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Summary

Modeling and control of manufacturing systems becomes more and more complex.
Nowadays there are roughly three groups of models which can be used for modeling
and control. These three groups are fluid models, discrete event models and queuing
models. All of these models can be used for manufacturing systems but have their own
shortcomings. Fluid models are not concerned about cycle time but are more focused on
throughput. Discrete event models have a long calculation time for large manufacturing
systems. Queuing models only determine the steady state of a manufacturing system
and control theory can not be applied to these models.
A fourth group of models which may overcome these shortcomings are the partial differ-
ential equation (PDE) models. PDE models describe the flow of products as a contin-
uous flow, the number of lots in the system is continuous as well as the position within
the manufacturing system.

To determine if a PDE model might be used to model manufacturing systems with
finite buffersizes the behavior of such a manufacturing system must be known. The
determination of the behavior is the goal of this research: in order to know the behavior
a PDE must describe, derive properties for the behavior of a tandem queue with finite
buffersizes.

In this research the steady state and the dynamical behavior of a tandem queue is
determined. The dynamical behavior is determined with the help of discrete event
simulation and the steady state is determined with an approximation method based on
queuing theory.

To determine the dynamical behavior a simulation experiment is done. In this experi-
ment three kinds of dynamical behavior are simulated: the ramp up of a tandem queue,
dynamical behavior after break down of the last machine in the tandem queue and the
ramp down of the tandem queue. This experiment is done for a tandem queue of 10
workstations and a tandem queue of 100 workstations. For both tandem queues experi-
ments are done for different parameter settings. In the results of all experiments similar
behavior is seen.
During ramp up the mean number of products increases from 0 until steady state is
reached. When the last machine breaks down, blocking is moving through the tandem
queue from the last workstation to the first workstation with an almost constant veloc-
ity. During ramp down the mean number of products decreases from a maximal value
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vi Summary

until it reaches steady state again. In the ramp down experiment all products which are
stored in the buffer during blocking have to leave the system. When all these products
are leaving the tandem queue the conditions in this tandem queue can be different from
the conditions in the steady state for while. For these new conditions a new ‘steady
state’ might be determined for some workstations. This new ‘steady state’ ends when
the conditions of the real steady state are reached again.

To determine the steady state an approximation method based on queuing theory is
used. To verify the results of this approximation method the steady state is compared
to the steady state in the results of the discrete event simulations which are performed
for the dynamical behavior.

After the behavior of a tandem queue is determined a PDE has to be determined which
describes this behavior. A first step in determining a PDE can be to describe the
dynamical behavior and the steady state with a finite volume method. Finite volume
methods can describe the motion of waves and can approximate the solution of a PDE.

A finite volume method divides the domain into grid cells and in every grid cell the
average density is known. This average density has to be updated every time step in
every grid cell. The ingoing flux and the outgoing flux are needed for updating the
density. These fluxes have to be described by a function which is only based on the
average density in a grid cell. In this research the outgoing flux is determined with the
results of the approximation method for the steady state.



Samenvatting

Het modelleren en regelen van fabricage systemen wordt steeds ingewikkelder. Tegen-
woordig zijn er grofweg drie groepen modellen die voor deze doeleinden gebruikt worden.
Dit zijn vloeistof modellen, discrete event modellen en wachtrij modellen. Deze modellen
hebben allemaal tekortkomingen waardoor ze voor bepaalde doeleinden minder geschikt
zijn. Vloeistof modellen modelleren voornamelijk doorzet en zijn minder gericht op het
modelleren van doorlooptijd. Discrete event modellen hebben een lange rekentijd en
zijn daardoor minder geschikt voor grote fabricage systemen. Wachtrij modellen kun-
nen vaak alleen toegepast worden op systemen in steady state.
Om deze tekortkomingen op te lossen zou een vierde groep van modellen beschouwd
kunnen worden: partiële differentiaal vergelijkingen. Deze partiële differentiaal verge-
lijkingen beschrijven de stroom van producten in een fabricage system als een continue
stroom van producten. Het aantal producten in een fabricage systeem wordt beschouwd
als een continu aantal en ook de plaats in het systeem wordt beschouwd als een continue
waarde.

Om te kunnen bepalen of partiële differentiaal vergelijkingen gebruikt kunnen worden
voor fabricage systemen met eindige bufferinhouden zal eerst het gedrag van een fabri-
cage systeem bekend moeten zijn. Dit onderzoek is dan ook gericht op het bepalen van
dit gedrag: beschrijf het gedrag van een lijn werkstations met eindige bufferinhouden
om te bepalen welk gedrag partiële differentiaal vergelijkingen moeten beschrijven.

In dit onderzoek is onderscheid gemaakt tussen steady state en dynamisch gedrag van
een lijn werkstations. De steady state van een systeem is bepaald met een benade-
ringsmethode gebaseerd op wachtrij modellen en het dynamisch gedrag is bepaald met
discrete event simulatie.

Om het dynamische gedrag van een lijn werkstations te bepalen is een simulatie experi-
ment gedaan met behulp van een discrete event model. Het experiment is bedoeld om
verschillende eigenschappen van dynamisch gedrag te modelleren. Het opstarten van
een lijn werkstations is gesimuleerd, het gedrag dat ontstaat na het blokkeren van een
machine wordt gesimuleerd en het leeglopen van een lijn met producten is gesimuleerd.
Dit experiment is gedaan voor een lijn van 10 werkstations en een lijn van 100 werksta-
tions met verschillende parameterwaarden voor bijvoorbeeld de maximale bufferinhoud
en de variatiecoëfficiënt. In de resultaten van alle experimenten komt eenzelfde soort
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viii Samenvatting

gedrag naar voren.
Tijdens het opstarten van een lege lijn stijgt het aantal producten in elke werkstation
van 0 totdat steady state is bereikt. In steady state blokkeert de laatste machine in de
lijn en deze blokkade breidt zich uit in de lijn van het laatste werkstation tot het eerste
werkstation. De snelheid waarmee de blokkade zich uitbreidt is ongeveer constant. Na-
dat de blokkade het eerste werkstation heeft bereikt zijn alle buffers en machines gevuld
met producten. Leeglopen van de lijn is nu gesimuleerd. Het aantal producten in ieder
werkstation daalt van een maximale waarde totdat de steady state weer is bereikt. Ti-
jdens het leeglopen van de lijn moeten alle overtollige producten het systeem verlaten.
In dit proces kunnen de omstandigheden in de lijn tijdelijk enigszins verschillen van de
omstandigheden in de steady state. Voor deze nieuwe omstandigheden kan een nieuwe
‘steady state’ ingesteld worden die verdwijnt als de eigenlijke omstandigheden weer
terug zijn en de echte steady state weer bereikt wordt.

Om de steady state te bepalen is gebruik gemaakt van een benaderingsmethode
gebaseerd op wachtrij modellen. Om de resultaten van deze benaderingsmethode te
controleren zijn ze vergeleken met een steady state verkregen uit de resultaten van de
discrete event simulatie.

Nadat het gedrag van een lijn werkstations is beschreven kan gezocht worden naar
partiële differentiaal vergelijkingen die dit gedrag kunnen beschrijven. Een eerste stap
naar het zoeken van partiële differentiaal vergelijkingen kan zijn om het beschreven
gedrag te modelleren met behulp van een eindige elementen methode.

Een eindige elementen methode verdeelt een domein in cellen en in iedere cel is de
gemiddelde dichtheid bekend. Deze gemiddelde dichtheid wordt in elke tijdstap en in
elke cel aangepast. Het aanpassen gebeurt met behulp van de ingaande flux en de
uitgaande flux. Deze fluxes kunnen beschreven worden met behulp van een functie die
alleen afhankelijk is van de gemiddelde dichtheid in een cel. In dit onderzoek is de
uitgaande flux bepaald met de resultaten van de benaderingsmethode voor de steady
state.
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Chapter 1

Introduction

Modeling and control of manufacturing systems can be a complicated matter. Nowa-
days there are roughly three groups of models which can be used for modeling and
control of manufacturing systems. These are fluid models, discrete event models and
queuing models.
All of these groups of models have their shortcomings. Fluid models are more focused
on throughput than cycle time, these models neglect the relation between throughput
and cycle time. Discrete event models on the other hand do model a relation between
the throughput and the cycle time, but calculation time is long for large systems. So
discrete event models are most suitable for small manufacturing systems. The third
group are queuing models. Queuing models include a relation between the throughput
and cycle time, but a shortcoming can be found in the fact that these models only
describe the steady state of a manufacturing system and they are not suitable for
control theory.
To overcome these shortcomings a fourth group of models might be considered, the
partial differential equation (PDE) models. A PDE model describes the flow of
products through a system as a continuous flow. The number of lots is assumed to be
continuous as well as the position of a lot in the manufacturing system. A PDE model
describes the dynamics of a system, gives a relation between the throughput and flow
time and it is also possible to apply control theory on these models.

