
Event-driven Model Predictive Control
of a manufacturing line

G.J. Samson

SE 420431

Master’s thesis

Supervisor: Prof.dr.ir. J.E. Rooda
Coach: Dr.ir. A.A.J. Lefeber

Eindhoven University of Technology
Department of Mechanical Engineering
Systems Engineering Group

Eindhoven, May 2005

FINAL ASSIGNMENT

EINDHOVEN UNIVERSITY OF TECHNOLOGY February 2004
Department of Mechanical Engineering
Systems Engineering Group

Student G.J. Samson

Supervisor Prof.dr.ir. J.E. Rooda

Advisor Dr.ir. A.A.J. Lefeber

Start February 2004

Finish February 2005

Title Event-driven Model Predictive Control of a reentrant line

Subject
Recent research on manufacturing control of reentrant semiconductor manufacturing lines consists of
a hierarchical approach for inventory control and production optimization. At the top layer parameters
of an aggregated model are obtained on-line. At the intermediate layer, production optimization and
inventory control are performed using model predictive control. At the bottom layer the aggregated
targets issued by the MPC-controller are translated into discrete-event decisions.
In the current approaches, time is discretized. Once every pre-determined period, based on the cur-
rent data, the optimal control action is determined. Events occurring during a sample period are only
responded at after the sample period has passed.

Assignment
Investigate the possibilities for using a hierarchical approach for inventory control and production opti-
mization of a reentrant semiconductor manufacturing line using an event driven sample scheme.
For that purpose, study the work of G. Weiss on optimal control of linear systems and implement this
optimal controller using MATLAB. Apply this optimal controller to a case study using an event driven
sample scheme for the MPC-controller.
Also, consider the influence of the bottom control layer, i.e. the conversion of the continuous control
signals generated by the MPC controller into discrete-event decisions.
Compare the performance of the proposed control scheme and describe under what conditions the new
approach is valid. Present the results in a report, and provide recommendations for further research.

Prof.dr.ir. J.E. Rooda Dr.ir. A.A.J. Lefeber

Systems

Engineering Department of Mechanical Engineering

i

ii Assignment

Preface

In front of you lies my Master Thesis, this is the final project of the Mechanical Engineering
studies at the Technische Universiteit Eindhoven. This thesis also brings an end to a period
of eight years, during which I experienced the life of a student. In these years I have made
many friends and I learned a lot of things both related to study activities as well as non-
study activities (such as the department board, my board year with the student association
W.S.V. Simon Stevin).

The path that leads to this final project started with the basic mechanical engineering course
and in my fourth year I made the choice of applying for the group ”Systems Engineering”
of Prof.dr.ir. J.E. Rooda. From there my path lead to an internship at University of Florida
with Prof.dr. P.M. Pardalos. After this wonderful period in Florida and a small internship,
my Master Thesis followed. Both were coached by dr.ir. Erjen Lefeber. My master thesis
was an assignment that tested my mathematical knowledge thoroughly and at some moment
made me desperate, but at the same time it challenged me.

Before I start with new challenges that lie ahead, I would like to take the opportunity to
thank a few people in my life. First of all I would like to thank my parents for all the oppor-
tunities they gave me and for their love and support, my sister for being my big sister, and
my girlfriend Annerie for the love and support she gave me in the last few years. I would also
like to thank my friends for making my student years, a period that I will never forget.

A special thanks goes to dr.ir. Erjen Lefeber for coaching me and teaching me how to perform
research during my internship and during my master thesis, Prof. G. Weiss for his help with
the algorithm and for supplying us a solver of his algorithm, Prof.dr.ir. J.E. Rooda for super-
vising my internships and my master thesis, and I would like to thank all the other SE-staff
members for helping me when I needed help. And finally I would like to thank the boys from
the SE-lab for creating a pleasant atmosphere to work in.

I would like to end with a sentence in my native language:

”A jari bing tof, ma now-now mie kba”
”The year was difficult, but now I’m finished”

Gerald Samson
Eindhoven, May 2005

iii

iv Preface

Summary

Nowadays we demand more luxury and more comfort. A mobile phone is not small enough
or does not have enough functions. We want everything in one machine. This results in
more complex systems and an even more complex manufacturing system. To make sure that
the manufacturing line produces at the maximum of its capacity, it needs to be controlled or
managed. A method to control a manufacturing line is the hierarchical approach for inventory
control and production optimization. This method uses a Model Predictive Control (MPC)
controller and two conversions to interact with the manufacturing system. The controller uses
a dynamical model to predict the effects of the future behavior of a system and calculates
the future control actions for that system, by solving an optimization problem for a certain
prediction horizon. The control action are then implemented, and the process is repeated
after a fixed interval. However, it is possible that all the control actions are put into effect
before the end of the period. In such a case it would be desirable to calculate the new control
actions after this event had occurred. This leads to the objective of this project.

The objective of this project is to investigate the possibility of using an event-driven sam-
ple scheme in a hierarchical approach for inventory control and production optimization of a
manufacturing line. In addition, the influence of the conversion of the continuous MPC into
discrete-event decisions is to be investigated.

To use an event-driven sample scheme it is important that a controller is able to calculate
the control action at any arbitrary point in time, which means that the optimization problem
has to be continuous along the time line. This creates a Continuous Linear Programming
optimization problem.

To solve this problem a new algorithm has been used. This algorithm, called a Separated
Continuous Linear Programming (SCLP) algorithm is, has been developed by Weiss [Wei04].
The algorithm solves the problem by using techniques from the Linear Programming (LP)
theory. The algorithm performs the following actions. It first starts with finding a feasible
solution at t = 0 or t = T , this is done by solving an LP problem (Boundary-LP/LP*).
This LP problem is derived from the main problem, by neglecting the control actions. In
the second step the algorithm determines in which direction the optimal solution moves, by
using the properties that control variables are piecewise constant and the state variables are
continuously piecewise linear. The directions are determined by solving a new LP problem
(Rates-LP/LP*), the problem is a function of the control action and the derivative of the
states. With the result of rates the optimal base-sequences, the set of variables in an optimal
solution, is found, when the direction in which the solution moves is known. The duration

v

vi Summary

of this optimal solution can be determined, this duration is called a validity region. At the
end of this interval a new optimal solution needs to be found. The algorithm does this by
preforming a pivot step, similar as in LP theory. This pivot step causes a change of the lower
and upper boundary of the Rates-LP/LP* and, by solving this problem, again a new optimal
solution is found. The next step is to determine whether the new sequence is adjacent, i.e.
the solutions only differ by one variable, to the existing base-sequences. This is required to
find all the optimal solutions for the desired time horizon. If the solutions are not adjacent,
a subproblem is required to find the sequence(s) that connect all the base-sequences. By
repeating the following step until the desired time horizon has been reached, the algorithm
is able to find all the optimal solutions. These steps are: determining the Validity Region of
the new solution, pivoting at the end of the interval, changing the lower and upper boundary
of the rates, solving the Rates-LP/LP*, creating, and solving a subproblem when needed.

With the ability to solve the optimization problem of the controller it is possible to cal-
culate the targets for the manufacturing line. Except that there is one more problem. The
controller creates a continuous signal and the manufacturing line uses a discrete signal as
input. In order to interact between the two, the signals have to be converted. The first con-
version is the conversion between the manufacturing line and the controller. This is achieved
by measuring the buffer level and by determining the fraction of time a lot has been processed
on that machine. This fraction is added to the buffer after the machine and the remaining
part of that fraction is added to the buffer in front of the machine. The second conversion is
the conversion from the controller to the manufacturing line. This is performed by calculating
the target of each machine. The targets are calculated by taking the optimal throughputs
of the controller and multiplying them with the duration that the throughputs are optimal.
This results into a set of targets that have to be reached in the specified time. And at the
machine level a sequencing policy determines which lot should be processed first to reach the
given target.

The next step is to create a simulation model of a manufacturing line. The manufactur-
ing line that has been considered is GBMBME line (a line with two finite buffers and two
machines). With this model four types of sampling schemes are tested. The first scheme,
used as a reference, is using as a fixed sample period of 12 hours. The second sample scheme,
samples after a product finishes on the machine on which it is processed. The third sample
scheme, samples after a product leave the line as finished product. The final sampling scheme,
samples after a machine breakdown. The sample schemes are simulated with two types of
process times. The first simulation uses a fixed process time. The second simulation uses a
stochastic process time.

The results show that for both types of simulation and all types of sample schemes, the
controller is able to reach a steady state after a few hours. The number of hours before the
steady state is reached, depends on the initial buffer levels and the type of sample scheme.
The results also show that both the high and low frequency of (re)optimizations, end in a
steady state. However, with a sample scheme that uses a high frequency of (re)optimization,
the Discrete Event Model (DEM) follows the control signal better.

The final conclusion of this project is that it is possible to use an event-driven sample scheme,
when using a hierarchical approach for inventory control and production optimization of a

vii

manufacturing line. But there are still a few questions that need to be answered. Due to time-
limitations, it was not possible to answer all these questions. But they are now formulated as
recommendation for further research. The first recommendation is to program the algorithm
for a better understanding of the algorithm, the second recommendation is to investigate
what the limitations of the algorithm are and to find the best way is to use this algorithm in
an MPC setting. The third recommendation is about investigating the conversion from the
manufacturing system/DEM to the controller to find the best way is to perform this conver-
sion. The final recommendations are about the simulations, it is recommended to simulate
using a larger system and to make a simulation with more complex model manufacturing
lines, for example a reentrant line. It is also advisable to improve the error registration.

viii Summary

Samenvatting

In de hedendaagse wereld wil de mens steeds meer luxe en gemak. Een mobiele telefoon kan
niet klein genoeg zijn en de functies die de telefoon moet hebben lijken wel haast oneindig.
Eigenlijk zouden we het liefst alles in een apparaat willen hebben. Dit brengt met zich mee
dat de apparaten veel complexer worden en het fabricage systeem om zulke apparaten te
maken is zelfs nog een graad complexer. Om ondanks deze complexiteit het toch mogelijk
te maken dat deze fabricage lijn op een maximale bezettingsgraad kan opereren is het nodig
dat zo’n fabricage lijn wordt bestuurd of geregeld. Eén van deze methodes om een lijn te be-
sturen is de hiërarchisch methode voor voorraad beheersing en productie optimalisatie. Deze
methode maakt gebruikt van een Model Predictive Control (MPC) regelaar. Deze regelaar
gebruikt een dynamisch model om te voorspellen wat de effecten in de toekomst zullen zijn op
het gedrag van het systeem. En zo berekent het welke regel-acties in de toekomst nodig zijn.
Deze berekening wordt gedaan door gebruik te maken van een optimalisatie probleem met
een bepaalde voorspellings horizon. Deze regelactie wordt vervolgens gëımplementeerd en het
proces herhaalt zich na een bepaalde periode. Het is echter denkbaar dat alle regelacties zijn
uitgevoerd, maar het einde van de periode nog niet in zicht is. In zo’n geval zou het wenselijk
zijn om een nieuwe berekening te doen nadat zo’n gebeurtenis heeft plaatsgevonden. Dit leidt
tot het formuleren van de doelstelling van dit onderzoek.

