defined as the
maximum of AAi,j,k, ADi,j,k−1 and ORi,j,k. Consequently, EPT realization EPT i,j,k

would be redefined by (5.1).

EPT i,j,k = ADi,j,k −max{AAi,j,k,ADi,j,k−1,ORi,j,k} (5.1)

Further research would be necessary to determine the correctness of (5.1).

Another observation during the analysis of the output of the EPT algorithm, is a startup
effect. Due to the absence of a history, EPT parameters (te, c2

e and c2
a) tend to fluc-

tuate before converging to a stable value. Consequently, online measurement of the
EPT parameters, without a history, would have a significant unwanted influence on
the resource capacity constraints. To circumvent the startup effect, the simulation ex-
periments will be conducted with fixed estimates for the EPT parameters. If possible,
analytical derived parameters will be used.

EPT quantification experiments, with a run length of around 100.000 lots, are used
to determine the EPT parameters for both cases. To avoid condition blocking a push
approach is used combined with infinite production targets.

These quantification experiments enable a second method of validation; comparing
simulation results with analytical steady-state calculations. By deploying standard
approaches, it is possible to analytically derive the mean effective process time te, and
its squared coefficient of variation c2

e. For the first case, it is also possible to derive the
squared coefficient of variation of the inter-arrival time c2

a.

For stable systems, the squared coefficient of variation of the inter-arrival time c2
a equals

the squared coefficient of variation on the inter-departure times c2
d of its upstream

neighbor. A reasonable approximation for the coefficient of variation on the inter-
departure times is the linking equation (Hopp and Spearman 2000).

c2
d = 1 + (1− u2) · (c2

a − 1) +
u2

√
m

· (c2
e − 1) (5.2)
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The results of both analytical calculation and simulation experiments are summarized in
Table 5.2 and Table 5.3 for respectively the first and second case. Comparison between
simulation results and analytical derived parameters yields the observation that both
values correspond, implicitly validating both the DESM and EPT algorithm.

analytical simulation
t0 th te c2

e c2
a te c2

e c2
a

workstation 0 225.0 60.0 285.0 0.93 11.0 285.76 0.93 11.00
workstation 1 30.0 30.0 60.0 0.38 4.56 60.05 0.38 4.54
workstation 2 32.5 20.0 52.5 0.57 2.00 52.47 0.56 2.17

Table 5.2: EPT validation results for Case I

analytical simulation
t0,1st t0,2nd th te c2

e te c2
e c2

a

workstation 0 240.0 240.0 60.0 300.0 0.92 300.39 0.88 2.46
workstation 1 30.0 50.0 30.0 70.0 0.52 69.02 0.56 1.58
workstation 2 55.0 10.0 20.0 55.0 0.77 54.97 0.87 1.75

Table 5.3: EPT validation results for Case II

Now the individual parts of the control framework are validated, it is possible to evaluate
the performance of the control framework based on the results from the simulation
experiments. The results of the simulation experiments, described in Section 5.1, are
presented in the following two sections.

5.3 Case I

In this section, a summary of the results and observations obtained from the experiments
described in Section 5.1 is presented. A complete overview of the simulation results of
the first case can be found in Appendix E.2.

Experiment 1: Step up

Within the first experiment, an instantaneous change (step up) in demand is enforced.
Prior to the actual execution of the first experiment, the output of the LDM is analyzed.

The LDM model converges to an optimal solution for almost all instantiations. However,
a single instantiation exists for which the model does not converge. This instantiation
is defined by two conditions. If no WIP is present at WS1 (condition 1) and production
is likely to start in the first period of the planning horizon (condition 2), the Matlab
solver will not converge to an optimal solution.
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Consequently, it will reach the maximum number of iterations and provide a non-optimal
solution. There is however no clear physical interpretation for such behavior.

Preliminary experiments indicate that this observation occurs with all experiments de-
scribed in Section 5.1. This signifies either a flaw in the implementation of the LDM or
that the optimization problem is too complex for the optimization toolbox of Matlab.
However, due to a lack of time this convergence issue has not been resolved within this
thesis.

Since condition 1 and 2 can become true in normal operation, iterative use of the control
framework does not guarantee an optimal solution, especially with stochastic process
times. The output of the LDM, obtained for instantiations where these two conditions
are not met, seem to provide correct production targets. Therefore, a rolling horizon
scheme is implemented for all experiments conducted with the first case. The resulting
production targets are fed to the production system in the corresponding periods. To
cope with the effects of variation and real valued targets, newly issued production targets
are increased by the residue of prior targets.

Figure 5.3 shows the characteristic results of the first experiment. Here, Figure 5.3(a)
displays the number of exits per period with respect to the enforced demand trajectory
(grey area). Figure 5.3(b) displays the buffer level for all workstations, with respect to
the maximum storage capacity.
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Figure 5.3: Typical simulation results for the ‘step up’ experiment

Figure 5.3(a) clearly illustrates that, for the majority of the simulation runs, the number
of exits per period does not exhibit any variability. In other words all demand is met
on time. However, this observation does not correspond to the expectations, which can
be explained as follows.

Due to the high c2
a of the first workstation, the LDM aims to maintain a high WIP level

corresponding to the resource capacity constraint.
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However, the number of lots present within the buffer of WS0 is restricted by the
maximum storage capacity (18). In this case, the desired WIP level cannot be obtained.
Therefore, the maximum resource capacity is constrained by the maximum storage
capacity and the required production quantity (4 batches per shift) cannot be met.
To overcome this problem (avoid backorders), the LDM will initiate production before
demand requires, to buffer the missing production capacity. Due to the holding cost, all
buffers prior to the ‘unconstrained’ inventory buffer BI will be filled first, as illustrated
by Figure 5.3(b). Here, the maximum storage capacity is illustrated by the horizontal
line.

Although the number of exits per period exhibits no variability, extremely high queuing
times are induced. Since there is a negative correlation between flow time and yield loss,
high flow times form a negative effect on the performance of the production system.

The storage capacity constraint of the Intel Case is defined for a deterministic typeset-
ting. For the remainder of the experiments of the first case, the storage capacity of the
individual buffers is doubled, i.e. sk = [36, 24, 24].
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Figure 5.4: Typical simulation results for the ‘step up’ experiment with altered sk

Figure 5.4 shows the typical results of the same experiment with the new storage ca-
pacity constraint. By doubling the storage capacity, the behavior shown in Figure 5.3
is avoided.

Based on the simulation results, a number of additional observations can be made.

• The system will work in advance to successfully meet the first demand.
• The number of exits will reach a steady state with some variation.
• The mean buffer levels are in correspondence with the output of the LDM.
• The mean measured total flow time is 15% higher than the analytical derived total

flow time, potentially caused by a too high security WIP level.
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Figure 5.5(a) describes the cumulative number of backorders per period during the first
experiment. The results of the same experiment with the MRP-C approach are shown
in Figure 5.5(b). As can be seen, the variation on exits, and thus on the number of back-
orders, is less with the MPC framework than with MRP-C. Furthermore, Figure 5.5(b)
reveals that MRP-C is unable to meet the (entire) demand of the first period. Therefore
a steady state situation is obtained with a small, but persisting, backlog.
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Figure 5.5: Comparison between MPC and MRP-C on basis of cumulative backorders

Experiment 2: Ramp up

In the second experiment, a ramp up in demand is enforced. The observations made
based on the results of the ramp up experiment coincide with the observations of the
previous experiment. A number of additional observations can be made related to the
transient state of the ramp up experiment.

Figure 5.6 shows the buffer level during the ramp up experiment, based on respectively
the prediction of the LDM and the actual simulation. Clearly visible is the non-linear
increase in WIP, enforced by the non-linear resource capacity constraint, during the
linear transient state. A closer look at Figure 5.6(a) even reveals the influence of the
individual linear approximations of the effective clearing function.

Figure 5.6(a) furthermore shows a ‘bullwhip-effect’ in the predicted buffer levels. This
effect can be explained as follows. If the production at the last step (WS2) reaches
its maximum, additional WIP is needed, which is requested from its preceding step
(step 1 at WS1), resulting in a peak load in the corresponding production targets.
This will result in two occasions of maximum capacity. Consequently, WS1 requests
additional WIP from its predecessor. This phenomena spreads through all production
steps. Therefore, WS0 exhibits two additional peak loads in both production and buffer
content.
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Figure 5.6: Buffer levels during the ‘ramp up’ experiment

The cumulative number of backorders shows a small, but persisting, variation during
the transient period. This behavior can be explained by the fact that both demand-
trajectory and (production) targets are real valued. The production system is however
only capable of producing discrete number of products. Therefore, the dispatching
policy will only release a job if the target allows production of a whole lot (X ≥ 1). If
this condition is not met, the system will wait until a new target is received.

Implicitly, within the current control framework the targets are rounded towards minus
infinity (floored), creating a small backlog. A number of other strategies for target
handling could however be implemented. For instance rounding the targets towards the
nearest integer (round), or towards infinity (ceil). All solutions to the discrepancy be-
tween discrete production and real valued production targets, are however suboptimal.
Flooring a targets creates a small backlog, whereas ceiling a target creates an unwanted
product flow. Even rounding a targets does not guarantee an optimal solution. Another
solution would be the use of a (mixed-) integer optimization problem, possible a subject
for further research.

In correspondence to the step up experiment, the influence of variation on the perfor-
mance of the production system is less with the MPC framework than with MRP-C.
The production system controlled by the MRP-C approach shows a smal, but persist-
ing backlog, caused by an overestimation of the production capacity. Therefore, the
approach is unable to meet the (entire) demand of the first period.

Experiment 3: Sine

As mentioned during the setup of experiments, the third experiment is used to evaluate
the performance of the control framework in a continuous transient state.
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The observations for the third experiment are expected to be similar to those of exper-
iments 1 and 2. Evaluation of the results of the experiment confirm these expectations.
A number of observations, in particular concerning the transient state, will be described
briefly.

Figure 5.7 shows the results of a typical simulation run. The output of the production
system is illustrated by Figure 5.7(a). Clearly visible is the discrete output, with re-
spect to a real valued demand trajectory (grey area). The discrepancy between discrete
output and real valued demand creates a small persisting variation in the cumulative
backorders, illustrated by Figure 5.8. This figure reveals that the small persisting vari-
ation in the cumulative backorders is present within both control systems.
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Figure 5.7: Typical simulation results of the ‘sine’ experiment

The difference between the MPC framework and the MRP-C approach is illustrated by
comparing the cumulative number of backorders of the two control approaches. Note
that the difference increases with increasing demand (utilization). This difference can be
explained by the fact that at a low utilization levels both resource capacity constraints
are, by approximation, identical. Recall that the resource capacity constraint of MRP-C
is assumed to be equal to the first and last linear approximation of the effective clearing
function, illustrated by Figure 5.7(b).

At high utilization levels, the difference between the two resource capacity constraints
is extensive due to the fact that MRP-C does not take into account the non-linear
behavior the system is likely to follow. Therefore, MRP-C will maintain lower (security)
WIP levels than required to counteract the observed variability. Consequently, the
variability in process-times will have more influence on the output of the production
system, resulting in a higher variability in the cumulative number of backorders, as
illustrated by Figure 5.8(b).
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Figure 5.8: Comparison between MPC and MRP-C on basis of cumulative backorders

Implications

A large number of different observations have been made while evaluating the exper-
iments of the first case. For a single instantiation, the LDM will not converge to an
optimal solution. This implicates either a flaw in the implementation of the LDM or
that the problem is too complex for the optimization toolbox of Matlab. By apply-
ing a rolling horizon scheme, an optimal solution can be obtained and performance of
the MPC framework can be evaluated. The presented MPC framework reduces the
variability on the number of exits per period by maintaining a higher WIP level. The
difference between the presented MPC framework and MRP-C increases with increasing
utilization. Due to a discrepancy between the real valued production targets and the
discrete production system, a small persisting variation is present in the output of the
production system.

The majority of observations for the first case are expected to be case independent and
can be observed in the simulation results of the second case.

5.4 Case II

The second case is used to evaluate the performance of the MPC framework with regard
to a re-entrant production system. The majority of observations made for the first case
are expected to apply to the second case. Since utilization levels of the two cases
correspond, all experiments are conducted with a double sized storage capacity, i.e.
sk = [36, 24, 24]. A complete overview of the simulation results of the second case can
be found in Appendix E.3.
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Experiment 1: Step up

Prior to the actual execution of the first experiment, the output of the LDM model,
especially the performance of the resource capacity partitioning approach (described in
Section 3.2), is analyzed.

Figure 5.9 illustrates the output of the LDM for the first workstation WS0, serving steps
1 and 5. Figure 5.9(a) displays the WIP targets in steady state after the step change. In
contrast to the expectations, the required WIP is not partitioned equally over the two
steps. However, the two production steps meet the individual capacity requirements
defined by (3.13b). Therefore, the unwanted behavior that capacity is created without
WIP present (recall Example 3.2), is avoided.

The discrepancy between both WIP levels is procured by the allocation of the WIP
additionally required to meet the total capacity (3.13a). In order to meet the total
capacity (X1+5,t) additional WIP is required in addition to the sum of the WIP required
by the individual steps. In other words, the sum of the whole (W1+5,t) is greater than
the sum of its parts (W1,t + W5,t). This is the result of the non-linear relation between
capacity and WIP, as illustrated by Figure 5.9(b).
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Figure 5.9: Resource capacity partitioning in steady state

The required additional WIP is allocated by the LDM with respect to the cost definition.
Due to the linear increasing holding cost, additional WIP is allocated to the first step
of the workstation. Note that due to the linear resource capacity constraint used by
MRP-C, WIP is distributed equally over the production steps.

The implication of an unequal WIP distribution, is expected to be somewhat contra-
dictory. Due to the unequal distribution of WIP, process time variability c2

e will have a
larger influence on the (variation of the) output of the production system. On the other
hand, the unequal WIP distribution decreases the effects caused by the variability in
interarrival times c2

a. Since, for these simulation cases, EPT experiments indicate that
for all workstations c2

a > c2
e, the effect of the unequal WIP distribution is expected to

be positive with regard to the (variation of the) output of the production system.



5.4. Case II 57

Further analysis of the LDM reveals a single instantiation, defined by two conditions,
for which the model does not converge. If no WIP of the first step (step 1) is present
at WS1 (first condition) and production is likely to start in the first period of the
planning horizon (second condition) the LDM will not obtain an optimal solution. This
observation is consistent with a similar observation of the first case and is likely to have
the same cause. A rolling horizon scheme is used to evaluate the performance of the
MPC framework.

The results of the first experiment are completely in correspondence to the expectations.
WIP is distributed unequally over the first and second step of a workstation, therefore
reducing the effects of c2

a. Figure 5.10 illustrates the number of backorders of the pro-
duction system controlled by both control approaches. By maintaining a higher security
WIP level, the MPC framework is able to reduce the effects of variability, illustrated
by Figure 5.10(a). The production system controlled by the MRP-C approach, shows a
higher degree of variability in the number of backorders, illustrated by Figure 5.10(b).
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Figure 5.10: Typical simulation results for the ‘step up’ experiment

Experiment 2: Ramp up

Within the second experiment the second case is subjected to a ramp up in demand. The
observations, made based on the results of this experiment, are in accordance with the
expectations and observations made with pervious experiments. Several observations
are summarized briefly.