1.1 Objective

For determining if a PDE model might be considered for a manufacturing system with
finite buffersizes, the behavior of a manufacturing system must be known. The deter-
mination of this behavior is the goal of this research. In order to know the behavior a
PDE model must describe, derive properties for the behavior of a tandem queue with
finite buffersizes.
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2 Chapter 1. Introduction

For the behavior of the tandem queue the steady state must be considered as well as
the dynamical behavior of the system. The steady state might be determined with an
approximation from queuing theory and dynamical behavior can be determined with dis-
crete event simulation. With discrete event simulation an experiment has to be derived
which describes some transient behavior of the tandem queue with finite buffersizes,
e.g. ramp up and the effect of blocking a workstation.

1.2 Approach

As a start of this research traffic flow models are studied. PDE models are already
used for modeling traffic flow and due to similarities between traffic flow and the flow
of products in a manufacturing system these models might be used for manufacturing
systems. An overview of these traffic flow models is given in Chapter 2.
After these models the behavior of a manufacturing system with finite buffers is ex-
amined. A discrete event model of a tandem queue is determined and simulation ex-
periments are performed. In this experiment the dynamical behavior is examined, e.g.
movement of blocking through the system after a machine in the tandem queue breaks
down. The discrete event model, the experiment and the results are described in Chap-
ter 3.
Not only the dynamical behavior is of importance also the steady state of a manufac-
turing system must be described by a PDE model. Steady state is determined with
the help of an approximation method based on queuing theory. A description of the
approximation method and the results are given in Chapter 4.
In Chapter 5 finite volume methods are explained. These models can be used to de-
termine a solution of a PDE model and might be used as a first step in determining a
PDE model.
At the end of this report a conclusion is given and recommendations for further research.



Chapter 2

Partial Differential Equation
models

As a start of our search for a PDE model for manufacturing systems with finite buffer
sizes research is done on traffic flow models. Due to similarities between traffic flow
and the flow of products in a manufacturing system these models might be used for
manufacturing systems. The cars in these models can be seen as products and the road
on which the cars drive can be seen as a manufacturing system.
A PDE model for traffic flow describes the flow of cars on a road as a continuous flow,
when these models are used for manufacturing systems the flow of products is also
described as a continuous flow. The number of lots and the position of a lot in the
manufacturing system is assumed to be continuous. In the next paragraph a general
explanation is given on PDE models and after that an overview is given of commonly
used traffic flow models.

2.1 Basics of a PDE model

All PDE models are based on the mass conservation law and some other basic principles
[Lef05]. These will be explained in this paragraph.
A PDE model describes the flow of cars through a system as a continuous flow. The
number of cars on a part of the road and the position of the cars on a part of the road
are continuous.
To describe this flow of cars on a part of the road three variables are used which can
vary by time and place:

3



4 Chapter 2. Partial Differential Equation models

• the flow of cars, u(x, t).

• the density, ρ(x, t).

• the velocity, v(x, t).

These variables are related to each other. The flow is the product of the density and
the velocity:

u(x, t) = ρ(x, t)v(x, t).

Another basic relation is the mass conservation law:

∂ρ

∂t
(x, t) +

∂u

∂x
(x, t) = 0.

Any PDE model must satisfy the mass conservation law. This conservation law means
that on a part of the road cars can not be lost and no cars are created. The number of
cars can only vary in time because of the inflow at the beginning of the road and the
outflow at the end of the road.
In these basics the road can be replaced by a manufacturing system and the cars can be
replaced by products. Subsequently these basics can be used for manufacturing systems.
These two relations do not describe the complete model but are two basic relations that
a PDE model must satisfy. At least one more relation is needed for a complete model.
In the next section an overview is given of commonly used traffic flow models based on
the previous basic equations.

2.2 Overview of traffic flow models

In the previous section two basic equation of traffic flow models are explained and in
this section an overview is given of commonly used traffic flow models, each with a short
explanation. All models are based on the basic equations in the previous section and
most of these models can be found in [Hel01],[Hel96].
After the overview of traffic flow models a general density equation and velocity equation
of traffic flow models is given. Most of the described models can be seen as a special
form of these general equations.

2.2.1 Lighthill-Whitham

One of the first traffic flow models is proposed by Lighthill and Whitham [Lig55]. They
used the mass conservation law and a static relation for the velocity:

V (x, t) = Ve[ρ(x, t)].
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Combining this equation for the velocity and the mass conservation law a model is
obtained which describes the propagation of kinematic waves:

∂ρ

∂t
+

[
Ve + ρ

∂Ve

∂ρ

]
∂ρ

∂x
= 0.

As an equation for the velocity a linear relation can be chosen:

Ve(ρ) = Vmax

(
1− ρ

ρmax

)
.

In the model of Lighthill and Whitham shock fronts can be developed. To avoid the
development of these shock fronts a diffusion term can be added to this model. Whitham
added a diffusion term and obtained the following model:

∂ρ

∂t
+ Ve

∂ρ

∂x
= −ρ

∂Ve

∂ρ

∂ρ

∂x
+ D

∂2ρ

∂x2
.

2.2.2 Payne

Lighthill and Whitham assumed a static relation for the average velocity, therefore
this model is not suitable for non-equilibrium situations like stop-and-go waves. Payne
adjusted this assumption and used a dynamic equation for the average velocity:

∂V

∂t
+ V

∂V

∂x
= −D(ρ)

ρ

∂ρ

∂x
+

1
τ
[Ve(ρ)− V ]

with

D(ρ) = − 1
2τ

∂Ve

∂ρ
=

1
2τ

∣∣∣∣∂Ve

∂ρ

∣∣∣∣ .

In this model the term V ∂V
∂x is the transport or convection term. The term −[D(ρ)

ρ ] ∂ρ
∂x is

the anticipation term, this term models the reaction of the drivers. The term [Ve(ρ)−V ]
∆t

is the relaxation term, this describes the adjustment of the velocity to the equilibrium
velocity [Pay71],[Pay79].

2.2.3 Phillips

Phillips replaced Payne’s equation of D(ρ) by D(ρ) = ∂P
∂ρ :

∂V

∂t
+ V

∂V

∂x
= −1

ρ

∂P

∂x
+

1
τ(ρ)

[Ve(ρ)− V ].

The quantity P is the traffic pressure, P (x, t) = ρ(x, t)θ(x, t), in which θ(x, t) denotes
the velocity variance of the vehicles. For this velocity variance Phillips assumed a
variance-density relation such as θ(x, t) = θ0[1− ρ(x, t)ρjam] [Phi79a], [Phi79b].
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2.2.4 Kühne and Kerner-Konhäuser

Kühne and Kerner and Konhäuser used θ(x, t) = θ0, but this leads to the development
of shock waves like the model of Lighthill and Whitham. Therefore Kühne and Kerner
and Konhäuser added a viscosity term. Kühne used ν ∂2V

∂x2 as a viscosity term and
Kerner and Konhäuser used (η

ρ )∂2V
∂x2 as a viscosity term [Nag02], [Ker93], [Ker94].

Kerner-Konhäuser :

∂V

∂t
+ V

∂V

∂x
= −θ0

ρ

∂ρ

∂x
+

η

ρ

∂2V

∂x2
+

1
τ
(Ve(ρ)− V ).

Kühne:

∂V

∂t
+ V

∂V

∂x
= −θ0

ρ

∂ρ

∂x
+ ν

∂2V

∂x2
+

1
τ
(Ve(ρ)− V ).

2.2.5 Berg

Berg presented a model which is derived from an optimal velocity model and is equiv-
alent to the model of Kerner and Konhäuser. The difference between these models
are the coefficients, the coefficients of Berg’s model are based on the parameters of
the microscopic model while the coefficients of Kerner and Konhäuser’s model are phe-
nomenological [Nag02],[Ber00].

∂v

∂t
+ v

∂v

∂x
=

1
τ

(V (ρ)− v) +
V ′(ρ)

τ

[
1
2ρ

∂ρ

∂x
+

1
6ρ2

∂2ρ

∂x2
− 1

2ρ3
(
∂ρ

∂x
)2

]
.

The preceding traffic flow models are found in literature and most of these models are
closely related to each other. They can be written in a general form, this general form
can be found in the next paragraph.

2.3 General form of traffic flow models

Previously some traffic flow models are described and a short explanation of these
models is given. These models have some differences, but the models can all be written
in a general form except the model of Berg. The models can be seen as a special form
of the next two equations.
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The density equation:

∂ρ

∂t
+ V

∂ρ

∂x
= −ρ

∂V

∂x
+ D(ρ)

∂2ρ

∂x2
+ ξ1(x, t).

The velocity equation:

∂V

∂t
+ V

∂V

∂x
= −1

ρ

dP

dρ

∂ρ

∂x
+ ν

∂2V

∂x2
+

1
τ
(Ve − V ) + ξ2(x, t).

The differences between the models are based on the different definitions of the diffusion
D(ρ), the fluctuations ξ1(x, t), ξ2(x, t), the traffic pressure P (ρ), the viscosity-like
quantity ν(ρ), the relaxation time τ(ρ) and the equilibrium velocity Ve(ρ) [Hel01].

