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Abstract

In this paper the problem of global trajectory tracking control for the chained form system
and the kinematic model of a mobile robot is considered. We develop an observer based con-
troller using a cascaded system approach, resulting in K-exponential convergence of tracking
error. Simulations are provided to illustrate theoretical results.

keywords: mobile robot, chained form system, observer, trajectory tracking, cascaded
system.

1 Introduction

Modeling and control of nonholonomic systems received significant attention during recent years.
One of the problems connected to the subject of control is that of following a given reference
trajectory (a trajectory tracking problem).

Several control schemes considering this issue have been proposed, based on different ap-
proaches. In [4], [8], [7] the linearization of the error model was used. In [1] the idea of dynamic
feedback linearization was proposed. Global tracking results using integrator backstepping tech-
nique may be found in [3] and [2]. In [9] linear controllers based on cascaded systems approach
have been designed.

The controllers mentioned above ensure local or global tracking of a reference trajectory,
whereas most of them assume that all state variables of the considered system are directly mea-
surable. However this is an ideal case, which can hardly be met in physical systems. In practical
cases some state variables cannot be measured or the cost of measuring these variables is so high
that one usually avoids using expensive sensors.

In this paper we design observers for a unicycle model and for an equivalent three-dimensional
chained form system. For both systems we propose controllers which ensure K-exponential con-
vergence to zero of trajectory tracking errors in the closed-loop systems.

The full state observer for a three-dimensional chained form system is defined as a copy of the
system being observed with additional terms which assure the convergence of observation error.
Then using a lemma from adaptive control we show the exponential convergence of the observer
error. In the design of the reduced order observer we use a result for linear systems, where the
observer estimates a new variable defined as a linear combination of unknown and known variables.
In our definition of the new variable we use a time-dependent term instead of the constant gains
used customarily in linear systems. The proof of convergence is based on the cascaded systems
approach.

The difficulty encountered in the case of the unicycle model is observing the orientation angle
which appears in the position dynamics in the form of nonlinear terms. To avoid this difficulty,
we define a four-dimensional system equivalent to the basic, three-dimensional model. Then we
find an observer being a copy of the new system and use a Lyapunov function to prove the global
asymptotic convergence of the observer error.

With regard to the problems mentioned in the case of full state observer we have resigned
from searching for an observer of the orientation angle. Instead, we modify the controller given
in [9] by replacing the angle with a certain its function and design the observer to estimate this
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function. Finally we demonstrate that the error in the closed-loop system with the new controller
both using the original angle and the observer output tends to 0 K-exponentially.

The paper is composed in the following way. Further in this section we present basic concepts
and lemmas used in the paper and formulate the main problem. In section 2 the problem of
observer design for a chain-form system is considered. In section 3 we design observers for the
model of unicycle. Section 4 contains conclusions referring to the obtained results.

1.1 Preliminary results

Barbălat’s Lemma. If f(t) is a differentiable function on IR, with lim
t→∞

f(t) = m <∞ and if ḟ(t)

is uniformly continuous, then lim
t→∞

ḟ(t) = 0.

Lemma 1. As a consequence of Barbălat’s lemma, if a function f(t) is lower bounded on IR and
ḟ(t) is negative semi-definite and uniformly continuous in t then lim

t→∞
ḟ = 0.

Definition 1. A continuous function φ : [0, a) → [0,∞) is said to be a class K function if it is
strictly increasing and φ(0) = 0.

Definition 2. A continuous function β : [0, a)× [0,∞) → [0,∞) is said to be of class KL if, for
each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the
mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→ ∞.

Consider the system
ẋ = f(t, x) ∀t � 0 f(t, 0) = 0, (1)

where f(t, x) is piecewise continuous in t and locally Lipschitz in x.

Definition 3. A function f : IR+ × IRn → IR is said to be positive definite if

1. if is continuous respect to t and x

2. ∀t ∈ IR+ f(t, x) � f0(x) where f0(x) is a time invariant positive definite function i.e.
∀x �= 0 f0(x) > 0 and f0(0) = 0.

f(t, x) is positive semidefinite if ∀x f0(x) � 0. The function f(t, x) is called negative definite or
negative semidefinite when −f(t, x) is, respectively, positive definite or positive semidefinite.

Lemma 2 (See [3]). If in the scalar system

ẋ = −cx+ p(t),

c > 0 and p(t) is bounded and uniformly continuous, and if for any initial condition x(t) is bounded
and converges to 0 as t→ ∞ then

lim
t→∞ p(t) = 0.

Definition 4 (Persistence of excitation). A function w(t), w : IR → IRn is said to be persistently
exciting if there exist positive constants δ and k such that

t+δ∫
t

w(τ)wT (τ)dτ � kIn, ∀t � t0 (2)

Lemma 3. (cf. [5]). Consider the system[
ė

φ̇

]
=

[
Am bmw

T (t)
−γw(t)cTm 0

] [
e
φ

]
(3)

where e ∈ IRn, φ ∈ IRm, Am is a n×n Hurwitz matrix, bm and cm are n×1 vectors γ > 0. Assume

that M(s)
�
= cTm(sI −Am)−1bm is a strictly positive real transfer function, i.e. Re[M(iω)] > 0 for

all ω ∈ IR. Then φ(t) is bounded and
lim
t→∞ e(t) = 0.
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If in addition w(t) and ẇ(t) are bounded for all t � t0, and w(t) is persistently exciting then the
system (3) is globally exponentially stable.

