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Summary

Due to the rapidly increasing complexity of manufacturing systems, heuristic methods
become incapable of finding an optimal control strategy. Furthermore, heuristics cannot
react on the dynamics of a manufacturing system, especially with workstations at high
utilization levels, since variability has a corrupting influence. Therefore, in this research,
the two layer hierarchical model predictive control framework, is considered, which uses
effective process times as input parameters for the controller.

The hierarchical MPC framework has already been deployed in a simulation framework
by Tolboom [Tol04]. However the control framework did not completely function as de-
sired. Especially the optimization tool in the high level controller did not work properly.
Also, the measurement of effective process times was incorrect due to the occurrence of
condition blocking. The measured EPTs are transformed into the characteristic curve
of each workstation of the system, which captures the highly non-linear relationship
between throughput and work in process. The characteristic curves are used as capac-
ity constraints for the optimization tool. Due to condition blocking, too high EPTs
are measured, which causes the characteristic curves not to be a correct representation
of the system. Therefore unrealistic low targets are set for the manufacturing system,
since the controller has a too low estimate of the system’s capacity. This causes a lower
utilization of the system and the measured EPT realizations will again increase. This
reciprocity causes a vicious circle.

The first objective of this research is to improve the proposed two layer model predic-
tive control framework by ‘refurnishing’ the layers, with an emphasis on the high level
optimization tool. Secondly, the effective process time measurement in case of condition
blocking has be reviewed, so it can be correctly implemented into the framework.

The control framework consists of two layers; a high and low level controller. The
high level control layer uses planning approaches to derive a set of feasible production
targets based on the actual demand and the aggregated state of the system. It consists
of a model predictive controller which optimizes a cost function over a future horizon,
subject to a set of both linear and non-linear constraints. The linear constraints can be
interpreted as mass conservation laws, since they capture the wip level behavior of the
workstations. The non-linear constraints are represented by the characteristic curves of
the workstations. Important parameters of the characteristic curve are obtained from
EPT calculations.
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vi Summary

EPTs are mainly used as a performance measure, but in this research, they are mostly
used as input parameters for the model predictive controller. Several EPT algorithms
exist, all applicable for different situations, like finitely or infinitely buffered worksta-
tions, blocking or not blocking, single or multiple lot machines. But until now, no
suitable EPT algorithm is derived which can handle condition blocking. This type of
blocking occurs often at the presented control framework, it means that a task has
some condition on its input port, demanding this condition is fulfilled before activating
the task. In this case more specifically; the controller sometimes intentionally leaves a
machine idle, while it is empty and lots are waiting in the corresponding buffer.

Low level control consists of sequencing policies and flow rate control. Only the latter
is implemented in the control framework in this research. The flow rate controllers are
present in the buffers of the workstations and make sure the influx of the machines is
each period equally distributed.

Evaluation of the control framework is performed with the use of a simple manufacturing
line with two infinitely buffered machines. Several input and tuning parameters exist.
The input parameter is declared as the demand type for the manufacturing system,
which can be altered throughout the experiments. The tuning parameters are needed
for a proper functioning of the optimization toolbox Tomlab and are determined by
several preliminary test runs. The chosen performance measures are the buffer (or wip)
levels of the workstations, the number of cumulative backorders and the effective process
times.

In order to meet the first research objective, the derived control framework is tested. It
is proved that the framework itself works properly, but the EPT measurement is wrong
because it is dependent on the capacity utilization. Therefore, the control framework
performs poorly for high utilization levels. Also the previously discussed vicious circle
is detected for systems with extremely low utilization levels.

The second research objective is met by deriving a new EPT algorithm, which makes
use of the authorization times which are determined by a combination of the high and
low level controller. Now, the EPTs are no longer dependent on the utilization of
the workstations. The control framework performs significantly better with the new
EPT measurement for several types of demand and in both highly and extremely lowly
utilized manufacturing systems than with the old EPT measurement. Also the described
vicious circle is neutralized by this new method.



Samenvatting (in Dutch)

Doordat de complexiteit van fabricagesystemen blijft toenemen, blijken heuristische
methoden incapabel om optimale regelstrategieën te vinden. Daarnaast kunnen heu-
ristieken niet op het dynamische gedrag van een fabricagesysteem reageren. Dit gaat
vooral op voor werkstations met hoge utilisatie niveaus, omdat variabiliteit een verve-
lende invloed heeft. Daarom wordt er in dit onderzoek een twee-laags hiërarchisch
model predictive control raamwerk beschouwd, dat effectieve proces tijden gebruikt als
ingangsvariabelen voor de regelaar.

Het hiërarchische MPC raamwerk is al eerder in een simulatieraamwerk gëımplementeerd
door Tolboom [Tol04]. Echter werkte dit regelraamwerk niet zoals gewenst. Vooral de
optimalisatie tool in de bovenste laag van het regelraamwerk werkte niet goed. Daar-
naast bleek de meting van effectieve proces tijden incorrect door de aanwezigheid van
condition blocking. De gemeten EPTs worden getransformeerd in de karakteristieke
curve van ieder werkstation van het systeem, deze curve geeft de hoog niet-lineaire
eigenschap tussen doorzet en onderhanden werk weer. De karakteristieke curves wor-
den gebruikt als capaciteitsconstraints voor de optimalisatie tool. Door de aanwezigheid
van condition blocking worden te hoge EPTs gemeten, wat er voor zorgt dat de karak-
teristieke curves geen correcte representatie van het systeem vormen. Daardoor worden
onrealistisch lage doelen gesteld voor het fabricagesysteem, omdat de controller een te
lage schatting van de systeemcapaciteit ontvangt. Dit zorgt voor een lagere utilisatie van
het systeem en de gemeten EPT realisaties zullen opnieuw toenemen. Deze reciprociteit
veroorzaakt een vicieuze cirkel.

Het eerste onderzoeksdoel is om het voorgestelde twee-laags model predictive control
raamwerk te verbeteren door de lagen opnieuw te ‘meubileren’, waarbij de nadruk op
de optimalisatie tool van de bovenste laag ligt. Op de tweede plaats moet de effectieve
proces tijd meting in het geval van condition blocking worden herzien, zodat deze correct
in het raamwerk kan worden gëımplementeerd.

Het regelraamwerk bestaat uit twee lagen; beide hebben hun eigen regelaar. De boven-
ste laag van het regelraamwerk gebruikt planningsmethoden om een set van feasible
productiedoelen af te leiden, gebaseerd op de actuele vraag en de algehele toestand van
het systeem. De laag bestaat uit een model predictive controller die een kostenfunctie
minimaliseert over een toekomstige horizon, onderworpen aan een set van zowel lineaire
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als niet-lineaire constraints. De lineaire constraints mogen als massabehoudswetten wor-
den beschouwd, omdat zij het wip niveau gedrag van de werkstations beschrijven. De
niet-lineaire constraints worden vertegenwoordigd door de karakteristieke curves van de
werkstations. Belangrijke parameters voor de karakteristieke curve worden verkregen
door EPT berekeningen.

EPTs worden meestal als prestatie-indicatoren gebruikt, maar in dit onderzoek vormen
ze voornamelijk de ingangsvariabelen voor de model predictive controller. Verscheidene
EPT algoritmes bestaan, welke allemaal op andere situaties toepasbaar zijn, zoals bij
eindig en oneindig gebufferde werkstations, wel of geen blocking, één of meerdere prod-
uct machines. Maar tot nu toe is er geen geschikt EPT algoritme ontwikkeld dat met
condition blocking om kan gaan. Dit type blocking vindt vaak plaats in het gëıntro-
duceerde regelraamwerk, en het houdt in dat een taak een bepaalde conditie op zijn
inkomende poort heeft, die eist dat aan deze conditie is voldaan voordat de taak wordt
geactiveerd. Meer specifiek voor dit geval betekent het dat de regelaar soms bewust een
machine inactief laat, terwijl zij leeg is en producten in de bijbehorende buffer aan het
wachten zijn.

De onderste laag van het regelraamwerk bestaat uit sorterings algoritmes en regelaars
voor de toevoersnelheid. Alleen deze laatste soort is gëımplementeerd in het regelraam-
werk van dit onderzoek. De regelaars voor de toevoersnelheid bevinden zich in de buffers
van de werkstations en zorgen ervoor dat de toevoer van de machines iedere periode
gelijk is verdeeld.

Het regelraamwerk wordt geëvalueerd met behulp van een simpele fabricage lijn, die
twee oneindig gebufferde werkstations bevat. Verschillende ingangsvariabelen en instel-
parameters zijn van toepassing. Als ingangsvariabele wordt het type vraag voor het
fabricage systeem genomen, die gedurende de experimenten wordt gevarieerd. De in-
stelparameters zijn nodig voor een goede werking van de optimalisatie tool Tomlab en
worden door middel van enkele test series vastgesteld. De gekozen prestatie-indicatoren
zijn de buffer (of wip) niveaus, het aantal cumulatieve nabestellingen en de effectieve
proces tijden.

Om aan het eerste onderzoeksdoel te voldoen, wordt het ontwikkelde regelraamwerk
getest. Het is bewezen dat het regelraamwerk in principe werkt, echter de EPT meting
is foutief, omdat deze van de capaciteits utilisatie afhankelijk blijkt. Daarom presteert
het regelraamwerk slecht voor hoge utilisatie niveaus. Ook de eerder genoemde vicieuze
cirkel is waargenomen voor systemen met zeer lage utilisatie niveaus.

Het tweede onderzoeksdoel is gehaald door het ontwikkelen van een nieuw EPT al-
goritme, dat gebruikt maakt van de autorisatietijden, die door een combinatie van
de bovenste en onderste laag regelaars worden afgeleid. Nu zijn de EPTs niet meer
afhankelijk van de utilisatie van de werkstations. Het regelraamwerk presteert duidelijk
beter met de nieuwe EPT meetmethode voor verscheidene vraag types in zowel hoog
als zeer laag geütilizeerde fabricagesystemen, dan met de oude EPT meetmethode. Ook
de beschreven vicieuze cirkel wordt doorbroken door middel van deze nieuwe methode.
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Chapter 1

Introduction

“Scientists study the world that is; engineers create the world that never
was.”
- Theodore von Karman (1881-1963)

Obviously, Von Karman was an engineer, in fact a mechanical engineer. His statement
is a daring one, but has a grain of truth in it. Engineering has been described as the
art of the practical application of scientific principles to ‘directing the great sources of
power in nature for the use and convenience of man’. It involves men, money, material,
machine and energy and ‘requires above all the creative imagination to innovate useful
applications of natural phenomena’. It also has the character of a never-ending search
for ‘newer, cheaper, better means of using natural sources of energy and materials to
improve man’s standard of living and to diminish labor’.

The Systems Engineering Group aims to develop methods, techniques and tools for the
design of advanced industrial systems. By using scientific principles from mechanical
engineering, computer science and mathematics, systems engineers try to create a new,
controllable manufacturing world. The adjective ‘controllable’ is a very important part
of this sentence. Engineers always try to control their environment and the field of
manufacturing is absolutely no exception to that.

Control of manufacturing systems can be performed at different levels and its purpose
is to satisfy the engineer demands in an ‘optimal’ way. Here, the definition of ‘optimal’
is system dependent and can therefore be read in various ways, such as ‘with the least
possible cost’ or ‘in the shortest possible time’.

In the past, many heuristic methods have been developed for the control of a manu-
facturing system, such as material requirements planning (MRP), enterprize resources
planning (ERP) or just-in-time production (JIT). Nowadays, many heuristic methods
are still being used in combination with operator experience for management of re-
sources and planning of production. However, as the complexity of the manufacturing
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2 Chapter 1. Introduction

system increases rapidly, the heuristic methods and operator experience will at some
point become incapable of finding an optimal control strategy. Furthermore, heuristics
can not react on the dynamics of a manufacturing system. Therefore, in this research,
a different control framework will be studied, which is dynamical.

It is not possible to apply this dynamic control theory directly to a manufacturing
system. The problem preventing this, is that most control theory is meant for continuous
systems, whereas the considered system is not of a continuous nature. In this research,
a discrete event model is developed, which is supposed to be equal to the physical
manufacturing system and is represented as a χ-model (for more information about the
specification language χ, see Kleijn [Kle01]). In order to be able to apply control theory,
the discrete event model is approximated by a continuous model, see Figure 1.1a. Using
feedback control techniques, a controller is designed for this approximation model, see
Figure 1.1b. Once a good controller has been developed, it is connected to the discrete
event system. Hereby, the output of the controller should be converted in such a way
that it becomes a suitable input for the discrete event system, and vice versa, see
Figure 1.1c.

Discrete Event
Model

Model

Continuous
Approximation

Controller

(a) Step 1: Continuous ap-
proximation of the discrete
event model.

Discrete Event
Model

Model

Continuous
Approximation

Controller

Control signals Measurements

(b) Step 2: Control of the con-
tinuous approximation model.

Discrete Event
Model

Model
Conversion Conversion

Continuous
Approximation

Controller

Control signals

Measurements

(c) Step 3: Conversion is used
to connect the controller to the
discrete event model.

Figure 1.1: The dynamic control framework.

This research focuses on the development of the controller. As previously stated, a
controller only consisting of heuristics is not suitable to control complex manufacturing
systems, with workstations at high utilization levels, since variability has a corrupting
influence.

In the recent past hierarchical model predictive control frameworks have been developed
[Var03], using several control layers. Research has led to the belief that information of
the aggregated state can be used as an input parameter to perform the planning in the
high level control layer by means of an optimization tool. The optimization provides
feasible short-term production targets for the low level control layer, which consists of a
flow rate controller and sequencing policy. The low level control layer uses the received
production targets and the current state of the system to make short-term decisions in
order to achieve the targets.
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The input parameters for the high level layer can be measured in the form of effective
process times. The introduction of EPT as a concept to account for throughput losses
and process time irregularities on workstations has been made by Hopp and Spearman
[Hop01]. Further investigation as a means of system analysis has been performed by
Jacobs et al. [Jac01, Jac03], Van Bakel [Bak01], Rooney [Roo02], Wullems [Wul02] and
Kock [Koc03].

1.1 Objective

Tolboom [Tol04] has implemented a two layer version of the hierarchical model pre-
dictive control framework of Vargas-Villamil et al. [Var03] in the Intel Case [Kem03].
However the control framework did not completely function as desired. Especially the
optimization tool in the high level control layer did not work properly.
Also, an input parameter of the optimization problem is not correct. Effective process
time measurements of the system under control are used as capacity constraints for the
optimization tool. These EPTs are therefore transformed into the so-called character-
istic curve, which captures the highly non-linear relationship between throughput and
work in process. At the moment, when the controlled system is subject to condition
blocking, the measured EPT realizations are too high with the consequence that the
characteristic curve is not a correct representation of the system. Therefore unrealistic
low targets are set, when delivering targets to the low level control layer, since the con-
troller has a too low estimate of the system’s capacity. This causes a lower utilization
of the system and the measured EPT realizations will again increase. This reciprocity
causes a vicious circle.

The goal of this research is twofold. First, the proposed two layer model predictive
control framework has to be improved. Secondly, the precise definition of effective
process time and the algorithms to compute it have to be reviewed, so they can be
implemented into the hierarchical MPC framework. Validation of the adapted controller
must be performed by implementing it in several test cases.

1.2 Approach and Outline

In order to meet these objectives, the following approach is used, which also defines the
outline of this report.

Chapter 2 contains a literature review on manufacturing control approaches. First, three
different classifications of control frameworks are mentioned; hierarchical, heterarchical
and hybrid. This research makes use of a two layer hierarchical framework. It is
explained that model predictive control is chosen as the high level control layer, and
that low level control is performed by a flow rate controller and sequencing policies.
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Finally, a brief introduction is given on the effective process time algorithm, since it is
used as a means of conversion in the control framework.

The effective process time algorithm has already been briefly introduced. Chapter 3
gives a more extensive survey on this matter by examining many forms of the EPT
algorithm in literature. The main use of EPTs is as a performance measure, but in
this research, EPT calculation is mostly used for determination of the characteristic
curve, which is used as a non-linear constraint for the optimization process in the high
level controller. Several EPT algorithms exist, all applicable for different situations,
like blocking or single and multiple lot machines. In this chapter, the EPT algorithms
encountered in literature, which are useful for this research, are discussed.

Chapter 4 handles all three parts of the proposed two layer hierarchical model predic-
tive control framework in detail. First, the discrete event system is examined and a
suitable model is proposed. Then the high level control layer is discussed, with an ex-
tensive description of the model predictive controller, which consists of an optimization
algorithm. It minimizes a cost function, subject to non-linear capacity constraints and
linear mass conservation laws. Finally the low level layer is described, which primarily
examines the flow rate controllers, which are present in the buffers of the manufacturing
system.

Chapter 5 evaluates the proposed framework in an experimental setup. It focusses on
two main subjects, where the first is to validate the control framework and the second
is to improve the EPT measurement in case of condition blocking. First, simulation
assumptions are made and the demand type is chosen as input parameter of the model.
The performance measures are determined to be the wip levels of the workstations, the
number of cumulative backorders and the effective process times.
Experiments are conducted which prove that the proposed control framework functions
properly, only the EPT measurements turn out to be dependent on the capacity utiliza-
tion, which is wrong per definition. Therefore a new EPT algorithm is derived, which
makes use of the authorization times which are determined by a combination of the high
and low level controller. Now, the EPTs are no longer dependent on the utilization of
the workstations. The control framework functions much better for several types of de-
mand and levels of utilization with this new algorithm, which is proved by conducting
several experiments.

Finally, in Chapter 6 the conclusions and recommendations for further research, stem-
ming from this research, are presented.



Chapter 2

Control Theory

“All science is concerned with the relationship of cause and effect. Each
scientific discovery increases man’s ability to predict the consequences of his
actions and thus his ability to control future events.”
- Laurence J. Peter (1919 - 1988)

Since mankind always wanted to be able to control processes, this relationship between
cause and effect has become a central theme in every research field. When one knows
exactly how a process works by measuring it, one can learn how to operate it and in
a further stage even to control it. These processes can be anything, manufacturing
systems included. This chapter begins with a brief literature review on control theory
in manufacturing systems in general, which will melt into a more specific description of
the control theory which is investigated in this research.

2.1 Classification of Control Frameworks

There are several classifications of control frameworks. Heragu et al. [Her02] provided
a structural overview, which formed the outline for this section.
Duffie and Piper [Duf87] present a spectrum of architectures of a centralized controller,
a hierarchical controller with dynamic scheduling, and a fully distributed heterarchical
controller with intelligent parts. Lin and Solberg [Lin91] present four control paradigms:
centralized information-centralized decision making, distributed information-centralized
decision making, centralized information-distributed decision making, and distributed
information-distributed decision making. Dilts et al. [Dil91] identify four basic control
architecture forms for automated manufacturing systems: centralized, proper hierarchi-
cal, modified hierarchical, and heterarchical. They also summarize their characteristics,
advantages, and disadvantages.