De doelstelling van dit onderzoek is het onderzoeken van de mogelijkheid om een test planning
van een hiërarchisch methode voor voorraad beheersing en productie optimalisatie van fabrica-
ge lijn, die aangestuurd op basis van gebeurtenissen. De tweede doelstelling is het onderzoeken
van de invloeden van de conversie van de continue MPC naar de discrete-event beslissingen.

Bij het gebruik van gebeurtenis aangedreven test planning is het belangrijk dat de rege-
laar in staat is, om een berekening te maken van de regel-actie op elk willekeurig moment.
Dit betekend dat het optimalisatie probleem continu in de tijd moet zijn. Dit leidt tot een
“Continuous Linear Programming” optimalisatieprobleem.

Om dit optimalisatieprobleem op te lossen is een nieuw algoritme nodig. Dit algoritme heet
een “Separated Continuous Linear Programming” (SCLP) algoritme, ontwikkeld door Weiss
[Wei04]. Het algoritme lost het probleem op door gebruik te maken van technieken die bekend
zijn uit de Lineare Programming (LP) . Het SCLP algoritme voert de volgende handelingen
uit om tot een oplossing te komen. Het zoekt eerst naar een geschikte oplossing voor het
tijdstip t = 0 of t = T . De oplossingen worden gevonden door het oplossen van een LP
probleem (Boundary-LP/LP*), dat afgeleid is van het hoofd probleem door de regel acties
te verwaarlozen. De volgende stap is het bepalen in welke richting de optimale oplossing zal

ix

x Samenvatting (in dutch)

bewegen. Dit wordt bepaald door gebruik te maken van de aanname dat de regel variabelen
stuksgewijs constant zijn en de toestandsvariabelen stuksgewijs continu lineair zijn. De rich-
ting wordt bepaald door het oplossen van een nieuw LP probleem (Rates-LP/LP*), dat een
functie is van de regel variabelen en de afgeleide van de toestandsvariabelen. De oplossing
van het Rates probleem levert een set van optimale variabelen op, deze set wordt ook wel
de base-sequences genoemd. De huidige optimale oplossing en de Rates maken het mogelijk
om te bepalen hoelang deze optimale oplossing optimaal blijft. Dit wordt berekend met de
validity region. Wanneer de oplossing niet meer optimaal is zal het algoritme een pivoteer
stap uitvoeren om een nieuwe optimale oplossing te creëren. Deze pivoteer stap gebeurt op
een soortgelijke manier als de pivoteer stappen in LP theorie. Met de gemaakte pivoteer
stap is het mogelijk om de boven- en ondergrens van het Rates-LP/LP* te veranderen en op
deze manier een nieuwe optimale oplossing te vinden. De volgende stap is om te kijken of de
nieuwe oplossing aangrenzend is aan de reeds bestaande oplossingen. Indien dit niet het geval
is zal er een sub-probleem worden geformuleerd en opgelost om alle oplossingen aan elkaar
te verbinden. Als het probleem wel aangrenzend is kan er een nieuwe validity region bepaald
worden en begint het verhaal weer van vooraf aan.

Nu dat het optimaliseringsproblemen is opgelost kan de regelaar een target voor de machines
in de fabricagelijn vinden. Er ontstaat echter een probleem tussen de signalen van de regelaar
en de fabricagelijn. De regelaar gebruikt namelijk continue signalen en de fabricagelijn heeft
discrete signalen nodig. Dit betekent dat de signalen geconverteerd dienen te worden. De
eerste conversie is de conversie van de fabricagelijn naar de regelaar. Hierbij wordt eerst het
buffer niveau gemeten en wordt er bepaald welk deel van een lot reeds is gefabriceerd. Dit
deel wordt opgeteld bij het buffer niveau van de buffer achter de machine en het resterende
deel wordt bij de buffer voor de machine opgeteld. De tweede conversie gaat van de regelaar
naar de fabricagelijn. Van deze conversie is bekend dat de regelaar de doorzet [lots/uur] voor
de machine opgeeft. Verder is het bekend hoelang de doorzet geldig is (dit wordt uit de
optimalisatie verkregen). De doorzet en de duur leveren samen een target op die een machine
moet produceren binnen een bepaalde tijd. Wanneer er machines in de lijn zijn die voorzien
worden door meerdere buffers, zal er op machine niveau nog een sorteer algoritme gebruikt
worden om te bepalen welke machine/buffer het eerst moet produceren.

De volgende stap is het creëren van een simulatie model van een fabricagelijn om een test case
te maken. De lijn die in beschouwing wordt genomen is een GBMBME lijn. Een lijn met twee
buffers en twee machines, waarbij de buffers elk een machine bedienen. Om de gebeurtenis
aangedreven test planning te testen zijn er vier planningen gedefinieerd. De eerste planning
wordt gebruikt om een referentie kader te creëren. Hierbij wordt als planning gedefinieerd
met een vaste tijd periode van 12 uren. De tweede planning is het moment dat er een product
of deel product is gefabriceerd op een van de machines. De derde planning is gedefinieerd als
de gebeurtenis dat een product de lijn verlaat. De laatste planning is wanneer een machine
kapot gaat. Deze planning worden voor twee test casussen getest. Namelijk voor de situatie
dat de bewerkingstijden van de machines vast zijn en de andere casussen is wanneer de ma-
chines stochastisch bewerkingstijden gebruiken.

De resultaten tonen aan dat bij beide casussen en voor alle type planningen, de regelaar
in staat is het systeem na een paar uur naar een steady state te brengen. De tijdsduur die
nodig is om het systeem in een steady state situatie te brengen, is afhankelijk van de begin

xi

conditie van de buffer en de type planning. Tevens tonen de resultaten aan, dat zowel voor
een hoge als een lage frequentie van (her)optimalisatie de regelaar instaat is om het systeem
in een steady state toestand te brengen. Echter is het wel zo dat bij een hoge frequentie het
Discrete Event Model (DEM) beter in staat is het regel signaal te volgen.

De eindconclusie van dit onderzoek is dan ook dat het mogelijk is om een hiërarchische me-
thode voor voorraadbeheersing en productie optimalisatie te gebruiken om een fabricagelijn
te regelen op basis van gebeurtenis gedreven herplanning.
Er zijn tijdens het onderzoek nieuwe vragen ontstaan. Hier was echter geen tijd meer voor
om ze goed op te lossen, en daarom zijn het aanbevelingen geworden. De eerste aanbeveling
is het programmeren van het algoritme om zo een beter begrip voor het algoritme te krijgen.
De tweede aanbeveling is het onderzoeken van de beperkingen van het algoritme en om te
onderzoeken wat de beste manier is om het algoritme te gebruiken in een MPC setting. De
derde aanbeveling heeft betrekking op de conversie van de fabricagelijn naar de regelaar. Het
is aan te raden om te onderzoeken wat de beste manier is om deze conversie uit te voeren.
De laatste aanbevelingen hebben betrekking op de simulaties, het is aan raden om simulaties
te doen met grotere systemen en een simulatie met complexere systemen zoals een reëntrant
lijn. Tevens moet de fout registratie verbeterd worden.

xii Samenvatting (in dutch)

Contents

Assignment i

Preface iii

Summary v

Samenvatting (in dutch) ix

Symbols xvii

1 Introduction 1

1.1 Framework . 2

1.2 Control strategy . 2

1.3 Research objective . 2

1.4 Approach . 3

1.5 Outline of the report . 4

2 Model Predictive Control (MPC) 5

2.1 Model Predictive Control theory . 5

2.2 The concept of MPC . 6

2.3 Stability and Robustness of an MPC-controller 8

2.4 Advantages and Disadvantages of MPC . 9

2.5 Discussion . 9

xiii

xiv Contents

3 Formulating a continuous-time MPC problem 11

3.1 Model . 11

3.2 The cost function and constraints . 12

3.3 Resulting continuous-time MPC problem . 13

3.4 Examples of continuous MPC problems . 13

3.5 Discussion . 15

4 Separated Continuous Linear Programming (SCLP) 17

4.1 The SCLP algorithm . 17

4.2 Boundary-LP/LP* . 20

4.3 Rates-LP/LP* . 20

4.4 Base sequences . 22

4.5 Validity regions . 23

4.6 Pivoting . 26

4.7 Subproblem . 29

4.8 Discussion . 32

5 Conversion 35

5.1 Conversion from manufacturing system to the controller 35

5.2 Conversion from controller to manufacturing system 36

5.3 Discussion . 37

6 Event-driven simulations 39

6.1 Discrete Event Models . 40

6.2 Type of sample schemes . 41

6.3 Set-up of experiments . 41

6.4 Expected results . 43

6.5 Results . 45

6.6 Global discussion . 62

7 Conclusions and Recommendations 65

7.1 Conclusions . 65

7.2 Discussion . 66

7.3 Recommendations . 67

Contents xv

Bibliography 69

A Translation to a primal SCLP 71

A.1 Cost function . 72

B Explaining the SCLP algorithm 75

B.1 The SCLP Algorithm . 75

B.2 Validity regions . 77

B.3 Pivoting . 79

B.4 Subproblem . 82

C LP theory 85

C.1 The Simplex Method . 85

C.2 Duality theory . 87

C.3 An example of how to solve an LP problem 89

C.4 Discussion . 92

D Programs 93

D.1 MATLAB . 93

D.2 Python . 99

D.3 χ model discription . 101

D.4 χ-code . 104

xvi Contents

Table of symbols and abbreviations

Symbols Description

Tp prediction horizon
Tc control horizon
T horizon
~r cost factor on the control variables
~p cost factor on the state variables
~x(k + i|k) the state variables of the sampled system
~y(k + i|k) the output variables of the sampled system
∆u control effort
A system matrix
B input matrix
C output matrix
D direct transmission matrix
~λ arrival rate
B̄ designates the position of the arrival rate(s)
E output constraint matrix
F input constraints matrix
Φ system matrix for a sampled dynamical model
Γ input matrix
~Y vector containing the all buffer levels
~M vector containing the all machine capacities

~x(t) state variable
~u(t) control variable [lots/hours]
~q(t) dual state variable
~p(t) dual control variable
~y(t) output variable [lots]
~c,~γ cost factors on the control variables in the SCLP formulation
~d cost factors on the state variables in the SCLP formulation
G matrix in the SCLP formulation (4.1)
F matrix in the SCLP formulation (4.1)
H matrix in the SCLP formulation (4.1)
~α vector in the SCLP formulation (4.1)
~a vector in the SCLP formulation (4.1)

xvii

xviii Symbols

Symbols Description
~b vector in the SCLP formulation (4.1)
~x 0 vector with the boundary values of the primal problem
~q N vector with the boundary values of the dual problem
τ interval length of the validity region
σ slack variable of the validity region
B′ first of the two base-sequence
B′′ second of the two base-sequence
D the new base-sequence
B base-sequence of the primal problem
B∗ base-sequence of the dual problem
K Set variable needed to determine the boundary of primal rates-LP
J Set variable needed to determine the boundary of dual rates-LP*
Sx upstream buffer
Sy downstream buffer
∆Sx Difference between Actual Outs and Estimate Outs of the upstream buffer
∆Sy Difference between Actual Outs and Estimate Outs of the downstream buffer
ymax Maximum buffer level
SCLP primal SCLP problem
SCLP* dual SCLP problem

Abbreviations

MBPC Model Based Predictive Control
MPC Model Predictive Control
DEM Discrete Event Model
LP Linear Programming
CLP Continuous Linear Programming
SCLP Separated Continuous Linear Programming
AO Actual Outs
EO Estimate Outs
VPP Variable Property Policy

Chapter 1

Introduction

The world is changing rapidly, everything has to be smaller, faster and cheaper. This means
that the complexity of the products and their manufacturing systems is increase. However, to
produce cheaper products, manufacturing systems must realize high throughputs. A control
strategy used to manage the flow through a manufacturing system is one of the methods that
can contribute to the optimization of high throughputs in complex manufacturing systems.
In this research project the flow in the manufacturing system is presumed to be a discrete
flow.