Definition 5. The system (1) is uniformly stable if for each ε > 0 there exist δ > 0, independent
of t0, such that

∀t � t0 � 0 ‖x(t0)‖< δ ⇒ ‖x(t)‖< ε

Definition 6. The system (1) is globally uniformly asymptotically stable (GUAS) if it is uni-
formly stable and there exists a class KL function β(·, ·) such that for all initial states x(t0)

∀t � t0 � 0 ‖x(t)‖� β(‖x(t0)‖, t− t0)

Definition 7. The system (1) is globally exponentially stable (GES) if there exist positive con-
stants K and γ such that the solution x(t) satisfies

∀t � t0 ‖x(t)‖� ‖x(t0)‖Ke−γ(t−t0)

Definition 8. The system (1) is said to be globally K-exponentially stable if there exist γ > 0
and a class K function k(·) such that the solution x(t) satisfies

∀t � t0 ‖x(t)‖� k(‖x(t0)‖)e−γ(t−t0)

Theorem 4 (Converse Lyapunov theorem cf. [5]). Consider the system (1). Assume that the
equilibrium x(t) = 0 is globally exponentially stable. Then there exists a class C1 function V :
IR+ × IRn → IR that satisfies

c1‖x‖2� V (t, x) � c2‖x‖2
∂V

∂t
+
∂V

∂x
f(t, x) � −c3‖x‖2∥∥∥∥∂V∂x
∥∥∥∥ � c4‖x‖2

for some positive constants c1, c2, c3 and c4.

Theorem 5 (Cascaded systems, see [10]). Consider the system

Σ1 : ẋ = f1(t, x) + g(t, x, y)y

Σ2 : ẏ = f2(t, y)
(4)

where x ∈ IRn, y ∈ IRm, f1(t, x) is continuously differentiable in (t, x) and f2(t, y), g(t, x, y) are
continuous in their arguments, and locally Lipschitz in y and (x, y), respectively.

We can view the system (4) as the system ẋ = f1(t, x) that is perturbed by the state of the
system ẏ = f2(t, y). The cascaded system (4) is GUAS if the following three assumptions hold:

1. For Σ1: the system ẋ = f1(t, x) is GUAS and there exists a continuously differentiable func-
tion V (t, x) : IR�0 × IRn → IR that satisfies

W (x) � V (t, x),
∂V
∂t + ∂V

∂x · f1(t, x) � 0, ∀‖x‖ � η,∥∥∂V
∂x

∥∥ ‖x‖ � cV (t, x), ∀‖x‖ � η,

where W (x) is a positive definite proper function, c > 0 and η > 0 are constants, ‖·‖ means
Euclidean norm of a vector,

2. For the interconnection: the function g(t, x, y) satisfies for all t � t0:

‖g(t, x, y)‖ � θ1(‖y‖) + θ2(‖y‖)‖x‖,
where θ1, θ2 : IR�0 → IR�0 are continuous functions,
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3. For Σ2: the system ẏ = f2(t, y) is GUAS and for all t0 � 0:

∞∫
t0

‖y(t, t0, y(t0))‖dt � κ(‖y(t0)‖),

where the function κ(·) is a class K function,

Lemma 6. If the assumptions of Theorem 5 hold and in addition ẋ = f1(t, x) and ẏ = f2(t, y)
are globally K-exponentially stable, then the cascaded system (4) is globally K-exponentially stable.

Remark 1. When the system ẏ = f2(t, y) is K-exponentially stable

∞∫
t0

‖y(t)‖dt �
∞∫

t0

k(‖y0‖)e−γtdt =
1

γ
k(‖y0‖)e−γt0

then the assumption on Σ2 of Theorem 5 is satisfied.

Remark 2. If the system ẋ = f1(t, x) is GES the existence of a proper function V (t, x) in Theorem 5
is guaranteed by Theorem 4.

1.2 Problem formulation

ω

x

y

θ

v

Figure 1: The mobile car

A kinematic model of a mobile car with two degrees of freedom is given by:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

, (5)

where (x, y) are the midpoint of the rear axis coordinates, θ is the heading direction, v is the
forward velocity of the car and ω is the angular velocity (see Figure 1).

With the following change of coordinates and the feedback transformation⎧⎪⎨⎪⎩
x1 = θ

x2 = x cos θ + y sin θ

x3 = x sin θ − y cos θ

(6a)

{
u1 = ω

u2 = v − ωx3
(6b)

the system (5) is transformed into the chained form:

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

(7)
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The problem studied in the sequel is to find controllers for systems (5) and (7) which guarantee
tracking a given reference trajectory when one of the state variables cannot be measured.

With this purpose we first design an observer estimating the unknown coordinates or the whole
state vector. Next, we modify one of the known controllers replacing unmeasurable states with
their estimates and determine the conditions under which the combination of the observer and the
controller tracks the reference trajectory asymptotically.

2 Tracking a chained form system

2.1 Controller

A reference trajectory for the chained form system (7) is given by the following equations

ẋ1r = u1r

ẋ2r = u2r

ẋ3r = u1r x2r

(8)

We define the tracking error as xe = x− xr with the dynamics

ẋ1e = u1 − u1r

ẋ2e = u2 − u2r

ẋ3e = u1 x2 − u1r x2r

(9)

Proposition 1. Consider the system (9) with the state feedback

u1 = u1r − c1 x1e

u2 = u2r − c2 x2e − c3 u1 x3e
(10)

If c1, c2, c3 are positive constants, x2r is bounded, and if u1r is persistently exciting then the
closed-loop system (9, 10) is globally K-exponentially stable

Proof. From (9) and (10) we obtain the following closed loop dynamics

ẋ1e = −c1 x1e (11a)

ẋ2e = −c2 x2e − c3 u1 x3e (11b)

ẋ3e = u1 x2 − x2r u1 + x2r u1 − u1r x2r = (11c)

= u1 x2e + (u1 − u1r)x2r = u1 x2e − x2r c1 x1e

Here the subsystem (11a) is exponentially stable with the solution x1e(t) = x1e(0)e
−c1t. Since x1e

tends to 0 and thus is not persistently exciting and since we have assumed that u1r is persistently
exciting, it follows that u1 defined as in (10) satisfies the persistence of excitation condition.

