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Titel Modellen voor het regelen van fabrieken: bewerken kost tijd

Onderwerp
Fabricagesystemen worden steeds complexer. Een gevolg hiervan is dat het steeds moeilijker wordt een
productiesysteem te beheersen. De producent, de markt en de klant vragen om productie waaraan steeds
hogere eisen worden gesteld. Regelen van fabricagesystemen wordt daarom steeds belangrijker. De
klassieke regeltheorie gaat uit van continue modellen, terwijl fabricagesystemen vaak een discrete-event
karakter hebben. In het stroommodel van Kimemia en Gershwin (1983) wordt lijnproductie gemodel-
leerd als een continue stroom in plaats van discrete delen. Deze vereenvoudiging opende de weg naar het
gebruik van technieken uit de optimale besturingstheorie en dit heeft vervolgens tot een aantal nieuwe
inzichten en oplossingen geleid. Deze modellen bevatten echter geen informatie over doorlooptijden.
Een kenmerkend voorbeeld is de semi-conductor industrie, waar honderden bewerkingsstappen nodig
zijn voor de fabricage van IC-wafers. De aanwezige variabiliteit en het re-entrant gedrag van de produc-
tie maken het regelen van een IC-productiesysteem tot een zeer complex probleem. Bovendien is voor
deze complexe systemen niet alleen doorzet, maar ook doorlooptijd van belang.

Opdracht
Inventariseer middels een literatuuronderzoek het gebruik van continue modellen voor het modelleren en
regelen van discrete event systemen. Kijk daarbij in het bijzonder naar het gebruik van deze technieken
voor het regelen van semi-conductor fabricagesystemen.
Onderzoek mogelijkheden om continue modellen te ontwikkelen waarin onderkend wordt dat bewerkin-
gen tijd kosten. Bovendien zou het mogelijk moeten zijn om op deze modellen technieken uit de bestu-
ringstheorie toe te passen, waarbij de praktische toepasbaarheid niet uit het oog mag worden verloren.
Maak eenvoudige discrete-event modellen van zowel eenvoudige fabricagelijnen als van een semi-
conductor fabricagesysteem. Zorg dat deze modellen een aantal essentiële kenmerken bevatten. Ga
hierbij in eerste instantie uit van volledig deterministische systemen. Benader deze discrete-event mo-
dellen met de voorgestelde continue modellen en valideer de voorgestelde continue modellen kritisch.
Geef de resultaten van het verrichte onderzoek weer in een verslag en geef aanbevelingen voor verder
onderzoek op dit gebied.

Prof.dr.ir. J.E. Rooda Dr.ir. A.A.J. Lefeber

Systems

Engineering Faculteit Werktuigbouwkunde
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Preface

Traditionally, an educational period is finished with a ‘masterpiece’. This thesis de-
scribes my masterpiece of the five years curriculum Mechanical Engineering at the
Technische Universiteit Eindhoven. My graduation project took place at the Systems
Engineering group. The Systems Engineering Group aims to develop methods, tech-
niques and tools for the design of advanced industrial systems. Within this framework,
my research was about the development of continuous approximation models of discrete
event manufacturing systems. The different phases in the development process have
been described in this report.

My life as a student is about to come to an end. It has been a period with many fantastic
activities in addition to the courses, lectures and exams. Many people supported me,
helped me and believed in me during my life as a student. I would like to express a
sincere word of thanks to all of them.

First of all, I would like to thank my family. They made it possible for me to start my
education and supported me all the time. My parents and brother have always been
willing to listen to me. An enormous impact on our family was the sudden disease and
death of my father halfway through my graduation project. At that time, everything
seemed unimportant, so did my graduation project. Recommencing after a period of
intense grief has been both a physical and a mental challenge. I have a great admiration
for my mother who, plunged into her own mourning, encouraged me to pick up the
thread and bring this masterpiece to an end.

I am grateful to the coach of my graduation project, Erjen Lefeber, for his ideas, con-
structive criticism, mental support, humour and patience during the more than two
years of this research. Erjen taught me what performing research is about and made
me enthusiastic about continuation of my research activities. This will probably come
true in the near future. I would also like to thank my supervisor, professor Rooda, for
his help and understanding during the last years of my education. His experience and
insight gained over the years gave me a perfect guideline for my academical training
and education.

I would like to take the opportunity to thank all fellow students and numerous friends
who supported me with advice, understanding and love during the final years of my
life as a student. Having a group of people around is of an enormous and invaluable
importance. I can not mention all of you explicitly, but a great “thank you” goes to
you all.

Joost van Eekelen v
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Samenvatting (in Dutch)

De sectie Systems Engineering van de faculteit Werktuigbouwkunde aan de Techni-
sche Universiteit Eindhoven verricht onderzoek op het gebied van analyseren, modelle-
ren, simuleren, besturen en regelen van het dynamische gedrag van fabricagesystemen.
Voor de specificatie van met name discrete event systemen (productie waarbij de pro-
ducten en/of het productieproces een discreet karakter hebben) is het formalisme χ
ontwikkeld [Roo95]. Door gebruik te maken van χ is veel inzicht verkregen in het
dynamische gedrag van discrete en hybride fabricagesystemen.

Omdat de complexiteit van fabricagesystemen toeneemt, groeit ook het verlangen naar
‘slimme’ en robuuste regelsystemen voor dit soort systemen. Hierbij kan ‘slim’ opgevat
worden als tijds-efficiënt, kosten-efficiënt, materiaal-efficiënt, etc. Verschillende heuris-
tieken en algoritmen zijn de afgelopen decennia ontwikkeld voor grondstoffenbeheer,
productieplanning en machinetoewijzing. Een andere benadering is het gebruik van
‘klassieke’ regeltheorie voor fabricagesystemen. Deze regeltheorie is op grote schaal be-
schikbaar voor het regelen van (liefst lineaire) continue systemen. Het in dit rapport
beschreven onderzoek is gericht op het ontwikkelen van continue benaderingsmodellen
van discrete fabricagesystemen. Zowel eenvoudige korte productielijnen als meer inge-
wikkelde ‘re-entrant’ lijnen komen aan bod. Een typisch voorbeeld van zo’n systeem is
een chipfabriek, waarin de producten (wafers) meerdere malen langs dezelfde machines
moeten voordat ze af zijn. Kenmerkend voor de productiesystemen in dit onderzoek is
het feit dat nergens assemblage of demontage plaatsvindt.

Belangrijke prestatie-indicatoren van een productiesysteem zijn de doorzet (het aantal
producten dat per tijdseenheid geproduceerd kan worden) en de doorlooptijd (hoe lang
doet een product over zijn ronde door de fabriek). Omdat doorlooptijd zo belangrijk
is, dient de bewerkingstijd van machines opgenomen te worden in de te ontwikkelen
modellen. Dit is geen triviaal probleem met een pasklare oplossing. Een belangrijk
deel van dit onderzoek is daarom gericht op de modellering van tijdsvertraging in de
productenstroom die ontstaat als gevolg van een bewerkingsstap. Bij deze modellen
is het belangrijk te weten wat de systeemgrenzen zijn, wat de toepasbaarheid van het
model is en de validiteit ervan. Omdat verschillende soorten regeltechnieken verschil-
lende soorten modellen verwachten, wordt uitgegaan van één van de meest elementaire
modelstructuren: de toestandsruimte beschrijving (state space model). Deze model-
structuur is bruikbaar in een breed scala van regeltechnieken, of converteerbaar naar
een bruikbaar model.
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viii Samenvatting (in Dutch)

Doelstelling van dit onderzoek is dus om discrete fabricagesystemen te benaderen met
een continue benaderingsmodel waarin de bewerkingstijden van machines verwerkt zijn.
In dit onderzoek is het productiesysteem voorgesteld als een χ-model, terwijl dit in feite
al een benadering is van een daadwerkelijk fysisch fabricagesysteem. Die vereenvoudi-
gingsstap is buiten beschouwing gelaten.

De stroom van producten door een fabriek wordt gezien als een continue stroom waarbij
afzonderlijke producten niet meer te onderscheiden zijn. De snelheid van de product-
stroom wordt bepaald door de machinesnelheden en de snelheid waarmee producten het
systeem binnenkomen.

Afhankelijk van de hoeveelheid producten in buffers en de momentane machinesnelheden
kunnen de machinesnelheden voor een volgende tijdstap bepaald worden. Dit leidt tot
een model waarbij de dynamica van een productielijn goed beschreven wordt, maar
waarbij de grootte van de tijdsvertraging niet volledig juist voorspeld wordt. Daarnaast
heeft het model verschillende dynamica waartussen geschakeld dient te worden. Slechts
een beperkte klasse van regeltechnieken kan hiermee overweg en bovendien neemt het
aantal dynamica waartussen de regelaar moet schakelen exponentieel toe bij vergroten
van de productielijn.

Een andere manier van modelleren is die van systeemidentificatie. Hierbij wordt op
basis van metingen aan een systeem en het verwerken van deze meetdata door een
identificatie-algoritme een toestandsbeschrijving berekend die het meest overeenkomt
met de gemeten waarden. Dit is een zogenaamde ‘black box’ benadering. In feite
wordt geen of beperkte kennis van het fysieke systeem meegegeven aan het algoritme.
Dit is een nadeel. Daarnaast is de verkregen toestandsbeschrijving enkel geldig binnen
de bandbreedte waarbinnen de metingen hebben plaatsgevonden. Een garantie voor
een goed voorspellend model buiten deze grenzen is er niet. Bovendien blijkt deze
methode erg rekenintensief te zijn, met alle numerieke en geheugenproblemen van dien.
Systeemidentificatie levert goede toestandsbeschrijvingen op voor zeer eenvoudige en
kleine modellen, maar bij iets grotere modellen met meer toestanden levert het teveel
problemen en nadelen op.

Omdat systeemidentificatie niet tot de gewenste resultaten heeft geleid, is geprobeerd
een verklaring hiervoor te vinden. Door een andere modelleertechniek te gebruiken is
meer inzicht verkregen in de problemen die optraden. Analytisch zijn overdrachtsfunc-
ties opgesteld die het dynamisch gedrag van buffers en machines benaderen. De tijds-
vertraging als gevolg van de bewerkingstijd van een product is benaderd met behulp
van Padé-benadering. Het koppelen van deze overdrachtsfuncties en gebruik maken van
realisatietechniek levert een toestandsbeschrijving op van het fabricagesysteem. Deze
toestandsbeschrijving is niet bruikbaar in situaties waarbij buffers leeg kunnen raken.
Noch houdt het rekening met gelimiteerde machinecapaciteiten. Het is alleen bruikbaar
in situaties waarin buffers een oneindige capaciteit hebben. Dit lijkt de modellen ge-
schikt te maken voor een beschrijving rond een evenwichtssituatie. De systeemgrenzen
dienen in een regelaarontwerp meegenomen te worden.



Summary

The Systems Engineering Group of the Department of Mechanical Engineering of the
Eindhoven University of Technology performs research in the field of analysis, modelling,
simulation and control of the dynamic behavior of industrial systems. To specify these
systems and in particular discrete event systems (production in which products and/or
manufacturing system have a discrete character), the χ specification language has been
developed [Roo95]. Using the χ specification language a clear insight into modelling
both discrete and hybrid manufacturing systems has been gained.

As industrial complexity increases, the desire for ‘smart’ and robust control strategies
for manufacturing systems becomes greater. ‘Smart’ can be interpreted as time-efficient,
cost-efficient, resources-efficient, etc. Several scheduling heuristics and algorithms were
developed during the last decades for resource management, production scheduling and
machine (time) allocation. A different approach is using ‘classical’ control theory on
manufacturing systems. Classical control theory is widely available for control of (prefer-
ably linear) continuous systems. This study focuses on developing continuous approx-
imation models of discrete manufacturing systems. Both simple flowlines and more
complex re-entrant flowlines are examined. A typical example of these manufacturing
systems is a wafer fabrication facility, in which wafers enter different areas of the plant
more than once before being completed. Typical for the manufacturing systems in this
research is that neither assembly nor disassembly takes place.

Important performance measures of a manufacturing system are throughput (the pro-
duction rate) and flow time (the time span a product is in the manufacturing system).
As flow time is important, the process time of a machine needs to be included in the
continuous approximation models to be developed. This is by far not a trivial problem
with an instant solution. Therefore, an important part in this research is focused on
modelling this time delay due to production steps. It is important to be aware of the
system boundaries, limitations, usability and validity of the models. Different classical
control techniques expect different model structures. Therefore, main focus is on devel-
oping so called state space models. This model class can be used in a wide variety of
control structures, or can be converted into a usable model.

Main objective of this research is to approximate discrete event manufacturing systems
with a continuous model in which the process time of machines has been included. All
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x Summary

manufacturing systems are presented as χ-models. Although this χ-model is already a
model of the real physical system, this simplification is not taken into account.

The stream of products going through the manufacturing facility is presented as a
continuous flow, in which individual products are not distinguishable anymore. The
product flow rate is determined by the machine process rates and the rate at which
products enter the manufacturing system.

Dependant on the buffer contents and the momentary machine production rates, the
production rates for the next time increment can be computed. This leads to a model
that describes the dynamics of the system well, but that does not predict the magnitude
of the time delay in a proper way. In addition to that, the model has several dynamic
modes, between which has to be switched. Only a small class of control techniques
is able to cope with this kind of models. Moreover, the number of dynamic modes
increases exponentially when expanding the manufacturing system.

Another modelling technique is system identification. Based on measurements of the
real system, an algorithm computes the state space description that fits the measure-
ments best. This is a so called ‘black box’ approach. In fact, little or no knowledge of
the physical system is passed to the algorithm. This is a disadvantage. Another disad-
vantage is the limited bandwidth in which the model can be used. This bandwidth is the
bandwidth on which the measurements were taken. Extrapolating the model outside
the bandwidth gives absolutely no guarantee of the validity of the results. Moreover,
system identification proves to be computationally intensive and time consuming, with
all concomitant problems regarding numerics and memory. System identification pro-
vides good state space descriptions for very small models. For larger problems this
method yields too many problems and disadvantages.

Since system identification has not led into the desired results, an explanation for this
has been searched for. Using a different modelling technique, more insight has been
obtained in the problems that arose. Analytically, transfer functions have been formu-
lated, representing the dynamical behavior of buffers and machines. The time delay,
resulting from the process time of a machine, has been approximated using the Padé
method. Coupling these transfer functions and using realization techniques yields a
state space description of the manufacturing system. This description is only useful
in situations where buffers are always filled and have infinite capacity. In addition,
it does not deal with limited machine capacities either. This makes the model usable
only in steady state situations or small variations around some equilibrium point. The
controller will have to account for the physical limitations.
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Chapter 1

Introduction and concepts

1.1 General

Consumer market has always been a matter of two-way traffic. On the one hand,
companies develop new products and create a new market with it. On the other hand,
consumers ask for new products. These new products get more and more complex.
This complexity expresses itself in functionality, features, design, shape and production
method. As production complexity increases, the need for reliable, smart and robust
production control strategies increases too. In the past, common sense of workers in a
production facility has given several companies a leading position, but common sense is
limited too in a demanding, complex and stressful environment. Over the last decades,
more and more scheduling heuristics and algorithms emerged to help the worker decide
on the shop floor. To develop these algorithms, the manufacturing system had to be
described in a very detailed way. Nowadays, modelling of manufacturing systems is a
major part of controlling a production facility.

Especially in bulk production, a ‘smooth’ production is desired: equally spread yield
over time. To facilitate a smooth production, control theory might be used. Control
theory could provide better solutions in decision-making for complex systems than hu-
man decision making. Different control strategies (like PID-control, adaptive control,
optimal control or robust control) can be used in production systems. Most of these
‘classic’ control techniques use continuous models to determine a control law. Most
manufacturing systems however are discrete (event) systems. Kimemia and Gershwin
[KG83] introduced a method for the continuous representation of a discrete manufac-
turing system. This approximation method is the basis for the models developed in this
study.

The main goal of this research is to develop continuous state models that approximate
the discrete event systems. An important point of interest is the modelling of the
process time of a machine. The process time of a machine causes a delay in the product

1



2 Chapter 1. Introduction and concepts

flow. If this delay can be modelled, the continuous approximation models can be used
to predict flow times and throughput of both existing and virtual production systems.

In this research, simple manufacturing systems are studied. Simplicity is needed to
reveal all phenomena occurring in the discrete manufacturing system and the transla-
tion into the continuous model. Next to simple models, re-entrant lines are examined,
in which products enter workstations several times before completion. This type of
production system is typical for semiconductor manufacturing. Both the complexity of
the production process and the high demands on market-time and delivery schedules
make the semiconductor industry an ideal example of a manufacturing system at which
a newly developed control strategy could be applied to.

This chapter gives an overview of what semiconductor industry is, explains the con-
cepts of ‘discrete’ and ‘continuous’ as well as some counterintuitive concepts, details the
framework in which this study fits and explains the structure of this report.

1.2 Semiconductor wafer fabrication

In semiconductor industry wafers (round silicium discs) are manufactured. Wafers may
contain one hundred to one thousand integrated circuits (ICs or ‘chips’). These ICs can
be cut from a wafer, attached to a lead frame and packaged in housings (to protect from
breaking and corroding and to facilitate handling) to be soldered into a printed circuit
board [Cam01]. ICs are used in a very wide variety of products, from computers to coffee
machines and from industrial control stations to electric tooth brushes. Production of
single wafers takes a few hundred production steps. These processes add (deposition,
metallizing or oxidation), alter (diffusion, ion implantation) or remove (etching) a layer
of material in selected regions of the wafer surface; the lithography process determines
which regions are affected by these processes. Some processes are repeated many times
in the recipe. This is called re-entrant behavior.

1.3 Concepts: discrete versus continuous

This report often uses the concepts of ‘discrete’ and ‘continuous’. These words do not
always refer to the same things. It is important to know what is meant. Therefore, a
short explanation is given here.
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Discrete product: Countable, individual product, like a box, a device,
a wafer.

Continuous product: Product that is not countable, like oil, water, gas.
Discrete time signal: Signal that is defined only at certain specific values

of time.
Continuous time signal: Signal that takes a value at every point in time.
Discrete state: A state is discrete if it can only take values of a

countable predetermined set.
Continuous state: A state is continuous if it can take values of an arbi-

trary set.
Discrete event system: System in which the dynamics is based on events.

These events may possibly have a continuous evo-
lution once they start, but this is not what one is
interested in: the primary focus is on the beginning
and the end of such events, since ends can cause new
beginnings.

Discrete event simulation: A simulation of a time-evolving stochastic or deter-
ministic system in which changes to the state of the
system can only occur at discrete instants.

When a continuous model is referred to, a model containing continuous states, either
discrete time of continuous time, is meant. All experiments carried out on a computer
system are in fact discrete time experiments, since a computer does not know continu-
ous (analog) time. All discrete event models in this research are deterministic. In fact,
the results of the experiments taken with these models can be computed by hand, but
this is difficult and very time consuming. That is the reason why they have been simu-
lated. The real benefit of discrete event simulations appears if stochastic computations
are made. Performing these calculations by hand is almost impossible if not utterly
impossible.

1.4 Against intuition: non-integer or negative products

Constructing continuous models requires thinking on a higher abstraction level. One
should leave the idea that only integer number of products exists. In the continuous
state situation, a buffer content of 2.5 products is possible, as is 0.23 products. In a
model with ordinary linear differential equations, it even is not possible to indicate that
a buffer level can only be non-negative. A continuous model can easily contain negative
buffer levels, since it simply does not know the physical impossibility. To what extent
this is a desirable behavior, depends on the definition of the continuous state. In most
real situations, negative buffer levels are undesired. Therefore, watching the continuous
states closely is important. In addition to this counterintuitive concept, the probability
of a buffer level being exactly 0 or n ε R equals zero, assuming that the level has left
the initial state.
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1.5 Against intuition: parallel processing on a single ma-
chine multi product workstation

Now that non-integer products are not surprising anymore, the next step in abstrac-
tion can be taken. Individual products can not be distinguished anymore in continuous
modelling. Therefore, it is unknown which product or what product type a machine
is processing at a certain point in time. We only know the rate at which the machine
processes products. If a machine can produce more than one producttype, these pro-
duction rates can both be defined greater than zero. For example, define production
rate of product type 1 (m1) to be 2 products/hour and the production rate of product
type 2 (m2) to be 3 products/hour, then the sequence in which a multi product single
machine workstation processes the products is still undefined. Figure 1.1 shows two of
the possible sequences. The figure shows two possible product orders. It is also clear

time time time
0 00 30min 30min30min 60min60min 60min

1 2 2 2 2 2 21 1 1
0

1

2

3

m1

m2

machine sequence 1 machine sequence 2production rates

Figure 1.1: Machine production order is not determined by the production rates.

that processing product type 2 takes longer than processing product type 1. This in-
formation can not be obtained from the production rate variable only. Therefore, more
detailed variables are needed:

m1,max maximum production rate of product type 1: 8 lots/hour
m2,max maximum production rate of product type 2: 4 lots/hour
m1,des desired production rate of product type 1: 2 lots/hour
m2,des desired production rate of product type 2: 3 lots/hour
m1,real real production rate of product type 1: 2 lots/hour
m2,real real production rate of product type 2: 3 lots/hour

In this case, no difference between the desired and the real production rates exists. In
general, this will not be the case. It is possible that a controller asks for more production
than the machine capacity. The real machine production rate are then below the desired
rate. Also in cases of machine breakdown, the real rate is below the desired rate.

The abstraction level of this research has been stated now. Understanding the global
research framework, which this study is part of, is possible now. The research framework
is elaborated in the next section.
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1.6 Research framework

The global structure of this and future research is shown in Figure 1.2. The first step is
to translate a physical manufacturing system into a discrete event model (Figure 1.2(a)).
Only the material flow is to be modelled, for the control part of the production system
is to be redesigned. In this research, the discrete event model is supposed to be equal to
the physical manufacturing system and represented as a χ-model. This discrete event
model is approximated by a continuous model, which is the main goal of this study.
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Controller
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Approximation

Model

Physical
Production

System

(a) Steps in controller design
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(b) Control of the continuous approxima-
tion model
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(c) Control of the discrete event model
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(d) Control of the production system

Figure 1.2: Global overview of the research. The framework presented is partially
covered in this study.
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Using any regular closed loop control technique, a controller can be designed for this
approximation model. The controller can be validated and scenario’s can be tested
by directly connecting it to the continuous model (Figure 1.2(b)). If the results are
satisfactory, the controller can be connected to the discrete event model (Figure 1.2(c)).
However, since the controller output is a continuous signal and the discrete event model’s
input are events, a conversion step is needed. The left conversion block contains an
algorithm that translates the continuous desired production rates into explicit events,
i.e. allocating jobs to a machine when it becomes idle. This conversion block is very
important, because it is the block that triggers the real manufacturing system. A second
conversion block translates the discrete event output (for example the buffer levels) into
a continuous controller input. In fact, it smoothes the signal that contains only integer
values to a continuous signal to facilitate the control process. If the controller works well
on the discrete event model, it can be implemented in the real manufacturing system
(Figure 1.2(d)). But this can only be done after extensively testing all imaginable
scenarios that can take place in the production facility.

This research focuses on the first steps in this framework. The approximation of the
discrete event system with a continuous model is very important, because it is the
basis of the controller design. A model which does not behave like the discrete event
system will most probably not lead to a controller that controls this discrete event
system well. A second point of attention in this research is the left conversion block
(Figure 1.2) that translates the desired production rates into events. To simulate the
discrete event system and to validate the designed continuous models, the conversion
block is necessary.

1.7 Social paragraph

Like a lot of academic studies, this research does not directly lead to quickly noticeable
payoff for normal consumers. What makes this research valuable?