Conversion

Conversion

Discrete event model

Manufacturing

system/

Controller

1st Layer

2nd Layer

Figure 1.1: Hierarchical control structure

1

2 Chapter 1. Introduction

1.1 Framework

The framework in which the flows in a manufacturing system are controlled, is called a
hierarchical approach (Figure 1.1). This approach consists of two layers interacting with
each other. The first layer is the manufacturing system or a discrete-event model of the
manufacturing system and the second layer is the controller. These two layers interact by
communicating the measured parameters of the manufacturing system to the controller and by
sending the calculated target from the controller to the manufacturing system. The problem
with these communications is that the manufacturing system is a discrete system and the
controller is a continuous system. This means that in order to communicate between the
layers the signals have to be converted, see Figure 1.1.

1.2 Control strategy

By making a discrete-event model of a manufacturing system, the process of the manufactur-
ing system can be simulated. To control the model of the manufacturing system a controller
needs to be designed. In recent years several research groups have done research on designing
controllers, that are able to control the flows of a manufacturing system.
One way to design a controller is to use theories and strategies that are common in control
engineering. These theories and strategies are adapted and extended for the use in the field
of manufacturing control.

This research project focuses on the theory of inventory control and production optimiza-
tion. This theory uses a model to optimize the production and to control the system. The
controller used in this project is a Model Predictive Controller (MPC). This controller uses a
model of the system to predict the required trajectory to reach the desired set-point within
a finite time horizon. By using the current output data of the Discrete-Event Model (DEM),
the MPC can determine the optimal control actions. These control actions are implemented
for the next interval and this process is repeated every sample period (k). In the current
approaches, the MPC uses a fixed pre-determined sample period, this is also known as a
discrete-time MPC (see Figure 1.2). This figure shows the samples k, the measured level x
and the asterisk (*) are measure points.
A mayor disadvantage of current discrete-time MPC is the use of a fixed sample period. This
means that the MPC always has to wait until the end of a fixed time step, even if all the con-
trol actions have already been carried out. The following research objective has been defined
to cope with this problem.

1.3 Research objective

The objective of this project is to investigate the possibility of using an event-driven sample
scheme in a hierarchical approach for inventory control and production optimization of a
manufacturing line. In addition, the influence of the conversion of the continuous MPC into
discrete-event decisions, on the controller is investigated.

1.4. Approach 3

0

1

2

3

4

5

x

t
k k + 1 k + 8 k + 15.

Figure 1.2: Predefined sample scheme.

1.4 Approach

In order to investigate the applicability of an event-driven sample scheme, a different approach
is needed in comparison with a fixed time step based MPC. When using an event-driven sam-
ple scheme, the Model Predictive Controller needs to be able to determine the optimal control
action at any arbitrary moment in time. This is achieved by using a continuous-time approach
for the Model Predictive Controller(also known as continuous-time MPC). Consequently, one
obtains a controller that is continuous along the time line, but the optimal control actions are
discrete. This is shown in Figure 1.3, it also shows the measured values of the manufacturing
system represented by asterisks (*).

0

1

2

3

4

5

x

t

Figure 1.3: Event-driven sample scheme

For solving the optimization problem of a discrete-time MPC problem a Linear Program-
ming (LP) algorithm can be used. Unfortunately an LP-algorithm cannot be used to solve a
continuous-time MPC-problem directly. In order to solve such a problem a Continuous Linear
Programming (CLP) algorithm is required. In 2004, Weiss [Wei04] initiated the development
of a new algorithm to solve a CLP problem. With this algorithm he is able to find an exact
solution for a subclass of the CLP problem, namely the Separated Continuous Linear Pro-
gramming (SCLP). This algorithm finds an optimal solution by solving several LP problems
and combines these results to a solution for the entire problem.

4 Chapter 1. Introduction

By using the algorithm presented by Weiss, it is possible to solve the continuous-time MPC-
problem directly, which makes the implementation of an event-driven hierarchical structure
possible. In order to implement and test the principle of an event-driven sample scheme, it is
important to consider the influences of the conversions in the hierarchical structure as well.
An important issue of these conversions to investigate the influences of the conversions on the
controller.

1.5 Outline of the report

So far, an introduction into this research project is given and the objective and the approach
have been defined. In the following chapters, the approach is elaborated. The first step in
elaborating the approach is to give a short introduction into MPC, this is described in Chapter
2. The second phase is to formulate a continuous-time MPC problem, shown in Chapter 3.
In order to solve the continuous-time MPC problem, it is important to understand how the
SCLP algorithm solves the problem. In Chapter 4 the theory behind the SCLP algorithm
is explained. To complete the hierarchical framework the conversion needs to be explained,
this is presented in Chapter 5. The next phase in this report is Chapter 6 that explains the
definition of the event-driven sample scheme and the results of the case study. The report
ends with a conclusion and recommendations.

Chapter 2

Model Predictive Control (MPC)

The controller used in the hierarchical structure is a Model Predictive Controller. In this
chapter a short introduction into the Model Predictive Control (MPC) theory is given. For a
more extensive review of MPC-theory see the referred articles.

2.1 Model Predictive Control theory

The Model predictive control theory was first used in the late 1970s and early 1980s. In those
days, the theory was known under several different names: Model Predictive Heuristic Con-
trol, Dynamic Matrix Control, Generalized Predictive Control or Model Algorithmic Control.
Nowadays the generic names Model Predictive Control or Model-Based Predictive Control
(MBPC) are widely used. An overview is presented in e.g. [Gar89, Cam99, Mac02].

MPC or MBPC are considered advanced control strategies, that use explicit (internal) dy-
namical models of the process to control the system. The model is used to predict the effects
of future control actions on the output of the system by minimizing the predicted error sub-
ject to the operational restrictions.

In the industry MPC has a wide range of applications, especially in the process industry.
In most of these applications, MPC is calculated off-line, because the calculations are time-
consuming.

Many of the models used in the industry are linear models. However, these models are
mostly inadequate for these systems, because the system is inherently nonlinear. In addition,
the operational restrictions on the systems have increased in recent years. Nonlinear MPC
models deals with these restrictions. For an overview on this topic see [All00].

5

6 Chapter 2. Model Predictive Control (MPC)

2.2 The concept of MPC

As mentioned, MPC uses a dynamical model to predict the future behavior of the system.
The predictions are made by solving an optimization problem. This problem consists of an
objective function and constraints which represent the limitations of the system. The opti-
mization problem computes the inputs for the entire prediction horizon, but only the values of
the first sample are actually implemented. After measuring the effects, the horizon is shifted
forward by one step and the procedure is repeated. This is called a moving or receding horizon.

In Figure 2.1 the basic principles of MPC are shown. One of these principles is the pre-
diction (Tp) and control horizon (Tc). The control horizon represents the time during which
the input can change. The prediction horizon is the time over which the system is evaluated.
When the prediction horizon is longer than the control horizon, the input is assumed to be
constant after the end of the control horizon.

past future/prediction

set-point

prediction state x̄

closed-loop

closed-loop

state x

input u

prediction input ū

t t + δ t + Tc t + Tp

control horizon Tc

prediction horizon Tp

Figure 2.1: Concept of Model Prediction Control.

The dynamical model can be represented in several ways, e.g. by writing the dynamical model
as a linear input-state-output model (2.1).
In this model ~x(t) denotes the state, ~y(t) denotes the output, ~u(t) denotes the input and ~λ is
the arrival rate, A is the systems matrix, B is the input matrix, C is the output matrix, D
is the direct transmission matrix, and B̄ designates the position of the arrival rate(s).

~̇x(t) = A ~x(t) + B ~u(t) + B̄~λ (2.1)
~y(t) = C ~x(t) + D ~u(t).

2.2. The concept of MPC 7

Now that the dynamical model is defined, the next step is to formulate a linear MPC problem.
This can be done by formulating either a discrete-time or a continuous-time MPC problem.

For both categories the dynamical model presented in (2.1) forms the basis. In the case
of the discrete-time MPC problem, the dynamical model is sampled and the sum of the costs
of every sample is taken. In (2.2) an example is shown of a discrete-time MPC problem.
In this example, a discrete cost function is shown with x as the state and u as the control
variable. The states are summed along the prediction horizon, which are p samples and the
control variables are summed along the control horizon, with m samples. Equation (2.2b) is
the model constraints and Equation (2.2c) are the inequality constraints. The samples for
the state and control variables are calculated for every sample k + i, and implemented at k.

min
U

J =
p∑

i=1

~c ~x(k + i|k) +
m−1∑
j=0

~d ~u(k + j|k)), (2.2a)

s.t. model constraint

~x(k + i|k) = Φ ~x(k + i− 1|k) + Γ ~u(k + j − 1|k) + B̄~λ, (2.2b)
~y(k + i|k) = C ~x(k + i− 1|k) + D ~u(k + j − 1|k),
i = 1, . . . , P j = 1, . . . ,m,

s.t. inequality constraints

E~y(k + i|k) ≤ ~0, (2.2c)

F~u(k + j|k) ≤ ~0,

~x(k + i|k), ~u(k + j|k) ≥ ~0,

~U =
[
~u(k|k) , · · · , ~u(k + m− 1|k)

]T
.

Where ~c are the costs on the states, ~d are the costs on the inputs, ~x(k + i|k) are the state
variables of the sampled system, ~y(k + i|k) are the output variables of the sampled system,
~u(k + j|k) are the input variables of the sampled system, Φ is the system matrix of the sam-
pled system, ~Γ is the input matrix of the sampled system, C is the output matrix, D is the
direct transmission matrix, B̄ is designates the position of the arrival rate(s), the matrix E
is the output constraint matrix, and F is the input constraints matrix.

The continuous-time MPC problem is slightly different from discrete-time, i.e. it has a smooth
control function. Moreover, the cost function uses an integral for summing the costs. Equa-
tion (2.3) shows a continuous-time example. This example has the same structure as (2.2),
but instead of taking the sum of the horizon, the integral of the horizon is used.