Denote ξ = [x2e x3e]
T , then the subsystems (11b) and (11c) can be put in the form

ξ̇ =

[
ẋ2e
ẋ3e

]
=

[−c2 −c3u1
u1 0

] [
x2e
x3e

]
−
[

0
c1x2r

]
x1e = F(t)ξ +G(t)x1e (12)

We can treat (12) as a system ξ̇ = F(t)ξ perturbed by the state of (11a). Since x1e converges to
0 exponentially, it satisfies the integrability condition of Σ2 of Lemma 5.

Then using Lemma 3 we find that system ξ̇ = F(t)ξ is globally exponentially stable. Hence
from converse Lyapunov theory it follows that there exists a function V satisfying assumptions on
Σ1 of Theorem 5. The boundedness of x2r guarantees that the interconnection assumption is also
fulfilled.

Hence, using Theorem 6 we conclude that the system (9) is globally K-exponentially stable.
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2.2 A full state observer for a chained form system

In this section a system in chained form (7) with two outputs is considered:

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

y1 = x1

y2 = x3.

(13)

The goal is to find an observer for the system (13). The idea is to find an observer defined as
a copy of the system (13) with an additional correction term f . We try to determine f such that
the state of the observer converges to the state of the system

˙̂x1 = u1 + f1(x̂1, x̂2, x̂3, u1, u2, y1, y2)

˙̂x2 = u2 + f2(x̂1, x̂2, x̂3, u1, u2, y1, y2)

˙̂x3 = u1x̂2 + f3(x̂1, x̂2, x̂3, u1, u2, y1, y2),

(14)

where f1, f2, f3 are to be determined.
If we define the observer error as x̃ = x− x̂ then the error dynamics become

˙̃x1 = −f1(x̂1, x̂2, x̂3, u1, u2, y1, y2)
˙̃x2 = −f2(x̂1, x̂2, x̂3, u1, u2, y1, y2)
˙̃x3 = u1x̃2 − f3(x̂1, x̂2, x̂3, u1, u2, y1, y2).

(15)

When the system (15) is globally asymptotically stable at 0, the estimated state x̂ tends to
the real state x.

Proposition 2. Consider the system (15) with functions f1, f2 and f3 defined as follows

f1 = a1x̃1

f2 = a2u1x̃3

f3 = a3x̃3

(16)

where a1, a2, a3 > 0 are tuning gains. Then, assuming that u1 and u̇1 are bounded and u1 is
persistently exciting, the system (15) is globally exponentially stable at 0 and thus (14, 16) form
an observer for the system (13).

Proof. We notice that system (15) with f defined as in (16) may be treated as two separate systems
x̃1 and [x̃2 x̃3]

T , in which the subsystem ˙̃x1 = −a1 x̃1 is globally exponentially stable.
When we represent the second subsystem in the form[

˙̃x3
˙̃x2

]
=

[ −a3 u1
−a2u1 0

] [
x̃3
x̃2

]
(17)

hence, using Lemma 3, we find M(iω) = (iω + a3)
−1 which has real part greater than 0 for all

ω ∈ IR. From the assumption that u1 and u̇1 are bounded and u1 is persistently exciting from
Lemma 3 we conclude that the system (17) is globally exponentially stable.

2.3 Observer performance

The behaviour of the observer was tested using MATLAB. The figures contain time characteristics
of x̃2 and x̃3 only, because x̃1 is an independent variable with the solution x̃1(t) = x̃1(0) e

−a1 t.
To show exponential convergence all graphs were plotted in semilogarithmic scale. Initial values

of the errors were set at 1.

6



0 0.5 1 1.5 2 2.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

time (sec)

er
ro

rs

x~
2

x~
3

(a) u1 = 1
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(c) u1 = sin(10t), small gains
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(d) u1 = sin(10t), increased gains

Figure 2: Performance of the full state observer for a chained form system
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Figure 2 shows the errors of the observer for different inputs fulfilling the assumptions. Fig-
ure 2(a) presents time characteristics for constant control input u1 = 1 with gains a2 = 1000 and
a3 = 100. In Figure 2(b) errors for input u1 = sin t and gains a2 = 1000 and a3 = 10 is shown.

Next figures present the influence of increasing gains. In Figure 2(c) a2 = 100, a3 = 10,
comparing to Figure 2(d) where a2 = 10000, a3 = 100, one can notice smaller oscillations of the
variable x2, but also longer convergence time.

As one can see choosing proper values for gains improve performance of the observer remark-
ably.
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(c) u1 = 1√
t

Figure 3: The observer (14, 16) in case when input u1 is not persistantly exciting

To check if the assumptions on persistant excitation of u1 are necessary simulations for inputs
u1 = 0, u1 = e−t and u1 = 1/

√
t were made (see Figure 3).

In the cases of u1 = 0 (Figure 3(a)) and u1 = e−t (Figure 3(b)) when the
∫∞
0
u21(t)dt = c <∞

the error x̃2 does not converge to 0. In the case of u1 = 1/
√
t (Figure 3(c)) the integral is infinite,

but u1 is not persistently exciting therefore x̃2 tends to 0 although not exponentially.

