
Optimal Flow Control of a Manufacturing
System: an Introduction

M.A.R. Stoets (Michiel)

SE 420285

Master's Thesis

Supervisor: Prof.dr.ir. J.E. Rooda
Coach: Dr.ir. A.A.J. Lefeber

Eindhoven University of Technology

Faculty of Mechanical Engineering

Systems Engineering Group

Eindhoven, October 2001



Preface

This master's thesis is the �nal part of a �nal assignment at the Systems Engineering
Group of the Eindhoven University of Technology, the Department of Mechanical Engi-
neering. The �nal assignment is the closing part of a �ve years curriculum of becoming
a Master of Science in Mechanical Engineering, with a specialization in Systems Engi-
neering. The Systems Engineering group aims to develop methods, techniques and tools
for the design of advanced industrial systems. It focuses on production systems com-
prising multiple communicating subsystems that work in parallel. The �nal assignment
is performed in the Optimization and Control research theme.

I would like to gratefully acknowledge my coach, Erjen Lefeber, for his enthusiastic
help, numerous good suggestions, and constructive criticisms. Also, I would like to thank
Wolt Weterings and David van Steen for creating an excellent working atmosphere and
providing helpful feedback.

i



ii Preface



Summary

One of the important aspects in the design and control of manufacturing systems is the
presence of random machine failures. This temporarily reduction of production capac-
ity may cause the system not to meet its demand. Safety stocks are commonly used to
prevent such a backlog. This may incorporate unnecessary high and costly inventories
and work-in-process (WIP). Tradeo�s between backlog, inventory and WIP need to be
made. View the manufacturing system as a dynamical system in which some variables
are free to choose. Optimal control theory provides methods to derive a controller
that achieves the desired balance of costs. The objectives of this research are to in-
troduce the basic optimal control techniques, to provide an overview of the application
of those techniques related to failure prone manufacturing systems, and to apply the
optimal control techniques in a case. Often, a gap lies between complex, discrete-event
models and standard techniques adapted to continuous-time models. This gap can be
bridged by a concept of approximation. In the context of this research, Kimemia and
Gershwin [Kim83] have proposed a 
ow model. The 
ow of products is modeled here
as a continuous process, that enables the use of optimal control theory. The problem
of optimal control is to �nd an admissible control function that minimizes the perfor-
mance index subject to the system dynamics and constraints. The Minimum Principle
provides insight in the optimal system behavior for deterministic problems. Dynamic
programming provides means for deriving a feedback control law that achieves the op-
timal behavior also for stochastic problems. Literature is investigated that concerns
the application of optimal control theory as a method to design an optimal 
ow con-
troller to a failure prone manufacturing system. The focus lies on a two-machine 
ow
shop. A linear performance index leads to an optimal control policy de�ned by hedging
points. The control policy is then to produce at maximum rate, to demand, or not at
all. In a deterministic single machine case, a quadratic performance index is considered.
The control problem considers control constraints. Optimal control techniques are em-
ployed to �nd an optimal feedback control law. The resulting behavior shows graduate
changes between the maximum, demand, and zero production rates. Remaining diÆ-
culties are the integration of control constraints and derivation of an explicit solution
to the Hamilton-Jacobi-Bellman (HJB) equation. The 
ow model has been validated
by means of simulation. A separation of time scales for planning and operations has
been obtained that justi�es the application of the 
ow model. Further research to the
integration of state constraints, to the application of performance indices to describe
the desired behavior, and to better approximate, continuous-time models is suggested.
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Samenvatting (in Dutch)

E�en van de belangrijke aspecten bij het ontwerpen en regelen van fabricagesystemen
is de aanwezigheid van willekeurige machinestoringen. Een mogelijk gevolg van deze
tijdelijk reductie van productiecapaciteit is dat het systeem niet aan de vraag kan vol-
doen. Vaak wordt een veiligheidsvoorraad aangehouden om productieachterstand te
voorkomen. Echter, dit kan leiden tot onnodig hoge en dure voorraden in hoeveelhe-
den onderhanden werk (WIP). Dit roept om een afweging tussen productieachterstand,
voorraden en WIP. Het fabricagesysteem kan worden gezien als een dynamisch systeem
waarin enkele variabelen vrij mogen worden gekozen. Met behulp van optimale bestu-
ringstheorie is het mogelijk om een regelaar te vinden die de gewenste balans tussen
kosten realiseert. De doelen van dit onderzoek zijn als volgt gesteld. Introduceer de
fundamentele optimale regeltechnieken. Geef een overzicht hoe optimale regeltechnieken
toegepast kunnen worden in relatie tot storingsgevoelige fabricagesystemen. Pas deze
technieken toe in een casus. Modellen van fabricagesystemen zijn veelal complex van
aard en bevatten discrete gebeurtenissen. De standaard technieken op het vlak van op-
timalisatie en besturing zijn meestal toegespitst op modellen met een continu karakter.
Middels een benaderingsconcept kan deze kloof worden overbrugd. Kimemia en Gersh-
win [Kim83] hebben een stroommodel voorgesteld dat als benaderingsconcept in dit
onderzoek kan dienen. De modellering van de materiaalstroom als een continu process
maakt het mogelijk om optimale besturingstheorie toe te passen. Het beschouwde prob-
leem in optimale besturingstheorie is om een toelaatbare regelfunctie te vinden die een
kostencriterium minimaliseert waarbij aan de systeemdynamica en beperkingen voldaan
wordt. Het Minimum Principe geeft inzicht in het optimale systeemgedrag voor deter-
ministische problemen. Dynamisch programmeren maakt het mogelijk een teruggekop-
pelde regelaar af te leiden voor algemene problemen. De toepassing van optimale be-
sturingstheorie is onderzocht in de literatuur met betrekking tot het ontwerpen van een
optimale regeling voor de materiaalstroom in storingsgevoelige fabricagesystemen. De
nadruk ligt hierbij op een lijnproductiesysteem met twee machines. Een lineair kosten-
criterium leidt tot een regeling die gede�nieerd wordt door normvoorraden. De regeling
resulteert in het instandhouden van deze voorraadniveau's door maximale productie,
productie naar vraag of geen productie. Een kwadratisch kostencriterium is toegepast in
een casus betre�ende een deterministisch, enkel machine systeem. Hierbij zijn beperkin-
gen op de regelvariabelen meegenomen. Optimale regeltechnieken zijn toegepast bij het
vinden van een optimale regelwet met toestandsterugkoppeling. Het resulterende sys-
teemgedrag kenmerkt zich door de geleidelijke overgangen tussen maximale productie,
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productie naar vraag en geen productie. Het integreren van de beperkingen op de regel-
variabelen en het vinden van een oplossing voor de Hamilton-Jacobi-Bellman (HJB)
vergelijking blijven over als kenmerkende moeilijkheden. Door middel van simulatie is
het stroommodel gevalideerd. Een scheiding van tijdschalen voor productieplanning en
productie is bepaald die het gebruik van het stroommodel rechtvaardigt. Verder onder-
zoek is voorgesteld naar de integratie van beperkingen op de toestandsvariabelen, het
gebruik van een kostencriterium om een gewenst systeemgedrag te beschrijven en naar
beter benaderende continue modellen.
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Chapter 1

Introduction

One of the important aspects in the design and control of manufacturing systems is
the presence of random machine failures. This temporarily reduction of production
capacity may cause the system not to meet its demand. Safety stocks are commonly
used to prevent such a backlog. This may incorporate unnecessary high and costly
inventories and work-in-process (WIP) levels. Tradeo�s between backlog, inventory,
and WIP need to be made.

The introduction of safety stocks in the form of bu�ers also leads to new diÆculties.
As an example, consider a two-machine 
ow shop with a �nite bu�er as visualized in
Figure 1.1. The manufacturing system produces parts at some production rate. Both

M B M

Figure 1.1: A two-machine 
ow shop.

machines are subjected to random machine failures. The bu�er level is kept at a certain
safety level to prevent backlog. In the case that the �rst machine is down, the supply
of parts in the bu�er enables the second machine to continue production at the same
rate. After some time, when the �rst machine is still down, the supply of parts is
diminished and the second machine is starved. This could be prevented by setting the
second machine to a lower production rate when the �rst machine is down. Of course,
a higher safety level provides the same e�ect. But then a side e�ect is encountered
when the second machine is down and the �rst machine continues production at the
same rate. After some time, when the second machine is still down, the capacity of the
bu�er is reached and the �rst machine is blocked. Again, this could be prevented by
reducing the rate of production of the �rst machine. Therefore, the random machine
failures cause the need for some kind of control of the production rates.

The manufacturing system makes part of a larger system called the industrial system.
An industrial system is de�ned by Brandts [Bra93] as a system that produces products,
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2 Chapter 1. Introduction

for which in return it receives compensation. The industrial system is divided into a
products system and a production system. The products de�ne the industrial system's
relationship with its customers. The objective of the industrial system is to produce
products in the right quantity, at the right place, in the right moment, in the right
quality, and for the right price. These �ve attributes form the conditions under which
the production system must produce its products. The production system consist of
the following subsystems, as modeled by Rooda [Roo00]:

� the manufacturing system,

� the information system, and

� the �nancial system.

The �nancial system is not considered in this research. Renders [Ren99] de�nes the
manufacturing system, also called the primary system, as a set of resources, i.e., per-
sons, machines, materials, and tools, that maintains the 
ow of products. Similar, the
information system, also called the secondary system, is a set of resources that main-
tains the 
ow of materials. Part of the information system is the manufacturing control
system, shorthand control system, that controls the 
ow of products.

The problem for the control system is to ensure that the manufacturing system
achieves the desired tradeo� between inventory, backlog, and production. Costs can
be introduced to specify the desired tradeo�. A balance of costs is obtained when
the sum of costs is minimized. The control problem is then to �nd a control system
that minimizes the costs. Such an optimal control problem shows similarities with that
of an optimization problem. However, a solution to the optimization problem can be
considered as static, optimal values for design variables are sought that are constant.
The optimal control problem focuses on an optimal function that minimizes the costs.
To �nd such a control function, knowledge of the dynamics of the manufacturing system
is required. The concept of state equations is employed to deal with these dynamics.
Several methods from optimal control theory are provided to solve the control problem.
The use of state equations is complicated in practice due to the discrete nature of most
manufacturing systems. Kimemia and Gershwin [Kim83] propose a 
ow model that
models the 
ow of products as a continuous process. This simpli�es the use of state
equations and enables the use of optimal control theory to �nd a 
ow control that
minimizes the costs, such that set objectives are satis�ed.

The objectives of this research are:

� provide an overview of the application of optimal control theory in the 
ow control
of failure prone manufacturing systems,

� introduce the basic techniques of optimal control theory, such as the Minimum
Principle for the deterministic problem and dynamic programming for the general
problem,

� apply these techniques in a case to provide insight in the application of optimal
control theory, to understand the key diÆculties, and to consider possible results,
and
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� validate by means of simulation the applied concept of approximation.

The remainder of this report is organized as follows. In Chapter 2 is explained what
is considered as control design in this research. Concepts such as design, dynamical
system, interconnection, and control problem are reviewed. Also a concept of approxi-
mation is presented that may be of use in the control design process. Chapter 3 deals
with the basics of optimal control theory. A performance index is introduced to specify
the desired tradeo� between costs. The optimal control problem is formulated as to �nd
a function that minimizes the performance index subject to the system dynamics and
constraints. Methods to derive a solution to the optimal control problem are presented.
A literature investigation is reviewed in Chapter 4. Literature is investigated that con-
cerns the application of optimal control theory as a method to design an optimal 
ow
controller to a failure prone manufacturing system. The focus lies on a two-machine

ow shop. Then, a case concerning the optimal 
ow control of a single machine man-
ufacturing system is dealt with in Chapter 5. The relative simple problem provides
the opportunity to understand the basics of optimal control techniques, to recognize
key diÆculties in the application of the techniques, and to consider the possible results
that can be obtained. Finally, conclusions are made in Chapter 6 with respect to the
objectives for this research. Suggestions for further research are presented in Chapter 7.
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Chapter 2

Control design

The previous chapter expresses the need for a controller to the manufacturing system.
In control design, an acceptable design is sought that ful�lls the control function such
that set objectives of the industrial system are achieved. First, the design process is
explained. Then, a control problem is formulated. The problem is formulated in the
context of control theory to enable standard techniques for the derivation of a controller.
The design process takes place in a representative model of reality. Unfortunately,
modeling industrial systems often leads to complex models that are not suited for the
application of the favored standard techniques. Therefore, a concept of approximation
is introduced.

2.1 Design process

Design is a creative process. However, a designer may wish to optimize this process.
Formalizing the design process may provide means to do so. The designer has to deal
with the problem of �nding a design that ful�lls some function. Often, solving such a
problem is a repetitive cycle of gaining and applying knowledge obtained from previous
results. Such a cycle is referred to in the behavioral sciences as an empirical cycle. In
the special case that the subject is aware of the situation in which the cycle takes place,
De Groot [deG72] refers to the empirical cycle with re
ection:

observe | guess | expect | check | evaluate.

First, the subject becomes aware of the current situation by observations. To achieve a
desired e�ect, the subject makes a guess about some actions. This guess is based upon
previous results in a similar, though di�erent situation. These actions are expected to
have certain results. Then, the expectations can be checked with the desired e�ect.
Finally, the subject evaluates the check: are the guessed actions expected to achieve
the desired e�ect? No real actions are performed in the empirical cycle with re
ection.

Obviously, consciously applying the cycle above lies close to what is referred to as
problem solving. Roozenburg and Eekels [Roo98] recognize this, as they formalize the
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6 Chapter 2. Control design

design process in �ve phases:

analysis | synthesis | simulation | evaluation | decision.

In these �ve phases, the problem of �nding a design that ful�lls a desired function is
solved. In the analysis phase, a concrete design problem is formulated together with
criteria that the design must satisfy. The synthesis phase generates a design. By means
of simulation the expected behavior of the design is determined. Simulation is not done

Function

Analysis

Criteria

Synthesis

Design

Simulation

Behavior

Evaluation

Quality

Decision

Acceptable design

Figure 2.1: Design process.

in reality, but done in a representative model of reality. Formulating the problem and
criteria in a model enables to solve the design problem in a more general setting. In the
evaluation phase, the quality of the design is determined by checking if the expected
behavior satis�es the criteria. Based upon this quality, a decision is made whether or
not the design is acceptable enough to ful�ll its function. Here, 'evaluation' refers to
the 'check' in the empirical cycle with re
ection. The formalized design process can be
visualized as a 
ow chart, see Figure 2.1. The 
ow chart shows the design process as an
iterative process. In the case of an unacceptable design, more knowledge is obtained by
going through the cycle again, leading to a re-design or even re-formulating the problem
and criteria.
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Figure 2.1 provides a framework to the designer. Its purpose is not to specify in detail
all the steps in a design process. It shows how general phases in the design process relate
to each other. These relations provide an objective to each action, choice, or decision in
the design process. For example, a model is made to formulate the problem and criteria
(analysis) such that the behavior can be described (simulation) in some context that is
relevant to the problem. In this research, the structure of Figure 2.1 is used to relate
models, problems, techniques, and solutions with each other in the context of designing
an optimal controller to a manufacturing system.

2.2 Control problem

The problem of control is formulated in this research in the context of the behavioral
approach as presented by Willems [Wil91]. By means of this behavioral approach,
Willems attempts to provide a mathematical framework for discussing dynamics on
a general level [Wil89]. This framework centralizes around the notion that a model
must describe the behavior of a dynamical system. The application of the behavioral
approach in the context of control is explained by Willems in [Wil97]. An overview of
the behavioral approach and its relation to control theory is presented in the form of a
textbook by Polderman and Willems [Pol98].

First, the basic three ingredients behavior, behavioral equations, and latent variables
are introduced. From these ingredients a model for a dynamical system is presented.
This model is applied to formulate the problem of control in a general setting.

Mathematical model

A mathematical model is viewed in [Wil91] as an exclusion law. It states that certain
things can happen, and other things not. For a formal de�nition of a mathematical
model, consider a certain phenomenon to be modeled. Assume that the phenomenon
produces outcomes in a set U, called the universum. A mathematical model for the
phenomenon claims that certain outcomes are possible, while others are not. So the
model de�nes a certain subset B, called the behavior, of the universum. Formally,
[Wil91] de�nes a mathematical model as:

De�nition 2.2.1. A mathematical model is a pair (U;B) with U a set, called the
universum | its elements are called outcomes | and B a subset of U, called the
behavior.

So the proposed modeling approach consists of two main aspects:

� identify the outcomes of the phenomenon (specify the universum U), and

� identify the behavior (specify B � U).

In the identi�cation of the outcomes, the attributes in U are divided in [Wil91] into
two types of variables:
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� manifest variables, and

� latent variables.

Manifest variables are the variables whose behavior the model aims at describing. Latent
variables are auxiliary variables introduced in the �rst principles modeling process. The
terminology �rst principles modeling refers to the fact that the laws that play a role
in the system under consideration are the elementary laws from physics, chemistry,
economics, etc. Manifest variables can be thought of as external to the system, while
latent variables can be thought of as internal.

Besides identifying manifest and latent variables, the behavior must also be iden-
ti�ed. Most mathematical models consist of a set of equations. These equations may
serve as a law to exclude certain outcomes, namely those combinations of variables for
which the equations are not satis�ed. From this point of view, such a set of equa-
tions is referred to in [Wil91] as behavioral equations. These behavioral equations serve
to specify the behavior as a set of solutions of a system of equations. Note that the
behavioral equations specify the behavior uniquely. However, the inverse is not true.
Another set of equations may specify the same behavior. As mentioned in [Wil91]: it is
the behavior, the solution set of the behavioral equations, not the behavioral equations
themselves, that is the essential result of a modeling procedure.

Dynamical system

In De�nition 2.2.1, no time aspects are taken into account. Such a mathematical model
can be viewed as a static system. A dynamical system is viewed in [Wil91] as a mathe-
matical model in which the elements of the universum are functions of time. Formally,
a dynamical system is de�ned in [Wil91] as:

De�nition 2.2.2. A dynamical system � is de�ned as a triple

� = (T;W ;B);

with T a set called the time axis, W a set called the signal space, and B a subset of
W
T called the behavior (W T is standard mathematical notation for the collection of all

maps from T to W ).

The time axis T represents all possible time instances. It may be a subset of R (in
continuous-time systems), or a subset of Z (in discrete-time systems). The signal space
W represents all possible values of the variables. It can be seen that a discrete-event
system can be represented by a �nite set W , because only a limited number of values
are possible for a variable. The set W T represents all possible functions of time.

Some manifest variables can be considered free, their values are not determined by
their past. These free variables can be imposed upon the dynamical system by the
environment. The remaining manifest variables are completely speci�ed if these free
variables are chosen. It is sometimes possible to consider free variables as inputs to the
system and the remaining manifest variables as outputs. This expresses a signal 
ow
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from input to output. However, the partition into inputs and output is in general not
unique. It is the choice of the designer to consider a certain signal 
ow. Not every
dynamical system has a recognizable signal 
ow. Therefore, this research focuses only
on choices for the free variables. With these variables chosen, the remaining variables
are speci�ed by the behavioral equations and so does the behavior of the system.

A special class of latent variables are state variables. Think of the state that it
should contain suÆcient information about the past to determine the future behavior.
This interpretation is expressed in the following axiom of state [Wil91]:

Axiom of state. Any trajectory from B arriving in a particular state can be concate-
nated with any trajectory from B proceeding from that same state.

So state variables can be seen as a summary of the preceding. As the memory of the
system, they form the connection between the free variables and the remaining manifest
variables.

The behavioral equations describe the relations between the variables in the sys-
tem and their relations with the environment. Consider a dynamical system in which
some manifest variables are speci�ed as inputs, the remaining manifest variables as
outputs, and latent variables as state variables. Such a dynamical system is called an
input/state/output system. An input/state/output system can be represented by the
following behavioral equations:

_x = f [x; u; t]; y = g[x; u; t]:

Here u denotes the free variables that are imposed upon the system by its environment;
the inputs. The state is denoted by x. The �rst equation then determines how the state
trajectory evolves. The second equation, in which y denotes the output, determines how
the output trajectory evolves. It can be seen that for a linear time-invariant system the
behavior is described by the following common behavioral equations:

_x = Ax+Bu; y = Cx+Du:

Here x is an n-vector, u is an m-vector, and y a p-vector. Consequently, A 2 R
n�n ,

B 2 R
n�m , C 2 R

p�n , and D 2 R
p�m . These matrices are respectively called the

system term, the input term, the output term, and the feedthrough term. The above
mentioned representation of the behavioral equations are referred to as state equations.
With the behavioral equations, the behavior of the dynamical system is speci�ed as the
set of solutions that satisfy these equations.