Complexity of production systems increases. Strict delivery schedules and high demands
on reliable high-tech products have a big influence on the production system and its
control. Especially products with a short life-cycle and short delivery-time, like cellular
phones, must be produced on demand with high volumes and with very specific product
requirements and specifications.

Semiconductor wafer fabrication is one of the most complex manufacturing processes.
The complexity is brought about by the high-tech processes being applied, their constant
development, the multitude of process steps and their reoccurring nature [Cam01]. A
well tuned controlled manufacturing system may lead to cost reduction and as a result
of this to cheaper products. In addition to this: delivery times may be predicted better,
which makes the supplier a more reliable partner.

Moreover, a controlled manufacturing system has some environmental benefits. More
economical use of resources leads to less pollution, saves energy and gives less stress to
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people. On the other hand, the workforce in production facilities might be restricted
due to the savings. Whether this is desirable, is left to the reader to judge.

1.8 Outline of this report

After a literature review of continuous modelling of discrete event systems and control
of these systems (Chapter 2), an initial study of continuous approximations of simple
discrete event flowlines has been made, to encounter all issues involved in continuous
modelling (Chapter 3). Of course, the development of continuous models is started
with very simple production models and is then extended to larger models with more
than one product type. Then in Chapter 4, an academic case study of the continuous
representation of a specific re-entrant flowshop has been made, which in turn reveals
some difficulties in the modelling method and software. After this case study, in which
discrete event performance is compared to the continuous approximation, the continuous
modelling method is evaluated critically. A second modelling method is then proposed
in Chapter 5. This is the black box method of system identification. Again, very simple
models are used to become familiar with the method. More complex models seem to
cause difficulties in the identification process. Therefore, a third continuous modelling
method, on analytical basis, is proposed and elaborated in Chapter 6. Transfer functions
of the manufacturing system are formulated. This leads to a useful continuous model.
Reflections are made on this model regarding usability and limitations. Finally, in
Chapter 7, conclusions are drawn and recommendations for future research have been
formulated.
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Chapter 2

Literature review

2.1 General

Knowing the scientific developments on the subjects covered in this research is impor-
tant. A short overview of different topics is presented here and is used as a starting
point for this research. First, continuous modelling of discrete event systems is studied.
Different research fields use this type of modelling. Another topic is re-entrant manu-
facturing systems, like semiconductor industry, and its scheduling and control. A lot of
literature is available on this subject. The control part of those systems is mainly based
on priority rules and scheduling heuristics, instead of a continuous controller, based on
classical control techniques.

2.2 Continuous modelling of discrete event systems

Continuous modelling is best known from fluid flow simulations and computations.
This type of modelling can be projected upon discrete systems, i.e. systems without
continuous flows, but characterized as continuous flows due to the large amount of both
equivalent events and moving of materials.

Early use of continuous modelling of discrete systems is in road traffic computations.
An overview of the historic traffic stream models is given in [LMG+96] by Lieu. Traffic
is often described in terms of flow, concentration and speed. In the fluid flow anal-
ogy, the traffic stream is treated as a one-dimensional compressible fluid. Two basic
assumptions in the continuous models are traffic conservation and the one-to-one re-
lationship between speed and density or between flow and density. The first solutions
to the conservation equations applied to traffic flow were proposed by Lighthill and
Whitham in 1955 [LW55]. Lieu describes both analytical and numerical solutions to
traffic flow problems. The latter is widely used in visco-elastic traffic flow models and

9
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high congestion and bottleneck problems. The models evolved are partial differential
equations (PDEs)

Another continuous modelling application field of discrete event systems is the field of
the manufacturing systems. Kimemia and Gershwin introduced a continuous model
for an FMS (Flexible Manufacturing System) in [KG83], based on ordinary differential
equations (ODEs). They define the buffer contents of a discrete manufacturing system
as a continuous variable x(t). The derivative of the state is the difference between the
production rate of the previous machine u(t) and the production rate of the following
machine d(t):

dx(t)
dt

= u(t) − d(t). (2.1)

GENERATE
DECISION
TABLES

CALCULATE
SHORT TERM
PRODUCTION

RATES

CALCULATE
ROUTE SPLITS

SCHEDULE
TIMES AT WHICH

TO DISPATCH
PARTS

MANUFACTURING
UNITS

SYSTEM STATUS

SYSTEM
CONFIGURATION

REQUIREMENTS
MACHINE PARAMETERS

(OPERATION TIMES,
MTBF, MTTR)

MACHINE PARAMETER
UPDATES

MACHINE FAILURES

STATUS OF
REQUIREMENTS

PART
LOCATIONS

Figure 2.1: Hierarchical production con-
trol scheme as proposed in [KG83].

The vector x(t), the buffer state, measures
the cumulative difference between produc-
tion and demand. A negative value for
a component of x(t) represents the back-
logged demand for the corresponding part.
A positive value is the size of the inven-
tory stored in the buffer. Ideally, parts in
an FMS are produced as they are required
keeping the buffer state close to zero. In-
stead of elaborating further on the continu-
ous model and its properties, Kimemia and
Gershwin implemented this model structure
in a control policy without further explana-
tion of comments on the boundary condi-
tions or physical limitations. A hierarchi-
cal control structure designed to compen-
sate for workstation failure (characterized
as an Markov chain, based on probabilities
of machine state transitions) and changes
in part requirements is proposed in [KG83].
The hierarchical production control scheme
is shown in Figure 2.1. At the highest level
of the control scheme (generation of deci-
sion tables), the control policies are calculated, based on the production schedules.
This has to be redone whenever new estimates of parameters are found. At the sec-
ond level (calculation of short term production rates), the individual production rates
are computed, taking into account the buffer states and the machine states. At the
next level (calculation of route splits), the routes of individual products are determined
through the factory (only possible with multiple machines per workstation). The low-
est level of control are scheduling algorithms that dispatch parts into the system and
supervise the operations of the workstations.
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To compute optimal control settings for a job-shop, a cost-function has to be defined.
With the cost function and the continuous model, different control settings can be com-
puted taking into account the different machine states (due to failures). In realistic
job-shops with a lot of different parts processed, multiple machines at the worksta-
tions and a variety of product recipes, the exact solution to this problem is difficult to
compute, if possible at all. Therefore, an estimate based control scheme is used. The
continuous model is used in the upper two control levels. A simple example in [KG83]
shows good results between required and realized production in simulation.

The continuous model proposed by Kimemia and Gershwin is only useful in feedback
control situations. The model itself is not a good representation of the discrete event
situation. Buffers, for example, can become negative in the continuous model (repre-
senting a backlog). In reality, buffers cannot become negative. Moreover, a delay is
involved in manufacturing systems. It takes a while before a product leaves the manu-
facturing system after it had been dispatched into it. The minimum delay is the sum
of all process times of the recipe-steps. In Chapter 3 a more detailed continuous model
of a discrete event manufacturing system is made.

Almost no extensions have been made in the field of continuous modelling of discrete
manufacturing systems. Most literature focuses on control policies and scheduling al-
gorithms rather than on the model itself. Discrepancies between reality (discrete) and
the continuous model are taken care of by the controller or scheduling rules.

Recent developments in continuous modelling of discrete systems is handling of inter-
net data traffic or computer network traffic. Similar computations as in road traffic
are carried out and very complex data handling algorithms and heuristics have been
developed, which is not discussed here.

2.3 Re-entrant lines

Another research topic in this research is the re-entrant line. Semiconductor wafer
fabrication takes place in a re-entrant environment. Kumar describes re-entrant lines in
[Kum93] as follows: “Traditionally, manufacturing systems have mainly been treated as
either job shops or flow shops. In job shops, parts may arrive with random routes, with
each route having a low volume. In flow shops, the routes are fixed and acyclic, as in
assembly lines. With the advent of semiconductor manufacturing plants, this dichotomy
needs to be expanded to consider another class of systems, which are called re-entrant
lines.” The term ‘re-entrant’ line was used for the first time in this article.

Re-entrant lines differ from flow shops since the part flow route is re-entrant, i.e., non-
acyclic. This behavior gives rise to important scheduling problems. Moreover, these
re-entrant lines may have few flow routes (sometimes only one), which are high-volume.
Depending on whether the re-entrant line is a full scale production facility or a research
and development facility used for prototyping, and on whether products manufactured
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are memory or logic chips, the system may be classified as either a make-to-stock or
make-to-order facility.

One of the most important issues on re-entrant lines is scheduling. In other words:
which part should a machine process when it becomes idle? The re-entrant behavior
may result in conflicting interests. Processing a part in an early state of completion
will generate stock at a later stage, while processing ‘older’ parts (parts that are further
in the product recipe) may cause the buffer to starve if not filled up again with the
‘younger’ parts.

Kumar describes several kinds of re-entrant lines, discusses scheduling policies, examines
the stability of the line for a deterministic model, introduces set-up times and machine
failure and stochastic process times. The control of the systems is divided into two
parts: the release policy for introducing new parts into the system, and the scheduling
policy for determining which part a machine should work on when it becomes idle.

Although written before [Kum93], Lou and Kager describe in [LK89] a robust production
control policy for VLSI (Very Large Scale Integration) fabrication. The term re-entry
has also been used in this article, but generally, Kumar is seen as the first who used
this term. Lou describes a production control policy, which he calls flow rate control.
This control policy is based on the hedging point control. Hedging points are determined
from demand rates and machine failure behavior. An inventory hedging point is a buffer
level which must be kept steady to have the least negative effects of machine breakdown.
Based on the machine failure characteristics (mean time before failure MTBF and mean
time to repair MTTR) the buffer behind the machine can be given a level so that if the
machine breaks down, the buffer can be emptied. Statistics and probability theory are
used to compute these hedging points. A different hedging point is the surplus hedging
point. The surplus is the difference between the actual and the target production.
A surplus hedging point is a computed desired surplus, so that machine failures have
minimal effect on the actual production. Lou and Kager add some rules to this policy
and then call it flow rate control. This is a closed loop production control policy. In
[LK89], it is compared with the open loop uniform loading method and proves better
(smoother production than the uniform loading method and no constant backlog). A
model of a wafer fabrication model, similar to the structure of Figure 2.2 was used for
simulations.

In [LYS+91] Lou c.s. compare different scheduling policies by means of simulation
(model shown in Figure 2.2. Four different methods are investigated: WIP Control
(sets WIP threshold level for each part type at each stage), Uniform Loading (open loop
policy which uniformly loads parts into the manufacturing system at the beginning of
each predefined period), WIP-to-bottleneck control (identifies bottleneck of system and
sets threshold levels for WIP from the first workstation to the bottleneck workstation)
and Two-Boundary Control (analogous to flow-rate control in [LK89], with WIP and
surplus threshold levels). Robustness of the policies is tested. Robustness is defined as
coping with random interferences, like machine breakdown or sudden demand changes.
The two-boundary control policy is the most robust one. WIP control outperforms
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Figure 2.2: Wafer fabrication model used in [LYS+91].

Uniform Loading and WIP-to-bottleneck. The Uniform Loading policy always presents
a backlog (as Lou already mentioned in [LK89]) and shows high variability in WIP and
backlog.

A more general, but very elaborate, overview of different production planning and
scheduling methods is given by Uzsoy in [ULMV92]. This paper also includes a clear
overview of production processes in semiconductor industry. Bispo [BT97] reviews re-
lated work and distinguishes three categories:

• closed queueing models that address the control of the input of new material into
the system;

• open queueing models assuming no control over the input process to address the
scheduling problem of each server;

• hierarchical flow control, control with hedging points and thresholds (for instance
[KG83, LK89]).

Bispo focuses on multi-product re-entrant flow lines subject to random demand. Simu-
lations were done with the uniform loading method.

In the following chapters, new continuous approximation models of manufacturing lines
are developed. In a case study, a re-entrant flowline is examined. This research focuses
on the inclusion of process times in the approximation models. The absence of process
times in the models found in literature is a lack and therefore investigated in this study.
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Chapter 3

The continuous model of a
discrete event system

3.1 General

Classical control theory, like PID-control and adaptive control, uses continuous models
to develop a controller. These models consist of (ordinary) differential equations, in most
cases without discontinuities. Most manufacturing systems can be modelled as discrete
event systems. Control theory for discrete event systems is available, but as all possible
states of these systems must be included in the model’s ‘state’, this number of states
grows exponentially and computation of a controller becomes highly time consuming,
if possible at all.
Discrete event systems, as it is in the name, do not behave like continuous systems.
However, in particular situations (e.g. high volume production) they might be translated
into a continuous model. This model, like every model, is a simplification of the real
system, leading to model uncertainties. One of these uncertainties is the fact that in
the continuous model, the buffer state can be non-integer as explained in Section 1.4.
To be able to use a wide variety of control techniques, the approximating continuous
model can be used, keeping the simplifications and uncertainties in mind.

In this report, a continuous model is assumed to be a model with continuous states, but
not-necessarily continuous time. Before a continuous model of a semi-conductor plant is
presented in an academic case, first of all a simple GBMBME (generator-buffer-machine-
buffer-machine-exit) flowline is modelled as a continuous system. Typical problems arise
and are dealt with. Then a GBMBME flowline processing two different products is
modelled accordingly. This reveals other simple, but necessary, modelling issues, such
as machine capacity, utilization and simple scheduling. Finally, a continuous model of
a wafer fabrication facility has been made (Chapter 4), using all modelling experience
obtained in modelling the simple flowlines.

15
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3.2 Continuous modelling

A discrete event manufacturing system deals with single lots or products. Every product
can be distinguished in the manufacturing system. Buffers contain only an integer
number of products. In the continuous model, this is taken to a higher abstraction level,
as explained in Section 1.4. A machine is described by a rate at which it processes lots.
A buffer has an incoming product rate and an outgoing product rate and is modelled
as a tank that is filled up and tapped simultaneously. As a result, a buffer may contain
a non-integer number of products. This is only possible in the continuous model (in
literature also known as ‘fluid model’: [DW96, DW99]). The main differences between
continuous models and discrete event models are described in [Dia96] and stated in
Table 3.2.

Since the continuous model does not ‘know’ that it represents a discrete event system, it
allows for negative production rates and negative buffer contents. These model failures
are generally not desired in this study, contrary to the model of Kimemia and Gershwin
[KG83], for it is not a good representation of the real system. Therefore, production
rates and buffer contents are lower-bounded.

The discrete event systems in this research all contain a generator, buffers, machines
and an exit-process. The generator puts lots into the manufacturing system. Mod-
elling the lot-generator of a discrete event system in ‘push-mode’ reveals a tricky
problem. When a generator releases e.g. 4 lots per time unit, lots can be re-

Factor Continuous modelling Discrete event modelling

What is modelled Flows. Items.

Characteristics Random number ‘simulates’ charac-
teristics of flows and must be re-
peated for each query or junction.

Characteristics are assigned to items
by attributes and priorities which
can then be tracked throughout the
model.

Time steps Interval between time steps is usu-
ally constant. Model recalculations
are sequential and time dependant.

Interval between time steps is depen-
dant on when events occur. Model
only recalculates when events occur.

Ordering Flows are in FIFO order. Items can flow in FIFO, LIFO, prior-
ity, or customized order.

Routing Flows need to be explicitly routed by
being turned off at one branch and
turned on at the other (flows can go
to multiple places at the same time).

Items are automatically routed to the
first available branch (items can only
be in one place at a time).

Statistical detail Only general statistics about the sys-
tem: amount, efficiency, transit time.

In addition to general statistics, each
item can be individually tracked:
count, utilization, flow time.

Table 3.1: Continuous modelling versus discrete event modelling [Dia96].
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Figure 3.1: Different lot-releasing methods.

leased at time=0, 0.25, 0.5 and 0.75. Another possibility is to release the lots at
time=0.25, 0.5, 0.75 and 1. In the first situation, the first machine can start producing
at time=0. In the second situation, the first machine can only start at time=0.25. The
two situations can be distinguished as the red and blue lines in Figure 3.1.

The tricky thing of both release policies is that the green line in Figure 3.1 represents
both of them, since the green line has to cross the origin with a fixed angle. One of
the policies has to be chosen for the discrete event model, since the continuous model
for the first machine is different for both cases. It is obvious that this choice does not
affect the validity of the model. The lot release policy corresponding with the blue line
of Figure 3.1 has been chosen.

3.3 The continuous model of a GBMBME flowline

Consider a simple GBMBME flowline as shown in Figure 3.2. Assume that the flowline
produces one product type. A discrete event model (χ, version 0.7) of this manufacturing
system has been included in Appendix A.1. This model is assumed to be ‘reality’: the
real manufacturing system. This system is modelled with a continuous approximation

G B M B M E

u x1 m1 x2 m2 x3

Figure 3.2: Iconic model of the GBMBME-flowline.
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model. The rate in which parts are generated by generator G is u, the maximum rate
in which the machines can handle products are m1 and m2 respectively. The buffer
contents are x1 and x2. The amount of lots processed (finished products) is denoted by
x3. Note that x1, x2 and x3 have to be non-negative and may have non-integer values.

The following modelling method has been used:

The production rate of a single machine is assumed to be constant. This rate equals its
maximum if the value of the preceding buffer is positive. If the buffer is empty, the rate
at which lots are processed is equal to the rate at which lots enter the buffer, provided
that this rate is lower than the maximum production rate of the machine.

Unless stated differently, the time unit in this report is hours. So u = 5 means a rate u
equal to 5 products/hour.

The process time of a machine is important in a production environment that is charac-
terized as multi-process and multi-product (see [Cam01]). This means that a machine
can only process a job when it has been finished on the previous machine. The buffer
between two machines must therefore contain at least one product before the second
machine can start with the product. On the other hand, this rule means that every
buffer should contain at least one product permanently, to continue the flowline. But
in times of machine-failure or termination of lot-releasing by the generator, the buffers
may be emptied. In other words: a machine can produce if the preceding buffer contains
at least one product and it can also produce if the buffer contains less than one product
provided that the preceding machine is not producing.

The mathematical representation of the GBMBME flowline with maximum throughput
policy is stated in equation set (3.1).

ẋ1 = u − m1r with m1r = m1 for x1 ≥ 1 ∀u
m1r = m1 for 0 < x1 < 1 and u = 0
m1r = 0 for 0 < x1 < 1 and u > 0

ẋ2 = m1r − m2r with m2r = m2 for x2 ≥ 1 ∀m1r

m2r = m2 for 0 < x2 < 1 and m1r = 0
m2r = 0 for 0 < x2 < 1 and m1r > 0

ẋ3 = m2r

(3.1)

A Simulink1 model of this system is shown in Appendix A.1. To validate this model, it
is compared with the discrete event model. First, the machine capacities are chosen in
a way that the manufacturing line saturates (u = 5, m1 = 4 and m2 = 3). The results
of the simulation are shown in Figure 3.3. The red circles are the output of the discrete
event simulation of the model; lines represent the continuous approximation. Note that
the discrete event output can only contain integer values and that a machine starts only
when the preceding buffer contains at least one product.

1Simulink is a registered trademark of The MathWorks Inc. and part of their Matlab bundle.
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Figure 3.3: Simulation results of the saturating GBMBME-flowline.

When assigning the machine capacities in a way that the second machine is more pro-
ductive than the first machine (m1 = 3 and m2 = 4), the results are not completely
satisfactory (Figure 3.4). The time shift between the actual production (discrete event)
and the continuous approximation is equal to the difference between the process times
of the two machines. The second machine can only produce at the speed of the first
machine, so according to the continuous model the first product is completed after 20
minutes on the second machine. In fact, the first product is completed after 15 minutes
and then every 20 minutes on the second machine. If the flowline consists of more
machines, the differences between the process times accumulate, resulting in a greater
time shift. This only occurs when a machine further in line has a bigger capacity than
a preceding machine. One remark about this situation that the experiment constantly
switches between two dynamica due to the buffer level of buffer 2. It switches between
x2 ≥ 1 and x2 < 1. This ‘chattering’ needs to be handled with care by a numerical
solver.

We can conclude that the continuous model performs better in a saturating flowline
than in a non-saturating flowline. A practical flowline has both parts. But that is
not a problem. When implementing the controller, an observer can be constructed.
An observer typically denotes another dynamical system (in this case the continuous
model) that is driven by the measurements of the system (the discrete event system),
and which produces an estimate for the state [Nij00]. In case time-shifts are involved,
the measurements of the discrete event system lead to a correction of the continuous
state. Based on these corrections, new control output signals can be computed.

The former simulations were made with constant machine capacities and a constant
input from the lot generator. But in the re-entrant flowshop, lots are most likely not
released with a constant rate. Therefore, a new simulation is made using a piecewise
linear input signal. The results are shown in Figure 3.5. The results of the discrete event
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Figure 3.4: Simulation results of the non-saturating GBMBME-flowline.
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Figure 3.5: Simulation results of the GBMBME-flowline with piece-wise linear input.

system and the continuous model are not completely equivalent, but very acceptable,
for reasons mentioned in the previous paragraph. The results are not elaborated on or
discussed further here.

3.4 The continuous model of a GBMBME flowline with 2
product types

When more than one product type is produced on a single flowline, machine time has to
be divided among the product types. Machines have finite capacity, which is here stated
as the maximum production rates of the individual product types. The assignment of
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Figure 3.6: Iconic model of the GBMBME-flowline (2 products).

machine time to the product types will have to be determined by a controller. A
controller may ask for more production than a machine can handle. When this occurs,
the demand rate must be scaled in a way that the maximum production capacity is
not exceeded. This must be done in both the discrete event system and the continuous
approximation model. The scaling algorithm is discussed first here.

In general, define the maximum individual production rates of the product types for
machine j as the vector mj

max = [mj
1,max . . .mj

n,max]T (with n = 2 for 2 different product
types). Assume that a controller desires the production rates of the product types to
be mj

des = [mj
1,des . . . mj

n,des]
T . If the controller desires more production than the ma-

chines can handle, the desired production rates are proportionally scaled down towards
manageable production rates. These scaled production rates are computed as:

mj
sc =

mj
des

max
(

1,
∑n

i=1

mj
i,des

mj
i,max

)

mj
sc = [mj

1,sc . . . mj
n,sc]

T .

(3.2)

Note that, if the preceding buffer of product type i before machine j is empty,
mj

i,max := min
(
mj−1

i,sc , mj
i,max

)
. The operator := means ‘becomes’. Then, if mj

i,max

equals zero and mj
i,des is strictly positive, then mj

i,sc explodes. To prevent this,
mj

i,des

mj
i,max

:= 0 if mj
i,max = 0. Finally, the denominator of the fraction contains max (1, . . .)

to avoid producing more than the desired quantity.

In the discrete event situation (Figure 3.6), machines constantly have to make the choice
between producing product 1 or product 2. To make the ‘right’ choice, an integrator
has been modelled. This integrator integrates the real (scaled) machines rates. The
value of the integrator is the cumulative quantity of products that should have been
produced. The discrete event machine counts the actual produced products. The largest
(relative) difference between cumulative desired output and actual output determines
which product to choose, provided that the buffer contains products of that type. If not,
the second best option has to be chosen. For this purpose, the function decision was
developed. This function first determines which product can be processed (difference
between desired production and realized production is greater than zero and buffer
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Figure 3.7: Iconic model of the discrete event model of the GBMBME flowline with two
product types.

contents is greater than zero) and then chooses the product type with the greatest
difference. The function decision is suitable to be implemented in systems with more
than two products or larger systems with similar situations applying to a different
number of products. That is the reason why lists are used instead of arrays. (A useful
extension to the χ standard function library could be an array-to-list converter.)

func decision(diffs: real*, conts: nat*) -> nat =

|[ i, number, index: nat, record: real, c: bool

| i:=1; number:=len(diffs); record:=0.0; index:=0

; *[ i <= number -> c:= hd(diffs) > 0 and hd(conts) > 0 and hd(diffs) > record

; [ c -> index:=i

; record:=hd(diffs)

| not c -> skip

]

; diffs:=tl(diffs)

; conts:=tl(conts)

; i:=i+1

]

; ret index

]|

The complete iconic description of the discrete event model is shown in Figure 3.7.