5
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In this report, the control frameworks are classified into hierarchical, heterarchical, and
hybrid control frameworks. The hierarchical frameworks map to the centralized and
proper hierarchical classifications in [Dil91]. The hybrid frameworks include the modi-
fied hierarchical architecture in [Dil91] and their recent evolutions. All three frameworks
are depicted in Figure 2.1, where the controllers are indicated with the letter C.

C

C1 C2 C3

Proces 1 Proces 2 Proces 3

(a) Hierarchical framework.

C1 C2 C3

Proces 1 Proces 2 Proces 3

(b) Heterarchical framework.

C

C1 C2 C3

Proces 1 Proces 2 Proces 3

(c) Hybrid framework.

Figure 2.1: Three classifications of control frameworks.

The hierarchical framework assumes there is a hierarchy and a master/slave relation-
ship between higher and lower levels of control. The hierarchy is introduced to handle
the complexity of a manufacturing system. Sensory data flows in an upward direction
from low level controllers (or unit controllers) at the lowest level to higher level super-
visory controllers [Duf86]. Based on this, command data is generated and sent in a
downward direction from supervisory controllers to units. Unfortunately, these sensory
and command information flows have slow response times, which adversely affect the
quality and timeliness of decisions in manufacturing since the environment at the time
a control decision is executed is different from the one under which the decision was
made. In addition, they almost completely ignore important interactions between unit
controllers. Decisions are therefore made entirely by the master controller [Dil91].

The heterarchical framework focuses on interactions between unit controllers to allow
system flexibility, while ignoring those between higher and lower-level controllers. The
advantages include reduced complexity, high modularity, high flexibility and improved
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fault tolerance. The contradiction problem between local objective and the overall
system performance as well as deadlock detection and resolution problems are major
drawbacks of this framework. Furthermore, a high degree of variability in the perfor-
mance of a heterarchical system exits [Duf87, Duf86].

The hybrid framework has features of both hierarchical and heterarchical frameworks.
Although hierarchical and heterarchical models have limitations, they also have sev-
eral desirable characteristics. Some researchers have attempted to capture the positive
aspects of both. These frameworks allow direct interactions among the low level con-
trollers themselves as well as between high and low level controllers [Dil91].

This research includes further exploration of the work of Tolboom [Tol04] (see Sec-
tion 1.1), and uses the hierarchical framework to control manufacturing systems.

2.2 Hierarchical Framework: Distinguishing the Layers

In the previous section, three types of control frameworks are discussed; a hierarchical,
a heterarchical and a hybrid framework. The type of control strategy or method, which
can be used in all the frameworks, has not been examined until now. All layers must be
provided with suitable controllers. The number of layers differs per framework. In this
research a two layer framework is chosen, since the expectation is that this situation
already shows the working of a hierarchical system. Also, both layers can be physically
interpreted. The choice of all controllers is important, only this research focusses merely
on the high level controller.

High Level Control

High level control focusses on global, system wide optimization of the manufacturing
system with a long horizon and low resolution. It translates predefined goals into
meaningful assignments for underlying controller(s), based on the aggregated state of
the system. Many approaches can be used for high level control, like the infinite capacity
relation (MRP-I), the finite capacity relation (MRP-II), search heuristics to solve the
optimization problem like ‘branch and bound’ and ‘beam search’ and mathematical
programming to solve the optimization problem. Since this research starts with the
same idea of control as Tolboom [Tol04] did, model predictive control is chosen as
controller for the high layer. The characteristics of MPC are explained in Section 2.3.

Low Level Control

Low level control aims at local optimization of the manufacturing system, using a short
horizon and high resolution. Research on low level control is clearly decomposed into
four different classes by Fowler [Fow02]. These are sequencing rules and input control,
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deterministic scheduling algorithms, control-theoretic approaches and search heuristics.
As stated before, the emphasis of the control framework of this research lies on the high
level control, and therefore a non-complex low level controller is chosen, namely flow
rate control and sequencing policies. These are used to determine the optimal moment
of lot release and the optimal sequence of lots. More information about these policies
is provided in Section 2.4.

Two Layer Hierarchical Framework

In the previous two subsections, both control layers are filled. The combined framework
results in hierarchical model predictive control. Previous research on hierarchical MPC
has been performed by Sousa and Pereira [Sou94] and more recently picked up by
Balduzzi [Bal01], Song et al. [Son02] and Vargas-Villamil et al. [Var03]. By combining
the information which was previously presented and from these articles, a composite
framework can be derived. This framework is presented in Figure 2.2.

2,2, acecet
High level control

Characteristic Curve EPT Algorithm

Analytical Discrete Model

Low level control

Flow rate control

Sequencing Policy

Discrete Event System

Actual
demand

Resource capacity constraint

Production targets

Possible work

Dispatched work

State

Aggregated
state

Figure 2.2: Two layer hierarchical model predictive control framework.

The above figure depicts the control framework which is used in this research. Note
that this framework is more extensively worked out in Chapter 4. The general control
framework for a manufacturing system was already presented in Figure 1.1c. Figure 2.3
shows how these two frameworks are related to each other. Both models contain a
discrete event model or system. The right conversion block in Figure 1.1c is not explicitly
present in the new framework. The controller is obviously represented by both control
layers, but the high level controller performs most control work, whereas the low level
controller forms merely the conversion from control to the discrete event model (left
conversion block in Figure 1.1c). Finally, the continuous approximation model is also
encapsulated in the high level control layer. It is made up by the EPT algorithm, the
characteristic curve and the analytical discrete model.
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Figure 2.3: Similarity of the general dynamic control framework for manufacturing
systems and the two layer hierarchical model predictive control framework.

2.3 Model Predictive Control

The high level control layer is provided with model predictive control, as already stated
in Section 2.2. The principles of MPC are in detail explicated by Camacho and Bordons
[Cam03]. Here, only a general overview is given.

MPC is a model based advanced control strategy, that has a significant and widespread
impact on industrial process control. The term model predictive control does not des-
ignate a specific control theory, but a very ample range of control methods which make
an explicit use of a dynamical model of the process to obtain the control signal by
minimizing an objective function. MPC is ‘predictive’ because it uses this model to
generate predictions of the future behavior of the process. Based on these predictions,
an objective function is optimized with regard to the future inputs of the process. In
this sense, MPC is an optimal controller with respect to the chosen objective function.
Although prediction and optimized inputs are computed over a future horizon, only the
new values of the inputs for the next sample are actually implemented and the same
computational procedure is repeated during this next sample. This mechanism is known
as a moving or receding horizon strategy.

The explicit use of a finite prediction horizon in the control problem is the most unique
feature of MPC. The prediction horizon introduces feed forward control, that is, the
MPC controller is able to take control action at the current time step, in response to a
forecast of a future error between the reference and the actual output. This anticipation
capacity is one of the advantages of MPC. The implementation of this control strategy
is shown in Figure 2.4. Another advantage is the constraint handling capability, since
constraints can be explicitly incorporated in the optimization. Furthermore, because
of the straightforward optimization, MPC can deal with a high degree of interaction
between inputs and outputs.

Obviously, there are also some drawbacks associated with MPC. The most important one
is the need for an appropriate model of the process to be controlled. The performance
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Figure 2.4: Basic structure of MPC.

of MPC strongly depends on the accuracy of the available model. Secondly, MPC is
computationally rather demanding and, therefore, only applicable for relatively slow
processes. Thirdly, the performance of MPC strongly depends on the values of tuning
parameters including weighting factors, length of horizons, and sample intervals.

Because of its attractive capabilities MPC is widely introduced in the process industries.
The disadvantages are not prevailing as time constants are usually large in industrial
processes, so computation time is not an issue. Moreover, the profit of dynamic models
has been recognized, not only for control but also for design and steady state opti-
mization. Finally, small efficiency improvements can be very beneficial in industrial
processes because of the high volume throughput.

2.4 Flow Rate Control and Sequencing Policies

The lower layer of the control framework contains a flow rate controller and sequencing
policies, as already mentioned in Section 2.2. These approaches are used to determine
the optimal sequence of lots and the optimal moment of lot release into the facility.
Note that these two actions are not feedback control actions, but feedforward control.

The flow rate controller translates the production targets, which are delivered by the
high level controller, into a set of lots (work) that are allowed to be processed. This set
of lots is called possible work, since it has not yet been dispatched. Before allowing the
set of lots to be actually sent, the order of the lots in this set can be rearranged by a
sequencing policy.

A characteristic feature of sequencing policies is their myopic nature; sequencing rules
review only the local state of the workstation, sometimes including pre-defined bot-
tleneck stations. Since the choice on what to process next at a certain workstation
significantly influences the performance of the downstream workstations, sequencing
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rules are not likely to obtain a global optimum. Many sequencing rules exist, the most
commonly used include First-In, First-Out (FIFO), Earliest Due Date (EDD), Shortest
Process Time (SPT), Shortest Remaining Process Time (SRPT) and Least Slack (LS).
Which one must be used in this research cannot be determined now, it is very dependent
on the manufacturing system and the diversity in its products. After sequencing the
set of lots, they can be dispatched to the system.

2.5 EPT Algorithm

As already mentioned in Section 2.2 and more explicitly shown in Figure 2.3, the con-
version of the aggregated state of the system to the characteristic curve is performed
using an effective process time algorithm.

It is stated by Gershwin [Ger89] that events that correspond to the discrete event
system can be described by continuous variables. These variables can be treated as
though they are deterministic. The approach is to define a set of variables for every
activity. This set represents the behavior of the system in an aggregated way. It consists
of three variables which represent the characteristics of the discrete event system. These
variables are the mean effective process time te, the squared coefficient of variation of
the effective process time c2

e, which are both calculated by an EPT algorithm, and finally
the squared coefficient of variation of the arrival time c2

a. A much more comprehensive
description of the concept of EPTs is given in Chapter 3.

The variables te and c2
e, calculated by the EPT algorithm, and c2

a together determine
the characteristic curve of the workstation under examination. This curve captures the
highly non-linear relationship between throughput δ and work in process w, reflected
by Figure 2.5. In queueing theory this relation is described by the approximation of
Pollaczek-Khinchine [Pol30, Khi32, Tij94]. The characteristic curve is used as a non-
linear constraint for the model predictive controller of the high level controller.

  
δ

0 w

max. throughput

const. flow time
characteristic curve

Figure 2.5: Example of a characteristic curve of a workstation.
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2.6 Résumé

This chapter contains a brief literature review on different control techniques. First of
all, three classifications of control frameworks are distinguished, these are hierarchical,
heterarchical and hybrid. The hierarchical framework assumes there is a hierarchy and a
master/slave relationship between higher and lower levels of control. The heterarchical
framework focuses on interactions between unit controllers to allow system flexibility.
The hybrid framework has features of both hierarchical and heterarchical frameworks.

This research uses a hierarchical control framework, consisting of two levels. High level
control focusses on global, system wide optimization of the manufacturing system with
a long horizon and low resolution whereas low level control aims at local optimization of
the manufacturing system, using a short horizon and high resolution. High level control
is performed by model predictive control (MPC) and low level control is carried out by
flow rate control and sequencing policies. A far more detailed description of this control
framework is provided in Chapter 4.

MPC generates predictions of the future behavior of the model, based on a optimization
algorithm which is carried out for a future horizon, using the aggregated state of the
system as input. This aggregated state is converted by an effective process time (EPT)
algorithm into the characteristic curve of the system, which is used as a non-linear
constraint for the high level optimization.

This conversion step, performed by the EPT algorithm is a very important aspect of the
control, since the characteristic curve must very securely represent the actual system.
Many EPT algorithms exist, but they are not all applicable to any system. That is why
an extensive survey of effective process times is given in the next chapter.
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Effective Process Time: a Survey

“Time is the most valuable thing a man can spend.”
- Theophrastus (372 BC - 287 BC)

The Greek philosopher Theophrastus noted this about 2300 years ago, and it still holds
today. When time really is the most valuable thing you can spend, learning to make time
work for you should be priceless. Only how can man let time work for him? The answer
to this question lays in the definition of time. Especially in manufacturing systems,
where time is used as a parameter for performance measurement. In Figure 2.2, the
aggregated state of the discrete event system is used as input parameter for the high
level controller. This aggregated state consists of raw data of measured times, which
can be converted into the characteristic curve of the workstation (see Figure 2.5), which
forms the input for the optimization algorithm of the high level control layer. This
conversion is performed by an algorithm and when it is sensibly chosen, you can let
time work for you.

The suggested algorithm is the effective process time algorithm. The introduction of
EPT as a concept to account for throughput losses and process time irregularities on
workstations has been made by Hopp and Spearman [Hop01]. Many members of the
Systems Engineering Group have contributed to the field of EPTs. In this chapter, a
survey will be given of the work they have performed.

3.1 Effective Process Time, the General Concept

The effective proces time of a lot refers to the total time seen by a lot on a machine
from a logistical point of view [Hop01]. The idea of EPT is that it includes all sources
of production capacity consumption on the workstation during the time that the work-
station could have been processing the lot. EPT thus includes all time losses due to
failure, setup, and any other source of variability. A similar description is given by

13
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Sattler [Sat96], who defined the effective process time as all cycle time except waiting
for another lot. It includes waiting for machine down time and operator availability and
a variety of other activities. This concept has been visualized by Kock [Koc03] and is
shown in Figure 3.1, where one machine cycle with all possible time losses is depicted.
The concept of blocking, which is shown in the figure below, is defined and handled in
Section 3.3.
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Figure 3.1: EPT Circle.

The main use of EPTs is as a performance measure, possibly in combination with overall
equipment efficiency (OEE). But in this research, EPT calculation is mostly used for
determination of the characteristic curve, which is used as a non-linear constraint for
the optimization process in the high level controller.

Several EPT algorithms exist, all applicable for different situations, like finite or infinite
buffered workstations, blocking or not blocking, single or multiple lot machines. In the
subsequent sections, the main EPT algorithms encountered in literature are discussed.
Note that only the algorithms, which are relevant for this research, are worked out.
Others are only mentioned briefly.

3.2 Single and Multiple Lot Machines without Blocking

This section handles all EPT algorithms which can be used in case of workstations with
infinite buffers. Also blocking is not considered in these algorithms.
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1SLM

The most elementary EPT algorithm has been developed by Jacobs et al. [Jac03].
This algorithm is applicable to an isolated machine workstation which consists of an
infinite buffer and One Single Lot Machine. Furthermore, some assumptions are made
for proper usage. First of all, EPT realizations on a workstation are independent and
identically distributed. Secondly, no preemption is applied when lots arrive. Finally, a
machine is never idle if at least one lot is present at the workstation.

The event data used as input for the algorithm consists of actual arrivals AAi,j (i.e.
the moment that lot i physically arrives at workstation j) and actual departures ADi,j

(i.e. the moment that lot i physically departs from workstation j). An illustration of
these events and the accompanying EPT realizations is provided in Figure 3.2.

lot0

lot1

lot2

EPT

events

ept0 ept1 ept2

AA0 AA1 AA2AD0 AD1 AD2

time

Figure 3.2: Gantt chart for 1SLM.

The EPT realization of lot i on workstation j is started at τ s
i,j = max(AAi,j ,ADi−1,j),

depending whether the lot enters an empty or non-empty workstation. It is ended at
τ f
i,j = ADi,j . Now, EPTi,j , being the EPT realization of lot i on workstation j, is

captured by (3.1):

EPTi,j = τ f
i,j − τ s

i,j = ADi,j − max(AAi,j ,ADi−1,j). (3.1)

Jacobs et al. [Jac03] translated this equation into the 1SLM algorithm, which is shown
in Figure 3.3. Note that a bit knowledge of the formalism χ [Kle01] is needed to read
this figure. Input parameters are the type of event ev and the corresponding occurrence
time τ . The number of lots is denoted by n and s represents the start time of an
EPT realization. After initialization, a repetitive loop is entered. If a lot arrives at
an empty workstation (ev = AA and n = 0), an EPT realization is started. If a lot
arrives at a non-empty workstation (ev = AA and n > 0), no action is taken. If a lot
departs (ev = AD), the EPT realization is recorded. If the workstation is empty after
a departure, no action is taken, otherwise a new EPT realization is started.



16 Chapter 3. Effective Process Time: a Survey

n := 0
; ∗[ true−→ ?〈τ, ev〉

; [ ev = AA−→ [ n = 0−→ s := τ
[]n > 0−→ skip

]
;n := n + 1

[] ev = AD−→ !τ − s
;n := n − 1
; [ n = 0−→ skip

[]n > 0−→ s := τ
]

]
]

Figure 3.3: Algorithm 1SLM.

mSLM

Algorithm 1SLM can be extended for infinitely buffered workstations with m parallel,
identical machines. EPT realizations are computed per machine, but are combined
into a single EPT distribution since the machines are identical. The same assumptions
as made for 1SLM, are applicable to this case. Additionally, lots are assumed to be
dispatched in FIFO order. Provided that lots processed by machine j do not overtake
one another, the EPT realization of lot i on machine j of workstation k is visualized in
Figure 3.4 and represented by (3.2):

lot0

lot1

lot2

lot3

EPT

events

ept0

ept1

ept2

ept3

AA0 AA1AA2 AA3AD0 AD1AD2 AD3

time

machine0

machine1

Figure 3.4: Gantt chart for mSLM.

EPTi,j,k = ADi,j,k − max(AAi,j,k,ADi−1,j,k). (3.2)
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This equation is presented in algorithmic form by Jacobs et al. [Jac03] and is shown in
Figure 3.5. This algorithm is self explanatory, when comparing it to the 1SLM algorithm
of Figure 3.3, since the only new parameter is the machine j.

nt := 〈0〉m

; ∗[ true−→ ?〈τ, ev, j〉
; [ ev = AA−→ [ nt.j = 0−→ st.j := τ

[]nt.j > 0−→ skip

]
; nt.j := nt.j + 1

[] ev = AD−→ !τ − st.j
; nt.j := nt.j − 1
; [ nt.j = 0−→ skip

[]nt.j > 0−→ st.j := τ
]

]
]

Figure 3.5: Algorithm mSLM.

mSLM - extensions

Within the Systems Engineering Group, multiple extensions have been developed for
the mSLM algorithm. They are of no use for this research since they are developed for
special occasions. For completeness of the survey, they are mentioned here, but only
very briefly.

Rooney [Roo02] has contributed to the development of the mSLM algorithm by intro-
ducing the concept of m unequal parallel machines (instead of m identical machines)
and exceptional first lots (i.e. requiring a setup). So now, EPTs are sorted per machine,
distinguishing first lots from general lots. Another technical feature of this algorithm,
called mSLM-Rooney, is the use of lists for a shorter notation. The algorithm will not
be provided here.