In this chapter the basics of PDE models are described and an overview of commonly
used traffic flow models is given. Only before a PDE can be found which describes the
behavior of a manufacturing system the behavior must be known. Even though discrete
event simulation and queuing theory have their shortcomings the results of these models
can be used to understand the behavior a PDE model must describe. For this reason in
the next chapter the dynamical behavior is determined with discrete event simulation.
After that the steady state is determined by means of queuing theory.
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Chapter 3

Discrete event simulation

Discrete event simulation can be used to describe the dynamical behavior of a manu-
facturing system, e.g. the ramp up of a system. A PDE has to describe the dynamical
behavior of a system and in this chapter simulation experiments are done with a dis-
crete event model in order to show the dynamical behavior which has to be described
by a PDE. These simulations are done for a tandem queue with identical machines for
different parameter settings.
In the next paragraph a discrete event model for a tandem queue of identical machines
is derived in Chi [Ver04],[Hof02]. This discrete event model is used to perform a sim-
ulation experiment which describes different kinds of dynamical behavior. After the
description of the model this experiment is explained and results are shown.

3.1 Discrete event model

Discrete event simulations can be used to describe dynamical behavior of a manufac-
turing system with finite buffers. In this report a simulation experiment is done to
determine the dynamical behavior of a tandem queue. For the experiment is chosen to
do a discrete event simulation which shows the behavior of the tandem queue in three
different situations. The first situation is at the start of the experiment, there are no
products in the system and a ramp up of the system is simulated. The second situation
occurs after several time-units when the system is in steady state and the last machine
in the system breaks down. As a result, eventually all workstations will get blocked.
The third situation is the behavior of the system after unblocking the last machine.
To perform this experiment a discrete event model of a tandem queue is needed in
which the last machine breaks down and restarts again at a certain moment of time.
This model is described here and a schematic view is given in Figure 3.1, showing the
structure of the discrete event model.

9
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EMfBnMn-1Bn-1M1B1
… …

Figure 3.1: Schematic view of the discrete event model

The model contains a generator, an exit process, n buffers, n machines and a controller.
A machine and the buffer in front of the machine together form a workstation. The
value of n, number of workstations, can be set in the model before a simulation starts.
The generator in the model is used to send products into the tandem queue and the
exit receives the finished products of the last workstation in the queue. The buffer has a
maximal number of products which can be stored.As long as that maximal value is not
yet reached it receives products from the generator or the previous workstation. The
buffer sends these products to the machine when the machine is empty. The machine
processes the product and sends the product to the following machine or the exit. After
sending the product away the machine sends a signal to the buffer in front of the machine
to let know that the machine is empty. This is done because the buffer registers how
many products are stored in the workstation.
The machines in the tandem queue are all identical except the last machine in the
tandem queue. The last machine in the tandem queue has a small difference in the
way it is modeled. In this machine blocking occurs at a certain moment of time and
after several time-units the machine starts processing again. These moments of blocking
and start processing again are send from the controller to the machine and to make this
possible an extra channel is needed and the Chi-code of this process is somewhat different
than the other machines. The process time and other parameters of the machine are
the same as the other machines in the tandem queue.
The buffers in the line are all identical and in the model the maximal number of products
in the buffers can be set. Only for the tandem queue with a buffersize of b = 0 the
process of the buffers is modeled different from the case of b > 0. The process of the
buffer must not store any products when b = 0.
The controller in this model is used to register the parameter of interest, the number
of products in a workstation. Every time-unit the controller determines the number of
products in every workstation and places this information in a tuple and puts the tuple
into a list. After a simulation the list of tuples is written and every tuple in the list
represents the number of products for the workstations at a certain time.
In the model several parameters must be set. The number of machines can be set
in the model and when starting the model some variables must be provided. These
variables include values for the distribution of the inter-arrival time at the generator, the
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distribution of the process time for the machines and the maximal number of products
in a buffer.
Other parameter values which have to be specified at the prompt are some moments of
time. In the last machine blocking occurs at a certain moment of time and after the
machine is down for some time-units it starts working again. These times must be set
at the prompt and the last one is the time the simulation needs to be finished. The
inter-arrival time, the process times and the maximal number of products can be set by
an integer, the moments of times can be set by a list with a tuple for every event. In
this tuple the time is set and the event which has to take place, events can be defined
as start blocking or start processing.
The complete model can be found in Appendix B. In the next section the experiment
done with the previous model is described and after that the results of the discrete event
simulation are presented.

3.2 Set up of simulation experiments

In the previous section a model is described to perform a simulation experiment. In
this experiment three different kinds of dynamical behavior are described. The first one
is a ramp up experiment. The second one is dynamical behavior after the last machine
breaks down when the system is in steady state, blocking is then moving through the
tandem queue. The third one is dynamical behavior after restarting the last machine.
The experiment is done for two tandem queues, a tandem queue of 100 workstations
and a tandem queue of 10 workstations. For both tandem queues several simulations
are done with different values for the mean inter-arrival time at the generator (ta),
the squared coefficient of variation (c2

a) and the maximal number of products in the
buffer (b). The mean process time for the machine (te) and the squared coefficient of
variation (c2

e) are equal in all simulations. These values are given in Table 3.1 and the
experiment is done for all combinations of the values in the table.

To perform the experiment not only the mean inter-arrival time at the generator, the
squared coefficients of variation and the maximal number of products in the buffer
are needed but also some moments of time have to be defined. These moments are
the moments of blocking the last machine, restarting the process again and the end of
the simulation. Blocking the last machine occurs when the system is in steady state,
restarting the process again happens when all workstations are blocked and the simu-
lations end when the system is back in steady state again. The moments used in the
simulations are shown in Table 3.2. In Table 3.2 also the number of simulations is given.

The simulation experiments are done with different values for the mean inter-arrival
time at the generator, the squared coefficient of variation and the maximal number of
products in the buffer, but in all simulations the same sort of behavior can be expected
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Tandem queue
number of machines 10 100
maximal buffersize 0 1 5
Generator
inter-arrival time 1.0 2.0
squared coefficient of variation 0.1 1.0 5.0
Machines
mean process time 1.0
squared coefficient of variation 1.0

Table 3.1: Simulation parameters with their values.

buffersize=0 or buffersize=1 and ta = 1 or ta = 0
time state of last machine
0-1500 up
1500-2000 down
2000-5000 up

buffersize=5 and ta = 1
time state of last machine
0-3000 up
3000-4000 down
4000-11000 up

buffersize=5 and ta = 2
time state of last machine
0-3000 up
3000-5000 down
5000-12000 up

number of simulations 2000

Table 3.2: Moments of break down and restart of the last machine and number of
simulations.

as a result of blocking the last machine and restarting it. At the start of the experiment
the manufacturing system is empty and a ramp up experiment is performed. The mean
number of products for the workstations must increase to reach a steady state. After the
steady state is reached for all workstations the last machine in the tandem queue breaks
down. Expected is that the mean number of products in the last workstation increases
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to a maximal value. The moment the last workstation reaches the maximal value the
previous workstation can not send away finished products and this workstation is also
blocked. The mean number of products in this workstation increases until it reaches the
maximal value and the process repeats for other previous workstations until it reaches
the first workstation. This movement of blocking should be seen in the results. The
mean number of products increase to a maximal value for every workstation in an order
from the last workstation to the first workstation. When all workstations are blocked
and have reached their maximal values the last machine starts processing again. In the
results the mean number of products in all workstations should decrease until it reaches
steady state again.
Not only the mean number of products is of importance but the velocity of blocking
moving through the tandem queue is another aspect a PDE has to describe. The velocity
by which blocking moves through the tandem queue will be determined with the results
of the discrete event simulation. From the results of a simulation experiment the number
of products in a workstation is known every time-unit. From this information can be
determined when the last workstation in the tandem queue reaches the maximal number
of products in the workstation for the first time after the last machine is blocked. This
moment of time is stored and for the previous workstation in the tandem queue is
searched when the maximal number of products is reached for the first time. The
search for the maximal number of products in this workstation starts at the moment of
time found in previous search. This is repeated for every workstation and the result is
a list of moments of time every workstations reaches the maximal number of products.
This is done for 1000 simulations and the mean of these points of time is determined.
In this determination the search for the maximal number of products in a workstation
starts at the moment of time found in the previous search. This assumes that the
workstations are filled with products in an order from the last workstations until the
first workstation. But in the results of the discrete event simulation it might be possible
that a workstation reaches the maximal number of products earlier than a workstation
further in the tandem queue. This is neglected in this determination because this is not
a consequence of blocking the last workstation.
The results of the simulation experiments are given in the next section.

3.3 Results of the discrete event simulation

In the previous sections the discrete event model is described and the experiment is
explained. In this section the results of the discrete event simulation are shown. The
purpose of the simulations is to determine dynamical behavior of a tandem queue in
order to known the behavior which has to be described by a PDE. One of the aspects
of the dynamical behavior that a PDE must describe is the mean number of products
during different situations, for example during ramp up of a tandem queue. Besides the
mean number of products another aspect of the dynamical behavior is the movement
of blocking through the tandem queue.
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These two aspect are discussed here, first the mean number of products and after that
the movement of blocking in the tandem queue is examined. In the appendices the
programming codes are given to determine the results.