The controller C in the discrete event model calculates the scaled production rates as
in equation (3.2) plus the additional notes. The machine controllers MC calculate the
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cumulative desired production that should have been realized and send this information
to the machines to provide the necessary information to choose either product 1 or
product 2. The χ-model is included in Appendix A.2.

For the continuous approximation model, the complete set of differential equations for
the GBMBME flowline with 2 product types (Figure 3.6) is presented in equation set 3.3.

ẋ1
1 = u1 − m1

1,sc

ẋ1
2 = u2 − m1

2,sc

ẋ2
1 = m1

1,sc − m2
1,sc

ẋ2
2 = m1

2,sc − m2
2,sc

ẋ3
1 = m2

1,sc

ẋ3
2 = m2

2,sc.

(3.3)

A Simulink model of this system is shown in Appendix A.2.

Simulation results for constant inputs u1 and u2 and constant desired machine capacities
are shown in Figure 3.8 (u1 = 5, u2 = 6, m1

1,max = 4, m1
2,max = 3, m2

1,max = 5, m2
2,max = 2,

m1
1,des = 8, m1

2,des = 2, m2
1,des = 3, m2

2,des = 6). The figure shows that the red circles
and the blue line do not coincide exactly anymore. The reason is that a machine has
to choose which product is to be made, while the continuous model can process the
two products in parallel. But overall, the picture shows a good equivalence between
continuous and discrete event model. The somewhat strange circles in Figure 3.8 for
buffer 2, product 2, are most probably caused by the non-deterministic character of
the discrete event simulator. If two events can take place at the same time, the order
in which the events take actually place remains undetermined. This explains that at
time=4.5 and time=8, the buffer level becomes 2: the buffer is filled before it is emptied.

As in the GBMBME case with one product, the model with two product types has been
tested again with a piecewise linear input signal. The results are shown in Figure 3.9.
The results indicate that the model handles the occurring phenomena very well and is
not discussed or elaborated on further here. Again, the two circles at buffer level 2 for
product 2, buffer 2, are most likely caused by the non-deterministic character of the
discrete event simulator.
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Figure 3.8: Simulation results of the GBMBME-flowline (2 products).
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Figure 3.9: Simulation results of the GBMBME flowline with two product types and
piecewise linear input signals.
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3.5 Reflections on the hybrid model

The model evolved in this chapter is a so called ‘hybrid model’. The hybrid model
consists of a number of (continuous state) dynamics and switching between dynamics is
based on events. An event may cause the model to switch from the one ẋ = Bnu model
to the other ẋ = Bmu model. Within one dynamics, the model is perfectly continuous.
Overall, a piecewise continuous state emerges.

The number of dynamics increases exponentially when the system is enlarged. Depend-
ing on the machine’s and buffer’s states, a machine can take three possible production
rates: zero production, maximum production rate or somewhere in between due to
(scaling of) desired production rates. Scaling only takes place if the future controller
desires more production than the machines can handle.

The model described in this chapter is very basic but shows promising results on mod-
elling discrete event systems with a hybrid model.

In future research, this model can be elaborated thoroughly. One could think of mod-
elling buffers with finite capacity or batch machines. The first can be implemented by
not only setting a lower limit for buffers, but also an upper limit, the latter by increasing
the threshold level for production (which has been set to 1 now). Another interesting
topic is a manufacturing line with assembly or disassembly. If these topics are explored,
a wide range of manufacturing systems can be explored.

In the next chapter, the new simple hybrid model is going to be applied to a case study.
The method is used to get a continuous model of a re-entrant flowshop with multiple
products and recipes.



Chapter 4

Modelling a re-entrant flow-shop

4.1 General

M B M

Figure 4.1: Schematic iconic represen-
tation of re-entrant behavior.

A re-entrant flow-shop is modelled as a cen-
tral buffer with surrounding machines. A
generator sends lots to the central buffer.
This buffer sends lots to the different ma-
chines, according to their recipe. The cen-
tral buffer is not an ordinary n-place buffer.
Actually, it is a collection of buffers, mod-
elled as one. If the flow-shop produces 2
different product types with each 3 production steps, then the central buffer consists of
6 separate buffers. When a product is finished, it is sent to the exit process. An iconic
model of a flowline with re-entrant behavior is displayed in Figure 4.1.

The exit process does not have to be modelled separately. In fact, it is a storage of
finished products and products are only accumulated. This can be seen as a buffer with
only incoming products. Instead of an exit process, products can be kept in the central
buffer. The number of buffers is thus increased with the number of different product
types. In general, the number of subbuffers in the central buffer, N , can be computed as
in Equation 4.1 (with n the number of product types and pi the number of production
steps for product type i).

N = n +
n∑

i=1

pi (4.1)

27
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A B C D E

product 1 product 2 product 3 product 4 product 5

Figure 4.2: Schematic route of the 5 different product types.

4.2 Case study: A specific re-entrant flow-shop

As a case study, a non-realistic re-entrant flow-shop has been modelled. It produces 5
different products on 5 different machines. Each product has its own recipe. A picture
of the product routes is displayed in Figure 4.2. Machines are displayed as the grey
boxes A . . . E. An important property of this type of production facilities is that no
assembly or disassembly takes place.

Product type 1 is processed on the machines as if it were a simple flowline (Section 3.3).
Product 2 travels the same flowline in opposite direction. Product types 3, 4 and 5 show
re-entrant behavior (products are processed on a machine more than one time). The
extreme recipes (type 1 and type 2 in opposite direction) have been chosen to test
the behavior of the model. Banks and Dai show in [BD97] that in some cases this
configuration may become unstable.

The way the product routes are displayed is rather inconvenient. Another way to visu-
alize the routes is to display them as virtual flowlines (Figure 4.3). This is a convenient
way to visualize the recipes, since no assembly or disassembly of parts takes place. One
should notice that all processes on the same machine (same color in the figure) share
the capacity of that machine (only one machine A (blue) exists instead of 6 machines).

To model this flow-shop as a continuous model or a discrete event model, the state of
the system has to be defined. This state is defined as the column of individual buffer
contents in the central buffer. The buffer contents are sorted per machine and then per
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Figure 4.3: Virtual Flowlines of the 5 products.

recipe. The state x is thus defined by:

x = (xA xB xC xD xE xFinished)
T

xA =
(
x1

1 x2
5 x3

1 x4
1 x5

5 x5
7

)
xB =

(
x1

2 x2
4 x3

2 x3
4 x4

6 x4
8 x5

6 x5
8

)
xC =

(
x1

3 x2
3 x3

3 x3
5 x3

7 x4
3 x4

5 x4
7 x5

1 x5
3 x5

9

)
xD =

(
x1

4 x2
2 x3

6 x3
8 x4

2 x4
4 x5

2 x5
4

)
xE =

(
x1

5 x2
1 x3

9 x4
9 x5

10

)
xFinished =

(
x1

6 x2
6 x3

10 x4
10 x5

11

)
.

(4.2)

The state contains the 38 production steps of the total system together with the 5 storage
buffers for finished products. The state contains 43 elements. Individual elements are
denoted by xj

i , with i and j representing the production step of the product and the
product type respectively.
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4.3 The continuous model

4.3.1 Simulink model

The Simulink continuous model of the re-entrant flowshop has the same structure as the
ones of the flowlines, but more elaborate. The complete model is shown in Figure 4.4.
The five machines (details in Figure 4.5) can be depicted clearly. The five incoming
product rates have been grouped in the upper left corner of the diagram. The cobweb
in the center of the diagram is the connection between buffers and machines according
to the recipe. Due to the complex structure, this Simulink model cannot be adjusted
in an easy way to use it for different products and product recipes. The selector in
the lower right corner regroups the real (scaled) machine rates to be fed back into the
machines as the scaled production rates of the previous machine.

Simulink encounters an algebraic loop in the model and as a result difficulties to solve
the differential equations. The algebraic loop is a direct result of the loop products have
to make in the system. The production rate of a product is a function of the production
rate of the previous machine, which in turn is a function of its own previous machine
rate, which can be the first machine mentioned, because of the re-entrant behavior. This
numerical difficulty was first solved by inserting a time-delay of a single timestep in the
feedback of the machine rates, but this does not work properly in case the machines
have to scale down the desired production rates very much. Matlab itself provides a
different solution for an algebraic loop in its documentation: inserting a ‘Data Memory’
block in the system. This (partial picture shown in Figure 4.6) gives a suitable solution
for the algebraic loop numerical problem.

In testing the Simulink model, another problem arose. The discontinuities in the model
make the production rates highly discontinuous, resulting in false triggering of the
production rate computation algorithm. A buffer can be emptied, as soon as the pre-
ceding buffer contains one product, or less than one product provided the preceding
machine to have production rate zero. The discontinuities make this production rate
to be maximum-zero-maximum-zero-maximum-zero, etc. So every two steps, the buffer
is emptied. This (mal)behavior has been eliminated by introducing a sort of memory
function: a machine is only allowed to produce if the buffer contains at least one product
or less than one product, provided the preceding machine production rate to be zero for
a few timesteps (5 or 10, this can be adjusted). This was implemented using a discrete
state space function x(t + 1) = Ax(t) + Bu(t) and y(t) = Cx(t) + Du(t) with for the
matrices A, . . . , D:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, C = I, D = 0.
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Figure 4.4: Simulink model of the re-entrant flow-shop.
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Figure 4.5: Simulink model of the re-entrant flow-shop, magnification of the Machine-
block.

Matrix A is a n× n matrix. n is the number of timesteps to be monitored. If y(t)2 = 0,
the machine is allowed to produce. This means that for the last n timesteps, the
preceding machine production rate has been equal to zero. The allowance to produce
is stored as a boolean variable. Note that this work-around leads to additional model
errors, because production starts slightly later than it should start.

The results become with this Simulink model however were not satisfactory. In some
specific situations (like a constant input on the fifth product) the model produced little
inaccuracies, which (accumulating) resulted in large errors in the output, as can be
seen in Figure 4.7. Production looks well until the fifth production step, but zooming
in strongly on the first graphs already shows small errors. The explanation for these
errors lies in the order in which Simulink computes all variables. Before computing the
scaled production rates, the booleans whether a machine is allowed to produce has to be
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Figure 4.6: Simulink model of the re-entrant flow-shop, partial magnification of the
Memory-block.
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Figure 4.7: Accumulating errors in the Simulink model for product 5.

computed. After those computations, a new integration step can be made. The order
in which Simulink computes all blocks can be set with priority statements. If these
priorities interfere with the pre-defined priorities Simulink has been programmed with,
Simulink uses its own priority rules. Therefore, in practice this function is only usable
in cases where the blocks to be computed have equivalent priority status according to
Simulink’s rules. In the model of the re-entrant flowshop, this seemed not to be the
case. Therefore, a radical step was made: abandon Simulink and program the complete
flowshop in Matlab m-files.
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4.3.2 Matlab model

The standard ODE solvers implemented in Matlab (Runge-Kutta, Adams, Rosenbrock)
do not accept a minimum step size. An integration method with a minimum or fixed
step size is needed, to step over the discontinuities in the model. Therefore, an external,
user programmed integration method was looked for and found at the University of
Texas at Austin [Lon98]. This script uses a fixed-step Runge-Kutta 4 method with
integrated Simpson’s rule. Due to the discontinuities and the unknown buffer states at
next time steps, the 6 derivatives to be computed are all the same. The Runge-Kutta
script therefore reduces to the trapezoid rule for integration. This integration scheme
does not contain an error-correction algorithm, so errors can diverge easily. With linear
input signals and small timesteps, comparisons between continuous and discrete event
simulations are made in Section 4.5. Under these two circumstances, a trapezoid rule
will hold.

All functions and blocks from Simulink have been reprogrammed in Matlab. The great
advantage of this method is the controllability of the script. Moreover, the new prod-
uct recipes of machines can be implemented a lot easier than in the Simulink model.
The user decides which computations have to be made in which order. The complete
(modified for the flowshop) Matlab script of this program is shown in Appendix B.

In each step of the loop, computations take place in the following order:

1. the buffer contents for the individual machines are extracted from the state;

2. the real machine production rates vector of the previous timestep are transformed
to obtain the vector of production rates of the preceding machines;

3. the booleans which indicate whether or not a machine is allowed to produce are
determined;

4. the real (scaled) production rates for the current timestep are computed;

5. the new derivatives of the state are computed;

6. using the trapezoidal rule, the state is integrated;

7. all computed values are stored for postprocessing and the loop starts over again.

To compare the Matlab model to the Simulink model, the same experiment as in
Figure 4.7 has been carried out. The results are shown in Figure 4.8 (u5 = 1,
maxrate5 = 1, desrate5 = 5). Contrary to what one might expect, the picture shows
that the last machine starts to produce at t = 18, although the system has only 10
production steps. This is correct, because some machines have to share their capacity,
as can be seen in Figure 4.3. In each re-entrant step, the product flow is slowed down.
And as the throughput is determined by the slowest link, all following production steps
are slowed down. In the discrete event situation however, the first product will have
been finished a lot earlier, as is explained in the following section.
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Figure 4.8: Product 5 simulation using the Matlab continuous model.

4.4 The discrete event model

4.4.1 Model structure

The discrete event model of the reentrant flowline with 5 products and 5 machines has
been modelled in χ version 0.7. To be able to simulate other configurations as well, a
universal model has been built. The iconic representation is shown in Figure 4.9; the
explanation of the processes and the channels is given in Table 4.1. As can be seen, the
number of different products and their recipes do not affect the model structure. The
number of machines however does affect the model structure, but this number turns out
to be a variable.

Process Channel

G Generator cd communicate desired machinerates
M Machine gi get info about the product to be made
C Controller ig input lots from generator to buffer
IO Communication with Matlab im input lots from machine to buffer
B Buffer mr send maximum rates to controller pocess
BC Buffer contents process mu update machine status to controller

om output lots from buffer to machine
rg request buffer contents from generator
rl request buffer contents from controller
ul update length of buffers

Table 4.1: List of symbols χ-model.

A single product (lot) has been modelled as a tuple: <id, timestamp, product type, age>
The id is a unique number for the product type, an auto-incrementing natural number.
The timestamp is the time a lot is released from the generator. Product type is a natural
number representing the type of the product (0 . . . numberofproducts − 1). Age is the
number of production steps the lot has completed, a natural number ascending from
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Figure 4.9: Iconic model of the reentrant flowshop.

zero.

The generator G sends lots to the buffer, which sorts the lots according to their prod-
uct type. The central buffer B consists of 43 separate buffers (lists) in which each
different product phase is stored, including finished products. The buffer sends lots to
the machines and receives them back. Which product is to be sent, is decided by the
controller C.

All machines M are identical. Products are sent to them together with the process time.
These process times are stored in a tuple in the buffer process and are the reciprocals
of the maximum machine rates of the individual products (tuple maxrates).

Every time an event takes place, the actual length of the changing buffer is communi-
cated to the buffer contents process BC. This process writes to the output file. On
each event, the time and all buffer contents are written to the output file. The buffer
contents process also communicates the updated buffer contents to the controller and
the generator.

The generator fills the first buffer of a manufacturing line with raw materials, so that
it can not run out of materials. The quantity of the incoming material flow is not
important, because it can be set equal to the production rate of the first machine. If
bigger, a stock is created. If smaller, the line starves. To get the same behavior in the
discrete event model as in the continuous model, the incoming material flow has been
decoupled from the production rate of the first machine and can be set separately.

The discrete event model is prepared for communicating with other programs, like
Matlab or Python. For this reason, the process IO exists. This process communicates
with the outside to obtain new desired production rates. Since it is still unknown what



4.5. Comparing the continuous and discrete event models 37

information the continuous controller needs, new communication channels might have
to be implemented in the future. For now, the process IO contains the values of the
desired production rates and does not communicate with the outside.

The controller is the most complex part of the discrete event model. Based on the
desired production rates and the status of all machines and buffers, it has to decide
which product must be processed when a machine becomes idle. To do this, on each
event the controller computes the best choice for each machine. This is the list of
products the machines should process if they were idle. When a machine becomes idle,
the best choice for that particular machine is sent to the buffer and the buffer in turn
sends a lot of the specific product type to the machine, according to the FIFO-principle
(all products in a separate buffer are the same, so the longest waiting lot is processed).

But how does the controller compute this best choice? Every (fixed) timestep, the
discrete event controller gets the new desired production rates from the continuous
controller (i.e. Matlab, via process IO). These desired rates are scaled with the function
compute scaled. The scaled rates are integrated to compute the amount of products
that should have been completed. Next, the controller computes the relative difference
(function compute rel diffs) between desired output and actual output of all products
(at every age). The product with the biggest, but positive, relative difference for a
single machine gets the label ‘best choice’ (function compute best choice). Every time
an event takes place, this best choice is recomputed.

4.4.2 Matlab GUI

To facilitate the use of the universal reentrant model, a Graphical User Interface (GUI)
was written in Matlab (see Figure 4.10). This GUI can be used to enter all properties
of the reentrant flowshop. By clicking the ‘generate chi-file’-button, the specified χ-file
is generated. All necessary tuples are computed in Matlab and written in the header
of the file generated. This has been done to allow for easy manually editing of the
chi-file. A sample output (for the specific 5 products, 5 machines flowshop) is provided
in Appendix C.

4.5 Comparing the continuous and discrete event models

Although most of the presented work in this report so far is about continuous modelling,
the continuous model should be a representation of the discrete event model. Therefore,
a comparison has been made between the two models.

First, consider only the first product with incoming material flow rate u1 = 3, the
maximum individual production rates of the machines are maxrate1 = 1, and the desired
production rates desrate1 = 5. The results of both simulations are shown in Figure 4.11.
Again, the blue lines are the results of the continuous model, the red dots are the results
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Figure 4.10: Matlab GUI to generate χ-files.

of the discrete event model. The picture shows very good equivalence of the continuous
and discrete event model.

Product 1 represents a simple flowline. Product 3 however shows re-entrant behav-
ior. Therefore, a test run for product 3 alone has been made (u3 = 3, maxrate3 = 3,
desrate3 = 1). The results are shown in Figure 4.12. The equivalence is not very good.
The discrete event model (reality!) has finished its products a lot earlier than the con-
tinuous approximation. The reason for this is the fact that the desired production rates
are below the maximum production rates (machine C has utilization 1 in this configu-
ration and with this settings). As soon as a machine is allowed to produce (preceding
buffer > 1) the machine starts producing with the desired production rate. In reality,
the machine starts to produce and finishes it at the maximum production rate. The
following machine can start earlier on its turn and so on. As the desired production
rate is three times smaller than the maximum production rate, the first completely fin-
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Figure 4.11: Comparison continuous vs. discrete event model for product 1.

ished product leaves the manufacturing system three times faster in the discrete event
situation than in the continuous approximation.

Although this continuous model does not predict the state of the discrete event system
very accurately, it can be very useful in a feed-back situation. Measurements of the
state can be used to correct the state. This observer method has been explained in
Section 3.3. The dynamics of the system have been modelled quite well (no buffers
become negative, a machine starts only to produce if the preceding buffer contains one
product). Although presented here only for product 1 and product 3, the model behaves
similar for the other product types and in combination with each other.

4.6 Reflections on the re-entrant flowshop case study

The hybrid model developed in Chapter 3 has been used to specify a re-entrant flowshop
with 5 machines and 5 product types, each having its own recipe. Some good results
have been obtained. The re-entrant flowshop can be modelled with the hybrid model
method. In Chapter 3, it had been stated that the number of dynamics diverges expo-
nentially with an increasing number of machines and buffers. This has been overcome
by constructing the B-matrix in the ẋ = Bu model every timestep instead of choosing
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Figure 4.12: Comparison continuous vs. discrete event model for product 3.

the right B-matrix from a predefined library of all possible B-matrices. This library
would be too large to implement and to construct.

The Simulink models have been very helpful in understanding the dynamical behavior of
the manufacturing systems that have been investigated. Due to numerical problems that
arose and the inflexibility of Simulink, the complete flowshop has been reprogrammed in
Matlab. This relieved some of the numerical problems, but the need for a well-considered
integration method exists.

The hybrid method describes the dynamics of the manufacturing systems quite well,
but the time shifts involved due to parallel processing and producing far below capacity
make the model not a good prediction model. Moreover, the hybrid model can only
be used in a small number of control techniques, because of the switching dynamics.
Because of this restriction, different modelling methods are investigated in the following
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chapter(s). The goal is to obtain a state space description of the manufacturing systems
in which the process times of machines are included into the dynamics of the state space
model instead of the switching dynamics.
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Chapter 5

Identification of discrete event
systems

5.1 General

As stated before, the manufacturing systems in this research are presented as discrete
event systems. The continuous approximations described in Chapter 3 and 4 can not be
used in most (linear) classic control, because most control techniques require only one
state space model. A state space model is a linear model. A manufacturing system is
assumed to behave like a linear system, since it consists only of buffers and machines: the
outflow of the one buffer is the inflow of the other buffer. The process time is assumed
to be approximated by a linear model. Hence, instead of implementing process times
of machines in a hybrid model, the process time has to be included in the dynamics of
one state space model. A useful technique to estimate a state space model is system
identification. System identification is a technique to build mathematical models of a
dynamic system based on measured data. In this research, the System Identification
Toolbox of Matlab has been used. The toolbox is capable of estimating different kinds
of mathematical models, including state space models. The toolbox adjusts the matrix
elements of the state-space model until its output coincides as good as possible with
the measured output. The obtained model can be validated by looking at the model’s
output compared to the measured output on a data set that was not used for the model
fit.

The standard Matlab system identification notation for discrete-time state space models
is:

x(t + 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

(5.1)

with uεRm, yεRk and xεRn. The model order is n. The matrix K determines the
disturbance properties. If K = 0, the noise source e(t) only affects the output and no

43
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specific model of the noise properties is built by the toolbox. Note that discrete state
space models can only be a good representation of the discrete event system under the
assumption that no discontinuities are involved. This means that buffers have infinite
capacity and buffer levels are not lower-bounded and machines have infinite capacity.

The input signals imposed on the discrete event system to be identified must be ‘suffi-
ciently rich’. This means that the signal must contain a lot of frequencies. Therefore,
so called ‘chirp’ signals have been chosen. A chirp signal is a swept-frequency cosine
signal. For the identifications used in this research, linear swept-frequencies have been
used. Parameters involved are f0 and f1, the frequency at time=0 and at the end of the
simulation (time=t1) respectively. The mathematical representation of the chirp signal
is:

β =
f1 − f0

t1
y = cos (2π (f0 + βt) t) .

(5.2)

Of course, the chirp signals can be accumulated with a constant (mean) and multiplied
with a desired amplitude. Completing a relatively long simulation time is necessary, in
order to include a reasonable amount of periods in the input signals.

First, identifications of simple systems are made to become familiar with the technique.
For this purpose, a one-machine manufacturing system processing only one product
type has been identified (section 5.2). Then, an identification of a simple flowline (three
machines) is made (section 5.3). A simple re-entrant system (one machine, one product
entering twice) follows (section 5.4), introducing the need of scheduling rules. Finally,
the same configuration is identified with two different product types (section 5.5). Un-
explainable problems arise in this situation, so a suggestion to investigate this is made
and elaborated on in Chapter 6.

5.2 Identification of a GBME flowline with one product
type

G B M E

u m

Figure 5.1: Iconic representa-
tion of the GBME flowline.