Open loop and feedback control

The problem of control is to ensure that the considered dynamical system shows the
desired behavior. The system to be controlled is usually called the plant. A control
design is viewed in [Wil97] as a dynamical system, called the controller, that is inter-
connected to the plant such that the desired system behavior is achieved. This vision
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of control in the context of the behavioral approach is based upon the interconnection
of dynamical systems.

Consider two dynamical systems �1 = (T;W ;B1) and �2 = (T;W ;B2) with the
same time axis T and signal space W . The interconnection of �1 and �2, denoted
as �1 ^ �2, is formally de�ned in [Wil97] as �1 ^ �2 := (T;W ;B1 \B2). Thus in the
interconnected system, variables must be acceptable to bothB1 andB2. An illustration

Plant Controller

Exogenous
variables

Control
variables

b

b

b

b

b

b

Figure 2.2: Controller interconnection [Pol98].

of the idea of controller interconnection is shown in Figure 2.2. With this de�nition of
interconnection, a more formal description of the problem of control is given in [Wil97]
as follows. Consider a plant, a dynamical system �p = (T;W ;Bp), that is given. Let
C be a family of dynamical systems, called the set of admissible controllers, all with a
common time axis T and common signal space W . An element �c 2 C, �c = (T;W ;Bc)
is called an admissible controller, and the interconnection �p^�c is called the controlled
system. The controller �c must be chosen such that the controlled system �p^�c shows
a desired behavior. The problems of control are:

� �rst, to describe the set of admissible controllers,

� second, to describe the desired behavior that the controlled system should have,
and

� third, to �nd an admissible controller such that the controlled system shows the
desired behavior.

In an input/state/output system, the controller typically chooses the values for the
input variables, the control variables, to achieve desired trajectories for the output
variables. The way the controller chooses the values is determined by a control law.
Two types of control can be distinguished:

� open loop control, and

� feedback control.

In open loop control, the controller chooses the input as an explicit function of time.
The control law announces what control action must be taken at what time. In feedback
control, the input is chosen based upon observed outputs or states. Here, the control law
functions as a map from an observed output or state trajectory to a chosen control value.
Unexpected events, small disturbances, or miscalculations due to uncertain parameters
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can be taken into consideration by the feedback controller thanks to the observations.
In these cases of variability, feedback control leads to a better performance than open
loop control.

Plant

Feedback
controller

Actuators Sensors

Exogenous
inputs

To-be-controlled
outputs

Measured
outputs

Determined
inputs

Figure 2.3: Intelligent control [Pol98].

Usually, a feedback controller for an input/state/output system is visualized by
the signal 
ow graph shown in Figure 2.3. The plant has four terminals, two input
terminals and two output terminals. Actuators generate the determined inputs and
sensors measure the outputs. The dynamics of the actuators and sensors are usually
considered as part of the plant. In [Wil97], this signal 
ow graph is referred to as
the intelligent control paradigm. Note that the interconnection of the plant and the
feedback controller is a similar one as that in Figure 2.2. However, a signal 
ow is
speci�ed in the picture of intelligent control, while in the controller interconnection in
Figure 2.2 this signal 
ow is left unspeci�ed. As mentioned in [Wil97], the intelligent
control can be considered as a special class of controller interconnections; that in which
a signal 
ow is speci�ed.

To describe the desired behavior of the controlled system, consider the two main
roots of control theory: regulation and trajectory optimization. In regulation, a con-
troller is designed that steers to and keeps the to-be-controlled variables at a prescribed
trajectory, e.g., a constant value, in the presence of external disturbances. In trajectory
optimization, the dynamical system is transferred from a given initial state to a pre-
scribed terminal state. Often paths are sought that are optimal in some sense, hence
the term trajectory optimization. This research focuses on the latter case. What is
considered to be optimal can be speci�ed by means of a performance index. The per-
formance index introduces costs for values of the variables. An optimal control law is
a function that minimizes these costs. This approach is called optimal control and is
dealt with in Chapter 3.

2.3 Concept of approximation

Assume that the set of admissible controllers and the desired behavior have been de-
scribed. The control problem that remains, is to design an admissible controller that
achieves the desired behavior of the controlled system. This can be a hard problem,
especially when complex models are considered. In control theory, several standard
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techniques are available that aid the designer in the synthesis process of the desired
controller. Unfortunately, the nature of the model is not always suitable for applying
the favored or available standard techniques. This mismatch creates a gap between the
complex model and the standard techniques. Therefore, a concept of approximation is
introduced.

Concept

Describing the desired behavior of the modeled phenomenon as well as possible often
leads to complex models. The behavioral equations of such models might not be as
amenable to solution. A familiar example of this diÆculty is the analysis of nonlinear
systems. Most real physical systems show nonlinear behavior resulting in complex
models with nonlinear equations. Solutions to these equations are diÆcult to �nd. In
the problem of regulation, the nonlinear models can be approximated by linearizing
such that the behavioral equations are more amenable to solution. In a more general
setting, Thompson [Tho99] describes three basic methods for �nding solutions to the
equations describing the model:

� obtain an exact solution,

� obtain an exact solution to an approximate problem, and

� obtain an approximate solution to the exact problem.

Finding a solution to a linearized problem can be seen as an example of the second
method, where the original nonlinear problem is replaced by an approximate linear
problem. An example of the third method is the application of numerical methods
to �nd an approximate solution to the original problem. The question remains what
method, approximating standard techniques or approximating the complex model, leads
to a better solution. The answer lies in a comparison of solutions of both methods. The
solution that describes the phenomenon being modeled best is the better solution. Thus,
in this concept of approximation a closed loop is essential. After an approximate solu-
tion has been obtained, its behavior should be compared with the real world behavior.
Di�erences should lead to an improvement or reformulation of the approximate problem
or solution.

This closed loop is also recognized by Etman and Lefeber [Etm01] in the optimization
and control of industrial systems. Modeling industrial systems often leads to complex,
discrete-event models. Standard techniques in the �eld of optimization and control are
mostly adapted to continuous-time models. This gap between models and techniques is
also bridged by a concept of approximation. This concept is visualized in [Etm01] by
Figure 2.4, clearly showing that the approximation bridges the gap between the complex
model and the standard techniques available.

As an example, consider a complex model of a to-be-controlled plant. An approx-
imation of this model can be made. Based upon this approximate model, standard
techniques lead to a design for a controller to the plant. However, the interconnection
of the controller to the plant may not be possible. Due to the approximation, controller
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Standard techniques

Approximation

Complex model

Figure 2.4: Concept of approximation.

and plant may have di�erent time axes or signal spaces. Here comes the closed loop
in Figure 2.4 in e�ect. Making another approximation or adjustment, this time of the
designed controller, enables to interconnect the approximate controller to the complex
model of the plant. Whether or not the resulting controlled system shows the desired
behavior, may lead to adjustments of the approximate model or the approximate design.
Making use of approximate techniques results in a loop in opposite direction.

Flow model

In modeling industrial systems, a manufacturing system can be modeled as a set of
resources upon which activities take place. An activity is a pair of discrete-events
associated with a resource. The �rst event corresponds to the start of the activity,
and the second is the end of the activity. Only one activity can occur at a resource
at any time, e.g., operations, machine failures, inspection, and training sessions. The
con�guration of a resource determines what activities a resource may be able to perform
at a given time. A 
exible manufacturing system (FMS) can produce di�erent part-types
from a part-family. For each part-type the resources need to be con�gured (setups),
which may take some time.

This model of a manufacturing system with discrete-event based activities can be
viewed as a dynamical system in the context of De�nition 2.2.2. As the variable that
models the material 
ow is of discrete-event nature, its signal space is a �nite set.
The control design problem is to design a control system that is interconnected to
the manufacturing system such that the desired behavior of the industrial system is
achieved. Remains the diÆculty that favored techniques from control theory are not
suited to deal with the signal space of the discrete material 
ow. Therefore, introduce
a concept of approximation; the 
ow model.

Kimemia and Gershwin [Kim83] have proposed a 
ow model that models the ma-
terial 
ow as a continuous process. The 
ow model originates from the notion of a
separation of frequencies at which activities occur. This notion is expressed by Gersh-
win [Ger89] in the following assumption:
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Assumption 2.3.1. Frequency separation: assume that activities can be grouped into
sets I1; I2; : : : such that for each set Ik, there is a characteristic frequency fk satisfying

0� f1 � f2 � � � � � fk � fk+1:

The activity rates satisfy

fk�1 � uk � fk+1:

A visualization of this separation of activity rates is shown in Figure 2.5. Here,
two spectra of activity rates are shown for di�erent kinds of production. Both spectra
satisfy Assumption 2.3.1. Upon this frequency separation, [Ger89] bases its hierarchical

103 102 101 1 10�1 10�2 10�3

Activity rate
[activity/day]

Resource
occupation operations

type I failures
setups

type II
failures

machine
replacement
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Figure 2.5: Frequency separation for two kinds of production.

decomposition of 
ow control for which the following central assumption holds [Ger89]:

Assumption 2.3.2. Hierarchical decomposition: when dealing with any dynamic quan-
tity, treat quantities that vary much more slowly as static; and model quantities that
vary much faster in a way that ignores the details of their variations.

Four activity sets are considered in [Kim83]. These are, in descending order of their
characteristic frequency:

� operations,

� setups,
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� failures and repairs, and

� planning.

In this research, manufacturing systems are assumed to be fully 
exible, i.e., setups
between con�gurations do not take any time. Thus, setups are not taken into account
here. Consider a 
ow control of a failure prone manufacturing system that has to meet
a certain demand for parts. A failure prone manufacturing system is a manufacturing
system in which failures and repairs occur. This demand may be considered as static in
the context of Assumption 2.3.2. Operations may be modelled such that their details
are ignored. This validates the assumption made in [Kim83] that the material 
ow
can be modelled as a continuous process, provided that the production rates are much
higher than the rate of failure, repair, and planning.

The 
ow model enables now to apply the favoured standard techniques from control
theory. A controller to the continuous-time model of the manufacturing system may
be found. The controller must be adjusted somehow before it can be implemented in
a control system that is interconnected to a discrete-event model of the manufacturing
system. By means of simulation of the resulting interconnection, conclusions can be
made for what activity rates the 
ow model is a valid approximation.

2.4 Synopsis

The problem of control is formulated in the context of the behavioural approach. By
means of the 
ow model, standard techniques can be applied to �nd a solution to
the problem. An acceptable control design must show the desired behaviour. In this
research, an optimal behaviour is desired. Chapter 3 deals with techniques that enable
to specify such an optimal behaviour and provide methods to derive a controller that
achieves the optimal behaviour. Explicit optimal control designs are derived and tested
in Chapter 5 where a single machine case is considered.
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Chapter 3

Optimal control

In Chapter 1, the desire to control a manufacturing system in some optimal sense is
expressed. Chapter 2 deals with the formulation of a general control problem. This
chapter combines both aspects, optimization and control, into an optimal control prob-
lem. Two methods are presented to derive a design for an optimal controller. The �rst
method, the Minimum Principle, only considers open loop control for a deterministic
problem. The second, dynamic programming, is suited to derive a feedback control law
for a general problem.

3.1 Optimal control problem

Consider a dynamical system of which the behavior is speci�ed by the set of behavioral
equations given by the following di�erential equation:

_x(t) = f [x(t); u(t); t]; x(t0) = x0; (3.1)

which is given for the interval [t0; tf ]. Here, x(t), an n-vector function, is determined
by u(t), an m-vector function. Introduce costs for values of x(t) and u(t) such that the
desired behavior can be speci�ed by a performance index (a scalar function) of the form

J = '[x(tf ); tf ] +

Z tf

t0

L[x(t); u(t); t]dt: (3.2)

Performance index J can be seen as the sum of costs at the end of a period and costs
during that period. The objective is to have minimal costs. The problem of optimal
control is to �nd the functions u(t) that minimize performance index J .

Not every function u(t) is admissible. Let U denote the space of admissible functions
u(t). Hautus [Hau95] states that a satisfactory class of admissible functions is that of the
piecewise continuous functions. Such functions are continuous except for a �nite number
of points, in which the right and left limit exist. Also has to be taken into account that
constraints may be imposed on the functions u(t) and x(t). Clearly, constraints on u(t)
directly limit the space U . Constraints on x(t) have a more indirect e�ect on the space

17
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of admissible control functions. In this case, the behavior of the dynamical system must
not only satisfy the system dynamics, but also has to satisfy the constraints on x(t).
This clearly limits the choice for u(t).

The problem of optimal control can now be formulated in the context of a control
problem as presented in Chapter 2. Let u(t) describe the manifest variables that may be
chosen freely, the control variables. Let x(t) describe the latent variables that represent
the state of the system, the state variables. The system dynamics functions as a set
of behavioral equations of which the solution speci�es the behavior of the dynamical
system. The set of admissible controllers is speci�ed by U and possible constraints on
u(t) and x(t). The desired behavior is speci�ed by performance index J . Then, the
optimal control problem is to �nd an admissible control function u(t) that minimizes
performance index J subject to the system dynamics and constraints.

3.2 Minimum Principle

A distinction is made in this research between constrained and unconstrained control
problems. In the absence of constraints, the control function may be chosen freely.
Therefore, such a control problem is referred to as a free control problem. In the case
of constraints on the control variables, the choice for a control function is limited. Such
a control problem is referred to as a limited control problem. The term limited is used
instead of constrained to indicate the fact that only constraints on the control variables
are taken into account in this research. First the Minimum Principle is presented for
the free control problem. Then a method is presented to apply the Minimum Principle
in a limited control problem.

Free control problem

Consider the optimal control problem of �nding an admissible control function that
minimizes performance index (3.2) subject to system dynamics (3.1). Introduce a scalar
function called the Hamiltonian by

H[x(t); u(t); �(t); t] = L[x(t); u(t); t] + �T (t)f [x(t); u(t); t]; (3.3)

where �(t) is an m-vector function that denotes a new variable, the co-state. The
co-state is de�ned as the solution of the following di�erential equation:

_�(t) = �@H
@x

= �@L
@x

� �T (t)
@f

@x
; (3.4)

which is referred to as the co-state equation. The boundary conditions for the co-state
equation are:

�T (tf ) =
@'

@x

����
t=tf

: (3.5)
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Using the Hamiltonian and co-state equation, the MinimumPrinciple can be formulated.
The Minimum Principle states that a control function that is optimal minimizes the
Hamiltonian1. Or formally,

H�[x�(t); �(t); u�(t); t] = min
u(t)2U

H[x(t); �(t); u(t); t]; (3.6)

for each t at which u�(t) is continuous. Here, u�(t) denotes an optimal control function
and x�(t) denotes the corresponding state function. The corresponding optimal value
of the Hamiltonian is denoted by H�.

Condition (3.6) is a necessary optimality condition. A necessary optimality condition
is interpreted in [Hau95] as a property that is satis�ed by a solution to the optimization
problem. Such a condition is usually formulated as: if a is an optimal point, then : : : .
The most obvious way to apply (3.6) is to check whether a certain function u�(t) could
be optimal or not. If u�(t), together with corresponding state x�(t) and co-state �(t),
does not satisfy (3.6), then function u�(t) is not optimal. No other conclusions can
be drawn. With the purpose of �nding an optimal function, the Minimum Principle
strongly limits the set of admissible functions to hopefully a unique solution. From nec-
essary condition (3.6) an equation for u�(t) can be derived by determining the minimum
of Hamiltonian (3.3):

@H

@u
= 0 ) u�(t) = u�[x�(t); �(t); t]: (3.7)

Functions x�(t) and �(t) satisfy the following two-point boundary value problem:

_x(t) = f [x(t); u�[x(t); �(t); t]; t]; x(t0) = x0; (3.8a)

_�(t) = �@H
@x

[x(t); u�[x(t); �(t); t]; t]; �(tf ) =
@'

@x

����
t=tf

: (3.8b)

Because the Minimum Principle is a strong necessary condition, it is expected that
there exists a unique solution to (3.8). Substituting the solution to (3.8) into (3.7), the
control function u�(t) is determined and is expected to be an optimal control law.

Limited control problem

Again, consider the same optimal control problem as in the previous subsection, this
time with constraints on the control variables included. Let the control variable con-
straints be represented by the following inequality constraints on functions of the control
variable:

c[u(t); t] � 0; (3.9)

1A justi�cation of the Minimum Principle is given by Pontryagin [Pon62]. Due to a di�erent sign
convention, [Pon62] refers to the Maximum Principle.
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where c[u(t); t] is a vector function. Bryson and Ho [Bry75] present a method to imple-
ment these constraints into the Minimum Principle. The constraint functions c[u(t); t]
are adjoined to the Hamiltonian. The Hamiltonian is then de�ned as

H = L+ �T f + �T c; (3.10)

where �(t) is a vector function. The following constraints on �(t) hold for all t:

�(t) =

� � 0; if c[u(t); t] = 0;
= 0; if c[u(t); t] < 0:

(3.11)

Thus, whenever constraints are about to be violated, i.e., when c[u(t); t] = 0, functions
�(t) become active. From necessary condition (3.6) an equation for u�(t) can be derived
by determining the minimum of Hamiltonian (3.10):

@H

@u
= 0 ) u�(t) = u�[x�(t); �(t); �(t); t]: (3.12)

The optimal control law now is not only a function of x�(t) and �(t) as in (3.7), but also
a function of �(t). The solution of problem (3.8), x�(t) and �(t), may lead to values for
u�(t) that violate constraints c[u(t); t]. Because of constraints (3.11), �(t) takes values
such that the e�ect of x�(t) and �(t) is diminished to admissible values for u�(t).

3.3 Dynamic programming

In the previous section, a method is presented to derive an optimal control law that
minimizes performance index J . The control law maintains an optimal path starting
from an initial point and proceeding optimally. Here, optimal implies that performance
index J is minimized. Every point (x; t) directly on the optimal path is associated with
this optimal control law. However, for starting from a point (x; t) not on the optimal
path and proceeding optimally, the solution to a new optimal control problem must be
found. In other words, the Minimum Principle leads to an open loop type of control.
As mentioned in Chapter 2, a feedback type of control is preferred to obtain better
results in the case of any kind of variability. Somehow a control function must be found
that associates each point (x; t) with a proceeding optimal path that minimizes the
performance index.

A unique optimal value of the performance index is associated with starting from an
arbitrary point (x; t) and proceeding optimally. These optimal values for all points (x; t)
can be captured in a function of (x; t), the cost-to-go. De�ne V [x; t] as the cost-to-go;
the minimal costs associated with starting from a point (x; t) and proceeding optimally.
Or formally,

V [x; t] = min
u(t)2U

�
'[x(tf ); tf ] +

Z tf

t0

L[x(t); u(t); t]dt

�
: (3.13)



3.3. Dynamic programming 21

To derive the cost-to-go, introduce the Hamiltonian as (3.3). In the previous section,
an optimal control law is determined by minimizing the Hamiltonian. Now, an optimal
value of the Hamiltonian is derived:

H�[x;
@V

@x
; t] = min

u2U
H[x;

@V

@x
; u; t]: (3.14)

Using this optimal Hamiltonian H�, the cost-to-go V [x; t] can be determined by solving
the Hamilton-Jacobi-Bellman (HJB) equation:

�@V
@t

= H�[x;
@V

@x
; t]; V [xf ; tf ] = '[x(tf ); tf ]; (3.15)

Next, the optimal feedback control law can be determined from (3.14). The optimal
feedback control law determines for each point (x; t) along the path an optimal program
to be executed. An optimal open loop control law can be considered as a static optimal
program to be followed by the controller. The feedback control law provides a dynamic
program to the controller that may be changed along to way to deal with variability.
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Chapter 4

Optimal control of a two-machine

ow shop

This chapter deals with a literature investigation to the application of optimal control
theory as a method to design an optimal 
ow controller to a failure prone manufactur-
ing system. The focus lies here on a two-machine 
ow shop. First, a continuous-time
model of the manufacturing system is presented. Then, an optimal control problem
is formulated in the context of Chapter 3. Various forms of constraints and perfor-
mance indices are discussed. The investigated literature provides several methods to
solve the problem. Explicit solutions can be found for simpli�ed problems. For more
complex problems, heuristic and approximate methods are provided that may also lead
to satisfactory results.