Mean number of products In Figure 3.2 results are shown of a tandem queue of
10 machines with an inter-arrival time of ta = 1 or ta = 2, c2

a = 1,te = 1, c2
e = 1, b = 0

or b = 1 or b = 5 and in Figure 3.4 the results for the same values of a tandem queue
of 100 machines are shown.
In Figure 3.2 the mean number of products are shown for three workstations in the
system, workstation 1, workstation 5 and workstation 10, and in Figure 3.4 the mean
number of products are shown for workstation 1, workstation 50 and workstation 100.
The other workstations in the tandem queues are not shown but the mean number of
products in the system develops in a similar way as workstation 5 or workstation 50.
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Figure 3.2: Mean number of products in a tandem queue of 10 workstations, ta = 1 or
ta = 2, c2

a = 1,te = 1, c2
e = 1, b = 0 or b = 1 or b = 5.

Although in Figure 3.2 and Figure 3.4 results are shown for two different tandem queues
with different inter-arrival times and maximal buffersizes the results show similar be-
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Figure 3.3: Mean number of products in a tandem queue of 10 workstations on a small
time scale, ta = 1 or ta = 2, c2

a = 1, te = 1, c2
e = 1, b = 5.

havior. This behavior corresponds to the expected behavior described earlier in Section
3.2.
In both figures the tandem queues are empty at the start of the experiment. From
time = 0 the number of products in workstation 1 increases until it reaches steady state
and the mean number of products stays at the same level. For the other workstations
increasing of the mean number of products starts a little later because products have
to go through the tandem queue before it reaches workstation 5 and workstation 10 or
workstation 50 and workstation 100. Eventually all workstations are in steady state
when the last workstation breaks down and the mean number of products in the last
workstation increases to a maximal value. The moment the last workstation reaches the
maximal value the previous workstation can not send away finished products and this
workstation is also blocked. The mean number of products increases until it reaches
the maximal value and the process repeats for other workstations until it reaches the
first workstation. In this way the effect of blocking moves through the tandem queue
until it reaches the first workstation. Because all workstations are blocked the mean
number of products stays equal to the maximal value they have reached until the last
machine starts working again. From that moment the mean number of products in
the workstations starts decreasing immediately until it reaches steady state again. The
mean number of products is now the same as before blocking the last machine. In the
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Figure 3.4: Mean number of products in a tandem queue of 100 workstations, ta = 1 or
ta = 2, c2

a = 1,te = 1, c2
e = 1, b = 0 or b = 1 or b = 5.

results can be seen that the ramp down of the system takes more time than the ramp
up of the system.
In Figure 3.4 it can be seen that first workstation 1 receives products in the ramp
up experiment, then workstation 50 receives products and after that workstation 100.
The order in which the workstations are blocked can also be seen, first workstation 100
reaches a maximal value, then workstation 50 and finally workstation 1. For the tandem
queue of 10 workstations this effect is present in the results but in Figure 3.2 it is too
small to determine. Therefore in Figure 3.3 parts of the results of a tandem queue of
10 workstations with a maximal buffersize of 5 are shown again on a smaller time scale.
The behavior in this figure is similar to the behavior in Figure 3.4 for a tandem queue
of 100 workstations with a maximal buffersize of 5. For the other graphs in Figure 3.2
the results are not shown on a smaller time scale, but the behavior is also similar to the
behavior in Figure 3.4.
In Figure 3.4 and Figure 3.3 two points attract attention in these results. The first one
is the fact that during the time that the workstations are blocked the mean number
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of products for the last workstation is less than the mean number of products in the
other workstations and when the machine is unblocked the mean number of products
increases to the same value before decreasing to the steady state. The mean number of
products in all workstations except the last one reaches a value of the maximal buffer
size plus 1 product in the machine. For the last workstation this is different because
on the moment of blocking the last machine can be empty or a product can be in the
machine. If a product is in the machine the maximal number of products is equal to
the maximal buffer size plus 1 product in the machine, like in all workstations. But if
the machine is empty on the moment of break down the maximal number of products
is equal to the maximal buffer size. So this is one product less and results in a lower
mean number of products.
The moment the machine starts working again the mean number of products increases
and reaches the same value as for the other workstations. During the moments of block-
ing the last machine is sometimes empty, but on the moment processing starts again
the machine immediately receives a product from the buffer. An empty place in the
buffer is immediately filled with the finished product of the previous machine, this is the
reason for the increasing number of products at the time the machine starts processing
again.
The previously described effect can only be seen in the results of tandem queues with
a maximal buffersize of b = 1 and b = 5, for a maximal buffersize of b = 0 the process
of the buffer is modeled a little different in the discrete event model. In the model of
b = 0 the last workstation can, in some cases, receive one product after blocking the last
machine. When the machine breaks down with no product in the machine, the work-
station can receive one product before this workstation is full. Receiving a product in
this case should not be possible. This happens only in the last workstation for tandem
queues with b = 0, the effect on the results is small.
The second point of attention in Figure 3.4 and Figure 3.3 is the fact that there are
differences in the way that the mean number of products decreases after unblocking
the last machine. The tandem queues with ta = 2, c2

a = 1, te = 1, c2
e = 1, b = 1 and

b = 5 show some different behavior for the mean number of products of workstation
50, workstation 100 and workstation 5, workstation 10. The mean number of products
decreases but there is a part for which it decreases slower. The reason is that during
blocking workstations are completely filled, and all these extra products must leave the
system after starting the process again. This means for the machines that every time
a product is finished and send away to the next workstation it immediately receives
a new product which has to be processed. For these machines the arrival rate is now
temporarily higher than the arrival rate in the steady state before blocking. Another
result of a full system is the fact that often when workstation 50 and workstation 5 are
finished they can not send away the finished products because the following workstation
is full. So after the last workstation starts working again blocking still occurs in the
system. For these new conditions a new ’steady state’ occurs until most of the extra
products has left the system and the conditions are again equal to the conditions in the
real steady state.
This reasoning can not only be applied to workstation 50, workstation100 and worksta-
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tion 5, workstation 10 but for other workstations in the system the same can happen.

In Figure 3.5 and 3.6 results of a simulation of a tandem queue of 100 machines with a
maximal buffersize of 5 are given in a different way than in Figure 3.4. In Figure 3.4 the
mean number of products in a certain workstation is plotted against time, but in figures
3.5 and 3.6 the mean number of products in all workstations are shown for different
moments of time.
In Figure 3.5 the results are shown of a tandem queue with ta = 1, c2

a = 1, te = 1,
c2
e = 1 and b = 5. The figure on the left shows the first 3000 time-units in the simulation

experiment, this is the ramp up of the system. The figure in the middle shows the mean
number of products between time = 3000 and time = 4000, in this period blocking
moves through the tandem queue. The figure on the right gives a view from time = 4000
and further, this is a view on how the system returns to the steady state after the last
workstation start working again. In Figure 3.6 the results are shown of a tandem queue
with ta = 2, c2

a = 1, te = 1, c2
e = 1 and b = 5. Similar behavior is shown, only the

moment of restarting the last workstation is different than in Figure 3.5.

Blocking Until now the results of the discrete event simulation are given by means of
the mean number of products in the system, but not only the mean number of products
is important also the velocity of blocking can be of importance.
In the simulation experiment the last machine in the system breaks down when the
system is in steady state. The last workstation can not process any products and puts
all products in the buffer until this buffer is full. As a consequence the machine in front
of this buffer can not send away the finished products and this machine is also blocked.
This process keeps repeating until all workstations in the tandem queue are blocked.
After blocking the last machine a front is formed in the system, on one side the velocity
of products is zero and on the other side the velocity is larger than zero. This front moves
with a certain velocity from the last workstation of the tandem queue until it reaches
the first workstation. This velocity is determined and it can be used as a validation
parameter for PDE’s.
The determination of this velocity is explained in Section 3.2. The determination of the
velocity results in a list of moments of time. For every workstation the moment of time
is determined on which the workstation is completely filled with products. This is the
moment the previous machine gets blocked.
In Figure 3.7 and 3.8 these moments of time are plotted. This is done for the tandem
queue of 10 workstations and 100 workstations. The values for the mean inter-arrival
time, the squared coefficient of variation and the maximal number of products in the
buffer are shown in the figure.

In Figure 3.7 and 3.8 can be seen that for both tandem queues with different values
for the simulation parameters the same conclusion can be drawn. In the tandem queue
blocking moves through the system with an almost constant velocity.