8 Chapter 2. Model Predictive Control (MPC)

min
t

J =
∫ t+Tp

t
~c(τ)~x(τ) +

∫ t+Tc

t

~d(τ)~u(τ)dτ, (2.3a)

s.t. model constraint

~̇x(t) = A ~x(t) + B ~u(t) + B̄~λ, (2.3b)
y(t) = C ~x(t) + D ~u(t),
s.t. inequality constraints

E~y(τ) ≤ ~0, (2.3c)

F~u(τ) ≤ ~0,

~x(τ), ~u(τ) ≥ ~0.

In linear MPC-theory, the inputs can be represented in two ways. The first ways is to rep-
resent the input as ∆u, this is called the control effort (∆u(k|k) = u(k|k)− u(k − 1|k)). In
literature, this method is often used. The second way of representing the input is using ab-
solute inputs (u).

In this project absolute inputs are used to represent the input values of the system, as can be
seen in (2.2,2.3). This is done, because the use of absolute input makes it easier to formulate
the prediction Matrix. It is also possible to weigh the inputs [Ess02] and, in addition, it is
difficult to use ∆u in the continuous-time formulation.

2.3 Stability and Robustness of an MPC-controller

In control theory, stability and robustness are very important [Ess02, All00, All01, Mac02].
The stability of an MPC controller can be divided into two categories, i.e. nominal and ro-
bust stability. In the case of nominal stability the model is assumed to describe the system
perfectly, which means that the internal model of the MPC controller is identical to the model
of the system. Robust stability refers to the case that the internal model is not equal to the
model of the system.

It is difficult to provide nominal stability of an MPC-controlled system , because the controller
uses a moving horizon and the nonlinearities of explicit constraints. One way of guaranteeing
the stability in an open-loop optimal control problem is to consider an infinite horizon, with
the condition that the problem is feasible at t = 0 [Fin00]. If this is valid, the closed-loop
system is asymptotically stable for a small enough sampling time and the region of attraction
contains the set of states for which the optimization problem of the open-loop problem has
a solution [Fin00]. The use of an infinite horizon in practice is usually relatively difficult.
Another way of ensuring the stability with a finite horizon is by adding a zero terminal con-
straint or to add an extra term to the cost function (quasi infinite horizon control)[Fin00].

For the robustness of an MPC-controller, it is important to take the uncertainties and dis-
turbances into account. This can be achieved by using the nominal stability model, which
only takes them into account indirectly. An alternative is to make a new model that takes
the uncertainties and disturbances into account directly.

2.4. Advantages and Disadvantages of MPC 9

2.4 Advantages and Disadvantages of MPC

The MPC method has some advantages, when comparing MPC with other standard feedback
control methods. First it can handle constraints. With the constraints it is possible to take
physical limitations, safety and performance constraints of a system into account. It also
has some disadvantages. For example, it needs an accurate model of the process. The most
important disadvantage is the relatively high computational demand.

2.5 Discussion

Model Predictive Control is a theory that uses a dynamical model to predict the effects of
the future behavior of a system and calculates the future control actions for that system, by
solving an optimization problem for a certain prediction horizon.
MPC can be used in two ways, namely as a discrete-time problem or a continuous-time prob-
lem. With discrete-time MPC the dynamical model is sampled and the cost function is the
minimum of the sum of all cost of each sample. The continuous-time problem uses a contin-
uous dynamical model and an integral function of the cost is minimized.
The cost function of the discrete-time and continuous-time MPC are solved for a certain
horizon. The length of this horizon is important to provide stability of the controlled system.
To guarantee the stability of an open-loop optimal control problem, an infinite horizon with
a feasible solution in t = 0 is desirable.
When the advantages and disadvantages are kept in mind a Model Predictive Controller can
be an useful tool for controlling a manufacturing system.

As mentioned in Chapter 1 the hierarchical approach uses an continuous-time problem to
control a manufacturing system. This chapter showed the formulation of continuous-time
controller, a continuous-time MPC controller, and a small introduction into the MPC the-
ory was given. The next step is to formulate a continuous-time MPC problem based on a
manufacturing line.

10 Chapter 2. Model Predictive Control (MPC)

Chapter 3

Formulating a continuous-time
MPC problem

The previous chapter showed an introduction into the concept and the theory of MPC. The
next phase is to formulate an MPC problem. In this research project a continuous-time MPC
problem is formulated. This formulation can be divided into three elements. The first one
is the definition of a dynamical model. The second step is to define a cost function and
finally the physical constraints of the system have to be translated into constraints for the
optimization problem.

3.1 Model

The model used for the continuous-time MPC problem is a representation of a manufacturing
system, which has n machines and a specified routing. This model is derived by using a
linear-input-state-output model as presented in (2.1). The model presented in this chapter is
slightly different. The difference is caused by the assumption made to accurately model the
manufacturing system. This results in the following model, with ẋ the derivative of the state,
B represents the routing of a lot, ~u(t) is the speed with which the lots are produced and ~y(t)
is the buffer level:

~̇x(t) = B~u(t) + B̄~λ, (3.1)
~y(t) = I~x(t).

The difference with (2.1) is that the states (~x(t)) of the system have no influence on the
derivative ~̇x, because in a manufacturing line the change of the buffer content can only be
achieved by production. A second assumption is that ~u(t) has no direct influence on output
~y(t). The last assumption is that the buffer levels (~y(t)) are equal to the states (~x(t)) of the
system (C = I).

11

12 Chapter 3. Formulating a continuous-time MPC problem

3.2 The cost function and constraints

MPC uses an optimization function to find the desired control action. This means that a
cost function and its constraints need to be formulated. Both functions are derived from the
physical properties of a manufacturing system.

Cost function

When analyzing the production costs in a manufacturing system. The costs can be divided
into two groups. The costs for having products or parts in stock (buffer level), these costs are
increase with every step in manufacturing system (value is added to the product) (~p). The
second set of costs are the costs of producing (~r), with the notion that producing products too
early should cost more. This means that the production costs are weighted with the factor of
time. This results in the following cost function:

min
u,x

J =
∫ T

0
(T − t)~r ′

 u(t)1
...

u(t)n

+ ~p ′

 x(t)1
...

x(t)n

dτ. (3.2)

Constraints

The final step is to translate the physical constraints of the system, into constraints for the
optimization problem. The analysis of the system leads to the conclusion that the limitation
of the buffer and machine capacities cause the constraints on the system.
The buffer constraint is determined by the fact that the machine cannot produce more than
the content of the buffer plus the number of lots produced by the machine in front of it
(~y ≥ 0) in combinations with the buffer cannot be larger than the maximal buffer content.
This results in the following constraint: 0

...
0

 ≤

 y1
...

yn

 ≤

 ymax1

...
ymaxn

 (the buffer constraints), (3.3)

~0 ≤ ~Y ≤ ~Ymax

(3.4)

The second limitation is the capacity of the machine: 0
...
0

 ≤ R~u(t) ≤

 µ1
...

µn

 (the machine capacity) (3.5)

~0 ≤ R~u(t) ≤ ~M

where matrix R contains the information which buffer(s) serves which machine and the process
time of that machine and ~M containing the machine capacities.

3.3. Resulting continuous-time MPC problem 13

3.3 Resulting continuous-time MPC problem

By combining the Equations (3.2), (3.3) and (3.5) the following continuous-time MPC problem
is formulated:

min
u,x

J =
∫ T

0
(T − t)~r ′ ~u(t) + ~p ′ ~x(t)dτ, (3.6a)

s.t. model constraint

~̇x(t) = B~u(t) + B̄~λ, (3.6b)
~y(t) = I~x(t),

s.t. inequality constraints
~0 ≤ ~Y ≤ ~Ymax (3.6c)
~0 ≤ R~u(t) ≤ ~M

3.4 Examples of continuous MPC problems

In the previous sections a continuous-time MPC problem was formulated. To create a better
understanding, the formulation is illustrated with a simple manufacturing line with two buffers
(B) and two machines (M). G is a generator and E is the exit process. This type of line is
also called a GBMBME model, presented in Figure 3.1. A simple example of a reentrant line
is shown in Figure 3.2. For this line the dynamical model has the following shape:

G B1 M1 M2B2 E
λ1

x1
u1 u2x2 x3

Ymax = 10Ymax = 10 te = 15 [min]te = 15 [min] Ymax = inf

Figure 3.1: GBMBME manufacturing line

ẋ1(t) = −u1(t) + λ1 (3.7)
ẋ2(t) = u1(t)− u2(t)

~̇x(t) =
(
−1 0

1 −1

)
~u(t) +

(
1 0
0 0

)
~λ

~̇x(t) = B~u(t) + B̄~λ,

The exit process and generator are not taken into account for the dynamical model.

14 Chapter 3. Formulating a continuous-time MPC problem

With the dynamical model the buffer constraints are formulated as:

~y(t) =
∫ t

0
(B~u(t) + B̄~λ)dt (3.8)

~0 ≤
∫ t

0
(B~u(t) + B̄~λ)dt ≤ ~Ymax

The capacity of the machines is formulated as follows:

0 ≤ te1u1(t) ≤ 1 (3.9)
0 ≤ te2u2(t) ≤ 1

~0 ≤
(

te1 0
0 te2

)
~u(t) ≤ ~1

~0 ≤ R~u(t) ≤ ~M

For a reentrant line the dynamical model has the following shape:

G B1

M1 M2B2

B3

E

λ1

x1

u1/u3
u2x2

x3

x4

Ymax = 10

Ymax = 10

Ymax = 10

te = 15 [min]te = 15 [min] Ymax = inf

Figure 3.2: Reentrant manufacturing line

ẋ1(t) = −u1(t) + λ1 (3.10)
ẋ2(t) = u1(t)− u2(t)
ẋ3(t) = u2(t)− u3(t)

~̇x(t) =

 −1 0 0
1 −1 0
0 1 −1

 ~u(t) +

 1 0 0
0 0 0
0 0 0

~λ

~̇x(t) = B~u(t) + B̄~λ,

The exit process and generator are not taken into account for the dynamical model.

3.5. Discussion 15

The buffer constraints of the reentrant line is formulated in the same way as in (3.8).

The capacity of the machines are formulated as below:

0 ≤ te1u1(t) + te1u3(t) ≤ 1 (3.11)
0 ≤ te2u2(t) ≤ 1

~0 ≤
(

te1 0 te1

0 te2 0

)
~u(t) ≤ ~1

~0 ≤ R~u(t) ≤ ~M

This concludes the simple examples of formulating a continuous-time MPC problem.

3.5 Discussion

This chapter formulated and illustrated a continuous-time MPC problem. The following ele-
ments were presented so far: a hierarchical structure, an explanation of the type of controller
(MPC) used in the hierarchical structure was given and a small introduction to the MPC
control theory was shown. And in this chapter a continuous-time MPC problem was formu-
lated. The next step is to solve this problem. However, the problem at hand cannot be solved
adequately with the standard optimization solvers. To do so a new algorithm is needed. This
algorithm has been developed by Weiss [Wei04]. The next chapter explains this algorithm.