• During the transient state a small, but persistent variation in the cumulative
backorders is caused by the real valued targets and demand-trajectory.

• The (predescribed) buffer level clearly shows a non-linear increase with a linear
increase in demand (utilization), caused by the non-linear resource capacity rela-
tion.
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• The bullwhip-effect observed at previous experiments can also be found within
the results of this case.

• The variation in the number of backorders of the production system is less for the
system controlled by the MPC framework than for the system controlled by the
MRP-C approach.

An overview of the results of the second experiment can be found in Appendix E.3.

Experiment 3: Sine

Analysis of the results of the third experiment do not yield additional observations with
respect to previously discussed experiments. The results do however clearly illustrate
the prolongation of the bullwhip-effect through the production system. This effect is
illustrated by Figure 5.11, describing the WIP-level per step predicted by the LDM.
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Figure 5.11: WIP levels per production step predicted by the LDM

An overview of the results of the third experiment can be found in Appendix E.3.

Implications

The majority of observations for the second case correspond to those made for the first
case. For a single instantiation, the LDM will not converge to an optimal solution.
This indicates either a flaw in the implementation of the LDM or that the problem is
too complex for the optimization toolbox of Matlab. Additional WIP required to meet
the total capacity is allocated with respect to the holding cost. The bullwhip-effect
observed within both cases is clearly illustrated within the results of the second case.

The MPC framework seems to outperform the MRP-C approach with respect to the
(variation in the) output of the system.
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5.5 Discussion

In this chapter, two cases have been considered for evaluation of the performance of the
presented MPC framework. The control framework is evaluated in two steps. First, the
individual parts of the control framework were validated. The validation study showed
the implemented EPT algorithm does not cope properly with ‘condition blocking’. Since
condition blocking is induced by the control framework it should not be a part of an
EPT realization. However, current EPT algorithms are not able to cope with condition
blocking. This should be resolved in future work. The validation study furthermore
indicates that the other components satisfy the expectations and behave correctly with
respect to the assumptions made.

The second step in the evaluation of the MPC framework compares the performance
of this framework to the performance of a traditional approach (MRP-C). The main
results of these experiments can be summarized as follows. For a single instantiation,
the LDM will not converge to an optimal solution. This indicates either a flaw in the
implementation of the LDM or that the problem is too complex for the optimization
toolbox of Matlab. Due to a lack of time this issue has not been resolved within this
research project. This instantiation is defined by two conditions. The output of the
LDM, obtained for instantiations where these two conditions are not met, seem to
provide correct results. A rolling horizon scheme has been used for the remainder of
the experiments.

The results obtained from the first simulation case illustrate that the accuracy of the
resource capacity constraint plays a vital role in the performance of the control(led)
system. The presented MPC framework reduces both the variability and the average of
the number of backorders by maintaining a higher (security) WIP level.

The difference in performance between the presented MPC framework and MRP-C is
clearly illustrated by the third (sine) experiment. The results of this experiment show
that the difference in performance increases with increasing utilization. This difference
is caused by the fact that the MRP-C approach neglect the influence of variability by
assuming a linear capacity relation.

Conversely, the MPC framework deploys approximations of the actual non-linear be-
havior. The difference between these two approximations increases with increasing
utilization. Consequently, the production targets issued by the MPC framework will
better correspond to the actual behavior of the production system at high utilization
levels.

Since the first case did not contain a re-entrant product-flow, a second case is used to
cover resource capacity partitioning. Analysis of the output of the LDM illustrates an
unequal partitioning of WIP over the two competing steps at a workstation. Individ-
ually, the two steps meet the individual capacity requirements. However, additional
WIP required to meet the total capacity is allocated with respect to the cost definition,
rather than the expected equal distribution.
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The implication of this unequal WIP distribution, is somewhat contradictory. Due to
the unequal distribution of WIP, process time variability c2

e will have a larger influence
on the (variation of the) output of the production system. On the other hand, the
unequal WIP distribution decreases the effects caused by the variability in interarrival
times c2

a.

Since, for these simulation cases, EPT experiments show that c2
a > c2

e , the effect of the
unequal WIP distribution is positive with regard to the (variation of the) output of the
production system. Note that, due to the linear capacity constraint of MRP-C, WIP is
distributed equally over the production steps.

Simulation results of the second case illustrate the implication of the unequal WIP
distribution. These results show a significant difference between the presented control
framework and MRP-C. This difference is partially attributable to the unequal WIP
distribution. Within the system controlled by the MPC framework, the effect of the
interarrival time variability has been reduced significantly.

The results from the simulation experiments indicate that the presented MPC frame-
work performs better than MRP-C by ensuring a more stable (lower mean and variation
in the number of backorders) output of the production system. However, due to the
convergence issue of the LDM an unambiguous performance evaluation cannot be ob-
tained.



Chapter 6

Conclusions

So far, no satisfactory control framework for re-entrant production facilities has been
presented. In this thesis, a two layer hierarchical MPC framework for re-entrant produc-
tion facilities has been introduced. The performance of the MPC framework is analyzed
with the use of a simulation model of a characteristic semiconductor production system.
The simulation results are compared to that of a commonly used approach (MRP-C).

In this chapter, the most relevant findings of this research project are summarized.

Control framework

The literature survey illustrates that the majority of research focusses on single level
approaches. Research on layered control frameworks, combining different approaches at
their intended level, is rare. Furthermore, the survey illustrates that commonly applied
high level control approaches assume fixed or linear capacity relations. Therefore, the
achievable production capacity is commonly overestimated and inaccurate or infeasible
production targets are issued.

In this thesis, a two layer hierarchical MPC framework is presented. The main objective
of this control framework is to translate actual demand into controllable events for a
re-entrant production system. This objective is achieved in two steps (layers).

At the high level control layer, production targets are derived based on the aggregated
system state and on the predicted behavior of the production system (Model Predictive
Control). Accurate system dynamics are obtained by implementing resource capacity
constraints based on effective clearing functions (approximations from queuing theory).
Essential parameters, required for the definition of the effective clearing functions, are
determined by an EPT algorithm. The EPT algorithm effectively captures all sources
of variability into a set of parameters.

An advantage of the presented high level control layer is that it circumvents the funda-
mental circularity present in many other production planning approaches.

61
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Furthermore, by implementing a more accurate description of the non-linear resource
dynamics within the Linear Discrete Model (LDM), the control system predicts flow
times and resource capacity more accurately than the predictions obtained by the com-
mon approaches. In turn, the increased accuracy of the predictions results in improved
production targets.

At the low level control layer, a composite dispatching rule is used to determine which
lot (or batch) to process (dispatch) next. First, flow rate control determines the possible
work to dispatch next, based on the issued production targets. Next, a ‘Least Slack
per remaining process step’ (LS/n) sequencing policy is used to determine the optimal
work to dispatch next. The LS/n policy is used because it has been proven to be stable
and effective in a complex re-entrant production environment.

Performance

The presented MPC framework has been implemented in two simulation cases based on
the Intel case. The first case is a three step flow line. It is used to evaluate the per-
formance of the control framework without resource capacity partitioning. The second
case resembles the original ‘Intel Case’ and is used to evaluate the performance in a
re-entrant environment (thus requiring resource capacity partitioning).

Prior to the execution of the experiments, the different parts of the control framework
were validated. The results of these validation experiments illustrate that the controlled
system is subject to condition blocking, which has an undesired influence on the EPT
measurements. Additional EPT quantification experiments have been conducted to cir-
cumvent condition blocking and to determine the parameters required for the definition
of the effective clearing functions.

Analysis of the output of the LDM yielded a single cause of undesired control behavior.
For a single instantiation, the LDM will not converge to an optimal solution. This
indicates either a flaw in the implementation of the LDM or that the problem is too
complex for the optimization toolbox of Matlab. Close analysis of the formal definition
of both LDM’s indicates that it is likely to be a flaw in the implementation rather than
the formal definition. Due to the limited duration of the project, the convergence issue
has not been resolved.

To circumvent the convergence issue, the simulation experiments are conducted in a
rolling horizon scheme. To place the performance of the MPC framework into per-
spective, the simulation results are compared to that of similar experiments conducted
with the MRP-C approach. The main results of these simulation experiments can be
summarized as follows.

The simulation results indicate that, in general, the presented MPC framework out-
performs MRP-C in the sense that the enforced demand trajectory is followed closely
without creating a (permanent) backlog. Both the mean and the variability in the
number of backorders are less for the presented control framework than for MRP-C.
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The results of the sine experiment illustrate that the difference in performance increases
with increasing utilization. This difference is caused by the fact that the MRP-C ap-
proach assumes a linear capacity relation. Conversely, the MPC framework deploys
approximations of the actual non-linear behavior. The difference between these two
approximations increases with increasing utilization. Consequently, the production tar-
gets issued by the MPC framework will better correspond to the actual behavior of the
production system at high utilization levels.

However, the results of the second case are somewhat distorted by the unexpected
WIP distribution that can be attributed to the resource capacity partitioning approach.
Under the deployed approach, additional WIP required to meet the total capacity is
allocated with respect to the cost definition, rather than the expected equal distribution.
Since EPT quantification experiments show that for all workstations c2

a > c2
e , the effect

of the unequal WIP distribution (partitioning) is positive with regard to the (variation
of the) output of the production system. Note that due to the linear capacity constraint
of MRP-C, WIP is distributed equally over the production steps.

In general, the presented MPC framework results in a more predictable output (lower
mean and variation in backorders) of the production system. The reduction in varia-
tion is procured by maintaining a (security) WIP level corresponding to the observed
variability. However, a tradeoff will be made with regard to the mean total flowtime
and the mean WIP level.
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Chapter 7

Recommendations

During this research project, several questions have come up that could not be resolved
due to the limited duration of the project. Based on these questions, recommendations
for future research are formulated.

General assumptions

The control framework has been formulated based on a number of assumptions and
simplifications. One of the principal assumptions is the use of a Linear Discrete Model
for target setting. Although linear models are conceptually simple and often computa-
tionally tractable, the choice between linear models and non-linear models also depends
on the number of variables, constraints and the performance of their solvers. Non-linear
application of the discrete model would render the linearization algorithm obsolete and
would enable the possibility to use the ‘ideal’ resource capacity partitioning approach.
Consequently, the number of (resource capacity) constraints would be reduced signifi-
cantly; respectively 1 resource capacity constraints instead of 10 linear approximations
and nk partitioned constraints per resource instead of 2nk −1. Therefore, the difference
(in performance) between linear and non-linear application of the discrete model should
be explored further.

Another principal assumption underlying the Linear Discrete Model is the real valued
output. The results of the simulation experiments show a disrupting influence on the
performance (partially) attributable to the real valued production targets issued by the
LDM. It should be investigated how this issue can be solved. A solution might be to
issue integer targets for lot releases only, as used by the MPC approach of Vargas-
Villamil et al. (2003). During future research, the influence of (mixed-) integer solving
on performance of the control framework should be investigated.
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Effective Process Time algorithm

The results of the validation study illustrate that the controlled production system is
subject to condition blocking. Since condition blocking has an undesired influence on
the determined EPT parameters, an approach should be used to cope with condition
blocking. However, current EPT algorithms are unable to handle condition blocking
properly. Other controlled (complex) production systems are likely to be subject to
condition blocking. Therefore, further research to develop an EPT algorithm that is
able to properly handle condition blocking is advisable.

Resource capacity constraint

Within the LDM, accurate resource dynamics are obtained by implementing resource
capacity constraints based on effective clearing functions (approximations from queuing
theory). The idea to use effective clearing functions as a resource capacity constraint,
is the major contributor to the performance of the MPC framework. The effective
clearing function approach itself is applicable in other (MPC) control frameworks or
even in current commercial software packages.

The simulation results of the second, re-entrant, case illustrate an unexpected behavior
of the capacity partitioning approach. Although, the current constraints accurately
describe the required wip for each individual step, additional WIP required for the
total capacity is allocated with respect to the cost definition. The expected behavior
was an equal partitioning over the individual process steps.

The capacity partitioning approach used here does not distinguish different products
or steps consuming a resource at different rates. Furthermore, the current capacity
partitioning approach requires 2nk−1 constraints per resource. For the second case, this
approach resulted in, on average, 30 resource capacity constraints per workstation per
time period. Clearly, deploying such a partitioning approach to a full-scale production
environment would yield an explosion of the number of resource capacity constraints.

To effectively utilize the potential of the effective clearing functions, the influence of
different partitioning approaches, as well as different WIP measures, should be explored.
An alternative to reduce the number of resource constraints is to focuss attention only
on (near-) bottleneck stations since these have the largest influence (Lu et al. 1994).

General performance

The results from the simulation experiments indicate that the presented MPC frame-
work performs better than a traditional approach (MRP-C). However, due to the con-
vergence issue of the LDM an unambiguous performance evaluation was not obtained.
Therefore, it is recommended that the performance of the presented MPC framework is
compared to several commonly encountered control approaches but also several newly
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developed control approaches such as the MPC framework of Vargas-Villamil et al.
(2003).

The advantages or extra capabilities of the presented MPC framework and those of the
other control approaches should be evaluated. This evaluation would yield valuable
information necessary in the search for a satisfactory control framework for re-entrant
production facilities.



68 Chapter 7. Recommendations



Bibliography

Adams, J., Balas, E. and Zawack, D. (1988), ‘The shifting bottleneck procedure for job
shop scheduling’, Management Science 34(3), 391–401.

Asmundsson, J., Rardin, R. L. and Uzsoy, R. (2003), Tractable nonlinear capacity
models for aggregate production planning. working paper.

Bai, X., Srivatsan, N. and Gershwin, S. B. (1990), Hierarchical real-time scheduling of a
semiconductor fabrication facility, in ‘Ninth IEEE/CHMT International Electronic
Manufacturing Technology Symposium. Competitive Manufacturing for the Next
Decade. Proceedings 1990 IEMT Symposium’, Washington DC, USA, pp. 312–317.

Blackstone, J. H., Philips, D. T. and Hogg, G. L. (1982), ‘A state-of-the-art survey of
dispatching rules for manufacturing job shop operations’, International Journal of
Production Research 20(1), 27–45.

Campen, van, E. J. J. (2001), Design of a Multi-Process Multi-Product Waferfab, Phd
thesis, Engineering Mechanics, Eindhoven University of Technology.

Chen, H., Harrison, J. M., Mandelbaum, A., van Ackere, A. and Wein, L. M. (1988),
‘Empirical evaluation of a queueing network model for semiconductor wafer fabri-
cation.’, Operations Research 36(2), 202–215.

Chern, C. C. and Liu, Y. L. (2003), ‘Family-based scheduling rules of a sequence-
dependent wafer fabrication system’, IEEE Transactions on Semiconductor Man-
ufacturing 16(1), 15–25.

Coleman, T., Branch, M. A. and Grace, A. (1999), Optimization Toolbox,
For Use with MATLAB, third edn, The MathWorks, Inc., Natick, MA.
http://www.mathworks.com.

Conway, R. W., Maxwell, W. L. and Miller, L. W. (1967), Theory of scheduling,
Addison-Wesley, Reading, MA, USA.

Dai, J. G. and Weiss, G. (1996), ‘Stability and instability of fluid models for re-entrant
lines’, Mathematics of Operations Research 21, 114–135.