This chapter describes the dynamical behavior of a tandem queue in order to know
the dynamical behavior a PDE must describe. Not only the dynamical behavior is of



3.3. Results of the discrete event simulation 19

0 20 40 60 80 100
0

1

2

3

4

5

6

time 0...3000

workstation

me
an 

num
ber

 of 
pro

duc
ts

 

 

0 20 40 60 80 100
0

1

2

3

4

5

6

time 3000...4000

workstation

me
an 

num
ber

 of 
pro

duc
ts

 

 

0 20 40 60 80 100
0

1

2

3

4

5

6

time 4000...11000

workstation

me
an 

num
ber

 of 
pro

duc
ts

 

 
time=100
time=400
time=800
time=1500
time=3000

time=3000
time=3100
time=3200
time=3300
time=3400
time=4000

time=4000
time=4050
time=4250
time=4500
time=4750
time=5500
time=11000

Figure 3.5: Mean number of products in workstation, ta = 1, c2
a = 1, te = 1, c2

e = 1,
b = 5.
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Figure 3.6: Mean number of products in workstation, ta = 2, c2
a = 1, te = 1, c2

e = 1,
b = 5.

importance also the steady state of a tandem queue has to be described by a PDE.
Discrete event simulation can be used to determine the steady state, but it takes a long
time. In the next chapter an approximation method based on queuing theory is used to
determine the steady state in a faster way than discrete event simulation. The results
of the discrete event simulations in this chapter are used to validate the steady state of
the approximation method in the next chapter.
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Figure 3.7: Moment of reaching the maximal number of products in a workstation in
a tandem queue of 10 workstations,, ta = 1 or ta = 2, c2

a = 1, te = 1, c2
e = 1, b = 0 or

b = 1 or b = 5.
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Figure 3.8: Moment of reaching the maximal number of products in a workstation in a
tandem queue of 100 workstations,, ta = 1 or ta = 2, c2
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Chapter 4

Steady state

In the previous chapter the dynamical behavior of a manufacturing system is described
by means of discrete event simulation. The discrete event simulation describes the
dynamical behavior in a tandem queue with 100 identical machines and a tandem queue
of 10 identical machines. To validate results of a PDE not only the dynamical behavior is
of importance but also the steady state of a manufacturing system has to be examined.
This chapter is about the steady state of a tandem queue with finite buffers, more
particularly the mean number of products in a workstation in steady state.

4.1 Determination of the steady state

The steady state is determined in two different ways. The first one is an approximation
method based on queuing theory and for the second the results of the discrete event
simulation in Chapter 3 are used. In the next two paragraphs an explanation is given
on the approximation method and the discrete event simulation. After that the results
are compared to each other.

4.1.1 Steady state with approximation algorithm

For most queuing systems with finite buffers it is not easy to determine performance
characteristics precisely, for this reason an approximation method based on queuing
theory is used in this paragraph. In this case the approximation method in [Vuu05] is
used.
The approximation method determines the mean number of products, the throughput
and the cycle time for a single-server tandem queue. Input parameters for this approx-
imation method are mean process times, the squared coefficient of variation and the
maximal buffersize.

21
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The algorithm is based on decomposition of a single-server tandem queue and is ex-
plained in this section. In Figure 4.1 a single-server tandem queue is shown.

M0 M1B1 BN MN
. . .

Figure 4.1: Single-server tandem queue.

The tandem queue exists of N + 1 machines and N buffers between the machines. The
machines can only process one product at a time and the first machine in the queue
always has a product to serve. This machine can be seen as the generator of this tandem
queue. To determine the number of products in every workstation in steady state the
tandem queue is decomposed into N subsystems. Every subsystem consists of a buffer,
an arrival-server in front of the buffer and a departure-server after the buffer. The
arrival-server represents not only the process time of the machine in front of the buffer
but it includes possible starvation of the machine in front of the buffer before service.
For the departure-server a similar description can be given, this represents the process
time including possible blocking of this server.
The process time in the arrival-server is modeled according to the following description.
In modeling the arrival-server not only the process time of the previous machine is taken
into account but also the possibility of starvation of the previous machine. This is done
in the following way. In a subsystem two situations can occur on the moment a product
leaves the subsystem. The subsystem is empty or the subsystem is not empty. These
situations are both possible with a certain probability. In the situation of the empty
subsystem the system has to wait a residual process time of the previous machine and
then the process time in the subsystem itself can be started. In the situation of the
subsystem which is not empty a product already is in the buffer and the process time
at the machine can start immediately. So with a certain probability the service time
in an arrival server is a residual process time of the previous machine plus the process
time and with a certain probability the service time is equal to the process time.
Modeling the departure server is based on a similar reasoning, only there is a difference
between the service time of a product for which the previous product leaves behind
an empty subsystem and the service time of a product for which the previous product
does not leave behind an empty subsystem. This difference is made because when time
passes between a product leaving the system and the moment a new product starts
processing, it is less likely that the new product will get blocked.
In the situation of the empty subsystem the service time starts when a product arrives
at the subsystem, at that moment there are again two possibilities. The following buffer
is completely full or not. If the buffer is full the service time of the departure server is
equal to the max of the process time for the current product and the residual service
time of the departure server in the following subsystem. If the buffer is not completely
full the product can move to the next subsystem after processing, so the service time is
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equal to the process time. So in the situation that the previous product leaves behind a
empty subsystem there are two possibilities and these occur with a certain probability.
In the situation when the subsystem is not empty the service time starts immediately
and at that moment there are three possibilities, which depend on the situation in the
next subsystem.
The first possibility is that the next subsystem is full and blocks the current subsystem.
When a product leaves the next subsystem it can receive a product from the current
subsystem. In this case both subsystems start processing a product at the same time
and the service time is than equal to the maximum of the processing time and the
service time of departure server of the next subsystem. The second possibility is that
the next subsystem has one place left for a product and when it receives a product the
subsystem is full. The next subsystem has already started the processing and it takes a
residual process time to finish that product. The service time of the departure server is
in this case equal to the maximum of the residual service time of the departure server
and the process time. The last possibility is when the other two possibilities do not
occur, the service time of the departure server is than equal to the process time.

The distribution of service time in the arrival server, and the two distributions in the
departure server wil be approximated by fitting the first two moments.

4.1.2 Steady state with discrete event simulation

In the previous paragraph the steady state of a single-server tandem queue is determined
with the help of the approximation method based on queuing theory of [Vuu05]. To
verify the results of the approximation method discrete event simulation is used. The
discrete event model in Chapter 3 is used to determine the steady state of a single-server
tandem queue.
The results of the simulations in Chapter 3 are used to determine the simulation. In
the performed experiment the manufacturing system is empty at the start and after
several time-units the system is in steady state. When the steady state is reached the
last machine breaks down and blocking occurs. Just before the last machine breaks
down the system is in steady state and the mean number of products at that moment
is compared to the results of the approximation method. In the next paragraph the
results of the approximation method and the discrete event simulation are shown and
compared.

4.2 Results

In the previous section two different ways of determining the steady state are given. An
approximation method based on queuing theory is used and discrete event simulation.
Both ways determine the steady state of a tandem queue with identical machines and
the results of these methods should correspond. In order to find out if the results of
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both methods correspond the results are compared to each other in this section.
Figure 4.2 shows the steady state determined with the discrete event simulation and
the approximation method for a tandem queue of 10 workstations and Figure 4.3 shows
the same results for a tandem queue of 100 workstations. For both tandem queues
the results are shown in six different cases. The mean inter-arrival time, the squared
coefficients of variation and the maximal number of products in the buffer are different
in these cases. The values are shown in the figures.
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Figure 4.2: Mean number of products in a tandem queue of 10 workstations, ta = 1 or
ta = 2, c2

a = 1, te = 1, c2
e = 1, b = 0 or b = 1 or b = 5.

From the results in figures 4.2 and 4.3 can be seen that there is a difference between
the tandem queue of 100 workstations and the tandem queue of 10 workstations. For
the tandem queue of 10 workstations the discrete event simulation determines the same
steady state as the approximation method. Some small differences between the discrete
event simulation and the approximation method can be caused by stochast behavior in
the discrete event simulation. This might be solved by performing more simulations.
The results of a tandem queue of 100 workstations are different from the results of the
tandem queue of 10 workstations. In the results for a tandem queue of 100 workstations
the steady state determined with discrete event simulation and the approximation
method do not correspond.

In this chapter the steady state of a tandem queue is determined and in Chap-
ter 3 the dynamical behavior is determined. The steady state and the dynamical
behavior both have to be described by a PDE. A first step in determining a PDE is to
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Figure 4.3: Mean number of products in a tandem queue of 100 workstations, ta = 1 or
ta = 2, c2

a = 1, te = 1, c2
e = 1, b = 0 or b = 1 or b = 5.

take a look at finite volume methods. Finite volume methods are explained in the next
chapter and the results of the approximation method are used. Because the results of
a tandem queue of 100 workstations do not correspond to the results of the discrete
event simulation only the results of the approximation method are used for the tandem
queue of 10 workstations.
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Chapter 5

Finite volume methods

In Chapter 3 and Chapter 4 the dynamical behavior and the steady state of a tandem
queue are determined. In these chapters the discrete event system behavior is deter-
mined in order to know the behavior a PDE has to describe. A first step in determining
a PDE is done in this chapter.
The solution of a PDE can be approximated with the help of finite volume methods.
A finite volume method divides a domain into intervals and the average density in the
intervals is updated every time-step. The update is done with the help of the density,
the ingoing flux of the grid cell and the outgoing flux of the grid cell. The determination
of these fluxes is of importance and this is done with the help of clearing functions.
In this chapter first the finite volume method is explained and after that clearing func-
tions are explained.