An alternative extension of mSLM is presented by Jacobs et al. [Jac03], which allows
violation of the EPT non-idling assumption. It is possible for a lot to wait for production
on machine j whereas machine i 6= j is still idle. Effectively, this means a loss of
processing capacity since the lot could have been in process on machine i. This loss
has to be included in EPT realizations. Unfortunately, this algorithm is not yet fully
developed, since an analytical equation describing the length of an EPT realization, like
the ones in the previous subsections, is not yet available for this situation.
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The third extension of mSLM is to replace the m machines by batch machines, on which
up to r different batch recipes can be processed. For this situation, EPT realizations
can be computed using one of the algorithms presented above. Prior to application of
an EPT algorithm, lot arrivals and lot departures must be translated into batch arrivals
and batch departures. This transformation is done using algorithm mVBM-r (Multiple
Batch Machines with Variable batchsizes and processing multiple Recipes) as presented
by Van Bakel et al. [Bak03].

3.3 Single Lot Machines with Blocking

Unlike the already mentioned EPT algorithms, the algorithms discussed in this section
can cope with blocking and finite capacity workstations.

1SLMB

All work before Kock [Koc03] stated that an EPT realization is defined as all time that
a lot claims of a workstation. This includes blocking, since no new product can be
processed, while the finished product is still claiming the production capacity. So the
product is not actually consuming the production capacity, while it is blocked, only
claiming capacity. Therefore, this blocking time must not be included in the EPT
realization. Blocking can be a result of a control action, so it does not necessarily
depend on the behavior of the workstation. So an EPT realization is now defined as all
time that a lot consumes production capacity of the workstation. Would the realization
persist while claiming production capacity, the lot is penalized for a capacity claim for
which it is not to blame.

The moment that workstation j could have started processing lot i, i.e. that worksta-
tion j − 1 finished processing the lot is called the possible arrival PAi,j . The moment
that workstation j finishes processing lot i and tries to send the lot on is logically called
possible departure PDi,j . Together with the actual arrivals AAi,j and actual depar-
tures ADi,j , these four events are visualized in Figure 3.6. This figure represents two
sequential, unbuffered workstations where workstation j blocks lot1 on workstation j−1.
The four used events in Figure 3.6 obey the following constraints:

PAi,j = PDi,j−1,

AAi,j = ADi,j−1,

PAi,j ≤ AAi,j ≤ PDi,j ≤ ADi,j .

(3.3)

Consequently, an EPT realization begins at the moment that the workstation could
have started processing the lot. The realization commences at the possible arrival if
this occurred at an empty workstation (PAi,j ≥ ADi−1,j), or at the actual departure
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Figure 3.6: Gantt chart for two sequential, unbuffered workstations.

of the previous lot (ADi−1,j ≥ PAi,j). The start time of the realization can thus
be computed by τ s

i,j = max(PAi,j ,ADi−1,j). The EPT realization comes to an end
at the moment the lot stops consuming production capacity of the workstation. Due
to blocking, this may be well before the lot departs from the workstation, would the
realization persist, the lot is penalized for a capacity claim for which it is not to blame.
Consequently, the EPT realization ends at τ f

i,j = PDi,j . The EPT realization is then
represented by (3.4):

EPTi,j = τ f
i,j − τ s

i,j = PDi,j − max(PAi,j ,ADi−1,j). (3.4)

Wullems [Wul02] presented algorithm 1SLMB for the computation of the corresponding
EPT realizations. The algorithm is applicable to unbuffered workstations with One Sin-
gle Lot Machine, subject to Blocking. The algorithm assumes that events are presented
in their order of occurrence, with event type ev = A (arrival) or D (departure) and the
possible time of occurrence tmp and actual time of occurrence tma. The algorithm is
presented in Figure 3.7 and equivalent to (3.4) if lots are not allowed to overtake one
another.

The algorithm is very similar to 1SLM of Figure 3.3, besides the difference of tmp
and tma and τ , the n is updated at different positions. The algorithm initializes and
subsequently enters a repetitive loop. If a lot arrives at an empty workstation (ev = A
and n = 1), an EPT realization is started at tmp where, in this case, tmp = PAi,j ,
whereas no action is taken if the workstation was not empty (n > 1). If a lot departs
(ev = D), the EPT realization is recorded, ending at tmp = PDi,j . If the workstation
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n := 0
; ∗[ true−→ ?〈ev, tmp, tma〉

; [ ev = A−→n := n + 1
; [ n = 1−→ s := tmp
[]n > 1−→ skip

]
[] ev = D−→ !tmp − s

; [ n = 1−→ skip

[]n > 1−→ s := tma
]

;n := n − 1
]

]

Figure 3.7: Algorithm 1SLMB.

remains empty, nothing happens. If the workstation is not empty, the realization of the
next lot is started at the actual departure of this lot, i.e. tma = ADi,j = τ s

i+1,j .

The presented equation and algorithm have been derived for unbuffered workstations.
When the underlying assumptions are expanded, one is able to apply 1SLMB to finitely
buffered workstations. The extra assumption is that, after a workstation is done process-
ing a lot, it is instantaneously sent on to the following workstation when this workstation
has sufficient buffer capacity available. This is known as the assumption of instanta-
neous transport. For increasing buffer sizes, finitely buffered workstations will resemble
infinitely buffered workstations. Larger buffers result in a reduction of the amount of
blocking, until no blocking is left for infinitely buffered workstations. As stated before,
blocking is the sole cause for a difference between a possible and an actual event. For in-
finitely buffered workstations, one thus knows that PAi,j = AAi,j and PDi,j = ADi,j .
Substituting this into (3.4) leads again to (3.1).

The algorithm 1SLMB was the first algorithm which considered blocking, but was still
not sufficient for several blocking situations. Before looking at an improved algorithm,
first the term ‘blocking’ is more clarified.

Blocking

Blocking has a negative impact on the throughput of manufacturing systems. It cannot
be caught in one definition, since it is caused by several different aspects. Blocking can
occur due to failure of (a part of) a manufacturing system, but also due to intentionally
made choices of a designer or operator. According to Weber [Web03], blocking can be
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subdivided in three categories: resource blocking, port blocking and condition blocking.
Their descriptions are provided below.

Resource blocking Two tasks share one resource; they require the same resource
for execution under the assumption that these tasks have the need for exclusive
resource allocation. An example is the finite capacity of buffers, since the number
of resources (buffer spaces) is not always big enough for the number of tasks to
be performed (the number of lots that have to be stored).

Condition blocking A task has some condition on its input port, demanding this
condition is fulfilled before activating the task. An example is when a controller
intentionally leaves a machine idle, while it is empty and lots are waiting in the
corresponding buffer.

Port blocking A port can be asynchronous or synchronous in nature. Asynchronous
ports contain infinite buffers which do not lead to blocking. Synchronous ports,
on the other hand, will propagate blocking throughout a transaction as the sender
has to wait until the receiver is ready to communicate. Examples are the failure of
an (unmodeled) transportation system, or a failure that occurred during idle time.
Port blocking, by definition, violates the assumption of instantaneous transport.

1SLMB-us2d

Now the three types of blocking are known, they can be better dealt with in EPT
algorithms. Kock [Koc03] has developed a new algorithm, based on 1SLMB, which is
much better equipped to handle port blocking. Kock studied the results of the 1SLMB
algorithm, when subject to port blocking. Three major observations have been made.

• From an EPT model point of view, port blocking is assigned to the downstream
(receiving) workstation, while the upstream (sending) workstation causes this
blocking.

• 1SLMB does not allocate port blocking if a lot has its possible arrival on a non-
empty workstation. From a lumped parameter model point of view, all port
blocking should be allocated, because it entails consumption of production capac-
ity (since this is an unnecessary claim of production capacity).

• Port blocking realizations are combined with the effective processing part to form
a single EPT distribution. A new distribution for port blocking should be derived,
since port blocking differs from EPT in magnitude, frequency of occurrence and
in general form of distribution.

The three errors of 1SLMB are corrected, by assigning port blocking to the upstream
workstation, allocating all occurrences of port blocking and splitting the EPT realization
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Figure 3.8: Gantt chart for 1SLMB-us2d.

in two parts, one for the service part (EPTi,j) and one for port blocking (PBi,j). The
corresponding implications are reflected by Figure 3.8.

Following the previously derived equations, this situation is also caught in equation form.
Now, two equations exist, one for each realization. The service part is represented by
(3.5), which differs a bit from the 1SLMB algorithm (3.4), since the (PAi,j) as possible
start time is replaced by (AAi,j). This is done to avoid that port blocking is included
in the EPT realization.

EPTi,j = τ fe

i,j − τ se

i,j

= PDi,j − max(AAi,j ,ADi−1,j)
(3.5)

PBi,j = τ
fp

i,j − τ
sp

i,j

= ADi,j − max(PDi,j ,BEi,j)
(3.6)

(τ = ADi,j ∧ ni,j = cj − 1) → BEi,j := τ (3.7)

The PB realization is captured by (3.6). This realization may commence when two
conditions are fulfilled. First of all, the service part of the lot must have come to an
end, thus τ

sp

i,j ≥ PDi,j . Secondly, the buffer of the downstream workstation must not be
saturated. Let BEi,j be the time that the buffer of workstation j +1 last changed from
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‘saturated’ to ‘one buffer space available’. Then the second condition is represented by

τ
sp

i,j ≥ BEi,j . The PB realization ends at the actual departure of the lot, τ
fp

i,j ≥ ADi,j .

A third equation is needed for more detailed specification of BEi,j . In (3.7), ni,j is the
number of lots present at workstation j after arrival of lot i and cj is the storage capacity
of workstation j (i.e. the sum of the number of buffer spaces on the workstation and the
single server). This equation implies that BEi,j is only updated at an actual departure
provided that the number of lots present on the workstation after the departure equals
the total capacity minus one.

Equations (3.5), (3.6) and (3.7) are captured in the algorithm 1SLM-us2d, One Single
Lot Machine, allocating port blocking to the UpStream workstation, providing Two
Distributions. The algorithm is shown in Figure 3.9.

nt := 〈0〉m

; st := 〈0.0〉m

; bet := 〈0.0〉m

; pdt := 〈0.0〉m

; ∗[ true−→ ?〈ev, τ, j〉
; [ ev = PA−→ skip

[] ev = AA−→ [ nt.j = 0−→ st.j = τ
[]nt.j > 0−→ skip

]
; nt.j = nt.j + 1

[] ev = PD−→ !〈EPT, τ − st.j, j〉
; pdt.j = τ

[] ev = AD−→ !〈PB, τ − max(bet.j, pdt.j), j〉
; nt.j := nt.j − 1
; [ nt.j = 0 −→ skip

[] 0 < nt.j < c.j − 1−→ st.j := τ
[]nt.j = c.j − 1 −→ st.j := τ

; [ j = 0−→ skip

[] j > 0−→ bet.(j − 1) := τ
]

]
]

]

Figure 3.9: Algorithm 1SLMB-us2d.

New variables are introduced; c.j denotes the storage capacity of workstation j, st.j the
time that the newest EPT realization on workstation j started, bet.j is the time that
workstation i changed from having a saturated buffer to an unsaturated buffer, nt.j
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denotes the number of jobs present at workstation j, pdt.j the occurrence of the latest
possible departure at workstation j and ev signifies the sort of event that has occurred.
Finally, τ denotes the time of occurrence of the event under consideration.

During initialization, the values of nt, st, bet and pdt for all workstations j are set at
0. After initializing, the algorithm enters a repetitive loop. The first step in the loop
is to read an EPT event. At a PA, no action is taken. If an AA occurred, an EPT
realization is started if the lot entered an empty workstation, no action is taken if the
workstation was not empty upon arrival. At a PD, the length of the EPT realization
and the workstation where it occurred are printed. At an AD, the length of the port
blocking realization and the relevant workstation number are printed. Note that for
j = 0 an exceptional case exists, since WS0 has no predecessor.

3.4 Validation of Algorithms

All algorithms discussed in this chapter have been validated analytically in their respec-
tive sources [Jac03, Roo02, Bak03, Wul02, Koc03]. Validation is performed by modeling
an isolated workstation with exponentially distributed interarrival and process times.
This model can be calculated mathematically by using queueing theory [Hop01] and
experimentally using simulations. The mean throughput and mean flow time of the
analytical and simulation model are compared for validation.

3.5 Résumé

EPTs are mainly used as a performance measure, possible in combination with overall
equipment efficiency (OEE). But in this research, EPT calculation is mostly used as a
constraint for the model predictive controller in the high level control layer.

Several EPT algorithms exist, all applicable for different situations, like finitely or in-
finitely buffered workstations, blocking or not blocking, single or multiple lot machines.
The main EPT algorithms encountered in literature are discussed. These EPT algo-
rithms are presented to guarantee a proper understanding of the subject matter, since
in Chapter 5, the current form of EPT measurement is implemented into experimental
cases.

But first the control framework, which is used for the experiments, is explained in the
next chapter. The framework was already briefly explained in the previous chapter,
but Chapter 4 gives a far more detailed view on the used hierarchical model predictive
control framework.



Chapter 4

Control Framework

“The human brain must continue to frame the problems for the electronic
machine to solve.”
- David Sarnoff (1891 - 1971)

People like to frame things for a better understanding. When a difficult problem is
put into a convenient arrangement or framework, it is more easily understood. Not
only the understanding of a problem is important, also the solution of a problem is
usually of great importance. This solving should be left to a computer and therefore
the problem should be neatly framed. Sarnoff, a Russian-US inventor, already grasped
this more than 30 years ago. For proper understanding and for computer-based solving,
this research project also uses a strict framework. This control framework is already
discussed in Chapter 2. It only has to be ‘furnished’ with the right tools.

The control framework which is used for this research project is a two layer hierarchical
model predictive control framework. A clear visual representation of this framework is
already given in Figure 2.2. In this chapter, the different blocks and communications in
the mentioned figure are explained in detail. Some of these interpretations are copied
from previous work, but some are introduced for this research. Also the relevance of
the effective process times in this framework is clarified.

Before the control framework can be developed, first the system that has to be con-
trolled must be specified. Because this research is merely about the improvement and
implementation of the control framework as well as the adaption of the effective process
time measurement, the system under control may be relatively simple.

4.1 Discrete Event System

The control framework is meant to control a manufacturing system, which is represented
by a discrete event system. This system is in fact a model of a physical manufacturing

25
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system and is represented as a χ-model (for more information about the specification
language χ, see Kleijn [Kle01]). In this research, the manufacturing system at hand
is not important, its only goal is to support the control framework and the applied
control techniques. That is why a simple model has been chosen to work with. This
model consists of a generator, two infinitely buffered workstations and an exit process
(or stockroom). It is depicted in Figure 4.1. This is always the manufacturing system
to which is referred during this thesis. The figure also denotes the throughput values
x of each machine and the work in process levels w of each workstation. Note that
x denotes the velocity of the products through the workstations, it is not an amount.
These definitions are used throughout this thesis.

G B1 M1 B2 M2 E

x0 x1 x2

w1 w2 w3

Figure 4.1: Simple line with indexes per workstation.

Many measurements can be carried out in this model, quantities like throughput, uti-
lization levels, (effective) process times, buffer or wip levels, etcetera. Since the high
level control layer is —contrary to the low level control layer— not directly implemented
in the discrete event system, the number of needed measurements and communications
to this layer is restricted. Therefore, it is important to find out which quantities are
needed. Besides the outgoing data, the discrete event model (DEM) must also accept
incoming control actions. Figure 2.2 already referred to the outgoing quantities as
‘aggregated state’ and the incoming quantities as ‘production targets’. To see what in-
formation is needed, the next section describes the high level control layer in detail. The
actual χ-model of the discrete event system is not be discussed until the next chapter
(and its accompanying appendices), in which the experiments are handled.

4.2 High Level Control

As described in Section 2.2, the high level control layer is used as the primary step
in the translation of actual demand into dispatched work. This part of the control
framework is again depicted in Figure 4.2. Within this layer, planning approaches are
used to derive a set of feasible production targets based on the actual demand and
the aggregated state of the manufacturing system. The performance of the planning
approaches depends heavily on the assumed relation for the resource capacity.

Tolboom [Tol04] approaches this resource capacity constraint by a set of linear con-
straints. For each planning cycle, the capacity constraint is determined in the working
point using convergence techniques. The characteristic relation between work in pro-
cess w and throughput δ is used by the planning approach and ensures the non-linear
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Figure 4.2: High level control layer.

degradation of system performance with increasing utilization. This set of resource
capacity constraints is based on linear approximations of the clearing functions. In
essence, these clearing functions (or characteristic curve) express the expected output
as a fraction of the wip over a given period of time. Using queueing theory, this set
is redefined into effective clearing functions. To illustrate these functions, Figure 4.3 is
taken from [Tol04].

Figure 4.3: Set of linear approximations capturing the effective clearing function.

The effective clearing functions have several drawbacks, because they cause inaccuracies
and the method is rather laborious. All clearing functions tend to slightly overestimate
the resource capacity, this can also be seen in Figure 4.3, because when the number
of linear approximations is limited, the gaps between approximations and actual curve
becomes large.

To cancel out these shortcomings, this thesis introduces a new method for correct in-
terpretation of the resource capacity. As said before, this can be captured by the char-
acteristic curve, only this time, the direct non-linear curve is used. The next section
handles this method.
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4.3 Deriving the Characteristic Curve

The characteristic curve describes the unique relation between work in process w and
throughput δ per workstation. Together with the cycle time ϕ, this relation is captured
in Little’s law:

w = δ · ϕ. (4.1)

The above equation is further derived using queueing theory, which is introduced by
Pollaczek-Khinchine [Pol30, Khi32, Tij94]. When a workstation is considered with
m machines and completely general distributed interarrival times and process times,
the following equation for the cycle time in the queue is obtained:

ϕq(G/G/m) =

(

c2
a + c2

e

2

)

·

(

uγ

m(1 − u)

)

· te, (4.2)

where γ =
√

2(m + 1) − 1.

The notation G/G/m is called the Kendall notation and describes the number of ma-
chines and the two mentioned distributions. In the future, this notation will be left
away. The reader may assume that both times are generally distributed and that a
workstation consists of a buffer and one machine, so m = 1. When the effective process
time is added to the cycle time in the queue, the total cycle time of a lot at a workstation
becomes:

ϕ = ϕq + te. (4.3)

In the above equations, the utilization u is not yet explained. The u is captured by the
fraction between the mean effective process time te and the mean interarrival time ta.
The interarrival time is in fact the reciproque of the throughput δ. In equation form:

u =
te
ta

= te · δ. (4.4)

When (4.1)–(4.4) are combined, the non-linearity of this characteristic curve becomes
visible, because the throughput δ is squared:

((

c2
a + c2

e

2

)

·

(

te · δ

1 − te · δ

)

· te + te

)

· δ − w = 0. (4.5)

In order to completely define the characteristic curve, several parameters have to be
known. The mean effective process times te and the corresponding squared coefficients
of variation c2

e and interarrival times c2
a are essential parameters, see (4.5). How to

correctly determine these parameters is explained in the next subsection.
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Effective Process Times

Chapter 3 handles the EPT theory and containes several algorithms to compute the
effective process times. These algorithms provide a list of EPTs, from which the te and
c2
e can be calculated. For derivation of these two parameters, the mean and the variance

of the distribution have to be calculated. Since only sample data is provided from the
workstations in the model, the true mean µ and variance σ2 are not known. However,
the unbiased estimators of these quantities, m and s2 respectively, can be computed
using the sample data which contains n observed values:

m = x =
1

n

n
∑

i=1

xi (4.6)

and

s2 =
1

n − 1

n
∑

i=1

(xi − x)2. (4.7)

To see whether the variability is small or large, the value of the variance relative to the
mean value is of importance. Therefore, the squared coefficient of variation is defined:

c2 =
σ2

µ2
. (4.8)

The next chapter deals with the exact implementation of the EPT measurements in
the discrete event model. As discussed before, the old view on EPT measurement for
the use as an input for this control framework could deliver wrong results. In the next
chapter, the old view is presented and evaluated, as well as the new way of measuring
EPTs for use as a control input parameter.