4.1 Manufacturing system

The literature investigation concentrates on a two-machine 
ow shop as visualized in
Figure 4.1. The manufacturing system WW produces di�erent part-types from a part-
family subject to a known demand. In Section 2.3, such a manufacturing system is
modeled as a set of resources upon which activities take place. An activity is a pair
of discrete-events associated with a resource. The �rst event corresponds to the start
of the activity, and the second is the end of the activity. Here, the set of resources is

M1

u1

B

x1

M2

u2

D

x1

Figure 4.1: A two-machine 
ow shop WW .

given by two machinesM , a bu�er B, and a depot D. The depot di�ers from the bu�er
because it may also take negative values of depot levels to model any kind of backlog.
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The objective is to control the 
ow of parts through the system. The environment
provides an in�nite supply of parts to the �rst machine. Parts are extracted from the
depot by the environment at a known demand rate. Activities that can take place are
operations, failures and repairs, and planning. When failure and repairs are considered,
literature refers to failure prone manufacturing systems. The manufacturing system is
assumed to be fully 
exible, so setups between activities do not take any time and are
thus not taken into account. By means of the 
ow model as presented in Section 2.3,
an approximate model of system WW is used. In this approximation, the 
ow of parts
through the system is modeled as a continuous process. Let u(t), a vector function,
denote the production rates for the di�erent part-types for every machine. These rates
are considered to be free to choose and may function as control variables. Let d(t), also
a vector function, denote the known demand rates for the di�erent part-types in the
part-family. Consider these rates as exogenous variables.

Introduce a new variable, called the surplus, as the di�erence between the cumu-
lative production of a system and the cumulative demand for the produced part-type.
Formally, the surplus, denoted by x(t), is de�ned by the following di�erential equation
for a single machine system:

dx(t)

dt
= u(t)� d(t); x(t0) = x0: (4.1)

A positive surplus due to overproduction leads to an inventory and a negative surplus
due to under production leads to backlog. The surplus can be used to describe the state
of a manufacturing system.

The two-machine 
ow shop can now be modeled as a dynamical system. The system
behavior can be described by the following set of di�erential equations:

_x1(t) = u1(t)� u2(t); x1(t0) = x1;0; (4.2a)

_x2(t) = u2(t)� d(t); x2(t0) = x2;0: (4.2b)

Here, vector function u1(t) and u2(t) denote the production rates of respectively machine
M1 and machine M2 for every part-type, see also Figure 4.1. Clearly, di�erent values
for u1(t) and u2(t) cause changes of the bu�er levels, which are modeled by surplus
x1(t). Likewise, the depot levels, modeled by surplus x2(t), change due to di�erences
between production rates u2(t) and demand rates d(t). The initial bu�er and depot
levels are denoted by x1;0 and x2;0 respectively. Dynamics (4.2) model a two-machine

ow shop that produces multiple part-types; u(t), d(t), and x(t) are compound vector
functions here. Both machines may be extended to workstations that contain multiple
parallel machines. This can be incorporated in the system dynamics by taking a sum
over the machines in a workstation for each part-type. Also, re-entrant lines can be
incorporated by some kind of permutation matrix. The interested reader may refer to
Perkins and Kumar [Per95] that consider a multiple machine 
ow shop with re-entrant
lines. The two-machine 
ow shop obviously forms the basis for a 
ow shop with more
than two sequential machines. However, all these di�erent variations on the system's
architecture result in complex behavioral equations that are less amenable to solution.
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Sometimes due to the complex structure of the behavioral equations, sometimes due to
the increased number of variables.

The remainder of this literature investigation focuses mainly on a two-machine 
ow
shop that produces a single part-type subject to a known, constant demand rate. De-
spite the relative simplicity of the manufacturing system, the corresponding optimal
control problem may contain enough diÆculties to let this be an interesting problem.
Especially because the encountered diÆculties are characteristic for the optimal 
ow
control of discrete-event manufacturing systems.

4.2 Optimal control problem

Model the behavior of a two-machine 
ow shop that produces a single part-type subject
to a known constant demand rate d by the following system dynamics:

_x1(t) = u1(t)� u2(t); x1(t0) = x1;0; (4.3a)

_x2(t) = u2(t)� d; x2(t0) = x2;0: (4.3b)

Where u1(t), u2(t) and x1(t), x2(t) are now scalar functions, representing the control
and state variables respectively. Note that this is an approximate, continuous-time
model of the discrete-event manufacturing system, obtained by making use of the 
ow
model.

Constraints

Constraints can be put on the control and state variables to incorporate the physical
limitations of the manufacturing system in the control problem. Constrained control
variables are caused by capacity limitations. As mentioned, several activities can occur
on a resource, at most one at the time. An activity can only occur when the resource is
con�gured for it, which is determined by the con�guration state �(t). A setup is an ac-
tivity that changes the con�guration state. Now consider the failure prone 
exible man-
ufacturing system (FMS) mentioned by Kimemia and Gershwin [Kim83]. In [Kim83],
only operations, failures, and repairs can occur on a machine. The latter two can be
viewed as one activity. Then two machine states can be distinguished:

� up; operations can occur, and

� down; failure occurs and no operations can occur.

Two ways exist how the machine changes from one state to another; deterministic or
stochastic. The latter can for example be represented by �nite state Markov chains.
It is assumed in this research that the controller has no in
uence upon the changes of
con�guration states. However, Hu, Vakili, and Yu [Hu94] study a single machine FMS
producing a single part-type with operation dependent failure rates. They use a failure
rate function of the form au� + c to denote tool wear in metal-removing processes.

Due to the two machine states, also two machine capacities have to be determined.
So the machine capacity and thus the control space U becomes a (stochastic) set
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U [x(t); �(t)]. Let �i(�(t)) denote the production capacity for machine i with i = 1; 2
and at time t � 0. Then, admissible control functions are given by:

0 � ui(t) � �i(�(t)); for all t � 0; (4.4)

and with i = 1; 2 for the two-machine 
ow shop. Note that the control function u(t)
must be chosen such that the corresponding state function does not violate any state
constraints. A deterministic process for machine state changes enables to approximate
the model to that of one machine state. An approximate, read mean, machine capacity
can then be used. Models with more than two machine states can also be found in
the literature. These models incorporate slowly brake down of machines, i.e., reduced
machine capacities. They have been also applied to model systems with identical parallel
machines and a single part-type. Failure of one of the machines makes the system state
go to another state that has decreased capacity.

The state constraints relate to bounds on surplus levels. Lower bounds address to
nonnegative bu�er levels, higher bounds to the maximum storage capacity of a bu�er or
depot. Note that internal bu�er levels take only nonnegative values and external bu�er
levels, i.e., depot levels, may take negative values to model any backlog of the system.
For a two-machine 
ow shop with a �nite bu�er and �nite depot, let �i denote the size
of bu�er i with i = 1; 2. The state constraints then become:

0 � x1(t) � �1; for all t � 0; (4.5a)

x2(t) � �2; for all t � 0: (4.5b)

Let S = [0; �1]� (�1; �2] � R
2 denote the state space.

The stochastic transition from one machine state to another is the only case of
variability considered in the literature investigating the optimal 
ow control of failure
prone manufacturing systems. No variability in processing times is considered. How-
ever, process variability is an e�ect that is encountered in many, if not all, manufacturing
systems. In the control theory that considers the control of mechanical systems, similar
variability is encountered. Signal processing by actuators and sensors create uncer-
tainties about respectively e�ects and information. These uncertainties, together with
external disturbances, are modeled in the system dynamics by adding noise terms. This
concept might also provide means to incorporate the process time variability in the
optimal control of manufacturing systems.

Costs

In the context of an optimal control problem, the introduction of costs enables to
describe a certain desired optimal behavior. Two types of motives in
uence the choice
for a desired behavior:

� �nancial motives; clearly these relate to real costs, e.g., costs for inventory, back-
log, and production, and
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� manufacturing motives; may relate to certain characteristics of the material 
ow,
e.g., few and little or graduate disruptions, or the behavior of resources, e.g., the

exibility of machines.

The �nancial motives are a good example of what costs must be taken into account.
This answers the question what variables must occur in the performance index. Man-
ufacturing motives indicate how costs must be taken into account. The form of the
performance index may be in
uenced by these motives. Costs for inventory and back-
log can be related to the surplus, the state variables. Costs for production clearly relate
to the control variables. Salama [Sal00] also addresses restarting costs in a slightly
di�erent setting as the dynamics speci�ed above. The control variables are limited here
to two options: produce at maximum rate or remain stand-by. The system is penalized
by restarting costs when the machine goes from stand-by to production. However, the
control variables in this research are assumed to vary piecewise continuously.

Most performance indices found in the investigated literature are chosen such that
no extra diÆculties in solving the optimal control problem are expected. Unfortunately,
manufacturing motives are not considered in the choice for these indices. For example,
an optimal control policy frequently found in the literature results in only three di�erent
production rates for the machines: maximum, to demand, and zero. Obviously, such
a 'bang-bang' policy can create nervous machine behavior. No literature is found that
investigates how criteria such as manufacturing motives can be taken into account in
the choice for a performance index.

The structure of a performance index taking the sum of costs at the end of a period
and costs during that period is frequently found in the literature. In the case of a
stochastic capacity set, the expected value of the sum is taken. Then, the performance
index for the stochastic and respectively the deterministic model is of the following
general form:

J = E

�
'(x(tf )) +

Z tf

t0

L[x(�); u(�); � ]d� j x(t0) = x0; �(t0) = �0

�
; (4.6a)

J = '(x(tf )) +

Z tf

t0

L[x(�); u(�); � ]d� j x(t0) = x0: (4.6b)

In the investigated literature, a linear function of positive (inventory) and negative
(backlog) surplus values and of the production rates is taken for L[x(t); u(t); t]. Many
performance indices in the literature take costs over an in�nite horizon. For a deter-
ministic model, average costs (over an increasing horizon) are speci�ed by:

J = lim
tf!1

1

t

Z tf

t0

L[x(�); u(�); � ]d� j x(t0) = x0; (4.7a)

or discounted costs with a discount rate 
 > 0:

J =

Z
1

t0

e�
tL[x(�); u(�); � ]d� j x(t0) = x0: (4.7b)
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Expected values, for �(t0) = �0, of the equations above are taken in the case of a
stochastic problem.

Summarizing, the system dynamics for a two-machine 
ow shop subject to a constant
demand rate is described by Equations (4.3). Control and state constraints are given by
Equations (4.4) and (4.5) respectively. Examples of various forms of performance indices
are given by Equations (4.6, 4.7). The optimal control problem is to �nd admissible
control functions u1(t) and u2(t) that minimize performance index J subject to the
system dynamics and (stochastic) constraints.

4.3 Solutions

Most of the investigated literature considers failure prone manufacturing systems in
which the con�guration state changes are determined by a stochastic process. There-
fore, the 
ow models of these systems contain stochastic terms. This excludes the
application of the Minimum Principle as a method to derive a solution to the optimal
control problem. A deterministic problem, or an approximation to a deterministic prob-
lem, includes this opportunity. Furthermore, feedback control is desired to deal with
small disturbances, unexpected events, and so on. Therefore, the investigated literature
focuses on the application of dynamic programming to �nd solutions to the optimal
control problem.

Kimemia and Gershwin [Kim83] apply dynamic programming in their pioneering
work to characterize an optimal feedback control policy to be de�ned by optimal sur-
plus levels called hedging points. This hedging point policy maintains a nonnegative
surplus level when over-capacity is available to hedge against future shortages brought
by machine failures. General failure prone FMSs with total expected costs over a �-
nite horizon are addressed in [Kim83]. It is assumed that the optimal feedback control
law for a single machine manufacturing system producing a single part-type has the
following form:

u�[x(t); t] =

8<
:

0; if x(t) > z�;
d; if x(t) = z�;
�; if x(t) < z�;

(4.8)

with z� the hedging point. Thus, if the present surplus x(t) exceeds z�, the system
should produce nothing; if x(t) is less than the optimal surplus level z�, the system
should produce at the maximum rate �; if the surplus level exactly equals z�, then the
system should produce exactly enough to meet demand and thereby keep the inventory
level at z�. Of course this only holds for the up state. The optimal control law u�[x(t); t]
remains zero when the system is down.

A veri�cation theorem for the optimality of the hedging point policy is not provided
in [Kim83]. However, Akella and Kumar [Ake86] rigorously prove that the optimal
feedback control law is given by a single threshold inventory. They derive explicit
values for the hedging point for a single machine, single part-type system with two
machine states and discounted inventory and backlog costs over an in�nite horizon.
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Bielecki and Kumar [Bie88] also derive explicit values for the same system with average
costs. They also show that a zero-inventory policy is optimal when the rate at which
the system is down is small compared to the rate at which the system is up. In other
words, the system is made eÆcient. Note that this implies not that it is necessary to
have zero down states and in�nite up states. Explicit values for the hedging points for
a single machine, single part-type system with multiple machine states are derived by
Sharifnia [Sha88]. These optimal surplus levels are a function of the machine state and
hold for average inventory and backlog costs over an in�nite horizon.

Zhang and Zhou [Zha94] extend [Ake86] to costs over a �nite horizon. They obtain
explicit values for the hedging points. These optimal surplus levels become now a
function of time. This can be clari�ed by realizing that a backlog in the beginning of
the horizon is more easy to correct by the controller than a backlog in the end of the
horizon. For that reason, the optimum surplus level z�(t) increases for larger t 2 [t0; tf ].
So a failure near the end of the period does not create a backlog at the end of the period.
The cumulative demand for that period is then satis�ed.

No other solutions to the problem have been explicitly derived yet for stochastic
manufacturing systems. The hedging point concept is adapted by many to form the
basis of an approximate solution to more complex problems. The problem then converts
to �nding the optimal values of the hedging points. The question remains if the hedging
point concept is an optimal control policy for a two-machine 
ow shop with �nite bu�ers.

Heuristic approach

Two diÆculties remain when dynamic programming is applied to more complex prob-
lems:

� determine the cost-to-go, and

� derive an optimal feedback control law.

Various heuristic approaches have been applied to overcome these diÆculties. Many use
an approximation of the cost-to-go or apply a heuristic to derive the optimal control law.
For example, Gershwin, Akella, and Choong [Ger85] use a quadratic approximation of
the cost-to-go and apply linear programming to derive an optimal control law to the
same problem as [Kim83]. Among others, Lou, Sethi, and Zhang [Lou94] research the
structural properties of the cost-to-go for models with state constraints to come to good
approximations. These properties may form the basis for other heuristic approaches.
Presman, Sethi, and Zhang [Pre95] extend [Lou94] to an N -machine 
ow shop.

Also, many heuristic approaches take the hedging point concept as the basis of their
optimal control law. The problem is then reduced to �nd the corresponding values
of the optimal threshold levels. For this reason, many research has been done to the
structural properties of the hedging point policy. Haurie and Van Delft [Hau91] and
Sethi, Soner, Zhang, and Jiang [Set92] show that turnpike sets are a generalization
of the hedging point concept and provide several structural properties. Turnpike sets
originally come from economic growth theory. Liberopoulos and Caramanis [Lib95]
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show that the hedging points change into control switching sets (CSS) for multiple
part-types. These sets determine what part-type to produce and at what rate, to stay
close to the hedging points. Veatch and Caramanis [Vea99] make use of these CSS to
extend the zero-inventory concept of [Bie88] to two part-types and multiple machine
states. For problems with state constraints, the hedging points become functions which
can be hard to derive explicitly. A heuristic is to approximate these functions. Yan,
Yin, and Lou [Yan94] use this method to derive values for a two-machine 
ow shop with
a nonnegative internal bu�er.

Another heuristic method for this problem is provided by Van Ryzin, Lou, and
Gershwin [Ryz93], called two-boundary control. They use a numerical solution to a
discrete version of the HJB equation to derive optimal control laws to several cases.
The characteristics of these numerical control laws are used to develop an approximate
method. Alternative dynamics are used, in which both machines are subjected to the
demand rate:

_xi(t) = ui(t)� d; xi(t) = xi;0; (4.9a)

with i = 1; 2. An extra variable, the bu�er level b(t), is introduced. The rate of changes
of the bu�er level is de�ned as:

_b(t) = u1(t)� u2(t); b(t0) = b0; (4.9b)

such that the bu�er level is a function of the surplus:

b(t) = x1(t)� x2(t); b0 = x1;0 � x2;0: (4.9c)

Two types of control are considered: surplus control, i.e., hedging points based on the
depot level, and bu�er control, i.e., hedging points based on the bu�er level. The
approximate, sub-optimal, method de�nes a surplus control for the second machine and
a two-boundary control for the �rst machine. The two-boundary policy divides the
state space into two regions, in one region surplus control is applied and in the other
region bu�er control.

Few other numerical solutions are applied due to the curse of dimensionality. This
is because of the fact that the number of machine states, in contradiction to the number
of control variables, increases exponentially for systems with more than one machine
state as the number of machines increases. Samaratunga, Sethi, and Zhou [Sam97]
provide some computational evaluations of control policies for stochastic manufacturing
systems.

Asymptotic approach

The setback of most heuristic methods is that no explicit veri�cation is provided for
the (sub)-optimality of the approximate control law. A heuristic approach that proves
that the derived control law is asymptotically optimal under certain conditions is the
asymptotic approach described below. As mentioned, the stochastic machine capacities
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make the problem of �nding an optimal feedback control law more complex. Reduction
to a deterministic model can be expected to resolve in a less complex problem that may
be solved. Gershwin [Ger89] introduces the conjecture that a replacement of the large
set of binary variables by a small set of real variables is a good approximation because
of the large di�erences in frequencies among the events. Here, the set of binary variables
indicates the precise time of events, i.e., the stochastic machine capacities. The small
set of real, continuous variables represent the rates at which activities occur.

This conjecture is used by Lehoczky, Sethi, Soner, and Taksar [Leh91] to derive a
limiting problem that replaces the stochastic machine capacities by mean capacities. In
this way the problem becomes deterministic. The cost-to-go for the limiting problem
can be determined and an optimal feedback control law in terms of hedging points is
derived. The cost-to-go of the limiting problem converges to that of the original problem,
as shown in [Leh91], when the rate of changes in machine states is much larger than
the rate of 
uctuation in demand. Recall that the previously used constant demand
rates are only a result of central Assumption 2.3.2 to treat much more slowly varying
quantities as static. Now, an asymptotic optimal feedback control law to the original
problem can be derived from the optimal control law to the limiting problem.

The original problem of [Leh91] has no state constraints, it concerns an M -parallel
machines system with multi part-types. Sethi, Yan, Zhang, and Zhou [Set93] complicate
the problem by introducing state constraints. They address a single part-type, two-
machine 
ow shop with a nonnegative internal bu�er. The same asymptotic approach
as [Leh91] is used to derive an optimal feedback control law to the limiting problem.
Errors may occur when this control law would be used straightforwardly to derive
an optimal control law to the original problem with state constraints. Because, due
to failure, the asymptotic optimal control law may not be able to react on a possible
violation of the state constraint. To prevent this, [Set93] introduces a method of 'lifting',
i.e., a stronger state constraint in the limiting problem is used when the state comes
near the lower bound.

Sethi, Zhang, and Zhou [Set97] extend this to a two-machine 
ow shop with lower
and upper bounds on the internal bu�er level. The method of 'lifting' is extended
with a method of 'squeezing'. Fong and Zhou [Fon96b] extend the work of [Set93]
to a two-machine 
ow shop with a �nite bu�er and depot, see Equation 4.5. They
use a 'constraint domain approximation', comparable with the 'lifting' and 'squeezing'
methods. Only open loop control laws are derived here, their following paper [Fon96a]
extends the problem to feedback control laws.