5.1 Basics of finite volume methods

A first step in the determination of a PDE for manufacturing systems can be to de-
scribe the desired behavior first with a finite volume method. Finite volume methods
approximate the solution of PDEs and can describe the same sort of behavior, like the
movement of blocking. If the behavior of a tandem queue can be described by a finite
volume method a PDE might be derived from the finite volume method.

Finite volume methods are based on subdividing the spatial domain into intervals, called
grid cells [Lev03]. For every grid cell the initial average density is known and in every
time step this average density is updated. This update is done with the help of the
fluxes through the endpoints of the intervals.
In Figure 5.1 is shown how the domain is divided into grid cells in a finite volume
method.

Figure 5.1 can be seen as a representation of the tandem queue from the earlier chapters.
The start of the tandem queue is 0 in the domain and the end of the tandem queue

27
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Figure 5.1: Domain divided into grid cells.

is 1. In between the domain is divided into grid cells and every grid cell represents a
small group of workstations. Every grid cell has an average density. Qn

m is the average
density in the mth cell at time n.
When time passes products move through the tandem queue and the densities in the
grid cells change. This is represented by the flux through the endpoints of the cells.
Fn

m− 1
2

and Fn
m+ 1

2

are the ingoing and the outgoing fluxes of the mth cell at time n.
In the finite volume method the average density is updated every time-step with the
help of the ingoing flux and the outgoing flux. This update is explained below.

A finite volume method is based on subdividing the spatial domain into intervals as
described earlier. Over each of these intervals an approximation of the integral of the
density is determined and an average value for the density is approximated in every grid
cell. This is done for several time steps, in each time step the average value is updated
using approximations of the flux through the endpoints of the grid cells.
The value Qn

m approximates the average value over the mth interval at time tn,

Qn
m ≈ 1

∆x

∫ x
m+1

2

x
m− 1

2

ρ(x, tn)dx. (5.1)

In this formula ∆x = xm+ 1
2
− xm− 1

2
, this is the length of the cell.

The density in the grid cells will only change due to the fluxes through the endpoints
of the grid cells. This leads to an integral form of the mass conservation law,

d

dt

∫ x
m+1

2

x
m− 1

2

ρ(x, t)dx = f(q(xm− 1
2
, t))− f(q(xm+ 1

2
, t)). (5.2)

After integrating and rearranging, this expression can be used to develop a numerical
method of the form,

Qn+1
m = Qn

m − ∆t

∆x
(Fn

m+ 1
2

− Fn
m− 1

2

). (5.3)
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Figure 5.2: Illustration of a finite volume method for updating the cell average Qn
m by

fluxes at the cell edges.

Equation (5.3) can be used to update cell averages. Given Qn
m, the average density in

grid cell m at time tn, an approximation is wanted of Qn+1
m , the average density in the

same grid cell at time tn+1. To determine the average density in the next time step
(5.3) uses Fn

m− 1
2

and Fn
m+ 1

2

. These are the ingoing flux and the outgoing flux in the
grid cells.
In (5.3) Fn

m− 1
2

is an approximation of the average flux along x = xm− 1
2
,

Fn
m− 1

2

≈ 1
∆t

∫ tn+1

tn

f(q(xm− 1
2
, t))dt. (5.4)

If the determination of the average flux is only based on the values of Qn, a finite volume
method can be used. In Figure 5.2 a schematic view is given on the working of finite
volume methods.

On time tn the cell averages Qn
m are known and for one cell the Fm− 1

2
is known. For

this cell the outgoing flux, Fn
m+ 1

2

, can be determined with the approximation based on

the value of Qn
m. With (5.3) the cell average in the cell can be updated and for this

cell Qn+1
m is determined. The outgoing flux from this cell is the ingoing flux for the

next cell. So for the next cell the cell averages Qn
m is known, the ingoing flux Fm− 1

2

is known and the outgoing flux again can be determined. This process repeats for all
cells until for all cells the average density is determined.
In the description here the updating from the flux and the average density is done
in the direction downstream, from x = 0 to x = 1. Updating can also be done in
the opposite direction, upstream. The working is the same only the direction is different.

In this section a finite volume method is explained. The method divides the domain in
several grid cells and the average density in each cell has to be updated every time-step.
For updating the average density fluxes are needed. Determining a flux function which
describes the ingoing flux and the outgoing flux is difficult. This has to be a function
which determines a flux only based on the density in the grid cell. In the next section
more is explained about flux functions.
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5.2 Determination of clearing functions

In the previous section a finite volume method is described. In this method the domain
is divided into grid cells. In each grid cell the average density is determined with the
help of the ingoing flux and the outgoing flux. The ingoing flux and the outgoing flux
have to be described by a function which is only based on the density in the grid cell.
For these flux functions a clearing function is used.

-

6

ρmax ρ

Fmax

F

Figure 5.3: Fundamental diagram

In Figure 5.3 the shape of a clearing function is shown. On the moment that ρ = 0
there are no products in the grid cell and therefore no products can be send to the next
grid cell, the flux is also zero. When the density increases the flux also increases. The
density can increase until it reaches ρ = ρmax. For ρ = ρmax the maximal number of
products in a cell is reached and then the maximal value for the flux is also reached.

The clearing function can be determined with discrete event simulations, but the approx-
imation method based on queuing theory used in Chapter 4 is faster. So to determine
the clearing function the results of the approximation method are used. For a tandem
queue of 100 workstations the results of the approximation method did not correspond
to the results of the discrete event simulation. For this reason only the results of a
tandem queue of 10 workstations are used.
The approximation method determines in steady state the mean number of products
in each workstation in the tandem queue, the throughput and the cycle time. For the
clearing function the flux and the density must be known. The mean number of prod-
ucts in each workstation can be seen as the density in a grid cell and the throughput
can be seen as the outgoing flux of a grid cell.
In Figure 5.4 throughput is plotted against the mean number of products. This is done
for tandem queues of 10 workstations and a maximal buffersize of 0, 1 or 5. For all
tandem queues the squared coefficient of variation for the machines and the generator
is 1 and the mean process time for the machines is also 1 . The inter arrival time of the
generator varies to obtain different combinations of density and throughput.

In Figure 5.4 the clearing functions are shown of three tandem queues with different
buffersizes. For each tandem queue the clearing function of workstation 1, workstation
5 and workstation 10 are shown.
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Figure 5.4: Clearing function in a tandem queue of 10 workstations with c2
a = 1, te = 1,

c2
e = 1, b = 0 or b = 1 or b = 5.

In the graph of the clearing functions for a tandem queue with maximal buffersize of 0
the clearing function of workstation 1 have a similar form as the graph in Figure 5.3.
For ρ = 0 the throughput is zero and for an increasing mean number of products the
throughput increases. The density increases until it reaches a maximal density and at
that point the maximal flux is also reached.
The clearing functions of workstation 5 and workstation 10 in the graph for a tandem
queue with maximal buffersize 0 look like a straight line and do not reach the maximal
density. Workstation 1 in the line tandem queue reaches the maximal density and by
that the maximal throughput. With this maximal throughput the other workstations
in the tandem queue have not yet reached the maximal density. For this reason the
clearing functions of workstation 5 and workstation 10 do not show the same form as the
clearing function in Figure 5.3. The same reasoning hold for the graphs of the tandem
queue with maximal buffersize 1 and 5.
In Figure 5.4 can be seen that the clearing functions for workstations in a tandem queue
are different for every workstation. So in a finite volume method different clearing
functions are needed for workstations depending on the position within the tandem
queue.
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Chapter 6

Conclusions and
recommendations

In this chapter conclusions of the previous research are summarized and recommenda-
tions for further research are given.

6.1 Conclusions

For modeling and control of manufacturing systems roughly three groups of models are
used. These models are fluid models, queuing models and discrete event models. A
fourth group of models might be partial differential equation models (PDE).
To determine if a PDE model might be considered for modeling a manufacturing system
the behavior of a manufacturing system must be known. This is the goal of this research:
in order to know the behavior a PDE must describe, derive properties for the behavior
of a tandem queue with finite buffersizes.

The behavior of the tandem queue is divided into steady state behavior and dynamical
behavior. Steady state is determined with an approximation method based on queuing
theory and dynamical behavior is determined with discrete event simulation.

For the dynamical behavior a discrete event model is derived in Chi and with this model
a simulation experiment is done. Ramp up of the system, blocking of a machine and
ramp down of the system are simulated in an simulation experiment. The simulation
experiment is done for a tandem queue of 10 workstations and a tandem queue of
100 workstations and for both queues the experiment is done for different parameter
settings. The effects of the ramp up, blocking and starting the process are present in
the tandem queue of 10 workstations and in the tandem queue of 100 workstation for
the different parameter settings.
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At the start of the simulation experiment the tandem queue is empty and during ramp
up the mean number of products in all workstations increases from zero to a steady
state. The mean number of products in workstation 1 immediately increases at the
start of the experiment. The increase of the mean number of products in the other
workstations start later because products have to go through the tandem queue first
before reaching the workstations. A PDE should describe the increasing number of
products and the order in which the workstations receive their first products.
When the system is in steady state the last machine breaks down and the products
received by the workstation are placed in the buffer until this buffer is full. On that mo-
ment the machine in front of the full buffer is also blocked and the same process starts
over again. Result is that blocking moves through the tandem queue from the last
workstation to the first workstation with an almost constant velocity. A PDE should
describe the order in which the workstations are blocked and the velocity of blocking.
When the complete tandem queue is blocked all workstations are full with products and
a ramp down experiment is performed. The machine in the last workstation starts pro-
cessing again and the number of products in each workstations decreases. All products
have to leave the system and this can result in the fact that for a while the conditions
for some workstations are different from the conditions in steady state before blocking.
For these new conditions a new ‘steady state’ can occur. After this new ‘steady state’
the old conditions are reached again and the number of products decreases to the real
steady state. The behavior in this ramp down experiment should be described by a
PDE.
The ramp down experiment in the simulation takes more time than the ramp up expe-
riment, this is also one of the aspects that a PDE has to describe.