4.4 Deriving the Optimization Model

Now it is known how sample data is converted by the effective process time into the
appropriate parameters to determine the characteristic curve, the last block of Figure 4.2
is examined; the discrete model or optimization model. This is the most important part
of the high level controller, because this part performs the actual planning task.

This optimization model derives feasible production targets based on a prediction of
the system dynamics by using model predictive control, as already explained in Sec-
tion 2.3. In this research, the system dynamics —or more explicitly, the δ-w relation—
are captured by the characteristic curve.
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General Form

A discrete optimization model of a manufacturing system is a mathematical program-
ming model that describes the state transitions with respect to a set of constraints. An
important assumption which underlies such a model is the fact that time is discretized
into fixed periods. In other words, the model describes the relation between the state x
in subsequent periods. The general model of a constrained non-linear problem is defined
as:

min
x

f(x)

s.t. xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(4.9)

where x, xL, xU ∈ R
n, f(x) ∈ R,A ∈ R

m1×n, bL, bU ∈ R
m1 and cL, c(x), cU ∈ R

m2 .

The first condition sets the lower and upper boundaries for the vector variable x, the
second condition captures all linear equality and inequality constraints, whereas the
third condition contains all non-linear equality and inequality constraints.

Definitions

Before the equations for the optimization tool can be derived, some definitions have to
be fixed. This is necessary to gain more insight into the problem at hand. An important
aspect of the model is that it uses information from two circumstances, a planned or
expected situation and an actually realized situation. The expected situation cannot be
measured, it automatically follows from the optimization process. The realized situation
is measured at the end of a period and used as input for the optimization of the next
planning horizon.

xk(t + i|t) At time t planned target for workstation k for period ]t + i, t + i + 1[
wk(t + i|t) At time t expectation of the wip of workstation k for time t+ i, assuming

that the planning is perfectly executed
d(t + i|t) At time t expectation of the demand for period ]t + i, t + i + 1[
y(t + i|t) At time t planned surplus in stock for time t + i, assuming that the

planning is perfectly executed
z(t + i|t) At time t planned backorders for time t + i, assuming that the planning

is perfectly executed

xk(t) Realized production at workstation k in period ]t, t + 1[

wk(t) Measured wip of workstation k at time t(−)

d(t) Realized demand in period ]t, t + 1[
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The above definitions also present a clear view on the time scale which is used within the
model predictive controller. Section 2.3 already mentioned that MPC uses the receding
horizon strategy, so it optimizes an objective function over a future horizon. In this
research, this horizon is divided into discrete periods. At time t, the optimization process
is called to perform its task for the next p periods, and it uses the measurements of the
system at the time t(−). This principle is explained in Figure 4.4, where two subsequent
optimization runs are shown, each for five periods, so p = 5 and i = 0, 1, 2, 3, 4. The
blue lines depict the first optimization cycle, which is performed at time t, the red lines
represent the second optimization, performed at time t + 1. The figure shows that the
new data of a new period can cause different optimal values of x for a period. Remember
that only the first optimal value is actually implemented in the discrete event model,
the remaining are used for feed forward control.

x

0 t t + 1 t + 2 t + 3 t + 4 t + 5 t

x(t|t)

x(t + 1|t)

x(t + 2|t) x(t + 3|t)

x(t + 4|t)

x(t + 1|t + 1)

x(t + 2|t + 1)

x(t + 3|t + 1) x(t + 4|t + 1)

x(t + 5|t + 1)

Figure 4.4: Example of a timeline for two optimization cycles.

Objective Function

Now that the system (Figure 4.1) and definitions are known, one can start with the
actual derivation of the optimization model. First the objective function is derived.
This function is presented as a cost function, which has to be minimized. The func-
tion is specially developed for this research, but has strong resemblance to other cost
functions for manufacturing systems, as presented by Hackman and Leachman [Hac89]
and Leachman [Lea01]. It schematically resembles all costs which are involved in the
production of lots in a manufacturing system.

min
x(t+i|t)

p−1
∑

i=0

cT
1 ·x(t+ i|t)+ cT

2 ·w(t+ i+1|t)+ c3 ·y(t+ i+1|t)+ c4 ·z(t+ i+1|t) (4.10)

with optimization variables x =





x0

x1

x2



 , w =

[

w1

w2

]

, y and z.
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The cost function consists of four different kinds of cost, each with their own cost
parameter. The first is the vector c1, which represents the production or release costs
for all k workstations; c2 stands for the wip cost of the both workstations, so k = 1, 2.
The stockroom can have two sorts of cost, c3 denotes the stock cost when overproduction
has taken place and c4 denotes the back order cost when demand is not met. It is obvious
that the choice for the weight of these cost parameters is an important one, since they
have a great influence on the actual cost level. The actual figures which are implemented
are provided later, for now it holds that c4 > c3 > mean(c2) > mean(c1) for the obvious
reason that backorders imply high costs, stockroom occupation a little less, but still
more than the storage of semimanufactured products on the work floor. The release
costs are the lowest of all.

Constraints

The optimization variables, which are used in the cost function, have to obey the fol-
lowing equations:

0 ≤ x0(t + i|t) ∀t, i = 0, . . . , p − 1 (4.11a)

0 ≤ xk(t + i|t) ≤ char. curve ∀t, i = 0, . . . , p − 1, k = {1, 2} (4.11b)

0 ≤ wk(t + i|t) ∀t, i = 0, . . . , p − 1, k = {1, 2} (4.11c)

0 ≤ y(t + i|t) ∀t, i = 0, . . . , p − 1 (4.11d)

0 ≤ z(t + i|t) ∀t, i = 0, . . . , p − 1 (4.11e)

Most of the above equations need no further explanation. The exception is (4.11b),
whose upper boundary is determined by the characteristic curve. Recall (4.5), which
contains the relation between work in process w and throughput δ. The non-linear
constraint is now easy to derive. The optimization problem receives the measured wip
levels w∗ of each workstation. For each workstation, it applies that at this point w∗ in
the graph of the characteristic curve, a certain δ is defined. This is also the maximum
throughput which can be reached in this situation. This is depicted in Figure 4.5, where
the feasible choice for δ is indicated by the vertical arrow.

δ

0 w∗ w

max. δ

Figure 4.5: Feasible area of throughput δ for work in process level w∗.
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When the above theory is applied to (4.1), it is obvious that the non-linear capacity
constraint becomes:

w∗ ≥ δ · ϕ. (4.12)

Using (4.5), the above equation is rewritten into:

(

(c2
a + c2

e) · t
2
eδ + 2te · (1 − teδ)

)

· δ − 2w∗ · (1 − teδ) ≤ 0. (4.13)

Now that the capacity constraints are known, still some constraints are left to derive.
These are equality constraints and are found by simply updating the wip levels of each
workstation for every period. The last workstation, the exit process or stockroom, needs
a deviant equation since no further production finds place, only the demand has to be
reckoned with. In these equations, the new wip level is calculated by taking the old
wip level, then adding the production of the previous workstation and subtracting the
production (or demand) of the workstation itself. These relations may be seen as mass
conservation laws and result in the following equations:

wk(t + 1) = wk(t) + xk−1(t) − xk(t) ∀t, k = {1, 2}, (4.14a)

w3(t + 1) = w3(t) + x2(t) − d(t) ∀t. (4.14b)

The following relations also hold, they are trivial when looking at the definitions. Both
y(t + i|t) and z(t + i|t) are positive numbers, when they are both zero, the wip level at
the exit process is also zero.

wk(t|t) = wk(t) ∀t, k, (4.15)

y(t + 1|t) − z(t + 1|t) = w3(t) + x2(t|t) − d(t|t) ∀t. (4.16)

Note that in the optimal solution, y and z cannot both have a positive value, one of the
quantities always has to be zero, resulting from the cost function.

When a deterministic system is considered, its behavior would be totally captured by
(4.14)–(4.16). Since the manufacturing system under consideration is non-deterministic,
the equations for the planning horizon can be derived using the three mentioned equa-
tions. At time t, wk(t) and d(t) are known and the planning horizon i consists of
p periods, so i = 0, . . . , p − 1. The actual equality constraints are found by rewriting
(4.14):

wk(t + i + 1|t) = wk(t + i|t) + xk−1(t + i|t) − xk(t + i|t)

∀t, i = 0, . . . , p − 1, k = {1, 2}. (4.17)

By rewriting (4.16) the following constraints are found:

y(t + i + 1|t) − z(t + i + 1|t) = y(t + i|t) − z(t + i|t) + x2(t + i|t) − d(t + i|t)

∀t, i = 1, . . . , p − 1. (4.18)
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Now, the total optimization model of this research is described. A comparison to the
general optimization model, described by (4.9) with its three types of constraints is
provided here. The first set of constraints capture the lower and upper boundaries of
the optimization variables, in this research they are defined by (4.11) with the exception
of (4.11b). The second set describes the linear constraints, which in this research
are represented by (4.17) and (4.18). The third and last set captures the non-linear
constraints, which are here described by (4.13).

A clear roundup of the optimization model as well as an extensively worked out example
of an optimization run are provided in Appendix A.

4.5 Low Level Control

The low level control layer does not perform feedback control, but feedforward control, as
already mentioned in Section 2.4. It still has an important role, because the production
targets which are delivered by the high level controller are translated into possible work
and eventually dispatched work. The low level layer of the control framework is again
depicted in Figure 4.6.

Low level control

Flow rate control

Sequencing Policy

Production targets

Possible work

Dispatched work

State

Figure 4.6: Low level control layer.

The translation of the production targets into possible work is done by a flow rate
controller and forms a necessary step, which cannot be left out. This set of possible work
can be rearranged by a sequencing policy into dispatched work, but this rearrangement
is not necessary for good functioning of the controller. In fact, this is only needed when
there is a difference between the lots that have to processed. In this research, all lots are
intentionally equal, so no different process times are needed, no due dates are attached
to the lots, nor any other differences exist.

Flow Rate Control

A flow rate controller translates production targets into dispatched work, which means
that it actually determines the allowed departure times per workstation of the lots.
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In this thesis, these are called the authorization times of the lots. They are equally
distributed over a period, for a proper flow of the lots.

After each period and thus high level optimization, new production targets are received
by the workstations. The amount of to-be-authorized lots is now known and the new
period just starts, so the time is t(+). The first lot for this period may leave immediately,
the others are divided equally over the period. This low level of control is encapsulated
in the buffers of the manufacturing system. The working of the simple algorithm is
presented as χ-code in Figure 4.7.

[ len(incs) > 0 ∧ n > 0−→ temp := hd(incs)
; incs := tl(incs)
; [ n = rq−→ temp.3 := τ
[]n < rq−→ autht := lastauth + ta

; [ autht ≥ τ−→ temp.3 := autht
[] autht < τ−→ temp.3 := τ
]

]
; lastauth := temp.3
; n := n − 1
; auths := auths ++ [temp]

[] len(incs) = 0 ∨ n = 0−→ skip

]

Figure 4.7: Algorithm for the flow rate controller.

In the above χ-code, incs is a list which receives all incoming products. The variable n
is initialized at rq, which is the optimal release quantity, received from the controller.
If both mentioned quantities are positive, the following procedure is completed.
Because the sequencing rule at hand is FIFO, the head of incs is taken for authorization.
When it concerns the first product of the period (n = rq), the authorization time, which
is stored in temp.3 is chosen to be the present time τ , so the time when the period
starts. When it does not concern the first product of the period (n < rq), the new
authorization time autht is calculated by taking the last authorization time lastauth
and adding the interarrival time ta. An extra selection is performed to actually store
the authorization time in temp.3. This is needed, because sometimes the authorization
time which is calculated could already have been passed, since the product could still
be at the previous workstation. In such a case, the present time τ is stored in temp.3.
After that, the lastauth is updated, as well as the variable n. Finally the list auths,
which contains all products which have received an authorization time, is updated.
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4.6 Résumé

The control framework globally consists of three parts; the discrete event system, the
high level controller and the low level controller. In this thesis, the discrete event system
is modeled as a simple manufacturing line, consisting of a generator, two infinitely
buffered workstations and an exit process (or stockroom).

The high level control layer uses planning approaches to derive a set of feasible pro-
duction targets based on the actual demand and the aggregated state of the system. It
consists of a model predictive controller which optimizes a cost function, subject to a
set of both non-linear and linear constraints.

The non-linear constraints are represented by the characteristic curves of each work-
station, which are worked out in detail in this chapter. Important parameters of the
characteristic curve are obtained from EPT calculations.

The linear constraints can be interpreted as mass conservation laws, since they capture
the wip level behavior of the workstations. A very important aspect of these equations
is that they describe the possible future behavior of the system, so each equation works
with estimated variables which depend on the previous period.

Low level control consists of sequencing policies and flow rate control. Only the latter
is implemented in the control framework in this research. The flow rate controllers are
present in the buffers of the workstations and make sure the influx of the machines is
each period equally distributed.

In the next chapter the presented framework is used for experiments to check whether
the two goals of this research project can be achieved. The proposed hierarchical two
layer model predictive control framework must be validated in an experimental en-
vironment. Secondly, the EPT measurements in casu condition blocking have to be
reconsidered.



Chapter 5

Experiments

“In God we trust, all others have to prove it with facts.”
- Mirko Nikolic

The above statement was picked up by the writer of this thesis while attending a mas-
terclass at The Boston Consulting Group in Amsterdam. The Senior Vice President,
Mr. Nikolic, spared some of his costly time to address the participants and this was
one of his opinions on strategic consultancy. The presented statement is used to explain
that customers not only desire a nice theory, but also need to see hard figures and
facts to prove that the theory is well-founded. This is not only needed in a commercial
surrounding, but also in the academic world proof is needed; even more than in the
commercial world. This chapter deals with the experiments which are conducted in this
research to show how the presented framework works in practice.

The previous chapter dealt with the ‘furnishing’ of the existing control framework, but
the actual implementation of this framework in the specification language χ, the script-
ing language Python and the mathematical program Matlab is described in Appendix B.
For this implementation, some extra assumptions and tuning parameters are needed,
these are described in the next two sections. Subsequently, the results of the actual
experiments are handled.

5.1 Simulation Assumptions

This section describes many assumptions which have been made in the several parts of
the simulation framework. These assumptions concern the discrete event model and the
high and low level controllers.

37
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χ-model

The manufacturing system of Figure 4.1, consisting of a generator, two infinitely buffered
workstations and an exit process, is modeled as a discrete event model in χ according
to the schematic representation of Figure 5.1. Note that a more detailed version of this
figure, with labeled communication lines can be found in Appendix B.3.

D C

G B1 M1 B2 M2 E

Figure 5.1: Simulation scheme in χ.

The above figure displays the demand generator D. This process is only a conduit,
since the actual demand curve is generated by a Matlab script, which is explained in
Appendix B.1. The controller C represents the high level controller. This process
communicates with the Tomlab optimization scripts, which perform the actual control.
A far more detailed description of the working of this discrete event model in χ is given
in Appendix B.3. Some assumptions, which underly the model are provided here:

• The two workstations are both infinitely buffered (no resource blocking).

• Transportation of lots is instantaneous (no port blocking).

• Each workstation consists of one machine.

• Both workstations cannot break down.

• All lots are the same, no different process times, setup times, priority, etc exist.

• Production occurs in 24 hour shifts; 24 hours per day, 7 days per week.

• The production times per machine are generally distributed.

The two buffers in the χ-model contain the low level controllers. These controllers are
developed under the following assumptions:

• No sequencing policy is present.

• Lot releases from buffer into machine are regulated. The first lot for a period may
leave directly, the others are equally divided over the period. The times the lots
may leave are called authorization times, as mentioned in Section 4.5.
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• Lot releases from the generator are all at the same time, directly at the beginning
of a period after the optimal release quantity has been determined.

Tomlab

The high level controller is modeled in Tomlab, which is an additional toolbox of Mat-
lab. This controller contains the optimization algorithm and communicates with the
process C of the χ-model through a Python script. The actual programming code of
the m-files is provided in Appendix B.4. Here, only the most important assumptions
are singled out:

• The allocation of costs in the objective function significantly influences the per-
formance of the optimization problem. Therefore, cost should be wisely divided
into release (or production) costs, wip costs, inventory and backlog costs.

• At the moment the production system is unable to meet the demand, a backlog
is created. The change in backorders at the end of a period is defined as the
difference between demand and the actual departures. A large penalty is assigned
to backorders to ensure the optimization algorithm will avoid creating a backlog
and will prioritize the elimination of an already existing backlog.

• A stockroom is placed at the end of the manufacturing line to meet overproduction,
that is when the production is actually higher than the demand for that period.
This can happen, since the optimization algorithm uses a receding horizon strategy
and in this way can prevent a shortage in the future. Only this inventory in the
stockroom also brings costs along.

5.2 Setup of Experiments

Tolboom [Tol04] experienced some problems with the control framework. This was
due to the use of an incapable optimization toolbox and to condition blocking which
corrupted the EPT measurements. The use of linear approximations of the non-linear
characteristic curve had a minor contribution to the malfunctioning.
The performance of the newly ‘furnished’ framework is evaluated by conducting several
simulation experiments. The first goal is to evaluate the general working of the control
framework. A new feature which is implemented, is the non-linear characteristic curve
as capacity constraint for each workstation. The second goal is to review the used EPT
algorithm when subject to condition blocking. A new way of measuring EPTs has to
be introduced. Experiments have to be performed to compare the performance of both
EPT measurement implementations.
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Varying the Demand

The only input parameters which can be altered are the demand, which varies over
the time horizon and the process time distributions of both machines. The latter is
rather difficult to vary and since for proper evaluation and comparison one of the input
parameters should be kept constant, only the demand is varied. In this research, three
types of demand are used as input for the simulation framework. The parameters
of these three types are individually adjustable. The three types are a sine curve, a
rampup and a rampdown trajectory. These demand trajectories with their adjustable
parameters are shown in Figure 5.2. De parameters that can be adjusted in the m-file,
are the total length of the horizon n, the type of demand Dtype, the minimum value
Dmin, the maximum value Dmax and the (transition) period length Dper.

δ

0 periods

Dmax

Dmin

Dper

n

(a) Sine Curve.