2.4 A reduced order observer

The observer (14, 16) reconstructs all three state variables although two of them are known.
However, it is possible to use a reduced order observer instead of the full state observer and
estimate only the unknown variable x2.

With the purpose of combining an observer with the controller (10), an observer estimating
the closed loop system error (11) is proposed.
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The error dynamics (11) can be put into the following form

ẋe =

⎡⎣ẋ1eẋ2e
ẋ3e

⎤⎦ =

⎡⎣ −c1 0 0
0 −c2 −c3u1

−c1x2r u1 0

⎤⎦⎡⎣x1ex2e
x3e

⎤⎦ (18)

y =

[
y1
y2

]
=

[
x1e
x3e

]
. (19)

A reduced order observer for this system comes from a result for linear systems (see [6]).
First we define a new variable z

z = x2e −
[
b1(t) b2(t)

] [x1e
x3e

]
= x2e −B(t)y, (20)

where B = [b1(t) b2(t)] and b1, b2 are function we choose to guarantee asymptotic stability of the
observer. The derivative of z is given by

ż = −c2x2e − c3u1x3e − Ḃy −Bẏ =

= −(b2u1 + c2)(x2e −By)− (b2u1 + c2)By − c3u1x3e − Ḃy + b1c1x1e + b2c1x2rx1e =

= −(b2u1 + c2)z − (b2u1 + c2)By − c3u1x3e − Ḃy + b1c1x1e + b2c1x2rx1e.

(21)

An estimate of z can be calculated as

˙̂z = −(b2u1 + c2)ẑ − (b2u1 + c2)By − c3u1x3e − Ḃy + b1c1x1e + b2c1x2rx1e (22)

With estimation error z̃ = z − ẑ, the error dynamics become

˙̃z = −(b2u1 + c2)z̃ (23)

where c2 is a positive constant. Then choosing B(t) = [0 a1u1(t)] with a1 > 0 and assuming that
u1 is bounded we find that the system (23) is globally exponentially stable. The value of b1(t)
does not influence the convergence, however choosing b1(t) = 0 simplifies the update law for ẑ.

Using this result we define an estimate of x2e

x̂2e = ẑ +B(t)y (24)

From (24) and (22) with x̃2e = x2e − x̂2e we obtain

˙̂x2e = ˙̂z + a1u1ẋ3e + a1u̇1x3e =

= a1u
2
1x̃2e − c2x̂2e − c3u1x3e

˙̃x2e = −(a1u
2
1 + c2)x̃2e

2.5 The controller using the reduced order observer

In the controller (10) the input u2 is a function of the unknown state x2e. However, we are able
to obtain an estimate x̂2e for x2e using the observer (22, 24). We prove that after replacing x2e
with x̂2e in the control law, the trajectory tracking error still converges to 0.

Proposition 3. Consider the system (9) with the following control law

u1 = u1r − c1 x1e

u2 = u2r − c2 x̂2e − c3 u1 x3e
(25)

and x̂2e defined by

x̂2e = ẑ + a1u1x3e (26a)
˙̂z = −(a1u

2
1 + c2)ẑ − (a1u

2
1 + c2)a1u1x3e − c3u1x3e − a1u̇1x3e − a1c1u1x2rx1e. (26b)

If c1, c2, c3 and a1 are positive constants, x2r, u1r and u̇1r are bounded and if u1r is persistently
exciting, then the combined system (9, 25 and 26) is globally K-exponentially stable, hence the
closed loop system trajectory converges to the reference trajectory.
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Proof. From the dynamics (9) and the control law (25) we obtain the following equations

ẋ1e = −c1 x1e (27a)

ẋ2e = −c2 x̂2e − c3 u1 x3e (27b)

ẋ3e = u1 x2e − x2r c1 x1e, (27c)

where (27b) can be rewritten as

ẋ2e = −c2 x2e + c2 x2e − c2 x̂2e − c3 u1 x3e =

= −c2 x2e − c3 u1 x3e + c2 x̃2e.
(28)

Since the x2e update law depends on x̃2e, we replace the observer equations (26) with x̃2e dynamics.
Hence combining (27), (28) and (25) we obtain the following set of equations suitable to apply the
theorem on cascaded systems.[

ẋ2e
ẋ3e

]
=

[−c2 −c3u1r
u1r 0

] [
x2e
x3e

]
+

[
c1c3x3e c2

−c1x2r − c1x2e 0

] [
x1e
x̃2e

]
=

= F(t)

[
x2e
x3e

]
+G(t, x2e , x3e)

[
x1e
x̃2e

]
(29a)[

ẋ1e
˙̃x2e

]
=

[ −c1x1e
−(a1u

2
1 + c2)x2e

]
(29b)

The solution of x1e converges exponentially to 0 and is bounded. The solution of x̃2e dynamics is
given by

x̃2e = x̃2e(0) e
− ∫

t
0 (c2+a1u

2
1(τ))dτ � x̃2e(0) e

−c2t.

Since constants c2 and a1 are assumed to be positive, we conclude that x̃2e converges exponentially
to 0. Hence the subsystem (29b) is GES and it meets the assumptions on subsystem Σ2 of
Theorem 5.

According to Lemma 3, if u1 and u̇1 are bounded and u1 is persistently exciting, the subsys-
tem (29a) is globally exponentially stable.

The assumption on linearity of the interconnection term is satisfied if x2r is bounded. Hence
from Lemma 6 we conclude that the system (29) is globally K-exponentially stable.