69



70 Bibliography

Fargher, H. E., Kilgpre, M. A., Kleine, P. J. and Smith, R. A. (1994), ‘A planner and
scheduler for semiconductor manufacturing’, IEEE Transactions on Semiconductor
Manufacturing 7(2), 117–126.

Fargher, H. E. and Smith, R. A. (1994), Planning in a flexible semiconductor man-
ufacturing environment, in M. Zweben and M. Fox, eds, ‘Intelligent Scheduling’,
Morgan Kaufman, San Francisco, pp. 545–581.

Fowler, J. W., Hogg, G. L. and Mason, S. J. (2002), ‘Workload control in the semicon-
ductor industry’, Production planning and control 13(7), 568–578.

Gershwin, S. B. (1989), ‘Hierarchical flow control: a framework for scheduling and
planning discrete events in manufacturing systems’, Proceedings of the IEEE
77(1), 195–208.

Gershwin, S. B., Akella, R. and Choong, Y. F. (1985), ‘Short–term production schedul-
ing of an automated manufacturing facility’, IBM Journal of Research and Devel-
opment 29(4), 392–400.

Glassey, C. R. and Petrakian, R. G. (1989), The use of bottleneck starvation avoidance
with queue predictions in shop floor control, University of California, Berkeley, CA,
USA.

Glassey, C. R. and Resende, M. G. C. (1988), ‘Closed-loop job release control for
VLSI circuit manufacturing’, IEEE Transactions on Semiconductor Manufacturing
1(1), 36–46.

Graves, S. C. (1985), ‘A tactical planning model for a job shop’, Operations Research
34, 552–533.

Habenicht, I. and Mönch, L. (2002), A finite-capacity beam-search-algorithm for pro-
duction scheduling in semiconductor manufacturing, in E. Yücesan, C. H. Chen,
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Appendix A

Effective clearing functions

The complete derivation of the effective clearing function, from queuing theoretic ap-
proximation to resource capacity constraint, is described in this Appendix. The effective
clearing function will be used as a resource capacity constraint in the MPC framework,
introduced in Chapter 3.

A.1 Queuing theoretic approximation

Consider a general workstation with m parallel machines, batch-size b and general inter-
arrival and process times (G/Gb/m), illustrated by Figure A.1. Arriving lots are stored
in a buffer, until a batch is complete and a machine runs idle. The physical buffer, in
front of the workstation, can be divided into two sequential (virtual) buffers; a batching
buffer Bb and a queueing buffer Bq. Processing of the individual parts of a batch, is
carried out in parallel, i.e. te,b = te,l.

Workstation k

Bq M1

Mm

Bbta,l
ca,l
2

ta,b
ca,b
2

td,b
cd,b
2

te,b
ce,b
2

te,b
ce,b
2

Figure A.1: G/Gb/m workstation

The mean total flow time of this workstation ϕ(G/Gb/m) consists of the mean wait-in-
batch-time ϕb, the queuing time ϕq and the effective process time te, (A.1).

ϕ(G/Gb/m) = ϕb(G/Gb/1) + ϕq(G/Gb/m) + te. (A.1)
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The mean wait-to-batch-time ϕb is not equal for all lots in a batch. The first lot in the
batch has to wait for (b−1) lots to arrive, while the last lot does not have to wait at all
before the batch is complete. The mean wait-to-batch-time ϕb for the complete batch
is equal to the average of these two extremes (A.2).

ϕb(G/Gb/1) =
b− 1

2
· te
bu

=
b− 1
2δ

(A.2)

The mean queuing time ϕq of a G/Gb/m workstation (A.3) is approximated (Hopp
and Spearman 2000) by multiplying a variability term with the mean queuing time
of a workstation with exponential distributed times ϕq(M/M/m). Here, ϕq(G/Gb/m)
is defined by (A.4). Note that, (A.4) is adapted for batch-processing by assuming
c2
a,b = c2

a,l/b.

ϕq(G/Gb/m) =
c2
a,l/b + c2

e

2
· ϕq(M/M/m) (A.3)

ϕq(M/M/m) =
u
√

2(m+1)−1

m(1− u)
· te (A.4)

Combining (A.1) up to (A.4) results in an approximation of the mean total flow time
of a G/Gb/m workstation (A.5).

ϕ(G/Gb/m) =
b− 1
2δ

+ c2 · uγ−1

m(1− u)
· te + te (A.5)

where c2 = (c2
a/b + c2

e)/2 and γ =
√

2(m + 1)

With the use of Little’s Law, w = δ ·ϕ, (A.5) can be transformed into (A.6); describing
the mean work-in-progress w(G/Gb/m) as a function of the utilization u. Little’s law
is used under the assumption that the system is in a local steady-state.

w(G/Gb/m) =
b− 1

2
+ c2 · uγ−1

m(1− u)
· teδ + teδ (A.6)

The machine utilization u, describing the probability that the machine is busy, equals
(A.7).

u =
ra

re
=

teδ

mb
(A.7)

Applying (A.7) to (A.6) results in (A.8); an approximation of w(G/Gb/m) as function
of the δ. All other parameters of (A.8), e.g. te, are assumed to be constant.

w(G/Gb/m) =
b− 1

2
+ bc2 ·

( te
mb

)γ
· δγ

1− te
mbδ

+ teδ (A.8)

In accordance with the definition of the effective clearing function, δ = f(w), (A.8) has
to be solved for δ (A.9). However, due to the highly non-linear behavior, (A.8) can not
analytically be solved for δ. Therefore, (A.8) is solved numerically with the use of e.g.
the bisection method.

δ(G/Gb/m) = f(w, c2, te,m, b) (A.9)
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A.2 Linear approximation of the effective clearing func-
tion

To incorporate the effective clearing functions into a Linear Discrete Model, the func-
tions have to be captured by a set of linear approximations, i.e. δ = α · w + β recall
(3.5). Here, α denotes the set of gradient parameters and β denotes the set of scaling
parameters. The effective clearing function is consequently defined by (A.10).

f(wt) = min
∀c

{
αc

t · wt + βc
t

}
(A.10)

Although it is not possible to solve (A.8) analytically, it can be used to determine the
derivative of (A.9). Consequently, (A.11) defines the derivative of (A.9) as the inverse of
the derivative of (A.8). The scaling parameter β is determined by solving the linearized
function, δ = αw + β, at the point of linearization; (w?,δ?) (A.12).

α =
∂δ

∂w
=

∂w

∂δ

−1

=

{
c2b · te

mb

γ

·
( γδγ−1

1− te
mbδ

+
te
mbδ

γ

(1− te
mbδ)

2

)
+ te

}−1

(A.11)

β = δ? − αw? (A.12)

Due to the dynamical typesetting, the effective clearing functions should be re-
determined each period. Consequently, a linearization algorithm is implemented in
the high level control layer to determine the set of linear approximations {α,β}.

Linearization algorithm The objective of the linearization algorithm is
to derive a set of linear approximations, {α,β} required by (3.5). The
linearization algorithm performs the following steps to determine {α,β}:

1. The first linear approximation will be placed at the Origin, (0, 0), re-
sulting in (α0, β0).

2. The next approximation will be placed at the point where the differ-
ence, in δ, between the former linearization and the actual function
is equal to a redescribed percentage, pδ. Iteration continues until the
approximation of the gradient is less than the tolerance, i.e α ≤ αtol.

3. The last linear approximation will be the one for limw→∞ δ(G/G/m),
i.e. (0, βδ→δm) = (0, δm) J

The linearization algorithm is illustrated by Example A.1

Example A.1 Consider a workstation with two (identical) parallel ma-
chines, a squared coefficient of variation c2 of 2.5 and a mean process time
of 5. For this G/G/2-workstation, the non-linear ‘effective clearing function’
(3.4) can be derived numerically.
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0

effective clearing function

linear approximation

Figure A.2: Set of linear approximations capturing the effective clearing function.

Linearization of the effective clearing function yields a set of 10 linear ap-
proximations {α, β}. Figure A.2 illustrates the linear approximation of the
effective clearing function for a G/G/2 workstation. J

A.3 Newton-Raphson method

By using the derivative of (A.9), it is possible to use the Newton-Raphson (NR) method
to numerically solve (A.8) for δ. Advantage of the Newton-Raphson above the bisection
method, is that it is able to solve with a second order convergence speed, compared to
the first order of the bisection-method.

Newton-Raphson method The goal of Newton-Raphson’s method for
estimating a solution of an equation f(x) = 0 is to produce a sequence of
approximations that approach the solution, by using the following strategy:

1. Guess a first approximation to a root of the equation f(x) = 0.

2. Use the first approximation to obtain a second, the second to get a
third and so on, using formula

xn+1 = xn −
f(xn)
f ′(xn)

, (f ′(xn) 6= 0)

where f ′(xn) is the derivative of f at xn.

Convergence is assured if, for any value of x, the following equation holds∣∣∣∣f(x)f ′′(x)
[f ′(x)]2

∣∣∣∣ < 1

for all x in an interval about a root r. (Thomas, Jr. and Finney 1996) J

In case of (A.8), convergence of the NR method, for any starting value δ0, is guaranteed
due to the convex nature of the function.
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Simulation framework

In this appendix, the simulation framework, with which the presented MPC framework
is evaluated, is discussed. In the first section, a detailed description of the different
modules of the simulation framework is presented. The code of the case-independent
Python modules is presented in Section B.1. The case dependent modules are discussed
in Appendix C and D for respectively the first and second case.

The complete set of files that were used for the implementation and evaluation of the
MPC framework are included on the CD-ROM, accompanying this thesis.

B.1 Framework structure

As mentioned in Section 4.1, both the Discrete Event Simulation Model (DESM) as well
as the distributed low level control layer are implemented in χ-0.8. Whereas, the high
level control layer of the MPC framework is implemented in Matlab. The general form
of the simulation framework is introduced in Section 4.1. A more detailed representation
of the simulation framework is presented by Figure B.1.

The heart of the simulation framework is the (compiled) ‘χ-model’; the actual Discrete
Event Simulation Model. At the end of each shift, various functions in the χ-model
call the Matlab functions to solve the optimization problem (LDM) and retrieve the
‘optimal’ production targets.

The interaction between the χ-model and the Matlab functions is achieved by deploying
the Pymat-interface (Sterian 1999). Within Python, the module ‘io.ext’ connects the
data-input to the χ-model, for which the module ‘data.py’ and ‘setup.py’ are used. The
module ‘data.py’ defines several functions that are needed for the data-handling of the
χ-models. It furthermore imports the dictionary defined in ‘setup.py’. This dictionary
contains the relevant simulation parameters (such as, the step process times, initial
condition of the production system etc.).
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Figure B.1: Schematic representation of a simulation framework

The ‘data.py’ module is moreover used for the initialization of the essential parameters
in the Matlab environment.

Within the Matlab environment, the pre-optimization parameter transformations are
handled by ‘∗ main.m’. The various matrices (recall (3.10)) defining the (case depen-
dent) LDM, are initiated by ‘LDM fun.m’. The Matlab functions defining the (matrices
of the) LDM are discussed in Appendix C and D, for respectively the first and the second
case.

After initiation of the matrices, ‘LDM fun.m’ calls the solver of the ‘optimization tool-
box’ to solve the optimization problem. Subsequently, ‘LDM fun.m’ retrieves the output
of the LDM and stores it in the ‘workspace.mat’-file. Triggered by the simulation model,
‘∗ post.m’ retrieves the output and transforms it into χ-compliant production targets.

In the next section, the case independent Python code is presented. The (case depen-
dent) code of the two simulation cases is presented in respectively Appendix C and
Appendix D.

B.2 Python code

In this section, the code of the python modules, discussed in the previous section, is
presented. The interaction between the different modules is illustrated by Figure B.1.

io.ext

language "python"
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file "data"

ext GetNat(s: string) -> nat = "Get"

ext GetReal(s: string) -> real = "Get"

ext GetString(s: string)-> string = "Get"

ext GetTe(s: string) -> (real^3)^6 = "Get"

ext GetTeEst(s: string) -> (real^3)^3 = "Get"

ext GetTo(s: string) -> (real^2)^6 = "Get"

ext GetTs(s: string) -> real^4 = "Get"

ext GetBs(s: string) -> nat^3 = "Get"

ext Gettg(s: string) -> (real#(real)^6#(real)^6#(real)^6#real#real) = "Get"

ext GetWini(s: string) -> (nat#nat#nat#real#real)*^3 = "Get"

ext GetAp(s: string) -> string#nat#real = "Get"

ext GetDp(s: string) -> string#nat#nat#nat#nat = "Get"

ext GetFc(s: string) -> real#nat#nat#nat#nat#nat = "Get"

ext LPsolve( ns,np,p: nat

, W: nat^7

, ept: (real*^2)^3

, est: (real^3)^3

, Ap: (string#nat#real)

, Cp: string

, Dp: (string#nat#nat#nat#nat)

, Ep: string

, Tp: string

, Er: real

, BO: real

, Fc: (real#nat#nat#nat#nat#nat)

, dbug: nat

)-> bool

ext LPpost( t: real

, r,p: nat

, W: nat^7

, Er: real

, BO: real

)-> (real#(real^6)#(real^6)#(real^6)#real#real)

data.py

# data.py

from Numeric import *

import setup, pymat, sys, os, string, math

# 1. Initialisation

dict = setup.par

# 2. Get functions

def Get(s):

return dict[s]

# 3. Solving LP model with the use of Matlab

def LPsolve(ns, np, p, W, ept, est, Ap, Cp, Dp, Ep, Tp, Er, BO, Fc, dbug):

# 3.a Local parameter declaration

i_ns = array([ns])

i_np = array([np])

i_p = array([p])
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i_dbug = array([dbug])

i_Atype = Ap[0]

i_Ahor = array([Ap[1]])

i_Aalpha = array([Ap[2]])

i_Ctype = Cp

i_Dtype = Dp[0]

i_Dini = array([Dp[1]])

i_Dper = array([Dp[2]])

i_Dmin = array([Dp[3]])

i_Dmax = array([Dp[4]])

i_Etype = Ep

i_Ttype = Tp

i_Erem = array([Er])

i_BOini = array([BO])

i_F = array([Fc])

i_W = array([W])

i_EaWS1 = transpose(array([(ept[0])[0]]))

i_EeWS1 = transpose(array([(ept[0])[1]]))

i_EaWS2 = transpose(array([(ept[1])[0]]))

i_EeWS2 = transpose(array([(ept[1])[1]]))

i_EaWS3 = transpose(array([(ept[2])[0]]))

i_EeWS3 = transpose(array([(ept[2])[1]]))

i_estWS1 = array([est[0]])

i_estWS2 = array([est[1]])

i_estWS3 = array([est[2]])

# 3.b Matlab initialization

H = pymat.open()

pymat.eval(H,"clear all")

pymat.eval(H,"pth = pwd")

pymat.eval(H,"cd(strcat(pth,’/Matlab/’))")

if dbug == 1:

pymat.eval(H,"diary")