δ

0 periods

Dmax

Dmin
Dper n

(b) Rampup.

δ

0 periods

Dmax

Dmin

Dper

n

(c) Rampdown.

Figure 5.2: Three demand types.

Tuning Parameters

Besides the input parameters described in the previous subsection, there are also some
tuning parameters, which can be altered to ensure a faster or more accurate calculation
of the optimal solution each planning cycle.

An important factor in evaluating the MPC optimization problem, is the length of the
planning horizon. A short horizon means that the estimation cannot function properly
since the future demand is not enough reckoned with, but a long horizon can consid-
erably delay the calculation time. An important aspect which has to be kept in mind
when choosing the horizon length is to make sure the maximum lot demand over one
period can be entirely completed during the planning horizon. This is needed, since the
production of lots causes costs, and when the horizon is not long enough, the optimiza-
tion process will not encounter the large cost factor of not meeting the demand that
period; which means the optimization process will simply not produce at all, since in
this way, the optimization tool believes no costs occur.
Information about the manufacturing system is needed for this; the mean production
time for the first workstation is 0.21 hours and for the second workstation the mean
production time is 0.23 hours. One planning cycle consists of 24 hours and the demand
for one period can become 105 at the most. From these figures, it can be deducted
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that the length of the planning horizon should at the very least consist of two periods
(105 · (0.21+0.23) = 46.2 hours ≈ 2 periods). But when a future fluctuation in demand
exists, it is sensible to extend this length. In order to avoid problems, an ample horizon
length of five periods is chosen; this is the standard length throughout this thesis.

Another parameter is the begin condition vector x0, which contains the starting values
for the optimization and is free to fill in. With the standard horizon length of five
periods, this vector consists of 35 elements. Endless possibilities exist to declare this
vector, but simple reasoning leads to three main possibilities. The first is the standard
Tomlab option, which is to use all zeros. The second option is to fill in the wip-levels,
which are measured, at the appropriate places. The last is to fill in the demands for
the coming periods of the planning horizon length at the appropriate places. Several
test runs have been performed. They indicate that the last option works best for the
simulations at hand, considering the calculation time of the optimization; the optimal
solution was in almost all cases the same for each option. With these demands filled in at
the right places, the starting vector itself is generally not feasible, but the optimization
tool can handle this. Sometimes, no feasible solution exists because of high demands,
together with low present wip-levels and low capacity (due to high measured EPTs).
Fortunately, the optimization tool of Tomlab does not crash nor ends up in a lifelock
situation, but limits itself to a maximum of 500 iterations. It then returns the values of
the iteration where the toolbox ended, this may not be feasible, but the χ-model will
receive practical production targets. This is also explained later during the experiments
and in Appendix C.

A special choice which has to be made, is the choice of the appropriate Tomlab solver.
Tomlab is an extensive toolbox with a lot of solvers which contain the optimization
algorithms. Due to the nature of the problem at hand, that is a non-linear constrained
optimization problem, the selected solver is the so-called conSolve solver.

The final property which influences the quality and speed of the optimization is the ad-
dition of extra constraints. The mass conservation laws are linear equality constraints,
which are easy to solve for the Tomlab toolbox. The capacity constraints (or character-
istic curves) however, are non-linear inequality constraints, which are a lot more difficult
to solve. Therefore some additional linear constraints are introduced, which support the
capacity constraints. Per workstation, two extra constraints are added, which represent
the maximum throughput and the slope of the characteristic curve in the origin. These
lines are shown in Figure 2.5. In fact, these two constraints are the two extreme linear
approximations which Tolboom [Tol04] used for his problem, see Figure 4.3.

Performance Measures

Before one can start with the conduction of the experiments, the performance measures
must be chosen first. This is needed to make sure the right data is saved in an output
file for later evaluation. Important quantities to measure during simulation are:
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• The buffer level per workstation.

• The production of the system with respect to the demand (the number of cumu-
lative backorders).

• The effective proces times per workstation.

These measures are used to evaluate the control framework and to compare the perfor-
mances using different ways of EPT measurement.

5.3 Testing the Control Framework

In this section, the answer to the first research objective is provided, which means
that the improvement of the two layer model predictive control framework is evaluated
here for its proper functioning. The performance of the framework is evaluated for
the presented manufacturing system using different types of demand input. All tuning
parameters are set up as described in the previous section.

Two remarks about the simulation runs must be made here. First, the experiments
are conducted with the same process time distributions to ensure a fair comparison.
Secondly, several simulation runs with different seeds are conducted to ensure repro-
ducibility of the results. The seed of a distribution denotes the starting value of the
samples which are taken from the distribution. For each seed value, the order of sam-
ples from a distribution is the same. The random number generator of χ is a linear
congruential generator. If this generator is full-period, any choice of the initial seed will
produce the entire cycle in some order. If, however, a generator has less than full-period,
the cycle length could in fact depend on the particular value of the seed chosen. For
now, it is important to realize that it is wise to chose high prime numbers as seed for
the random number generator, which is proved by Hull and Dobell [Hul62].

Experiment I: Sine Curve, Low Utilization

First, the framework is tested using a sine curve as demand generator. The parameters
used for the demand are as follows; the simulation length consists of 8500 periods, which
is a little more than 200000 hours. This duration has been empirically determined
during the test period, using the information of the conducted long test runs of the
simulations. The minimum and maximum values of the sine are 40 and 80, this means
that the maximum utilization does not exceed u = 80·0.23

24 = 0.77, so no problems should
occur here, despite the variability at hand. The period length is chosen to be 50. The
outcome of the experiment is shown in Figure 5.3.

Figure 5.3 shows the fluctuations of the wip-levels of both workstations and the wip-
level of the exit process. The latter has backlog when it is negative and a surplus when
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Figure 5.3: Experiment I: Wip-levels.

it is positive. From this figure, one can carefully conclude that the framework in general
works. That is, the wip-levels of the buffers relatively do not rise very high, because
the highest number is about 320, which is four times the maximum demand. Also the
cumulative backorders are limited to 200, which means it takes at most three periods
to clear this backlog. Sometimes, the wip-level of workstation 1 becomes suddenly very
high, this is easy to explain. The optimization tool is not restricted at the generator,
because this process is no machine with a maximum capacity, so sometimes the target
for the generator can become high. Furthermore, all lots released by the generator are
moved in total to the buffer of workstation 1 at the beginning of a period, this is possible
because the buffers are chosen to be infinite. That is why sometimes the buffer (or wip)
level at workstation 1 becomes that high.

Another interesting parameter to view in this experiment is the effective process time.
Several times throughout this thesis, it is mentioned the old framework did not function
properly due to incorrect EPT measurement in case of condition blocking. Therefore,
the measured EPTs at both workstation are depicted in Figure 5.4a, with a zoomed
area in Figure 5.4b.

Figure 5.4 clearly shows that the measured mean effective process times te of both
workstations form a sine curve, exactly in counter phase with the demand. The effective
process time of workstation 2 does not immediately convert in a sine curve, but after
a short time it joins the curve of workstation 1. The te of workstation 1 should be
0.21 hours and the te of workstation 2 should be 0.23 hours. The wrong values of both
te’s in Figure 5.4 can however be declared. The demand fluctuates between 40 and
80 products and one period consists of 24 hours. Therefore, the te’s fluctuate between
24
40 = 0.60 hours and 24

80 = 0.30 hours.
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(b) Zoomed area.

Figure 5.4: Experiment I: Measured EPTs.

The presented figure distinctly proves the EPT measurement is performed wrongly,
since the effective process time is per definition supposed to be completely independent
on capacity utilization. This erroneous EPT measurement is dealt with in Section 5.4,
which handles the improvement of EPT measurement in casu condition blocking. For
now, in spite of this measurement error, the control framework performs well for this
case. But as already mentioned, the utilization level is chosen to be low. In Exper-
iment IV, the same experiment is conducted, only the mean demand will be higher.
Before this experiment is done, first another demand type is used for evaluation of the
control framework.

Experiment II: Rampup, Low Utilization

This second experiment uses a rampup as demand, for a further evaluation of the control
framework. This time, the total time horizon is many times smaller than in the first
experiment, since once the rampup is completed, the demand is constant and further
evaluation is not really needed. The minimum value is again 40, the maximum value is
80 and the transition length is 50 periods (1200 hours). Figure 5.5 shows the results.

Figure 5.5 shows the same quantities as Figure 5.3, only with completely different length
of both positive as negative y-axes. Again, it turns out that at first sight, the control
framework works as desired. The cumulative backorders are limited, as well as the
wip-levels of both workstations. Curious is the fact that the backlog stays at four, since
the machine should have enough capacity. Apparently, the optimization tool does not
mind the fact that a constant backlog of four products exists.

The sine curve showed that the measured effective process times were incorrect, since
they displayed a dependency on the capacity utilization. For this rampup experiment,
the values are again shown, in Figure 5.6.

The results show again a utilization dependency of the effective process times. Especially
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Figure 5.5: Experiment II: Wip-levels.
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Figure 5.6: Experiment II: Measured EPTs.

the EPT of workstation 1 is not constant. It starts with a value which is two times as
high as the eventual steady state value. The reason for this is explained by the fact that
at first, less products are released into the line than in the steady state phase. So the
utilization in the beginning is twice as less as at the end. This utilization dependency
of the EPTs is dealt with in the next section, as previously mentioned.

Experiment III: Rampdown, Low Utilization

This third experiment uses a rampdown demand function. All parameters are chosen to
be exactly the same as in Experiment II, the rampup situation. The results are shown
in Figure 5.7.

Figure 5.7 shows that the wip-levels vary more frequent and stronger than in the second
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Figure 5.7: Experiment III: Wip-levels.

experiment. However in general, it shows no big surprises, the framework seems to work
properly. To check whether the utilization dependency is also present here at the EPT
measurement, Figure 5.8 is presented.
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Figure 5.8: Experiment III: Measured EPTs.

Again, the results show a utilization dependency of the effective process times. This
time both workstations show a utilization dependent behavior. After the rampdown is
completed, they more-or-less stabilize.

Experiment IV: Sine Curve, High Utilization

For the previous experiments, the maximum utilization levels were intentionally chosen
to be far below u = 1. With this experiment, a sine curve is used with a higher maximum
utilization. This is done to determine whether the existing utilization dependency of
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the EPTs has a negative impact on the performance of the control framework.

Again, a sine curve is used, because this demand type showed the dependency best. All
parameters are the same as in Experiment I, only this time, the minimum and maximum
values are 80 and 100, respectively. At the first experiment, the mean was 60, here it is
90. The maximum utilization has also grown from u = 0.77 to u = 0.95. The results of
this experiment are depicted in Figure 5.9.
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Figure 5.9: Experiment IV: Wip-levels.

When looking at the units at the axes of Figure 5.9, it is immediately obvious that
the control framework performs much worse than in the low utilized experiment. The
number of cumulative backorders is much higher than before and the wip-level of work-
station 1 now sometimes contains several thousands of products, which means that the
optimization tool has calculated these release quantities for the generator. For the ex-
planation why this can occur, the output of the optimization tool of Tomlab is needed.
This output can be written away in a so-called diary file, which is a standard feature of
Matlab. A sample output can be found in Appendix C. When one looks at this output,
it turns out that the optimization tool cannot find a feasible or optimal solution. In such
a case, Tomlab returns the values, which it was evaluating at the time the optimization
ended. These values can become extraordinary large, as can be seen in Figure 5.9.

The expectation is that the measured EPTs fluctuate just as much as before. The values
are shown in Figure 5.10.

Again, the measured EPTs fluctuate in counter phase with the sine curve of the demand,
as can be seen in Figure 5.10. The absolute values of the EPTs are lower than the ones
presented in Experiment I, this is due to the fact that the utilization and throughput
are higher, in combination with the erroneously dependency of the EPTs with these
quantities.
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Figure 5.10: Experiment IV: Measured EPTs.

Experiment V: Sine Curve, Extreme Low Utilization

Experiments I–III considered a manufacturing system with a low utilization level, this
fifth experiment considers an even lower utilization. The goal of this fifth experiment
is to show the vicious circle which occurs due to the wrong EPT measurements, as
mentioned in Section 1.1. This means that the EPTs are measured too high because of
the wrong EPT algorithm, which causes a too low estimation of the system’s capacity.
Therefore, the controller will set lower targets while it could set high targets. This
means that the demand is not always met, which results in periodical backlog.

To show this phenomenon, a sine curve is used with the same parameters as before,
only this time the minimum and maximum values are 10 and 50, respectively. The
mean utilization is now umean = 30·0.23

24 = 0.29, whereas the maximum utilization is
umax = 50·0.23

24 = 0.48. No capacity problems should occur here, but when simulating,
it becomes clear the control framework is pulled along in the vicious circle for almost
each planning cycle. The results of this experiment are depicted in Figure 5.11.

Figure 5.11 only shows a small time interval, but this is only done to clearly show the
behavior of the system. The y-axis depicts the demand and the difference between
release quantity and demand for the last workstation. This last difference shows the
problem of the too low estimated capacity of the system, in particular the last work-
station. When the demand becomes 50, the calculated optimal release quantity should
be the same, since the wip-level is also tuned to this purpose by the optimization tool.
But when one looks at Figure 5.11, the shortage after each demand peak of 50 draws
the attention. Each period, some periods heavier than others, the optimization process
reacts not quickly enough to the demand fluctuation. This is depicted by the negative
dark line in the figure. When the demand slowly decreases, the controller makes up the
shortage by producing a surplus.

The above problem occurs when the capacity is estimated too low. The described
vicious circle applies to the above case, the only reason it does not become worse is the
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Figure 5.11: Experiment V: Demand and difference between release quantity and de-
mand of the last workstation.

fluctuation of the demand to an ever lower utilization each time, so the controller has
time to make up for his previously created shortage.

This section shows that the control framework in general works, it only uses a wrong
measurement algorithm for the effective process times, since the system is subject to
condition blocking. This causes a capacity utilization dependency of the EPTs, which
is wrong in definition. Especially in a highly utilized system, this is disturbing and the
control framework performs considerably worse is such cases. Also the presence of the
previously discussed vicious circle is demonstrated. The next section describes a new
proposal for EPT measurement which eliminates the described utilization dependency.

5.4 Improvement of the EPT Measurements

This section handles the improvement of the EPT measurements, which is the second
research objection that is presented in Chapter 1. This means, the capacity utilization
dependency is canceled out. Before the improved algorithm is presented, first the old
statements about EPT measurement are repeated here. Then, the new algorithm is
explained. New experiments are conducted to prove the working of this EPT algorithm.

Developing the new EPT Algorithm

The old algorithm, is the following one, which is already discussed in Chapter 3:
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EPTi,j = τ f
i,j − τ s

i,j = ADi,j − max(AAi,j ,ADi−1,j). (5.1)

The problem with the above equation is, that the arrival time at the buffer of the first
workstation is equal for each product per period. Besides that, the EPT is dependent
on the utilization, since the flow rate controllers spread the possible departure times
over the period. When the machine is lowly utilized, the EPT becomes higher and vice
versa.

To eliminate the above problem, the start time τ s
i,j must be defined differently. In

case of the current algorithm, the effective process time includes the waiting time of a
product for his authorization time to become true. It is not fair to include this waiting
time, because it is intentionally introduced by the combination of high and low level
controller and thus may be seen as condition blocking, see also Section 3.3.

Therefore, a new approach is used. The authorization times, which are assigned to
the products by the flow rate controller, are now used for the calculation of the EPTs.
Note that the calculation of authorization times is already discussed in Section 4.5. The
flow rate controllers are encapsulated in the buffers of the workstations. Such a buffer
divides all products (or lots) over three lists.

• The first list is incprods (incoming products). All products which are received from
an upstream workstation are immediately placed in this list. When necessary, the
lots can be rearranged by a sequencing policy.

• When a new period commences, the high level controller determines the optimal
release quantities and delivers them to the buffers. The flow rate controller then
calculates the authorization times and then as many products as the calculated
release quantity are put into the list authprods (authorized products), together
with their authorization times.

• The list with authorization times is constantly evaluated and when a authorization
time of a product passes, the product is moved to the third list, outbprods or
outbound products. All products in this last list can leave the buffer immediately
if the machine is not occupied and asks for a product.

The above described system with three lists makes it possible to introduce the new EPT
algorithm. The times which accompany the product through these lists make it able to
introduce a new quantity, the ATi,j , which stands for the authorization time of lot i
at workstation j. These times are assigned by the flow rate controller in the buffer, as
described. Then, the new equation, which is adapted from (5.1) would like this:

EPTi,j = τ f
i,j − τ s

i,j = ADi,j − max(ATi,j ,ADi−1,j). (5.2)

It may seem like (5.2) has almost not changed from (5.1), but one must realize there
exists an important difference. Besides the difference in the equation, it is important
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to design the low level controller in such a way, that it explicitly gives each product an
authorization time, which is stored in the product tuple.

Now the new EPT algorithm is deducted, it is time to prove its proper functioning. This
proof is delivered within the three next subsections, which describe new experiments
and their results.

Experiment VI: Sine Curve, Low Utilization, New EPT Algorithm

The first experiment which is conducted with the new EPT algorithm is a repetition of
the very first experiment, a sine curve with low utilization. The exact same parameters
for the demand curve are used as in Experiment I. To guarantee a fair comparison be-
tween both EPT measurement methods, the exact same seeds as in the first experiment
are used. The presented figures under Experiment I and here, are the results of the
simulations with the same seed. This experiment is conducted to make sure the control
framework also works in this case. The results of wip-levels and measured EPTs are
presented in Figure 5.12 and Figure 5.13, respectively. Note that the scaling of all x-
and y-axes is different to those of Figure 5.3 and Figure 5.4. This is deliberately done
to make sure the values and shapes of the curves are visible.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−2

−1

0

1

2

3

4

5

6

7

8

w
ip

 le
ve

l (
pr

od
uc

ts
)

ws 1
ws 2
ws 3

Figure 5.12: Experiment VI: Wip-levels.

From the presented figures it can be concluded that the control framework with the
adapted EPT measurement works perfectly. The wip-levels are much lower than before
and the cumulative backorders are, after initialization, constantly zero. Furthermore
the EPTs turn out to be independent on the capacity utilization, like they are supposed
to be. They vary a bit per period, but this is logical, since variability is at hand.
One can clearly see that the mean process time of workstation 1 is 0.21 hours and of
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Figure 5.13: Experiment VI: Measured EPTs.

workstation 2, it is 0.23 hours. This was not the case at all previous experiments when
using the old EPT algorithm.

Now the control framework functions properly, higher utilization levels are introduced to
check whether the framework again performs better than the last time in Experiment IV.

Experiment VII: Sine Curve, High Utilization, New EPT Algorithm

This seventh experiment is again a repetition of a previously conducted experiment, this
time Experiment IV. Just like the last experiment, the same conditions, referring to the
seed and demand type, hold. The results are shown in Figure 5.14 and Figure 5.15
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Figure 5.14: Experiment VIIa: Wip-levels.