3 An observer for a mobile car

In this section we consider the problem of the system (5) following a reference trajectory (xr , yr, θr)
(see [4]). Let us define the error coordinates in a local coordinate system attached to the mobile
car ⎡⎣xeye

θe

⎤⎦ =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦⎡⎣xr − x
yr − y
θr − θ

⎤⎦ .
The trajectory tracking error is described by the equations

ẋe = ωye + vr cos θe − v

ẏe = −ωxe + vr sin θe

θ̇e = ωr − ω.

(30)

As a controller we use the result from [9].

v = vr + c2xe

ω = ωr + c1θe.
(31)

10



Combining (30) and (31) we obtain the following closed loop error dynamics

ẋe = (ωr + c1θe)ye + vr(cos θe − 1)− c2xe

ẏe = −(ωr + c1θe)xe + vr sin θe

θ̇e = −c1θe.
(32)

Remark 3. Clearly, since the θ̇e equation depends only on θe one cannot reconstruct xe and ye
when only the angle is measurable.

3.1 A full state observer

3.1.1 A four dimensional observer

The full state observer is usually defined as a copy of a system with additional terms which assure
the error convergence. However, in the case of the system (5) finding the proper terms is not
trivial because of the trigonometric functions of θ present in x and y dynamics. Therefore, we
increase the dimension of the system (5) by defining new variables s and c which replace the angle
θ.

c = cos θ

s = sin θ
(33)

Then we transform the system equations (5) to the following form

ẋ = v c

ẏ = v s

ṡ = ω c

ċ = − ω s,

(34)

where x and y are assumed to be measured.

Remark 4. Since we have transformed the three dimensional system to the one with higher di-
mension, some constraint equations should appear. In our case the constrains have the form
s2 + c2 = 1, so the state space of (34) is an infinite cylinder. For the new system we can find
an observer although it does not necessarily satisfy the constraint equation. It appears that the
dimension of the observer is greater than the dimension of the system.

Similarly to Proposition 2 we define an observer being a copy of the system (34) with an
additional vector function f(x, y, x̂, ŷ, ĉ, ŝ, v, ω).

˙̂x = v ĉ+ f1

˙̂y = v ŝ+ f2

˙̂s = ω ĉ+ f3

˙̂c = − ω ŝ+ f4.

(35)

When we define the observation error as the difference between (34) and (35), we obtain the
following error dynamics

˙̃x = ẋ− ˙̂x = vc̃− f1

˙̃y = ẏ − ˙̂y = vs̃− f2

˙̃s = ṡ− ˙̂s = ωc̃− f3

˙̃c = ċ− ˙̂c = ωs̃− f4.

(36)

If the error converges to 0, we can conclude that the estimates x̂, ŷ, ŝ and ĉ tend to the state
of the system (34).

11



Proposition 4. Consider an observer in the form

˙̂x = v ĉ+ a1 x̃

˙̂y = v ŝ+ a2 ỹ

˙̂s = ω ĉ+ a3v ỹ

˙̂c = − ω ŝ+ a4v x̃

(37)

with error equations
˙̃x = v c̃− a1 x̃

˙̃y = v s̃− a2 ỹ

˙̃s = ω c̃− a3v ỹ

˙̃c = − ω s̃− a4v x̃,

(38)

where a1, a2, a3, a4 > 0. If ω, v and v̇ are bounded, and if there exists an ε > 0 such that

lim inf
t→∞ v(t) � ε (39)

then the system (38) is globally asymptotically stable at 0.

Proof. Consider the positive definite function V

V =
1

2

(
a4 x̃

2 + a3 ỹ
2 + s̃2 + c̃2

)
. (40)

Differentiating V along the dynamics (38) yields

V̇ = a4 x̃ ˙̃x+ a3 ỹ ˙̃y + s̃ ˙̃s+ c̃ ˙̃c =

= a4v x̃c̃− a4a1 x̃
2 + a3 v ỹ s̃− a3 a2 ỹ

2 + ω s̃c̃− a4v x̃c̃− ω s̃c̃− a3v ỹs̃ =

= −a4a1 x̃2 − a3a2 ỹ
2.

(41)

Since V > 0 and V̇ � 0 we conclude that x̃, ỹ, s̃ and c̃ are bounded. Differentiating V̇ we find

V̈ = −a1a4 x̃(vc̃− a1x̃)− a2a3 ỹ(vs̃− a1ỹ)

which, when |v|� vmax, is also bounded. Therefore we conclude that V̇ is uniformly continuous.
Hence, from Lemma 1 we know that V̇ → 0, what results with x̃ and ỹ converging to 0.

From (38) and the assumption on boundedness of ω we conclude that s̃ and c̃ are uniformly
continuous. Hence we apply Lemma 2 to the x̃1 and x̃2 dynamics in (38) and obtain

lim
t→∞ v s̃ = 0, lim

t→∞ v c̃ = 0.

With the assumption (39) on v we conclude that s̃ and c̃ tend asymptoticaly to 0 as t→ ∞.

The main disadvantage of this observer is its redundancy, because two variables are used to
estimate θ. Moreover the observer estimates only functions of θ and the orientation angle has to
be calculated separately (taking for example θ̂ = arctan( ŝ

ĉ )).