With this asymptotic approach in mind, Sethi and Zhou [Set96] and Fong and Zhou
[Fon00] address completely deterministic two-machine 
ow shops with a single part-
type. [Set96] only takes a nonnegative internal bu�er into account, where [Fon00] takes
a �nite bu�er and depot, see Equation (4.5), into account.
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Chapter 5

Single machine case

In Chapter 3, the basics of optimal control theory are presented. Chapter 4 deals with
the application of optimal control theory as a method to derive an optimal 
ow control
to failure prone manufacturing systems. Relative complex problems are reviewed in
which the application of optimal control theory is less straightforward than presented
in Chapter 3. This chapter deals with the optimal 
ow control of a single machine
manufacturing system. A deterministic control problem is considered. The relative
simplicity of the problem makes that the presented methods can be applied in a more
straightforward manner. The opportunity is now given to understand the basics of the
optimal control techniques. To recognize key diÆculties in the application of the tech-
niques. And to consider the possible results that can be achieved with the techniques.
Also the applied concept of approximation, i.e., the 
ow model, can be investigated in
the case.

The remainder of this chapter is organized as follows. First, a description of the
manufacturing system is given. An approximate 
ow model of the system is made.
Then, the optimal control problem is formulated. Constraints on the control variable are
introduced, together with two performance indices. A performance index of a quadratic
form is chosen. Open loop and feedback solutions to the problem are derived by means
of the Minimum Principle and dynamic programming respectively. Finally, by means
of simulation, the expected behavior of the controlled system is determined. Simulation
results are presented that provide insight in the optimal system behavior and the validity
of the 
ow model.

5.1 Manufacturing system

Consider a single machine manufacturing system W as shown in Figure 5.1. System
W produces parts from a single part-type subject to a known, constant demand. The
manufacturing system can be modeled as a set of resources upon which discrete activities
take place. Here, the set of resources is given by a machine M and a depot D. Parts
enter the system at the machine where they are processed. After processing, the parts
are temporarily stored in the depot. The parts leave the system from the depot. The

33
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environment provides an in�nite supply of parts to the machine. Parts are extracted
from the depot by the environment at a known, constant demand rate.

M D

Figure 5.1: Single machine manufacturing system W .

Activities that can take place are operations and planning. A completely determin-
istic model of the system is considered. No process variability or stochastic machine
failures is taken into account. The rate of operations may be set freely at any time
to any nonnegative rate with maximum �, the machine capacity. The depot level may
take negative values to model any backlog. In that case, the depot temporarily stores
orders instead of parts. A depot of in�nite size is considered.

The objective is to control the 
ow of parts through the system in some optimal
sense. Therefore, a controller C is interconnected to manufacturing system W as shown
in Figure 5.2. The controller may choose the production rate of the machine and is
aware of the depot level. The constant demand rate is also known to the controller.

M D

C

Figure 5.2: Controlled system.

Standard techniques can be applied to �nd an optimal controller. Unfortunately,
the discrete-event model described above is not suited for the techniques presented
in Chapter 3 that are adapted to continuous-time state equations. Assume that the
characteristic frequency of operations is much higher than that of planning. According
to Assumption 2.3.2, the complex discrete-event model can then be replaced by an
approximate 
ow model. Here, the 
ow of parts is modeled as a continuous process.

Let u(t), a scalar function, denote the production rate of the machine. As this
rate can be chosen freely, it may function as the control variable. Let d, a scalar
constant, denote the known, constant demand rate of the environment. Consider this
rate as an exogenous variable. Introduce a new variable x(t), called the surplus, as the
di�erence between the cumulative production of the system and the cumulative demand
for produced parts. A positive surplus due to overproduction leads to an inventory and
a negative surplus due to under production leads to backlog. The surplus is used to
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describe the state of the system. With these variables, the behavior of the manufacturing
system is modeled by the following system dynamics:

_x(t) = u(t)� d; x(t0) = x0; (5.1)

where x0 denotes the initial state. Di�erential equation (5.1) is given for the planning
horizon [t0; tf ]. Now, the optimal control problem can be formulated in the context of
Chapter 3.

5.2 Control problem

The system dynamics is described by Equation (5.1). The production rate is limited to
nonnegative rates with a maximum of �, the machine capacity, or formally 0 � u(t) � �.
In Chapter 3, control constraints are written as inequality constraints on functions of
the control variable. Introduce c[u(t); t] as a vector function of the control variable,
then 0 � u(t) � � can be written as:

c[u(t); t] � 0; c[u(t); t] =

� �u(t)
u(t)� �

�
: (5.2)

Performance indices that are found in the investigated literature are of a linear form.
Such a form results in a 'bang-bang' policy causing nervous system behavior by chat-
tering of the control variable. Therefore, a quadratic performance index is chosen to
describe the desired behavior. De�ne a performance index of the form:

J(u) =

Z tf

t0

q � x(t)2 + r � u(t)2dt: (5.3)

Parameters q and r are positive constants that can be chosen to specify the preference
for minimal surplus costs or minimal production costs. Hence, these constants are
referred to as cost parameters. The control problem is to �nd an admissible control
function u(t) that minimizes performance index (5.3) subject to system dynamics (5.1)
and constraints (5.2). Such a control function is referred to as an optimal control law.

Also, de�ne a performance index of the form:

J(u�d) =

Z tf

t0

q � x(t)2 + r � (u(t) � d)2dt; (5.4)

where q and r are cost parameters. The term (u(t) � d) in (5.4) expresses the desire
to keep the production rate close to the demand rate. Here, the control problem is to
�nd an admissible control function u(t) that minimizes performance index (5.4) subject
to system dynamics (5.1) and constraints (5.2). The following notation is used in the
remainder to indicate which control problem is dealt with. A (u), subscript or in text,
indicates that a variable, function, model, system, or problem concerns the control
problem with performance index (5.3). A (u � d), subscript or in text, refers to the
control problem with performance index (5.4).
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5.3 Solutions

First, an equivalent problem is considered with the absence of constraints; the free
control problem. Insight is gained in the optimal system behavior. Then the problem
with constraints is considered; the limited control problem. Both problems are �rst
solved by applying the Minimum Principle to derive open loop control laws. These open
loop control laws are used to gain insight in the optimal control and state trajectories.
The results are then used in the application of dynamic programming to derive feedback
control laws for the problems.

Free control

The free control problem is to �nd an admissible control function u(t) that minimizes
the performance index, (5.3) or (5.4), subject to system dynamics (5.1). For the free
control problem, the Minimum Principle and dynamic programming can be applied
relatively straightforward along the line presented in Chapter 3. A complete derivation
of the optimal free control laws is given in Appendix A. For control problem (u), the
optimal feedback control law results into:

u�[x; t] = d� d � sech
�p

q=r(t� tf )
�
+
p
q=r � tanh

�p
q=r(t� tf )

�
x; (5.5a)

which results into

x�(t) = K1 � sinh
�p

q=r(t� tf )
�
+K2 � cosh

�p
q=r(t� tf )

�
; (5.5b)

u�(t) = d+K1

p
q=r � cosh

�p
q=r(t� tf )

�
+K2

p
q=r � cosh

�p
q=r(t� tf )

�
;

(5.5c)

where

K1 = �d=
p
q=r; (5.5d)

K2 = sech
�p

q=r(t0 � tf )
��

x0 + d sinh
�p

q=r(t0 � tf )
�
=
p
q=r

�
: (5.5e)

Clearly, feedback law (5.5a) maps every point (x; t) to an optimal control action. For
the deterministic system (u), the optimal state path x�(t) is described by (5.5b). The
optimal open loop control law u�(t), given by (5.5c), achieves that optimal state path.
A visualization of the optimal system behavior for problem (u) is shown in Figure 5.3.
Here, the optimal control and state paths are plotted for a range of initial states x0.
The �nal time tf is 5, cost parameters q and r are both 1

2 , and the demand rate d
is 1. Note that for the range of state paths, Figure 5.3(b), the initial state x0 increases
from bottom to top. In contrary, the initial state for the range of control paths in
Figure 5.3(a) increases in the opposite direction.
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Figure 5.3: Numerical example of: (a) the optimal open loop control path u�(t) and
(b) the optimal state path x�(t) for the free system (u) for a range of initial states x0
from -1 to 2 with step size 1
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Figure 5.4: Numerical example of: (a) the optimal open loop control path u�(t) and
(b) the optimal state path x�(t) for the free system (u� d) for a range of initial states
x0 from -1 to 2 with step size 1

2 .

For control problem (u� d), the optimal feedback control law results into:

u�[x; t] = d+
p
q=r � tanh

�p
q=r(t� tf )

�
x; (5.6a)
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which results into

x�(t) = x0 sech
�p

q=r(t0 � tf )
�
� cosh

�p
q=r(t� tf)

�
; (5.6b)

u�(t) = x0
p
q=r sech

�p
q=r(t0 � tf )

�
� sinh

�p
q=r(t� tf )

�
: (5.6c)

Again, feedback law (5.6a) is a map for every point (x; t) to an optimal control action.
The optimal state and control paths are described by respectively Equation (5.6b)
and (5.6c). Figure 5.4 shows the optimal system behavior for problem (u � d). The
optimal control and state paths are plotted for the same range as that in Figure 5.3.
The other parameters are also kept the same. Clearly, the term (u(t) � d) in the
performance index has its e�ects. After the o�set in state has been reduced, the value
of the control law approximately equals that of the demand rate. The combination of
system dynamics (5.1) and performance index (5.3) makes that producing at demand
rate with no surplus gives minimal costs. Also in the case of a quadratic performance
index. Control problem (u� d) can then also be considered as some kind of regulation
control problem.

Limited control

The limited control problem is to �nd an admissible control function u(t) that min-
imizes the performance index, (5.3) or (5.4), subject to system dynamics (5.1) and
constraints (5.2). For this problem, the methods presented in Chapter 3 cannot be
applied that straightforward as done for the free control problem. To overcome this
diÆculty, insight in the limited system behavior has been obtained from a numerical
case. The e�ect of control constraints on the free system behavior has been investigated.
This resulted in a method for deriving an optimal open loop control law, see Section B.1
in Appendix B. Applying the Minimum Principle with control constraints stranded in
a numerical problem. No explicit analytical solution for the open loop control problem
could be found, see Section B.2 in Appendix B.

However, for feedback control, the limited control law turns out to be the saturation
of the free feedback control law. In solving the limited control problem, constrained
and unconstrained paths must be pieced together such that all necessary conditions are
satis�ed. The junction point of constrained and unconstrained paths is referred to as a
corner, see Bryson and Ho [Bry75]. At a corner, the control path can be discontinuous.

From Figures 5.3 and 5.4 can be concluded that the control law is likely to violate a
constraint at the beginning of the horizon. The value of the limited control law is thus set
to that of the violated constraint. As a consequence of the control action, some di�erent
state than the initial state x0 is reached. For that state and time, the optimal control
problem must be solved again. If the solution still violates the constraint, the limited
control law remains equal to the constraint. This loop continues until the solution of the
optimal control problem does not violate the constraint anymore. The limited control
law may then take the value of the derived solution. This moment occurs in the corner.
Finding a solution every present state and time to the present optimal control problem
is exactly what dynamic programming does.
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Then, the optimal limited feedback control law u�[x; t] is the saturation of the op-
timal free feedback control law �u�[x; t]. For both control problems (u) and (u� d), the
optimal limited feedback control law u�[x; t] results into:

u�[x; t] =

8<
:

�; if �u�[x; t] > �;
�u�[x; t]; if 0 � �u�[x; t] � �;
0; if �u�[x; t] < 0:

(5.7)

Here, a bar indicates that a variable of function concerns the free equivalent of a limited
control problem. For control problem (u) the free feedback control law �u�[x; t] is given
by (5.5a) and for control problem (u�d) the free feedback control law is given by (5.6a).
In every point (x; t), the value of the free feedback control law is compared to that of the
constraints. If the free feedback control law violates a constraint, the value of the limited
feedback law is set to that of the violated constraint. The optimal system behavior for
limited control problems (u) and (u� d) is shown by Figures 5.5 and 5.6. Control and
state paths are plotted for a range of initial states x0 for the same numerical parameter
values as for Figures 5.3 and 5.4. The machine capacity � is set equal to the demand
rate.
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Figure 5.5: Numerical example of: (a) the optimal open loop control path u�(t) and
(b) the optimal state path x�(t) for the limited system (u) for a range of initial states
x0 from -1 to 2 with step size 1

2 .

5.4 Simulation

Several control designs have been derived in the previous section. By means of sim-
ulation the expected behavior of the controlled system is determined. A simulation
model is created in which the derived control laws are implemented. Simulations are
performed to investigate the in
uence of parameters, to validate the approximate 
ow



40 Chapter 5. Single machine case

t

u
�
(t
)

x0 = �1

x0 = 2

-0.5

0

0

0.5

1

1

1.5

2 3 4 5

(a)

t

x
�
(t
)

x0 = �1

x0 = 2

-1.5

-1

-0.5

0

0

0.5

1

1

1.5

2

2

2.5

3 4 5

(b)

Figure 5.6: Numerical example of: (a) the optimal open loop control path u�(t) and
(b) the optimal state path x�(t) for the limited system (u � d) for a range of initial
states x0 from -1 to 2 with step size 1

2 .

model, and to compare open loop and feedback control. Visualization of the control
and state paths are included to illustrate the results.

Model

A discrete-event simulation model is created to simulate the behavior of the controlled
system. The controlled system is the interconnection of controller C to manufacturing
system W , see Figure 5.2. Optimal controllers to an approximate (continuous-time)
model of the manufacturing system are derived in the previous section. Due to the
approximation, the time axes and signal spaces of the derived controller and the original
model of the plant di�er. The plant is a discrete-event system but the controllers are
continuous-time systems. A signal conversion from controller to plant overcomes this
diÆculty.

The continuous-time controller is implemented in a control system that determines
the control actions at discrete-time intervals. According to the Shannon [Sha49] sam-
pling theorem, the discrete-intervals, i.e., the sample time, must be taken at least two
times smaller than the duration of shortest activity in the manufacturing system to
obtain a well sampled signal. In the model of the machine is some kind of preemption
assumed. Therefore, a control action can be incorporated in the manufacturing system
immediately, even when a part is being processed. Note that, in contradiction to what
is considered as common preemption, the part may not be unloaded from the machine
before it is completely processed.

Appendix C describes the discrete-event simulation model of the controlled system.
The control system, represented by controller C, is partly discrete-event and partly
discrete-time. The controller updates its depot information whenever a part enters or
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leaves the depot. This is a discrete-event process. A control action is determined and
incorporated every sample time. This is a discrete-time process. Due to sampling of
the control signal, feedback control laws are expected to return better results.

Setup and results

The simulation focuses on three subjects:

� parameter in
uence,

� validation of 
ow model, and

� open loop and feedback control.

Because of the in
uence that the parameters have on the system behavior, diÆculties
may be encountered. An initial state not equal to zero may lead to violation of control
constraints. The cost parameters provide means for adjusting the in
uence of control
and state costs. The system behavior can then be manipulated to ful�ll the designer's
wishes and needs.

The control designs have been derived in an approximate 
ow model of the manu-
facturing system. The designs are implemented in the simulation model with a signal
converter. To validate the approximations that are done during the synthesis phase,
simulated system behavior of the approximated model and the discrete-event simula-
tion model are compared. Finally, the bene�ts of feedback control are investigated when
unexpected events and uncertain parameters are considered.

Parameter in
uence

The in
uence of three parameter types is investigated:

� initial state x0,

� planning horizon tf , and

� cost parameters q and r.

The in
uence of the initial state is shown in the �gures in Section 5.3. The controller
reduces the surplus cost created by the initial state in the �rst part of the horizon. This
may cause relative extreme control actions that may violate the control constraints.
Expansion of the planning horizon shows that the controller steers to an optimal control
value where the state remains close to zero, see Appendix D. This corresponds with the
hedging point concept as discussed in Chapter 4. Obviously, for a deterministic system
without random machine failures and variability, the hedging point equals zero.

As mentioned, cost parameters q and r specify a preference for state and control
costs respectively. Changing the ratio between these two parameters changes the system
behavior substantially. Figures 5.7 and 5.8 show the optimal system behavior for the free
and limited control problem (u) respectively. Three di�erent ratios for q

r are considered.
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For a fair comparison, q and r are set such that for every ratio q
r the same optimal

performance is achieved, i.e., J�(u) = 1. For q
r = 1

10 , less costs for control actions are
preferred than for control results. Consequently, an o�set in state is accepted to let the
control costs take smaller values. For q

r = 10, the opposite occurs. The o�set in state is
reduced much faster than for equal cost parameters. This results into relative extreme
control actions at the beginning of the horizon.
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Figure 5.7: In
uence of cost parameters q and r with free control (u) on (a) the optimal
control path u�(t) and (b) the optimal state path x�(t).
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Figure 5.8: In
uence of cost parameters q and r with limited control (u) on (a) the
optimal control path u�(t) and (b) the optimal state path x�(t).
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Flow model validation

In Section 5.1 is assumed that the characteristic frequency of operations is much higher
than that of planning. According to Assumption 2.3.2, the 
ow model is expected
to be a valid approximation of the original, discrete-event model. The question that
remains is how much higher the rate of operations must be. If the 
ow model is a
valid approximation, then the performance of the approximate controlled system must
be equal or close to that of the discrete-event controlled system. Introduce a relative
performance error e de�ned by:

e =
JDE � JCT

JCT
; (5.8)

where JDE denotes the performance of the discrete-event system and JCT denotes the
performance of the continuous-time system. It is expected that for production rates not
suÆciently high enough, the performance JDE is higher than performance JCT . Recall
that performance index J is desired to be minimal.

Various simulations have been performed for a range of demand rates d. The �nal
time tf is taken 10, cost parameters q and r are both 1

2 , initial state x0 = �4d or
x0 = 4d, and capacity � is set equal to d. For every setup the relative error e has
been calculated. Results are plotted in Figure D.10 in Appendix D on page 105. From
Figure D.10, Tables 5.1 and 5.2 are created. In these tables the demand rates are given
for which the 
ow model is expected invalid, critical, and valid.

Table 5.1: Invalid, critical, and valid demand rates d for initial state x0 = �4d.

x0 = �4d invalid critical valid

e > 0:005 e t 0:005 e < 0:005

free (u) 1 10 100
free (u� d) 1 10 100
limited (u) 1 200 500
limited (u� d) 1 200 500

Table 5.2: Invalid, critical, and valid demand rates d for initial state x0 = 4d.

x0 = 4d invalid critical valid

e > 0:005 e t 0:005 e < 0:005

limited (u) 1 200 500
limited (u� d) 1 200 500

Figure 5.9 shows the system behavior for free control problem (u) for demand rates
where the 
ow model is considered invalid, critical, and valid. This is also shown in
Figure 5.10 for limited control problem (u). In both �gures, the dotted line functions as
a reference to the optimal, continuous-time behavior. From Tables 5.1 and 5.2 can be
concluded for what time scales the 
ow model seems a good approximation. Consider
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the case of the free control problem with negative initial states. For a horizon of length
10, the time scale of operations must be at least 100 times smaller than that of the
planning horizon.
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Figure 5.9: Optimal control paths u�(t) and optimal state paths x�(t) with free control
(u) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and (e, f)
valid and with negative initial states x0.
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Figure 5.10: Optimal control paths u�(t) and optimal state paths x�(t) with limited
control (u) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and
(e, f) valid and with positive initial states x0.

Open loop and feedback control

As mentioned in Chapter 2, feedback control takes unexpected events, small distur-
bances, or miscalculations due to uncertain parameters into consideration by means of
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the observed variables. The discrete-event 
ow of parts through the system leads to
unexpected events that are not expected by the continuous-time controller. Therefore,
only feedback control laws have been applied in the previous simulations. In this sub-
section, the e�ect of open loop and feedback control laws on the system behavior is
investigated. In the deterministic simulation model, the control signal is sampled. This
is done at such a high rate, that the open loop control laws also achieve suÆciently well
results, see Section D.3 in Appendix D.