# 3.c Matlab parameter declaration

pymat.put(H,"ns" , i_ns)

pymat.put(H,"np" , i_np)

pymat.put(H,"p" , i_p)

pymat.put(H,"dbug" , i_dbug)

pymat.put(H,"Atype" , i_Atype)

pymat.put(H,"Ahor" , i_Ahor)

pymat.put(H,"Aalpha", i_Aalpha)

pymat.put(H,"Ctype" , i_Ctype)

pymat.put(H,"Dtype" , i_Dtype)

pymat.put(H,"Dini" , i_Dini)

pymat.put(H,"Dper" , i_Dper)

pymat.put(H,"Dmin" , i_Dmin)

pymat.put(H,"Dmax" , i_Dmax)

pymat.put(H,"Etype" , i_Etype)

pymat.put(H,"Ttype" , i_Ttype)

pymat.put(H,"Erem" , i_Erem)

pymat.put(H,"BOini" , i_BOini)

pymat.put(H,"F" , i_F)

pymat.put(H,"W" , transpose(i_W))

pymat.put(H,"EaWS1" , i_EaWS1)

pymat.put(H,"EeWS1" , i_EeWS1)

pymat.put(H,"EaWS2" , i_EaWS2)

pymat.put(H,"EeWS2" , i_EeWS2)

pymat.put(H,"EaWS3" , i_EaWS3)

pymat.put(H,"EeWS3" , i_EeWS3)

pymat.put(H,"estWS1", i_estWS1)
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pymat.put(H,"estWS2", i_estWS2)

pymat.put(H,"estWS3", i_estWS3)

# 3.d Matlab function call

pymat.eval(H,"case_I_main") # Solve the LDM

pymat.eval(H,"save output.mat") # Save output of LDM

# 3.e Confirm completion to Chi

return 1

# 4. Retrieve output of the LDM

def LPpost(t, r, p, W, Er, BO):

# 4.a Local parameter declaration

i_r = array([r])

i_W = array([W])

i_Erem = array([Er])

i_BOini = array([BO])

# 4.b Matlab initialization

H = pymat.open()

pymat.eval(H,"clear all")

pymat.eval(H,"pth = pwd")

pymat.eval(H,"cd(strcat(pth,’/Matlab/’))")

# 4.c Matlab parameter declaration

pymat.eval(H,"load output.mat") # load LDM solution

pymat.put(H,"r", i_r)

# 4.d Matlab function call

pymat.eval(H,"inline_post") # Post-processing

# 4.e Matlab parameter retrieval

o_G = pymat.get(H,"out_G")[0]

o_X = pymat.get(H,"out_X")

o_W = pymat.get(H,"out_W")

o_C = pymat.get(H,"out_C")

o_E = pymat.get(H,"out_E")[0]

o_BO = pymat.get(H,"out_BO")[0]

# 4.f Python write parameters / targets to output file

if p == 1:

output = open(’./output/parameters.txt’,’w’)

else:

output = open(’./output/parameters.txt’,’a’)

output.write(str(t) + ’\t’ + str(p) + ’\t’)

i = 0

while i < len(i_W[0]):

output.write(str((i_W[0])[i]) + ’\t’)

i = i + 1

output.write(str(i_Erem[0]) + ’\t’ + str(i_BOini[0]) + ’\t’ + str(o_G) + ’\t’)

i = 0

while i < len(o_X):

output.write(str(o_X[i]) + ’\t’)

i = i + 1

i = 0

while i < len(o_W):

output.write(str(o_W[i]) + ’\t’)

i = i + 1

i = 0
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while i < len(o_C):

output.write(str(o_C[i]) + ’\t’)

i = i + 1

output.write(str(o_E) + ’\t’ + str(o_BO) + ’\n’)

output.close()

# 4.g Close matlab

pymat.close(H)

# 4.h Return parameters to Chi

return (o_G, tuple(o_X), tuple(o_W), tuple(o_C), o_E, o_BO)

setup.py

par = { ’n_ini’: 4

, ’dbug’ : 0

, ’ss’ : 720.0

, ’ta’ : 5.0

, ’tm’ : 0.8

, ’ts’ : ( 0.0, 5.0, 10.0, 12.0)

, ’te’ : ( (225.0, 0.0, 0.0) # Step 0 (te, ce2, ca2)

, ( 30.0, 0.0, 0.0) # Step 1 (te, ce2, ca2)

, ( 55.0, 0.0, 0.0) # Step 2 (te, ce2, ca2)

, ( 50.0, 0.0, 0.0) # Step 3 (te, ce2, ca2)

, (255.0, 0.0, 0.0) # Step 4 (te, ce2, ca2)

, ( 10.0, 0.0, 0.0) ) # Step 5 (te, ce2, ca2)

,’te_est’: ( (225.0, 0.1, 0.1) # WS0 (te, ce2, ca2)

, ( 30.0, 0.1, 0.1) # WS1 (te, ce2, ca2)

, ( 55.0, 0.1, 0.1) ) # WS2 (te, ce2, ca2)

, ’to’ : ( ( 20.0, 40.0) # Step 1

, ( 15.0, 15.0) # Step 2

, ( 10.0, 10.0) # Step 3

, ( 15.0, 15.0) # Step 4

, ( 20.0, 40.0) # Step 5

, ( 10.0, 10.0) ) # Step 6

, ’bs’ : ( 3, 1, 1 )

, ’w_ini’: ( [ (4,0,0, 3.0,3.0)

, (3,0,0, 2.0,2.0) ] # Wip in WS0

, [(2,0,1, 1.0,1.0)] # Wip in WS1

, [(1,0,2, 0.0,0.0)] # Wip in WS2

)

, ’tg_ini’:( 12.0 # Release target

, (4.0, 12.0, 12.0, 12.0, 4.0, 12.0) # X target

, (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) # W target

, (310.0, 85.0, 55.0, 0.0, 0.0, 0.0) # C target

, 12.0 # Exit target

, 0.0 ) # initial BO

, ’Fc’ : ( 0.5, 20, 0, 0, 0, 10000) # Cost function (scw, cw, cr, cp, cd, cb)

, ’Ap’ : ( ’average’, 10, 0.5) # Atype, Ahor, Aalpha

, ’Cp’ : ’CF’ # Ctype

, ’Ep’ : ’off’ # Etype: online EPT measuring {on / off}

, ’Tp’ : ’normal’ # Ttype {normal,floor, ceil, round}

, ’Dp’ : ( ’stepup’, 10, 10, 0, 6) # Dtype, Dini, Dper, Dmin, Dmax

, ’T’ : 30 # Time horizon length



Appendix C

Case I Description

In this appendix, the files used during the implementation of the first case are described.
A detailed description of the first case is presented in Section 4.3. This appendix, starts
with a description of the case dependent Matlab functions.The χ-model of the first case
is discussed in Section C.2.

C.1 Matlab functions

In this section, the Matlab functions, defining the Linear Discrete Model (LDM), are dis-
cussed. The general form of the Linear Discrete Model is formulated by (3.10). However,
within the Matlab environment, a different denomination is used. Here, the matrices,
defining the LDM, are denominated according to Coleman et al. (1999). Consequently,
the altered general form of the LDM, with the Matlab-denomination is defined by (C.1).
Note that the form corresponds to that of (3.10).

min
x

fT · x (C.1a)

s.t. Aeq · x = beq (C.1b)
Aineq · x ≤ bineq (C.1c)
lb ≤ x ≤ ub (C.1d)

The heart of the Matlab-environment is ‘LDM fun.m’. This function initiates the differ-
ent matrices by calling the corresponding functions. The majority of the function names
correspond to the matrices the various functions populate. In addition, ‘∗ capcon.m’
encompasses the linearization algorithm (Appendix A and defines the sets of linear
approximations capturing the effective clearing functions (3.5).

After initiation of the matrices and parameters, ‘LDM fun.m’ calls the solver of the
‘optimization toolbox’ to solve the optimization problem. Subsequently, the output is
stored into the ‘workspace.mat’-file, where it awaits further processing. The interaction
of the files, defining the LDM, is illustrated by Figure C.1.
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Figure C.1: Schematic representation of the Matlab functions initiating the LDM

Matlab code

In this section, the code of the case dependent Matlab functions, defining the LDM, is
presented. The interaction between the different files is illustrated by Figure C.1.

case I standalone.m

ns = 630; % planning horizon

np = 1; % number of products

p = 1; % shift id

r = 1;

dbug = 0; % dbug value

Atype = ’average’; % Type of average calculation function {average, n-average, ewma}

Ahor = 10; % Horizon of realizations the average is based on

Aalpha = 0.5; % Exponential Weighted Moving Average parameter

Ctype = ’CF’; % Resource capacity constraint type {MRP, MRP-C, CF}

Dtype = ’sinus’; % Type of demand function {stepup, stepdown, rampup, rampdown, sinus}

Dini = 48; % minimum value of demand function

Dper = 96; % maximum value of demand function

Dmin = 0; % Initialization period

Dmax = 16; % (Transition) Period length

Etype = ’off’; % measure online EPT {on, off}

Ttype = ’normal’; % Resource capacity constraint type {normal, floor, ceil, round}

Erem = 0; % Remains of the Exit target

BOini = 0; % initial value of back-orders

% Cost definition
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F(1,1) = 0.5; % Increase in inventory holding cost

F(1,2) = 20; % Inventory holding cost

F(1,3) = 0; % Release cost

F(1,4) = 0; % Production cost

F(1,5) = 0; % Demand cost

F(1,6) = 10000; % Backorder cost

W = [1; 0; 0; 0; 0; 0; 0]; % Initial WIP value

EaWS1 = [];

EeWS1 = [];

EaWS2 = [];

EeWS2 = [];

EaWS3 = [];

EeWS3 = [];

estWS1 = [ 285 , 0.93, 11.0];

estWS2 = [ 60 , 0.38, 4.54];

estWS3 = [ 52.5, 0.57, 2.17];

Wmax = [ 18 12 12 ];

case I main.m

load activeconstraints.mat % loading active constraints matrix

ss = 12; % shift size

sp = 5;

sd = 3;

x_dev = 1.1; % Maximum allowed deviation of the former tangent

nm = [2; 2; 1; 2; 2; 1]; % number of resources per workstation

bs = [3; 1; 1; 1; 3; 1]; % batchsize per workstation

col = [1];

W = filter_W(W, Wmax);

D = demand_gen(p, ns, Dtype, Dini, Dper, Dmin, Dmax); % demand trajectory

pWS(1,1:3) = WS_par(EaWS1, EeWS1, estWS1, Atype, Ahor, Aalpha, Etype);

pWS(2,1:3) = WS_par(EaWS2, EeWS2, estWS2, Atype, Ahor, Aalpha, Etype);

pWS(3,1:3) = WS_par(EaWS3, EeWS3, estWS3, Atype, Ahor, Aalpha, Etype);

te = [ pWS(1,1); pWS(2,1); pWS(3,1); pWS(2,1); pWS(1,1); pWS(3,1)];

cfp = (te./60)./(nm.*ss);

% Effective linear clearing functions

for i = 1 : 3 % Workstations

[Alpha,Beta] = ECF_fun_capcon( pWS(i,3), pWS(i,2), pWS(i,1), nm(i,1), bs(i,1), x_dev, Ctype);

A(1:size(Alpha,1),i) = Alpha;

B(1:size(Beta,1),i) = Beta;

end

% Solve LDM

[x,fval,Aeq,beq,Aineq,bineq,f,lambda] = LDM_fun(A,B,col,W,Wmax,D,te,nm,bs,ns,np,F,Erem,BOini,dbug);

case I post.m

dec = 3;
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xs = reshape(x,ns,size(x,1)/ns);

xt = xs(r,:);

out_X = zeros(1,6);

if np == 1

if strcmp(Ttype, ’normal’)

out_G = round_array(xt(1,5),dec);

out_X(1,1:3) = round_array(xt(1,6:8),dec);

out_E = round_array(xt(1,9),dec);

elseif strcmp(Ttype, ’floor’)

out_G = floor(xt(1,5));

out_X(1,1:3) = floor(xt(1,6:8));

out_E = floor(xt(1,9));

elseif strcmp(Ttype, ’ceil’)

out_G = ceil(xt(1,5));

out_X(1,1:3) = ceil(xt(1,6:8));

out_E = ceil(xt(1,9));

elseif strcmp(Ttype, ’round’)

out_G = round(xt(1,5));

out_X(1,1:3) = round(xt(1,6:8));

out_E = round(xt(1,9));

end

out_W = [round_array(xt(1,1:3),dec),zeros(1,3)];

out_W0 = round_array(W’,dec);

out_BO = round_array(xt(1,10),dec);

out_C = round_array(te’,dec);

for i=1:6

out_C(i)=sum(out_C(i:3));

end

end

LDM fun.m

function [x,fval,Aeq,beq,Aineq,bineq,f,lambda]

= LDM_fun(A,B,col,W,Wmax,D,te,nm,bs,ns,np, F, Erem, BOini, dbug)

ss = 12;

ci = (3*F(1,1) + 1 )*F(1,2); % FGI holding cost [-]

cfp = (te./60)./(nm.*ss); % Number of shifts per lot 1/tau(!) [ 1/hr ]

cfs = [ 1/Wmax(1,1); 1/Wmax(1,2); 1/Wmax(1,3); 1/Wmax(1,2); 1/Wmax(1,1); 1/Wmax(1,3)];

n = 8*ns;

m = 16*ns;

for i=1:3, sa(i) = size(B(1:max(find(B(:,i))),i),1);,end

W = sparse(reshape(W,size(W,1)/np,np));

D = sparse(reshape(D,size(D,1)/np,np));

% cost definition

f = LDM_fun_f(ns, np, F(1,3), F(1,5), F(1,2), F(1,4), ci, F(1,6), F(1,1));

% >>> equality constraints <<<

Aeq = LDM_fun_Aeq(ns, np, bs(1));

beq = LDM_fun_beq(ns, np, W, D, Erem, BOini);
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% >>> inequality constraints <<<

Aineq = LDM_fun_Aineq(A,B,col,ns,np,sa,cfp,cfs);

bineq = LDM_fun_bineq(A,B,W,col,ns,np,sa);

% >>> lower and upper bounds <<<

ub=[];

for i=1:3, ub = [ub; (1/cfs(i))*ones(ns,1)]; end; ub = [ub; Inf*ones(2*ns,1)];

for i=1:3, ub = [ub; (1/cfp(i))*ones(ns,1)]; end; ub = [ub; Inf*ones(2*ns,1)];

lb=sparse(np*10*ns,1);

for i = 1 : np, lb((i-1)*m + 1 : (i-1)*m + ns,1) = 0.5*(bs(1)-1)*ones(ns,1); end

if dbug == 1, options = optimset(’Display’,’iter’,’MaxIter’,200); else options = []; end

[x,fval,exitflag,output,lambda] = linprog(f,Aineq,bineq,Aeq,beq,lb,ub,[],options);

LDM fun Aeq.m

function [Aeq] = LDM_fun_Aeq(ns, np, bs)

n = 5*ns;

m = 10*ns;

Aeq = sparse(n*np,m*np);

Rw = -1*ones(ns,1);Rw(ns,1)=0;

AeqW = spdiags( repmat(Rw,4*ns,1),-1,4*ns,4*ns) + spdiags(ones(4*ns,1),0,4*ns,4*ns);

AeqX = spdiags(-1*ones(4*ns,1),0,4*ns,4*ns+ns) + spdiags(ones(4*ns,1),ns,4*ns,4*ns+ns);

for j=1:ns, AeqX(:, ns + j)= bs.*AeqX(:, ns + j); end

AeqU = [AeqW,AeqX, sparse(4*ns,ns)];