3.1.2 Simulations

The following simulations show the performance of the observer proposed in the previous subsec-
tion. Since in most cases the angle θ̂, and not ŝ or ĉ, is needed, plots were plotted for θ̄ defined as
follows

θ̄ =

⎧⎨⎩
arccos c̃

s̃2+c̃2 for s̃ � 0

− arccos c̃
s̃2+c̃2 for s̃ < 0

12
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Figure 4: A four dimensional observer for a mobile car
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All plots were made in semilogarithmic scale. Initial values of errors were equal to θ̄ = π
2

(s̃ = 1, c̃ = 0), x̃ = 10 and ỹ = 40.
In Figure 4 observer errors for inputs v = 1 and v = sin(t) are shown. The gains used are

a1 = a2 = 10 and a3 = a4 = 100. One can see that the errors converge to 0 exponentially.
Figure 5 presents error characteristics when the input v is not persistently exciting. If the

input v satisfies condition
∞∫
0

v2(t)dt = ∞ (42)

the observer still tends to 0, but not exponentially (Figure 5(c)). Otherwise, the error of the angle
converges to a non-zero constant (Figures 5(a) and 5(a)).

3.2 A reduced-order observer

3.2.1 Estimating position coordinates

In order to present a possiblity of estimating each of the state variables given in (32), we shall
design the observers for different sets of available outputs.

To observe ye we assume the following outputs[
y1
y2

]
=

[
xe
θe

]
.

In a similar way as in section 2.4 we introduce a new variable z being a linear combination of
known variable xe and unknown ye

z = ye + b(t) xe,

where b(t) is a function we choose to obtain the convergence of the observer.
Differentiating z along the dynamics (32), with ω = ωr + c1θe, yields

ż = −ωxe + vr sin θe + ḃxe + bωye + bvr(cos θe − 1)− c2xe =

= bω(ye + bxe)− (b2ω + ω + c2 − ḃ)xe + vr sin θe + bvr(cos θe − 1) =

= bωz − (b2ω + ω + c2 − ḃ)xe + vr sin θe + bvr(cos θe − 1).

To simplify the equations we denote

f(t, xe, θe) = −(b2ω + ω + c2 − ḃ)xe + vr sin θe + bvr(cos θe − 1). (43)

Then the z dynamics become
ż = bωz + f(t, xe, θe). (44)

We use a copy of (44) as the observer

˙̂z = bωẑ + f(t, xe, θe). (45)

Denote the estimation error ỹe = ye− ŷe. Then we have to find b(t) to stabilize the error dynamics

Proposition 5. Consider the system (32) with outputs xe and θe and the following observer
estimating ye

ŷe = ẑ − b(t)xe,

where ẑ is the solution of (45, 43), b(t) = −cyω(t) = −cy(ωr(t) + c1θe), cy > 0 and

lim
t→∞

t∫
0

ω2
r(τ)dτ = ∞. (46)

Then ỹe = ye− ŷe converges to 0 as t tends to ∞. If in addition ωr(t) is persistently exciting then
ỹe converges to 0 exponentially.
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Proof.

˙̃ye = ẏe − ˙̂ye = ż − d
dt(b(t)xe)− ˙̂z + d

dt (b(t)xe) =

= b(t)ωz + f(t, xe, θe)− b(t)ωẑ − f(t, xe, θe) =

= b(t)ω(z − ẑ − b(t)xe + b(t)xe) =

= b(t)ωỹe

(47)

When b(t) = −cyω and cy > 0 the solution of (47) is

ỹe(t) = ye(0)e
−cy

∫
t
0
ω2(τ)dτ (48)

which tends to 0 if the integral goes to ∞.
Furthermore, if ω(t) is persistently exciting ỹe converges to 0 exponentially (cf. [11]).
In the closed loop system obtained from (30), (31) the solution θe(t) = θe(0)e

−c1t. Hence θe
and θ̇e converge exponentially to 0. Since ω = ωr + c1θe, we conclude that the assumptions on ω
given in Proposition 5 are equivalent to the corresponding conditions on ωr.

The control law given in (31) is a function of available outputs and therefore the observer of
ye does not influence the performance of the system.

Analogously to the above result, we can define an observer for xe when the available outputs
are [

y1
y2

]
=

[
ye
θe

]
z = xe + b(t)ye

ż = ω(t, θe)ye − c2xe + vr(cos θe − 1) + ḃye − b(t)ω(t, θe)xe + b(t)vr sin θe =

= −(c2 + b(t)ω)(xe + b(t)ye) + f(t, ye, θe) =

= −(c2 + b(t)ω)z + f(t, ye, θe)

x̂e = ẑ − b(t)ye

˙̂z = −(c2 + b(t)ω)ẑ + f(t, ye, θe)
(49)

Hence we obtain the following observer error dynamics

˙̃xe = ẋe − ˙̂xe = ż − d
dt(b(t)ye)− ˙̂z + d

dt(b(t)ye) =

= −(c2 + b(t)ω)(z − ẑ) =

= −(c2 + b(t)ω)x̃e.

If b(t) = ceω and if c2, ce > 0, then the observer error converges exponentially to 0.
After we have found an observer estimating the unknown variable xe, we replace xe by x̂e in

the controller (31).

Proposition 6. Consider the system

ẋe = (ωr + c1θe)ye + vr(cos θe − 1)− c2x̂e

ẏe = −(ωr + c1θe)xe + vr sin θe

θ̇e = −c1θe
˙̃xe = −(c2 + ceω

2)x̃e,

(50)

where c1, c2, ce are positive constants and x̃e = xe − x̂e.
Under the assumption that ωr and ω̇r are bounded and ωr is persistently exciting the system (50)

is K-exponentially stable.
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Proof. We can prove stability of (50) in a similar way as in the proof of Proposition 3.
Putting the xe equation in form

ẋe = (ωr + c1θe)ye + vr(cos θe − 1)− c2xe + c2x̃e

we can treat first three equations included in the system (50) as the system (32) perturbed by the
observer error x̃e where (32) is K-exponentially stable under the assumptions on ωr, ω̇r and c1
(cf. [9]), and x̃e is exponentially stable if the conditions on c2 and ce are satisfied. Hence applying
Lemma 6 we conclude that the system (50) is globally K-exponentially stable.