As a first finger exercise in system identification, an
identification of a simple one-machine manufactur-
ing system is made (Figure 5.1). A discrete event
model (χ version 0.7, Appendix D.1) has been made
and identified. The input signals are the incoming
product rate u and the maximum machine produc-
tion rate m. This production rate is varied to simu-
late measurable process time variations. The input
signals’ parameters are presented in Table 5.1. The outputs of interest are the buffer
contents (from process B) and the number of finished products in process E. A simula-
tion of 10000 time units has been done. This is ten times the longest period in the input
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Figure 5.2: Input signals and measured output data used for identification.

signals, in this case input u. An important condition to use state space notation is that
no discontinuities are involved. Therefore, the buffer B is not allowed to be or become
empty. A (large) variation around a stable situation has been simulated with initial
buffer contents greater than zero, to prevent them from becoming empty. The model
output data with corresponding time values have been resampled with timestep 1, since
the Identification Toolbox expects equidistant samples. The timestep is bigger than the
smallest interval between two events. It is not necessary to be able to point out each
event in the resampled dataset. The global phenomena and trends are more important
in the continuous approximations. Moreover, it is possible that two events affecting the
same buffer level occur at exactly the same time. Besides that it is not possible, keeping
this information in the resampled dataset is useless.
Multiple state-space models have been fit on the data. The input and output data used
for identification are shown in Figure 5.2.

The state space models have been fitted with the Matlab n4sid routine, available in the
System Identification Toolbox. A second order state space model computed with focus

f0 (Hz) f1 (Hz) mean amplitude

Identification
u 0.01 0.001 3.0 1.0
m 0.005 0.05 3.0 1.5

Validation
u 0.007 0.003 3.0 2.0
m 0.007 0.04 3.0 0.5

Table 5.1: Parameters of input signals for identification and validation.
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Figure 5.3: Second order state space model (blue) compared with original measurement
data (black).

on simulation (option of the toolbox, other options are prediction, stability or custom
filter) gives best results in model output and model validation, although all computed
models fit with an accuracy of almost 100%. To compare the state space model with the
measured data, this model was simulated with the original input signals. Comparison is
shown in Figure 5.3. As the original measurement data (black line) is almost invisible,
it is concluded that the state space model is a good fit. The state space description of
the second order state space model is (structure of Equation 5.1):

A =

(
1 −1.978e − 08

−7.798e − 07 0.9999

)
, B =

(
5.004e − 07 6.339e − 07
−2.321e − 04 2.319e − 04

)
,

C =

(
341.45 −4306.5

8.812e05 1899.5

)
, D =

(
0 0
0 0

)
, K =

(
1.027e − 07 1.668e − 07
−4.766e − 05 −2.638e − 05

)

Note that the state x does not have a physical meaning.

To validate the identified model, a different dataset (input signal parameters in Ta-
ble 5.1) was used. Choosing the validation frequencies of the input signals within the
bandwidth of the original input signal is important, because extrapolation of the model
does not give reliable results. The input signals and discrete event output are shown in
Figure 5.4.

The comparison between the state space model simulated with the new dataset and the
discrete event output is shown in Figure 5.5. Again, the blue line (state space model)
almost completely matches the black line (discrete event output). This validation shows
that system identification can be useful in modelling discrete event systems.
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Figure 5.4: Input signals and measured output data used for validation.

0 2000 4000 6000 8000 10000
100

150

200

250

300

350

400

time

bu
ffe

r 
co

nt
en

ts

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4

time

fin
is

he
d 

pr
od

uc
ts

Figure 5.5: Second order state space model (blue) compared with validation measure-
ment data (black).

A possible risk is the unconscious use of non-tolerable input signals. For example,
using constant input signals is tempting. This is not allowed, because the frequency
of constant input signals is zero. This frequency lies outside the bandwidth of the
identified model. Figure 5.6 shows the model output of the same second order model
applied to constant input signals (u = 3 and m = 3). It is clear that the buffer level
prediction is completely useless, since it increases monotonously while the real buffer
contents remains constant.
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Figure 5.6: Second order state space model (blue) compared with measurement data
based on constant input signals (black).
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5.3 Identification of a GBMBMBME flowline with one
product type

A second exercise in system identification is the identification of a GBMBMBME flow-
line producing one product type (see Figure 5.7, χ-source available in Appendix D.3).
Simulation data for both identification and validation are shown in Table 5.2. A fourth
order, eighth order and twelfth order model have been fit. They all fit very well with the
original dataset. A comparison between the fourth order model output and the original
measurement data is shown in Figure 5.8. For all four outputs, the fit is 99%. The fitted
models have been validated with different input signals (Table 5.2) and measurement
data. The validation results for the fourth order model are shown in Figure 5.9. Again,
the fitness is above 90%. The matrices of the fourth order state space model are shown
in Appendix D.4.

When the model order is the same as the number of outputs of the system, the A-
matrix resembles the unity matrix. In the discrete time state space situation, this means
nothing but input accumulation. In other words: the individual states are independent
from each other. When the model order is chosen bigger than the number of outputs,
some additional dynamics is introduced in the A-matrix, not necessarily improving the
model validity. Higher order models do not outperform lower order models, especially
not in the validation process. As the model order is of great importance and must not
be too large in consideration of computational power, the following rule of thumb is
proposed:

The number of states in the state space description equals the number of
measured outputs of the discrete event system.

This means that for the re-entrant flowshop case study, the number of outputs equals 43
and so is the model order of the state space system. The identification techniques (like
implemented in the System Identification Toolbox) have to be capable of handling this
relatively large model order. One has to realize that this rule of thumb is a ‘minimal
rule’. The number of states can never be smaller, because all buffers are physically
independent. But extending the rule of thumb will irrevocably lead to non-workably
large models, if possible to determine at all.

G B M B

u m1

M B M E

m2 m3

Figure 5.7: Iconic representation of the GBMBMBME flowline.
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f0 (Hz) f1 (Hz) mean amplitude

Identification
u 0.01 0.001 3.0 1.0

m1 0.0001 0.05 3.0 1.5
m2 0.03 0.0007 3.0 0.5
m3 0.00001 0.01 3.0 2.0

Validation
u 0.0005 0.008 3.0 1.5

m1 0.0003 0.04 3.0 1.0
m2 0.0009 0.02 3.0 2.5
m3 0.009 0.0001 3.0 1.5

Table 5.2: Parameters of input signals for identification and validation.
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Figure 5.8: Fourth order state space model (blue) compared with original measurement
data (black).
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Figure 5.9: Fourth order state space model (blue) compared with validation measure-
ment data (black).
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5.4 Identification of a GBMBME re-entrant flowline with
one product type

G B M E

u m1
m2

Figure 5.10: Iconic representation of
the GBMBME re-entrant flowline.

Two phenomena introduce the need of schedul-
ing rules in the simulations. First of all re-
entrant behavior. A system with one machine
and one product type entering twice is iden-
tified and discussed in this section. The sec-
ond phenomenon is producing more than one
product type in a manufacturing system. This
is discussed in the next section.

A simple re-entrant flowline (Figure 5.10) is considered. Products have to enter the
machine twice before completion. The buffer B consists of two subbuffers, from which
the machine M can take products freely. The machine has to decide which of the
two different product stages will be processed. It is assumed that neither setup times
nor transport times exist. The decision is based on the same rules as described in
Section 3.4. A desired production rate is integrated by a controller and compared to
the realized production. The largest relative difference between desired production and
realized production determines the choice of the machine. The χ-model of the system
is given in Appendix D.5. As can be seen, exactly the same function decision as in
Section 3.4 has been used.

This scheduling rule introduces two more inputs to the system. Not only the maximum
machine production rate can vary (as in the two previous sections), but also the desired
production rate may fluctuate. Therefore, the system of Figure 5.10 has 5 input signals
(u, m1, m2, m1,desired and m2,desired) and 3 output signals (two buffer levels and a stock
level of finished products). Fluctuation of the maximum production rates m1 and m2

can be interpreted as a measurable process time deviation. The desired production rates
do not have to equal those maximum rates, so new system inputs are involved. The
parameters of the chirp signals used for system identification and validation are given
in Table 5.3. Parameters for the maximum production rates have been given a smaller
amplitude than the desired production rates parameters, since the latter are more likely
to fluctuate heavier than the first. Moreover, the sum of the desired production rates
(2.0) is below the maximum production rate of a single product (3.0), to keep the
utilization of machine M below one.

Realizing that the system identification process also identifies the scheduling rule of the
discrete event system is very important. A different choice for the scheduling rule will
most likely result in a different state space model. This implies that applying a different
scheduling rule to the system makes a new identification necessary. It is imaginable that
simply trying a new scheduling rule therefore does not lie within the possibilities of
normal plant management. This behavior is a disadvantage of the system identification
method to obtain a continuous approximation model. In Chapter 6 a different modelling



5.4. Identification of a GBMBME re-entrant flowline with one product type 53

method is explained, in which the scheduling rule is not included.

Straightforward system identification did not give good results in the validation pro-
cess (graphs not included). Therefore, some additional knowledge has been put in the
identification process: The A-matrix is not identified anymore, but manually set to the
identity matrix, based on the experienced obtained in the previous sections. This state
space model approach is only valid in case the model order equals the number of out-
puts of the system. System dynamics, such as time delays, are hereby excluded from
the model. This approach is thus only applicable in cases where occurring time delays
are not measurable. In the stationary situation, without buffers becoming empty and
the sum of the process times smaller than the sample time, this assumption is justifi-
able. The moment a new lot enters a system, a finished product leaves the system. The
time delay (sum of the effective process times) does not show in these simulations, since
individual lots are not depicted.

Results of the identification process are shown in Figure 5.11. A third order model has
been fitted on the data (matrices in Appendix D.6). The rule of thumb seems to hold
here. Using different input signals, a validation test has been carried out. Results of
this experiment are shown in Figure 5.12. Although still quite comparable, the results
are not as good as in the previous models. The global phenomena all occur, but when
studied in a more detailed way, the differences definitely become greater than in the
previous models.

f0 (Hz) f1 (Hz) mean amplitude

Identification
u 0.01 0.0001 1.5 1.0

m1 0.00005 0.02 3.0 0.25
m2 0.0003 0.07 3.0 0.5

m1,des 0.01 0.0001 1.0 1.0
m2,des 0.0005 0.05 1.0 1.5

Validation
u 0.0002 0.02 1.5 0.5

m1 0.0005 0.01 3.0 0.5
m2 0.0005 0.05 3.0 0.25

m1,des 0.009 0.0003 1.0 1.5
m2,des 0.03 0.0007 1.0 1.0

Table 5.3: Parameters of input signals for identification and validation.
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Figure 5.11: Third order state space model (blue) compared with original measurement
data (black).
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Figure 5.12: Third order state space model (blue) compared with validation measure-
ment data (black).
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5.5 Identification of a GBMBME re-entrant flowline with
two product types

G B M E

u1
u2

m1
1

m2
1

m1
2

m2
2

Figure 5.13: Iconic representation
of the GBMBME re-entrant flowline
with two product types.

The second phenomenon requiring scheduling
in the discrete event model is processing more
than one product in a manufacturing line. A
machine has to decide which product it has to
take from the buffers. Based on the desired
production rates, the choice has to be made.
Again the function decision, used many times
before, can be used for this.

Consider the re-entrant flowline of Figure 5.13.
Two different products are made, each entering
the machine twice. The buffer B thus consists of 4 subbuffers. The maximum production
rates are defined as m11, m12, m21 and m22. Together with the desired production
rates and incoming product rate, they are quantized in Table 5.4. The discrete event
simulation model is included in Appendix D.7.

The number of outputs of the model is 6 (4 buffer levels and 2 finished products stocks).
Therefore, a sixth order state space model has been fit. The results of the identification
process are shown in Figure 5.14. The sixth order model (matrices in Appendix D.8)
fits quite well with the original measurement data, but greater differences appear in
comparison with the previous identifications. A validation dataset has been obtained
from a new experiment (parameters in Table 5.4). The sixth order model has been
validated with this set. The results are shown in Figure 5.15. It is obvious that the
state space model is by no means a good representation for this manufacturing line.

Although the validation data input set was within the bandwidth of the original input
set, the results of the validation are far from desired. It seems that the system identifi-
cation toolbox does not give reliable state space models to predict the system’s behavior
within the given assumptions and the rule of thumb derived in the previous sections.

In the next chapter, this rule of thumb is investigated further with a completely differ-
ent modelling method. On an analytical basis, state space models with process time
included are derived. These new models can be used to validate the rule of thumb used
in this chapter.
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Figure 5.14: Sixth order state space model (blue and red) compared with original
measurement data (black).
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Figure 5.15: Sixth order state space model (blue and red) compared with validation
data (black).
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f0 (Hz) f1 (Hz) mean amplitude

Identification
u1 0.01 0.0001 1.5 1.0
u2 0.0001 0.01 1.5 1.0

m11 0.01 0.0001 6.0 0.5
m12 0.0001 0.01 6.0 0.25
m21 0.04 0.0004 6.0 0.75
m22 0.0003 0.03 6.0 1.0

m11,des 0.01 0.0001 5.0 1.0
m12,des 0.0005 0.05 5.0 1.5
m21,des 0.05 0.0005 5.0 0.5
m22,des 0.0001 0.01 5.0 1.0

Validation
u1 0.0002 0.009 1.5 0.5
u2 0.006 0.0003 1.5 0.25

m11 0.0002 0.009 6.0 0.25
m12 0.0003 0.008 6.0 0.75
m21 0.03 0.0006 6.0 1.0
m22 0.01 0.001 6.0 0.5

m11,des 0.008 0.0008 5.0 2.0
m12,des 0.04 0.0006 5.0 0.5
m21,des 0.0007 0.03 5.0 1.0
m22,des 0.0004 0.008 5.0 1.5

Table 5.4: Parameters of input signals for identification and validation.
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5.6 Reflections on system identification

System identification is a technique mainly used to identify mechanical or electrical
analogous systems. Generally, the number of inputs and outputs in these systems is
limited or at least manageable. System identification has not been used very much
in identifying manufacturing systems. This study is one of the first attempts for the
Systems Engineering Group.

The System Identification Toolbox of Matlab is a convenient tool in identifying small
scale systems. The results of identification of very small manufacturing systems look
promising. But the method comes with some disadvantages. First of all, the state
space models are only valid in continuous situations. Buffers are not allowed to become
empty and machines can not be overloaded. Especially the buffer problem is a great
disadvantage. Another problem is the bandwidth of the state space models. The state
space models obtained by identification are only valid within the bandwidth they were
identified with. Constant input signal are therefore out of reach. This is a major
disadvantage of the identification method. Besides this, the user should choose a model
order of the state space system to be identified. This model order is very important. A
too small model order does not lead to a good system’s description and a too large model
order will overdetermine the system. The model validity will decrease then. Another
disadvantage is computational effort. For relatively small systems, the computational
effort is already substantial. For larger systems, the computational effort increases
more than proportionally. The scheduling rule in the discrete event system is included
in the identification process. One can imagine that this is not always desired, for simple
changes in the scheduling rule cannot be tested without completely re-identifying the
system.

A rule of thumb has been proposed to avoid too large model orders. The rule of thumb
stated that the model order of the state space model equals the number of outputs of the
discrete event model. For small systems, this rule seemed to be good, but for slightly
larger systems with re-entrant behavior and multiple products, the rule of thumb failed.
The reason for this is investigated in the next chapter. In Chapter 6, a new method for
deriving state space models is developed, to overcome the disadvantages of the system
identification method.



Chapter 6

Deriving state space models

6.1 General

In Chapter 5 the proposed method for using System Identification techniques to obtain
state space models did not yield satisfactory results. So far, it is unclear why the
technique works fine for simple models and gives bad results for more complex (but
still very basic) models. In this chapter, the rule of thumb used in system identification
is investigated and eventually reconsidered. A different technique is used: deriving a
state space model with time delay approximations. These time delay approximations
represent the process times of individual machines. Time delays are approximated using
the Padé method, which is described in Section 6.2.2.

First, the technique of deriving (workable) state space models is explained in Section 6.2.
Different aspects are treated, such as time delay, transfer functions, state space realiza-
tions and model reduction. Then, a closer look at the discrete event models is taken in
Section 6.3. Finally, the technique is applied to a GBME flowline (Section 6.4) and a
GBMBMBME flowline (Section 6.5) and reflections are made in Section 6.6.

6.2 Technique of deriving workable state space models

6.2.1 Goal

The rule of thumb stated in the previous chapter was:

The number of states in the state space description equals the number of
measured outputs of the discrete event system.

It seemed that system identification based on this rule of thumb was not always an
appropriate way to obtain state space descriptions of the manufacturing systems. One of

61
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the goals of this research is to model the time delay involved with production. Products
arrive at a machine at a given rate and leave the machine with the same rate, but shifted
in time. This time shift is the process time of the machine. We try to capture this time
delay in a workable state space model, i.e. a state space model with a workable number
of states.

6.2.2 Time delay

Mm(t) m(t-T)

process time  T

Figure 6.1: Time shift of arriving
products: process time.

Consider a continuous product flow on a machine
M at time t (Figure 6.1). Products arrive at ma-
chine M with speed m(t). Products are processed
with process time T and then leave the machine.
Taking mass conservation into account, this de-
parture rate must be the same as the arrival rate.
So at time t, products leave the machine with rate
m(t − T ). This is similar to compressible fluid
flow (with constant flow rate v and time-varying incoming density r) through a straight
tube with length L. The constant flow rate in combination with the tube length resem-
ble the process time of the machine, while the density at the end of the tube equals the
incoming density r shifted L/v time units (Figure 6.2).

The Laplace transform of a time delay is an exponential function:

L{m(t − T )} = e−Ts · M(s). (6.1)

This exponential function can not be written into workable state space notation: the
order would become infinite. Therefore, an important approximation procedure is used:
Padé approximation of an exponential function. The Padé approximation method writes
the exponential function as a polynomial fraction. The order of the approximation can
be chosen freely. The higher the order, the more accurate the approximation is. For

 

L

v, r(t) v, r(t-L/v)

time

r(t)

L/v

time

r(t)

Figure 6.2: Similarity of tube flow to a machine.
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example, the second order Padé approximation of e−Ts is:

e−Ts � (Ts)2 − 6Ts + 12
(Ts)2 + 6Ts + 12

. (6.2)

The polynomial fraction can be embedded in state space notation. For SISO systems
(Single Input, Single Output), this is a standard classroom exercise. For MIMO sys-
tems however (Multi Input, Multi Output), this is not a trivial procedure, but several
(software) tools exist. State space realizations of transfer function matrices is discussed
in the next subsection.

6.2.3 State space realization

A very common way to derive a state space model is to make a realization of a transfer
function and in particular, a minimal realization.

Definition ([ZCB01]):
A realization (A,B,C) of a given transfer function is minimal if there exists no zero-state
equivalent (Ã, B̃, C̃) whose dimension dim {Ã} is smaller than dim {A}.
In practice, this means that a minimal realization is both observable and controllable.
Analytical methods to compute a minimal realization exist, but is not discussed here.
In this research, minimal realizations of a transfer function matrix are made with the
ss command in Matlab.

For example, the Matlab minimal realization of the second order Padé approximation
of unit delay is:

Transfer function =
s2 − 6s + 12
s2 + 6s + 12

(6.3)

A =
( −6 −3

4 0

)
, B =

(
4
0

)
, C =

( −3 0
)
, D = 1. (6.4)

6.2.4 Model order reduction

Not all modes in a state space model are equally important. Some of the states are
stronger coupled to the inputs and outputs than others. To investigate this, the Hankel
singular values can be computed. The procedure for this is:

Consider the continuous time state space model

ẋ = Ax + Bu

y = Cx + Du
(6.5)
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with controllability and observability grammians Wc and Wo. The change of coordinates
x = Tx produces the equivalent model

ẋ = TAT−1x + TBu

y = CT−1x + Du
(6.6)

and transforms the grammians to W c = TWcT
T and W o = T−T WoT

−1. The trans-
formation matrix T is chosen such that Wo = Wc = diag(g). The transformed state
space model is a balanced realization. The vector g contains the Hankel singular values
(HSV’s).

The larger the Hankel singular value, the more influence the corresponding mode has.
If some of the HSV’s are big and others are small, one could think of model reduction:
reducing the order of the state space model, keeping only the most important dynamics
in the new state space model.

A useful tool in model reduction is the SLICOT toolbox for Matlab [BMS+99]. This
toolbox is capable of reducing MIMO (multi-input, multi-output) state space models to
a user-specified number of states.

After having realized a state space model of a transfer function matrix, the rule of
thumb of the previous chapter can be validated by reducing the model order to the
number of outputs of the discrete event system. The reduced state space model can be
compared to the non-reduced minimal order state space realization.

6.3 Discrete event models

The discrete event models (in χ) of the manufacturing lines are simple but not trivial.
Inputs for the model are the generator-speed (the rate at which the generator fills the
first buffer in line) and the desired machine production rates. Particularly the latter
can be interpreted in some different ways.

As in the discrete event model single products enter and leave machines and buffers
(events), it is hard to define a rate at which this happens, except for the constant rate or
statistical computations afterwards. Intuitively the constant rate is the reciprocal of the
constant inter arrival time. But what if these inter arrival times are not constant? The
‘rate’ can not be defined ambiguously then. One could think of an instantaneous rate
(the rate at this moment), but what if a machine is busy at the very moment? Another
option is to calculate the next event based on the current desired rate: tnext = t+1/rate.
But the problem is that on time mark tnext the desired rate can be completely different.
In this way, production tends to lag behind the desired production.

A different way to view the desired production rate is to accumulate (or integrate) this
signal and only look at this total desired production. Intuitively this has been done
in previous chapters, but this is also not trivial. The basic question is: When does
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Discrete Event
System

Controller
(Continuous)

Continuous
Approximation

Model
Conversion Conversion

Figure 6.3: The decisions to be made by the machine are part of the left conversion
block.

a machine have to start processing a lot? Numerous methods can be used; a few are
discussed here and are shown in Figure 6.4. The decisions to be made are part of the left
conversion block in the system-model-controller outline (Figure 6.3), since it translates
the controller output (desired production rates) into single events.

Starting point in each situation is that the current number of finished products is called
processed. The blue line is the integrated desired production rate, i.e. the total desired
production. The process time of a lot is indicated as pt. In each subfigure, two extreme
situations are shown and indicated with time marks t1, t2, t1 + pt and t2 + pt.
The intuitive strategy (strategy 1) is shown in Figure 6.4(a) and is marked with t1 and
t1 + pt. At time t1, the integrated desired production rate becomes greater than the
actual number of processed lots. The machine takes a lot from the preceding buffer and
finishes it at time mark t1 + pt. The number of processed lots is then processed + 1.
The course of the blue line causes the desired total production to be below the actual
production at that time mark t1 + pt. A new lot is taken from the buffer as soon as the
blue line crosses the processed + 1 line.
The second extreme strategy (strategy 2) is a JIT-like strategy (Just-In-Time). If the
course of the blue line is known in advance, the start time of processing the lot can
be computed backward. If it is known that at time mark t2 + pt the next lot must be
finished on the machine, the machine should start at time mark t2 to complete the lot in
time. This strategy is only possible with knowledge of future desired production rates
and predictable process times.
Figure 6.4(b) shows the same two strategies but shows that the course of the blue line
may cause that strategy 2 takes the lot earlier from the buffer than strategy 1. Choosing
strategy 1 in this situation implies that actual production always lags behind desired
production.

Complete different strategies are alternative strategy 1 (Figure 6.4(c)) and alternative
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(a) Two extreme situations.
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(b) The same two extreme strategies with dif-
ferent integrated signal.
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(c) Alternative strategy 1.
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(d) Alternative strategy 2.