To exploit the true bene�t of feedback control, the controlled system is simulated
with uncertain exogenous variables. Here, the constant demand rate is considered to
be a stochastic variable. This is modeled by introducing variability to the inter request
time. The inter request time is the interval, denoted by td, for which the environment
extracts parts from the depot. It is simply de�ned by:

td =
1

d
: (5.9)

By means of a Gamma distribution, low, moderate and high variability distributions
can be modeled. For a given mean, denoted by �, the shape of the distribution is
determined by the squared coeÆcient of variation. The squared coeÆcient of variation,
denoted by c2, is de�ned by:

c2 =
�2

�2
; (5.10)

where �2 denotes the variance. According to Hopp and Spearman [Hop00], a squared co-
eÆcient of variation substantially smaller than 1 indicates a lowly variable distribution,
where highly variable distributions are indicated by a squared coeÆcient of variation
substantially higher than 1. Distributions with a squared coeÆcient of variation near 1
are called moderately variable. Only the mean value of td is known to the controller.

Figures 5.11 and 5.12 show the results for respectively the free and limited control
problem (u). For the free control problem, the initial state is set x0 = �4d, and x0 = 4d
for the limited control problem. Cost parameters q and r both equal 1

2 and the planning
horizon tf is 10. The capacity � is set equal to the demand rate d. The system behavior
is simulated for demand rates for which the validity of the 
ow model is considered to
be critical. Three values of inter request time variability are considered:

� lowly variable; c2 = 0:1,

� moderately variable; c2 = 1:0, and

� highly variable; c2 = 10.

The resulting probability distributions of the inter request time are shown at the right
side of the �gure. Control and state paths are plotted for:

� the continuous-time model with feedback control; CTfb,

� the discrete-time model with feedback control; DEfb, and
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� the discrete-time model with open loop control; DEol.

No variability is taken into account in the CTfb-model. These control and state paths
are only plotted as a reference.

Both �gures show the corrupting in
uence of variability. Because the open loop
controller does not anticipate on the changes in the state path, these changes are not
compensated. Due to its observations, the feedback controller adjusts its actions to
compensate the external changes to the state path. Other results in Section D.3 in
Appendix D show that for higher demand rates the e�ect of inter request time variability
on the system behavior decreases relatively.
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Figure 5.11: Open loop and feedback control in the stochastic case with free control (u)
and negative initial state x0. Control and state paths are shown for several values of
inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately variable, and
(g, h, i) highly variable. Validity of the 
ow model is critical with an average demand
rate �d = 10.
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Figure 5.12: Open loop and feedback control in the stochastic case with limited control
(u) and positive initial state x0. Control and state paths are shown for several values of
inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately variable, and
(g, h, i) highly variable. Validity of the 
ow model is critical with an average demand
rate �d = 200.
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Chapter 6

Conclusions

The previous chapters deal with the application of optimal control theory as a method
to design a 
ow controller for failure prone manufacturing systems. The problem of op-
timal control is de�ned, optimal control techniques are introduced, several solutions are
reviewed, and a case is considered that deals with the application itself. The following
conclusions with respect to the objectives set in Chapter 1 can be drawn.

Overview

The 
ow model proposed by Kimemia and Gershwin [Kim83] provides means to apply
optimal control techniques for �nding a 
ow controller to a failure prone manufacturing
system. Linear cost functions let the optimal control policy to be de�ned by hedging
points, i.e., optimal surplus levels. The control policy is then to produce at a maximum
rate, to demand, or not at all. Only for the stochastic single machine problem explicit
solutions have been obtained. For other problems, several other approximate methods
are reviewed.

Optimal control

An optimal control problem consists of the system dynamics, a performance index,
and constraints. The problem is �nd an admissible control function that minimizes
the performance index subject to the system dynamics and constraints. The Minimum
Principle provides insight in the optimal system behavior for deterministic problems,
with or without constraints. Dynamic programming provides means for deriving a
feedback control law that achieves the optimal behavior also for stochastic problems

Application

A deterministic, single machine problem with constraints on the control variable is
considered. Quadratic performance indices are chosen. Two key diÆculties remain:

� dealing with the constraints when applying the Minimum Principle, and

� �nding an explicit solution to the HJB-equation.
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In the considered case can the latter be overcome by making use of the open loop
results. The quadratic performance index leads to a graduate change of production
rates. Machine capacities are properly modeled by control constraints.

Flow model

The 
ow model has been validated by means of simulation. A separation of time scales
for planning and operations has been obtained that justi�es the use of the 
ow model.
In the simulation model, the continuous-time controller is converted to a discrete-time
control system that is interconnected to the manufacturing system.



Chapter 7

Suggestions for further research

This research has resulted into several conclusions, as presented in the previous chapter.
Some research objectives need further research. Also, several questions have evolved
during the research. The remaining objectives and evolved questions result into the
following suggestions for further research.

Optimal control methods have been presented that only take into account constraints
on the control variables. To deal with problems that consider �nite bu�ers, constraints
on the state variables must be taken into account also. Investigate methods that take
state constraints into account in the optimal control problem.

Deterministic problems have been dealt with only. The interesting problem of ran-
dom machine failures remains. The stochastic capacity set results into a stochastic
term in the HJB-equation. Investigate methods that deal with such stochastic, partial
di�erential equations. From a control engineering point of view, investigate also the
possibilities of noise terms modeling variability. This may provide means to also deal
with the problem of process time variability.

In the context of control as expressed in Chapter 2, a performance index is seen as
a way to describe the desired behavior of the controlled system. Here, the controlled
system is the interconnection of manufacturing system and control system. Objectives
are to maintain and control the 
ow of products. Key aspects are WIP, cycle time, and
throughput. Find ways to incorporate these aspects in the performance index.

It is assumed that the production rates can be chosen freely. Consider also the
case that this choice is limited to a �nite set of production rates at discrete-events.
Therefore, �nd other ways of describing the dynamics by state equations that take the
discrete-event nature of the manufacturing system into account. The optimal control
techniques can then also be used for lower production rates.

All suggested research items can be considered in a two-machine problem with a
single part-type. Other architectures, e.g., multiple machine job shops with multiple
part-types, may be also considered. However, it is expected that here other research
and engineering problems are of interest than merely throughput control.
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Appendix A

Free control

Consider a single machine manufacturing system subject to a constant demand and
with the absence of constraints. This system is referred to as the free system, as is
described in Chapter 5. Let u(t) denote the production rate of the machine, the control
variable, and let the constant demand rate, denoted by d, be known for the interval
[t0; tf ]. The system dynamics are modeled by the following di�erential equation:

_x(t) = u(t)� d; x(t0) = x0: (A.1)

The state variable x(t) models the surplus, i.e., the di�erence between the cumulative
production of the system and the cumulative demand for the produced part-type. The
initial surplus level is modeled by the initial state x0. De�ne a performance index J(u)
of the form:

J(u) =

Z tf

t0

q � x(t)2 + r � u(t)2dt: (A.2)

Parameters q and r are positive constants that can be chosen to specify the preference
for minimal surplus costs or minimal production costs. Therefore, these parameters are
referred to as cost parameters. The control problem is to �nd an admissible control func-
tion u(t) that minimizes performance index (A.2) subject to the system dynamics (A.1).
Such a control function is referred to as an optimal free control law.

Besides performance index (A.2), this research also deals with a slightly di�erent
variant of (A.2):

J(u�d) =

Z tf

t0

q � x(t)2 + r � (u(t)� d)2dt: (A.3)

The term (u(t) � d) in (A.3) expresses the desire to keep the production rate close to
the demand rate. The control problem now is to �nd an admissible control function
u(t) that minimizes performance index (A.3) subject to the system dynamics (A.1).

This appendix deals with the derivation of both an open loop control law and a feed-
back control law for the free system for both control problems (A.1, A.2) and (A.1, A.3).
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60 Appendix A. Free control

First an optimal open loop control law, denoted by u�(t), is derived by applying the
Minimum Principle to the free system. Then by applying dynamic programming, an
optimal feedback control law, denoted by u�[x(t); t], is derived. Several numerical ex-
amples are included to illustrate the obtained results.

A.1 Open loop control

The following notation is used in this report to indicate which control problem is dealt
with. A (u), subscript or in text, indicates that a variable, function, model, system,
or problem concerns control problem (A.1, A.2). A (u � d), subscript or in text, in-
dicates that a variable, function, model, system, or problem concerns control prob-
lem (A.1, A.3).

Control problem (u)

Consider the following open loop control problem (A.1, A.2): �nd an admissible open
loop control function u(t) that minimizes performance index (A.2) subject to the system
dynamics (A.1). According to Equation (3.3) on page 18, a Hamiltonian of the following
form can be derived for the problem (A.1, A.2):

H = q � x(t)2 + r � u(t)2 + �(t)(u(t) � d): (A.4)

Here �(t) denotes the co-state variable that is de�ned as the solution of the following
di�erential equation:

_�(t) = �2q � x(t); �(tf ) = 0: (A.5)

The Minimum Principle states that a control function that is optimal minimizes the
Hamiltonian. This necessary condition implies that:

H�[x�(t); �(t); u�(t); t] = min
u(t)

H[x(t); �(t); u(t); t]: (A.6)

The corresponding optimal value of the Hamiltonian is denoted by H�. Because the
Hamiltonian is of a quadratic form, the necessary condition for u(t) to be an optimal
control law can be written as:

0 =
@H

@u
= 2r � u(t) + �(t): (A.7)

The following equation for the optimal open loop control law u(t) can be derived from
(A.7):

u�(t) = � 1

2r
� �(t): (A.8)
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By substituting (A.8) into the system dynamics, the following two di�erential equa-
tions that determine the state function are obtained:

_x(t) = � 1

2r
� �(t)� d; x(t0) = x0; (A.9a)

_�(t) = �2q � x(t); �(tf ) = 0: (A.9b)

A second order di�erential equation of the state function can be determined by substi-
tuting (A.9b) into the time derivative of (A.9a):

�x(t)� q

r
� x(t) = 0; (A.10)

with boundary conditions:

x(t0) = x0; (A.11a)

_x(tf ) = � 1

2r
� �(tf )� d = �d: (A.11b)

For a control law that is optimal, its corresponding state path must satisfy (A.10).
Substituting the time derivative of the state function that satis�es (A.10) into system
dynamics (A.1) yields the optimal open loop control law. A general solution of the
second order di�erential equation is:

x(t) = C1 � et
p

q=r + C2 � e�t
p

q=r: (A.12)

It is convenient to write this solution in terms of hyperbolic functions such as sinh and
cosh. Table A.1 shows the hyperbolic functions used in this report together with some
convenient properties. More properties can be found in literature such as [R�ad90]. A

Table A.1: Hyperbolic functions.

sinh cosh tanh sech

y = sinhx = e
x

�e
�x

2
y = coshx = e

x

+e
�x

2
y = tanhx = sinhx

coshx
y = sechx = 1

coshx

_y = coshx _y = sinhx _y = 1

cosh2 x
_y = � sechx tanh x

cosh(�x) = coshx sinh(�x) = � sinhx tanh(�x) = � tanhx sech(�x) = sechx

time-to-go t� tf is also introduced to simplify the analysis of the system behavior. It
is then possible to describe the behavior of the system from an arbitrary state x(t) at
time t to the �nal state x(tf ) at �nal time tf . Substituting the time-to-go into (A.12)
results into:

x(t) = C1e
tf � e

p
q=r(t�tf ) + C2e

�tf � e�
p

q=r(t�tf ): (A.13)
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Writing (A.13) in terms of hyperbolic functions yields:

x(t) =
�
C1e

tf � C2e
�tf

� � sinh�pq=r(t� tf )
�

+
�
C1e

tf + C2e
�tf

� � cosh�pq=r(t� tf )
�
; (A.14)

or with new constants K1 and K2:

x(t) = K1 � sinh
�p

q=r(t� tf )
�
+K2 � cosh

�p
q=r(t� tf )

�
: (A.15)

The constants can be derived by substituting the boundary conditions (A.11) into
the general solution (A.15). Condition (A.11b) results in:

_x(tf ) =
p
q=rK1 = �d ) K1 = �d=

p
q=r: (A.16a)

Using this, condition (A.11a) yields:

x(t0) = �d sinh
�p

q=r(t0 � tf )
�
=
p
q=r +K2 � cosh

�p
q=r(t0 � tf )

�
= x0

) K2 = sech
�p

q=r(t0 � tf )
��

x0 + d sinh
�p

q=r(t0 � tf )
�
=
p
q=r

�
:

(A.16b)

Substituting the time derivative of (A.15) into system dynamics (A.1) yields the follow-
ing optimal open loop control law u�(t):

u�(t) = d+K1

p
q=r � cosh

�p
q=r(t� tf )

�
+K2

p
q=r � sinh

�p
q=r(t� tf )

�
: (A.17)

Summarizing, the optimal state function x�(t) and corresponding optimal open loop
control law u�(t) for the free open loop control problem (u) are:

x�(t) = K1 � sinh
�p

q=r(t� tf )
�
+K2 � cosh

�p
q=r(t� tf )

�
; (A.18a)

u�(t) = d+K1

p
q=r � cosh

�p
q=r(t� tf )

�
+K2

p
q=r � sinh

�p
q=r(t� tf )

�
;

(A.18b)

where

K1 = �d=
p
q=r; (A.18c)

K2 = sech
�p

q=r(t0 � tf )
��

x0 + d sinh
�p

q=r(t0 � tf )
�
=
p
q=r

�
: (A.18d)

Control problem (u� d)

Consider the following open loop control problem (A.1, A.3): �nd an admissible open
loop control function u(t) that minimizes performance index (A.3) subject to the system
dynamics (A.1). The occurrence of (u(t)�d) in both system dynamics and performance
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index enables to introduce a dummy control variable ~u(t) = u(t)� d. Substituting ~u(t)
into (A.1) and (A.3) yields the following system dynamics and performance index for
the free system with dummy control variable ~u(t):

_x(t) = ~u(t); x(t0) = x0; (A.19)

J(~u) =

Z tf

t0

q � x(t)2 + r � ~u(t)2dt: (A.20)

The open loop control problem is now to �nd an admissible open loop dummy control
function ~u(t) that minimizes performance index (A.20) subject to the system dynam-
ics (A.19). Substituting the optimal dummy control law back into ~u(t) = u(t)�d yields
the optimal open loop control law u�(t) for the free open loop control problem (u� d).

Deriving the dummy control law goes along the same lines as shown in the previ-
ous subsection. From Equations (A.19, A.20), the following Hamiltonian and co-state
equation are obtained:

H = q � x(t)2 + r � ~u(t)2 + �(t)~u(t); (A.21)

_�(t) = �2q � x(t); �(tf ) = 0: (A.22)

Again, the Minimum Principle states that a control function that is optimal minimizes
the Hamiltonian. From @H

@u = 0 results that such a function is described by the following
equation:

~u�(t) = � 1

2r
� �(t): (A.23)

By substituting (A.23) into system dynamics (A.19), the same set of di�erential
equations as Equations (A.9) is obtained. An equal second order di�erential equation
of the state function as (A.10) can also be obtained. However, di�erent boundary
conditions hold for the dummy control problem (A.19, A.20):

x(t0) = x0; (A.24a)

_x(tf ) = � 1

2r
� �(tf ) = 0: (A.24b)

The following solution of the second order di�erential equation is obtained:

x(t) = K1 � sinh
�p

q=r(t� tf )
�
+K2 � cosh

�p
q=r(t� tf )

�
: (A.25)

Where applying boundary conditions (A.24) yields:

_x(tf ) =
p
q=rK1 = 0 ) K1 = 0; (A.26a)

x(t0) = K2 � cosh
�p

q=r(t0 � tf )
�
= x0

) K2 = x0 sech
�p

q=r(t0 � tf )
�
:

(A.26b)
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The resulting optimal state function for the problem with dummy control variable ~u(t)
is then:

x�(t) = K2 � cosh
�p

q=r(t� tf )
�
; (A.27a)

Substituting the time derivative of (A.27a) into system dynamics (A.19) yields the
following optimal open loop dummy control law ~u�(t):

~u�(t) = K2

p
q=r � sinh

�p
q=r(t� tf )

�
: (A.27b)

The optimal state function x�(t) and corresponding optimal open loop control law
u�(t) for the free open loop control problem (u� d) can be obtained by simply substi-
tuting ~u = u(t)� d(t) into (A.27b):

x�(t) = K2 � cosh
�p

q=r(t� tf )
�
; (A.28a)

u�(t) = d+K2

p
q=r � sinh

�p
q=r(t� tf )

�
; (A.28b)

with

K2 = x0 sech
�p

q=r(t0 � tf )
�
: (A.28c)

Numerical example

Figures A.1 and A.2 show numerical examples of the free system behavior for respec-
tively problem (u) and (u� d). In these examples, both cost parameters q and r equal
1
2 , initial time t0 is 0, �nal time tf is 3, and the demand rate d is set to 1. The left side
of both �gures shows the control path, the right side shows the state path. Paths are
shown for initial states x0 = �2; 0� 2.
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Figure A.1: Numerical example of the free system behavior (u): (a) the optimal open
loop control law u�(t) and (b) the optimal state function x�(t) for several values of the
initial state x0.
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Figure A.2: Numerical example of the free system behavior (u � d): (a) the optimal
open loop control law u�(t) and (b) the optimal state function x�(t) for several values
of the initial state x0.

Consider the control and state paths for problem (u), Figure A.1. In the case x0 = 0,
initially no costs for the state are taken into account in performance index (A.2). An
option for the controller could be to keep the control variable equal to d for the remainder
of the period. In the case of linear, absolute costs, this would be an optimal control
policy. However, quadratic costs are taken into account here. A straight line from
u(t0) = 1 to u(tf ) = 0 for the control variable and a corresponding straight line from
x(t0) = 0 to x(tf ) = �1 for the state variable lead to less costs than the function
u(t) = d does. So due to the quadratic costs, some backlog is created to achieve an
optimal performance. This clearly illustrates the e�ect on the system behavior how

costs are taken into account.
In the case of problem (u� d), performance index (A.3) is applied. Here, the term

(u(t) � d) indicates that no control costs are taken into account if the control variable
equals d. So a control function u(t) = d is an optimal control function in the case of
x0 = 0. The paths for x0 = �2; 2 tend to go the optimal path for x0 = 0. This can be
explained by the fact that all control paths should share the same �nal control value,
de�ned by boundary condition �(tf ) = 0.

A.2 Feedback control

Optimal feedback control laws u�[x; t] are derived in this section for both control prob-
lems (u) and (u � d) by applying dynamic programming. First, de�ne V [x; t] as the
cost-to-go; the minimal costs associated with starting from a point (x; t) and proceeding
optimally. The cost-to-go can be determined by solving the Hamilton-Jacobi-Bellman
(HJB) equation. When this solution is determined, a feedback control law can be found
that is associated with minimal costs de�ned by the cost-to-go.
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Control problem (u)

Consider the following feedback control problem (A.1, A.2): �nd an admissible feedback
control function u�[x; t] that minimizes performance index (A.2) subject to the system
dynamics (A.1). A Hamiltonian H equal to (A.4) can be de�ned in which co-state �
satis�es co-state equation (A.5). The HJB-equation for this problem is formally written
as the following partial di�erential equation:

�@V
@t

= H�[x;
@V

@x
; t]; V [x; tf ] = 0; (A.29)

where,

H�[x;
@V

@x
; t] = min

u
H[x;

@V

@x
; u; t]; (A.30)

and

H[x; �; u; t] = q � x2 + r � u2 + �(u� d): (A.31)

Though (A.30) and necessary condition (A.6) from the Minimum Principle seem similar,
both equations suit a di�erent purpose. Necessary condition (A.6) is applied to �nd
an optimal control law u(t) that minimizes the Hamiltonian. The purpose of (A.30) is
that it de�nes the optimal Hamiltonian from which, by substituting into (A.29), the
cost-to-go can be derived. The value of the optimal Hamiltonian can be determined
by substituting a control function that minimizes the Hamiltonian into (A.31). Such a
control function is derived in Section A.1 from (A.6):

u� = � 1

2r
� �: (A.32)

Substituting (A.32) into Hamiltonian (A.31) yields:

H�[x; �; t] = q � x2 � 1

4r
� �2 � d � �; (A.33)

which is in terms of the co-state �. The Hamiltonian H� in (A.30) is speci�ed in terms
of @V

@x . This form can simply be obtained by substituting @V
@x for � into (A.33), resulting

in:

H�[x;
@V

@x
; t] = q � x2 � 1

4r
�
�
@V

@x

�2

� d � @V
@x

: (A.34)

Then, the HJB-equation for the free system with dummy control variable is given by
the following partial di�erential equation:

�@V
@t

= q � x2 � 1

4r
�
�
@V

@x

�2

� d � @V
@x

; V [x; tf ] = 0: (A.35)
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Unfortunately, an explicit solution to HJB-equation (A.35) cannot be determined
by Mathematica. However, the results obtained from the derivation of the open loop
control law can be applied to overcome this diÆculty. Optimal state function (A.18a)
and optimal open loop control law (A.18b) result in an optimal performance, denoted
by J�(u). This optimal performance describes the minimal costs for the interval [t0; tf ].