5.4. Improvement of the EPT Measurements 53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

time (hours)

te
 (

ho
ur

s)

ws 1
ws 2

(a) Complete time horizon.

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

time (hours)

te
 (

ho
ur

s)

ws 1
ws 2

(b) Zoomed area.

Figure 5.15: Experiment VIIa: Measured EPTs.

As one can see, the results have much improved compared to Experiment IV. The
wip-levels are very low and the cumulative backlog becomes zero after a very short
initialization period. The effective process times again show an independency of the
utilization.

Now that it is empirically proved that the presented control framework with the new
EPT algorithm works with the presented utilizations, it is interesting to look at even
higher utilizations. Therefore, two extra experiments are conducted, VIIb and VIIc.
Experiment VIIb uses a sine curve demand which is limited between 92 and 102, and
thus has a mean utilization umean = 97·0.23

24 = 0.93 and a maximum utilization umax =
102·0.23

24 = 0.98. Experiment VIIc uses a sine curve demand which is limited between
95 and 105, and thus has a mean utilization umean = 100·0.23

24 = 0.96 and a maximum
utilization umax = 105·0.23

24 = 1.01. Both experiments will not be commonly used in a real
life setup, but these simulations are used to point out the capability of the framework.
Only, when simulating VIIc, a calculation error occurred at the optimization level, which
caused the simulation to stop before the time horizon of 8500 periods was reached. The
results of Experiments VIIb & VIIc are shown in Figure 5.16. This time, only the
wip-levels are depicted.

Figure 5.16a shows that Experiment VIIb still functions very well, although the uti-
lization level has become very high. It even performs better than the low utilization of
Experiment I, because the wip and backlog levels remain much lower than in the first
experiment. But Experiment VIIc encountered some difficulties in the optimization
tool. Many times, the problem became infeasible, just the same as explained in Experi-
ment IV. The problem of infeasibility also occurred at other highly utilized experiments,
but now it caused too many problems for the simulation to properly end. Therefore,
only half the time horizon is presented in Figure 5.16b.
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(a) VIIb: Sine Curve Demand between
92 and 102
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Figure 5.16: Experiments VIIb & VIIc: Wip-levels.

Experiment VIII: Sine Curve, Extreme Low Utilization, New EPT Al-
gorithm

This eighth and last experiment repeats Experiment V, which had extremely low utiliza-
tion levels. Only this time, the new EPT algorithm is used. The same diagram which
was made for Experiment V is made for this simulation and is presented in Figure 5.17.
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Figure 5.17: Experiment VIII: Demand and difference between release quantity and
demand of the last workstation.

One of the aims of this research was to improve the EPT measurement, as described
in this section. Not only highly utilized manufacturing systems benefit from this im-
provement, but also manufacturing systems with an extreme low utilization are better
controlled. This is possible, since the discussed vicious circle is neutralized. Figure 5.17
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shows a perfectly controlled system (the difference between releases and demand is
constantly zero), even more when one compares it to Figure 5.11, with the results of
Experiment V.

This section introduced a new way of measuring EPTs for proper use as a capacity
constraint of the two layer hierarchical model predictive control framework. Due to this
improvement of control, much better results are achieved with several types of demand
and levels of utilization. The new method especially proved to be effective in a highly
utilized setup.

5.5 Résumé

This chapter evaluates the control framework, which was derived in Chapter 4, with the
use of a simple manufacturing line with two infinitely buffered machines. It focusses on
two main subjects, where the first is to validate the control framework and the second
is to improve the EPT measurement in case of condition blocking.

First, several assumptions and important choices are made for the χ-model of the man-
ufacturing system, the implementation of the low level controller and the general setup
of the high level controller, which is implemented in the Matlab optimization toolbox
Tomlab.

A setup is determined how to conduct the experiments. There are several input and
tuning parameters. The input parameter is declared as the demand type for the man-
ufacturing system, which can be altered throughout the experiments. The tuning pa-
rameters are needed for a proper functioning of the optimization toolbox Tomlab and
are determined by several preliminary test runs. Before the actual experiments com-
mence, the performance measures are chosen. These are the buffer (or wip) levels of
the workstations, the number of cumulative backorders and the effective process times.

In order to meet the first research objective, which is introduced in Chapter 1, the de-
rived control framework is tested. It is proved that the framework itself works properly,
but the EPT measurement is wrong because it is dependent on the capacity utilization.
Therefore the control framework performs poorly for high utilization levels. Also the in
Section 1.1 discussed vicious circle is detected for systems with extremely low utilization
levels.

The second research objective is met by deriving a new EPT algorithm, which makes
use of the authorization times which are determined by a combination of the high and
low level controller. Now, the EPTs are no longer dependent on the utilization of
the workstations. The control framework performs significantly better with the new
EPT measurement for several types of demand and in both highly and extremely lowly
utilized manufacturing systems than with the old EPT measurement. Also the described
vicious circle is neutralized by this new method.
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Chapter 6

Conclusions and
Recommendations

This chapter summarizes the most relevant findings of this research project. Besides
that, this chapter also contains some recommendations for future research.

6.1 Conclusions

Until now, no satisfactorily working hierarchical model predictive control framework
for a manufacturing system has been deployed in a χ-Matlab environment. This thesis
describes the improvement of an existing two layer hierarchical MPC framework which
uses effective process times as capacity constraints. The improvement consists of two
parts; the first is the slightly different formulation of the optimization problem and the
use of a better, more powerful optimization toolbox for solving this problem. The second
part concerns the improvement of the measurement of the effective process times, for a
more realistic capacity estimation. The performance of the newly derived framework is
analyzed with the use of a simulation model of a simple manufacturing system.

The two main research objectives were defined in Chapter 1. First, the two layer model
predictive control framework has to be improved. Secondly, the EPT measurement in
casu condition blocking has to be revised, because the capacity estimation, used for the
control framework, occurs wrongly at the moment. These two questions are answered
in this section.

The Control Framework

Control frameworks can be classified in several ways. Mostly, classification is based on
the architecture of the framework. This research makes use of a hierarchical control
framework, more specifically a two layer model predictive control framework.

57
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The chosen framework was already presented by Tolboom [Tol04], though some er-
rors occurred during simulation of this framework. Therefore, only the rough line of
reasoning is adapted from his work, and the framework is completely ‘refurnished’.

The high level control layer consists of a model predictive controller. MPC is a model
based advanced control strategy, which makes use of a dynamical model of the process to
obtain the control signal by minimizing an objective function. MPC uses this model to
generate predictions of the future behavior of the process. Based on these predictions,
an objective function is optimized with regard to the future inputs of the process.
Although prediction and optimized inputs are computed over a future horizon, only the
new values of the inputs for the next sample are actually implemented. This feature is
known as the receding horizon strategy.

The model predictive controller, which is used in this research, tries to minimize a cost
function, which contains all costs involved in manufacturing the demanded products.
Cost parameters are defined for the release (or production) cost per workstation, the
wip (or buffer) cost per workstation, stock cost for a surplus of finished products and
back order cost for potential backlog. The optimization has to obey several constraints,
which can be divided into two sets; the non-linear capacity constraints and the linear
mass conservation laws. The latter are fairly intuitive to derive, the first are more
difficult and are partially explained here.

The non-linear capacity constraints are represented by the characteristic curves of each
workstation. The characteristic curve captures the highly non-linear relationship be-
tween throughput and work in process. This curve can be derived using the following
variables; the mean effective process time, the squared coefficient of variation of the
effective process time and the squared coefficient of variation of the interarrival time.
The first two are determined by an EPT algorithm.

Performance of the Control Framework

The above described control framework is tested on a simple discrete event system
for performance evaluation of the framework. The used manufacturing system model
consists of a generator, two infinitely buffered workstations and an exit process.

Before actual simulation can commence, many assumptions on the discrete event model
have to be made, and tuning of the controller parameters has to be performed. Two
major assumptions on the model are to cancel out both resource blocking and port
blocking. The third type of blocking, condition blocking must be included, since EPT
measurements showed difficulties to handle this type of blocking and one of the goals
of this research is to solve this problem.
Tuning of the model predictive controller is performed by running some preliminary test
runs. The most important tuning parameters are the length of the planning horizon,
the start vector of the optimization and the choice of the solver. Another important
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factor which increases the speed of the optimization process is the addition of extra
constraints to support the non-linear capacity constraints.

The input parameter for the model is the demand, which varies over the time horizon.
Process time distributions of both machines are chosen to be equal during simulation
runs to ensure a proper comparison between different simulations. Several types of
demand and values of capacity utilization are used for performance evaluation. The
performance measures, which are used throughout this thesis, are the buffer (or wip)
levels of both workstations, the production of the system with respect to the demand
and the effective process time of the workstation.

Many experiments are conducted to evaluate the performance of the presented two
layer hierarchical model predictive control framework. The most striking results are the
fact that the control framework itself performs properly, but EPT measurements cause
problems, especially in highly utilized setups. EPTs turn out to be dependent on the
capacity utilization, which is wrong per definition.
However, also experiments with extremely low utilization levels perform not well, due
to the vicious circle which is initiated by a too low capacity estimation of the controller.
The appearance of this phenomenon causes the controller to react slower to demand
fluctuations.
The implemented control framework however, works as desired; demands are met while
the wip and backlog levels stay reasonably low for lowly utilized manufacturing sytems.
This answers in fact the first research objective, to improve the existing framework using
slightly different ‘furniture’ and to prove it functions.

Performance Improvement; introducing a new EPT Measurement Method

Performance improvement of the control framework must be carried out in order to be
able to properly control highly utilized manufacturing systems. EPT measurement has
to be improved in order to achieve this goal.

Capacity was underestimated by the old EPT measurement method. This was due to
the existing condition blocking, which causes products to stay at the machine, while
the downstream workstation could in fact already receive the product. When EPT
measurement starts at the arrival time of the current product at the current workstation
or at the departure of the previous product at the downstream workstation, EPTs
are often measured too high. EPT measurement should use the authorization time
of the current product at the current workstation instead of the arrival time. The
determination of these authorization times must be performed accurately, and is done
by the low level controllers, which are present in the buffers of the workstations.

With the newly developed EPT measurement method, again many experiments are
conducted. First a repetition of the lowly utilized case is performed and the control
framework proves to be much better working. The effective process times are no longer
dependent on the capacity utilization and therefore, much better results are obtained.
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Both wip levels and backlog levels stay very low in this situation. Also in a highly utilized
setup, the control framework works properly. Only with extremely high utilization
levels, the wip and backlog rise high again. In extremely lowly utilized systems however,
the control framework performs much better, because the vicious circle is completely
neutralized by the new method.

The above answers the second research question, which is to review current EPT mea-
surement in case of condition blocking. With this improvement, the performance of the
control framework increases significantly.

6.2 Recommendations

Several questions have come forward during this research project that remain unan-
swered. Based on these questions, recommendations for further research are formulated.

Complexity of the Manufacturing System

The described manufacturing system, which is used throughout this thesis is just a
simple line with two infinitely buffered workstations. This system is satisfactory to
demonstrate the working of the control framework, but for further evaluation, a more
complex system is desired. This complexity can be introduced in various ways. Much
of the complexity reseeds in the general assumptions which are made for the model.

Instead of using a simple manufacturing line, a more complex system can be used. An
example of such a system is a re-entrant line. This reentrance has two major effects
on the control framework. First of all, the controller has to divide the capacity of one
workstation over two flows, which is more difficult to control. Secondly, the effective
process times are harder to measure, since the authorization times are influenced by the
sequencing policies, which can give priority to products of one of the two flows.

Another form of bringing more complexity to the manufacturing system is by introduc-
ing different (types of) products. When products are not equal, but have different due
dates, the sequencing rules in the low level controller become an important aspect in the
calculation of authorization times. This also applies to products, which have different
process times on the same machine. So the effective process times can alter due to these
sequencing rules, which has an important impact on the high level controller because
of the effect of the EPTs on the capacity constraints.

Another factor which can be introduced is the placement of parallel machines in one
workstation. Research in the past has shown that it is quite difficult to determine the
effective process time in such a case. This is even more hard when condition blocking
occurs in combination with these parallel machines.

One final addition within this topic is the introduction of resource or port blocking in
combination with the already present condition blocking. This is especially interesting
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for EPT measurement, but also for general control, since resource blocking introduces
new constraints for the buffer levels of the system.

The general question in all the above remarks is the same; is the presented control
framework able to control more complex manufacturing systems? Here lies a great
opportunity for further research.

Tuning of the Model Predictive Controller

The model predictive controller which is used in this research is tuned with the aid of
several preliminary test runs. The experiments proved the working of the optimization
process, but improvement can be carried out at several aspects of the optimization tool.

Improvement can be achieved by stretching the time horizon. In an ideal system, the
horizon is infinite. When an infinite horizon is used, stability is guaranteed in the
optimal solution. A drawback of this method is that the demand should also be known
(or estimated) for the complete horizon. Stability can also be reached at a finite end
time by using the steady-state situation as constraint. This means the simulation will
stay at that situation with minimal costs, which resembles the infinite horizon situation.

A drawback of the used Tomlab solver conSolve is that it cannot deal with integer vari-
ables. All variables (throughput or wip levels) are treated as reals, which is not possible
in the physical version of the used manufacturing system. To overcome this difficulty,
throughout this research high throughputs are used. When the desired throughput
would for instance fluctuate between 1 and 5 products per planning cycle, the rounding
of an optimal throughput which contains a half product becomes very influential. In
such cases a (mixed-) integer solver is recommended.

Because the optimization process of the proposed control framework is of a very big im-
portance, the above questions should be considered when continuing with this research.

Performance of the Control Framework

The results of the simulation experiments in this thesis are compared to the results
which were obtained by using the old EPT measurement. This comparison indicated
that the presented framework works much better with the new EPT measurement. For
a better evaluation of the presented framework, it is recommended to compare the
performance of this framework to that of several other control approaches.
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Appendix A

Optimization Example

The optimization tool, which is used throughout this thesis, is more extensively worked
out in this appendix. First, the relevant equations of the optimization tool of Sec-
tion 4.4 are provided again. In the second part of this appendix, these equations will
be elaborated for a fictional optimization run of three periods.

A.1 Optimization Model

Below the objective function, or cost function, is provided again in (A.1) with all bound-
aries for the variables (A.2a)–(A.2d) and all constraints, both non-linear (A.3) and linear
(A.4)–(A.5). Note that no new equations are introduced, only a clear survey of the total
optimization problem, which is derived in Section 4.4, is provided.

min
x(t+i|t)

p−1
∑

i=0

cT
1 ·x(t+ i|t)+ cT

2 ·w(t+ i+1|t)+ c3 ·y(t+ i+1|t)+ c4 · z(t+ i+1|t) (A.1)

subject to:

0 ≤ x0(t + i|t) ∀t, i = 0, . . . , p − 1 (A.2a)

0 ≤ wk(t + i|t) ∀t, i = 0, . . . , p − 1, k = {1, 2} (A.2b)

0 ≤ y(t + i|t) ∀t, i = 0, . . . , p − 1 (A.2c)

0 ≤ z(t + i|t) ∀t, i = 0, . . . , p − 1 (A.2d)

(

(c2
a,k,i + c2

e,k,i) · t
2
e,k,iδk,i + 2te,k,i · (1 − te,k,iδk,i)

)

· δk,i − 2w∗
k,i · (1 − te,k,iδk,i) ≤ 0

i = 0, . . . , p − 1, k = {1, 2} (A.3)
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wk(t + i + 1|t) = wk(t + i|t) + xk−1(t + i|t) − xk(t + i|t)

∀t, i = 0, . . . , p − 1, k = {1, 2} (A.4)

y(t + i + 1|t) − z(t + i + 1|t) = y(t + i|t) − z(t + i|t) + x2(t + i|t) − d(t + i|t)

∀t, i = 1, . . . , p − 1 (A.5)

A.2 Three Period Evaluation of the Optimization Model

With the described manufacturing line of Figure 4.1, that means a generator, two
infinitely buffered workstations and an exit process (so k = 1, 2, 3) and a planning
horizon of three periods (so p = 3 and i = 0, 1, 2), an example is given here how to use
all equations that are provided in the previous section. To evaluate these functions, six
quantities have to be measured in the χ-model, which function as input parameters:
w1(t), w2(t), w3(t), d(t), d(t + 1) and d(t + 2).

Constraints for the first planning period, i = 0:

(

(c2
a,1,0 + c2

e,1,0) · t
2
e,1,0 · x1(t|t) + 2te,1,0 · (1 − te,1,0 · x1(t|t))

)

· x1(t|t)

− 2w1(t + 1|t) · (1 − te,1,0 · x1(t|t)) ≤ 0
(

(c2
a,2,0 + c2

e,2,0) · t
2
e,2,0 · x2(t|t) + 2te,2,0 · (1 − te,2,0 · x2(t|t))

)

· x2(t|t)

− 2w2(t + 1|t) · (1 − te,2,0 · x2(t|t)) ≤ 0

w1(t + 1|t) = w1(t|t) + x0(t|t) − x1(t|t)

w2(t + 1|t) = w2(t|t) + x1(t|t) − x2(t|t)

y(t + 1|t) − z(t + 1|t) = y(t|t) − z(t|t) + x2(t|t) − d(t|t)

Constraints for the second planning period, i = 1:

(

(c2
a,1,1+c2

e,1,1)·t
2
e,1,1 ·x1(t+1|t+1)+2te,1,1 ·(1−te,1,1 ·x1(t+1|t+1))

)

·x1(t+1|t+1)

− 2w1(t + 2|t + 1) · (1 − te,1,1 · x1(t + 1|t + 1)) ≤ 0
(

(c2
a,2,1+c2

e,2,1)·t
2
e,2,1 ·x2(t+1|t+1)+2te,2,1 ·(1−te,2,1 ·x2(t+1|t+1))

)

·x2(t+1|t+1)

− 2w2(t + 2|t + 1) · (1 − te,2,1 · x2(t + 1|t + 1)) ≤ 0

w1(t + 2|t + 1) = w1(t + 1|t + 1) + x0(t + 1|t + 1) − x1(t + 1|t + 1)

w2(t + 2|t + 1) = w2(t + 1|t + 1) + x1(t + 1|t + 1) − x2(t + 1|t + 1)

y(t + 2|t + 1) − z(t + 2|t + 1) = y(t + 1|t + 1) − z(t + 1|t + 1) + x2(t + 1|t + 1)

− d(t + 1|t + 1)
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Constraints for the third planning period, i = 2:

(

(c2
a,1,2+c2

e,1,2)·t
2
e,1,2 ·x1(t+2|t+2)+2te,1,2 ·(1−te,1,2 ·x1(t+2|t+2))

)

·x1(t+2|t+2)

− 2w1(t + 3|t + 2) · (1 − te,1,2 · x1(t + 2|t + 2)) ≤ 0

(

(c2
a,2,2+c2

e,2,2)·t
2
e,2,2 ·x2(t+2|t+2)+2te,2,2 ·(1−te,2,2 ·x2(t+2|t+2))

)

·x2(t+2|t+2)

− 2w2(t + 3|t + 2) · (1 − te,2,2 · x2(t + 2|t + 2)) ≤ 0

w1(t + 3|t + 2) = w1(t + 2|t + 2) + x0(t + 2|t + 2) − x1(t + 2|t + 2)

w2(t + 3|t + 2) = w2(t + 2|t + 2) + x1(t + 2|t + 2) − x2(t + 2|t + 2)

y(t + 3|t + 2) − z(t + 3|t + 2) = y(t + 2|t + 2) − z(t + 2|t + 2) + x2(t + 2|t + 2)

− d(t + 2|t + 2)

When all optimization variables for these three periods are put together, the vector x
with 21 rows arises:

x = [x0(t|t), x1(t|t), x2(t|t), w1(t + 1|t), w2(t + 1|t), y(t + 1|t), z(t + 1|t),

x0(t + 1|t + 1), x1(t + 1|t + 1), x2(t + 1|t + 1), w1(t + 2|t + 1), w2(t + 2|t + 1),

y(t + 2|t + 1), z(t + 2|t + 1), x0(t + 2|t + 2), x1(t + 2|t + 2), x2(t + 2|t + 2),

w1(t + 3|t + 2), w2(t + 3|t + 2), y(t + 3|t + 2), z(t + 3|t + 2)]T

Only the first three variables are actually used as input for the χ-model, these are
x0(t|t), x1(t|t) and x2(t|t).