Figure 6.4: Different strategies to decide when a machine has to start processing a lot.
(All horizontal axes: time; all vertical axes: number of products.)

strategy 2 (Figure 6.4(d)). In both figures, intuitive strategy 1 and complementary
extreme strategy 2 have been drawn for clarity.
Alternative strategy 1 computes the time mark t3 at which the green shaded part above
the diagonal line starting at t3 equals the green shaded part below this diagonal line.
The diagonal line can be interpreted as a linear progress indicator of the lot on the
machine. If the two shaded parts are equal, the actual production has lagged behind
the integrated desired production rate as much as it has run in front of it.
Alternative strategy 2 starts from the virtual line processed+0.5. It then computes the
new start time mark t3 such that the green shaded part below this line and above the
integrated desired production line equals the green shaded part below this integrated
signal and above the processed + 0.5 line. The processed + 0.5 line can be shifted on
one’s own discretion.
Both alternative strategies require knowledge of the future desired production rate signal
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for at least the period of one process time. This requirement can not always be fulfilled
in practice. Moreover, a good prediction of the process time must be available, especially
in the non-deterministic case.

It is clear that numerous strategies to choose the start time of processing a lot on a
machine exist. In the next sections, both extreme situations (Figures 6.4(a) and 6.4(b))
are used.

6.4 GBME flowline

6.4.1 Characteristics

Reconsider the GBME flowline with only one product type (Figure 6.5). The buffer
contents x1 and the stock level x2 are the only outputs of interest. The genera-
tor sends lots to the buffer B with generation rate g(t). This input rate is a sinus:
g(t) = 1.5 + sin(0.5t) and g(t) ≤ gmax ∀t. The lot release policy for the discrete event
simulation is based upon the integration strategy: as soon as the integral of the genera-
tor speed is greater than or equal to the actual number of released lots plus one, a lot is
released. Note that the integral G(t) of this sinus function (G(t) = 1.5t− 2cos(0.5t)+2)
contains integration constant 2 to obey the initial condition G(0) = 0.
The machine M takes products from buffer B with rate m(t). The rate m(t) equals
the desired rate mdes(t) if mdes(t) is smaller than the maximum rate mmax and without
machine breakdowns. The rate m(t) is also a sinusoidal signal: m(t) = 1 + 0.5 sin(0.2t)
and m(t) ≤ mmax ∀t. The integral of the desired production rate (i.e. the total desired
production) is M(t) = t − 2.5 cos(0.2t) + 2.5 with M(0) = 0 The process time of the ma-
chine (1/mmax) equals 2/3 time unit. Note that the machine is never over-utilized. Two
different simulations have been made: with both integration strategy 1 and strategy 2
(see Section 6.3).

6.4.2 Discrete event model

The discrete event model (χ version 0.7) is shown in Appendix E.1.1. The different
extreme lot releasing policies are indicated in this model. Straightforward simulation

G B M E

g(t)
gmax

mdes(t)
mmax

x1 x2

Figure 6.5: GBME flowline (iconic representation).
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has been carried out. The results are be compared with a continuous approximation
model, which is discussed in the next subsection.

6.4.3 Continuous approximation

The continuous approximation is based on the following assumption: The change in the
buffer contents equals the incoming rate minus the outgoing rate and the products leave
the machine M with the same rate as they entered the machine, but time shifted. The
mathematical notation of this assumption is:

ẋ1(t) = g(t) − mdes(t)
ẋ2(t) = mdes(t − τ)

y = x.

(6.7)

The time constant τ equals the process time of the machine, 2/3 time unit. The Laplace
transforms of these differential equations are:

L{ẋ1(t)} = sX1(s) = G(s) − Mdes(s)
L{ẋ2(t)} = sX2(s) = e−τs · Mdes(s).

(6.8)

Now define Y = [X1(s) X2(s)]T and U = [G(s) M(s)]T . The transfer function matrix
H(s) is then:

Y (s) = H(s)U(s)

H(s) =
(

1
s −1

s
0 1

se−τs

)
.

(6.9)

The exponential function has been approximated using second order Padé method.
With the standard Matlab routine ss, a minimal realization of this transfer function
matrix has been made:

A =

⎛
⎜⎜⎝

0 0 0 0
0 −4.5 5.196 −1.5
0 −1.299 −4.5 1.299
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 −1
0 0
0 0
0 4

⎞
⎟⎟⎠ ,

C =
(

1 0 0 0
0 3 0 0.25

)
, D =

(
0 0
0 0

)
.

(6.10)

The matrices A, B, C, D form a both controllable and observable system. With a
second order time delay approximation, the minimal model order is 4. The obtained
state space model A, B, C, D has been reduced with the SLICOT toolbox for Matlab,
using the SYSRED command. To validate the rule of thumb stated at the beginning of
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this chapter, the model order has been reduced to 2. The reduced state space model
Ared, Bred, Cred, Dred is then:

Ared =
(

0 0
0 0

)
, Bred =

(
1 −1
0 −4.1633

)
,

Cred =
(

1 0
0 −0.2402

)
, Dred =

(
0 0
0 0

)
.

(6.11)

Note that these state space descriptions are continuous time state space descriptions.
Using state transformation x = Tx with T = Cred the transformed state space model
Ared, Bred, Cred, Dred is obtained:

Ared =
(

0 0
0 0

)
, Bred =

(
1 −1
0 1

)
,

Cred =
(

1 0
0 1

)
, Dred =

(
0 0
0 0

)
.

(6.12)

Note that the Ared-matrix contains zeros. The model reducing algorithm has removed
the time delay approximated with Padé. It is clear that in Equation 6.12 the model
description of Equations 6.8 without time delay has been found.

6.4.4 Simulation

The discrete event system and both state space models (original minimal and reduced)
have been simulated. The discrete event system was simulated with χ (source code in
Appendix E.1.1. The state space models were simulated with Simulink (model shown
in Appendix E.1.2. A total run of 100 time units has been made, with a timestep (for
the discrete event model) of 0.001 time unit. This timestep prevents the model from
looping without time progression. It is expected that the discrete output resembles the
continuous output. The results are shown in Figure 6.6. For clarity, only the first 40
time units have been plotted. At first sight, the continuous approximation gives a good
indication of the buffer contents and finished products level. Both figures are studied
more in detail.

Figure 6.6(a) (the buffer contents) shows two different kinds of events for the discrete
event situation: filling the buffer with lots and taking lots from the buffer. For both
machine decision policies, the filling of the buffer takes place at the same time: the
green circle and red cross coincide, or take at least place at the same time. Around
time=20, this seems not to be the case. In fact, the machine takes a lot from the buffer
(strategy 1); then the generator sends a lot to the buffer and finally the machine takes



70 Chapter 6. Deriving state space models

0 10 20 30 40
0

5

10

15

20

time

bu
ffe

r 
co

nt
en

ts

(a) Buffer contents.

0 10 20 30 40
−5

0

5

15

25

35

45

time

fin
is

he
d 

pr
od

uc
ts

(b) Finished products.

Figure 6.6: Simulation results of the GBME flowline. Lot releasing strategy 1 (green),
strategy 2 (red) and continuous state space approximation (blue).

a lot from the buffer (strategy 2). That is why filling the buffer seems not to coincide
for the two policies.

Figure 6.6(b) needs more explanation. First of all, noticing that the red-crossed sim-
ulation results are not better than the green-circled results, for the simple reason that
the green crosses lie nearer to the blue line, is very important. To the contrary, the blue
line is an approximation of both simulations, since the continuous approximation does
not contain information about the different decision strategies. The scheduling rule of
the machine (the decision strategy) is not part of the state space model anymore, as
it was in system identification. The two machine strategies are clearly visible in this
figure. Strategy 1 (green circles) processes lots earlier than strategy 2 (red crosses).
Apparently, the situation of Figure 6.4(a) applies to this situation. Between time mark
25 and 35, the blue line looks more like Figure 6.4(b), but still strategy 1 produces
earlier than strategy 2. The reason for this is that the desired production rate is always
smaller than or equal to the maximum production rate. The system can be forced into
strategy 2 by (temporally) demanding more than the maximum production rate, but
then the continuous approximation model gives bad results since it is not based on these
production limits.

Another phenomenon is striking: it looks like the discrete event simulation runs in front
of the continuous approximation. For decision strategy 1 this is acceptable: products are
indeed finished earlier than they should be. But strategy 2 also runs ahead of the blue
approximation line. Figure 6.6(b) has been zoomed in and is shown in Figure 6.7. Two
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Figure 6.7: Closer look at the simulation results of Figure 6.6.

extra lines have been added. The purple line is the function M(t) = t−2.5cos(0.2t)+2.5,
the target production function of the machine. Since it is computed from t = 0, the
purple line runs ahead of the blue approximations. The discrete event system lags behind
this schedule during the first approximately 2.5 time units. From then, production
becomes stable and the products made with decision strategy 2 are finished exactly on
time.

An important conclusion is to be drawn here: in fact, the discrete event model is a closed
loop model, since lots are taken from the buffer based on measurements (the number
of actual processed lots). In the open loop situation, the discrete event output would
match the continuous approximations, but this is difficult to realize for time-variant
functions for production rates.

In Figure 6.7 the Padé approximation can also be viewed very well. The blue line is
the second order Padé approximation of the black line (pure time delay). Note that the
approximation becomes negative for a short time.

6.5 GBMBMBME flowline

6.5.1 Characteristics

Reconsider the GBMBMBME flowline with only one product type (Figure 6.8). Outputs
of interest are the buffer levels x1, x2, x3 and the number of finished products x4. The
generator G sends lots to the first buffer with generation rate g(t). Again, this signal is
g(t) = 1.5 + sin(0.5t) and g(t) ≤ gmax ∀t. The lot releasing policy is based upon the two
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extreme strategies as explained before. The machines M take the products from the
preceding buffers at a desired rate. These rates are sine-functions in time and stated in
equation set 6.13.

m1,des = 1.0 + 0.5 ∗ sin(0.2t) with m1,max = 1.5 products/time unit
m2,des = 0.7 + 0.3 ∗ sin(0.2t + 1) with m2,max = 1.0 products/time unit
m3,des = 0.3 + 0.2 ∗ sin(0.2t + 2) with m3,max = 0.5 products/time unit

(6.13)

Note that the machines M are never over-utilized.

6.5.2 Discrete event model

The discrete event model (χ version 0.7) is shown in Appendix E.2.1. Again, the
different extreme lot releasing policies are indicated in the model. Straightforward
simulation has been carried out. The results are going to be compared with a continuous
approximation model, which is developed in the next subsection.

6.5.3 Continuous approximation

Analogous to the model of the GBME flowline of the previous section, the continuous
model of the GBMBMBME flowline is based on the assumption that the change of the
buffer level equals the incoming rate minus the outgoing rate. Products leave a machine
M with the same rate as they entered, but shifted in time, due to the process time of
the machine. The mathematical notation of the continuous model is:

ẋ1(t) = g(t) − m1,des(t)
ẋ2(t) = m1,des(t − τ1) − m2,des(t)
ẋ3(t) = m2,des(t − τ2) − m3,des(t)
ẋ4(t) = m3,des(t − τ3)

y = x.

(6.14)

G B M E

g(t)
gmax

m1,des(t)
m1,max

x1

B M

m2,des(t)
m2,max

x2

B M

m3,des(t)
m3,max

x3 x4

Figure 6.8: GBME flowline (iconic representation).
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The time constants τn equal the process time of machine n. The Laplace transforms of
these differential equations are:

Lẋ1(t) = sX1 = G(s) − M1,des(s)
Lẋ2(t) = sX1 = M1,des(s)e−τ1s − M2,des(s)
Lẋ3(t) = sX1 = M2,des(s)e−τ2s − M3,des(s)
Lẋ4(t) = sX1 = M3,des(s)e−τ3s.

(6.15)

Define Y = [X1(s) . . . X4(s)]
T and U = [G(s) M1,des(s) M2,des(s) M3,des(s)]

T . The trans-
fer function matrix H(s) = Y (s)/U(s) equals:

H(s) =

⎛
⎜⎜⎝

1
s −1

s 0 0
0 1

se−τ1s −1
s 0

0 0 1
se−τ2s −1

s
0 0 0 1

se−τ3s

⎞
⎟⎟⎠ . (6.16)

Again, the exponential function has been approximated using second order Padé
method. The Matlab routine ss computed a minimal realization of this transfer function
matrix. The matrices form a controllable and observable system:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4.5 0 0 0 −0.22 −0.41 0.01 1.26 1.84 −1.02
0 0 0 0 0 0 0 0 0 0
0 0 −4.05 1.30 0 0 0 0 0 0
0 0 −3.16 −1.95 0 0 0 0 0 0

0.24 0 −0.33 0.28 −0.44 −0.84 0 0.11 0.17 −0.09
0.44 0 0.18 −0.15 −0.55 −1.13 −0.38 0.26 0.39 −0.21
−0.01 0 −0.04 0.04 1.15 1.78 −1.53 0.20 0.29 −0.16
−1.90 0 0 0 0.17 0.32 −0.01 −1.00 −1.46 0.80
−1.63 0 0 0 0.31 0.58 −0.02 −1.78 −2.60 1.43
1.10 0 0 0 0.14 0.30 0.15 0.99 1.45 −0.80

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1.11 0 0
−1 1 0 0
0 0 −1.23 0
0 0 0.55 0
0 0 1.87 0.39
0 0 −0.99 0.73
0 0 0.25 −0.02
0 1.59 0 0.56
0 −1.08 0 0.83
0 0 0 1.82

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎝

0 −1 0 0 0 0 0 0 0 0
−0.07 0 0.06 −0.03 0.15 1.18 −0.08 −2.63 −4.70 2.44

0 0 −1.07 −2.21 0.30 −0.34 0.05 −0.11 −0.17 −0.36
0 0 0 0 0.37 −0.12 −3.27 0.11 0.17 0.36

⎞
⎟⎟⎠

D =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

(6.17)
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The obtained state space model A, B, C, D has been reduced with the SLOCOT tool-
box, using the SYSRED command. The model order of the reduced model has been set
to 4, to validate the rule of thumb used in system identification. The reduced model
Ared, Bred, Cred, Dred is then:

A = 1.0 · 10−15 ×

⎛
⎜⎜⎝

−0.82 0 0 −0.11
0 0.46 −0.08 −0.12
0 0 −0.37 −0.02
0 0 0 0.04

⎞
⎟⎟⎠

B =

⎛
⎜⎜⎝

0.11 1.94 −0.15 0.32
0.79 −1.11 0.42 1.36
−0.26 0.43 2.24 0.21
−0.54 0.40 −0.51 1.96

⎞
⎟⎟⎠

C =

⎛
⎜⎜⎝

0.11 0.79 −0.26 −0.54
0.50 −0.15 −0.37 0.06
−0.08 −0.16 0.37 −0.43
0.06 0.23 0.04 0.34

⎞
⎟⎟⎠

D =

⎛
⎜⎜⎝

0 0 0 0
0 −0.67 0 0
0 0 −1 0
0 0 0 −2

⎞
⎟⎟⎠ .

(6.18)

The matrix Ared is almost zero. The time delay is not completely excluded from the
model, but explicitly shows up in the Dred matrix. The diagonal elements equal the
process times of the generator (0, no delay), machine M1 (0.67), machine M2 (1) and
machine M3 (0.50), with a minus sign. These diagonal elements are important, as can
be seen in the simulation results in the next subsection.

6.5.4 Simulation

The discrete event model has been simulated with both lot releasing policies. The
results are compared with the results from simulating the continuous approximation
models. For clarity, only the first 40 time units have been plotted in Figure 6.9.

The figure shows that the continuous approximation models run behind the discrete
event model. The reason for this is the same as in the previous section: the discrete
event model seems to be internally controlled. Therefore, it is good to think about the
fairness of comparing an open loop model to an internally controlled model.
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(a) Buffer 1 contents vs. time.
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(b) Buffer 2 contents vs. time.
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(c) Buffer 3 contents vs. time.

0 10 20 30 40
−2

0

2

4

6

8

10

12

14

time

fin
is

he
d 

pr
od

uc
ts

(d) Buffer 4 contents vs. time.

Figure 6.9: Comparison of discrete event simulation to continuous approximation mod-
els. Green circles and red crosses are discrete event output with extreme strategy 1
and 2 respectively. Blue line is the minimal order model. Magenta line is the reduced
order model.
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6.5.5 Internal model control in continuous approximation

The continuous approximation seems not to fit well with the discrete event simulation
output. In section 6.4.4 it had already been noticed that the discrete event model in
fact is a closed loop model. In this section, the model structure is reconsidered. The
continuous approximation model is extended to an internally controlled model.

Control goals

In future research, the continuous approximation models will be controlled with an
external controller (Figure 1.2) that is still undetermined at the moment. But with-
out realizing a controller, it is important to think about the control goals. Several
possibilities exist. Two of them are:

• Smooth production at the last machine of a flowline and minimal buffers levels in
all other buffers.

• All machines have to produce the same number of products.

The discrete event model uses the second option as the control goal: it compares the
accumulated desired production with the actually production for all machines individ-
ually. If the first option is chosen as the control goal: one could imagine that problems
may rise in case of machine breakdown: the downstream buffer becomes empty over
time and once the machine has been repaired, the downstream buffer goal has been
reached. The machine will not produce then. If the second control goal is used, the
machine will try to catch up with the desired production after machine breakdown.
This approach looks more promising than the first strategy. The continuous model is
extended to a closed loop model.

Internal model control

To achieve this, the discrete event model is given a closer look. It is tried to copy the
discrete event behavior as much as possible to the continuous model. The machine M
in the discrete event model integrates the desired production rate, compares it to the
actual production and then decides whether or not to produce items. This behavior
can be copied to the continuous model, as schematically indicated in Figure 6.11. The
determined state space model A, B, C, D is indicated as ‘State Space Model’. The
original inputs of the state space model, the generator rate and the machine production
rates, are not directly connected to this state space model anymore. These input signals
are shown at the left of the figure. They are integrated and compared to the actual
machine production. Since the actual machine production was not an output of the
state space model, 4 extra outputs are added to the state space model. This is explained
further below. The difference between desired production and actual production is a
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kind of new input. But this input cannot be connected to the state space model directly,
since the state space model expects production rates (lots/time unit) and the difference
between desired production and actual production is a real number of products. This
is where the internal controller has to evolve. The deficit number of products must
be translated into a workable production rate for the state space model. Since this
controller is unknown yet, it is indicated as a question mark in Figure 6.11.

max

deficit production
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Figure 6.10: Binary control
strategy in the discrete event
model (blue) and linear approxi-
mation (red).

The (internal!) controller blocks indicated with
a question mark are not trivial to determine.
Again, the discrete event model is observed. The
discrete event model uses an internal binary con-
troller: produce or not produce. The decision is
completely based on the difference between actual
production and desired production (and possibly
a decision strategy as explained before). Once
the decision has been made to produce an item,
it is completed at maximum speed. This binary
control structure is shown in Figure 6.10 with the
blue line. In a Simulink model, it is not difficult
to implement this binary control structure. But
implementing this non-linear element in the continuous approximation model is not
desired. Reconsider the global framework of this research (Figure 6.12). To be able
to use a wide variety of control techniques, a simple approximation model structure
has to be chosen. A state space model is perfectly suitable for this. Therefore it is
necessary to implement a linear internal controller in the continuous model. Only then,
the complete internally controlled approximation model can be rewritten into a new
state space model. As a first try, a linear proportional controller (P-control) is imple-
mented (the red line in Figure 6.10). After an evaluation of the results, a PID-controller
(proportional, integrative, derivative) is also implemented.
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Figure 6.11: Schematic representation of the internally controlled continuous approxi-
mation model.



78 Chapter 6. Deriving state space models

Four extra differential equations are added to the model dynamics. They represent the
actual production of a machine. In fact, this is the amount of products a buffer is filled
with. The 4 extra lines resemble the first 4 lines, only the negative terms are omitted.
And because the last buffer with finished products is only filled, two lines in the transfer
function matrix are identical, so one of them is omitted. This results in the following
transfer function matrix:

H(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
s −1

s 0 0
0 1

se−τ1s −1
s 0

0 0 1
se−τ2s −1

s
0 0 0 1

se−τ3s

1
s 0 0 0
0 1

se−τ1s 0 0
0 0 1

se−τ2s 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.19)

Making a minimal realization of this transfer function matrix yields a new A, B, C, D
state space model. In fact, no extra dynamics were introduced while adding the 3
differential equations. The A matrix of the new state space model therefore has the
same order as the old A-matrix and is a 10× 10 matrix. The B matrix remains a 10× 4
matrix. The C matrix is extended to give the 3 new outputs and is a 7 × 10 matrix
now. The new D matrix is a 7 × 4 matrix containing zeros. The complete matrices are
included in Appendix E.3.

Discrete Event
Model

Controller
(Continuous)

Physical
Production System

Reference
(target production)

Realised production /
Buffer levelsProduction rates

1
--
s ABCDC

Internally
controlled

continuous
approximation

model

Figure 6.12: Research framework with internally controlled continuous approximation
model.
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Experiment with P-control
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Figure 6.13: Simulation results of the
model with P-control. Visible are: tar-
get production (blue), minimal realiza-
tion continuous approximation model
(cyan), reduced order model (magenta),
closed loop P-controlled model (black)
and discrete event simulation results
(green and red).

The ‘extended state space model’ has been
simulated with Simulink and compared to
the open loop results as simulated be-
fore. The Simulink model is shown in
Figure 6.14. The same input signals as
in section 6.5.1 have been used. The re-
sults of the discrete event model have been
reused. The value of the proportional con-
troller has been set to 0.7. The results of
this simulation are only given for the num-
ber of finished products and given in Fig-
ure 6.13. The two extreme strategies in
the lot processing policies are given again.
Note that extreme strategy two matches
the blue line, the target production, ex-
actly. The closed loop internally propor-
tionally controlled model (black) does not
coincide with the target production. An os-
cillation can be observed, especially in the
first 30 time steps. This looks like a gradu-
ally attenuated system. The P -value of the
controller determines the damping ratio. A
too large value of P causes the system to
become unstable.
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Figure 6.14: Simulink model of internally P-controlled state space model.
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Experiment with PID-control

1

Output PID

PID

PID

PID

PID

1

Input PID

Figure 6.15: Controller block
of the PID-controlled model.

In the search for a better control structure, the con-
troller block is extended to a PID-controller. This
type of controller has a proportional part, integral
part and derivative part and is a linear controller.
This is important, because it leaves the possibility
open to construct a state space model of the total
continuous model block, as indicated in Figure 6.12.
The Simulink model of this PID-controlled continu-
ous model is shown in Figure 6.16. The controller
block is shown in more detail in Figure 6.15. The
four PID-blocks are standard Simulink blocks.

The results of an experiment using the PID-controller (P = 0.7, I = 0.1, D = 0.8)
are shown in Figure 6.17. The same input signals have been used as in the earlier
experiments. Again, only the fourth output is shown, the other three are similar.
The results are much better than in P-control. The controlled model output (black
line) follows the target production line (blue) quite well. Again, a transient response
is observable: the oscillation in the beginning of the simulation. A major advantage
of this control method is the absence of a steady-state error: the controlled model
practically follows the target production. In systems with more than 3 machines this is
very important, since the approximation error between the open loop models and closed
loop models will be significant then.

Tuning of the PID-parameters is important to achieve a good response of the model.
Tuning has not been done extensively in this study, but by means of trial and error. A
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Figure 6.16: Simulink model of internally PID-controlled state space model.
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Figure 6.17: Simulation results of the model with PID-control. Visible are: target
production (blue), minimal realization continuous approximation model (cyan), reduced
order model (magenta), closed loop PID-controlled model (black) and discrete event
simulation results (green and red).

proved method of tuning PID-controllers is the Ziegler-Nichols method. This could be
used here. One should realize that different tuning of the PID-parameters does not give
a better fitness to the discrete event extreme strategies output (the green and red circles
and crosses in Figure 6.17. PID-control minimizes the steady state error. As the green
circles are always in front of the target production, the different extreme strategies of
product processing can not be approximated by different tuning of the PID-parameters.