Substituting (A.18) into performance index (A.2) yields (with the aid of Mathematica):

J�(u) =
r

q

�
� d2q(t0 � tf ) + 2dqx0

�
sech

�p
q=r(t0 � tf )

�
� 1

�

+
p
q=r(d2r � qx20) tanh

�p
q=r(t0 � tf)

��
: (A.36)

These are the minimal costs associated with starting from a point (x0; t0) and proceeding
optimally. Hence the similarity between the optimal performance J�(u)[x0; t0] and the

cost-to-go V [x; t]. Then, substituting (x; t) for (x0; t0) into optimal performance (A.36)
yields the cost-to-go V [x; t]:

V [x; t] =
r

q

�
� d2q � (t� tf ) + 2dq �

�
sech

�p
q=r(t� tf )

�
� 1

�
x

+
p
q=r � (d2r � q � x2) tanh

�p
q=r(t� tf )

��
: (A.37)

Now that the cost-to-go has been determined, the problem is to �nd a feedback
control law that is associated with these minimal costs. Similar to the substitution of �
by @V

@x in (A.33), � can also be substituted by @V
@x in (A.32). The equation for a control

function that is optimal can then be written as:

u� = � 1

2r
� @V
@x

: (A.38)

With V [x; t] speci�ed by (A.37), the optimal feedback control law u�[x; t] for the free
feedback control problem (u) results in:

u�[x; t] = d� d � sech
�p

q=r(t� tf )
�
+
p
q=r � tanh

�p
q=r(t� tf )

�
x (A.39)

Because the system is completely deterministic, the optimal state function that goes
with the optimal feedback control law can also be determined. Therefore, feedback
control law (A.39) can be substituted in system dynamics (A.1) that can then be solved.
With the aid of Mathematica, the following optimal state function is obtained:

x�(t) = x0 sech
�p

q=r(t0 � tf )
�
� cosh

�p
q=r(t� tf )

�
� d=

p
q=r � sinh

�p
q=r(t� tf)

�
+ d=

p
q=r tanh

�p
q=r(t0 � tf )

�
� cosh

�p
q=r(t� tf )

�
: (A.40)

Due to the deterministic nature, substituting state function (A.40) into feedback control
law (A.39) leads to the same equation as for the optimal open loop control law u�(t)
derived in the previous section.
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Control problem (u� d)

Consider the following feedback control problem (A.1, A.3): �nd an admissible feedback
control function u�[x; t] that minimizes performance index (A.3) subject to the system
dynamics (A.1). Again, introduce a dummy control variable ~u = u � d. Then, the
HJB-equation for the dummy control problem (A.19, A.20) is formally written as the
following partial di�erential equation:

�@V
@t

= H�[x;
@V

@x
; t]; V [x; tf ] = 0; (A.41)

where,

H�[x;
@V

@x
; t] = min

~u
H[x;

@V

@x
; ~u; t]; (A.42)

and

H[x; �; ~u; t] = q � x2 + r � ~u2 + �~u: (A.43)

In Section A.1, Equation (A.23) is presented as a control function that minimizes Hamil-
tonian (A.43). Substituting (A.23) into (A.43) and rewriting into terms of @V

@x yields
the optimal Hamiltonian H�:

H�[x;
@V

@x
; t] = q � x2 � 1

4r
�
�
@V

@x

�2

: (A.44)

Then, the HJB-equation for the free control problem with dummy control variable is
given by the following partial di�erential equation:

�@V
@t

= q � x2 � 1

4r
�
�
@V

@x

�2

; V [x; tf ] = 0: (A.45)

Unlike Equation (A.35), it is possible to �nd a solution to Equation (A.45). A
solution is characterized by the form:

V [x; t] = c(t)x2; (A.46)

with c(t) a certain function of the time to be determined. From (A.46) it follows that:

@V

@x
= 2 � c(t)x; and (A.47a)

@V

@t
= _c(t)x2: (A.47b)

Substituting (A.47) into HJB-equation (A.45) yields the following nonlinear di�erential
equation:

� _c(t) = q � 1

r
� c(t)2; c(tf ) = 0: (A.48)
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With the aid of Mathematica, the following solution can be obtained for this equation:

c(t) = �pqr � tanh
�p

q=r(t� tf )
�
: (A.49)

Substituting (A.49) back into (A.46) yields an explicit solution to the HJB-equation:

V [x; t] = �pqr � tanh
�p

q=r(t� tf )
�
x2: (A.50)

Now that the cost-to-go has been determined, the problem is to �nd a feedback
control law that is associated with these minimal costs. Substitute �(t) by @V

@x in (A.23),
such that the equation for a feedback control function that is optimal can then be re-
written as:

~u�[x; t] = � 1

2r
� @V
@x

: (A.51)

With V [x; t] speci�ed by (A.50), the optimal feedback control law for the free control
problem with dummy control variable is speci�ed by:

~u�[x; t] =
p
q=r � tanh

�p
q=r(t� tf )

�
x: (A.52)

The optimal feedback control law u�[x; t] for the free feedback control problem (u�d)
can be obtained by simply substituting ~u = u� d into (A.52):

u�[x; t] = d+
p
q=r � tanh

�p
q=r(t� tf )

�
x: (A.53)

This result could also be obtained via the approach as applied for problem (u) in the
previous subsection. Therefore, consider the optimal performance J�(u�d) for problem

(u� d) determined with the aid of Mathematica:

J�(u�d) = �pqr tanh
�p

q=r(t0 � tf )
�
x20: (A.54)

With (x; t) substituted for (x0; t0), optimal performance (A.54) yields the same cost-to-
go as (A.50). Again, the deterministic nature of the system enables to derive an optimal
state function that goes with feedback control law (A.53). This optimal state function
x�(t) results from solving di�erential equation (A.1) with u�[x; t] substituted. With the
aid of Mathematica, the following result is obtained:

x�(t) = x0 sech
�p

q=r(t0 � tf )
�
� cosh

�p
q=r(t� tf )

�
: (A.55)

Again, the same equation as for the optimal open loop control law u�(t) is obtained by
substituting state function (A.55) into feedback control law (A.53).
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A.3 Synopsis

In the previous sections, both an optimal open loop control law and an optimal feedback
control law are derived for the free control problem (u) as well for free control problem
(u� d). The Minimum Principle resulted in open loop control laws and corresponding
state functions, speci�ed by Equation (A.18) for control problem (u) and speci�ed
by Equation (A.28) for control problem (u � d). Dynamic programming resulted in
feedback control laws, speci�ed by Equation (A.39) for control problem (u) and speci�ed
by Equation (A.53) for control problem (u � d). For each control problem, the open
loop and feedback control laws are equivalent, i.e., they show identical system behavior
for the speci�ed deterministic continuous-time system. However, open loop control
laws (A.18b, A.28b) are only optimal if state functions (A.18a, A.28a) are obtained.

The obtained control laws are derived with the purpose of implementation into a high
speed production line. Production rates may change continuously, but the surplus level
is subject to the discrete changes, see also Chapter 5. So it is not possible that the state
paths in this implementation obtain paths as speci�ed by Equations (A.18a, A.28a).
This limits the practical use of open loop control laws as optimal control laws. Feedback
control laws are less sensitive to such changes in the state path. It can be concluded
from Equations (A.18b, A.28b) that their value is not only a function of time, but also
a function of the current state. So whenever a state is encountered that is not on the
optimal path, the control action is adjusted to remain optimal.

In the remaining part of this report, open loop control laws are derived to obtain
insight in the system behavior and to perform as a possible basis for feedback control
laws. Feedback control laws are derived to implement an optimal control law into a
discrete-event model of a manufacturing system.
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Limited control

Consider a single machine manufacturing system subject to the a constant demand and
with constraints on functions of the control variable. This system is referred to as the
limited system, as is described in Chapter 5. Let u(t) denote the control variable, and
let the constant demand rate, denoted by d, be known for the interval [t0; tf ]. The
system dynamics are modeled by the following di�erential equation:

_x(t) = u(t)� d; x(t0) = x0; (B.1)

where the state variable, denoted by x(t), models the surplus. The initial surplus level
is modeled by the initial state x0. De�ne a performance index J(u) of the form:

J(u) =

Z tf

t0

q � x(t)2 + r � u(t)2dt; (B.2)

where q and r are positive constants. The production rate is limited to nonnegative
rates with a maximum of �, the machine capacity, or formally 0 � u(t) � �. The theory
of the Minimum Principle with control constraints, see Chapter 3, desires that control
constraints are written as constraints on functions of the control variable. Introduce
c[u(t); t] as a vector function of the control variable, then 0 � u(t) � � can be written
as:

c[u(t); t] � 0; c[u(t); t] =

� �u(t)
u(t)� �

�
: (B.3)

The limited control problem is to �nd an admissible control function u(t) that minimizes
performance index (B.2) subject to the system dynamics (B.1) and constraints (B.3).
Such a control function is referred to as an optimal limited control law.

Similar as in Appendix A, de�ne also a performance index J(u�d) of the form:

J(u�d) =

Z tf

t0

q � x(t)2 + r � (u(t)� d)2dt: (B.4)

71
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The limited control problem now is to �nd an admissible control function u(t) that
minimizes performance index (B.4) subject to the system dynamics (B.1) and con-
straints (B.3). The same notation as introduced in Appendix A is also used to indicate
what control problem is dealt with. A (u) refers to the control problem with performance
index (B.2), and a (u� d) refers to the control problem with performance index (B.4).

This appendix deals with the derivation of both an open loop control law and a
feedback control law for the limited system for both control problems (B.1, B.2, B.3)
and (B.1, B.3, B.4). First a numerical case of a corresponding free system, i.e., the
limited system with the absence of constraints, is studied. Analysis of the behavior of
the controlled free system leads to an optimal open loop control law for the limited
system. The gained insight from the numerical case is then employed to derive an
optimal open loop control law u�(t), by applying the Minimum Principle with control
constraints to the limited system.

The open loop system behavior also leads to the insight that an optimal limited
feedback control law u�[x(t); t] is in fact a saturation of the corresponding optimal free
feedback control law. Several numerical examples are included to illustrate the obtained
results.

B.1 Numerical case

To gain more insight in the diÆculties and strategies of deriving an optimal control law
for the limited system, a simpli�cation of the limited control problem is studied �rst.
Only control problem (u) is studied in this section. Eliminating the control constraints
from control problem (B.1, B.2, B.3) simpli�es the limited control problem to a free
control problem. The free control problem (u) is to �nd an admissible control function
u(t) that minimizes performance index (B.2) subject to the system dynamics (B.1). In
the remainder of this appendix, a bar indicates that a variable or function concerns the
free equivalent of a limited control problem.

From Appendix A, the optimal state function �x�(t) and corresponding optimal open
loop control law �u�(t) for the free control problem (u) are:

�x�(t) = K1 � sinh
�p

q=r(t� tf )
�
+K2 � cosh

�p
q=r(t� tf )

�
; (B.5a)

�u�(t) = d+K1

p
q=r � cosh

�p
q=r(t� tf )

�
+K2

p
q=r � sinh

�p
q=r(t� tf )

�
;

(B.5b)

where

K1 = �d=
p
q=r; (B.5c)

K2 = sech
�p

q=r(t0 � tf )
��

x0 + d sinh
�p

q=r(t0 � tf )
�
=
p
q=r

�
: (B.5d)
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Numerical example

A numerical example of the free system is shown in Figure B.1. Here the optimal
open loop control law �u�(t) and optimal state function �x�(t) for the free system are
plotted for a range of initial states x0. The �nal time tf is 3, cost parameters q and
r are both 1

2 , and the demand rate d is 1. Note that for the range of state paths,
Figure B.1(b), the initial state x0 increases from bottom to top. In contrary, the initial
state for the range of control paths in Figure B.1(a) increases in the opposite direction.
Introduce � = 1 as the upper control constraint and 0 as the lower control constraint
(nonnegative production rates). It is obvious, according to Figure B.1, that the free
control law violates both lower and upper constraints for certain values of x0. However,
for some values of x0, the free control law does not violate the constraints.
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Figure B.1: Numerical example of: (a) the optimal open loop control law �u�(t) and
(b) the optimal state function �x�(t) for the free system for a range of initial states x0
from -1 to 2 with step size 1

2 .

Consider the case with an initial state x0 = �1. The free control law starts at
approximately u(t0) = 1:9. From Figure B.1 can be concluded that the free control
law violates the upper constraint from t = 0 to approximately t = 3

2 . In this case, an
optimal control strategy for the limited system would be to remain at 1 until a certain
time t1. From then on follow a path given by the optimal free control law for the interval
[t1; tf ]. See Figure B.2(a) for a visualization of this strategy.

Then consider the case with an initial state x0 = 2. According to Figure B.1, this
causes the free control law to take negative control actions from t = 0 to approximately
t = 1. An optimal strategy for the limited control law in this case, would be to remain
zero until a certain time t1. From then on follow a path given by the optimal free control
law for the interval [t1; tf ]. This is a similar strategy as that when the upper constraint
is violated. A visualization of this strategy is shown in Figure B.2(b).

Finally, consider the case with an initial state x0 = 0. The free control law does
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Figure B.2: Limited control strategies with initial states (a) x0 = �1, (b) x0 = 2, and
(c) x0 = 0.

not violate any constraints, as can be seen in Figure B.1. Then it is not necessary
to constrain the free control law at all. The optimal control strategy for the limited
control law is then to follow the path given by the optimal free control law for the
interval [t0; tf ], see Figure B.2(c).

From these cases can be concluded that the limited control strategy depends on the
initial state. The initial state x0 determines whether the free control law

� must be limited to � on the interval [t0; t1],

� must be limited to 0 on the interval [t0; t1], or

� may remain free for the complete interval [t0; tf ].

Though the initial state determines the limited control strategy, it is the initial value of
the free control law that marks the violation of constraints. So conditions on the initial
free control law can be speci�ed such that the limited control strategy

� limits the free control law on [t0; t1], if �u
�(t0) > �,

� limits the free control law on [t0; t1], if �u
�(t0) < 0, and

� lets the free control law remain free on [t0; tf ], if 0 � �u�(t0) � �.

The conditions above can be written as functions of the initial state because the initial
free control law �u�(t) is known from (B.5b). A superscript u denotes an initial state
that results in an initial free control law equal to the upper constraint �. An initial
state that results in an initial free control law equal to the lower constraint 0 is denoted
by the superscript l. Then, the limited control strategy

� limits the free control law to � on [t0; t1], if x0 < xu0 ,

� limits the free control law to 0 on [t0; t1], if x0 > xl0, and
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� lets the free control law remain free on [t0; tf ], if x
u
0 � x0 � xl0.

As a consequence, the optimal control path is divided into two intervals, a con-
strained path on [t0; t1] and an unconstrained path on [t1; tf ]. Each interval has its
speci�c system dynamics and system behavior. An optimal control law can be derived
for each interval. Note that the latter strategy, let the free control remain free on [t0; tf ]
can be considered as a special case of the previous two. In this case, the time t1 equals
t0 such that the length of the interval [t0; tf ] equals zero. In solving the limited control
problem, the constrained and unconstrained paths must be pieced together to satisfy
all necessary conditions.

Limited control on [t0; t1]

Let u01(t) denote the limited control function for the interval [t0; t1]. The limited control
strategy deduced from the numerical case results in the following formal description of
the limited control law:

u01(t) =

8<
:

�; if x0 < xu0 ;
�u�(t); if xu0 � x0 � xl0;
0; if x0 > xl0:

(B.6)

The critical initial states xu0 and xl0 are derived by setting the initial free control law
equal to respectively the upper constraint � and the lower constraint 0. This results in:

�u�(t0) = � ) xu0 =
d+ (�� d) cosh

�p
q=r(t0 � tf )

�
p
q=r sinh

�p
q=r(t0 � tf )

� ; (B.7a)

�u�(t0) = 0 ) xl0 =
d� d cosh

�p
q=r(t0 � tf )

�
p
q=r sinh

�p
q=r(t0 � tf )

� : (B.7b)

In the case that x0 lies between xu0 and xl0, the limited control function equals �u(t)
according to (B.6). However, t1 equals t0 in this case such that the length of the
interval [t0; t1] is zero. Clearly, any admissible control law on an interval of length zero
is an optimal control law. So u01(t) may take any value between 0 and � in this case.
Take �u�(t0) to satisfy that the �nal control of the �rst interval equals the initial control
of the second interval. As a result, the limited control function on the interval [t0; t1] is
a constant, denoted by u01:

u01 =

8<
:

�; if x0 < xu0 ;
�u�(t0); if xu0 � x0 � xl0;
0; if x0 > xl0:

(B.8)

With the limited control function known on the interval [t0; t1], the system dynamics
on the �rst interval can be written as the following di�erential equation:

_x01(t) = u01 � d; x01(t0) = x0; (B.9)
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where x01(t) denotes the state function for the interval [t0; t1]. Because u01 is a constant,
a solution of the di�erential equation can easily be obtained by integrating, resulting in
the state function for the �rst interval:

x01(t) = �(u01 � d) � (t0 � t) + x0: (B.10)

The system behavior of the limited system for the interval [t0; t1] is then described by
the limited control function u01 and state function x01(t), respectively Equations (B.8)
and (B.10).

Limited control on [t1; tf ]

Let u1f (t) denote the limited control function for the interval [t1; tf ]. According to
the limited control strategy deduced from the numerical case, no constraints are active
in this interval. The system dynamics can be modeled by the following di�erential
equation:

_x1f (t) = u1f (t)� d; x1f (t1) = x01(t1) = x1; (B.11)

where x1f (t) denotes the state function for the interval [t1; tf ]. The initial state x1 for
the second interval equals the �nal state of the �rst interval. Because of the absence of
control constraints, (B.11) is similar to (B.1), but now holds for the interval [t1; tf ] and
with initial state x1. Substituting the correct boundaries t1 and tf and the initial state
x1 into (B.5) results into the following state function x1f (t) and corresponding limited
control function u1f (t) for the interval [t1; tf ]:

x1f (t) = K1 � sinh
�p

q=r(t� tf )
�
+K2(t1) � cosh

�p
q=r(t� tf )

�
; (B.12a)

u1f (t) = d+K1

p
q=r � cosh

�p
q=r(t� tf )

�
+K2(t1)

p
q=r � sinh

�p
q=r(t� tf )

�
;

(B.12b)

where

K1 = �d=
p
q=r; (B.12c)

K2(t1) = sech
�p

q=r(t1 � tf )
��

x01(t1) + d sinh
�p

q=r(t1 � tf )
�
=
p
q=r

�
; (B.12d)

and with the time t1 to be determined later. Note that constant K2(t1) is a function of
time t1 as the initial state x1 = x01(t1) for the interval [t1; tf ] occurs in K2(t1).

Limited control on [t0; tf ]

In the previous two subsections, limited control functions have been derived for the
intervals [t0; t1] and [t1; tf ]. These individual control functions, Equations (B.8) and
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(B.12b), can be composed to a global limited control function u(t) for the interval
[t0; tf ], resulting in:

u(t) =

�
u01; if t < t1;
u1f (t); if t � t1:

(B.13)

A value for t1 can be determined by stating that the initial control on the second interval
must be equal to the �nal control on the �rst interval. In this way, a limited control
function that is continuous is obtained, which corresponds with the limited control
strategy deduced from the numerical case. The following formal condition can be given
from which t1 can be determined:

u1f (t1) = u01: (B.14)

Because the limited control function u1f (t) is in fact an optimal control law for the
interval [t1; tf ], the deduced value for t1 from (B.14) is an optimal value, denoted by t�1.
A value for t�1 is given by the root of u1f (t1)� u01. Unfortunately, this root cannot be
determined in an analytical way, but must be determined numerically.
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Figure B.3: Numerical example of: (a) the optimal open loop control law u�(t) and
(b) the optimal state function x�(t) for the limited system for a range of initial states
x0 from -1 to 2 with step size 1

2 .