AeqL = [sparse(ns,8*ns), spdiags(ones(ns,1),0,ns,ns), spdiags(ones(ns,1),0,ns,ns)+spdiags(Rw,-1,ns,ns)];

Aeqs = [ AeqU; AeqL ];

for i = 0: np-1, Aeq(i*n+1:(i+1)*n, i*m+1: (i+1)*m) = Aeqs; end

LDM fun beq.m

function [beq] = LDM_fun_beq(ns, np, W, D, Erem, BOini)

beq = [];

for i = 1: np

beqs = [];

beqs = sparse(4*ns,1);

for j = 1:4

beqs((j-1)*ns+1,1) = W(j,i);

end

D(1,i) = D(1,i) + Erem(1,i) + BOini(1,i);

beq = [beq; beqs; D(:,i)];

end

LDM fun Aineq.m

function [Aineq] = LDM_fun_Aineq(A,B,col,ns,np,sa,cfp,cfs)

AineqWS = [];
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% >>> Aineq Upper part

for z = 1:3 %WS

carW = sparse(ns*sa(z),ns);

carX = sparse(ns*sa(z),ns);

for j=1:ns

carX((j-1)*sa(z)+1:j*sa(z),j) = ones(sa(z),1);

if j < ns, carW((j-1)*sa(z)+1:(j+1)*sa(z),j) = ones(2*sa(z),1);

else, carW((j-1)*sa(z)+1:j*sa(z),j) = ones(sa(z),1);

end

end

carW = carW - carX;

WWS = (carW’*spdiags(repmat(-A(1:sa(z),z),ns,1),0,ns*sa(z),ns*sa(z)))’;

XWS = carX;

if z == 1

CWSs = [ 0*ns+1, 1*ns, 5*ns+1, 6*ns];

CWSs = [ CWSs; CWSs + 9*ns*ones(1,4); CWSs + 18*ns*ones(1,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(1),cfp(5)],[1,np]), ns*sa(z), 10*ns*np, CWSs);

elseif z == 2

CWSs = [ 1*ns+1, 2*ns, 6*ns+1, 7*ns];

CWSs = [ CWSs; CWSs + 9*ns*ones(1,4); CWSs + 18*ns*ones(1,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(2),cfp(4)],[1,np]), ns*sa(z), 10*ns*np, CWSs);

elseif z == 3

CWSs = [ 2*ns+1, 3*ns, 7*ns+1, 8*ns];

CWSs = [ CWSs; CWSs + 9*ns*ones(1,4); CWSs + 18*ns*ones(1,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(3),cfp(6)],[1,np]), ns*sa(z), 10*ns*np, CWSs);

end

AineqWS = [AineqWS; AineqWSs];

end

% >>> Aineq lower part

Rw=[];

AineqH = [spdiags( ones(3*ns,1),0,3*ns,3*ns )];

for i = 1:3, Rw = [Rw;repmat(cfs(i,1),ns,1)];,end

Qw = spdiags(sparse([Rw;repmat(0,ns,1)]),0,3*ns,3*ns);

AineqW=[];

for i = 1:np, AineqW = [AineqW, AineqH*Qw, sparse(3*ns,ns), sparse(3*ns,6*ns)]; end

Aineq = [ AineqWS; AineqW];

%=========================== NEW FUNCTION ===========================

% First recursive function

function [AineqR] = LDM_fun_AineqRa(col,WWS,XWS,cfp,n,m,C)

AineqR=[];

while size(col,1) > 1

AineqR = [AineqR; LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)]; col = col(2:size(col,1),:);

end

AineqR = [AineqR; LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)];

%=========================== NEW FUNCTION ===========================

% Second recursive function

function [AineqR] = LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)

AineqR=sparse(n,m);

for j=1:size(col,2)

AineqR(1:n, C(j,1):C(j,2)) = col(1,j).*WWS;

AineqR(1:n, C(j,3):C(j,4)) = col(1,j).*cfp(j).*XWS;

end
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LDM fun bineq.m

function [bineq] = LDM_fun_bineq(A,B,W,col,ns,np,sa)

bineqWS = [];

for z = 1:3 %ws

Wp=[];

for j=1:np

if z == 1

Wp = [Wp;W(1,j)];%;W(5,j)];

elseif z == 2

Wp = [Wp;W(2,j)];%;W(4,j)];

elseif z == 3

Wp = [Wp;W(3,j)];%;W(6,j)];

end

end

bineqWSs = LDM_fun_bineqRa(col, [A(1:max(find(B(:,z))),z)

; repmat(zeros(max(find(B(:,z))),1),ns-1,1)]

, repmat(B(1:max(find(B(:,z))),z),ns,1),Wp , ns*sa(z));

bineqWS = [bineqWS; bineqWSs];

end

bineq = [ bineqWS; ones(3*ns,1)];

bineq = sparse(bineq);

%=========================== NEW FUNCTION ===========================

% First recursive function

function [bineqR] = LDM_fun_bineqRa(col,AWS,BWS,W,n)

bineqR=[];

while size(col,1) > 1

bineqR = [bineqR; LDM_fun_bineqRb(col,AWS,BWS,W,n)]; col = col(2:size(col,1),:);

end

bineqR = [bineqR; LDM_fun_bineqRb(col,AWS,BWS,W,n)];

%=========================== NEW FUNCTION ===========================

% Second recursive function

function [bineqR] = LDM_fun_bineqRb(col,AWS,BWS,W,n)

bineqR(1:n, 1) = BWS + (col(1,:)*W)*AWS;

LDM fun f.m

function [f] = LDM_fun_f(ns, np, cr, cd, cw, cp, ci, cb, scw)

fs=[];

for i=1:3, fs = [fs; cw * (1 + (i-1)*scw)*ones(ns,1)]; end

fs= [ fs; ci*ones(ns,1); cr*ones(ns,1); cp*ones(3*ns,1); cd*ones(ns,1); cb*ones(ns,1)];

f = [];

for j = 1 : np, f = [f; ((np+1-j)/np)*fs];end
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ECF fun capcon.m

function [A,B] = ECF_fun_capcon(ca2, ce2, te, m, k, x_dev, Ctype)

alpha_tol = 1.0e-4;

x_tol = 1.0e-2;

x = 0;

n = 1;

i = 1;

ck2 = (ca2/k + ce2)/2;

delta_m = m * k / te;

if strcmp(Ctype, ’MRP’)

lin(n,4) = delta_m;

elseif strcmp(Ctype, ’MRP-C’) | (strcmp(Ctype, ’CF’) & ck2==0)

lin(n,:) = [ ECF_fun_funcx(x,ck2,m,k,te) x ECF_fun_dfuncx(x,ck2,m,k,te)^-1 0 0];

lin(n,4) = lin(n,2) - lin(n,3) * lin(n,1);

lin(n+1,4) = delta_m;

elseif strcmp(Ctype, ’CF’) & ck2 > 0

lin(n,:) = [ ECF_fun_funcx(x,ck2,m,k,te) x ECF_fun_dfuncx(x,ck2,m,k,te)^-1 0 0];

lin(n,4) = lin(n,2) - lin(n,3) * lin(n,1);

while lin(n,3) > alpha_tol % while the slope of the tangent > tolerance

xlower = lin(n,2);

xupper = delta_m;

xmid = (xlower + xupper)/2;

x = xmid;

while (xupper - xlower > x_tol), % while the width of the observation range > tolerance

fmid = ECF_fun_funcx(x,ck2,m,k,te);

gmid = lin(n,3) * fmid + lin(n,4);

if ( gmid / xmid - x_dev <= 0 ), xlower = xmid; else xupper = xmid; end

xmid = (xlower + xupper)/2;

x = xmid;

i = i + 1;

end

n = n + 1;

lin(n,:) = [ ECF_fun_funcx(x,ck2,m,k,te) x ECF_fun_dfuncx(x,ck2,m,k,te)^-1 0 i];

lin(n,4) = lin(n,2) - lin(n,3) * lin(n,1);

i = 1;

end

lin(n+1,4) = delta_m;

end

A = lin(:,3)./max(lin(:,4));

B = lin(:,4)./max(lin(:,4));

%=========================== NEW FUNCTION ===========================

% effective clearing function

function fx = ECF_fun_funcx(x,ck2,m,k,te)

gamma = sqrt(2*(m+1));

epsilon = te/(m*k);

fx = (k-1)/2 + ck2 * k * epsilon^gamma * x^gamma/(1 - epsilon * x) + te * x;
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%=========================== NEW FUNCTION ===========================

% derivative of the effective clearing function

function dfx = ECF_fun_dfuncx(x,ck2,m,k,te)

gamma = sqrt(2*(m+1));

epsilon = te/(m*k);

dfx = ck2 * k * (epsilon)^gamma * (((gamma*x^(gamma-1))/(1 - epsilon * x))

+ ( epsilon*x^gamma/(1-epsilon * x)^2)) + te;

WS par.m

function [out] = WS_par(Xa, Xe, est, Atype, Ahor, Aalpha, Etype)

if size(Xa,1) < size(Xa,2), Xa = Xa’;, end

if strcmp(Etype, ’on’) & size(Xa,1) > 1

[ta, ca2] = average_calc(Xa, Atype, Ahor, Aalpha);

else ca2 = est(1,3);

end

if size(Xe,1) < size(Xe,2), Xe = Xe’;, end

if strcmp(Etype, ’on’) & size(Xe,1) > 1

[te, ce2] = average_calc(Xe, Atype, Ahor, Aalpha);

else te = est(1,1); ce2 = est(1,2);

end

out = [te,ce2,ca2];

demand gen.m

function [Ds] = demand_gen(p, ns, Dtype, Dini, Dper, Dmin, Dmax)

if strcmp(Dtype, ’stepup’)

Ds = Dmax*ones(ns,1);

if p <= Dini, Ds(1:min(Dini-p+1,ns), 1) = Dmin*ones(min(Dini-p+1,ns), 1);, end

elseif strcmp(Dtype, ’stepdown’)

Ds = Dmin*ones(ns,1);

if p <= Dini, Ds(1:min(Dini-p+1,ns), 1) = Dmax*ones(min(Dini-p+1,ns), 1);, end

elseif strcmp(Dtype, ’rampup’)

Ds = Dmax*ones(ns,1);

for i = 1:Dper, T(i,1) = Dmin + i/Dper*(Dmax-Dmin);, end

F = [Dmin*ones(Dini,1); T; Ds];

if p < (Dini + Dper), Ds(1:min((Dini+Dper)-p,ns), 1) = F(p: p + min((Dini+Dper)-p,ns)-1, 1);, end

elseif strcmp(Dtype, ’rampdown’)

Ds = Dmin*ones(ns,1);

for i = 1:Dper, T(i,1) = Dmax + i/Dper*(Dmin-Dmax);, end

F = [Dmax*ones(Dini,1); T; Ds];

if p < (Dini + Dper), Ds(1:min((Dini+Dper)-p,ns), 1) = F(p: p + min((Dini+Dper)-p,ns)-1, 1);, end

elseif strcmp(Dtype, ’sinus’)

A = (Dmax - Dmin)/2;

B = (2*pi/Dper);

C = -Dini+max(p-Dini,0)+1.75*Dper;
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D = mean([Dmin,Dmax]);

j=Dini;

for i = 1:ns

if i <= (Dini-p)

Ds(i,1) = Dmin;

else Ds(i,1) = A*sin(B*(j+C)) + D; j=j+1;

end

end

end

average calc.m

function [avg, csq] = average_calc(X, Atype, Ahor, Aalpha)

if strcmp(Atype, ’average’) % ’Normal’ average function

n = length(X)

avg = sum(X)/n;

var = sum( (X - avg*ones(n,1)).^2)/(n-1);

csq = var / avg^2;

elseif strcmp(Atype, ’n-average’) % Average based on last n realizations

n = length(X);

m = min( n, Ahor);

avg = sum(X(1:m))/m;

var = sum((X(1:m) - avg*ones(m,1)).^2)/(m-1);

csq = var / avg^2;

elseif strcmp(Atype, ’ewma’) % Exponetial Weighted Moving Average function

Xf(1,1) = X(1,1);

for i = 2: length(X)

Xf(i,1) = Aalpha*X(i,1) + (1- Aalpha)*Xf(i-1,1);

end

n = length(Xf);

avg = sum(Xf)/n;

var = sum( (Xf - avg*ones(n,1)).^2)/(n-1);

csq = var / avg^2;

end

round array.m

function [R] = round_array(array, dec)

R = round(10^dec.*array)./10^dec;

filter W.m

function [Wfil] = filter_W(W, Wmax)

if size(W,1) < size(W,2), W = W’;,end

if W(1)+W(5) > Wmax(1) % Workstation 1

pW(1) = W(1)/(W(1)+W(5));

Wfil(1,1) = round(pW(1)*Wmax(1));

Wfil(5,1) = Wmax(1) - Wfil(1);

else Wfil(1,1) = W(1); Wfil(5,1) = W(5);

end
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if W(2)+W(4) > Wmax(2) % Workstation 2

pW(2) = W(2)/(W(2)+W(4));

Wfil(2,1) = round(pW(2)*Wmax(2));

Wfil(4,1) = Wmax(2) - Wfil(2);

else Wfil(2,1) = W(2); Wfil(4,1) = W(4);

end

if W(3)+W(6) > Wmax(3) % Workstation 3

pW(3) = W(3)/(W(3)+W(6));

Wfil(3,1) = round(pW(3)*Wmax(3));

Wfil(6,1) = Wmax(3) - Wfil(3);

else Wfil(3,1) = W(3); Wfil(6,1) = W(6);

end

Wfil(7) = W(7);

C.2 χ model

As mentioned in Appendix B, the heart of the simulation framework is the χ model.
It encompasses the actual Discrete Event Simulation Model (DESM) as well as the
distributed low level control layer.

The general form of the χ model is introduced in Chapter 4 and illustrated by Figure 4.5.
A detailed representation (at system level) of the interaction (communication) between
the different χ-processes is illustrated by Figure C.2. The interaction between the χ-
processes, at workstation level, is illustrated by Figure C.3.
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Figure C.2: Communication between the different χ processes, at system level

χ code

The χ-code describing the individual processes and functions of the DESM is presented
in the remainder of this section. A general description of the individual processes is
presented in Chapter 4.