If another linear controller is implemented, the extreme strategies of product processing
by machines could be identified using system identification. Only the order of the linear
control block can be chosen. One should realize that most disadvantages of the system
identification toolbox hold here too.
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The complete internally controlled continuous approximation model

All blocks in Figure 6.16 are linear. This means that an overall state space model of
the complete internally controlled state space model can be constructed. This may
not be very useful in the Simulink models, but an overall state space model can be
used outside Simulink and is suitable in the controller design process of various control
techniques. The resulting state space model can then be treated as a black box, with
inputs U and outputs Y , as schematically presented in Figure 6.18. To construct the
global state space model, the transfer functions matrices of the different blocks have
been formulated. The transfer function matrix of the state space block A, B, C, D
(Equation 6.19) has been split into two parts according to the different outputs (buffer
levels and produced quantity). These parts are defined as H1 and H2. The transfer
function of the PID-control block takes this form:

PID(s) =

⎛
⎜⎜⎝

P1 + I1
s + D1s 0 0 0
0 P2 + I2

s + D2s 0 0
0 0 P3 + I3

s + D3s 0
0 0 0 P4 + I4

s + D4s

⎞
⎟⎟⎠ .

(6.20)
The integration transfer function matrix can be written as:

Int(s) =

⎛
⎜⎜⎝

1
s 0 0 0
0 1

s 0 0
0 0 1

s 0
0 0 0 1

s

⎞
⎟⎟⎠ . (6.21)

The global transfer from inputs U to outputs Y is then stated as:

Y (s) = H1(s)PID(s) (I + H2(s)PID(s))−1 Int(s)U(s). (6.22)

Since the transfer function matrices contain the Laplace variable s, straightforward
computation of this total transfer function matrix is tricky. Pole-zero cancellation must
be avoided. In the academic, deterministic and undisturbed case, these pole-zero can-
cellations will not cause damage, but when disturbances take place, these (bounded)

Integrator PID-control A,B,C,D+
-

Global internally controlled continuous approximation
state space model

Inputs U
Outputs Y

Figure 6.18: Global internally controlled state space model.
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disturbances may cause the output Y to grow without bound. The complete transfer
function matrix is too big to include in this report, but the structure can be given:

Y (s) =

⎛
⎜⎜⎝

a ∼ b 0 0
0 b ∼ c 0
0 0 c ∼ d
0 0 0 d

⎞
⎟⎟⎠ U(s). (6.23)

The notation ∼ x means that the matrix element is very similar to element x, but differs
in plus/minus signs. If the extra outputs are desired (produced quantity per machine),
the global transfer function matrix can be extended by:

Yext(s) = H2(s)PID(s) (I + H2(s)PID(s))−1 Int(s)U(s). (6.24)

Then, the transfer function matrix is a 7 × 4 matrix with this structure:

Y (s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a ∼ b 0 0
0 b ∼ c 0
0 0 c ∼ d
0 0 0 d
a 0 0 0
0 b 0 0
0 0 c 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U(s). (6.25)

Note that the virtual 8th row of the transfer function matrix (finished products) equals
the 4th row and has thus been omitted. Converting the (non-extended) transfer function
matrix into a minimal state space realization results in a 23th order state space model.
The A,B,C,D matrices have not been included, but can be re-obtained by using the ss
command in Matlab and the transfer function matrices as described in this section. The
23th order state space model contrasts sharply with the rule of thumb used in system
identification, which would result in a 4th order model for this manufacturing line.

The new state space model eventually is an open loop model. The closed loop model
developed in the previous sections has completely been included in the dynamics of
the newly derived state space model. This open loop model has been simulated and
compared to the closed loop simulation results. Results are not included in this report,
because the open loop internally controlled model output complete matches the closed
loop controlled model output.

6.6 Reflections on deriving state space models

The research in this chapter has been done to validate the rule of thumb stated in
Chapter 5 that the number of states in a state space model describing a manufacturing
flowline equals the number of outputs of the flowline. Outputs of interest always were
buffer levels, so the number of buffers determined the state space model order. For
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larger models with re-entrant behavior, this rule of thumb dit not hold. Therefore,
extra research has been done.

A complete different modelling approach has been used in this chapter than in the
previous ones. Using analytical equations and relations, transfer functions of continuous
manufacturing systems have been formulated, taking process times of machines into
account. Combining these transfer functions resulted in transfer function matrices,
that have been translated into state space models using Matlab. The time delay due to
the process times has been approximated with the Padé method.

The main conclusion reached in this chapter is that the discrete event models used
in this research are in fact closed loop models. The discrete event model (reality)
compares its actual production with a reference value, the desired production. Based
on this comparison, an internal control algorithm decides whether or not to produce
new items. This is a binary control algorithm in this research. The internal controller
in the discrete event model can use different decision strategies. The goal of this project
is to develop continuous approximation models which model output fit well with the
discrete event model output. Therefore, it is absolutely necessary to develop internally
controlled state space models. The results in this chapter look very promising with
respect to this internally controlled continuous approximation models.

Both the internal model control and the process times of the machines introduce dy-
namics. These dynamics are included in the state space models. The order of the state
space models will therefore always be greater than the number of outputs of the dis-
crete event model. Model order reducing algorithms have been used to investigate the
effect of choosing a smaller model order. For very small systems (like a GBME flowline)
model order reduction leads to a model without time delay. For larger models (like a
GBMBMBME flowline) the reduced order model introduces a non-zero D-matrix con-
taining the process times reciprocals. The reduced order model output does not match
the full order model output completely, but the overall trend is followed quite well.

The internal controller and process times are not the only reason why the model ap-
proach in system identification did not give good results. In Chapter 5 the machine
production rate has been varied and fed into the state space model as an input signal.
The process time of machines became a model input. This means that the time delay
(dynamics!) due to the process time became dependant on the input signal. A basic
principle of linear systems (like state space models) is that the system’s dynamics are
not dependant on the magnitude of the input signals. The only dynamics of a linear
system are gain and phase as a function of the frequency of the input signal, not the
magnitude of the input signal. The rule of thumb stated with system identification
could not hold because wrong assumptions have been made.

The models developed in this chapter are only suitable in linear, continuous situations.
The consequence for the discrete event model is that buffers must not become empty and
machines are not to be over-utilized. An external supervisory process has to account for
this. The question is to what extent the problems are passed to an external controller
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in this linear model approach. Control techniques based on state space models that
take bounded signals into account exist, like Model Predictive Control (MPC). This
MPC technique is capable of bounding states, input signals and output signals. The
limitations due to the linearity of the state space model might be taken care of with
this type of controller.

Another question that arises is the need for an external controller to follow a reference
production. With the open loop internally controlled state space approximation model,
it is already possible to follow a reference target production for each machine. But
maybe this can be achieved faster of more efficient with an external controller? One
could also think of an open loop structure as shown in Figure 6.19. Customer orders are
received and translated into a target production reference signal. This reference signal
(desired production rates) can be feeded directly to the continuous approximation
model. The translation block can take several forms, which is worth a whole new study.

Discrete Event
Model

Continuous
Approximation

Model

Physical
Production

System

ConvertorCustomer order

test

schedule

Figure 6.19: Does the need for an external controller still exist?
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Chapter 7

Conclusions and
recommendations for further
research

7.1 Conclusions

The main goal of this research was to develop continuous state approximation models for
discrete event manufacturing systems that incorporate machine process times. Three
different modelling techniques have been used to develop these models. The major
conclusion is that it is indeed possible to approximate a certain class of discrete event
models by means of a continuous state model.

The three models that have been developed are:

• A hybrid model that uses a collection of state space models to approximate the dis-
crete event system. Based on the state and boundary conditions, the appropriate
state space model is constructed.

• A state space model obtained by means of system identification techniques. The
state space matrices are obtained using a global ‘black box’ method.

• A state space model derived on an analytical basis. Two sub-models emerged:
one the one hand a model based on transfer functions and on the other hand a
state space model with the time delay due to process times explicitly included in
the model’s dynamics by means of a Padé approximation.

The three model types are evaluated here on compatibility with classical control tech-
niques (the control technique must be capable of dealing with the model structure),
computational effort, flexibility with respect to changes of the manufacturing system,
handling boundary conditions and physical limitations.

87
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Compatibility with classical control techniques

For MIMO systems (multi-input, multi-output), the far most convenient model struc-
ture to develop a controller is a state space model. All three model structures result
in state space models. However, the hybrid model delivers a set of state space models.
Hybrid models limit the number number of control techniques that can be used. Differ-
ent hybrid control techniques exist, but are not elaborated here. The quickly growing
number of possible state space models due to expanding the discrete event model could
be a restriction in convenient use of this hybrid model.
The state space models obtained by both system identification and the analytical
method are far more suitable for classical control, since it exists of only one state space
model. It is very important to realize that the models obtained by system identification
can only be used within a predefined bandwidth, which is a great disadvantage.

Computational effort

An important aspect in deriving continuous approximation models is computational
effort. The hybrid model is a generic model. Once the number of products, number
of machines, product recipes and system’s limitations have been entered, the hybrid
model is ready to be used. But controller determination can be more difficult. The
complete set of all possible state space models does not have to be predetermined, be-
cause the hybrid model algorithm constructs the matrices ‘on the fly’. In contrast with
this, controller computation can most probably not be done in a real-time environment,
since it is too time-consuming. The controllers will most likely have to be determined
beforehand. This makes it necessary to build the set of possible state space models
beforehand, which will be very time consuming, if possible at all.
System identification is also very time consuming. In order to be able to use a consid-
erable bandwidth, a lot of frequencies must be included into the input signals, leading
to huge data-files and very long computations. The resulting state space model is not
always a valid model. That is the reason why another modelling method has been elab-
orated.
The analytical method requires very little computational power. Formulating the trans-
fer function matrices is the most time consuming part. But if used more widely, this
aspect can easily be automated.
Almost all simulation models in this research used a timestep for simulations. The mag-
nitude of the timestep has been chosen freely and has not been varied. It was chosen
in a way that it was much smaller than the other parameters. However, the smaller the
timestep, the longer a simulation takes and the more accurate the results will be. The
computational effort is therefore partially influenced by the timestep that is chosen.
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Flexibility with respect to changes of the manufacturing system

In case the manufacturing system is modified, the continuous models have to change
too. New equipment, new products or changes in the product recipes cause the necessity
to develop new continuous approximation models. The hybrid model is perfectly suited
for model changes: all global constants are predefined and the algorithm deals with the
actual modelling process. System identification is highly inflexible. Every change in the
manufacturing system requires a complete new identification. This is a disadvantage
of the ‘black box’ approach of system identification. Even new low-level scheduling
rules of a machine may cause the need for a new complete identification, since those
scheduling rules are included in the state space models. The analytical models using
transfer functions are not very flexible at the moment. But since the computation order
is always the same, this can be automated, yielding a flexible model structure. Changes
in low-level scheduling rules do not require a new model, because these scheduling rules
are not implemented in the model.

Boundary conditions and physical limitations

Machines have a finite capacity and buffers can not become negative in the real
manufacturing system. Those limitations and boundary conditions must be accounted
for in either the continuous approximation model or the controller that is to be
developed. The hybrid model scores best at this point: buffers can not become empty,
machines have finite capacity and if a controller asks more than the machines can
produce, the desired production rates are scaled down to workable production rates.
In future, this model could be extended to buffer upper limits and batch production.
The price to be paid is the enormous collection of state space models that makes this
behavior possible. The model obtained by system identification has most limitations.
First of all, the restricted bandwidth is a big problem. Constant input signals are not
allowed, since good behavior is not guaranteed then. It does neither deal with finite
machine capacity nor with buffer lower limits. The analytical model itself does not deal
with finite machine capacity or buffer levels. A future controller will have to deal with
this. But a great advantage is that constant input signals are allowed, since no limited
bandwidth exists. The state limits may only apply to the analytical model based on
transfer functions. The Padé approximations cause the state to become negative for a
short while before the state rises positive (see Figure 6.7). Padé approximations thus
might be a difficulty in using state limitations.

The models obtained by system identification did not all give good results. The
rule of thumb used to choose the model order was: “The number of states in the
state space description equals the number of measured outputs of the discrete event
system.” This proved to be somewhat optimistic. The actual needed number of states
is larger, to be able to include the time delay approximations (Padé method) in the
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model dynamics. However, a larger model order is not workable due to the enormous
data-files needed and large computation time.
The remaining two models (hybrid and analytical based on transfer functions) look
promising with respect to the results obtained in this study. Both models can be used
in further research. This is elaborated in the next section.

Another very important conclusion in this research is that the discrete event models that
are to be controlled are in fact internally controlled models. In the global framework
(Figure 1.2), the left conversion block that translates desired production rates into events
contains the internal controller. Based on the information from the controller and the
actual machine production, it has to decide whether or not to produce a next item.
This is closed loop control. A good approximation model also contains this internal
closed loop to get maximum similarity in the comparison between continuous model
and discrete event model. The hybrid model does not contain this internal closed loop.
The latent internal controller had only been discovered during the development of the
analytical model based on transfer functions.

What was new in this study? Most important new thing in this research has been the
inclusion of machine process times in the dynamic models. The Kimemia and Gershwin
model [KG83] has been extended to a model that deals with time delays due to process
times.

The framework presented in the introductory chapter has not been fully covered in
this study. Consider again the framework in Figure 7.1. The light orange blocks have
been investigated. The physical manufacturing system had been assumed to equal the
discrete event system. The controller block has not been elaborated, although during
the model development process, a easy connection (compatibility) between continuous
model and controller has been in the back of mind.

Discrete Event
Model

Controller
(Continuous)

Continuous
Approximation

Model
Conversion Conversion

Physical
Production

System

Reference
(target production)

Events

Desired
production

rates

Realised production
/ Buffer levels

(discrete)

Realised production
/ Buffer levels
(continuous)

Figure 7.1: Global internally controlled state space model.
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7.2 Recommendations and reflections for further research

Although the results of this research are quite satisfactory, the study is not yet complete.
Three modelling techniques have been explored, but not elaborated very thoroughly.
Two methods look promising one the one hand, on the other the system identification
method seems not useful in modelling discrete event manufacturing systems. The ob-
tained hybrid model and analytical model must be put to the test extensively. Possibly,
benchmark problems can be tackled with the new modelling techniques. Moreover, ex-
tensively testing could reveal new interesting modelling issues. Both the hybrid model
and the analytical model based on transfer functions are worth to be elaborated deeply.
For both modelling methods, some recommendations are given here.

Hybrid model

The power of the hybrid model is the ability to deal with physical limitations and
boundary conditions. Most important recommendation is to investigate whether or not
the internal control loop can be included in the model. Only while developing the last
modelling method, this internal closed loop has been discovered. Most discrete event
models used for the hybrid model were in fact closed loop models. It is a challenge
to include this internal controller in the hybrid model. Another recommendation is
elaborating the ability to deal with physical limitations. At the moment, the model
knows that buffers can not become empty and that machines can not be over-asked.
Another limitation could be a buffer ceiling: a machine can not produce if the down-
stream buffer has reached its maximum capacity. In addition to this, batch processing
can be explored. In the current model, a machine is only allowed to produce if the
preceding buffer contains at least one product. One can imagine that a kind of batch
processing is modelled when this threshold level is raised.
In addition to this, manufacturing lines with assembly or disassembly can be investi-
gated. Is it possible to use the hybrid model for this? Adding some logic rules to the
algorithm could be a good option for this. These logic rules are based on the product’s
recipe. This kind of behavior will be new in the hybrid model algorithm.
Only having a good model is not enough. The main goal is to obtain models that can
be used for control. The hybrid model needs special attention when it comes to con-
trol. The number of ẋ = Bu models grows rapidly when extending the manufacturing
system. Control theorists might assist in choosing and developing a controller for the
hybrid model.

Analytical model based on transfer functions

The analytical model based on transfer functions is a ready to use model for simple
small manufacturing lines. However, this only holds for the continuous case. If
discontinuities occur, the model predicts differently (the continuous model simulation
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output no longer looks like the discrete event model simulation output). The main
shortcoming of the model is dealing with these discontinuities. Several options exist.
Because the linear state space model can not deal with limitations, a controller needs
to be modelled. This can be either an open loop controller or a closed loop controller.
An open loop controller only has to translate customer orders into workable machine
production rates. The internal closed loop controller takes care of the production
simulations. The continuous approximation model has completely been decoupled from
the manufacturing system then. But this would also be the case if closed loop control
would be applied to the discrete event system. Another possibility is using a control
technique that is capable of handling state limits and input signal limits. An example is
Model Predictive Control (MPC). This control technique predicts the model’s behavior
subject to computed input signals. If state limits are exceeded, the input signal will be
adjusted. The input signal can also be bounded. The MPC technique works with state
space models, so that will be no problem.
Introduction of batch processing can be difficult in this model type, but maybe with a
new analytical basis, this can be added to the model. Assembly and disassembly in the
manufacturing line is another research topic for this model type.

A recommendation for both models is the introduction of stochastic behavior.
Machine process times are not constant in a real production facility. The real process
time is not always known beforehand. How does this affect the model structures?
In a state space model, this varying process time can not be introduced as an extra
input, since the model dynamics can not depend on the magnitude of an input signal.
One of the questions that arises is whether the model should be based on the mean
process time or another value for safety reasons? Introduction of stochastics will be a
considerable research issue.

A topic that is not covered in this study is the applicability of the models. The initial
assumption was that the models would only be valid in bulk production, with large
number of products. The product stream looks like a flow then, like cigarettes, candy-
bars or even wafers. The example models in this study were however small scale models.
The obtained state space models might be a representation of small scale manufactur-
ing lines too. The applicability of the model is a very different but important aspect
of the global research. Exploring the borders of the research field is an interesting and
valuable new topic.

As indicated in the conclusions at the beginning of this chapter, the timestep that
is chosen for simulations has an influence on the accuracy and the computational ef-
fort. In a future research, the magnitude of this influence could be investigated. This
investigation could lead to more justified choices for the timesteps.

As a final recommendation, the global framework of this research could be completed
with the development of a controller and the right conversion block of the framework
(Figure 1.2). First of all, investigation of the need for those blocks is necessary. The
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internally controlled continuous approximation models perform very well in tracking a
target production. A well determined target production function will result in good
behavior of the discrete event model. An open loop controller that converts customer
orders into a workable target production might do well. This must be investigated. If
it is necessary to reconsider the global research framework, then that has to be done.
On the other hand, if a closed loop controller seems to be necessary, completion of the
modelling and controlling part of the framework will be a considerable amount of work.
But without a controller (either open loop or closed loop), the research will not have
been completed.
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Appendix A

Hybrid flowline models

A.1 GBMBME flowline model

proc G (a: !nat, u: real) =

|[ x: nat

| x:=1

; *[ time < 5 -> delta 1/u; a!x; x:= x + 1 ]

; terminate

]|

proc B (a: ?nat, b: !nat) =

|[ x: nat, xs: nat*

| xs := []

; *[ true; a?x -> xs := xs++[x]

| len(xs) > 0; b!hd(xs) -> xs := tl(xs)

]

]|

proc M (a: ?nat, b: !nat, m: real) =

|[ x: nat

| *[ true -> a?x; delta 1/m; b!x ]

]|

proc E (a: ?nat) =

|[ x: nat

|*[ true -> a?x ]

]|

syst Model() =

|[ a, b, c, d, e: -nat

| G( a, 5.0 ) || B( a, b ) || M( b, c, 3.0 ) || B( c, d ) || M( d, e, 4.0 ) || E( e )

]|

xper =

|[ Model() ]|
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Figure A.1: Simulink model of the GBMBME-flowline.
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A.2 GBMBME flowline model for 2 product types

type loggen = real#nat#nat

proc G (a: !nat, u: real) =

|[ x: nat

| x:=1

; *[ true -> delta 1/u; a!x; x:= x+1 ]

]|

proc B (a: ?nat, b: !nat, cont1, cont2: !nat, id: nat, l: !loggen) =

|[ x: nat, xs: nat*

| xs := []

; *[ true; a?x -> xs := xs++[x]; l!<time, id,len(xs)>

| len(xs) > 0; b!hd(xs) -> xs := tl(xs); l!<time, id,len(xs)>

| true; cont1!len(xs) -> skip

| true; cont2!len(xs) -> skip

]

]|

proc M (in1,in2: ?nat, out1,out2: !nat, buf1,buf2: ?nat,

cumul1,cumul2: ?real, m1,m2,timestep:real) =

|[ c1, c2, prod1, prod2, diff1, diff2: real, x, choice: nat

, cont1, cont2: nat, diffs: real*, conts: nat*

| prod1:=0.0; prod2:=0.0

; *[ true -> cumul1?c1

; cumul2?c2

; buf1?cont1

; buf2?cont2

; diff1:=(c1-prod1)/c1

; diff2:=(c2-prod2)/c2

; diffs:=[diff1] ++ [diff2]

; conts:=[cont1] ++ [cont2]

; choice:=decision(diffs, conts)

; [ choice = 1 -> in1?x; delta 1/m1; prod1:=prod1+1; out1!x

| choice = 2 -> in2?x; delta 1/m2; prod2:=prod2+1; out2!x

| choice = 0 -> delta timestep

]

]

]|

func decision(diffs: real*, conts: nat*) -> nat =

|[ i, number, index: nat, record: real, c: bool

| i:=1; number:=len(diffs); record:=0.0; index:=0

; *[ i <= number -> c:= hd(diffs) > 0 and hd(conts) > 0 and hd(diffs) > record

; [ c -> index:=i

; record:=hd(diffs)

| not c -> skip

]

; diffs:=tl(diffs)

; conts:=tl(conts)

; i:=i+1

]
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; ret index

]|

proc MC (m1, m2: ?real, m1c, m2c: !real, timestep: real)=

|[ m1r, m2r, c1, c2: real

| c1:=0.0000001; c2:=0.0000001 // prevent from dividing by zero

; *[ m1?m1r -> c1:=c1+m1r*timestep

| m2?m2r -> c2:=c2+m2r*timestep

| m1c!c1 -> skip

| m2c!c2 -> skip

]

]|

func calc(mr: real, b: nat, mm: real) -> real =

|[ [ mr /= 0 and b < 1 -> ret 0.0

| mr /= 0 and b >= 1 -> ret mm

| mr = 0 and b > 0 -> ret mm

| mr = 0 and b = 0 -> ret 0.0

]

]|

proc C(bi11, bi12, bi21, bi22: ?nat, m11, m12, m21, m22: !real,

m11max, m12max, m21max, m22max, m11d, m12d, m21d, m22d, u1, u2, timestep: real)=

|[ egdm11m, egdm12m, egdm21m, egdm22m, m11m, m12m, m21m, m22m, m11r, m12r, m21r, m22r: real,

b11,b12,b21,b22: nat, m11f, m12f, m21f, m22f: nat

| *[ true -> bi11?b11 ; bi12?b12 ; bi21?b21 ; bi22?b22

; m21m:=calc(m11r, b21, m21max)

; m22m:=calc(m12r, b22, m22max)

; m11m:=calc(u1, b11, m11max)

; m12m:=calc(u2, b12, m12max)

; [ m11m = 0 -> egdm11m:=0.0; m11f:=0

| m11m /= 0 -> egdm11m:=1/m11m; m11f:=1

]

; [ m12m = 0 -> egdm12m:=0.0; m12f:=0

| m12m /= 0 -> egdm12m:=1/m12m; m12f:=1

]

; [ m21m = 0 -> egdm21m:=0.0; m21f:=0

| m21m /= 0 -> egdm21m:=1/m21m; m21f:=1

]

; [ m22m = 0 -> egdm22m:=0.0; m22f:=0

| m22m /= 0 -> egdm22m:=1/m22m; m22f:=1

]