With t�1 determined, the optimal limited control law u�(t) and the corresponding
optimal state function x�(t) for the interval [t0; tf ] are:

u�(t) =

�
u01; if t < t�1;
u1f (t); if t � t�1;

(B.15a)

x�(t) =

�
x01(t); if t < t�1;
x1f (t); if t � t�1:

(B.15b)



78 Appendix B. Limited control

A numerical example of the limited system is shown in Figure B.3 as a limited equivalent
of Figure B.1. Here the optimal open loop control law and the optimal state function
for the limited system are plotted for a range of initial states x0. Note that for x0 = �1
the optimal limited control law leaves the upper constraint at approximately t = 2:2,
instead of t = 3

2 as expected in Section B.1.

B.2 Open loop control

An optimal control law for the limited system (u) is obtained in the previous section.
A numerical example of the free system is studied from which insight in the system
behavior is gained. From this insight, a formal description of the control law as a
function of the optimal value for t1 is deduced. However, in Chapter 3 a theory is
discussed that deals with constraints on functions of the control. This theory can be
applied to derive a formal description of an optimal open loop control law for a single
machine manufacturing system with control constraints, i.e., the limited system. First
control problem (u) is considered, then control problem (u� d) is considered.

Control problem (u)

Consider the control problem (u) that is speci�ed by the following dynamics, perfor-
mance index, and constraints on functions of the control variable:

_x(t) = u(t)� d; x(t0) = x0; (B.16)

J(u) =

Z tf

t0

q � x(t)2 + r � u(t)2dt; (B.17)

c[u(t); t] � 0; c[u(t); t] =

� �u(t)
u(t)� �

�
: (B.18)

The open loop control problem is to �nd an admissible open loop control function u(t)
that minimizes performance index (B.17) subject to the system dynamics (B.16) and
constraints (B.18). For problem (B.16, B.17, B.18) the following Hamiltonian can be
derived:

H = q � x(t)2 + r � u(t)2 + �(t)(u(t) � d) + �1(t)(�u(t)) + �2(t)(u(t) � �): (B.19)

The general additional constraints on �(t), Equation (3.11) on page 20, can also be
written as:

�(t)c[u(t); t] = 0; and �(t) � 0 for all t: (B.20)

Then, the following constraints on the functions �1(t) and �2(t) respectively must hold:

�1(t)(�u(t)) = 0; �1(t) � 0; and (B.21a)

�2(t)(u(t) � �) = 0; �2(t) � 0: (B.21b)
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De�ne the co-state variable �(t) as the solution of the co-state equation:

_�(t) = �2q � x(t); �(tf ) = 0: (B.22)

The necessary condition for u(t) to be an optimal control law then yields:

0 =
@H

@u
= 2r � u(t) + �(t)� �1(t) + �2(t): (B.23)

This results in the following equation for the optimal open loop control law for the
limited system:

u�(t) =
1

2r
� (��(t) + �1(t)� �2(t)); (B.24)

with �(t), �1(t), and �2(t) to be determined later. This equation is an extended version
of its equivalent for the free system (u), see Equation (A.8), Appendix A on page 60.
In both cases, the co-state �(t) determines the value of the control law. Its e�ect is
limited by the functions �1(t) and �2(t) whenever a control constraint is violated. As
the co-state reaches a value such that a constraint is violated, its value is added or
subtracted with the value of �1(t) or �2(t) respectively, such that the limited control
law has a value equal to the violated constraint. As a consequence, the functions �1(t)
and �2(t) also depend on the value of the co-state �(t). In general, three cases can be
considered:

� no constraints are violated,

� the lower constraints are violated, and

� the upper constraints are violated.

It is useful to describe these cases as functions of the co-state �(t), due to the in
uence
of �(t) on u�(t), �1(t), and �2(t).

First, consider the case where no constraints are violated. Then the control law
satis�es:

0 � u�(t) � �: (B.25)

If no constraints are violated, both functions �1(t) and �2(t) do not have any e�ect on
the value of �(t), i.e., they remain zero. The control law for this case then results in:

u�(t) = � 1

2r
� �(t): (B.26)

Substituting (B.26) into (B.25) yields

�2r� � �(t) � 0 (B.27)
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as the condition for �(t) in the case that no constraints are violated. Second, consider
the case where the lower constraint is violated, i.e., �(t) > 0. Function �1(t) is then
active, such that the control law results in:

u�(t) =
1

2r
� (��(t) + �1(t)): (B.28)

Substituting (B.28) into constraint (B.21a) yields for function �1(t):

�1(t) = �(t); if �(t) > 0: (B.29)

Finally consider the case where the upper constraint is violated, i.e., �(t) < �2r�. Then
function �2(t) is active, such that the control law results in:

u�(t) =
1

2r
� (��(t)� �2(t)): (B.30)

Substituting (B.30) into constraint (B.21b) yields for the function �2(t):

�2(t) = ��(t)� 2r�; if �(t) < �2r�: (B.31)

Summarizing the results from above, can be concluded that the optimal open loop
control law u�(t) for the limited control problem (u) is described by:

u�(t) =
1

2r
� (��(t) + �1(t)� �2(t)); (B.32)

where

�1(t) =

�
0; if �(t) � 0;
�(t); if �(t) > 0;

(B.33a)

�2(t) =

�
0; if �(t) � �2r�;
��(t)� 2r�; if �(t) < �2r�; (B.33b)

and with �(t) to be determined. The problem that has to be solved to determine �(t)
is given by:

_x(t) = u�(t)� d; x(t0) = x0; (B.34a)

_�(t) = �2q � x(t); �(tf ) = 0; (B.34b)

with u�(t) speci�ed by (B.32). It is possible to derive a second order di�erential equation
in �(t) from problem (B.34). However, note that functions �1(t) and �2(t) are not
continuously di�erentiable, i.e., their time derivative is not a continuous function. Due
to this fact, an explicit solution for �(t) cannot be obtained. A solution to the problem
can be obtained by transforming problem (B.34) into a numerical problem. The co-
state �(t) can then be determined numerically, such that the optimal open loop limited
control law (B.32) is completely speci�ed. For visualization of and simulation with the
open loop control law is made use of the numerical problem that is �nished with in
Section B.1.
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Control problem (u� d)

Consider the control problem (u � d) that is speci�ed by the following dynamics, per-
formance index, and constraints on functions of the control variable:

_x(t) = u(t)� d; x(t0) = x0; (B.35)

J(u�d) =

Z tf

t0

q � x(t)2 + r � (u(t) � d)2dt; (B.36)

c[u(t); t] � 0; c[u(t); t] =

� �u(t)
u(t)� �

�
: (B.37)

The open loop control problem is to �nd an admissible control function u(t) that
minimizes performance index (B.36) subject to the system dynamics (B.35) and con-
straints (B.37). Similar as in Appendix A, introduce a dummy control variable ~u(t) =
u(t)�d. Substituting ~u(t) into (B.35), (B.36), and (B.37) yields the following dynamics,
performance index, and constraints on functions of the dummy control variable for the
limited system (u� d) with dummy control variable ~u(t):

_x(t) = ~u(t); x(t0) = x0; (B.38)

J(~u) =

Z tf

t0

q � x(t)2 + r � ~u(t)2dt; (B.39)

c[~u(t); t] � 0; c[~u(t); t] =

� �~u(t)� d
~u(t)� (�� d)

�
: (B.40)

The open loop control problem is now to �nd an admissible dummy control function
~u(t) that minimizes performance index (B.39) subject to the system dynamics (B.38)
and constraints (B.40).

The following Hamiltonian can be derived for the problem (B.38, B.39, B.40):

H = q � x(t)2 + r � ~u(t)2 + �1(t)(�~u� d) + �2(t)(~u(t)� (�� d)); (B.41)

with the following constraints on the functions �1(t) and �2(t) respectively:

�1(t)(�~u(t)� d) = 0; �1(t) � 0; and (B.42a)

�2(t)(~u(t)� (�� d)) = 0; �2(t) � 0: (B.42b)

The co-state variable �(t) is de�ned as the solution of co-state equation:

_�(t) = �2q � x(t); �(tf ) = 0: (B.43)
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The Minimum Principle states that an optimal control function minimizes the Hamil-
tonian. From @H

@u results that such an optimal function is described by the following
equation:

~u�(t) =
1

2r
� (��(t) + �1(t)� �2(t)); (B.44)

with �(t), �1(t), and �2(t) to be determined later.
Similar as in Equation (B.24), the functions �1(t) and �2(t) limit the e�ect of �(t),

thus preventing ~u�(t) from violating constraints (B.40). As a consequence, functions
�1(t) and �2(t) also depend on the value of �(t). Again, three cases can be considered,
which conditions can be written as functions of the co-state �(t):

� no constraints are violated if �2r(�� d) � �(t) � 2rd,

� the lower constraint is violated if �(t) > 2rd, and

� the upper constraint is violated if �(t) < �2r(�� d).

Function �1(t) becomes active when the lower constraint is violated. Substituting (B.44)
with �2(t) = 0 into constraint (B.42a) yields the value for �1(t). In the case that the
upper constraints is violated, function �2(t) must become active. Its value results from
substituting (B.44) with �1(t) = 0 into (B.42b).

Summarizing the results from above, can be concluded that the optimal open loop
control law u�(t) for the limited control problem (u� d) is described by:

u�(t) = d+
1

2r
� (��(t) + �1(t)� �2(t)); (B.45)

where

�1(t) =

�
0; if �(t) � 2rd;
�(t)� 2rd; if �(t) > 2rd;

(B.46a)

�2(t) =

�
0; if �(t) � �2r(�� d);
��(t)� 2r(�� d); if �(t) < �2r(�� d);

(B.46b)

and with �(t) to be determined. The problem that has to be solved to determine �(t)
is given by:

_x(t) = u�(t)� d; x(t0) = x0; (B.47a)

_�(t) = �2q � x(t); �(tf ) = 0; (B.47b)

where u�(t) is speci�ed by (B.45). This is a similar problem as that for limited control
problem (u), see Equation (B.34).
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B.3 Feedback control

In solving the limited control problem, constrained and unconstrained paths must be
pieced together such that all necessary conditions are satis�ed. The junction point of
constrained and unconstrained paths is referred to as a corner, see Bryson [Bry75]. At
a corner, the control path can be discontinuous. In Section B.1, when discussing the
numerical example, the assumption has been made that the line u(t) = � and the free
control path �u�(t) may be pieced together at the point where they intersect. However,
results from Figure B.3 show that this is not the case. This can be explained as follows.

Consider the start of the horizon where the free control law violates a constraint.
The value of the limited control law is thus set to that of the violated constraint. As a
consequence of the control action some di�erent state than the initial state x0 is reached.
For that state and time, the optimal control problem must be solved again. The solution
still violates the constraint, thus the limited control law remains equal to constraint.
This loop continues until the solution of the optimal control problem does not violate
the constraint anymore. The limited control law may then take the value of the derived
solution. This moment occurs in the corner. Finding a solution every present state
and time to the present optimal control problem is exactly what dynamic programming
does. Then, the optimal limited feedback control law u�[x; t] is the saturation of the
optimal free feedback control law �u�[x; t]. For both control problems (u) and (u � d),
the optimal limited feedback control law u�[x; t] results into:

u�[x; t] =

8<
:

�; if �u�[x; t] > �;
�u�[x; t]; if 0 � �u�[x; t] � �;
0; if �u�[x; t] < 0;

(B.48)

where for control problem (u) �u�[x; t] is given by Equation (A.39) and for control prob-
lem (u� d) �u�[x; t] is given by Equation (A.53). In every point (x; t), the value of the
free feedback control law is compared to that of the constraints. If the free feedback
control law violates a constraint, the value of the limited feedback law is set to that of
the violated constraint.
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Appendix C

Simulation model

This appendix deals with a discrete-event model of a single machine manufacturing sys-
tem suited for simulation. A control system that applies optimal control laws is intercon-
nected to the manufacturing system. The control laws are designed in a continuous-time

ow model of the manufacturing system. A discrete-time converter is applied to en-
able the interconnection. First, applied software tools are shortly described. Then, a
deterministic and stochastic discrete-event simulation model is presented.

C.1 Tools

The following software tools are used to perform the simulations.

�: A formalism based on communicating sequential processes. Rooda [Roo00]
uses � 0.3 to describe the (dynamic) behavior of industrial systems. In this
research � 0.7.5c is used, in which Python access is added. A manual for
� 0.7 is provided by Kleijn and Rooda [Kle01].

MATLAB: A 
exible environment for technical computing. Calculations inMATLAB are
based upon arrays. The optimal continuous-time control laws derived in
Appendices A and B are implemented in MATLAB function-�les. Also, post-
processing of the obtained experiment data is performed in MATLAB.

Python: An object-oriented programming language. It can be used for writing stand
alone programs, quick scripts, and prototypes of complex applications. A
good introduction to the basics of the Python language is given by Lutz and
Ascher [Lut99]. Python is used in this research to function as an interface
between � and MATLAB.

The �! Python-interface provided by Hofkamp [Hof01] provides a way to let � interact
with Python. The pymat module provided by Sterian [Ste99] provides a way to use the
functionality of MATLAB in a Python environment.
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C.2 Deterministic model

A discrete-event model of system W with controller C as described in Chapter 5 is
presented. The model is speci�ed in the formalism �. The model calls several external
functions speci�ed in the Python language. One of those functions starts calculations
in MATLAB. A visualization of the model is shown in Figure C.1. In the following

G M D

C

E
a b c

u x

Figure C.1: Discrete-event model.

�-speci�cations, the parts are modeled by natural numbers. The production rate and
surplus level, the state, may take real values, as expressed in the following type-mapping:

type part = nat
; rate = real
; state = real:

[C.1]

Below follow the descriptions and �-speci�cations of system W and its processes and
functions. Note that boldface symbols stand for variables of the string type. A descrip-
tion of a system, process, or function starts with an function part in which is explained
what the subject does. Then, a purpose part explains how the subject's variables relate
to those of other processes. Finally, an e�ect part explains how the subject's variables
achieve the expressed function.

System W

Function: To produce parts such that an optimal system behavior is achieved.

Purpose: The control system, represented by controller C, controls the 
ow of parts
through the manufacturing system, represented by machine M and depot D.
Generator G and end process E represent the environment of system W , see
also Figure C.1.

E�ect: The generator models the supply of parts by the environment, the end process
models the demand for parts, i.e., orders, by the environment. The di�erence
of the cumulative production of the machine and the cumulative demand of
the environment is modeled in the depot by a surplus of parts and orders.
Based upon the present surplus and present time, the controllers decides at
what rate the machine should produce. These optimal production rates are
optimal in a sense that they are derived from a continuous-time control law
that minimizes a de�ned performance index, see also Appendices A and B.
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The interactions of the processes as modeled in Figure C.1 are implemented
in the �-speci�cation of system W [C.2].

syst W () =
j[ a; b; c : �part; u : �rate; x : �state
j G(a) kM(a; b; u) kD(b; c; x) kE(c) k C(x; u)
]j

[C.2]

Generator G

Function: To model the supply of parts by the environment.

Purpose: Supply parts to machine M , see also Figure C.1.

E�ect: Send a part, represented by a natural 1, to the machine when possible. This
e�ect is implemented in the �-speci�cation of process G [C.3].

proc G(a : ! part) =
j[ �[ true �! a ! 1 ] ]j [C.3]

End process E

Function: To model the constant demand for parts by the environment.

Purpose: Take parts from depot D at a speci�ed demand rate, see also Figure C.1.

E�ect: First, the inter request time td is calculated from the demand rate d. The
value for parameter d is returned by external function GetReal . Then, ev-
ery td period of time, a single part is taken from the depot. This e�ect is
implemented in the �-speci�cation of process E [C.4].

proc E(a : ? part) =
j[ p : part; td : real
j td := 1:0=GetReal (d)
; �[ true ; � td �! a ? p ]
]j

[C.4]

Machine M

Function: To produce parts at an optimal rate.

Purpose: When required, a part is received from generator G. A part is processed for an
optimal period of time and is then send to depot D. The optimal production
time is determined by controller C, see also Figure C.1.

E�ect: The machine has two states: on and o�. Only if the machine is in the on state,
a part can be loaded from the generator. If a part is loaded, the machine is
busy. Initially, the machine is in the o� state and waits to be switched on.
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This is done when a new optimal production rate un 6= 0:0 is received from
the controller. The present optimal production rate u is updated and a part
can be loaded. After an optimal period of time, i.e., at �nishing time tp, the
part is send to the depot and the machine becomes idle. Now, a new part
may be loaded and processed at the present rate u. While processing a part,
the controller may send an new optimal rate un 6= 0:0. Because some form
of preemption is allowed, this new rate can directly be incorporated in the
processing of the loaded part. Therefore, a new optimal �nishing time tp is
returned by function DelayLeft . When the controller sends a new optimal
rate un = 0:0, the machine is switched o�. Any loaded part is kept on the
machine. A switching o� time to is stored, such that when the machine is
switched on again, the part is �nished at the new optimal rate. This e�ect is
implemented in the �-speci�cation of process M [C.5].

proc M(a : ? part; b : ! part; c : ? rate) =
j[ p : part; u; un : rate; on ; busy : bool; to; tp : real
j on := false ; busy := false ; to := 0:0
; �[ on ^ :busy ; a ? p

�! tp := � + 1:0=u ; busy := true
[] on ^ busy ; � tp � �
�! b ! 1 ; busy := false

[] true ; c ? un
�! [ un 6= 0:0 ^ busy

�! tp := � + u=unDelayLeft(�; to; tp)
; to := 0:0; u := un

[] un 6= 0:0 ^ :busy
�! on := true; u := un

[] un = 0:0
�! on := false ; to := �

] ]
]j

[C.5]

Function DelayLeft

Function: To calculate the remaining production delay.

Purpose: Based upon the present time, �nishing time, and if necessary the switching o�
time, the remaining production time for a part being processed is calculated.
All times are based upon the present production rate.

E�ect: If the machine has not been switched o� while the part was loaded, the
remaining production time is simply the di�erence between the �nishing time
tp and the present time t. Else, the �nishing time tp has to be increased with
the time that the machine has been switched o�, to. This e�ect is implemented
in the �-speci�cation of function DelayLeft [C.6].
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func DelayLeft(t; to; tp : real)! real =
j[ [ to = 0:0 �! " tp � t
[] to > 0:0 �! " tp + (t� to)� t
]

]j

[C.6]

Depot D

Function: To temporarily store parts and orders.

Purpose: Parts from machineM are stored in depotD and send to end process E. Here,
the depot level models the surplus, the di�erence between the cumulative
production and the cumulative demand. The changed depot level is send to
controller C, see also Figure C.1.

E�ect: When a part is received from the machine, the depot level x is increased by
1. The depot level is decreased by 1 when the end process takes a part from
the depot. After every change of depot level, the value of x is send to the
controller. A depot of in�nite size is modeled, thus x may take any value in
Z. This e�ect is implemented in the �-speci�cation of process D [C.7].

proc D(a : ? part; b : ! part; c : ! state) =
j[ p : part; x : state
j x := GetReal (x0) ; c ! x
; �[ [ true ; a ? p �! x := x+ 1:0

[] true ; b ! 1 �! x := x� 1:0
]

; c ! x
]

]j

[C.7]

Controller C

Function: To control the 
ow of parts such that an optimal performance is achieved.
Also, store state and control path data and terminate the experiment.

Purpose: Based upon the present depot level and present time, an optimal production
rate is calculated and send to machineM . The present depot level is received
from depot D, see also Figure C.1.