3.2.2 An observer estimating the orientation angle

With the purpose of finding a reduced order observer for the system (32) when xe and ye are
measured, we first try to find an observer for the simplified system

ẋe = vr cos θe

ẏe = vr sin θe

θ̇e = 0.

(51)

Then we expect the observer for the system (51) may be extended afterwards to an observer for
the system (32).

In a similar way as in section 3.1.1 we transform (51) by setting sin θe = se and cos θe = ce

ẋe = vrce

ẏe = vrse

ċe = 0

ṡe = 0.

A reduced order observer for this system is defined via[
ĉe
ŝe

]
=

[
ẑ1
ẑ2

]
+

[
b1(t) 0
0 b2(t)

] [
xe
ye

]
=

[
ẑ1
ẑ2

]
+B

[
xe
ye

]
(52)[

˙̂z1
˙̂z2

]
= −vrB

[
ẑ1
ẑ2

]
− vrB

2(t)

[
xe
ye

]
− Ḃ(t)

[
xe
ye

]
. (53)

From (52) and (53) defining s̃e = se−ŝe and c̃e = ce−ĉe and choosing b1(t) = a1vr and b2(t) = a2vr
where a1, a2 > 0 yields

˙̃ce = −b1(t)vr c̃e = −a1v2r c̃e (54a)

˙̃se = −b2(t)vr s̃e = −a2v2r s̃e, (54b)

which are asymptotically stable if vr satisfies the condition (42) and exponentially stable if vr is
persistently exciting (compare the proof of Proposition 5).

It is worth of noting that the equations (54) are separated. Hence, we are able to use only one
of them as an observer for θe.

When we compare θe equations in (30) and (32) we remark that for |θe|< π it is possible to
use ω = ωr + c1 sin θe instead of (31) to stabilize θe. Hence we obtain

θ̇e = −c1 sin θe. (55)

Define the Lyapunov function
V (θe) = 1− cos θe, (56)

and differentiate it along the dynamics (55)

V̇ = −c1 sin2 θe � 0. (57)
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If c1 is a positive constant and |θe(0)|< π, the system (55) is asymptoticaly stable.
We can also find α(θe(0)) > 0 such that

sin2 θe � α(θe(0))(1− cos θe).

Then (57) satisfies
V̇ � −c1α(θe(0))(1− cos θe) = −c1α(θe(0))V

and the system (55) is K-exponentially stable.
It turns out that we can use sin θe instead of θe in the control law. Then we should extend the

observer estimating sin θe for the simplified system (51) to the case of the system (30).
Define the new variable z

z = sin θe − avrye.

Its derivative along the dynamics (30) is given by

ż = (ω − ωr) cos θe − av̇rye + avrωxe − av2r sin θe.

Denote ψ = sin θe and ψ̂ = ŝinθe. Hence, we define the observer

ψ̂ = ẑ + avrye (58a)
˙̂z = −av̇rye + avrωxe − av2r ẑ − a2v3rye. (58b)

With the observer error ψ̃ = ψ − ψ̂, the observer error dynamics are given by

˙̃ψ = (ω − ωr) cos θe − av2r ψ̃. (59)

3.2.3 A controller based on the reduced order observer

The equation (59) describes an observer for the system (30). Since the dynamics of ψ̃ contain
a term depending on θe, we need to study the stability of the combined observer (59) and the
update law for θe coming from (30). We consider the case of the input ω is given by

ω = ωr + c1(t)ψ̂. (60)

Combining the equations for θe and ψ̃ with the control law (60) yields

θ̇e = −c1(t)ψ̂
˙̃
ψ = −c1(t)ψ̂ cos θe − av2r ψ̃,

where c1(t) is a non-negative function of time. Then since ψ̂ = sin θe − ψ̃ we obtain

θ̇e = −c1(t)
(
sin θe − ψ̃

)
˙̃
ψ = −c1(t)1

2
sin 2θe + c1(t)ψ̃ cos θe − av2r ψ̃.

(61)

For the system (61) define a Lyapunov function V

V = (1− cos θe) +
1

2
ψ̃2. (62)

The derivative of V along the trajectories (61) yields

V̇ = −c1(t) sin2 θe + c1(t)ψ̃ sin θe −
(−c1(t) cos θe + av2r

)
ψ̃2 − c1(t)

1

2
sin 2θeψ̃ �

� −c1(t) sin2 θe −
(−c1(t) cos θe + av2r

)
ψ̃2 + c1(t)(|sin θe|+|1

2
sin 2θe|)|ψ̃|.
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Since 1
2 |sin 2θe|� |sin θe| and c1(t) cos θe � c1(t)

V̇ � −c1(t) sin2 θe −
(−c1(t) + av2r

)
ψ̃2 + 2c1(t)|sin θe||ψ̃|

Assume c1(t) =
1
2γav

2
r , where 0 < γ < 1. Then

V̇ � −av2r
(γ
2

(|sin θe|−|ψ̃|)2 + (1− γ)ψ̃2
)
� 0. (63)

When lim inft→∞|vr(t)|� ε > 0 the system (61) is asymptotically stable for all initial conditions.
We notice that for small δ and θe ∈ (− arccos(δ− 1), arccos(δ− 1)), sin2 θe > 1− cos θe. Hence

we transform (63) into the following form

V̇ �− av2r

(
α2 sin2 θe + β2ψ̃2 − 2αβ|sin θe||ψ̃|+η

δ
sin2 θe + (

η

2
+ κ)ψ̃2

)
�

�− av2r

(
α|sin θe|−β|ψ̃|

)2

− ηav2r

(
1− cos θe +

1

2
ψ̃2

)
�

�− ηav2rV

where α, β, η and κ satisfy the set of equations

αβ =
γ

2

α2 +
η

δ
=
γ

2

β2 + η + κ = 1− γ

2
.