96 Appendix C. Case I Description

Bsi Mmi Bsomo

~vm
ba

EPT

~ea ee

WC

sl.1
td

t s
cluster WSs

sl.0

e

(a) Single resource workstation

Bsi

M

mi.0
Bso

mo.0

~vm.0

ba

EPT

~ea ee

WC

sl.1
td

sl.0

t s

M

mi.1

cluster WSm

mo.1

~vm.1

e

(b) Multiple resource workstation

Figure C.3: Communication between the differen χ processes, at workstation level

Instantiation

from std import *

from random import *

from fileio import *

from io import *

type lot = iid.nat#itp.nat#isp.nat#irt.real#idd.real

, trg = (real)^6

, stat = (nat)^7

const LR : (nat)^4 = <|0,1,2,3|> // lot routing

, SS : real = 720.0 // shift size [min]

, NS : nat = 6 // number of steps

, N : nat = 3 // real number of steps

, NP : nat = 1 // number of products

General purpose functions

// Determines the state of the buffer based on its contents

func f_stat(xs:lot*) -> stat =

|[ i:nat, st:stat

| i:= 0

; *[ i < NS +1 -> st.i:= len([ x | x:lot <- xs, x.isp = i]); i:= i + 1 ]

; ret st

]|

// Updates step-id of a lot after processing

func f_uplot(x:lot, up: bool) -> lot =

|[ [ up -> x.isp:= x.isp + 1 | not up -> x.isp:= x.isp - 1 ]

; ret x

]|

// Determines processing time distribution based on issued parameters

func f_dist(te: (real^3)^6, tm: real) -> (->real)^6 =

|[ D:(->real)^6, i:nat, td,cd2:real
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| i:=0

; *[ i < NS and (te.i).1 /= 0.0

-> td := (1.0 - tm) * (te.i).0

; cd2 := ((((te.i).0)^2)*(te.i).1)/td^2

; D.i := gamma(1/cd2, cd2*td)

; i := i + 1

| i < NS and (te.i).1 = 0.0

-> D.i := constant(td)

; i := i + 1

]

; ret D

]|

// Update targets with batch send

func f_addstat(st1,st2: stat) -> stat =

|[ i: nat

| i := 0; *[i < NS + 1 -> st1.i:= st1.i + st2.i; i:= i + 1 ]; ret st1

]|

Generator

// Release lots into the production line if issued targets permit

proc G(a: !lot*, t: ?real^2, v: !void)=

|[ m,n, n_ini: nat, ta,tg,dd: real, tgn: real^2

| n_ini := GetNat("n_ini")

; ta := GetReal("ta")

; m := 0

; n := n_ini + 1

; tg := 0.0

; *[ tg >= 1.0; a! [< n, 0, 0, time, time + dd + m*ta>]

-> v!; tg := tg - 1.0

; m := m + 1 ; n := n + 1

| true; t? tgn

-> tg := tgn.0

; dd := tgn.1

; m := 0

]

]|

Incoming buffers

// Increasing slack predicate for ’sort’ function

func f_insl(x,y:lot#real) -> bool = |[ ret x.1 < y.1 ]|

// lot sequencing policy

func f_seqpol(xs:lot*, rs:nat*, tg,zt:trg, b:nat, t:real)-> lot*#nat =

|[ ys, zs: lot*

| ys := []; zs:=[]

; ys:= [ y.0

| y: lot#real

<- sort([<x, ((x.idd - zt.(x.isp) - t)/(N - x.isp))>

| x:lot <- xs, (b*tg.(x.isp)) > 0.99 ]

, f_insl

)

]

; *[ len(zs) < b and len(ys) > 0

-> [ b*tg.((hd(ys)).isp) > 0 -> zs := zs ++ [hd(ys)]

; tg.((hd(ys)).isp) := tg.((hd(ys)).isp) - (1.0 / n2r(b))
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| b*tg.((hd(ys)).isp) <= 0 -> skip

]

; ys := tl(ys)

]

; ret< zs, hd(rs) >

]|

// Update issued targets

func f_uptrg(tg:trg, xs:lot*, b:nat) -> trg =

|[ i: nat, st: stat

| i:=0; st:= f_stat(xs)

; *[i < NS -> tg.i:= tg.i - (n2r(st.i)/n2r(b)); i:= i + 1 ]; ret tg

]|

// Convert issued production targets

func f_data(rc:trg^2)-> trg^2=

|[ tg,zt:trg, i:nat

| i := 0; tg := rc.0

; *[ i < NS -> zt.i := SS*(rc.1).i; i := i+1]; ret <|tg,zt|>

]|

// f_print is used to convert both the old and new targets into a string

func f_print(t:real, eqid:string ,tg,ac:trg ) -> string =

|[ i,j:nat, str:string

| str:= r2s(t) ++ "\t " ++ eqid

; i:=0; *[ i < NS -> str := str ++ "\t " ++ r2s(tg.i); i:= i + 1 ]

; j:=0; *[ j < NS -> str := str ++ "\t " ++ r2s(ac.j); j:= j + 1 ]

; str := str ++ "\n"

; ret str

]|

// Incoming buffer for a workstation with a single resource

proc Bsi( a: ?lot*, b: !lot*#real

, s: !string#lot*, t: ?trg^2

, ea: !void

, v: ?void, f,g: !file

, wi: nat

)=

|[ as:real*, xs,ys,zs: lot*, r: nat, rs: nat*

, tg,tgo,zt: trg, rc: trg^2

, eqid: string

, bs: nat^3

| ys:= GetWini("w_ini").wi

; rs:= []; as:= []

; bs := GetBs("bs")

; eqid:="Bsi"++n2s(wi)

; s! <"A",ys>

; t? rc

; <|tg,zt|>:= f_data(rc); tgo:= tg

; f! eqid, "\t", time, "\t", len(ys), "\n"

; *[ true

-> [ len(rs) > 0 -> <zs,r> := f_seqpol(ys, rs, tg, zt, bs.wi, time)

| len(rs) = 0 -> skip

]

; [ floor(len(ys)/(bs.wi)) > len(as) -> as:= as ++ [time]

| floor(len(ys)/(bs.wi)) <= len(as) -> skip

]

; [ true; a? xs

-> ys:= ys ++ xs

; s! <"A",xs>; ea!

; f! eqid, "\t", time, "\t", len(ys), "\n"

| len(zs) >= bs.wi; b! <zs, hd(as)>
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-> tg:= f_uptrg(tg,zs,bs.wi)

; ys:= ys -- zs

; rs:= rs -- [r]

; as := tl(as)

; f! eqid, "\t", time, "\t", len(ys), "\n"

| true; t? rc

-> g!f_print(time, eqid, tgo, tg)

; <|tg, zt|>:= f_data(rc)

; tgo := tg

| true; v?

-> rs:= rs ++ [0]

]

]

]|

// Incoming buffer for a workstation with a multiple resources

proc Bmi( a: ?lot*, b: (!lot*#real)^2

, s: !(string#lot*), t: ?(trg^2)

, ea: !void

, v: (?void)^2, f,g: !file

, wi: nat)=

|[ as: real*, xs,ys,zs: lot*, r: nat, rs: nat*, tg,tgo,zt: trg, rc: trg^2

, eqid: string

, bs: nat^3

| ys:= GetWini("w_ini").wi

; rs:= []; as:=[]

; bs := GetBs("bs")

; eqid:= "Bmi"++n2s(wi)

; s! <"A",ys>

; t? rc

; <|tg,zt|>:= f_data(rc); tgo:= tg

; f! eqid, "\t", time, "\t", len(ys), "\n"

; *[ true

-> [ len(rs) > 0 -> <zs,r> := f_seqpol(ys, rs, tg, zt, bs.wi, time)

| len(rs) = 0 -> skip

]

; [ floor(len(ys)/(bs.wi)) > len(as) -> as:= as ++ [time]

| floor(len(ys)/(bs.wi)) <= len(as) -> skip

]

; [ true; a?xs

-> ys:= ys ++ xs

; s! <"A",xs>

; ea!

; f! eqid, "\t", time, "\t", len(ys), "\n"

| len(zs) >= bs.wi; b.r!<zs,hd(as)>

-> tg := f_uptrg(tg, zs, bs.wi)

; ys := ys -- zs

; rs := rs -- [r]

; as := tl(as)

; f! eqid, "\t", time, "\t", len(ys), "\n"

| true; t?rc

-> g!f_print(time, eqid, tgo, tg)

; <|tg, zt|> := f_data(rc)

; tgo := tg

| j: nat <- 0..2: true; v.j? -> rs:= rs ++ [j]

]

]

]|
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Machine

// Determine need for setup-times

func f_setup(lt,pt,ls,ps,wi:nat) -> nat^3 =

|[ n:nat

| [ wi = 2 -> [ lt = pt and ls = ps -> n:= 0

| lt /= pt and ls = ps -> n:= 1; pt:= lt

| lt = pt and ls /= ps -> n:= 2 ; ps:= ls

| lt /= pt and ls /= ps -> n:= 3; pt:= lt; ps:= ls

]

| wi /= 2 -> n:= 0

]

; ret <|n,pt,ps|>

]|

// Machine

proc M(a: ?lot*#real, b: !lot*#real, v: !void, g: !file, wi,mi: nat)=

|[ xs,ys : lot*, i,n,pt,ps: nat, t: real, eqid: string, D: (->real)^6

, te: (real^3)^6

, AA,tm: real

, to: (real^2)^6

, ts: real^4

| AA:=0.0

; eqid:= "WS"++n2s(wi)++"_M"++n2s(mi)

; te := GetTe("te")

; tm := GetReal("tm")

; to := GetTo("to")

; ts := GetTs("ts")

; D := f_dist(te,tm)

; *[ true

-> v!; a?<xs,AA>

// setup (if appropriate)

; <|n,pt,ps|> := f_setup(hd(xs).itp, pt, hd(xs).isp, ps, wi)

; t:= time; delta (ts.n)

; i:=1; ys:=xs

; *[ len(ys)>0 -> g! eqid,"_b",i,"\t", t, "\t", time, "\t setup_",n ,"\n"; ys:=tl(ys); i:=i+1]

// load

; t:= time; delta (to.(hd(xs).isp)).0

; i:=1; ys:=xs

; *[ len(ys)>0 -> g! eqid,"_b",i,"\t", t, "\t", time, "\t load \n"; ys:=tl(ys); i:=i+1]

// processing time

; t:= time; delta ( tm*te.(hd(xs).isp).0 + sample D.(hd(xs).isp))

; i:=1; ys:=xs

; *[ len(ys)>0

-> g! eqid,"_b",i,"\t", t, "\t", time, "\t processing_step_", (hd(ys).isp)+1, "\n"

; ys:=tl(ys); i:=i+1]

// unload

; t:= time; delta (to.(hd(xs).isp)).1

; i:=1; ys:=xs

; *[ len(ys)>0 -> g! eqid,"_b",i,"\t", t, "\t", time, "\t unload \n"; ys:=tl(ys); i:=i+1]

// send updated batch

; b! <[f_uplot(x,true)| x:lot <- xs],AA>

]

]|

Outbound buffers

// Outbound buffer for a workstation with a single resource

proc Bso(a: ?lot*#real, b: !lot*, s: !string#lot*, ee:!nat#real#real) =

|[ xs,ys: lot*, AA:real
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| ys:= []

; *[ true ; a?<xs,AA>

-> s! <"F",xs>

; ee!<0,AA,time>

; ys:= ys ++ xs

| len(ys) > 0; b![hd(ys)]

-> s! <"D",[hd(ys)]>

; ys:= tl(ys)

]

]|

// Outbound buffer for a workstation with a multiple resources

proc Bmo(a: (?lot*#real)^2, b: !lot*, s: !string#lot*, ee: !nat#real#real) =

|[ xs,ys: lot*, AA:real

| ys:= []

; *[ j: nat <- 0..2: true; a.j?<xs,AA>

-> s!<"F",xs>

; ee!<j,AA,time>

; ys:= ys ++ xs

| len(ys) > 0; b![hd(ys)]

-> s!<"D",[hd(ys)]>

; ys:= tl(ys)

]

]|

EPT algorithm

// Determine the squared coefficient of variation

func f_sqv(t,ti,s2: real, i: nat) -> real#real#real#nat=

|[ i := i + 1

; [ i > 1 -> s2 := s2 * (i-2) / (i-1) + (ti-t)^2 / i

| i <= 1 -> s2 := 0.0

]

; t := (i-1)/i*t + ti/i; ret <t, s2, s2/t^2,i>

]|

// EPT process

proc EPT(ea: ?void, ee: ?nat#real#real, se: !real*^2, f1,f2,g: !file, wi:nat)=

|[p,q: nat

, mta,sa2,ca2,tsa,mte,se2,ce2,eptr: real, ras,res: real*

, j:nat, AA,AD:real, ADold:real^2

, eqid: string

| p:=0; q:=0; ras:= []; res:= [ ]; tsa:=0.0

; ADold:=<|0.0,0.0|>

; eqid:= "WS"++n2s(wi)++"_M"

;*[ true; ea?

-> ras := [time - tsa] ++ ras

; <mta,sa2,ca2,p> := f_sqv(mta, time - tsa, sa2,p)

; tsa := time

; f1! time,"\t mta: \t",mta,"\t sa2: \t",sa2, "\t ca2: \t", ca2,"\n"

| true; ee?<j,AA,AD>

-> res := [AD - max(AA, ADold.j)] ++ res

; eptr := AD - max(AA, ADold.j)

; g! eqid,j,"\t", max(AA, ADold.j) , "\t", AD, "\t EPT \n"

; <mte,se2,ce2,q> := f_sqv(mte, eptr, se2, q)

; f2! time,"\tmte:\t",mte,"\tse2:\t",se2, "\tce2:\t", ce2,"\n"

; ADold.j := AD

| true; se! <|ras, res|> -> skip

]

]|
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Inventory buffer

proc BI(a: ?lot*, b: !lot*, s: !stat, f:!file) =

|[ xs,ys: lot*, eqid: string

| ys:= []

; eqid:= "BI"

; f! eqid, "\t", time, "\t", len(ys), "\n"

; *[ true ; a?xs

-> ys:= ys ++ xs

; f! eqid, "\t", time, "\t", len(ys), "\n"

| len(ys) > 0; b![hd(ys)]

-> ys:= tl(ys)

; f! eqid, "\t", time, "\t", len(ys), "\n"

| true ; s!f_stat(ys)

-> skip

]

]|

Transporter

proc T(a: (?lot*)^4, b: (!lot*)^4)=

|[ xs: lot*

| *[ j:nat <- 0..4: true; a.j? xs -> b.(LR.(hd(xs).isp))! xs ]

]|

Workstation controller

proc WC(s:!stat, t:?trg^2, sl: (?string#lot*)^2, td:!trg^2)=

|[ xs:lot*, tg: trg^2, dat: string#lot*

| sl.0?dat; xs:= dat.1

; s!f_stat(xs); t?tg; td!tg

; *[ true; s!f_stat(xs)

-> t?tg; td!tg

| j: nat <- 0..2: true; sl.j?dat

-> [ dat.0 = "A" -> xs := xs ++ dat.1

| dat.0 = "F" -> xs := (xs ++ dat.1) -- [f_uplot(x,false)| x:lot <- dat.1]

| dat.0 = "D" -> xs := xs -- dat.1

]

]

]|

Main controller

proc MC( sl: (?stat)^3, si: ?stat, se: ?real

, tgg: !real^2, t: (!trg^2)^3, tge: !real

, e: (?real*^2)^3

, f: !file )=

|[ s,st: stat, eqid: string

, rst:(real*^2)^3

, b1,b2,b3,bf:bool^3, bi,be,bg,bt:bool

, Th,p:nat
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, est: (real^3)^3

, te : (real^3)^6

, Ap: string#nat#real

, Cp,Ep,Tp: string

, Dp: string#nat#nat#nat#nat

, Er: real

, BO: real

, Fc: real#nat#nat#nat#nat#nat

, tg: real#trg#trg#trg#real#real

, dbug : nat

| te := GetTe("te")

; Ap := GetAp("Ap")

; Cp := GetString("Cp")

; Dp := GetDp("Dp")

; Ep := GetString("Ep")

; Fc := GetFc("Fc")

; Tp := GetString("Tp")