16 Chapter 3. Formulating a continuous-time MPC problem

Chapter 4

Separated Continuous Linear
Programming (SCLP)

In the previous chapters the MPC theory and the formulation of a continuous-time MPC
problem have been discussed. The next step is to explain the algorithm which is capable
to solve the formulated MPC problem, a Continuous Linear Programming problem. The
algorithm used is called ”a simplex based algorithm to solve a Separated Continuous Linear
Program” [Wei04].

In this chapter the Separated Continuous Linear Program (SCLP) algorithm is explained
by showing the equations and rules needed to solve an SCLP problem. The details of this
algorithm are cited from [Wei04]. To create a better understanding of the algorithm some
of the assumptions, theorems and definitions are shown. For the mathematical proof of the
theory and a more detailed description of the algorithm the cited article should be read.

To help to understand the concept of the SCLP algorithm the reader is referred to Ap-
pendix B. This appendix shows a graphical interpretation of the algorithm.

4.1 The SCLP algorithm

The SCLP algorithm finds the solution to a subclass of the continuous linear programming
problem, by using a theory which is analogous to linear programming and the Simplex algo-
rithm (in parametric form). With these techniques Weiss was able to anchor the Continuous
Linear Programming into LP theory. (To help to understand the background of this algorithm
better, a short introduction to LP-theory is given in Appendix C.)

17

18 Chapter 4. Separated Continuous Linear Programming (SCLP)

There are several ways of formulating an SCLP problem. The following formulation is used
by Weiss:

max
∫ T

0
((~γ ′ + (T − t)~c ′)~u(t) + ~d

′
~x(t))dt, (4.1)

s.t.

∫ t

0
G~u(s)ds + F~x(t) ≤ ~α + ~at,

H~u(t) ≤ ~b,

~x(t), ~u(t) ≥ 0, t ∈ [0, T].

In this equation G, H, F are fixed K × J , I × J , K × L matrices; the remaining variables
are the K-vector ~α,~a, the I-vector ~b, J-vector ~γ,~c and the L-vector ~d. The unknown vari-
able uj(t) and xk(t) are the control variables with j = 1, . . . , J and the state variables with
k = K +1, . . . ,K +L. Both are a function of time 0 ≤ t ≤ T and they have additional control
and state variables, j = J + 1, . . . , J + I and k = 1, . . . ,K which denotes the non-negative
slack variables of respectively the second set of I and the first set of K inequality constraints.

To solve the SCLP problem, the algorithm uses duality theory to find an optimal solution (for
an explanation of duality theory see Appendix C.2 or [Van96]). The duality theory creates a
symmetric dual problem.
When the solution of both the primal and dual problem are feasible, the solution of the two
problems are related by the complementary Slackness Condition, which states that:

uj(t) > 0 ⇒ qj(T − t) = 0, j = 1, . . . , J + I (4.2)
xk(t) > 0 ⇒ pk(T − t) = 0, j = 1, . . . , J + I

(4.3)

The optimal solution of the problem is found, whenever the two solutions are optimal and
have the same objective value. This is also called strong duality, there is no duality gap
between the solutions.

The symmetric dual problem is formulated as follows:

min
∫ T

0
((~α ′ + (T − t)~a ′)~p(t) + ~b

′
~q(t))dt, (4.4)

s.t.

∫ t

0
G′~p(s)ds + H ′~q(t) ≤ γ + ~ct,

F ′~p(t) ≤ ~d,

~p(t), ~q(t) ≥ 0, t ∈ [0, T]

in which pk(t), k = 1, . . . ,K are the dual controls and qj(t), j = J +1, . . . , J + I are the dual
states, both are a function of time 0 ≤ t ≤ T . The non-negative slacks of the inequality con-
straints of the dual states (qj(t), j = 1, . . . , J) and the dual controls (pk, k = K+1, . . . ,K+L)
are added in the same way as the primal problem.
In the remainder of this report the primal problem (4.1) is represented by SCLP and the dual
problem (4.4) is represented by SCLP*.

4.1. The SCLP algorithm 19

With the primal and dual problem the SCLP algorithm is able to find the optimal solu-
tion for a range of 0 ≤ t ≤ T . This is achieved by partitioning the time horizon into N
intervals, 0 = t0 < t1, · · · , tN = T . The partitioning of the horizon is allowed whenever
Theorem 1 holds.

Theorem 1 ([Wei04], Theorem 1). Assume that the feasibility and boundedness assumption
holds (see assumption 2 in 4.3). Then the SCLP/SCLP* problems (4.1,4.4) possess com-
plementary slack optimal primal and dual solutions (strong duality holds), with continuous
piecewise linear x, q, and piecewise constant u, p.

As a result of Theorem 1 the SCLP algorithm can move from one interval to another, when it
has a feasible initial solution. This is caused by the fact that the solutions are either piecewise
continuous linear or piecewise constant. So with an initial solution the algorithm can move
from one optimal solution to another by making pivot steps, similar to a pivot step in LP
theory.

With the knowledge of Theorem 1, an algorithm can be formulated. This algorithm first
searches for an initial solution with an end time of t = 0. This solution is optimal for a
certain period of time. At the end of this time period the algorithm performs a pivot step to
find a new optimal solution and the end time is increased. This is repeated until a solution
is found which is optimal for the desired time horizon.

The steps of the algorithm are presented below and each step is explained in this chapter.

Algorithm 1 The SCLP algorithm
initialization:
− Solve the boundary-LP/LP* ,
− Solve the Rates-LP/LP* ,
− Determine the base-sequences B1, BN ,
− Determine the Validity region,
− Perform a Pivot operation,
− Change the lower boundaries of the Rates-LP and Rates-LP*
end initialization

while t < T do
− Solve the Rates-LP/LP*
− Determine the new base-sequences,
if the base-sequences are not adjacent then

− Formulate and solve the subproblem(a smaller SCLP).
end if
− Determine the Validity region,
− Perform a Pivot operation,
− Change the lower boundaries of the Rates-LP and Rates-LP*

end while

20 Chapter 4. Separated Continuous Linear Programming (SCLP)

4.2 Boundary-LP/LP*

The first step in the initialization of the SCLP-algorithm is to solve a Boundary-LP/LP*.
This optimization problem calculates the starting values for the optimal solution of the SCLP/
SCLP* problem. These values are found by taking the primal problem at t = 0 and dual
problem at t = N . (Note that the control actions at the boundary can be neglected for
both the primary and the dual problem). This results in the boundary-LP/LP* problems
(4.5,4.6). When these optimization problems are solved, the boundary values for ~x0, ~qN can
be obtained, if the values of α, γ are given.

Boundary-LP

max ~d
′
~x 0, (4.5)

st. F ~x 0 ≤ ~α,

~x 0 ≥ ~0,

Boundary-LP*

min ~b
′
~q N , (4.6)

st. H ′~q N ≥ ~γ,

~q N ≥ ~0.

When the solution to the boundary-LP/LP* is found the optimal solution for the SCLP
problem at t = 0 and t = T is found. The next step is to find out in which direction the
optimal solution changes. This is achieved by finding the solution to the Rates-LP/LP*.

4.3 Rates-LP/LP*

The next step in the Algorithm 4.1 is determining the Rates-LP/LP*. They are used in
both the initialization and the mean part of the algorithm. Rates-LP/LP* are LP problems
that uses the properties of Theorem 1, which states that the control variables (~u(t), ~p(t)) are
piecewise constant and that the state variables (~x(t), ~q(t)) are continuously piecewise linear.
So for each interval of the partitions, the rates ~u(t), ~̇x, p(t), ~̇q are piecewise constant. When
the optimal value of the control variables and the derivative of the state variables are found,
the optimal solution of the mean problem is also found automatically.

For each interval the rates problems are slightly different. The sign restrictions on the lower
and upper boundaries of the rate problem cause the difference. In the initialization phase
of the algorithm, the sign restrictions are determined by using the results of the boundary-
LP/LP*. In the main part of the algorithm the sign restrictions are determined by taking the
first sign restriction as the starting point and for each interval one or more sign restriction
of the lower or upper boundaries of the rate problems are changed. The sign restrictions are
defined as follows:

4.3. Rates-LP/LP* 21

• ”P” i.e. the variable is non-negative,

• ”U” i.e. the variable is unrestricted,

• ”Z” i.e. the variable is restricted to be 0.

For determining the sign restriction, the following set of variables are created:

Kn ⊆ {1, . . . ,K + L},
Jn ⊆ {1, . . . , J + I}.

The sets Kn and Jn are determined by using the following equations:

Kn = {k : xn−1
k > 0}, (4.7)

Jn = {j : qn
j > 0}, n = 1, . . . , N. (4.8)

This leads to the following rates-LP and rates-LP* problem:

rates-LP(Kn,Jn)

max
[
~c ′ 0

]
~u +

[
0 ~d

′
]
~̇x, (4.9)

St.
[
G 0

]
~u +

[
I F

]
~̇x = ~a,[

H I
]
~u = ~b,

ẋk is ”U” for k ∈ K, ẋk is ”P” for k /∈ K, k = 1, . . . ,K + L,

uj is ”Z” for j ∈ J , uj is ”P” for j /∈ J , j = 1, . . . , J + I.

rates-LP*(Kn,Jn)

min
[
~a ′ 0

]
~p +

[
0 ~b

′
]
~̇q, (4.10)

St.
[
G′ 0

]
~p +

[
−I H ′] ~̇q = ~c[

F ′ −I
]
~p = ~d,

q̇j is ”U” for j ∈ J , q̇j is ”P” for j /∈ J , j = 1, . . . , J + I,

pk is ”Z” for j ∈ K, uj is ”P” for j /∈ K, k = 1, . . . ,K + L.

The first set lower boundary sign restrictions, is obtained by using the boundary values from
the boundary-LP/LP*. The remaining sets are found by applying (4.7) and (4.8) on the
solution of the rates-LP/LP* and after that the sign are changed due to the pivot steps.

To proof that the solutions of the boundary-LP/LP* and the rates-LP/LP* are part of the
solution of the SCLP, SCLP* the following assumptions are made.

Assumption 2 ([Wei04], Assumption 1). (Feasibility and Boundedness)

case(i) The boundary-LP/LP* problems (4.5,4.6) have a solution ~x 0, ~q N .
Denote K1 = {k : x0

k > 0},JN = {j : qN
j > 0}.

22 Chapter 4. Separated Continuous Linear Programming (SCLP)

case(ii) The primal rate-LP(∅,JN) and the dual rate-LP*(K1, ∅) are both feasible.

This assumption states that the problem has a solution at its boundaries and that the problem
moves from its boundary solutions to a neighboring solution. The second assumption is made
to ensure the algorithm can find an optimal solution.