The steady state of a system can be determined with discrete event simulation but an
approximation method based on queuing theory is faster. To verify the results of the
approximation method the results of the approximation method are compared to the
results of discrete event simulation. For a tandem queue of 10 workstations the results
correspond and the approximation method can be used. For the tandem queue of 100
workstations the results do not correspond.

A first step in determining a PDE is to model the previous behavior with the help of
a finite volume method. A finite volume method divides a domain into grid cells and
determines the average density in each grid cell every time unit. For the determination
of the average density in each grid cell, the ingoing flux and the outgoing flux are
needed. The determination of these fluxes are difficult and clearing functions are used
for this purpose. These clearing functions determine the outgoing flux based only on
the average density in a cell. The outgoing flux can be seen as the throughput in a
system and the average density can be seen as the mean number of products.
The results of the approximation method based on queuing theory are used to determine
the clearing functions. This is only done for the tandem queues of 10 workstations
because for these tandem queues the results of the approximation method correspond
to the results of the discrete event simulation. The throughput of a workstation is
plotted against the mean number of products. From these results can be concluded
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that the clearing function for workstation 1 is not the same as the clearing function for
workstation 10. The clearing function depends on the position within the system.

6.2 Recommendations

In this report research is done on partial differential equation models for manufacturing
systems with finite buffersizes. Steady state behavior of a tandem queue and dynamical
behavior is described. This description of the behavior can be used in the search for a
PDE and for the verification after a PDE is derived. Further research can be done on
finding a PDE which describes the behavior found in this report and the results of such
a PDE model can be compared to the results in this report.
In Chapter 3 a discrete event model is described and simulation experiments are done
with this model. In the model for a tandem queue with a buffersize of 0 the last
workstation in the tandem queue can, in some cases, receive a product after the last
machine is blocked. When the last machine is blocked while there is no product in the
machine, the workstation can receive one product. Receiving a product in this case
should not be possible. The effect on the results is small but in further research this
can be improved.
Another point for further research is the queuing theoretical approximation used in
Chapter 4 [Vuu05]. For a large tandem queue the results of this approximation method
do not correspond to the results of the discrete event simulations. The results of this
approximation method can not be used in the determination of clearing functions or
any other further research. Another approximation method based on queuing theory
might give results not only for short tandem queues but also for a longer tandem queue.
Recent results by Paul Frenken might be used as a starting point.
In Chapter 5 clearing functions for a tandem queue of 10 workstations are determined
with the results of the approximation method of Chapter 4. From the results can
be concluded that the clearing function depends on the position within the system.
The clearing function for workstation 1 is not the same as the clearing function for
workstation 10. In further research more have to be determined about clearing functions
depending on the position in the system and how these clearing functions can be used
to describe the behavior of a tandem queue with finite buffersizes.
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Appendix A

List of symbols

b Maximal number of products in a buffer
c2
a Squared coefficient of variation on the inter-arrival time

c2
e Squared coefficient of variation on the mean processing time

Fn
m−1/2 Ingoing flux in grid cell m on time n

Fn
m+1/2 Outgoing flux in grid cell m on time n

n Number of machines
t Time
ta Mean inter-arrival time
te Mean processing time

Qn
m Average density in grid cell m on time n

xm Grid cell m
∆x Length of a grid cell
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Appendix B

Discrete event model

In Chapter 3 dynamical behavior of a tandem queue is determined. To determine this
behavior a discrete event model is derived in Chi. A short description can be found in
Section 3.1, in this appendix the complete model is given with a short explanation on
how to use the model.

B.1 χ model

In this section a χ model is given for a line of 10 workstations with a maximal buffersize
of b > 0. For b = 0 the χ model is different for the proces of the buffer. Both processes
can be found in the model.

//-------------------------------------------------------------------------------------
// Imports from chi libraries
//-------------------------------------------------------------------------------------
from random import*
from std import*
from fileio import*

//-------------------------------------------------------------------------------------
// Define number of machines
//-------------------------------------------------------------------------------------
const m:nat= 10 // number of machines

, m1:nat= 11 // number of machines plus 1
, mmin1:nat=9 // number of machines minus 1
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//-------------------------------------------------------------------------------------
// Processes
//-------------------------------------------------------------------------------------
proc G(a:!void, p1,p2:real)=
|[ t:->real
| t:=gamma(p1,p2)
;*[ true; a! -> delta sample(t)]
]|

proc B(a:?void,b:!void,c:?void,d:?void,e:!nat,n:nat)=
|[ xs, atM:nat
| xs:=0; atM:=0
;*[ xs<n;a? -> xs:=xs+1
| xs>0;b! -> xs:=xs-1;atM:=atM+1
| true;c? -> atM:=atM-1
| true;d? -> e!xs+atM
]

]|

//-------------------------------------------------------------------------------------
// Buffer when max. number of products in the buffer is zero
//-------------------------------------------------------------------------------------
//proc B(a:?void,b:!void,c:?void,d:?void,e:!nat)=
//|[ xs, atM:nat
// | xs:=0; atM:=0
// ;*[ xs+atM=0;a? -> xs:=xs+1
// | xs+atM=1;b! -> xs:=xs-1;atM:=atM+1
// | true;c? -> atM:=atM-1
// | true;d? -> e!xs+atM
// ]
//]|

proc M(a:?void,b:!void,c:!void, p1,p2:real)=
|[ u:->real
| u:=gamma(p1,p2)
;*[true -> a?; delta sample u; b!; c!]
]|

proc Mf(a:?void,b:!void,c:!void, d:?bool, p1,p2:real)=
|[ u:->real, idle,up:bool, tfinish,tremain:real
| u:=gamma(p1,p2)
; idle:=true; up:=true
;*[ up and idle; a? -> tfinish:=time+sample u; idle:=false
| up and not idle; delta tfinish-time -> b!;c!;idle:=true
| true; d?up ->[ not up -> tremain:=tfinish-time

| up -> tfinish:=time+tremain
]

]
]|
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proc E(a:?void)=
|[ *[true -> a? ]
]|

proc C(a:(!void)^m,b:(?nat)^m,c:!bool,todolist:(nat#bool)*)=
|[ wip:nat^m,wiplist:(nat^m)*,n,i:nat
| n:=0; wiplist:=[]
;*[ len(todolist)>0

-> *[ n<hd(todolist).0
-> i:=0; *[i<m ->a.i!;b.i?wip.i;i:=i+1]
; wiplist:=wiplist++[wip]
; n:=n+1
; delta 1.0

]
; c!hd(todolist).1
; todolist:=tl(todolist)

]
; !"wiplist=", wiplist,"\n"
]|

//-------------------------------------------------------------------------------------
// Clusters
//-------------------------------------------------------------------------------------
clus WS(gm2b:?void, m2b:!void, c2b:?void, b2c:!nat, n:nat, p1, p2:real)=
|[ b2m:-void, mfin:-void
| B(gm2b, b2m, mfin, c2b, b2c, n)
|| M(b2m, m2b, mfin, p1, p2)
]|

clus WSf(gm2b:?void, m2e:!void, c2b:?void, b2c:!nat, mdown:?bool, n:nat, p1, p2:real)=
|[ b2m:-void, mfin:-void
| B(gm2b, b2m, mfin, c2b, b2c, n)
|| Mf(b2m, m2e, mfin, mdown, p1, p2)
]|

clus PRODLINE(pg1, pg2, p1, p2:real,maxwip:nat,todolist:(nat#bool)*)=
|[ ws:(-void)^m1, askwip:(-void)^m, sendwip:(-nat)^m,breakdown:-bool
| G(ws.0, pg1, pg2)
|| i: nat <-0..mmin1: WS(ws.i, ws.(i+1), askwip.i, sendwip.i, maxwip, p1, p2)
|| WSf(ws.mmin1,ws.m,askwip.mmin1,sendwip.mmin1, breakdown ,maxwip, p1, p2)
|| E(ws.m)
|| C(askwip,sendwip,breakdown,todolist)
]|

xper(pg1, pg2, p1, p2:real,maxwip:nat,todolist:(nat#bool)*)=
|[ PRODLINE(pg1, pg2, p1, p2, maxwip, todolist)]|
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B.2 Explanation on χ model

To perform the simulation several parameters have to defined. The number of machines
have to be set in the model and other parameters have to be defined at the prompt.
After defining the number of machines the model has to be compiled with:

>> chic filename.chi

Then the model can be started with the following Python code:

#!/usr/bin/env python

import os
for m in range(0, 100):

os.system("./filename pg1 pg2 p1 p2 b ’[ <block 0> <start 1> <end 0> ]’ >> output1.txt")
os.system("./filename pg1 pg2 p1 p2 b ’[ <block 0> <start 1> <end 0> ]’ >> output2.txt")
os.system("./filename pg1 pg2 p1 p2 b ’[ <block 0> <start 1> <end 0> ]’ >> output3.txt")
os.system("./filename pg1 pg2 p1 p2 b ’[ <block 0> <start 1> <end 0> ]’ >> output4.txt")
os.system("./filename pg1 pg2 p1 p2 b ’[ <block 0> <start 1> <end 0> ]’ >> output5.txt")

The parameters can be found in Table B.1.