; tg := Gettg("tg_ini")

; dbug := GetNat("dbug")

; est:= GetTeEst("te_est")

; BO := tg.5

; Th := GetNat("T")

; p:=1

; bf:=<|false,false,false|>

; eqid:= "MC"

; bt := true

; *[ bt -> st:=<|0,0,0,0,0,0,0|>

; b1:= bf; b2:=bf; bi:=false; be:=false

; *[ k:nat <- 0..3: not b1.k; sl.k?s -> st := f_addstat(st,s); b1.k:=true

| l:nat <- 0..3: not b2.l; e.l?rst.l-> b2.l:=true

| not bi ; si?s -> st := f_addstat(st,s); bi:=true

| not be ; se?Er -> be := true

]

; f! eqid, "\t", time, "\t", tg.2, "\t", st, "\n"

; bt := LPsolve(Th, NP, p, st, rst, est, Ap, Cp, Dp, Ep, Tp, Er, BO, Fc, dbug)

; tg := LPpost (time, 1, p, st, Er, BO)

; BO:=tg.5

; b3:= bf; bg:=false; be:=false

; *[ k:nat <- 0..3: not b3.k; t.k!<|tg.1,tg.3|> -> b3.k:=true

| not bg; tgg!<|tg.0,(tg.3).0|> -> bg:=true

| not be; tge!tg.4 -> be:=true

]

; delta SS

; p := p +1

]

]|

Exit

// Determine rolling average

func f_tavg(tim,ti,avgim: real, im: nat)-> real^2 =

|[[ti = 0.0 -> ret <| ti,avgim |>

|ti > 0.0 -> ret <| ti, avgim*(tim/ti)+im*(ti-tim)/ti |>

]

]|

// Exit process

proc E( a:?lot*, s:!real, t:?real

, vg:?void, f1,f2:!file

)=
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|[ xs: lot*, i,w: nat, tg,tgn,tim,avgtp,avgct,avgw: real

, n_ini : nat

| i:=0

; n_ini := GetNat("n_ini")

; w:= n_ini; tg:=0.0

; tim := 0.0; avgtp := 0.0; avgct := 0.0; avgw :=0.0

;*[ true -> f1! time,"\tE\t",avgtp,"\t",avgct,"\t",avgw,"\n"

; !time,"\t E \t",w,"\n"

; [ true ; s!tg-> t?tgn

; tg := tgn

| tg >= 1.0; a? xs -> tg := tg - 1.0

; w := w - 1

; [ hd(xs).iid > n_ini -> i:= i + 1

; avgtp := i / time

; avgct := avgct*(i - 1)/i + (time - hd(xs).irt)/i

; <| tim,avgw |> := f_tavg(tim, time, avgw, w)

| hd(xs).iid <= n_ini -> skip

]

; f2! time, "\t", hd(xs).iid, "\t", hd(xs).isp, "\t", hd(xs).irt

, "\t", hd(xs).idd, "\n"

| true ; vg? -> w := w + 1

; <| tim,avgw |> := f_tavg(tim, time, avgw, w) ]

]

]|

Cluster definition

clus WSs(a: ?lot*, b: !lot*, s: !stat, t: ?trg^2, e:!(real*)^2, wi:nat, file1,file2,file3:!file)=

|[ sl:(-string#lot*)^2, td:(-trg^2)

, mi, mo: (-lot*#real)

, vm: (-void)

, ea: (-void), ee: (-nat#real#real)

| WC(s, t, sl, td)

|| Bsi(a, mi, sl.0, td, ea, vm, fileout("output/B_level.txt"), fileout("output/B_targets.txt"), wi)

|| M(mi, mo, vm, fileout("output/gantt.txt"), wi, 0)

|| Bso(mo, b, sl.1, ee)

|| EPT(ea, ee, e, file1,file2,file3, wi)

]|

// CLUSTER FOR WORKSTATION WITH MULTIPLE RESOURCES

clus WSm(a: ?lot*, b: !lot*, s: !stat, t: ?trg^2, e:!(real*)^2, wi:nat, file1,file2,file3:!file)=

|[ sl:(-string#lot*)^2, td:(-trg^2)

, mi, mo: (-lot*#real)^2

, vm: (-void)^2

, ea: (-void), ee: (-nat#real#real)

| WC(s, t, sl, td)

|| Bmi(a, mi, sl.0, td, ea, vm, fileout("output/B_level.txt"), fileout("output/B_targets.txt"), wi )

|| j: nat <- 0..2: M(mi.j, mo.j, vm.j, fileout("output/gantt.txt"), wi, j)

|| Bmo(mo, b, sl.1, ee)

|| EPT(ea, ee, e, file1,file2,file3, wi)

]|

// CLUSTER OF THE TOTAL PRODUCTION LINE

clus I()=

|[ a,b: (-lot*)^4, c:(-lot*)

, tgg: (-real^2), tge,se: (-real)

, si:(-stat), s:(-stat)^3

, t:(-trg^2)^3
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, e:(-real*^2)^3

, v:(-void)

| G (a.0, tgg, v)

|| MC(s, si, se, tgg, t, tge, e, fileout("output/wip_stat.txt"))

|| WSm( b.0, a.1, s.0, t.0, e.0, 0, fileout("output/EPT_WS0_a.txt")

, fileout("output/EPT_WS0_e.txt"), fileout("output/EPT_gantt.txt"))

|| WSm( b.1, a.2, s.1, t.1, e.1, 1, fileout("output/EPT_WS1_a.txt")

, fileout("output/EPT_WS1_e.txt"), fileout("output/EPT_gantt.txt"))

|| WSs( b.2, a.3, s.2, t.2, e.2, 2, fileout("output/EPT_WS2_a.txt")

, fileout("output/EPT_WS2_e.txt"), fileout("output/EPT_gantt.txt"))

|| T (a, b)

|| BI(b.3, c, si, fileout("output/B_level.txt"))

|| E (c, se, tge, v, fileout("output/E_avg.txt"), fileout("output/E_lot.txt") )

]|

xper = |[I()]|

Modified χ code

Due to the convergence issue of the LDM, discussed in Chapter 5, the control framework
is applied in a rolling horizon framework. Consequently, several modifications to the
χ-code are required. These modifications are presented in the remainder of this section.

General purpose functions

func f_addtrg(trg1,trg2: trg) -> trg = // Add new targets to old

|[ i: nat

| i:=0; *[i < NS -> trg1.i:= trg1.i + trg2.i; i:= i + 1 ]; ret trg1

]|

Generator

// Release lots into the production line if issued targets permit

proc G(a: !lot*, t: ?real^2, v: !void)=

|[ m,n, n_ini: nat, ta,tg,dd: real, tgn: real^2

| n_ini := GetNat("n_ini")

; ta := GetReal("ta")

; m:=0

; n:= n_ini + 1

; tg:=0.0

; *[ tg >= 1.0; a! [< n, 0, 0, time, time + dd + m*ta>]

-> v!; tg := tg - 1.0

; m := m + 1 ; n := n + 1

| true; t? tgn

-> tg := tg + tgn.0

; dd := tgn.1

; m := 0

]

]|
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Incoming buffers

// Incoming buffer for a workstation with a single resource

proc Bsi( a: ?lot*, b: !lot*#real

, s: !string#lot*, t: ?trg^2

, ea: !void

, v: ?void, f,g: !file

, wi: nat

)=

|[ as:real*, xs,ys,zs: lot*, r: nat, rs: nat*

, tg,tgo,zt: trg, rc: trg^2

, eqid: string

, bs: nat^3

| ys:= GetWini("w_ini").wi

; rs:= []; as:= []

; bs := GetBs("bs")

; eqid:="Bsi"++n2s(wi)

; s! <"A",ys>

; t? rc

; <|tg,zt|>:= f_data(rc); tgo:= tg

; f! eqid, "\t", time, "\t", len(ys), "\n"

; *[ true

-> [ len(rs) > 0 -> <zs,r> := f_seqpol(ys, rs, tg, zt, bs.wi, time)

| len(rs) = 0 -> skip

]

; [ floor(len(ys)/(bs.wi)) > len(as) -> as:= as ++ [time]

| floor(len(ys)/(bs.wi)) <= len(as) -> skip

]

; [ true; a? xs

-> ys:= ys ++ xs

; s! <"A",xs>; ea!

; f! eqid, "\t", time, "\t", len(ys), "\n"

| len(zs) >= bs.wi; b! <zs, hd(as)>

-> tg:= f_uptrg(tg,zs,bs.wi)

; ys:= ys -- zs

; rs:= rs -- [r]

; as := tl(as)

; f! eqid, "\t", time, "\t", len(ys), "\n"

| true; t? rc

-> g!f_print(time, eqid, tgo, tg)

; rc.0 := f_addtrg(rc.0, tg)

; <|tg, zt|>:= f_data(rc)

; tgo := tg

| true; v?

-> rs:= rs ++ [0]

]

]

]|

// Incoming buffer for a workstation with a multiple resources

proc Bmi( a: ?lot*, b: (!lot*#real)^2

, s: !(string#lot*), t: ?(trg^2)

, ea: !void

, v: (?void)^2, f,g: !file

, wi: nat)=

|[ as: real*, xs,ys,zs: lot*, r: nat, rs: nat*, tg,tgo,zt: trg, rc: trg^2

, eqid: string

, bs: nat^3

| ys:= GetWini("w_ini").wi

; rs:= []; as:=[]

; bs := GetBs("bs")

; eqid:= "Bmi"++n2s(wi)
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; s! <"A",ys>

; t? rc

; <|tg,zt|>:= f_data(rc); tgo:= tg

; f! eqid, "\t", time, "\t", len(ys), "\n"

; *[ true

-> [ len(rs) > 0 -> <zs,r> := f_seqpol(ys, rs, tg, zt, bs.wi, time)

| len(rs) = 0 -> skip

]

; [ floor(len(ys)/(bs.wi)) > len(as) -> as:= as ++ [time]

| floor(len(ys)/(bs.wi)) <= len(as) -> skip

]

; [ true; a?xs

-> ys:= ys ++ xs

; s! <"A",xs>

; ea!

; f! eqid, "\t", time, "\t", len(ys), "\n"

| len(zs) >= bs.wi; b.r!<zs,hd(as)>

-> tg := f_uptrg(tg, zs, bs.wi)

; ys := ys -- zs

; rs := rs -- [r]

; as := tl(as)

; f! eqid, "\t", time, "\t", len(ys), "\n"

| true; t?rc

-> g!f_print(time, eqid, tgo, tg)

; rc.0 := f_addtrg(rc.0, tg)

; rc.0 := f_addtrg(rc.0, tg)

; <|tg, zt|> := f_data(rc)

; tgo := tg

| j: nat <- 0..2: true; v.j? -> rs:= rs ++ [j]

]

]

]|

Exit

// Exit process

proc E( a:?lot*, s:!real, t:?real

, vg:?void, f1,f2:!file

)=

|[ xs: lot*, i,w: nat, tg,tgn,tim,avgtp,avgct,avgw: real

, n_ini : nat

| i:=0

; n_ini := GetNat("n_ini")

; w:= n_ini; tg:=0.0

; tim := 0.0; avgtp := 0.0; avgct := 0.0; avgw :=0.0

;*[ true -> f1! time,"\tE\t",avgtp,"\t",avgct,"\t",avgw,"\n"

; !time,"\t E \t",w,"\n"

; [ true ; s!tg-> t?tgn

; tg:= tg + tgn

| tg >= 1.0; a? xs -> tg := tg - 1.0

; w := w - 1

; [ hd(xs).iid > n_ini -> i:= i + 1

; avgtp := i / time

; avgct := avgct*(i - 1)/i + (time - hd(xs).irt)/i

; <| tim,avgw |> := f_tavg(tim, time, avgw, w)

| hd(xs).iid <= n_ini -> skip

]

; f2! time, "\t", hd(xs).iid, "\t", hd(xs).isp, "\t", hd(xs).irt

, "\t", hd(xs).idd, "\n"

| true ; vg? -> w := w + 1
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; <| tim,avgw |> := f_tavg(tim, time, avgw, w) ]

]

]|



Appendix D

Case II Description

In this appendix, the files used during the implementation of the second case are de-
scribed. A detailed description of the second case is presented in Section 4.4.

This appendix starts with a description of the case dependent Matlab functions. The
χ-model of the second case is discussed in Section C.2.

D.1 Matlab functions

In this section, the Matlab functions, initiating the (case dependent) Linear Discrete
Model (LDM), are described. The structure of these files is similar to that of the first
case and is illustrated by Figure C.1.

Matlab code

In this subsection, only the Matlab functions differing from those of the first case are
discussed. Functions identical to those of the first case are described in Section C.1.

case II standalone.m

ns = 630; % planning horizon

np = 1; % number of products

p = 1; % shift id

r = 1;

dbug = 0; % dbug value

Atype = ’average’; % Type of average calculation function {average, n-average, ewma}

Ahor = 10; % Horizon of realizations the average is based on

Aalpha = 0.5; % Exponential Weighted Moving Average parameter

109
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Ctype = ’CF’; % Resource capacity constraint type {MRP, MRP-C, CF}

Dtype = ’rampup’; % Type of demand function {stepup, stepdown, rampup, rampdown, sinus}

Dini = 50; % minimum value of demand function

Dper = 150; % maximum value of demand function

Dmin = 0; % Initialization period

Dmax = 3; % (Transition) Period length

Etype = ’off’; % measure online EPT {on, off}

Ttype = ’normal’; % Resource capacity constraint type {normal, floor, ceil, round}

Erem = 0; % Remains of the Exit target

BOini = 0; % initial value of back-orders

% Cost definition

F(1,1) = 0.5; % Increase in invertors holding cost

F(1,2) = 20; % Inventory holding cost

F(1,3) = 0; % Release cost

F(1,4) = 0; % Production cost

F(1,5) = 0; % Demand cost

F(1,6) = 10000; % Backorder cost

W = [1; 0; 0; 0; 1; 0; 0]; % Initial WIP value

EaWS1=[];

EeWS1=[];

EaWS2=[];

EeWS2=[];

EaWS3=[];

EeWS3=[];

estWS1 = [ 300, 0.92, 2.46];

estWS2 = [ 70, 0.52, 1.58];

estWS3 = [ 55.0, 0.77, 1.75];

Wmax = [ 18 12 12 ];

case II main.m

% >>> INITIALIZATION

load activeconstraints.mat % loading active constraints matrix

Wmax = [ 18 12 12 ];

ss = 12; % shift size

sp = 5; % Number of significant parameters

sd = 3;

x_dev = 1.1; % Maximum allowed deviation of the former tangent

nm = [2; 2; 1; 2; 2; 1];

bs = [3; 1; 1; 1; 3; 1];

if np == 1

col = col13(5:7,5:6);

%col = col13(5:7,5:6);

elseif np == 2

col = col213;

elseif np == 3;

col = col123;
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end

W = filter_W(W, Wmax);

D = demand_gen(p, ns, Dtype, Dini, Dper, Dmin, Dmax); % demand

pWS(1,1:3) = WS_par(EaWS1, EeWS1, estWS1, Atype, Ahor, Aalpha, Etype); % te, ce2, ca2

pWS(2,1:3) = WS_par(EaWS2, EeWS2, estWS2, Atype, Ahor, Aalpha, Etype);

pWS(3,1:3) = WS_par(EaWS3, EeWS3, estWS3, Atype, Ahor, Aalpha, Etype);

te = [ pWS(1,1); pWS(2,1); pWS(3,1); pWS(2,1); pWS(1,1); pWS(3,1)];