Assumption 3 ([Wei04], Assumption 2). (Non-degeneracy)

The column
[
~a
~b

]
is in general position to the matrix

[
G F I 0
H 0 0 I

]
(it is not a linear com-

bination of any less than K + I columns), and the column
[
~c
~d

]
is in general position to the

matrix
[
G′ H ′ −I 0
F ′ 0 0 −I

]
.

Theorem 4 ([Wei04], Theorem 2). Assumptions 3 implies that SCLP, SCLP* (4.1,4.4) are
non-degenerate in the sense that optimal ~u(t), ~x(t), ~p(t), ~q(t) are uniquely determined for all
0 < t < T , up to an arbitrary set of values of t with Lesbesgue measure 0.

After the Boundary-LP/LP* and the Rates-LP/LP* are solved the SCLP-algorithm has the
first optimal solution of the SCLP problem and it has the direction in which the solution
changes. This results in a set of variables which are called the Base sequence.

4.4 Base sequences

The solutions of the rates-LP/LP*(Kn,Jn) create two sets of variables that are optimal
base-sequences of the SCLP problem for that time interval, Bn for the primal problem and
B∗

n for the dual problem. The base-sequence B denotes the set of the corresponding vari-
ables ẋk, uj ∈ B or the set of their indices. The complementary dual basis B∗ is the set
of the corresponding variables q̇j , pk ∈ B∗ or the set of their indices. The sets are re-
lated by the complementary dual theory, which states that the indices in B,B∗ partition
k ∈ {1, . . . ,K + L}, j ∈ {1, . . . , J + I}, i.e. ẋk ∈ B ⇒ pk /∈ B∗, q̇j ∈ B∗ ⇒ uj /∈ B.

The bases Bn (n = 2, . . . , N − 1) are admissible if un
j , pn

k , j = 1, . . . , J + I, k = 1, . . . ,K + L

are non-negative. The bases B1, BN are consistent with the boundary data ~α,~γ if x0
k > 0 ⇒

ẋk ∈ B, qN
j > 0 ⇒ uj /∈ BN and B1 ⊇ K1, B

∗
N ⊇ JN . The base-sequence B1, found by solving

rates-LP(K1,JN) is optimal for a neighborhood t > 0. The base-sequence BN is optimal for
a neighborhood t < T .

Two bases Bi, Bj are adjacent if Bi \ Bj consists of a single variable vn and Bj \ Bi = wn.
This makes it possible to go from Bi to Bj in a single LP simplex pivot, in which vn leaves
the basis and wn enters.

When the SCLP-algorithm has a Base-sequence and the Rates-LP/LP*, it now needs to
determine how long this solution is optimal for the given solution. This is done by calculating
the validity regions.

4.5. Validity regions 23

4.5 Validity regions

The validity region is necessary for the SCLP algorithm to determine how long an optimal
solution remains optimal. To calculate a validity region it is important to keep in mind that
the algorithm divides the time horizon into N intervals (4.11), for which a base-sequence is
optimal. These intervals are the validity regions that have to be calculated. The length of a
validity region interval is denoted by τn. The value of τn is unknown and it can change when
a new base-sequence is found. To determine this length, Equations (4.11-4.13) are needed.
These equations determine how long the optimal base-sequence remains valid.

τ1 + · · ·+ τN = T, (4.11)

With the information found by the boundary-LP/LP* and the rates-LP/LP*, the validity
region can determine how long it would take to hit or reach zero, when starting at x0 or qN

and moving with a rate ẋ or q̇.

By moving from one optimal solution to another the algorithm calculates the rates for each
optimal solution as it expands its time horizon to find all the optimal solutions for the desired
time horizon. This means that a validity region can change when a new set of base-sequences
are found (N increases). To calculate the length of the validity regions two sets of equa-
tions are needed ((4.12) and (4.13)). The first set of equations calculates the validity regions
that have reached zero in the previous steps. These equations are calculated for ranges of
n = 1, . . . , N −1, but only for those states, which have left the base-sequence in that interval.

n∑
m=1

ẋm
k τm = −x0

k, when vn = ẋk (4.12)

N∑
m=n+1

q̇m
j τm = −qN

j , when vn = uj

The second set of equations checks the regions where the rates go from negative in one region
to a positive rate in the next region (and vice versa for the dual problem) or when the rates
are negative and the region is at the boundary (n = N or n = 0) the equations are formulated
for n = 1, . . . , N for primal problem and n = 0, . . . , N − 1 for the dual problem.

n∑
m=1

ẋm
k τm ≥ −x0

k, whenever ẋn
k < 0, and either ẋn+1

k > 0 or n = N

(4.13)
N∑

m=n+1

q̇m
j τm ≥ −q0

j , whenever q̇n+1
k < 0, and either q̇n

k > 0 or n = 0.

Equations (4.11-4.13) can be combined as: 1 . . . 1 0
A 0
B −I

(~τ
~σ

)
=

 T
g
h

 . (4.14)

24 Chapter 4. Separated Continuous Linear Programming (SCLP)

Where equation (4.14) the appropriate values of ẋn
k , q̇n

j are represented in the coefficients of
A,B and the values −x0

k,−qN
j are represented in g, h. The (unknown) slack is represented in

σ.

With the definitions of a base-sequence and the validity regions in mind the following theorems
and definitions can be stated.

Theorem 5 ([Wei04], Theorem 3).
Consider the SCLP, SCLP* problems (4.1,4.4), and assume assumption 3. Let x0, qN be the
solution of (4.5,4.6). Let B1, . . . , BN be a sequence of bases, which satisfy:

(i) The bases B1, . . . , BN are admissible and adjacent.
(ii) B1, BN are consistent with the boundary values x0, qN .
(iii) The solution of the linear equations (4.14) is τ > 0, σ > 0.

Definition 6 ([Wei04], Definition 2).
Two base-sequences whose validity regions have intersecting boundaries are called neighbor-
ing base-sequences.

Theorem 7 ([Wei04], Theorem 5).
Let l(θ) = (T (θ), x0(θ), qN (θ)) = (T, x0, qN) + θ(δT, δx0, δqN) be a line of boundary values.
As θ changes, within the validity region of a single base-sequence, each of the interval lengths
and slacks τn, σm, and each of the xk(tn), qj(T (θ)− tn) are affine functions of θ.

Theorem 8 ([Wei04], Theorem 6).
Assume the non-degeneracy assumption 3. Let C be the region of boundary values T, x0, qN

for which the feasibility and boundedness assumption 2 holds. Then C is tiled by closures of
validity regions of optimal base-sequences.

Corollary 9 ([Wei04], Corollary 10).
Assume the non-degeneracy assumption 3. Let l(θ) = (1 − θ)(T1, x

0
1, q

N
1) + θ(T2, x

0
2, q

N
2) be

a line of boundary values, for all of which assumption 2 holds. Then there exists a partition
0 = θ(0) < θ(1) < . . . < θ(R) = 1 and neighboring base-sequences B

(r)
1 , . . . , B

(r)
Nr, r = 1, . . . , R

such that the rth base-sequence is optimal for θ(r−1) < θ < θ(r).

When Theorem 8 and Corollary 9 are taken into account the SCLP algorithm can be seen
as a parametric algorithm. This algorithm starts from an optimal solution at T1, x

0
1, q

N
1 and

constructs the optimal base-sequence in the intervals of the partition 0 = θ(0) < θ(1) <
. . . < θ(R) = 1, to reach the solution at θ(T2, x

0
2, q

N
2). The solutions is reached by going from

base-sequence B
(r)
1 , . . . , B

(r)
Nr to its neighboring base-sequences B

(r+1)
1 , . . . , B

(r+1)
Nr+1 by pivoting.

Equation (4.15), presents the update equation for going along the line of boundary values.
The length of the validity region is represent by ∆̄. The end of this line is reached when
∆̄ → ∞. At that point, the current base-sequence is optimal for all T > TR This solution

4.5. Validity regions 25

corresponds to the base-sequence B∞ which is the optimal basis for the rates-LP(∅, ∅).

r := r + 1, (4.15)

θ(r) := θ(r) + ∆̄,

T (θ(r)) := T (θ(r)) + ∆̄δT,

x0(θ(r)) := x0(θ(r)) + ∆̄δx0,

qN (θ(r)) := qN (θ(r)) + ∆̄δqN .

Reduction of the number of intervals of importance

The validity regions are determined by checking all the intervals for situations in which ẋ or
q̇ is non-positive. But at every breakpoint tn, exactly one event happens. When vn = ẋk,
then xk reaches zero and when vn = uj , then qj hits zero at tn. In Equation (4.14), all the
intervals that could reach zero are included, it can be reduced by only taking those intervals
that reaches zero at that breakpoint.

Definition 10 ([Wei04], Definition 3).
It is said that xk hits zero at tn if xk(t) > 0 for t < tn in a left neighborhood of tn, and
xk(tn) = 0. We say that qj hits zero at tn if qj(T − t) > 0 for t > tn in a right neighborhood
of tn, and qj(T − tn) = 0.

This can be done by modifying the equation (4.12,4.13). For any k, n define:

n′(k, n) = max{m : 0 < m ≤ n, ẋk /∈ Bm if such exists, or 0}

and for any j, n define:

n′′(j, n) = min{m : n ≤ m < N, uj ∈ Bm+1 if such exists, or N}

Replace (4.12) by:

n∑
m=n′(k,n)+1

ẋm
k τm =

{
−x0

k if n′(k, n) = 0
0 if n′(k, n) > 0

, when vn = ẋk,

(4.16)
n”(j,n)∑
m=n+1

q̇m
j τm =

{
−qN

j if n”(j, n) = 0
0 if n”(j, n) < N

, when vn = uj .

Equations (4.16) show that if xk hits zero at tn, the corresponding equation sums the incre-
ments of xk over the period tn′ (k,n) < t < tn (or 0 < t < tn). In this period xk > 0, while
xk = 0 in the neighborhood before this period. In the same way when qj hits zero at reversed
time tn, the corresponding equation sums the increments of qj over the period tn < t < tn′′ (j,n)

(or tn < t < T). In this period, qj > 0, while qj = 0 in the neighborhood after this period.

26 Chapter 4. Separated Continuous Linear Programming (SCLP)

Replace (4.13) by:

n∑
m=n′(k,n)+1

ẋm
k τm =

{
−x0

k if n′(k, n) = 0
0 if n′(k, n) > 0

, ∀ ẋn
k < 0, ẋn+1

k > 0, or n = N, (4.17)

n”(j,n)∑
m=n+1

q̇m
j τm =

{
−qN

j if n”(j, n) = 0
0 if n”(j, n) < N

, ∀ q̇N
j > 0, n = 0, and q̇n+1

j < 0.

Equations (4.17) can be interpreted in a similar way as (4.16)
The reduced Equations (4.11,4.16,4.17) can be combined as a function of τ, σ: 1 . . . 1 0

Ared 0
Bred −I

(τ
σ

)
=

 T (θ(r))
gred(θ(r))
hred(θ(r))

+ ∆

 δT
δgred

δhred

 . (4.18)

Definition 11 ([Wei04], Definition 4).
As l(θ) approaches the boundary of the validity region, it is said that a collision occurs
at time tn (for some 0 ≤ n ≤ N), if at least one of the following happens: The interval
τn = tn− tn−1, or the interval τn+1 = tn+1− tn or σm = xk(tn) or σm′ = qj(T − tn) shrink to
zero. It also say that a collision occurs at 0 (at T) if some components of x0 (of qN) reach
0, or if T reaches 0.