From the (3.2.3) we conclude that the system (61) is gllobally K- exponentially stable.

Proposition 7. Consider the system (30) with the control law

v = vr + c2xe

ω = ωr +
1

2
γav2r ψ̂

(64)

and the observer given by

ψ̂ = ẑ + avrye

˙̂z = av2r ẑ − a2v3rye − av̇rye,
(65)

where c2 and a are positive constants, 0 < γ < 1. If vr and ωr are bounded and persistently
exciting and ω̇r, v̇r are bounded, the closed loop system obtained from (30), (64) and (65)

ẋe = (ωr +
γ

2
av2r ψ̂)ye + vr(cos θe − 1)− c2xe

ẏe = −(ωr +
γ

2
av2r ψ̂)xe + vr sin θe

θ̇e = −γ
2
av2r ψ̂

˙̃
ψ = −γ

2
av2r

(1
2
sin 2θe − ψ̃ cos θe

)− av2r ψ̃

(66)

is K-exponentially stable.

Proof. We notice that

f(x)− f(0) =

1∫
0

df(sx) =
∑
i

1∫
0

∂f

∂xi
(sx)xids.
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We can put the closed loop dynamics in cascaded form[
ẋe
ẏe

]
=

[−c2 ωr

−ωr 0

] [
xe
ye

]
+G(xe, ye, θe, ψ̃)

[
θe
ψ̃

]
(67a)[

θ̇e
˙̃ψ

]
=

[ − 1
2γav

2
r

(
sin θe − ψ̃

)
− γ

2av
2
r

(
1
2 sin 2θe − ψ̃ cos θe

)− av2r ψ̃

]
, (67b)

where G(xe, ye, θe, ψ̃) is given by

G =

[
γ
2av

2
rye

∫ 1

0
cos sθeds+ vr

∫ 1

0
sin sθeds − γ

2av
2
rye

− γ
2av

2
rxe

∫ 1

0 cos sθeds+ vr
∫ 1

0 cos sθeds − γ
2av

2
rxe

]
.

If vr is persistently exciting and the constants used are strictly positive, the subsystem (67b) is
globally K-exponentially stable

Then we treat the states θe and ψ̃ as terms perturbing a system in the form (3), which according
to Lemma 3 is globally exponentially stable when the assumptions on ωr and ω̇r are satisfied. To
apply Lemma 6 we need the interconnection term G to be at most linear in respect to ‖[xe ye]T ‖.

‖G‖∞ = max
i

∑
j

|gij |� γav2r max{|xe|, |ye|}+ 2|vr|� γav2r

∥∥∥∥[xeye
]∥∥∥∥+ 2|vr|.

The condition is fulfilled if vr is bounded.
Hence we conclude that the system (66) is globally K-exponentially stable.

Remark 5. We notice that both forward and angular velocities need to be persistently exciting.
The assumption on vr is needed to ensure convergence of the observer, while the condition on ωr

results from the controller used.

3.2.4 Simulation results

In proposition 7 we proved K-exponential stability of the output based controller. Here we present
time characteristics obtained from simulations.

Figures 6 7 and 8 show position and angle tracking error and the observer error. Initial values
of errors were set on (xe, ye, θe) = (10, 20, π/2) and ψ̃ = 1. As gains we used c2 = 2, a = 10 and
γ = 0.9.

Applying constant reference controls vr = ωr = 1 (Figure 6) one can notice exponential
convergence of the system (67). Next figures present necessity of the assumption of persistent
excitation of vr and ωr.

If the reference angular velocity does not satisfies the assumption (Figure 7), the position error
does not tend exponentially to 0, although similarly to the previous observers if

∫∞
0 ω2

rdt = ∞
they are still asymptotically stable. Also if the forward velocity vr is not persistently exciting
(Figure 8), tracking error and observer error does not converge to 0.

4 Conclusions

In Section 2 we have proposed observers for a three-dimensional chained form system. A further
subject of interest may be extending obtained results to a general chained form system.

The observers developed in Section 3 consider a kinematic model of a mobile car. A more gen-
eral model used usually to describe a wheeled mobile robot is simplified dynamic model(cf. [9], [3]).
Since the full state observer used in Section 3 may be applied also to the generalized model, it may
be useful to study the possibility of extending the designed observers and output based controller
to the case of the simplified dynamic model.

In all observers estimating the orientation angle we have assumed either persistently exciting
or non-zero value of the reference forward velocity. When this condition is not met, the observer
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Figure 6: Time characteristic of the controller (67)
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t
, vr = 1
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Figure 8: Performance of (67) when vr = 1√
t
, ωr = 1

error and the angle error do not converge to 0. It means that in the stabilization task we are able
to reach the desired position, but the angle remains unknown.

In observers for a chained form system (Section 2) and in combined observer and controller for
a mobile car (Section 3.2) we find another restriction on the reference trajectory — the assumption
on persistent excitation of the angular velocity. If this condition is not met, the position error of
the systems does not tend to 0. This results in impossibility of tracking straight lines with the use
of an observer, what is a common task for mobile cars.

Another problem not discussed here, but very important for the practical realization of con-
trollers is choosing tuning gains. When the task for a mobile car is specified, the gains should be
optimized.
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