% >>> EXECUTION

cfp = (te./60)./(nm.*ss);

% Effective linear clearing functions

for i = 1 : 3 % Workstations

[Alpha,Beta] = ECF_fun_capcon( pWS(i,3), pWS(i,2), pWS(i,1), nm(i,1), bs(i,1), x_dev, Ctype);

A(1:size(Alpha,1),i) = Alpha;

B(1:size(Beta,1),i) = Beta;

end

% Solve LDM

[x,fval,Aeq,beq,Aineq,bineq,f,lambda] = LDM_fun(A,B,col,W,Wmax,D,te,nm,bs,ns,np,F,Erem,BOini,dbug);

case II post.m

dec = 3;

xs = reshape(x,ns,size(x,1)/ns);

xt = xs(r,:);

if np == 1

if strcmp(Ttype, ’normal’)

out_G = round_array(xt(1,8),dec);

out_X = round_array(xt(1,9:14),dec);

out_E = round_array(xt(1,15),dec);

elseif strcmp(Ttype, ’floor’)

out_G = floor(xt(1,8));

out_X = floor(xt(1,9:14));

out_E = floor(xt(1,15));

elseif strcmp(Ttype, ’ceil’)

out_G = ceil(xt(1,8));

out_X = ceil(xt(1,9:14));

out_E = ceil(xt(1,15));

elseif strcmp(Ttype, ’round’)

out_G = round(xt(1,8));

out_X = round(xt(1,9:14));

out_E = round(xt(1,15));

end

out_W = round_array(xt(1,1: 6),dec);

out_W0 = round_array(W’,dec);

out_BO = round_array(xt(1,16),dec);

out_C = round_array(te’,dec);

for i=1:6

out_C(i)=sum(out_C(i:6));

end

end
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LDM fun.m

function [x,fval,Aeq,beq,Aineq,bineq,f,lambda] = LDM_fun(A,B,col,W,Wmax,D,te,nm,bs,ns,np, F, Erem, BOini, dbug)

ss = 12;

ci = (6*F(1,1) + 1 )*F(1,2); % FGI holding cost [-]

cfp = (te./60)./(nm.*ss); % Number of shifts per lot 1/tau(!) [ 1/hr ]

cfs = [ 1/Wmax(1,1); 1/Wmax(1,2); 1/Wmax(1,3); 1/Wmax(1,2); 1/Wmax(1,1); 1/Wmax(1,3)];

n = 8*ns;

m = 16*ns;

for i=1:3, sa(i) = size(B(1:max(find(B(:,i))),i),1);,end

W = sparse(reshape(W,size(W,1)/np,np));

D = sparse(reshape(D,size(D,1)/np,np));

% cost definition

f = LDM_fun_f(ns, np, F(1,3), F(1,5), F(1,2), F(1,4), ci, F(1,6), F(1,1));

% >>> equality constraints <<<

Aeq = LDM_fun_Aeq(ns, np, bs(1));

beq = LDM_fun_beq(ns, np, W, D, Erem, BOini);

% >>> inequality constraints <<<

Aineq = LDM_fun_Aineq(A,B,col,ns,np,sa,cfp,cfs);

bineq = LDM_fun_bineq(A,B,W,col,ns,np,sa);

% >>> lower and upper bounds <<<

lb=sparse(np*16*ns,1);

for i = 1 : np

lb((i-1)*m + 1 : (i-1)*m + ns,1)=0.5*(bs(1)-1)*ones(ns,1);

lb((i-1)*m + 4*ns + 1 : (i-1)*m + 5*ns,1)=0.5*(bs(1)-1)*ones(ns,1);

end

ub=[];

for i=1:6, ub = [ub; (1/cfs(i))*ones(ns,1)]; end; ub = [ub; Inf*ones(2*ns,1)];

for i=1:6, ub = [ub; (1/cfp(i))*ones(ns,1)]; end; ub = [ub; Inf*ones(2*ns,1)];

if dbug == 1

options = optimset(’Display’,’iter’, ’Diagnostics’,’on’, ’maxIter’,Inf);

else options = [];

end

[x,fval,exitflag,output,lambda] = linprog(f,Aineq,bineq,Aeq,beq,lb,ub,[],options);

LDM fun Aeq.m

function [Aeq] = LDM_fun_Aeq(ns, np, bs)

n = 8*ns;

m = 16*ns;

Aeq = sparse(8*ns*np,16*ns*np);

Rw = -1*ones(ns,1);

Rw(ns,1)=0;

AeqW = spdiags( repmat(Rw,7*ns,1),-1,7*ns,7*ns) + spdiags(ones(7*ns,1),0,7*ns,7*ns);

AeqX = spdiags(-1*ones(7*ns,1),0,7*ns,7*ns+ns) + spdiags(ones(7*ns,1),ns,7*ns,7*ns+ns);
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for j=1:ns

AeqX(:, ns + j)= bs.*AeqX(:, ns + j);

AeqX(:, 5*ns + j)= bs.*AeqX(:, 5*ns + j);

end

AeqU = [AeqW,AeqX, sparse(7*ns,ns)];

AeqL = [sparse(ns,14*ns), spdiags(ones(ns,1),0,ns,ns), spdiags(ones(ns,1),0,ns,ns)+spdiags(Rw,-1,ns,ns)];

Aeqs = [ AeqU; AeqL ];

for i = 0: np-1

Aeq(i*n+1:(i+1)*n, i*m+1: (i+1)*m) = Aeqs;

end

LDM fun beq.m

function [beq] = LDM_fun_beq(ns, np, W, D, Erem, BOini)

beq = [];

for i = 1: np

beqs = [];

beqs = sparse(7*ns,1);

for j = 1:7

beqs((j-1)*ns+1,1) = W(j,i);

end

D(1,i) = D(1,i) + Erem(1,i) + BOini(1,i);

beq = [beq; beqs; D(:,i)];

end

LDM fun Aineq.m

function [Aineq] = LDM_fun_Aineq(A,B,col,ns,np,sa,cfp,cfs)

AineqWS = [];

% >>> Aineq Upper part

for z = 1:3 %WS

carW = sparse(ns*sa(z),ns);

carX = sparse(ns*sa(z),ns);

for j=1:ns

carX((j-1)*sa(z)+1:j*sa(z),j) = ones(sa(z),1);

if j < ns, carW((j-1)*sa(z)+1:(j+1)*sa(z),j) = ones(2*sa(z),1);

else, carW((j-1)*sa(z)+1:j*sa(z),j) = ones(sa(z),1);

end

end

carW = carW - carX;

WWS = (carW’*spdiags(repmat(-A(1:sa(z),z),ns,1),0,ns*sa(z),ns*sa(z)))’;

XWS = carX;

if z == 1

CWSs = [ 0*ns+1, 1*ns, 8*ns+1, 9*ns; 4*ns+1, 5*ns, 12*ns+1, 13*ns];

CWSs = [ CWSs; CWSs + 15*ns*ones(2,4); CWSs + 30*ns*ones(2,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(1),cfp(5)],[1,np]), ns*sa(z), 16*ns*np, CWSs);

elseif z == 2

CWSs = [ 1*ns+1, 2*ns, 9*ns+1, 10*ns; 3*ns+1, 4*ns, 11*ns+1, 12*ns];

CWSs = [ CWSs; CWSs + 15*ns*ones(2,4); CWSs + 30*ns*ones(2,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(2),cfp(4)],[1,np]), ns*sa(z), 16*ns*np, CWSs);

elseif z == 3

CWSs = [ 2*ns+1, 3*ns, 10*ns+1, 11*ns; 5*ns+1, 6*ns, 13*ns+1, 14*ns];

CWSs = [ CWSs; CWSs + 15*ns*ones(2,4); CWSs + 30*ns*ones(2,4)];

AineqWSs = LDM_fun_AineqRa(col, WWS, XWS, repmat([cfp(3),cfp(6)],[1,np]), ns*sa(z), 16*ns*np, CWSs);
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end

AineqWS = [AineqWS; AineqWSs];

end

% >>> Aineq lower part

Rw=[];

AineqH = [ spdiags( ones(3*ns,1),0,3*ns,3*ns )

, spdiags( ones(ns,1),-ns,3*ns,ns )

, spdiags( ones(ns,1),0 ,3*ns,ns )

, spdiags( ones(ns,1),-2*ns ,3*ns,ns ),sparse(3*ns,ns)];

for i = 1:6, Rw = [Rw;repmat(cfs(i,1),ns,1)];,end

Qw = spdiags(sparse([Rw;repmat(0,ns,1)]),0,7*ns,7*ns);

AineqW=[];

for i = 1:np, AineqW = [AineqW, AineqH*Qw, sparse(3*ns,ns), sparse(3*ns,8*ns)]; end

Aineq = [ AineqWS; AineqW];

%=========================== NEW FUNCTION ===========================

% First recursive function

function [AineqR] = LDM_fun_AineqRa(col,WWS,XWS,cfp,n,m,C)

AineqR=[];

while size(col,1) > 1

AineqR = [AineqR; LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)]; col = col(2:size(col,1),:);

end

AineqR = [AineqR; LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)];

%=========================== NEW FUNCTION ===========================

% Second recursive function

function [AineqR] = LDM_fun_AineqRb(col,WWS,XWS,cfp,n,m,C)

AineqR=sparse(n,m);

for j=1:size(col,2)

AineqR(1:n, C(j,1):C(j,2)) = col(1,j).*WWS;

AineqR(1:n, C(j,3):C(j,4)) = col(1,j).*cfp(j).*XWS;

end

LDM fun bineq.m

function [bineq] = LDM_fun_bineq(A,B,W,col,ns,np,sa)

bineqWS = [];

for z = 1:3 %ws

Wp=[];

for j=1:np

if z == 1

Wp = [Wp; W(1,j); W(5,j)];

elseif z == 2

Wp = [Wp; W(2,j); W(4,j)];

elseif z == 3

Wp = [Wp; W(3,j); W(6,j)];

end

end

bineqWSs = LDM_fun_bineqRa(col, [A(1:max(find(B(:,z))),z)

; repmat(zeros(max(find(B(:,z))),1),ns-1,1)]

, repmat(B(1:max(find(B(:,z))),z),ns,1),Wp , ns*sa(z));
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bineqWS = [bineqWS; bineqWSs];

end

bineq = [ bineqWS; ones(3*ns,1)];

bineq = sparse(bineq);

%=========================== NEW FUNCTION ===========================

% First recursive function

function [bineqR] = LDM_fun_bineqRa(col,AWS,BWS,W,n)

bineqR=[];

while size(col,1) > 1

bineqR = [bineqR; LDM_fun_bineqRb(col,AWS,BWS,W,n)]; col = col(2:size(col,1),:);

end

bineqR = [bineqR; LDM_fun_bineqRb(col,AWS,BWS,W,n)];

%=========================== NEW FUNCTION ===========================

% Second recursive function

function [bineqR] = LDM_fun_bineqRb(col,AWS,BWS,W,n)

bineqR(1:n, 1) = BWS + (col(1,:)*W)*AWS;

LDM fun f.m

function [f] = LDM_fun_f(ns, np, cr, cd, cw, cp, ci, cb, scw)

fs=[];

for i=1:6, fs = [fs; cw * (1 + (i-1)*scw)*ones(ns,1)]; end

fs= [ fs; ci*ones(ns,1); cr*ones(ns,1); cp*ones(6*ns,1); cd*ones(ns,1); cb*ones(ns,1)];

f = [];

for j = 1 : np

f = [f; ((np+1-j)/np)*fs];

end

D.2 χ model

As mentioned in Section 4.4, the χ model of the second re-entrant case is identical to
that of the first case, described in Appendix C.2. The only alteration required is that
of the routing table (part of the instantiation), representing the new product flow.

Instantiation

const LR : (nat)^4 = <|0,1,2,3|> // lot routing

, SS : real = 720.0 // shift size [min]

, NS : nat = 6 // number of steps

, N : nat = 3 // real number of steps

, NP : nat = 1 // number of products



116 Appendix D. Case II Description



Appendix E

Experiments

In Chapter 5, the performance of the presented MPC framework is evaluated for the
two cases described in Chapter 4. The results of the simulation experiments, defined in
Section 5.1, are presented in this appendix.

E.1 Validation

Before the performance of the MPC framework can be discussed, the different parts of
the control and simulation framework are validated. Validation of the DESM is achieved
by comparing the output of a simulation experiment to manual calculations. To obtain
a better insight, the state of the system is visualized using (production) Gantt charts.
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Figure E.1: Production Gantt chart

The Gantt charts of Figure E.1 are examples of the Gantt charts used for the validation
of the DESM. Note that, since the manual derived Gantt chart and the (simulation)
Gantt chart are identical, only a single Gantt chart per case is presented.
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E.2 Simulation results Case I

In Section 5.3, the simulation results of the first case are discussed. The accompanying
results are illustrated in this section. The simulation parameters of the conducted
experiments are summarized in Table E.1.

Dini Dper Dmin Dmax sci Run length Planning horizon
1-a 50 0 0 12 (18, 12, 12) 600 630
1-b 50 0 0 12 (36, 24, 24) 600 630
2 50 150 0 12 (36, 24, 24) 600 630
3 48 96 0 12 (36, 24, 24) 600 630

Table E.1: Simulation parameters for the experiments of Case I

Experiment 1-a: Step up with original storage capacity
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Figure E.2: Typical simulation results for the ‘step up’ experiment
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Experiment 1-b: Step up with extended storage capacity
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Figure E.3: Typical simulation results for the ‘step up’ experiment

Experiment 2: Ramp up with extended storage capacity
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Figure E.4: Typical simulation results for the ‘ramp up’ experiment
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Experiment 3: Sine with extended storage capacity
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Figure E.5: Typical simulation results for the ‘sine’ experiment

E.3 Simulation results Case II

In Section 5.4, the simulation results of the second case are discussed. The accompanying
results are illustrated in this section. The simulation parameters of the conducted
experiments are summarized in Table E.2.

Dini Dper Dmin Dmax sci Run length Planning horizon
1-a 50 0 0 6 (18, 12, 12) 600 630
1-b 50 0 0 6 (36, 24, 24) 600 630
2 50 150 0 6 (36, 24, 24) 600 630
3 48 96 0 6 (36, 24, 24) 600 630

Table E.2: Simulation parameters for the experiments of Case II
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Experiment 1-a: Step up with original storage capacity
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Figure E.6: Typical simulation results for the ‘step up’ experiment

Experiment 1-b: Step up with extended storage capacity
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Figure E.7: Typical simulation results for the ‘step up’ experiment
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Experiment 2: Ramp up with extended storage capacity
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(c) Cumulative BO MRP-C
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(d) Buffer level
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(e) Predicted buffer level
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(f) Resource constraints

Figure E.8: Typical simulation results for the ‘ramp up’ experiment

Experiment 3: Sine with extended storage capacity
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(b) Cumulative BO MPC
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(c) Cumulative BO MRP-C
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(d) Buffer level
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(e) Predicted buffer level
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(f) Resource constraints

Figure E.9: Typical simulation results for the ‘sine’ experiment
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