One can see that with only two workstations and three periods, the number of equations
and variables is fairly high. But in comparison with other methods, the number of
equations is still limited, since this problem grows linearly, where other methods often
grow exponentially.
Still, it is of great importance to work very secure when actually implementing this
problem. In practice, the horizon will be greater than three, so even in this research
project the number of equations and variables is larger than presented in this appendix.
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Appendix B

Simulation Framework

The simulation framework which is used for the experiments of Chapter 5 is programmed
with use of the following programs; the specification language χ, the scripting language
Python and the mathematical program Matlab with the external toolbox Tomlab.

The discrete event simulation model is modeled in χ 0.8. The demand for lots must be
variable per simulation run, therefore a special demand generator is developed in Mat-
lab. EPT calculations, that is the calculation of the te’s, c2

e’s and c2
a’s, are performed

by Matlab. For the non-linear optimization, an external toolbox of Matlab is used,
called Tomlab. Communication between these several blocks of the simulation frame-
work is realized through two Python scripts. The simulation framework is depicted in
Figure B.1.

ts Matlab Matlab/Tomlab

PythonPython Chi 0.8
parameters

output

Demand generator

CommunicationCommunication
Discrete Event Model

Low level control

Optimization tool
EPT calculations

Figure B.1: Simulation framework.

Before the actual program files are given in this appendix, first the simulation framework
of Figure B.1 is converted into all files, which are used for the simulation. When the
structure is clear, the actual code of these files is given. Figure B.2 shows all files and
their mutual communications.
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Matlab Matlab/Tomlab

PythonPython Chi 0.8

parameters

output

output

dem
gen.m

run.py sim.chi

opt.mopt f.m opt c.m

calc.py calc.ext

.txt

Figure B.2: Simulation framework with all used files.

The next sections show all files per program. Some explanation is provided when the
working of the files is not clear.

B.1 Matlab

This section contains the demand generator in Matlab. The optimization files are
displayed in Section B.4. The three types of demand, which are shown in Figure 5.2,
can be generated with this file.

dem gen.m

function [dem] = dem_gen(n, Dtype, Dper, Dmin, Dmax)

% n [nat] horizon

% Dtype [string] demand function type (rampup, rampdown, sinus)

% Dmin [real] minimum value of demand

% Dmax [real] maximum value of demand

% Dper [real] (transition) period length

if strcmp(Dtype, ’rampup’)

for i = 1:Dper

A(i,1) = Dmin + i/Dper*(Dmax-Dmin);

end

B = Dmax*ones(n-Dper,1);

dem = [A; B];

elseif strcmp(Dtype, ’rampdown’)

for i = 1:Dper

A(i,1) = Dmax + i/Dper*(Dmin-Dmax);

end

B = Dmin*ones((n-Dper),1);
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dem = [A; B];

elseif strcmp(Dtype, ’sinus’)

A = (Dmax - Dmin)/2;

B = (2*pi/Dper);

C = mean([Dmin,Dmax]);

j = 0;

for i = 1:n

dem(i,1) = A*sin(B*j) + C;

j=j+1;

end

end

B.2 Python

This section shows both Python files (run.py and calc.py) which are used in the
simulation framework, as well as the file calc.ext which contains the list of external
specifications for the χ-compiler.

run.py

#!/usr/bin/python

import os, string, math, sys, pymat

input = sys.argv[1]

I = pymat.open()

pymat.eval(I, ’dem = dem_gen ’+str(input))

dem = list(pymat.get(I, ’dem’))

i=0

demand=[]

while i < len(dem):

demand.append(int(dem[i]))

i=i+1

demand = str(demand)

demand = string.replace(demand,’,’,’’)

demand = ’\’’ + demand + ’\’’

a=’./sim ’+str(demand)

J = os.popen(a)

calc.py

from Numeric import *

import pymat, os

def openTomlab():

a=os.getcwd()

global H

H=pymat.open("cd /usr/home/bdj/bas/tomlab; matlab")

pymat.eval(H,"cd "+str(a))

# pymat.eval(H,"diary on")
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return 1

def closeTomlab():

pymat.close(H)

return 1

def mean(a):

x=array(a)

pymat.put(H,’x’,x)

pymat.eval(H,’y=mean(x)’)

y=pymat.get(H,’y’)

return y[0]

def scv(a):

x=array(a)

pymat.put(H,’x’,x)

pymat.eval(H,’y=var(x)/mean(x)^2’)

y=pymat.get(H,’y’)

return y[0]

def opt(a, b, c, d):

tccw1=array([a])

tccw2=array([b])

wip3=array([c])

demand=array([d])

pymat.eval(H,"global tccw1")

pymat.eval(H,"global tccw2")

pymat.put(H,’tccw1’,tccw1)

pymat.put(H,’tccw2’,tccw2)

pymat.put(H,’wip3’,wip3)

pymat.put(H,’demand’,demand)

pymat.eval(H,"opt")

xk=pymat.get(H,’xk’)

# xk is stored as [ 10.] , where xk = 10.0000

# tuple(xk) is stored as (9.999999998967402,)

# tuple(xk)[0] is stored as 9.99999999897

# round(tuple(xk)[0]) is stored as 10.0

# int(round(tuple(xk)[0])) is stored as 10

return ( int(round(tuple(xk)[0])), int(round(tuple(xk)[1])), int(round(tuple(xk)[2])) )

calc.ext

language "python"

file "calc"

ext openTomlab() -> bool

ext closeTomlab() -> bool

ext mean(n:real*) -> real

ext scv(n:real*) -> real

ext opt(tccw1:real#real#real#int, tccw2:real#real#real#int, wip3:int, demand:int*) -> int#int#int

B.3 Chi

This section contains the whole χ-model which is used for the simulations. Figure 5.1
already showed the general layout of the model, but Figure B.3 also shows the names
of the channels, which are used in the model.
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D C

G B1 M1 B2 M2 E

dem

outp0 per0

outp1 per1inp1

outp2 per2inp2

outp3 per3inp3

gws1 b1m1

m1b1

ws1ws2 b2m2

m2b2

ws2e

Figure B.3: Simulation scheme in χ.

No further explanation of the χ-files is provided here, since it does not concern a very
complicated model. Besides that, the important decisions and assumptions on the model
are already worked out in Chapter 4 and Chapter 5.

sim.chi

from std import *

from random import *

from fileio import *

from calc import *

type lot = nat#real#real#real#real#real#real // lotnr # auth1 # fin1 # auth2 # fin2 # ept1 # ept2

, tcc = real#real#real // te # ce2 # ca2

, tccw = real#real#real#int // te # ce2 # ca2 # wip

proc G(gws1:!lot, outp0:?int, per0:?void) =

|[ rq0: int, ta: real, prod: lot, n: nat, t: -> real

| ta:= 0.0; n:= 1; t:= uniform(0.0,0.05)

; *[ true; per0?

-> outp0?rq0

; *[ rq0 > 0

-> prod.0:= n

; gws1!prod

; n:= n + 1

; rq0:= rq0 - 1

]

]

]|

proc B1(gws1:?lot, b1m1:!lot, m1b1:?lot, inp1:!tccw, outp1:?int, per1:?void) =

|[ incprods, authprods, outbprods: lot*, prod, tempprod: lot, tcc1: tcc, wip1: int, tccw1: tccw

, rq1: int, eptcoll, rtcoll: real*, empmch: bool, ta, lastauth: real, n: int

| incprods:= []; authprods:= []; outbprods:= []; eptcoll:= []; wip1:= +0; empmch:= true; ta:= 0.0

; lastauth:= 0.0; n:= +0



76 Appendix B. Simulation Framework

; *[ true; gws1?prod

-> wip1:= wip1 + 1

; incprods:= insertandsort(prod,incprods)

; [ len(incprods) > 0 and n > 0

-> tempprod:= hd(incprods)

; incprods:= tl(incprods)

; tempprod.5:= time

; [ n = rq1 -> tempprod.1:= time

| n < rq1 -> tempprod.1:= lastauth + ta

]

; lastauth:= tempprod.1

; n:= n-1

; authprods:= authprods ++ [tempprod]

| len(incprods) = 0 or n = 0

-> skip

]

| len(authprods) > 0; delta hd(authprods).1-time

-> outbprods:= outbprods ++ [hd(authprods)]

; authprods:= tl(authprods)

| len(outbprods) > 0 and empmch; b1m1!hd(outbprods)

-> outbprods:= tl(outbprods)

; empmch:= false

| true; m1b1?prod

-> eptcoll:= eptcoll ++ [prod.2 - prod.1]

; rtcoll:= rtcoll ++ [prod.1]

; wip1:= wip1 - 1

; empmch:= true

| true; per1?

-> [ len(eptcoll) > 0 and len(rtcoll) > 0 -> tcc1:= tccalg(eptcoll, rtcoll)

| len(eptcoll) = 0 or len(rtcoll) = 0 -> tcc1:= <0.0, 0.0, 0.0>

]

; tccw1.0:=tcc1.0; tccw1.1:=tcc1.1; tccw1.2:=tcc1.2; tccw1.3:=wip1

; inp1!tccw1

; eptcoll:= []; rtcoll:= []

; outp1?rq1

; n:= rq1

; ta:= 24.0 / i2r(rq1)

; incprods:= incprods ++ authprods ++ outbprods

; authprods:= []; outbprods:= []

; *[ len(incprods) > 0 and n > 0

-> tempprod:= hd(incprods)

; incprods:= tl(incprods)

; [ n = rq1 -> tempprod.1:= time

| n < rq1 -> tempprod.1:= lastauth + ta

]

; lastauth:= tempprod.1

; n:= n-1

; authprods:= authprods ++ [tempprod]

]

]

]|

proc M1(b1m1:?lot, m1b1:!lot, ws1ws2:!lot, seed:nat) =

|[ prod: lot, t: -> real

| t:= uniform(0.20,0.22)

; setseed(t,seed)

; *[ true; b1m1?prod -> delta sample t; prod.2:=time; m1b1!prod; ws1ws2!prod ]

]|

proc B2(ws1ws2:?lot, b2m2:!lot, m2b2:?lot, inp2:!tccw, outp2:?int, per2:?void) =
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|[ incprods, authprods, outbprods: lot*, prod, tempprod: lot, tcc2: tcc, wip2: int, tccw2: tccw

, rq2: int, eptcoll, rtcoll: real*, empmch: bool, ta, lastauth, authtime: real, n: int

| incprods:= []; authprods:= []; outbprods:= []; eptcoll:= []; wip2:= +0; empmch:= true; ta:= 0.0

; lastauth:= 0.0; n:= +0

; *[ true; ws1ws2?prod

-> wip2:= wip2 + 1

; incprods:= insertandsort(prod,incprods)

; [ len(incprods) > 0 and n > 0

-> tempprod:= hd(incprods)

; incprods:= tl(incprods)

; tempprod.6:= time

; [ n = rq2 -> tempprod.3:= time

| n < rq2 -> authtime:= lastauth + ta

; [ authtime >= time -> tempprod.3:= authtime

| authtime < time -> tempprod.3:= time

]

]

; lastauth:= tempprod.3

; n:= n-1

; authprods:= authprods ++ [tempprod]

| len(incprods) = 0 or n = 0

-> skip

]

| len(authprods) > 0; delta hd(authprods).3-time

-> outbprods:= outbprods ++ [hd(authprods)]

; authprods:= tl(authprods)

| len(outbprods) > 0 and empmch; b2m2!hd(outbprods)

-> outbprods:= tl(outbprods)

; empmch:= false

| true; m2b2?prod

-> eptcoll:= eptcoll ++ [prod.4 - prod.3]

; rtcoll:= rtcoll ++ [prod.3]

; wip2:= wip2 - 1

; empmch:= true

| true; per2?

-> [ len(eptcoll) > 0 and len(rtcoll) > 0 -> tcc2:= tccalg(eptcoll, rtcoll)

| len(eptcoll) = 0 or len(rtcoll) = 0 -> tcc2:= <0.0, 0.0, 0.0>

]

; tccw2.0:=tcc2.0; tccw2.1:=tcc2.1; tccw2.2:=tcc2.2; tccw2.3:=wip2

; inp2!tccw2

; eptcoll:= []; rtcoll:= []

; outp2?rq2; n:= rq2; ta:= 24.0 / i2r(rq2)

; incprods:= incprods ++ authprods ++ outbprods

; authprods:= []; outbprods:= []

; *[ len(incprods) > 0 and n > 0

-> tempprod:= hd(incprods)

; incprods:= tl(incprods)

; [ n = rq2 -> tempprod.3:= time

| n < rq2 -> tempprod.3:= lastauth + ta

]

; lastauth:= tempprod.3

; n:= n-1

; authprods:= authprods ++ [tempprod]

]

]

]|

proc M2(b2m2:?lot, m2b2:!lot, ws2e:!lot, seed:nat) =

|[ prod: lot, t: -> real

| t:= uniform(0.22,0.24)

; setseed(t,seed)
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; *[ true; b2m2?prod -> delta sample t; prod.4:=time; m2b2!prod; ws2e!prod ]

]|

func insertandsort(prod:lot,incprods:lot*) -> lot* =

|[ incprods:= incprods ++ [prod] // a sorting algorithm can be inserted here

; ret incprods

]|

func tccalg(eptcoll, rtcoll:real*) -> tcc =

|[ te, ce2, ca2: real

| te:= mean(eptcoll)

; ce2:= scv(eptcoll)

; ca2:= scv(rtcoll)

; ret <te, ce2, ca2>

]|

proc C(per0, per1, per2, per3:!void, inp3:?int, inp1, inp2:?tccw

, outp0, outp1, outp2, outp3:!int, dem:?int*, f:!file

) =

|[ dummy: bool, wip3, rq0, rq1, rq2: int, tccw1, tccw2: tccw, demand: int*, rqs: int#int#int

| dummy:= openTomlab()

; *[ true

-> per0!

; per1!

; per2!

; per3!

; inp1?tccw1

; inp2?tccw2

; inp3?wip3

; dem?demand

; [ len(demand) < 5 -> terminate

| len(demand) >= 5 -> skip

]

; [ tccw1.0 = 0.0

-> rq0:= hd(demand); rq1:= rq0; rq2:= rq0

| tccw1.0 > 0.0

-> rqs:= opt(tccw1, tccw2, wip3, demand)

; rq0:= rqs.0; rq1:= rqs.1; rq2:= rqs.2

]

; f! time, "\t", tccw1.0, "\t", tccw1.1, "\t", tccw1.2, "\t", tccw1.3, "\t", tccw2.0

, "\t", tccw2.1, "\t", tccw2.2, "\t", tccw2.3, "\t", wip3, "\t", rq0, "\t", rq1

, "\t", rq2, "\t", hd(demand), "\n"

; outp0!rq0

; outp1!rq1

; outp2!rq2

; outp3!hd(demand)

; delta 24

]

; dummy:= closeTomlab()

]|

proc D(dem:!int*, demand:int*) =

|[ *[ true -> dem!demand; demand:= tl(demand) ] ]|

proc E(ws2e:?lot, inp3:!int, outp3:?int, per3:?void) =

|[ prod: lot, wip3: int, demand: int

| wip3:= +0
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; *[ true; ws2e?prod

-> wip3:= wip3 + 1

| true; per3?

-> wip3:= wip3 - demand

; inp3!wip3

; outp3?demand

]

]|

clus S(seed: nat, demand: int*)=

|[ gws1, b1m1, m1b1, ws1ws2, b2m2, m2b2, ws2e:-lot, outp0, outp1, outp2, outp3, inp3:-int

, inp1, inp2:-tccw, per0, per1, per2, per3:-void, dem:-int*

| G(gws1, outp0, per0)

|| B1(gws1, b1m1, m1b1, inp1, outp1, per1)

|| M1(b1m1, m1b1, ws1ws2, seed)

|| B2(ws1ws2, b2m2, m2b2, inp2, outp2, per2)

|| M2(b2m2, m2b2, ws2e, seed)

|| D(dem, demand)

|| E(ws2e, inp3, outp3, per3)

|| C(per0, per1, per2, per3, inp3, inp1, inp2, outp0, outp1, outp2, outp3, dem, fileout("output.txt"))

]|

xper(seed:nat, demand:int*) = |[ S(seed, demand) ]|

B.4 Tomlab

The three Tomlab files which are used for optimization are provided here. Because the
Tomlab package is not a standard toolbox of Matlab, some explanation about the files
is provided. This is printed below each m-file. Note that much information is already
embedded in the files, all text behind a %-symbol denotes a remark.

opt.m

warning off MATLAB:divideByZero

global tccw1

global tccw2

te1 = tccw1(1,1) ; te2 = tccw2(1,1) ;

ce21 = tccw1(1,2) ; ce22 = tccw2(1,2) ;

ca21 = tccw1(1,3) ; ca22 = tccw2(1,3) ;

w1 = tccw1(1,4) ; w2 = tccw2(1,4) ;

w3 = wip3 ; d1 = demand(1) ;

d2 = demand(2) ; d3 = demand(3) ;

d4 = demand(4) ; d5 = demand(5) ;

a = -24/te1 ; b = -24/te2 ;

c = 24/te1 ; d = 24/te2 ;

f = ’opt_f’; % Function value

g = []; % Gradient vector

H = []; % Hessian matrix
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HessPattern = []; % Hessian Pattern

x_L = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]’;

% Lower bound(s) of design variables x

x_U = [ Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf ...