; m11r:=m11d/( max(1.0,(m11d*egdm11m+m12d*egdm12m)))*m11f

; m12r:=m12d/( max(1.0,(m11d*egdm11m+m12d*egdm12m)))*m12f

; m21r:=m21d/( max(1.0,(m21d*egdm21m+m22d*egdm22m)))*m21f

; m22r:=m22d/( max(1.0,(m21d*egdm21m+m22d*egdm22m)))*m22f

; m11!m11r ; m12!m12r ; m21!m21r ; m22!m22r

; delta timestep

]

]|
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proc E (a: ?nat, id: nat, l: !loggen) =

|[ x: nat

| *[ true -> a?x; l!<time,id,x> ]

]|

proc Log(l: (?loggen)^6, output: !file) =

|[ tend: real

, x: loggen

| tend:= 10.0 // end of simulation and logging

; *[ time < tend

-> [ j: nat <- 0..6: true; l.j?x ]

; output! x.0, tab(), x.1, tab(), x.2, nl()

]

; terminate

]|

syst Model (u1, u2, m11max, m12max, m21max, m22max,

m11des, m12des, m21des, m22des, timestep: real)=

|[ l: (-loggen)^6

, bc11, bc12, bc21, bc22, g1, g2, b1m1, bi11, b2m1, bi12

, m1b1, m1b2, b1m2, bi21, b2m2, bi22, e1, e2: -nat

, cmc11, cmc12, cmc21, cmc22, mcm11, mcm12, mcm21, mcm22: -real

| G(g1, u1) || G(g2, u2)

|| B(g1, b1m1, bi11, bc11, 1, l.0) || B(g2, b2m1, bi12, bc12, 2, l.1)

|| M(b1m1, b2m1, m1b1, m1b2, bi11, bi12, mcm11, mcm12, m11max, m12max, timestep)

|| B(m1b1, b1m2, bi21, bc21, 3, l.2) || B(m1b2, b2m2, bi22, bc22, 4, l.3)

|| M(b1m2, b2m2, e1, e2, bi21, bi22, mcm21, mcm22, m21max, m22max, timestep)

|| E(e1, 5, l.4) || E(e2, 6, l.5)

|| MC(cmc11, cmc12, mcm11, mcm12, timestep) || MC(cmc21, cmc22, mcm21, mcm22, timestep)

|| C(bc11, bc12, bc21, bc22, cmc11, cmc12, cmc21, cmc22, m11max, m12max, m21max, m22max,

m11des, m12des, m21des, m22des, u1, u2, timestep)

|| Log(l, fileout("uitvoer2.txt"))

]|

xper =

|[ Model( 5.0, 5.0, 4.0, 6.0, 7.0, 3.0, 8.0, 5.0, 2.0, 5.0, 0.01 ) ]|

// u1, u2, m11max,m12max,m21max,m22max,m11des,m12des,m21des,m22des,timestep
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Figure A.2: Simulink model of the GBMBME-flowline with 2 different product types.
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Appendix B

Matlab hybrid model

clear

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plant configuration %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

numberofproducts=5;

numberofmachines=5;

machineorder=[1 2 3 4 5 0 0 0 0 0;

5 4 3 2 1 0 0 0 0 0;

1 2 3 2 3 4 3 4 5 0;

1 4 3 4 3 2 3 2 5 0;

3 4 3 4 1 2 1 2 3 5];

% Computation of several matrices and rows based on the plant configuration

[numberofstates, numberofproductionsteps, numberpermachine, ...

cumulnumberpermachine, numberofstepsperproduct, matrix, previous]=...

computeplant(numberofproducts, numberofmachines, machineorder);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulationtime, interval and initial conditions %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tspan=[0 20]; % Simulation start- and endtime

N=5000; % Number of simulation steps

X0=zeros(43,1); % Initial condition state

memory=5; % Number of timesteps a machine should not produce before

% the next machine may produce

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% START OF MAXIMUM AND DESIRED RATES DEFINITIONS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Incoming product rates

u=[5; 5; 5; 5; 5];

% Syntax: machine A product 1 step 1, machine A product 2 step 5, machine A product 3 step 1 etc.
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% Idem for machine B, C, D and E

mamax=[5 5 5 5 5 5];

mbmax=[5 5 5 5 5 5 5 5];

mcmax=[5 5 5 5 5 5 5 5 5 5 5];

mdmax=[5 5 5 5 5 5 5 5];

memax=[5 5 5 5 5];

% Syntax: machine A product 1 step 1, machine A product 2 step 5, machine A product 3 step 1 etc.

% Idem for machine B, C, D and E

mades=[3 3 3 3 3 3];

mbdes=[3 3 3 3 3 3 3 3];

mcdes=[3 3 3 3 3 3 3 3 3 3 3];

mddes=[3 3 3 3 3 3 3 3];

medes=[3 3 3 3 3];

reala=zeros(6,1);

realb=zeros(8,1);

realc=zeros(11,1);

reald=zeros(8,1);

reale=zeros(5,1);

real=[u; reala; realb; realc; reald; reale];

% Desired utilizations

utila=1;

utilb=1;

utilc=1;

utild=1;

utile=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% END OF MAXIMUM AND DESIRED RATES DEFINITIONS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start of the Computation of the Runge Kutta Method %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h = (Tspan(2)-Tspan(1))/N;

halfh = 0.5*h;

neqs=size(X0);

X=zeros(neqs(1),N+1);

T=zeros(1,N+1);

X(:,1)=X0;

T(1)=Tspan(1);

Td = Tspan(1);

Xd = X0;

Reals=[];

Realprevs=[];

wacht = waitbar(0,’Progress of the computation’);

for i=2:N+1

waitbar(i/(N+1),wacht);

% DETERMINE BUFFER CONTENTS

[bca, bcb, bcc, bcd, bce]=determinebc(Xd);

% TRANSPOSE REALS TO CREATE REALPREVS

realprev=previous*real;
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Realprevs=[Realprevs realprev];

[realpreva, realprevb, realprevc, realprevd, realpreve]=determineprev(realprev);

[boola, boolb, boolc, boold, boole]=determinebools(Realprevs, memory);

% START OF REAL RATES COMPUTATION

reala=computereal(mamax, mades, bca, utila, realpreva, boola)’;

realb=computereal(mbmax, mbdes, bcb, utilb, realprevb, boolb)’;

realc=computereal(mcmax, mcdes, bcc, utilc, realprevc, boolc)’;

reald=computereal(mdmax, mddes, bcd, utild, realprevd, boold)’;

reale=computereal(memax, medes, bce, utile, realpreve, boole)’;

real=[u; reala; realb; realc; reald; reale];

% END OF REAL RATES COMPUTATION

RK=matrix*real;

X(:,i)=Xd+RK*h;

T(i)=Td+h;

Xd = X(:,i);

Reals=[Reals real];

Td = T(i);

end

close(wacht);

X=X’;T=T’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [numberofstates, numberofproductionsteps, numberpermachine, ...

cumulnumberpermachine, numberofstepsperproduct, matrix, previous]=...

computeplant(numberofproducts, numberofmachines, machineorder)

[i,j]=find(machineorder~=0);

numberofstates=numberofproducts+size(i,1);

numberofproductionsteps=size(i,1);

for i=1:numberofmachines

numberpermachine(i)=size(find(machineorder==i),1);

end

cumulnumberpermachine(1)=0;

for i=1:numberofmachines-1

cumulnumberpermachine(i+1)=cumulnumberpermachine(i)+numberpermachine(i);

end

for i=1:numberofproducts

numberofstepsperproduct(i)=size(find(machineorder(i,:)),2);

end

matrix=[zeros(numberofproductionsteps,numberofproducts) -1*eye(numberofproductionsteps);

zeros(numberofproducts, numberofproducts) zeros(numberofproducts, numberofproductionsteps)];

previous=matrix; % for now!

rij=1;

for i=1:numberofmachines

for j=1:numberofproducts

for k=1:numberofstepsperproduct(j)

if machineorder(j,k)==i

if k==1

element=j;

matrix(rij,element)=1;

rij=rij+1;

else

vorige=machineorder(j,k-1);
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teller=0;

for m=1:j

for n=1:numberofstepsperproduct(m)

if machineorder(m,n)==vorige & ~(j==m & n>=k)

teller=teller+1;

end

end

end

element=numberofproducts+cumulnumberpermachine(vorige)+teller;

matrix(rij,element)=1;

rij=rij+1;

end

end

if k==numberofstepsperproduct(j)

laatste=machineorder(j,k);

teller=0;

for m=1:j

for n=1:numberofstepsperproduct(m)

if machineorder(m,n)==laatste & ~(j==m & n>=k)

teller=teller+1;

end

end

end

element=numberofproducts+cumulnumberpermachine(laatste)+teller+1;

matrix(numberofproductionsteps+j,element)=1;

end

end

end

end

previous=matrix-previous; % for ever!

function real=computereal(mmax, mdes, bc, util, realprev, bool)

temp1=mmax’.*(bc>=1)+mmax’.*(realprev==0 & bc>0 & bc<1 & bool);

temp5=max(0, temp1);

temp4=max(0, 1./(temp5-(temp5==0)))’;

temp2=util*min(1, 1./(temp4*max(0,mdes)’-((temp4*max(0,mdes)’)==0)));

real= max(0,mdes) .* temp2 .* (temp4>0);

function [bca, bcb, bcc, bcd, bce]=determinebc(Xd)

bca=Xd(1:6);

bcb=Xd(7:14);

bcc=Xd(15:25);

bcd=Xd(26:33);

bce=Xd(34:38);

function [boola, boolb, boolc, boold, boole]=determinebools(Realprevs, memory)

aantalrijen=size(Realprevs,1);

aantalkolommen=size(Realprevs,2);

if memory>aantalkolommen

memory=aantalkolommen;

end
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for i=1:aantalrijen

sumsquared(i)=sum(Realprevs(i,aantalkolommen-memory+1:aantalkolommen).^2);

end

boola=(sumsquared(1:6)==0)’;

boolb=(sumsquared(7:14)==0)’;

boolc=(sumsquared(15:25)==0)’;

boold=(sumsquared(26:33)==0)’;

boole=(sumsquared(34:38)==0)’;

function [realpreva, realprevb, realprevc, realprevd, realpreve]=determineprev(realprev)

realpreva=realprev(1:6);

realprevb=realprev(7:14);

realprevc=realprev(15:25);

realprevd=realprev(26:33);

realpreve=realprev(34:38);
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Appendix C

Sample χ-output of the Matlab
GUI code generator

// CONSTANTS BELOW ARE GENERATED BY THE MATLAB-PROGRAM REENTRANT.M

// THIS CHI 0.7 PROGRAM WAS ENTIRELY GENERATED BY MATLAB ON 26-Mar-2002 AT 10:34

// DO NOT EDIT WITHOUT KNOWLEDGE OF THE CHI-FORMALISM.

const simulationtime :real = 25.0

, timestep :real = 0.010000

, numberofstates :nat = 43

, numberofproducts :nat = 5

, numberofmachines :nat = 5

, numberofproductionsteps :nat = 38

, cumulagesperproduct :nat^ 5 = <0,6,12,22,32>

, numberpermachine :nat^ 5 = <6,8,11,8,5>

, cumulnumberpermachine :nat^ 5 = <0,6,14,25,33>

, cumulnumberpermachine2 :nat^ 5 = <6,14,25,33,38>

, prodlist :nat^ 43 = <0,6,14,25,33,38,34,26,15,7,1,39,2,8,16,9,

17,27,18,28,35,40,3,29,19,30,20,10,21,11,

36,41,22,31,23,32,4,12,5,13,24,37,42>

, previdx :nat^ 38 = <38,7,40,41,32,12,0,15,2,16,20,21,4,5,6,26,

8,9,27,29,30,10,42,31,13,14,34,17,18,3,19,

22,23,25,39,28,11,24>

, firststep :nat^ 5 = <0,34,2,3,22>

, rowmachineorder :nat^ 50 = <1,2,3,4,5,0,0,0,0,0,5,4,3,2,1,0,0,0,0,0,

1,2,3,2,3,4,3,4,5,0,1,4,3,4,3,2,3,2,5,0,

3,4,3,4,1,2,1,2,3,5>

, inputrates :real^ 5 = <5.000,5.000,5.000,5.000,5.000>

// DO NOT EDIT BELOW THIS LINE. THE CONFIGURATION OF THE RE-ENTRANT FLOW-SHOP

// IS ENTIRELY CONTROLLED BY THE PARAMETERS ABOVE.

type loggen = real#nat#nat

, id = nat

, timestamp = real

, prodtype = nat

111
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, age = nat

, lot= (id#timestamp#prodtype#age)

, rate= real

, extlot=lot#real

proc G (reqlengthgen: ?(nat^numberofstates), inputgen: !lot) =

|[ ident: nat^numberofproducts, bc: nat^numberofstates, i: nat, nextinput: real^numberofproducts

| i:=0

; *[ i < numberofproducts -> ident.i:=1

; [ inputrates.i > 0.0 -> nextinput.i:=1/inputrates.i

| inputrates.i = 0.0 -> nextinput.i:=2*simulationtime

]

; i:=i+1

]

; reqlengthgen?bc // ontvang nulwaarden voor de bc-s als beginconditie van proces buffercontents

; *[ reqlengthgen?bc -> skip

| j: nat <- 0..numberofproducts: delta nextinput.j-time -> inputgen!<ident.j, time, j, 0>

; ident.j:=ident.j+1

; nextinput.j:=time+1/inputrates.j

; reqlengthgen?bc

]

]|

proc B (machineupdate: !(bool^numberofmachines), getinfo: ?(nat#int),

mrates: !(rate^numberofproductionsteps), inputgen: ?lot,

inputmac: (?lot)^numberofmachines, outputmac: (!extlot)^numberofmachines,

updatelength: !(nat^2)) =

|[ x: lot, xs: (lot*)^numberofstates, t,m,list: nat, machinebusy: bool^numberofmachines,

processtime: real, product: int, productnat: nat,

maxrates: rate^numberofproductionsteps

| t:=0

; *[ t < numberofmachines -> machinebusy.t:=false; t:=t+1 ]

; t:=0

; *[ t < numberofstates -> xs.t:=[]; t:=t+1 ]

; maxrates:= <5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,

5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,

5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000,

5.000,5.000,5.000,5.000,5.000,5.000,5.000,5.000>

; mrates!maxrates

; machineupdate!machinebusy // start sim: send status to the controller

; *[ inputgen?x -> list:=prodlist.((cumulagesperproduct.(x.2)) + x.3)

; xs.list := xs.list++[x]

; updatelength!<list, len(xs.list)>

| i: nat <- 0..numberofmachines: inputmac.i?x -> list:=prodlist.((cumulagesperproduct.(x.2)) + x.3)

; machinebusy.i:=false

; machineupdate!machinebusy

; xs.list := xs.list++[x]

; updatelength!<list,len(xs.list)>

| getinfo?<m, product> -> productnat:=i2n(product)

; processtime:=1/(maxrates.productnat)

; outputmac.m!<hd(xs.productnat), processtime>

; machinebusy.m:=true

; machineupdate!machinebusy

; xs.productnat:=tl(xs.productnat)
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; updatelength!<productnat, len(xs.productnat)>

]

]|

proc buffercontents(updatelength: ?(nat^2), requestlengths

, reqlengthgen: !(nat^numberofstates), output: !file)=

|[ t: nat, bc: nat^numberofstates, info: nat^2

// info has 2 elements: 0: buffernumber and 1: bufferlength

| t:=0

; output!numberofproducts," ",numberofmachines," ",rowmachineorder,nl()

; *[ t < numberofstates -> bc.t:=0; t:=t+1 ]

; output!time," "; t:=0; *[ t< numberofstates -> output!bc.t," "; t:=t+1]; output!nl()

; reqlengthgen!bc

; *[ true -> updatelength?info

; bc.(info.0):=info.1

; output!time," "

; t:=0; *[t < numberofstates -> output!bc.t," "; t:=t+1]

; output!nl()

; reqlengthgen!bc

; requestlengths!bc

]

]|

proc C(machineupdate: ?(bool^numberofmachines), mrates: ?(rate^numberofproductionsteps)

, cdesrates: ?rate^numberofstates, getinfo: !(nat#int)

, requestlengths: ?(nat^numberofstates))=

|[ maxrates: rate^numberofproductionsteps, desrates: rate^numberofstates, t:nat

, bc, released: nat^numberofstates, cumul, diffs: real^numberofstates

, scaledrates: rate^numberofstates, machinebusy: bool^numberofmachines

, bestchoice: int^numberofmachines

| t:=0

; *[ t < numberofmachines -> bestchoice.t:=-1; t:=t+1 ]

; t:=0

; *[ t < numberofstates -> cumul.t:=0.0; released.t:=0; scaledrates.t:=0.0; t:=t+1 ]

; mrates?maxrates // start sim: import maxrates from proces B

; machineupdate?machinebusy // start sim: import machine status from proces B

; *[ machineupdate?machinebusy -> diffs:=computereldiffs(cumul, released)

; bestchoice:=computebestchoice(diffs, bc)

| j: nat <- 0..numberofmachines: machinebusy.j = false and bestchoice.j /= -1

; getinfo!<j, bestchoice.j> -> released.(i2n(bestchoice.j)):=released.(i2n(bestchoice.j))+1

; diffs:=computereldiffs(cumul, released)

; bestchoice:=computebestchoice(diffs, bc)

| requestlengths?bc -> bestchoice:=computebestchoice(diffs, bc)

| cdesrates?desrates -> scaledrates:=computescaled(desrates, maxrates)

; t:=0

; *[ t<numberofstates -> cumul.t:= cumul.t + scaledrates.t * timestep

; t:=t+1

]

; diffs:=computereldiffs(cumul, released)

; bestchoice:=computebestchoice(diffs, bc)

]

]|



114 Appendix C. Sample χ-output of the Matlab GUI code generator

func computescaled(desrates: rate^numberofstates

, maxrates: rate^numberofproductionsteps) -> rate^numberofstates =

|[ t, i: nat, egdmax: rate^numberofproductionsteps, newscaledrates: rate^numberofstates

, inproduct: real^numberofmachines, inpr: real

| t:=0

; *[ t < numberofmachines -> inproduct.t:=0.0; t:=t+1 ]

; t:=0

; *[ t<numberofproductionsteps -> egdmax.t:=1/maxrates.t; t:=t+1 ]

; t:=0

; *[ t<numberofmachines ->

i:=0

; *[i < numberpermachine.t ->

inproduct.t := inproduct.t + desrates.(i+cumulnumberpermachine.t) * ...

... egdmax.(i+cumulnumberpermachine.t)

; i:=i+1

]

; t:=t+1

]

; t:=0

; *[ t<numberofproductionsteps -> i:=numberofmachines-1

; *[ cumulnumberpermachine.i > t -> i:=i-1 ]

; inpr:=inproduct.i

; newscaledrates.t := desrates.t / max(1.0,inpr)

; t:=t+1

]

; t:=numberofproductionsteps

; *[ t<numberofstates -> newscaledrates.t:=desrates.t

; t:=t+1

]

; ret newscaledrates

]|

func computereldiffs(cumul: real^numberofstates, released: nat^numberofstates) -> real^numberofstates =

|[ t: nat, diffs: real^numberofstates

| t:=0

; *[ t < numberofstates -> [ cumul.t > 0 -> diffs.t:=(cumul.t-released.t)/cumul.t

; [ diffs.t < 0.00000000001 -> diffs.t:=0.0

| diffs.t >=0.00000000001 -> skip

]

| cumul.t = 0 -> diffs.t:=0.0

]

; t:=t+1

]

; ret diffs

]|

func computebestchoice(diffs: real^numberofstates, bc: nat^numberofstates)

-> int^numberofmachines =

|[ t, i: nat, bestchoice: int^numberofmachines, biggestdiff: real^numberofmachines

| t:=0

; *[ t < numberofmachines -> bestchoice.t:=-1; biggestdiff.t:=0.0; t:=t+1 ]

; i:=0; t:=0

; *[ i < numberofmachines ->

*[ t < cumulnumberpermachine2.i ->
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[ diffs.t > 0 and bc.t > 0 and diffs.t > biggestdiff.i -> biggestdiff.i := diffs.t

; bestchoice.i := n2i(t)

| diffs.t <=0 or bc.t <=0 or diffs.t <=biggestdiff.i -> skip

]

; t:=t+1

]

; i:=i+1

]

; ret bestchoice

]|

proc M (in1: ?extlot, out1: !lot) =

|[ lotwithtime: extlot, prod: lot

| *[ true -> in1?lotwithtime; prod:=lotwithtime.0; delta lotwithtime.1

; prod.3:=prod.3+1; out1!prod

]

]|

proc iodata(cdesrates: !rate^numberofstates)=

|[ MLtimeOK: bool, newdesiredprodrates: rate^numberofstates

| *[ true -> MLtimeOK:=true

; [ not MLtimeOK -> skip

| MLtimeOK -> newdesiredprodrates:= <3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,3.000,3.000,3.000,3.000,

3.000,3.000,1.000,1.000,1.000,1.000,

1.000>

; cdesrates!newdesiredprodrates

]

; [ time > simulationtime -> terminate

| time <=simulationtime -> skip

]

; delta timestep

]

]|

syst REENTRANT()=

|[ inputgen: -lot, mrates: -rate^numberofproductionsteps, getinfo: -(nat#int),

cdesrates: -rate^numberofstates, inputmac: (-lot)^numberofmachines,

outputmac: (-extlot)^numberofmachines, updatelength: -nat^2, requestlengths,

reqlengthgen: -nat^numberofstates, machineupdate: -bool^numberofmachines

| G( reqlengthgen, inputgen )

|| i: nat <- 0..numberofmachines: M( outputmac.i, inputmac.i )

|| iodata( cdesrates )

|| B( machineupdate, getinfo, mrates, inputgen, inputmac, outputmac, updatelength )

|| buffercontents( updatelength, requestlengths, reqlengthgen, fileout("02032601.crf"))

|| C( machineupdate, mrates, cdesrates, getinfo, requestlengths )

]|

xper=|[ REENTRANT() ]|
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Appendix D

System identification source
models and matrices

D.1 GBME flowline with one product type

const pi : real = 3.1415926536

, simulationtime: real = 10000.0

func chirp(c, a, f0, f1, t: real) -> real =

|[ behta: real

| behta:=(f1 - f0) / simulationtime

; ret c + a * cos(2 * pi * (behta / 2 * (t^2) + f0 * t ))

]|

proc G (a: ~void) =

|[ u:real

| *[ time < simulationtime -> u:=chirp(3.0, 1.0, 0.01, 0.001, time)

; delta 1/u

; a~

]

; delta 100; terminate

]|

proc B (a, b: ~void, c: !file, bc: nat) =

|[ x: nat

| x:=bc

; *[ true; a~ -> x:=x+1

; c!time,tab(),x,nl()

| x > 0; b~ -> x:=x-1

; c!time,tab(),x,nl()

]

]|

117



118 Appendix D. System identification source models and matrices

proc M (a, b: ~void) =

|[ m: real

| *[ true -> a~

; m:=chirp(3.0, 1.5, 0.005, 0.05, time)

; delta 1/m

; b~

]

]|

proc E (a: ~void, b: !file) =

|[ x: nat

| x:=0

; *[ true -> a~; x:=x + 1

; b!time,tab(),x,nl()

]

]|

syst Model() =

|[ a, b, c: -void

| G( a )

|| B( a, b, fileout("buffer.txt"), 250 )

|| M( b, c )

|| E( c, fileout("stock.txt") )

]|

xper =

|[ Model() ]|

D.2 Matrices of state space model GBME flowline with
one product type

The identified state space model of this discrete event system is:

A =

(
1 0
0 1

)
,

B = 1, 0 · 10−3 ×
(

0.0005 0.0006
−0.2326 0.2325

)
,

C = 1, 0 · 105 ×
(

0.0034 −0.0431
8.8122 0.0190

)
,

D =

(
0 0
0 0

)
,

K = 1, 0 · 10−4 ×
(

0.0010 0.0017
−0.4766 −0.2638

)
.
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D.3 GBMBMBME flowline with one product type

const pi : real = 3.1415926536

, simulationtime: real = 10000.0

func chirp(c, a, f0, f1, t: real) -> real =

|[ behta: real

| behta:=(f1-f0)/simulationtime

; ret c+a*cos(2*pi * ( behta/2*(t^2) + f0*t ))