So far the algorithm has determined its starting point and it has calculated the direction
in which the solution moves. It has also determined how long the first solution is valid, by
calculating the validity region. The next step is to find the optimal solution for the next
interval. The validity region has determined which variable violates the constraints. By
making a pivot step, as used in LP-theory, the algorithm is able to change the boundary
set of the Rates-LP/LP* (the sign restrictions). This results in a new set rates and a new
base-sequence is found. And the length of the new solutions can be determined by calculating
the validity regions and the algorithm is back at its next pivot step. So the next phase of this
report is to explain what a pivot step is and how this step is performed.

4.6 Pivoting

As mentioned at the end of a validity region the algorithm has to perform an action to create
a new optimal base-sequence, a pivot step. The pivot operations allows the algorithm to
change from one neighboring validity region to another. It moves along a line of boundary
values l(θ) and pivots from one valid optimal base-sequence for θ < 0 to another valid optimal
base-sequence for θ > 0, where θ = 0 is on the common boundary. At the common boundary
a collision occurs, this can be a single or multiple collision. These collisions are defined as
follows:

4.6. Pivoting 27

Definition 12 ([Wei04], Definition 5).
A point on the boundary of the validity region is called a single collision point if the solution
at this point consists of Ñ intervals and exactly Ñ state variables (primal or dual) hit 0 at
these breakpoints. Equivalently, Ãred is Ñ × Ñ . It is also called a single collision if exactly
one component of x0, qN shrinks to zero. Otherwise it is said there is a multiple collision.

The single collision can be divided into two categories, a simple or a compound single collision.
Definition 13 explains these type of single collisions.

Definition 13 ([Wei04], Definition 6).
A single collision in which a single interval shrinks to zero is a simple single collision. A
single collision in which more than one interval shrinks to zero is a compound single collision.

The final assumption the algorithm makes is:

Assumption 14 ([Wei04], Assumption 3). (Single Collision)

All the boundary points of validity regions along the line l(θ) are single collisions.

With the definition of pivoting given, it is time to classify the pivot steps. The algorithm uses
several pivot operations, these operations can be divided into four groups. And each group
can also be divided into sub groups. The sub groups are defined by the moment in time the
collision occurs. It can occur at different stages, between 0 < t < T , at t = 0, or at t = T .
The difference between the main groups, is that either an interval shrinks to zero or a slack
variable hits zero. A fourth case exits which is a special one. This case is needed in case a
subproblem is defined (the explanation of subproblem will follow). In next part of this report
neighboring bases are described by ′ as the first base of the two bases and ′′ as the second base.

The collisions can be classified according to the following cases:
i) At collision time, 0 < t < T intervals between bases B′, B′′ shrink to 0, B′ and B′′ are

adjacent, and exactly one of the xk, qj has a strict local minimum of 0 at t.
a) At collision time t = 0, the intervals preceding the basis B′′ shrink to 0 and exactly

one of the qj has a strict local minimum of 0 at t = 0.
b) At collision time t = T the intervals following the basis B′ shrink to 0 and exactly

one of the xk has a strict local minimum of 0 at t = T .

ii) At collision time 0 < t < T intervals between bases B′, B′′ shrink to 0, and B′ \ B′′ =
{v′, v′′} where v′ appears to leave the basis before v′′ when θ < 0 (i.e. RB′,B′′,v′,v′′(θ) < 1
for θ < 0, see Definition 16).

iii) At collision time 0 < t < T , a slack value σm hits 0. The variable leaving the basis
in the pivot B′ −→ B′′ is v. If the slack that hits 0 is σm = xk(t), choose v′ = v and
v′′ = ẋk. If the slack that hits 0 is σm = qj(T − t), choose v′′ = uj and v′′ = v.
a) At collision time t = 0, a slack value σm = qj(T) hits 0. In that case choose v′ = uj .
b) At collision time t = T , a slack value σm = xk(T) hits 0. In that case choose v′′ = ẋk.

28 Chapter 4. Separated Continuous Linear Programming (SCLP)

iv) a) At time t = 0, x0
k = 0 and ẋk /∈ B1, and with an increase of θ it is intended that x0

k

increases. In that case let B′′ = B1′′ and v′ = ẋk.
b) At time t = T, qN

j = 0 and uj ∈ BN , and with an increase of θ it is intended that
qN
j increases. In that case let B′ = BN and v′′ = uj .

When i, ia, ib or ii are applicable, delete those bases whose intervals have shrunk to zero from
the base-sequence.

Formulation and solution of the LP problem

After the pivot step has been performed a new LP problem needs to be solved. This means
that the set K and J has to be changed and with them the bounds of the LP problems. The
pivot cases cause the following changes in sets:

In cases ii, iii, iiib and ivb let K = {k : ẋk ∈ B′ \ v′′}.
In cases iiia and iva let K = {k : ẋ0

k > 0 or ẋk = v′}.
In cases ii, iii, iiia and iva let J = {j : uj ∈ B̄′′ \ v′}.
In cases iiib and ivb let J = {j : ujq

N
j > 0 or uj = v′′}.

These sets are used to solve the rates-LP/LP*(K,J). The optimal results of the rates are D.

The ratio across the pivot

In the classification of the pivot operations a single collision of Case ii (simple or compound)
at tn is described. During this collision between the bases B′, B′′, two variables are leaving the
base-sequence. Let B′ \ B′′ = {v′, v′′}, with B′ the optimal basis of the rates-LP(KB′ ,JB′)
and B′′ the optimal basis for the rates-LP(KB′′ ,JB′′), where:

KB′ is the set of indices of k for which ẋk ∈ B′,

JB′′ is the set of indices of j for which uj /∈ B′′,

KB′′ = KB′ \ {indices of ẋ’s in v′, v′′},
JB′ = JB′′ \ {indices of ẋ’s in v′, v′′},

We can now define:
KC = KB′ \ {k : v′ = ẋk}, (4.19)
JC = KB′′ \ {k : v′′ = uj},
KD = KB′ \ {k : v′′ = ẋk},
JD = KB′′ \ {k : v′ = uj}.

Here, the rates-LP(KC ,JC) and the rates-LP(KD,JD) lead to the optimal bases C respec-
tively D. If the collision is simple, the bases C and D are both adjacent to B′ and to B′′. When
the collision is not simple, but compound, a subproblem has to be solved. This could be the
case for one side or for both sides (C,D). When both collisions are compound, it is not possible
to show that C ∈ (C1, . . . , CM ′), D /∈ (C1, . . . , CM ′) or D ∈ (D1, . . . , DM), C /∈ (D1, . . . , DM).
During a pivot operation the bases C1, . . . , CM ′ are erased and D1, . . . , DM are inserted. It
is important that the algorithm can make a distinction between these two sequences. To do
that, the following ratio is created.

4.7. Subproblem 29

For the collision at 0 < t < T , the ratio R is defined in the neighborhood of θ = 0:

RB′,B′′,v′,v′′(θ) =



x′ (t′)

−ẋB′
′

!

x′′ (t′)

−ẋB′
′′

! v′ = ẋ′ , v
′′ = ẋ′′ ,

q′′ (T (θ)−t′′)

−q̇B′′∗
′′

!

q′ (T (θ)−t′′)

−q̇B′′∗
′′

! v′ = u′ , v
′′ = u′′ ,

x′ (t′)

−ẋB′
′

+
q′′ (T (θ)−t′′)

−q̇B′′∗
′

!

(t′′−t′) v′ = ẋ′ , v
′′ = u′′ ,

(t′′−t′)
x′′ (t′)

−ẋB′
′′

+
q′ (T (θ)−t′′)

−q̇B′′∗
′

! v′ = u′ , v
′′ = ẋ′′ .

(4.20)

The superscript (B) denotes the value of the rate in the basic solution B.

Proposition 15 ([Wei04], Proposition 5).
(a) The ratio RB′,B′′,v′,v′′(θ) is strictly monotone in θ.
(b) At the collision one has RB′,B′′,v′,v′′(0) = 1.
(c) In the validity region of base sequence B1, . . . , B

′, C, B′′, . . . , BN where v′ leaves the basis
before v′′, i.e. v′ = B′\Cv′′ = C\B′′, one has RB′,B′′,v′,v′′(0) < 1

(d) In the validity region of base sequence B1, . . . , B
′, C, B′′, . . . , BN with σm = x′ and v′ =

ẋ′ or σm = q′′ and v′′ = u′′ , one has RB′,B′′,v′,v′′(0) > 1.
(e) The ratio R > 1 for every point in one of the validity regions, and it is smaller than 1

for every point in the other validity region.

Definition 16 ([Wei04], Definition 7).
It is said that v′ appears to leave the basis before v′′ if RB′,B′′,v′,v′′(0) < 1, and v′ appears to
leave the basis after v′′ if RB′,B′′,v′,v′′(0) > 1.

The main elements of the algorithm are now explained. The algorithm is able to move from
first optimal solution to the next optimal solution, with the condition that the base-sequences
are adjacent (they only differ by one variable). If the solutions are not adjacent the algorithm
needs to create a subproblem, to find the solution between these two base-sequences.

4.7 Subproblem

When the rates-LP is calculated, an optimal base-sequence D is found. This sequence is
checked whether or not it is adjacent to its neighbor(s). The base-sequences D can be ad-
jacent to B′ and B′′, (to B′′ in Cases iiia, iva, to B′ in Cases iiib, ivb,) and the neighboring
base can be reached by making a simple pivot, a new base sequence is found. But if the

30 Chapter 4. Separated Continuous Linear Programming (SCLP)

base-sequence D is not adjacent to one or to both bases B′, B′′ a subproblem is needed to
find the sequence(s) that connect all the base-sequences.

A subproblem is actually nothing more then a smaller SCLP problem, with boundary val-
ues l(θ), 0 < θ < 1 and at θ = 0 the optimal base-sequence is D, at θ = 1 the optimal
base-sequences B′, B′′ (B′′ if t = 0, B′′ if t = T). The solution to the subproblem is a
sequence of adjacent admissible bases B′, D1, . . . , DM , B′′ (D1, . . . , DM , B′′ in cases iiia, iva,
B′, D1, . . . , DM in cases iiib, ivb), in which v′′ appears to leave the basis before v′.

Formulation and the solution of the subproblem

In this section the formulation and solution of a subproblem is described as in [Wei04]. The
description mainly focuses on the collision cases at 0 < t < T , and the instruction are placed
for the simpler cases of t = 0 and t = T is placed between brackets.