Before running the Python script has to be made executable with:

>> chmod u+x filename.py

Then the file can be started with:

>> ./filename.py

Running this Python script gives 5 files and each file contains the results of 100 simu-
lations.

parameters type description
pg1,pg2 real parameters needed in gamma distribution of the inter-arrival time

mean inter-arrival time= pg1 ∗ pg2, variance= pg1 ∗ pg22

p1,p2 real parameters needed in gamma distribution of the process time
mean process time= p1 ∗ p2, variance= p1 ∗ p22

b nat maximal buffersize
block real moment of blocking
start real moment of starting the process again
end real endtime of simulation

Table B.1: Simulation parameters



Appendix C

Programming codes to determine
simulation results

In Appendix B the discrete event model is given and an explanation on how to use
the model for simulations. The results of these simulations have to be processed to
determine a mean number of products and to determine the velocity of blocking. The
mean number of products and the velocity after processing the simulations results are
shown in Chapter 3 and in this appendix a description is given on how these mean
results and the velocity are determined.

C.1 Determination of mean number of products

Simulating the χ model of Appendix B results in files with lists of tuples. Every list
represents one simulation and contains one tuple for every time-step. These tuples
represent the number of products in each workstation at a certain time.
With the following Python code the mean number of products in every workstation can
be determined from several lists.

Before using the Python code, the Python code first has to be made executable with:

>> chmod u+x filename.py

Then the file can be started with:

>> ./filename.py

45
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The Python file:

#!/usr/bin/env python
import time, sys, os, string, math

from mlabwrap import mlab
from Numeric import *
from math import log
from math import pow

#-------------------------------------------------------------------------------------
# Define path
#-------------------------------------------------------------------------------------

path="/.../.../"

dir=os.listdir(path)

#-------------------------------------------------------------------------------------
# Matrices used to store mean nr of prod and the std
# Results determined for a line of 10 workstations and
# the simulation takes 5000 time units. Values have to be changed
# when other simulation parameters are used.
#-------------------------------------------------------------------------------------

totmean = []
totstd=[]
totrun =0

updatestd=[[0]*10]*5001
updatemean=[[0]*10]*5001

#-------------------------------------------------------------------------------------
# Determine the mean number of products in a workstation and the std.
#-------------------------------------------------------------------------------------

for file in dir:

#----- open file with results
if (file[0:8]=="filename"):

inputfile=open(file,’r’)

#----- read a list with results
for line in inputfile:

if (line[0:8]=="wiplist="):
matrix = (line.replace(’ ’,’,’).replace(’[,<|,’,’[[’)

.replace(’,|>,]’,’]]’).replace(’,|>,<|,’,’],[’)

.replace(’wiplist=’,’’))
exp = eval(matrix)
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#----- the first list
if totrun<=0:

totmean=exp
totstd=updatestd
totrun=1

#----- not the first list and the mean and std have to be updated every time
elif totrun>0:

n=totrun+1
nrsample=len(exp)
nrmach=len(exp[0])
k=0
j=0

while k<nrsample:
while j<nrmach:

updatestd[k][j]=((n-2.)/(n-1)*totstd[k][j]+
1./n*(exp[k][j]-totmean[k][j])**2)

updatemean[k][j]= ((n-1.)/n* totmean[k][j]+
(1./n)* exp[k][j])

j=j+1
k=k+1
j=0

totrun=n
totstd=updatestd
totmean=updatemean

#-------------------------------------------------------------------------------------
# saving the mean number of products as a matrix in Matlab
#-------------------------------------------------------------------------------------

saveresults = mlab.results(totmean, totstd, totrun)

In this python file the results are saved in Matlab. The following Matlab file is needed.

function [saveresults]=results(totmean,totstd,totrun)
saveresults=1
save mean.mat totmean totstd totrun

Combine result of two simulation runs With the previous Python file the results
of several simulations can be combined to determine a mean number of products. This
mean number of products is saved in a mat-file in Matlab. To combine the results of
two simulations runs two mat-files have to be combined. The next code can be used in
Matlab for this purpose.
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clc
clear all
close all
%-------------------------------------------------------------------------------------
% open files with mean results
%-------------------------------------------------------------------------------------

load file1.mat
totmean1=totmean;
totstd1=totstd;
n1=totrun;

load file2.mat
totmean2=totmean;
totstd2=totstd;
n2=totrun;

%-------------------------------------------------------------------------------------
% combine files to determine the mean
%-------------------------------------------------------------------------------------

[nrsample, nrmach]=size(totmean1);

k=1;
j=1;
while k<=nrsample;
while j<=nrmach

updatestd(k,j)= 1/(n1+n2-1)*((n1-1)*totstdn1(k,j)+(n2-1)*totstdn2(k,j)+...
(n1*n2)/(n1+n2)*(totmean1(k,j)-totmeann2(k,j))^2);

updatemean(k,j)= n1/(n1+n2)*totmean1(k,j)+n2/(n1+n2)*totmeann2(k,j);
j=j+1;

end
j=1;
k=k+1;

end
totrun=n1+n2;
totstd=updatestd;
totmean=updatemean;

%-------------------------------------------------------------------------------------
% save the results in a mat-file
%-------------------------------------------------------------------------------------

save file3.mat totrun totstd totmean
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C.2 Determination of velocity of blocking

In Chapter 3 the velocity of blocking moving through the line of workstations is deter-
mined. This is done with the results of discrete event simulation.
From the results of a simulation experiment the number of products in a workstation is
known every time-unit. From this information can be determined for every workstation
when the maximal number of products is reached and the result is a list of moments of
time every workstations reaches the maximal number of products. These lists are put
in a matrix and with Matlab the mean of these moments of time can be determined.

#!/usr/bin/env python

import time, sys, os, string, math
from mlabwrap import mlab
from Numeric import *
from math import log
from math import pow

#-------------------------------------------------------------------------------------
# define path, initialize and open file to write
#-------------------------------------------------------------------------------------

path="/.../.../"
dir=os.listdir(path)

outputfile=open(’file1.txt’, ’w’)

newtotvalues=[]
outputfile.write(’[’)

#------------------------------------------------------------------------------------
# Determine the moments the maximal number of
# products is reached in a workstation
#------------------------------------------------------------------------------------

for file in dir:

#----- open file with results
if (file[0:5]=="file2"):

inputfile=open(file,’r’)

#-----read results of 1 simulation
for line in inputfile:

if (line[0:8]=="wiplist="):
matrix = (line.replace(’ ’,’,’).replace(’[,<|,’,’[[’)

.replace(’,|>,]’,’]]’).replace(’,|>,<|,’,’],[’)

.replace(’wiplist=’,’’))
values = eval(matrix)
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#-----the values in this file have to be adapted to the simulation results

m=9 #-----number of machines minus 1.
t=3000 #-----moment the last machine is blocked.
max=values[3999][m] #-----time just before last machine

# starts processing.

pointoftime=[0]*(m+1)

#------------------------------------------------------------------------------------
# searching the max. number of products for each workstation.
# Starting from the last machine in the line from time=t.
#------------------------------------------------------------------------------------

i=m
while i>=0:

while values[t][i]<max:
t=t+1;

max=values[3999][m]
pointoftime[i]=t
i=i-1;

outputfile.write(str(pointoftime))
outputfile.write(’;’)

outputfile.write(’];’ )

outputfile.close
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Approximation method based on
queuing theory

In this Appendix an explanation is given on how to use the approximation method
based on queueing theory from Chapter 4.

The steady state of a line of workstations is determined with an approximation method
based on queuing theory [Vuu05].
The approximation method models a line of workstations with finite buffersizes. The
first workstation in the line is never starved and can be seen as the generator of the
line.

>> [t,L,S] = SolveTandemQueue([te],[ce^ 2],[b])

The input information of the approximation method exist of three vectors, [te], [ce^
2] and [b]. The first vector [te] contains the mean process time of the machine, the
second vector [ce^ 2] contains the squared coefficient of variation of the machines and
the third vector [b] contains the maximal buffersize. The first workstation in the line
does not have a buffer, so the first two workstations contain one value more than the
third vector.

The output of the approximation method is a vector L which contains the mean number
of products in each workstations and a workstation is the buffer plus the machine behind
the buffer. Other output values are t, the throughput of the line of workstations and S
is the flow time of the line of workstations.
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