E�ect: Here, the production rate u is the control variable, the depot level x is the state
variable. Every ts period of time, the controller goes through the following
sequence. First, calculate the present optimal production rate u. This value
is returned by the external function Control(x ; �) for given present state x
and present time � . The present state is received from the depot. Then, send
the optimal production rate to the machine. Last, store the present state and
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control path data. This is done by returning list [�; x; u] to external function
StoreReals . At �nal time tf , the �nal path data are stored and dumped to
a �le by returning list [path] to external function DumpStores . Finally, the
experiment is terminated. This e�ect is implemented in the �-speci�cation of
process C [C.8].

proc C(a : ? state; b : ! rate; ) =
j[ u : rate; x : state; tf ; ts; tu : real;
j tf := GetReal (tf) ; ts := GetReal (ts)
; a ?x ; u := Control (x; �) ; b ! u
; [ StoreReals([�; x; u]; path) �! skip ]
; tu := ts
; �[ true ; a ?x �! skip
[] true ; � tu � �
�! u := Control (x; �) ; b !u

; [ StoreReals([�; x; u]; path) �! skip ]
; tu := tu + ts

[] true ; � tf � �
�! [ StoreReals([�; x; u]; path) �! skip ]

; [ DumpStores([path]) �! skip ]
; terminate

]
]j

[C.8]

System W is instantiated in the following experiment environment:

xper = j[ W () ]j : [C.9]

The described �-speci�cations [C.1] up to and including [C.9] are united into a
single �-model exp DE.chi. Several external functions are applied in the �-speci�cations
above. By means of the �! Python-interface, these external functions are included in
the experiment. The external functions are speci�ed in a Python module named func.py.
The �! Python-interface tells the �-compiler to use this module by specifying a list of
external speci�cations. This list is speci�ed in a script func.ext [C.10].

// func.ext

//

language "python"

file "func"

// Python -> Chi

ext GetReal(p: string) -> real = "Get"

ext Control(x, t: real) -> real

// Chi -> Python

ext StoreReals(xs: real*, n: string) -> bool = "StoreData"

ext DumpStores(ns: string*) -> bool

[C.10]



C.2. Deterministic model 91

Here, GetReal , and Control are functions in Python that return values back to �. Func-
tions StoreReals and DumpStores store data from � to Python. In Python, functions
GetReal and StoreReals call respectively functionsGet and StoreData . The Pythonmod-
ule func.py that speci�es the external functions starts with the import of several other
Python modules [C.11].

# func.py

#

import os

from Numeric import *

import pymat

import pickle

global G

G = None

[C.11]

Then, a set of parameters for the experiment is loaded. This is done by making use of
the pickle module [Lut99]. Pickling converts objects to serialized byte streams, which
may be stored in �les or sent across a network. In some kind of simulation module, a
dictionary object, see [C.12], has been created and pickled to a �le setup.

pard = { 'q': 0.5, 'r': 0.5, 't0': 0.0, 'tf': 10.0

, 'ts': 0.001, 'd': 10.0, 'alpha': 10.0, 'x0': -40.0

, 'c2': 1.0, 'seed': 1, 'law': 'fbfreecontrolu'

}

[C.12]

The set of parameters is then loaded by [C.13] from setup as dictionary pard. While per-
forming multiple experiments, this pickling construct enables a some kind of simulation
module to easily change the parameter setup for each experiment.

# Load parameters from file setup

input = open('setup', 'r')

pard = pickle.load(input)

input.close()

[C.13]

Below follow the descriptions and Python speci�cations of the external functions as
applied above.

Function Get

Function: To get the experiment setup.

Purpose: Based upon the parameter name, represented by a string, its value is returned.

E�ect: The value of key p from dictionary pard is returned. This e�ect is implemented
in the Python speci�cation of function Get [C.14].

# Function: get parameter

def Get(p):

return pard[p]
[C.14]
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Function Control

Function: To calculate the value of the optimal production rate.

Purpose: Based upon the present state and time, the value of the optimal continuous-
time control law is returned.

E�ect: When called for the �rst time, a MATLAB handle is opened by means of the
pymat module. The parameter setup is placed into the MATLAB workspace
as global variables. During the experiment, the MATLAB handle is kept open.
Every time that Control is called, a MATLAB function-�le speci�ed by param-
eter key 0law 0 is called with parameters x and t. The calculated production
rate u is returned. This e�ect is implemented in the Python speci�cation of
function Control [C.15].

# Function: calculate value of control law

def Control(x, t):

global G

if G == None:

G = pymat.open('matlab -nosplash')

pymat.eval(G, 'clear all')

for key in pard.keys():

pymat.eval(G, 'global %s' % key)

pymat.eval(G, '%s = %s;' % (key, pard[key]))

pymat.eval(G, 'u = %s(%s, %s);' % (pard['law'], x, t))

return pymat.get(G, 'u')[0]

[C.15]

As an example of a MATLAB function-�le that is called by function Control , consider
the following implementations of the optimal continuous-time control laws for the free
and limited control problem (u), respectively Equations (A.39) and (B.48):

function y = fbfreecontrolu(x, t)

global q r tf d

y = d - d * sech(sqrt(q/r) * (t - tf))

+ sqrt(q/r) * tanh(sqrt(q/r) * (t - tf)) .* x;

[C.16]

and,

function y = fblimcontrolu(x, t)

global alpha

if fbfreecontrolu(x, t) > alpha

y = alpha;

elseif fbfreecontrolu(x, t) < 0

y = 0;

else

y = fbfreecontrolu(x, t)

end

[C.17]
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Function StoreData

Function: To temporarily store data.

Purpose: The given data is appended to a speci�ed list.

E�ect: Initially, a dictionary stored with empty lists is created. The received list data
is appended to the list in stored with key name. This e�ect is implemented
in the Python speci�cation of function StoreData [C.18].

# Function: store data in list name

stored = {'path': [], 'td': []}

def StoreData(data, name):

stored[name].append(data)

return 1

[C.18]

Function DumpStores

Function: To permanently save stored data.

Purpose: The speci�ed stored data is dumped into a �le.

E�ect: For every key in the received list stores , its value in dictionary stored is pickled
to a �le named by the key. This e�ect is implemented in the Python speci�-
cation of function DumpStores [C.19].

# Function: dump store to file

def DumpStores(stores):

for store in stores:

output = open(store, 'w')

pickle.dump(stored[store], output)

output.close()

return 1

[C.19]

External functions [C.14, C.15, C.18, C.19], the import of other modules [C.11], and the
loading of the parameter setup [C.13] are united into a single Python module func.py.
The module func.py requires an input �le setup and returns an output �le path (and
also td in the stochastic case, see the next section) for every performed experiment
exp DE. A change of func.py does not require re-compiling the �-model exp DE.chi

with the list of external speci�cations func.ext to an executable exp DE. Multiple ex-
periments with di�erent parameters setups can then easily be performed by some kind
of simulation module. It is left to the reader to specify such a simulation module,
such that pre-processing and post-processing can be done in a favorite way. In this re-
search, a Python module is generated to create the input �le setup and call MATLAB to
post-process the output �les.
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C.3 Stochastic model

In the stochastic model of system W with controller C, a stochastic demand rate is
taken into account. Therefore, introduce variability to the mean inter request time td of
end process E. By means of a Gamma distribution, low, moderate, and high variability
distributions can be modeled. The probability function of the Gamma distribution is
de�ned by:

f(x) =

(
r(rx)q�1e�rx

�(q) ; if x � 0;

0; if x < 0;
(C.1)

with the Gamma-function � given by:

�(p) =

Z
1

0
tq�1e�tdt: (C.2)

Here, the two parameters q and r de�ne the shape and scale of the distribution. Chang-
ing the parameters results in low, moderate, or high variable distributions. The param-
eters q and r relate to the mean � and squared coeÆcient of variation c2 via q = 1=c2

and r = �c2 respectively, where the squared coeÆcient is de�ned by:

c2 =
�2

�2
; (C.3)

and �2 denotes the variance. According to Hopp and Spearman [Hop00], a squared co-
eÆcient of variation substantially smaller than 1 indicates a lowly variable distribution,
where highly variable distributions are indicated by a squared coeÆcient of variation
substantially higher than 1. Distributions with a squared coeÆcient of variation near 1
are called moderately variable. The following description of the stochastic end process
E can be speci�ed by �-speci�cation [C.20].

End process E

Function: To model the stochastic demand for parts by the environment. Also, store
inter request time sample data.

Purpose: Take parts from depotD at a speci�ed mean demand rate, see also Figure C.1.

E�ect: First, a Gamma distribution t for the inter request time td is initialized.
The distribution parameters q and r are calculated from the mean m and
squared coeÆcient of variation c2 returned by external function GetReal .
The distribution is set to a particular seed determined by external function
GetNat , such that subsequent experiments have equal sample results. Then,
every td period of time, a single part is taken from the depot. The sample
td is stored by returning td to external function StoreReal . This e�ect is
implemented in the �-speci�cation of process E [C.20].
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proc E(a : ? part) =
j[ p : part; seed : nat; m; c2 ; q; r; td : real; t : ! real
j m := 1:0=GetReal (d) ; c2 := GetReal (c2)
; seed := GetNat(seed)
; q := 1:0=c2 ; r := m � c2
; t := gamma(q; r) ; setseed(t; seed) ; td := �t
; �[ true ; � td

�! a ? p
; [ StoreReal (td; td) �! skip ]
; td := �t

]
]j

[C.20]

Little changes are needed to �-speci�cation [C.8] to let the controller also function in
the stochastic model. Besides dumping the control and state path data to a �le, also
the sample data of inter request time td are dumped, see �-speci�cation [C.21].

[] � tf � �
�! : : :

; [ DumpStores([path; td]) �! skip ]
; : : :

[C.21]

The speci�cations of external functions GetNat and StoreReal , see [C.22], are added to
list func.ext.

// Python -> Chi

ext GetNat(p: string) -> nat = "Get"

// Chi -> Python

ext StoreReal(x: real, n: string) -> bool = "StoreData"

[C.22]
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Appendix D

Simulation results

Several control designs have been derived in the �rst two appendices. The explicit
behavior of the controlled system is determined by means of simulation. A simula-
tion model has been presented in Appendix C in which the derived control laws are
implemented.

D.1 Parameter in
uence

The simulation focuses on three subjects:

� parameter in
uence,

� validation of the 
ow model, and

� open loop and feedback control.

The parameter in
uence has been investigated in the continuous-time domain of the

ow model. All other simulations have been performed in the discrete-event simulation
model.

Initial state x0

The in
uence of the initial state is shown in Figures D.1 up to and including D.4. Here,
the optimal control path u�(t) and optimal state path x�(t) are plotted for a range of
initial states x0. The �nal time tf is 5, cost parameters q and r are both

1
2 , the demand

rate d is 1, and the capacity � is set equal to d. For the range of control paths, left side,
the state increases from top to bottom. This is opposite for the range of state paths,
right side. From the �gures follows that the controller reduces the initial o�set in state
to a desired optimal state path.
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Figure D.1: In
uence of initial state x0 with free control (u): (a) optimal control path
u�(t) and (b) optimal state path x�(t) for a range of initial states x0 from -1 to 2 with
stepsize 1
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Figure D.2: In
uence of initial state x0 with free control (u � d): (a) optimal control
path u�(t) and (b) optimal state path x�(t) for a range of initial states x0 from -1 to 2
with stepsize 1
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Figure D.3: In
uence of initial state x0 with limited control (u): (a) optimal control
path u�(t) and (b) optimal state path x�(t) for a range of initial states x0 from -1 to 2
with stepsize 1
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Figure D.4: In
uence of initial state x0 with limited control (u�d): (a) optimal control
path u�(t) and (b) optimal state path x�(t) for a range of initial states x0 from -1 to 2
with stepsize 1

2 .

Planning horizon tf

A similar range of control and state paths is shown in Figure D.5 for free control problem
(u) for three di�erent planning horizons. As the planning horizon tf increases, the main
e�ect of the controller is clearly to reduce the initial o�set in state. The state is steered
to a certain optimal value, similar to that in the hedging point concept as discussed
in Chapter 4. The di�erence now is that the control variable changes gradually. The
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system behavior for the other control problems show the same e�ect.
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Figure D.5: In
uence of �nal time tf with free control (u) on the optimal control path
u�(t) and the optimal state path x�(t) for a range of initial states x0 from -1 to 2 with
stepsize 1
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Cost parameters q and r

As mentioned, cost parameters q and r specify a preference for state and control costs
respectively. Changing the ratio between these two parameters changes the system
behavior substantially. Figures D.6 up to and including D.9 show the optimal system
behavior for the free and limited control problems. The capacity � is set equal to the
demand rate d = 1. Three di�erent ratios for q

r are considered. For a fair comparison,
q and r are set such that for every ratio q

r the same optimal performance is achieved,
i.e., J� = 1. For q

r = 1
10 , less costs for control actions are preferred than for control

results. Consequently, an o�set in state is accepted to let the control costs take smaller
values. For q

r = 10, the opposite occurs. The o�set in state is reduced much faster
than for equal cost parameters. This results into relative extreme control actions at the
beginning of the horizon.
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Figure D.6: In
uence of cost parameters q and r with free control (u) on the optimal
control path u�(t) and the optimal state path x�(t).
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Figure D.7: In
uence of cost parameters q and r with free control (u�d) on the optimal
control path u�(t) and the optimal state path x�(t).
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Figure D.8: In
uence of cost parameters q and r with limited control (u) on the optimal
control path u�(t) and the optimal state path x�(t).
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Figure D.9: In
uence of cost parameters q and r with limited control (u � d) on the
optimal control path u�(t) and the optimal state path x�(t).
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D.2 Flow model validation

In Section 5.1 is assumed that the characteristic frequency of operations is much higher
than that of planning. According to Assumption 2.3.2, the 
ow model is expected
to be a valid approximation of the original, discrete-event model. The question that
remains is how much higher the rate of operations must be. If the 
ow model is a
valid approximation, then the performance of the approximate controlled system must
be equal or close to that of the discrete-event controlled system. Introduce a relative
performance error e de�ned by:

e =
JDE � JCT

JCT
; (D.1)

where JDE denotes the performance of the discrete-event system and JCT denotes the
performance of the continuous-time system. It is expected that for production rates not
suÆciently high enough, the performance JDE is higher than performance JCT . Recall
that performance index J is desired to be minimal.
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Figure D.10: Relative error e as a function of demand rate d with �nal time tf = 10.

Various simulations have been performed for a range of demand rates d. The �nal
time tf is taken 10, cost parameters q and r are both 1

2 , initial state x0 = �4d or
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x0 = 4d, and capacity � is set equal to d. For every setup the relative error e has been
calculated. Results are plotted in Figure D.10. The negative values for e are a result of
the inaccuracy of the applied di�erential equation solver and integration method. From
Figure D.10, Tables D.1 and D.2 are created. In these tables the demand rates are given
for which the 
ow model is expected invalid, critical, and valid.

Table D.1: Invalid, critical, and valid demand rates d for initial state x0 = �4d.

x0 = �4d invalid critical valid

e > 0:005 e t 0:005 e < 0:005

free (u) 1 10 100
free (u� d) 1 10 100
limited (u) 1 200 500
limited (u� d) 1 200 500

Table D.2: Invalid, critical, and valid demand rates d for initial state x0 = 4d.

x0 = 4d invalid critical valid

e > 0:005 e t 0:005 e < 0:005

limited (u) 1 200 500
limited (u� d) 1 200 500

Figure D.11 shows the system behavior for free control problem (u) for demand rates
where the 
ow model is considered invalid, critical, and valid. This is also shown in
Figure D.13 for limited control problem (u). In both �gures, the dotted line functions
as a reference to the optimal, continuous-time behavior. From Tables 5.1 and 5.2 can be
concluded for what time scales the 
ow model seems a good approximation. Consider
the case of the free control problem with negative initial states. For a horizon of length
10, the time scale of operations must be at least 100 times smaller than that of the
planning horizon. Similar e�ects and results for control problem (u � d) are shown in
Figures D.12 and D.14.
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Figure D.11: Optimal control path u�(t) and optimal state path x�(t) with free control
(u) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and (e, f)
valid and with negative initial states x0.
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Figure D.12: Optimal control paths u�(t) and optimal state paths x�(t) with free control
(u� d) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and (e,
f) valid and with negative initial states x0.
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Figure D.13: Optimal control paths u�(t) and optimal state paths x�(t) with limited
control (u) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and
(e, f) valid and with positive initial states x0.
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Figure D.14: Optimal control path u�(t) and optimal state path x�(t) with limited
control (u� d) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical,
and (e, f) valid and with positive initial states x0.



D.3. Open loop and feedback control 111

D.3 Open loop and feedback control

As mentioned in Chapter 2, feedback control takes unexpected events, small distur-
bances, or miscalculations due to uncertain parameters into consideration by means of
the observed variables. The discrete-event 
ow of parts through the system leads to
unexpected events that are not expected by the continuous-time controller. Therefore,
only feedback control laws have been applied in the previous simulations. In this section,
the e�ect of open loop and feedback control laws on the system behavior is investigated.
In the deterministic simulation model, the control signal is sampled. In the remaining
simulations, the sample time ts is set to 1=1000. Sampling is done at such a high rate,
that the open loop control laws also achieve suÆciently well results, see Figure D.15.
Here, the feedback paths are printed in green, and the open loop paths are printed in
blue. For reference the continuous-time paths are printed in red. The simulations in
this section are performed for a planning horizon tf of 10, with cost parameters q and r
both 1

2 , the capacity � set equal to the demand rate d, and the initial state four times
the demand. For the free control problems negative initial states are considered, and
for the limited control problems positive initial states.
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Figure D.15: Open loop and feedback control in the deterministic case with free control
(u) for demand rates d where the 
ow model is (a, b) invalid, (c, d) critical, and (e, f)
valid and with negative initial states x0.
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To exploit the true bene�t of feedback control, the controlled system is simulated
with uncertain exogenous variables. Here, the constant demand rate is considered to
be a stochastic variable. This is modeled by introducing variability to the inter request
time, see the stochastic simulation model as presented in Appendix C.

Figures D.16 up to and including D.20 show the results for the free and limited
control problems. The system behavior is simulated for demand rates for which the
validity of the 
ow model is considered to be critical. Exception is Figure D.17, where
the demand rate d is set to valid value for the free control problem (u). Three values
of inter request time variability are considered:

� lowly variable; c2 = 0:1,

� moderately variable; c2 = 1:0, and

� highly variable; c2 = 10.

The resulting probability distributions of the inter request time are shown at the right
side of the �gure. Control and state paths are plotted for:

� the continuous-time model with feedback control; CTfb,

� the discrete-time model with feedback control; DEfb, and

� the discrete-time model with open loop control; DEol.

No variability is taken into account in the CTfb-model. These control and state paths
are only plotted as a reference.

All �gures show the corrupting in
uence of variability. Because the open loop con-
troller does not anticipate on the changes in the state path, these changes are not
compensated. Due to its observations, the feedback controller adjusts its actions to
compensate the external changes to the state path. Figure D.17 shows that for higher
demand rates the e�ect of inter request time variability on the system behavior decreases
relatively.
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Figure D.16: Open loop and feedback control in the stochastic case with free control
(u) and negative initial state x0. Control and state paths are shown for several values of
inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately variable, and
(g, h, i) highly variable. Validity of the 
ow model is critical with an average demand
rate �d = 10.
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Figure D.17: Open loop and feedback control in the stochastic case with free control
(u) and negative initial state x0. Control and state paths are shown for several values
of inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately variable,
and (g, h, i) highly variable. The average demand rate �d = 100 gives a valid 
ow model.
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Figure D.18: Open loop and feedback control in the stochastic case with free control
(u � d) and negative initial state x0. Control and state paths are shown for several
values of inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately
variable, and (g, h, i) highly variable. Validity of the 
ow model is critical with an
average demand rate �d = 10.
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Figure D.19: Open loop and feedback control in the stochastic case with limited control
(u) and positive initial state x0. Control and state paths are shown for several values of
inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately variable, and
(g, h, i) highly variable. Validity of the 
ow model is critical with an average demand
rate �d = 200.
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Figure D.20: Open loop and feedback control in the stochastic case with limited control
(u � d) and positive initial state x0. Control and state paths are shown for several
values of inter request time variability: (a, b, c) lowly variable, (d, e, f) moderately
variable, and (g, h, i) highly variable. Validity of the 
ow model is critical with an
average demand rate �d = 200.