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf ]’;

% Upper bound(s) of design variables x

Name = []; % Problem name

x_0 = [ d1 d1 d1 0 0 0 0 d2 d2 d2 0 0 0 0 d3 d3 d3 0 0 0 0 d4 d4 d4 0 0 0 0 d5 d5 d5 0 0 0 0 ];

% Starting values for the optimization

pSepFunc = []; % Number of partially separable functions

fLowBnd = []; % Lower bound on function

% Linear constraints (A) and lower and upperbounds on them (b_L and b_U)

A = [ -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 -1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 -1 1 0 0 -1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 0 0 1 -1 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 1 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 0 0 1 -1 ;

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ;

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ;

0 1 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 1 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 a 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 a 0 0 0 ;

0 0 1 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 1 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 b 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 b 0 0 ];

b_L = [ w1 w2 w3-d1 0 0 -d2 0 0 -d3 0 0 -d4 0 0 -d5 0 0 0 0 0 0 0 0 0 0 ...

-Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf ];

b_U = [ w1 w2 w3-d1 0 0 -d2 0 0 -d3 0 0 -d4 0 0 -d5 c c c c c d d d d d ...

0 0 0 0 0 0 0 0 0 0 ];

c = ’opt_c’; % Nonlinear constraint vector

dc = []; % Nonlinear constraint gradient matrix

d2c = []; % The second part of the Hessian

ConsPattern = []; % Constraint Pattern

c_L = [ -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf ]; % Lower bound(s) on nonlinear constraint(s)

c_U = [ 0 0 0 0 0 0 0 0 0 0 ] ; % Upper bound(s) on nonlinear constraint(s)

x_min = []; % Plot region parameters (optional)

x_max = []; % Plot region parameters (optional)

x_opt = []; % Known optimal point (optional)
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f_opt = []; % Known optimal function value (optional)

% Assign routine for defining the problem

Prob = conAssign(f, g, H, HessPattern, x_L, x_U, Name, x_0, pSepFunc, fLowBnd,...

A, b_L, b_U, c, dc, d2c, ConsPattern, c_L, c_U,...

x_min, x_max, f_opt, x_opt);

% Calling driver routine tomRun to run the solver

Result = tomRun(’conSolve’, Prob, [], 2);

dateandtime = fix(clock) % Displays date and time

xk=Result.x_k % Result.x_k: optimal decision variable

fk=Result.f_k % Result.f_k: optimal value

Matrix A, which consists of 35x35 elements needs some extra attention. It contains
all linear constraints of the optimization problem, each row is a constraint. The lower
and upper bounds which belong to this matrix are provided in the vectors bL and bU ,
respectively.

The first fifteen rows denote the equality constraints of the problem, three per period.
These three are represented by equations (A.4) with k = 1, 2 and (A.5). Because these
rows are equality constraints, the same value is filled in vector bL and bU .

Rows 16–20 contain the extra linear constraints which represent the maximum capacity
of workstation 1, whereas rows 21–25 represent the maximum capacity of workstation 2.
These additional constraints are introduced in Section 5.2, under the subsection ‘Tuning
Parameters’.

Rows 26–30 and 31–35 represent the capacity slopes in the origin of the characteristic
curves of workstation 1 and 2, respectively.

opt f.m

function f = opt_f(x, Prob)

c1 = [ 0.5 0.5 0.5 ] ; % release cost

c2 = [ 1 2 ] ; % wip cost

c3 = 5 ; % inventory holding cost

c4 = 10 ; % backorder cost

f = c1(1)*x(1) + c1(2)*x(2) + c1(3)*x(3) + c2(1)*x(4) + c2(2)*x(5) + c3*x(6) + c4*x(7) + ...

c1(1)*x(8) + c1(2)*x(9) + c1(3)*x(10) + c2(1)*x(11) + c2(2)*x(12) + c3*x(13) + c4*x(14) + ...

c1(1)*x(15) + c1(2)*x(16) + c1(3)*x(17) + c2(1)*x(18) + c2(2)*x(19) + c3*x(20) + c4*x(21) + ...

c1(1)*x(22) + c1(2)*x(23) + c1(3)*x(24) + c2(1)*x(25) + c2(2)*x(26) + c3*x(27) + c4*x(28) + ...

c1(1)*x(29) + c1(2)*x(30) + c1(3)*x(31) + c2(1)*x(32) + c2(2)*x(33) + c3*x(34) + c4*x(35) ;

This m-file contains the objective or cost function with its 35 elements. Also the values
of the four cost parameters c1, c2, c3 and c4 are declared.
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opt c.m

function c = opt_c(x, Prob)

global tccw1

global tccw2

te1 = tccw1(1,1) ; te2 = tccw2(1,1) ;

ce21 = tccw1(1,2) ; ce22 = tccw2(1,2) ;

ca21 = tccw1(1,3) ; ca22 = tccw2(1,3) ;

% Non-linear constraints for workstation 1

c(1) = ( (ce21+ca21) * (te1*te1*x(2)) + 2*te1*(24-te1*x(2)) ) * x(2) - 12*x(4)*(24-te1*x(2));

c(2) = ( (ce21+ca21) * (te1*te1*x(9)) + 2*te1*(24-te1*x(9)) ) * x(9) - 12*x(11)*(24-te1*x(9));

c(3) = ( (ce21+ca21) * (te1*te1*x(16)) + 2*te1*(24-te1*x(16)) ) * x(16) - 12*x(18)*(24-te1*x(16));

c(4) = ( (ce21+ca21) * (te1*te1*x(23)) + 2*te1*(24-te1*x(23)) ) * x(23) - 12*x(25)*(24-te1*x(23));

c(5) = ( (ce21+ca21) * (te1*te1*x(30)) + 2*te1*(24-te1*x(30)) ) * x(30) - 12*x(32)*(24-te1*x(30));

% Non-linear constraints for workstation 2

c(6) = ( (ce22+ca22) * (te2*te2*x(3)) + 2*te2*(24-te2*x(3)) ) * x(3) - 12*x(5)*(24-te2*x(3));

c(7) = ( (ce22+ca22) * (te2*te2*x(10)) + 2*te2*(24-te2*x(10)) ) * x(10) - 12*x(12)*(24-te2*x(10));

c(8) = ( (ce22+ca22) * (te2*te2*x(17)) + 2*te2*(24-te2*x(17)) ) * x(17) - 12*x(19)*(24-te2*x(17));

c(9) = ( (ce22+ca22) * (te2*te2*x(24)) + 2*te2*(24-te2*x(24)) ) * x(24) - 12*x(26)*(24-te2*x(24));

c(10) = ( (ce22+ca22) * (te2*te2*x(31)) + 2*te2*(24-te2*x(31)) ) * x(31) - 12*x(33)*(24-te2*x(31));

This m-file contains all ten non-linear constraints. The boundaries are declared in the
file opt.m, in the vectors cU and cL.
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Tomlab Output

This appendix contains two sample outputs of the optimization toolbox Tomlab. While
simulating the experiments, sometimes the diary of the Matlab-events is saved to disk for
later analysis of the optimization results. As explained in Experiment IV of Chapter 5,
sometimes the optimization toolbox is unable to find a feasible optimum. The current
vector xk, which the toolbox was evaluating at that time, is provided instead.

During the simulations of this research project, three different optimization faults occa-
sionally occurred. These are indicated by the following names; ‘too high penalty values’,
‘maximal number of iterations’ and ‘problem is maybe infeasible’. These problems occur
at different circumstances, with different values of the measured wip-levels and different
future demands. Most of the time, the problem is actually infeasible, due to absurd
demands and utilizations. This can happen at the top of a sine curve, but because the
demand always decreases after such a top, the controller can restore the backlog which
is created due to infeasibility of the optimization problem.

Output examples of the three occurring faults are provided below.

Too high penalty values

===== * * * =================================================================== * * *

TOMLAB /SOL - Time limited demonstration single user license Valid to 2005-09-28

=====================================================================================

Problem: No Init File - 1: User Problem 1 f_k 856.127701686405089276

sum(|constr|) 0.556172459277683995

f(x_k) + sum(|constr|) 856.683874145682807466

f(x_0) 763.500000000000000000

Solver: conSolve. EXIT=1. INFORM=106.

Schittkowski SQP algorithm with BFGS update

Too high penalty values

FuncEv 29340 GradEv 815 ConstrEv 29340 Iter 218

CPU time: 22.830000 sec. Elapsed time: 22.833445 sec.

Starting vector x (Length 35. Print first 20):
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x_0: 101.000000 101.000000 101.000000 0.000000 0.000000 0.000000

0.000000 101.000000 101.000000 101.000000 0.000000 0.000000

0.000000 0.000000 102.000000 102.000000 102.000000 0.000000

0.000000 0.000000

Optimal vector x (Length 35. Print first 20):

x_k: 64.056683 100.023112 103.247413 4.033570 10.775699 0.000000

0.752587 97.589022 97.760096 101.752587 3.862496 6.783208

0.000000 0.000000 102.717804 102.327356 102.000000 4.252944

7.110564 0.000000

Lagrange multipliers v. Vector length 80 (Print first 20):

v_k: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.499429e+01

8.156622e-03 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

4.011243e+00 1.098871e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 4.979258e+00

Gradient g_k Largest abs(gradient) 10.00000007020374149 (Print first 20):

g_k: 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00 5.000000e+00

1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00

5.000000e+00 1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e-00

2.000000e+00 5.000000e+00

cErr -1.141386e-01 -6.278770e-02 -1.657216e-03 -2.518851e-02 -3.800184e-02 -1.744847e-01

-2.177123e-02 -5.258016e-13 -8.239565e-02 -3.574702e-02

9 inequalities off more than cTol = 1.000e-06

Worst constraint validation = 1.745e-01 for constraint # 6

Projected gradient gPr: Largest abs(Projected gradient) 0.00227138479916811 (Print first 20):

gPr: 1.848104e-03 1.706076e-03 2.382691e-04 1.420276e-04 1.467807e-03 -8.881784e-16

-2.382691e-04 -2.271385e-03 -1.989671e-03 -2.382691e-04 -1.396862e-04 -2.835950e-04

-3.552714e-15 0.000000e+00 4.533907e-04 2.835950e-04 -1.665335e-15 3.010952e-05

-2.220446e-15 -2.664535e-15

*** WARNING: 26 reduced gradient values > 1E-5 *** Worst value: 2.271385e-03

xVarLow 6 xVarLow 13 xVarLow 14 xVarLow 20 xVarLow 21 xVarLow 28

xVarLow 34 LinEq 1 LinEq 2 LinEq 3 LinEq 4 LinEq 5

LinEq 6 LinEq 7 LinEq 8 LinEq 9 LinEq 10 LinEq 11

LinEq 12

v: 1.500024e+01 4.434678e+00 1.056532e+01 4.484910e+00 1.051509e+01 1.500007e+01

1.499966e+01 -4.981519e-01 -1.079339e+00 -1.391942e+01 -5.022714e-01 -1.074668e+00

-3.919178e+00 -4.995466e-01 -1.105355e+00 -4.484500e+00 -5.002566e-01 -1.110166e+00

-4.999590e+00 -5.008952e-01

=== * * * ================================================== * * *

xk =

64.0567

100.0231

103.2474

4.0336

10.7757

0

0.7526

97.5890

97.7601

101.7526

3.8625

6.7832

0

0

102.7178

102.3274

102.0000

4.2529

7.1106
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0

0

102.6280

102.5995

102.2361

4.2815

7.4739

0.2361

0

103.5605

103.4608

102.6230

4.3812

8.3117

0

0.1409

fk =

856.1277

Maximal number of iterations reached

===== * * * =================================================================== * * *

TOMLAB /SOL - Time limited demonstration single user license Valid to 2005-09-28

=====================================================================================

Problem: No Init File - 1: User Problem 1 f_k 1271.935688589917162972

sum(|constr|) 8.033410767192242119

f(x_k) + sum(|constr|) 1279.969099357109371340

f(x_0) 759.000000000000000000

Solver: conSolve. EXIT=1. INFORM=101.

Schittkowski SQP algorithm with BFGS update

Maximal number of iterations reached

FuncEv 62172 GradEv 1727 ConstrEv 62172 Iter 500

CPU time: 49.760000 sec. Elapsed time: 49.862324 sec.

Starting vector x (Length 35. Print first 20):

x_0: 100.000000 100.000000 100.000000 0.000000 0.000000 0.000000

0.000000 101.000000 101.000000 101.000000 0.000000 0.000000

0.000000 0.000000 101.000000 101.000000 101.000000 0.000000

0.000000 0.000000

Optimal vector x (Length 35. Print first 20):

x_k: 150.980869 111.640121 98.160034 39.340749 14.480087 0.000000

2.839966 91.666799 109.637854 100.616747 21.369694 23.501194

0.000000 3.223219 96.602949 105.792685 101.207685 12.179958

28.086194 0.000000

Lagrange multipliers v. Vector length 80 (Print first 20):

v_k: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.499744e+01

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

1.500099e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 1.500334e+01

Gradient g_k Largest abs(gradient) 10.00000004324422065 (Print first 20):

g_k: 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00 5.000000e+00

1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00

5.000000e+00 1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00

2.000000e+00 5.000000e+00

cErr -1.390124e+00 -1.626082e+00 -9.397260e-01 -7.219411e-01 -8.205969e-01 -8.411106e-02

-1.537422e-01 -2.609129e-01 -5.493371e-01 -1.486838e+00
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10 inequalities off more than cTol = 1.000e-06

Worst constraint validation = 1.626e+00 for constraint # 2

Projected gradient gPr: Largest abs(Projected gradient) 0.00554741660237834 (Print first 20):

gPr: 3.672439e-03 1.993014e-04 6.391490e-05 3.473138e-03 1.353865e-04 1.776357e-15

-6.391490e-05 5.425947e-04 7.155117e-04 1.151163e-04 3.300221e-03 7.357819e-04

-8.881784e-16 -1.790312e-04 -2.950168e-03 1.549876e-04 8.504858e-05 1.950649e-04

8.057209e-04 5.329071e-15

*** WARNING: 30 reduced gradient values > 1E-5 *** Worst value: 5.547417e-03

xVarLow 6 xVarLow 13 xVarLow 20 xVarLow 27 xVarLow 34 LinEq 1

LinEq 2 LinEq 3 LinEq 4 LinEq 5 LinEq 6 LinEq 7

LinEq 8 LinEq 9 LinEq 10 LinEq 11 LinEq 12 LinEq 13

LinEq 14

v: 1.500006e+01 1.500018e+01 1.500026e+01 1.500077e+01 1.500291e+01 -4.963276e-01

-1.830762e+01 -5.000418e+01 -4.994574e-01 -5.579803e+00 -4.000412e+01 -5.029502e-01

-2.271442e+00 -3.000394e+01 -4.947600e-01 -1.396077e+00 -2.000368e+01 -4.975281e-01

-1.213698e+00 -1.000291e+01

=== * * * ================================================== * * *

xk =

150.9809

111.6401

98.1600

39.3407

14.4801

0

2.8400

91.6668

109.6379

100.6167

21.3697

23.5012

0

3.2232

96.6029

105.7927

101.2077

12.1800

28.0862

0

3.0155

94.8390

99.3846

101.0268

7.6343

26.4440

0

3.9887

85.2772

88.0088

98.7306

4.9026

15.7222

0

7.2581

fk =

1.2719e+03
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Problem is maybe infeasible

===== * * * =================================================================== * * *

TOMLAB /SOL - Time limited demonstration single user license Valid to 2005-09-28

=====================================================================================

Problem: No Init File - 1: User Problem 1 f_k 766.500000008777647054

sum(|constr|) 1790.088087407047396482

f(x_k) + sum(|constr|) 2556.588087415825157223

f(x_0) 766.500000000000000000

Solver: conSolve. EXIT=1. INFORM=103.

Schittkowski SQP algorithm with BFGS update

Close iterations, but constraints not fulfilled

Too large penalty weights to be able to continue

Problem is maybe infeasible

FuncEv 144 GradEv 4 ConstrEv 144 Iter 2

CPU time: 0.240000 sec. Elapsed time: 0.242363 sec.

Starting vector x (Length 35. Print first 20):

x_0: 101.000000 101.000000 101.000000 0.000000 0.000000 0.000000

0.000000 102.000000 102.000000 102.000000 0.000000 0.000000

0.000000 0.000000 102.000000 102.000000 102.000000 0.000000

0.000000 0.000000

Optimal vector x (Length 35. Print first 20):

x_k: 101.000000 101.000000 101.000000 0.000000 0.000000 0.000000

0.000000 102.000000 102.000000 102.000000 0.000000 0.000000

0.000000 0.000000 102.000000 102.000000 102.000000 0.000000

0.000000 0.000000

Lagrange multipliers v. Vector length 80 (Print first 20):

v_k: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.920946e+01

5.790539e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 4.500000e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 1.500020e+01

Gradient g_k Largest abs(gradient) 10.00000007020374149 (Print first 20):

g_k: 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00 5.000000e+00

1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00 2.000000e+00

5.000000e+00 1.000000e+01 5.000000e-01 5.000000e-01 5.000000e-01 1.000000e+00

2.000000e+00 5.000000e+00

cErr -1.224730e+02 -1.146975e+02 -1.146975e+02 -1.067457e+02 -1.067457e+02 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

5 inequalities off more than cTol = 1.000e-06

Worst constraint validation = 1.225e+02 for constraint # 1

Projected gradient gPr: Largest abs(Projected gradient) 2.30666614030540362 (Print first 20):

gPr: 9.581610e-01 1.253162e+00 2.109424e-15 -2.950010e-01 1.253162e+00 2.664535e-15

1.776357e-15 8.469864e-01 7.469444e-01 1.250027e+00 -1.949591e-01 7.500798e-01

1.250027e+00 3.552714e-15 2.237829e-01 3.900431e-02 -1.250027e+00 -1.018047e-02

2.039111e+00 -8.881784e-16

*** WARNING: 23 reduced gradient values > 1E-5 *** Worst value: 2.306666e+00

xVarLow 6 xVarLow 7 xVarLow 14 xVarLow 20 xVarLow 21 xVarLow 27

xVarLow 28 xVarLow 34 xVarLow 35 LinEq 1 LinEq 2 LinEq 3

LinEq 4 LinEq 5 LinEq 6 LinEq 7 LinEq 8 LinEq 9

LinEq 10

v: 5.503189e+00 9.496811e+00 1.374997e+01 6.289137e+00 8.710863e+00 5.160980e+00

9.839021e+00 5.806666e+00 9.193334e+00 4.581610e-01 1.490002e+00 9.900021e-01

3.469864e-01 7.431641e-01 1.493191e+00 -2.762171e-01 -5.067561e-01 -2.256783e+00

-4.034515e-01 -4.676455e-01

=== * * * ================================================== * * *

xk =
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101.0000

101.0000

101.0000

0.0000

0.0000

0

0

102.0000

102.0000

102.0000

0.0000

0.0000

0.0000

0

102.0000

102.0000

102.0000

0.0000

0.0000

0

0

103.0000

103.0000

103.0000

0.0000

0.0000

0

0

103.0000

103.0000

103.0000

0.0000

0.0000

0

0

fk =

766.5000