]|

proc G (a: ~void) =

|[ u:real

| *[ time < simulationtime -> u:=chirp(3.0, 1.0, 0.01, 0.0001, time)

; delta 1/u; a~

]

; delta 50; terminate

]|

proc B (a, b: ~void, c: !file, bc: nat) =

|[ x: nat

| x:=bc

; *[ true; a~ -> x:=x+1; c!time,tab(),x,nl()

| x > 0; b~ -> x:=x-1; c!time,tab(),x,nl()

]

]|

proc M (a, b: ~void, con, amp, f0, f1: real) =

|[ m: real

| *[ true -> a~

; m:=chirp(con, amp, f0, f1, time)

; delta 1/m

; b~

]

]|

proc E (a: ~void, b: !file) =

|[ x: nat

| x:=0

; *[ true -> a~; x:=x+1; b!time,tab(),x,nl() ]

]|

syst Model() =

|[ a, b, c, d, e, f, g: -void

| G( a )

|| B( a, b, fileout("buffer1.txt"), 500 ) || M( b, c, 3.0, 1.5, 0.0001, 0.05 )

|| B( c, d, fileout("buffer2.txt"), 500 ) || M( d, e, 3.0, 0.5, 0.03, 0.0007 )

|| B( e, f, fileout("buffer3.txt"), 1100 ) || M( f, g, 3.0, 2.0, 0.00001, 0.01 )

|| E( g, fileout("stock.txt") )

]|

xper =

|[ Model() ]|
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D.4 Matrices of state space model GBMBMBME flowline
with one product type

The identified state space model of this discrete event system is:

A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

B = 1, 0 · 10−3 ×

⎛
⎜⎜⎝

0.0002 0.0003 0.0004 0.0002
−0.0340 −0.0399 −0.0174 0.0912
−0.1668 0.0390 0.1612 −0.0332
−0.0966 0.2732 −0.1968 0.0210

⎞
⎟⎟⎠ ,

C = 1, 0 · 105 ×

⎛
⎜⎜⎝

0.0073 −0.0071 −0.0399 −0.0321
0.0052 −0.0152 −0.0184 0.0370
0.0096 −0.0947 0.0297 −0.0181
8.6429 0.0848 −0.0071 0.0025

⎞
⎟⎟⎠ ,

D =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

K = 1, 0 · 10−4 ×

⎛
⎜⎜⎝

0.0003 0.0005 0.0007 0.0010
−0.0480 −0.0717 −0.0863 0.0288
−0.2172 −0.2132 −0.0938 −0.1228
−0.1378 0.0206 −0.1430 −0.1129

⎞
⎟⎟⎠ .
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D.5 GBMBME re-entrant flowline with one product type

const pi : real = 3.1415926536

, simulationtime: real = 10000.0

, timestep : real = 0.01

type lot=bool

func chirp(c, a, f0, f1, t: real) -> real =

|[ behta: real

| behta:=(f1-f0)/simulationtime

; ret c+a*cos(2*pi * ( behta/2*(t^2) + f0*t ))

]|

proc G (a: !lot) =

|[ u:real

| *[ time < simulationtime -> u:=chirp(1.5, 1.0, 0.01, 0.0001, time)

; delta 1/u

; a!false

]

; delta 50; terminate

]|

proc B (a: (?lot)^2, b: !lot, c, d: !file, toc: !(nat^2)^2, fromc: ?nat, bc: nat^2) =

|[ n: nat^2, x: lot, best: nat, released: nat^2, next, go: bool

| n:=bc

; go:=false

; released:=<0,0>

; *[ j: nat <- 0..2: true; a.j?x -> n.j:= n.j + 1

; [ j=0 -> c!time,tab(),n.0,nl()

| j=1 -> d!time,tab(),n.1,nl()

]

| rel(n) and go; b!next -> released.best:=released.best+1

; n.best:= n.best - 1

; [ best=0 -> c!time,tab(),n.0,nl()

| best=1 -> d!time,tab(),n.1,nl()

]

| true; toc!<n, released> -> fromc?best

; [ best = 0 -> next:=false; go:=false

| best = 1 -> next:=false; best:=0; go:=true

| best = 2 -> next:=true; best:=1; go:=true

]

]

]|

func rel(n: nat^2) -> bool =

|[ ret (n.0 > 0 or n.1 > 0) ]|

proc E (a: ?lot, b: !file) =

|[ x: lot, n: nat

| n:=0

; *[ true -> a?x; n:=n+1; b!time,tab(),n,nl() ]

]|
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proc C (fromb: ?(nat^2)^2, tob: !nat)=

|[ c: real^2, m: real^2, datab: (nat^2)^2, bc, released: nat^2

, relative: real^2, best: nat

| c:=<0.0,0.0>

; *[ true -> m.0:=chirp(2.5, 1.0, 0.01, 0.0001, time)

; m.1:=chirp(2.5, 1.5, 0.0005, 0.05, time)

; c.0:=c.0+m.0*timestep

; c.1:=c.1+m.1*timestep

; fromb?datab

; bc:=datab.0

; released:=datab.1

; relative.0:=(c.0-released.0)/c.0

; relative.1:=(c.1-released.1)/c.1

; best:=decision([relative.0, relative.1], [bc.0, bc.1])

; tob!best

; delta timestep

]

]|

func decision(diffs: real*, conts: nat*) -> nat =

|[ i, number, index: nat, record: real, c: bool

| i:=1; number:=len(diffs); record:=0.0; index:=0

; *[ i <= number -> c:= hd(diffs) > 0 and hd(conts) > 0 and hd(diffs) > record

; [ c -> index:=i

; record:=hd(diffs)

| not c -> skip

]

; diffs:=tl(diffs)

; conts:=tl(conts)

; i:=i+1

]

; ret index

]|

proc M (a: ?lot, b, c: !lot) =

|[ x: lot, m1, m2: real

| *[ true -> a?x; [ not x -> m1:=chirp(3.0, 0.25, 0.00005, 0.02, time)

; delta 1/m1

; x:=true

; b!x

| x -> m2:=chirp(3.0, 0.5, 0.0003, 0.07, time)

; delta 1/m2

; c!x

]

]

]|
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syst Model() =

|[ a: (-lot)^2, b, c: -lot, bc: -(nat^2)^2, cb: -nat

| G( a.0 )

|| B( a, b, fileout("buffer1.txt"), fileout("buffer2.txt"), bc, cb, <700, 500> )

|| M( b, a.1, c )

|| C( bc, cb )

|| E( c, fileout("stock.txt") )

]|

xper =

|[ Model() ]|

D.6 Matrices of state space model GBMBME re-entrant
flowline with one product type

The identified state space model of this discrete event system is:

A =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ ,

B = 1, 0 · 10−3 ×
⎛
⎝ 0.0025 0.0003 0.0006 0.0001 0.0000

0.0354 0.1670 −0.1857 −0.0096 −0.0021
−1.9377 1.9038 0.2230 0.1423 0.1174

⎞
⎠ ,

C = 1, 0 · 105 ×
⎛
⎝ 0.9842 −0.0123 −0.0065

0.0061 0.0504 0.0011
1.9677 −0.0307 0.0043

⎞
⎠ ,

D =

⎛
⎝ 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎠ ,

K = 1, 0 · 10−3 ×
⎛
⎝ 0.0003 0.0003 0.0008

−0.0117 0.1248 −0.0638
−0.6415 0.2430 0.6465

⎞
⎠ .
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D.7 GBMBME re-entrant flowline with two product types

const pi : real = 3.1415926536

, simulationtime: real = 10000.0

, timestep : real = 0.01

type lot=nat#bool

// lot.0 is product type: 0 or 1

// lot.1 is production stage: first stage: false; second stage: true

func chirp(c, a, f0, f1, t: real) -> real =

|[ behta: real

| behta:=(f1-f0)/simulationtime

; ret c+a*cos(2*pi * ( behta/2*(t^2) + f0*t ))

]|

proc G (a: !lot) =

|[ u, next: real^2

| u:=<1.5, 1.5>

; next:=<2/3,2/3>

; *[ j: nat <- 0..2: time < simulationtime; delta next.j-time

-> a!<j, false>

; [ j=0 -> u.j:=chirp(1.5, 1.0, 0.01, 0.0001, time)

| j=1 -> u.j:=chirp(1.5, 1.0, 0.0001, 0.01, time)

]

; next.j:=time+1/u.j

]

; delta 50; terminate

]|

func rel(n: (nat^2)^2) -> bool =

|[ ret (n.0.0 > 0 or n.0.1 > 0 or n.1.0 > 0 or n.1.1 >0) ]|

func decision(diffs: real*, conts: nat*) -> nat =

|[ i, number, index: nat, record: real, c: bool

| i:=1; number:=len(diffs); record:=0.0; index:=0

; *[ i <= number -> c:= hd(diffs) > 0 and hd(conts) > 0 and hd(diffs) > record

; [ c -> index:=i

; record:=hd(diffs)

| not c -> skip

]

; diffs:=tl(diffs)

; conts:=tl(conts)

; i:=i+1

]

; ret index

]|
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// n.0.i number of products in first stage for product 0 and 1 (i=0 and i=1)

// n.1.i number of products in second stage for product 0 and 1 (i=0 and i=1)

proc B (a: (?lot)^2, b: !lot, c,d,e,f: !file, toc: !((nat^2)^2)^2, fromc: ?nat, bc: (nat^2)^2) =

|[ x: lot, n: (nat^2)^2, go: bool, released: (nat^2)^2, next: lot, best: nat, bestg: nat^2

| n:=bc

; go:=false

; released:=<<0,0>,<0,0>>

; *[ j: nat <- 0..2: true; a.j?x -> [ x.0 = 0 -> n.j.0 := n.j.0 + 1

; [ j = 0 -> c!time,tab(),n.0.0,nl()

| j = 1 -> d!time,tab(),n.0.1,nl()

]

| x.0 = 1 -> n.j.1 := n.j.1 + 1

; [ j = 0 -> e!time,tab(),n.1.0,nl()

| j = 1 -> f!time,tab(),n.1.1,nl()

]

]

| rel(n) and go; b!next -> released.(bestg.0).(bestg.1):=released.(bestg.0).(bestg.1)+1

; n.(bestg.0).(bestg.1):=n.(bestg.0).(bestg.1)-1

; [ bestg = <0,0> -> c!time,tab(),n.0.0,nl()

| bestg = <0,1> -> d!time,tab(),n.0.1,nl()

| bestg = <1,0> -> e!time,tab(),n.1.0,nl()

| bestg = <1,1> -> f!time,tab(),n.1.1,nl()

]

| true; toc!<n, released> -> fromc?best

; [ best = 0 -> next:=<0,false>; go:=false

| best = 1 -> next:=<0,false>; bestg:=<0,0>; go:=true

| best = 2 -> next:=<0,true> ; bestg:=<0,1>; go:=true

| best = 3 -> next:=<1,false> ; bestg:=<1,0>; go:=true

| best = 4 -> next:=<1,true> ; bestg:=<1,1>; go:=true

]

]

]|

proc M (a: ?lot, b, c: !lot) =

|[ x: lot, m00, m01, m10, m11: real

| *[ true -> a?x; [ not x.1 -> [ x.0 = 0 -> m00:=chirp(6.0, 0.5, 0.01, 0.0001, time)

; delta 1/m00

; x.1:=true

; b!x

| x.0 = 1 -> m01:=chirp(6.0, 0.25, 0.0001, 0.01, time)

; delta 1/m01

; x.1:=true

; b!x

]

| x.1 -> [ x.0 = 0 -> m10:=chirp(6.0, 0.75, 0.04, 0.0004, time)

; delta 1/m10

; c!x

| x.0 = 1 -> m11:=chirp(6.0, 1.0, 0.0003, 0.03, time)

; delta 1/m11

; c!x

]

]

]

]|
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proc C (fromb: ?((nat^2)^2)^2, tob: !nat)=

|[ c: (real^2)^2, m: (real^2)^2, datab: ((nat^2)^2)^2, bc

, released: (nat^2)^2, relative: (real^2)^2, best: nat

| c:=<<0.0,0.0>,<0.0,0.0>>

; *[ true -> m.0.0:=chirp(5.0, 1.0, 0.01, 0.0001, time)

; m.0.1:=chirp(5.0, 1.5, 0.0005, 0.05, time)

; m.1.0:=chirp(5.0, 0.5, 0.05, 0.0005, time)

; m.1.1:=chirp(5.0, 1.0, 0.0001, 0.01, time)

; c.0.0:=c.0.0+m.0.0*timestep

; c.0.1:=c.0.1+m.0.1*timestep

; c.1.0:=c.1.0+m.1.0*timestep

; c.1.1:=c.1.1+m.1.1*timestep

; fromb?datab

; bc:=datab.0

; released:=datab.1

; relative.0.0:=(c.0.0-released.0.0)/c.0.0

; relative.0.1:=(c.0.1-released.0.1)/c.0.1

; relative.1.0:=(c.1.0-released.1.0)/c.1.0

; relative.1.1:=(c.1.1-released.1.1)/c.1.1

; best:=decision([relative.0.0, relative.0.1, relative.1.0, relative.1.1],

[bc.0.0, bc.0.1, bc.1.0, bc.1.1])

; tob!best

; delta timestep

]

]|

proc E (a: ?lot, b,c: !file) =

|[ x: lot, n: nat^2

| n:=<0, 0>

; *[ true -> a?x; n.(x.0):=n.(x.0)+1; [ x.0 = 0 -> b!time,tab(),n.0,nl()

| x.0 = 1 -> c!time,tab(),n.1,nl()

]

]

]|

syst Model() =

|[ a: (-lot)^2, b, c: -lot, bc: -((nat^2)^2)^2, cb: -nat

| G( a.0 )

|| B( a, b, fileout("buffer11.txt"), fileout("buffer12.txt")

, fileout("buffer21.txt"), fileout("buffer22.txt"), bc, cb, <<800, 600>, <400, 200>> )

|| M( b, a.1, c )

|| C( bc, cb )

|| E( c, fileout("stock1.txt"), fileout("stock2.txt") )

]|

xper =

|[ Model() ]|
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D.8 Matrices of state space model GBMBME re-entrant
flowline with two product types

The identified state space model of this discrete event system is:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B = 1,0 ·10−3×

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.059 0.023 0.042 0.000 0.000 −0.009 0.035 −0.053 0.000 0.000
0.037 0.136 0.015 −0.071 −0.017 0.114 −0.014 −0.001 −0.009 −0.022
−0.149 −0.011 −0.093 −0.036 0.014 0.043 0.008 0.087 0.012 0.012
0.153 0.185 −0.049 0.602 −0.231 −0.017 −0.227 −0.279 −0.000 0.008
0.011 0.017 0.003 0.128 1.438 0.009 −0.006 −0.008 −0.093 −0.062
2.004 1.773 −0.611 −0.173 0.059 −0.842 −2.920 −3.759 −0.059 −0.080

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C = 1, 0 · 105 ×

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0135 0.0083 −0.0295 0.0001 0.0007 0.0002
0.0086 0.0398 0.0062 0.0007 0.0005 −0.0000
0.0012 0.0026 −0.0119 −0.0002 −0.0020 −0.0002
0.0005 −0.0105 −0.0021 −0.0013 0.0020 −0.0001
2.7145 −0.0129 0.0050 0.0021 −0.0002 −0.0000
2.7142 −0.0012 0.0075 −0.0017 −0.0007 0.0001

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

K = 1, 0 · 10−3 ×

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0000 0.0000 0.0001 0.0001 0.0002 0.0002
0.0024 0.0104 −0.0007 −0.0034 −0.0086 −0.0066
−0.0120 −0.0005 −0.0130 −0.0028 0.0057 0.0071
0.0075 0.0052 −0.0134 −0.0333 0.0818 −0.0534
0.0721 0.0479 −0.1962 0.0449 −0.0357 −0.0761
0.4419 −0.4778 −1.6435 −0.9335 −0.7198 −0.0886

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Appendix E

State space realization

E.1 GBME flowline

E.1.1 χ-model

The following source code has been used to simulate the GBME flowline with only
one product type. The black colored model is based on integration strategy 1 (see
Section 6.3). The black colored model with the red additions is the model based on
integration strategy 2.

const simulationtime: real = 100.0

, timestep : real = 0.001

// g(time)=1.5+sin(0.5 * time)

// Integrated: G(time)=1.5*time-2*cos(0.5*time)+2 G(0)=0

proc G (a: ~void) =

|[ Gi:real, released: nat

| released:=0

; *[ time < simulationtime -> Gi:=1.5*time-2*cos(0.5*time)+2

; [ Gi >= released+1 -> a~; released:= released + 1

| Gi < released+1 -> delta timestep

]

]

; delta 10; terminate

]|

proc B (a, b: ~void, c: !file, bc: nat) =

|[ x: nat

| x:=bc

; *[ true; a~ -> x:=x+1; c!time,tab(),x,nl()

| x > 0; b~ -> x:=x-1; c!time,tab(),x,nl()

]

]|
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// maxrate=1.5, process time=1/1.5

// m(time)=1+0.5*sin(0.2*time)

// Integrated: M(time)=time-2.5*cos(0.2*time)+2.5 M(0)=0

proc M (a, b: ~void) =

|[ Mi: real, processed: nat

| processed:=0

; *[ true -> Mi:=(time+1/1.5)-2.5*cos(0.2*(time+1/1.5))+2.5

; [ Mi >= processed + 1 -> a~; delta 1/1.5; processed:=processed + 1; b~

| Mi < processed + 1 -> delta timestep

]

]

]|

proc E (a: ~void, b: !file) =

|[ x: nat

| x:=0

; *[ true -> a~; x:=x+1; b!time,tab(),x,nl() ]

]|

syst Model() =

|[ a, b, c: -void

| G( a )

|| B( a, b, fileout("buffermplus.txt"), 0 )

|| M( b, c )

|| E( c, fileout("stockmplus.txt") )

]|

xper =

|[ Model() ]|
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E.1.2 Simulink model

The following Simulink model has been used to simulate the state space models
obtained by realization techniques and model reduction techniques. The third (most
below) part of this model is a model using pure time delay functions of Simulink. In
fact, this model simulates the behavior of the differential equations 6.8 without Padé
approximations.

input rate generator

error stock

error buffer

desired rate machine

stockred

stockpuredelay

bufferpuredelay

bufferred

stockorig

bufferorig

x’ = Ax+Bu
 y = Cx+Du

Reduced
model order
state space

x’ = Ax+Bu
 y = Cx+Du

Original state space
with Pade

1
s

1
s

Delay

Figure E.1: Simulink model of the GBME flowline.
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E.2 GBMBMBME flowline

E.2.1 χ-model

The following source code has been used to simulate the GBMBMBME flowline with
only one product type. The black colored model is based on integration strategy 1 (see
Section 6.3). The black colored model with the red additions is the model based on
integration strategy 2.

const simulationtime: real = 100.0

, timestep : real = 0.001

//g(time) = 1.5 + sin (0.5 * time)

//Integrated: G(time) = 1.5*time - 2 * cos (0.5 * time) + 2 G(0)=0

proc G (a: ~void, bias, ampl, freq, phaselag: real) =

|[ Gi:real, released: nat

| released:=0

; *[ time < simulationtime

-> Gi:=bias*time-ampl/freq*cos(freq*time-phaselag)+ampl/freq*cos(-phaselag)

; [ Gi >= released+1 -> a~; released:=released+1

| Gi < released+1 -> delta timestep

]

]

; delta 10; terminate

]|

proc B (a, b: ~void, c: !file, bc: nat) =

|[ x: nat

| x:=bc

; *[ true; a~ -> x:=x+1; c!time,tab(),x,nl()

| x > 0; b~ -> x:=x-1; c!time,tab(),x,nl()

]

]|

// m_des(time) = mbias+mampl*sin(mfreq*time+phaselag)

// Integrated: M_des(time)= mbias*time-mampl/mfreq*cos(mfreq*time+phaselag)+mampl/mfreq*cos(phaselag)

// Initial condition: M(0)=0

proc M (a, b: ~void, mmax, mbias, mampl, mfreq, phaselag: real, id: nat) =

|[ Mi: real, processed: nat

| processed:=0

; *[ true

-> Mi:=mbias*(time+1/mmax)-mampl/mfreq*cos(mfreq*(time+1/mmax)+phaselag)+(mampl/mfreq*cos(phaselag))

; [ Mi >= processed + 1 -> a~; delta 1/mmax; processed:=processed + 1; b~

| Mi < processed + 1 -> delta timestep

]

]

]|
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proc E (a: ~void, b: !file) =

|[ x: nat

| x:=0

; *[ true -> a~; x:=x+1; b!time,tab(),x,nl() ]

]|

syst Model() =

|[ a, b, c, d, e, f, g: -void

| G( a, 1.5, 1.0, 0.5, 0.0 )

|| B( a, b, fileout("buffer1plus.txt"), 0 ) || M( b, c, 1.5, 1.0, 0.5, 0.2, 0.0, 2 )

|| B( c, d, fileout("buffer2plus.txt"), 0 ) || M( d, e, 1.0, 0.7, 0.3, 0.2, 1.0, 3 )

|| B( e, f, fileout("buffer3plus.txt"), 0 ) || M( f, g, 0.5, 0.3, 0.2, 0.2, 2.0, 4 )

|| E( g, fileout("buffer4plus.txt") )

]|

xper =

|[ Model() ]|
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E.3 Matrices of the 7 outputs state space model

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3.34 −2.48 −0.19 0.34 −1.11 0.42 0.35 0 −0.07 −0.16
1.86 −2.75 1.04 −1.04 −0.20 −0.88 1.22 0 −0.25 −0.55
−2.01 0.76 −0.67 1.72 0.30 0.68 −0.28 0 0.06 0.13
0.30 −1.38 0.384 −3.30 −2.30 −0.38 −0.65 0 0.13 0.30
−1.10 −0.36 −0.92 1.91 −2.64 0.94 −1.52 0 0.31 0.69
1.65 0.49 0.53 −1.94 0.54 −0.62 0.21 0 −0.04 −0.10
−1.98 1.16 −1.11 1.98 −1.17 1.06 −1.35 0 0.28 0.62

0 0 0 0 0 0 −0.36 −1.50 −2.12 0.17
0.41 −0.24 0.23 −0.41 0.24 −0.22 0.03 0.34 −1.51 −0.01
0.90 −0.53 0.51 −0.90 0.53 −0.48 0.73 −0.16 0.53 −0.33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.03 1.10 0.06 0
0.29 −0.77 1.09 0
−0.39 −1.59 1.78 0
−0.03 −1.10 −0.06 0
−0.42 0.80 0.26 0

0 1.68 2.05 0
0.68 −0.14 0.55 1
0 0 0 0

−0.14 0.03 −0.11 0.83
−0.31 0.07 −0.25 1.82

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.09 0.38 −0.21 0.09 −0.52 −0.18 0.70 0 −0.14 −0.32
−0.02 −2.37 0.58 0.02 2.31 −0.77 2.25 0 −0.47 −1.06
2.46 0.12 0.20 2.44 0.03 0.23 −0.14 0 −0.18 −0.39
0 0 0 0 0 0 0.20 3.29 0.17 0.36

0.03 0.29 −0.39 −0.03 −0.43 0 0.68 0 −0.14 −0.31
−0.01 −2.25 0.78 0.01 2.33 −0.54 2.31 0 −0.48 −1.05
2.46 0.12 0.20 2.44 0.03 0.23 0.06 0 −0.01 −0.03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(E.1)