When the SCLP algorithm calls upon one of the pivots, in collision cases ii,iii,iiia, iiib, iva,ivb

and the new bases are not neighboring, a subproblem is called. The data for the subproblem
consists of the bases B′, B′′, the basis D and the rates v′, v′′. With v′′ ∈ B′ \D, v′ ∈ D \B′′,
and D is not adjacent to one or both of B′, B′′. The state variables are z′, z′′ and they corre-
spond to v′, v′′. (At t = 0 the data is B′′, D, Z ′, v′, with D not adjacent to B′′; At t = T the
data is B′, D, Z ′′, v′′, with D not adjacent to B′).

Creating the subproblem

The subproblem is a reduced version of the mean problem. To create the subproblem the vari-
ables in both sequences are excluded. These variables are not needed to solve the subproblem,
because they are already part of the known solution. This results in:

• Exclude xk, ẋk, pk from the problem, for all ẋk ∈ B′ ∩ B′′ (ẋk ∈ D ∩ B′′ for t = 0,
ẋk ∈ B′ ∩ D for t = T); This means that xk > 0 and complementary slack states
that pk = 0, which means that the columns of pk can be erased from the dual problem ~a ′ 0

G′ 0
F ′ −I

.

• Exclude qj , q̇j , uj from the problem, for all uj /∈ B′ ∩ B′′ (uj /∈ D ∩ B′′ for t = 0,
uj /∈ B′ ∩D for t = T); So qj > 0 and uj = 0 and these columns can be erased from the

primal problem

 ~c ′ 0
G 0
H I

.

Boundary values

To solve the subproblem, it is needed to set the boundary values of the subproblem. The
subproblem has two type of boundaries, the boundary at θ = 0 and a boundary at θ = 1.

4.7. Subproblem 31

The boundary values of z′, z′′ for θ = 0 are set to:

If v′ = ẋ′ , v′′ = ẋ′′ then x0
′′ = 0, x0

′ = −ẋD
′ , (4.21)

If v′ = u′ , v′′ = u′′ then qN
′′ = −q̇D

′′ , qN
′ = 0,

If v′ = ẋ′ , v′′ = u′′ then qN
′′ = −q̇D

′′ , x0
′ = −ẋD

′ ,

If v′ = u′ , v′′ = ẋ′′ then x0
′′ = 0, qN

′ = 0.

And for θ = 1 the boundary values of z′, z′′ are:

If v′ = ẋ′ , v′′ = ẋ′′ then x0
′′ = −1

2
ẋB′

′′ , x0
′ = −1

2
ẋB′

′ , (4.22)

If v′ = u′ , v′′ = u′′ then qN
′′ = −1

2
q̇B′′

′′ , qN
′ = −1

2
q̇B′′

′ ,

If v′ = ẋ′ , v′′ = u′′ then qN
′′ = −1

2
q̇B′′

′′ , x0
′ = −1

2
ẋB′

′ ,

If v′ = u′ , v′′ = ẋ′′ then x0
′′ = −1

2
ẋB′

′′ , qN
′ = −1

2
q̇B′′

′ .

(z′ only if t = 0, z′′ only if t = T). For all remaining variables the boundary values are set to
x0

k, q
N
j = 0 ∀ θ (except the variables z′, z′′). The time horizon is set to T (θ) = 1, ∀ θ.

Initializing the subproblem

The initialization of a subproblem is slightly different compared to a normal SCLP problem.
The boundary of a subproblem can be found by making an Initial pivot. In addition, the
initial pivot that provides the initial solution is valid for the subproblem in question.

Initial pivots

The initial base-sequence D is optimal for θ = 0. This is the start of the subproblem. To
obtain the basis D− a pivot operation is needed (case iiia if v′′ = u′′ or case iva if v′′ = ẋ′′).
If the base-sequence D− is not adjacent a new subproblem has to be solved to obtain the
sequence of base D−M ′ , . . . , D−1.

To obtain the base-sequence D+, a pivot operation according to case iiib if v′′ = ẋ′ or case
ivb if v′ = u′ . When this sequence is not adjacent a subsubproblem is needed, to obtain the
sequence of bases D1, . . . , DM ′′ .

(If the collision is in the calling problem at t = 0, the base-sequence to obtain is just D+

or D1, . . . , DM ′′ . When the collision is at the calling problem t = T , just obtain the base-
sequence D− or D−M ′ , . . . , D−1).

Initial solution

There are three possible sequences of adjacent bases, (D−, D), (D,D+) or (D−, D, D+). For
the initial solution a choice has to be made on which one is valid for a neighborhood of θ > 0.

32 Chapter 4. Separated Continuous Linear Programming (SCLP)

When a subproblem is solved, replace D− by D−M ′ , . . . , D−1 and/ or D+ by D1, . . . , DM ′′ .
This base-sequence is valid for small θ > 0.
(If t = 0 the possible sequences are (D,D+) or (D,D1, . . . , DM ′′) and for t = T the sequences
are (D−, D) or (D−M ′ , . . . , D−1, D).)

Termination of the subproblem

A subproblem is terminated when an optimal base-sequence includes both B′ and B′′ for the
first time. The resulting base-sequence is: B′, D1, . . . , DM , B′′.
(When t = 0, the base-sequence is terminated when B′′ enters the optimal sequence,D1, . . . , DM , B′′.
If t = T , the base-sequence is terminated when B′ enters the optimal sequence, B′, D1, . . . , DM .)

After finding the solution to the subproblem the algorithm returns to the main problem.
This is done by re-introducing the variables which were excluded. With these steps the algo-
rithm is now able to find all the optimal solutions of an SCLP problem and their duration
for which these solutions are optimal.

4.8 Discussion

The SCLP algorithm of Weiss [Wei04] is able to solve a Continuous Linear Programming
problem. The algorithm solves the problem by using techniques from Linear Programming
(LP) theory.
The algorithm starts with a feasible solution at t = 0 or t = T , this solution is found by
solving an LP problem (Boundary-LP/LP*). The problem is derived from the SCLP prob-
lem, by neglecting the control actions (u(t)). In the second step the algorithm determines in
which direction the optimal solution moves, by using the properties that control variables are
piecewise constant and the state variables are continuously piecewise linear. The directions
are determined by solving a new LP problem (Rates-LP/LP*), the problem is a function of
the control action (u(t)) and the derivative of the states (ẋ). As a result of the Rates-LP/LP*
the optimal base-sequences (B′ or B′′), the set of variables in an optimal solution, is found.
When the direction in which the solution moves is known, the duration of this optimal so-
lution can be determined. This is called the validity region. At the end of this interval a
new optimal solution needs to be found. The algorithm does this by performing a pivot step,
similar as in LP theory. This pivot step causes a change of the lower and upper boundary of
the Rates-LP/LP* and by solving this problem again a new optimal solution is found (D).
The next step is to determine whether or not D is adjacent, the solutions only differ by one
variable, to B′ or B′′. This is needed to find all the optimal solutions for the desired time
horizon. If the solutions are not adjacent a subproblem is created to find the optimal solution
for the position between B′ and D or D and B′′.
By repeating the following step until the desired time horizon has been reached, the algorithm
is able to find all the optimal solution. These steps are: determining the Validity Region of the
new solution, Pivoting at the end of the interval and changing the lower and upper boundary
of the rates, solving the Rates-LP/LP* and creating and solving a subproblem when needed.

4.8. Discussion 33

With this algorithm it is now possible to solve a continuous-time MPC problem as described
in Chapter 3. To use this algorithm the continuous-time MPC problem has to be translated
to the formulation used by Weiss. This is done because the continuous-time MPC problem
is a function of buffer level (y) and control actions (u) and SCLP is a function of the state
variables (x) and the control actions (u). This transformation is shown in Appendix A. The
transformation used is one of the possible transformations. Other transformations are pos-
sible. The choice for this transformation is based on the formulation that Weiss uses in his
examples of similar problems as the one used in this project.

So far the report presented a hierarchical approach to control a manufacturing line. The
formulation of the controller and theory behind it was presented and this chapter showed
how to solve the problem created by the controller. The next phase is to explain the use
of the conversions and this enables us to make a simulation using an event-driven sample
scheme.

34 Chapter 4. Separated Continuous Linear Programming (SCLP)

Chapter 5

Conversion

In the previous chapters focus was on explaining the hierarchial structure and the use of the
controller in this structure. In this chapter a problem with different input and output signals
between the controller and the manufacturing system is solved. The difference is caused by
the fact that the controller used in the hierarchical structure uses a continuous input and
output signal, but the models of the manufacturing systems used in this research project use
a discrete signal. This means that the signals have to be converted. This is done by designing
two converters, one from the manufacturing system to the controller and the other from the
controller to the manufacturing system.

When designing these converters, it is important to take into account that the conversions
should not have any influence on the dynamics of the controller or the discrete-event system.
Otherwise the performance of the controller can not be evaluated properly.

5.1 Conversion from manufacturing system to the controller

The first conversion, the input conversion, is the one going from the manufacturing system to
the controller (see Figure 1.1). In the manufacturing system the buffer levels are measured.
When the system is measured it is, in fact, a picture of the buffer level. This means that the
controller uses information that could have changed at the moment the controller implements
its targets. By converting the signals the controller can use information which is closer to the
actual buffer levels of the manufacturing system.
When taking into account that the input conversion is not allowed to influence the dynamics
of the controller, it results in a converter which has no memory. Considering this aspect there
are two possibilities, the first is to use an observer and the second possibility is to determine
the fraction of time the lot has been processed and adding this to the buffer level.
In the case of an observer, a model of system is made and used to estimate the input. This
estimation can be made by using a Kalman Filter [Gre93]. The filter estimates the actual
buffer level, by using the measured data and the system parameters.
The second method is easier to implement, it measures the buffer level and the time a lot has
been processed until the measuring moment by dividing processed time by the total process
time of that machine, a fraction can be determined and sent to the controller. This fraction

35

36 Chapter 5. Conversion

is added to the buffer level of the buffer after the machine and the remaining part of that
fraction is added to the buffer level of the buffer in front.

Due to time limitations of this project it was chosen to implement the second method. A
better study of observers and a comparison between these methods is advisable.

5.2 Conversion from controller to manufacturing system

The conversion from the controller to the manufacturing system is a conversion where the
targets are translated into machine tasks. The targets calculated by the controller are machine
throughputs. To translate these throughputs it is modelled that the converter divides the
conversion into two parts. The first part calculates the number of lots the machine(s) has to
produce in a certain time. The second part is to determine the sequence in which the lots
should be made. This second part is only needed when multiple buffers serve one machine.
The conversion of the throughputs can be done by using several techniques. One of these
techniques is the scheduling of jobs. This has the disadvantage that the information of the
process times has to be deterministic and has to be known a priori. This is not possible when
using non-deterministic process times.
Another way to convert the signal is to calculate the number of lots that have to be made
during a certain time period and use sequencing policies to determine which machine will
process the lot first. In literature several sequencing policies can be found. Some examples
of sequencing policies are: First-In, First-Out (FIFO), Earliest Due Date (EDD), Weighted
Shortest Process time (WSPT), Shortest Remaining Process time (SRPT), Least Slack (LS),
or Least Setup Cost (LSC). Blackstone et al. [Bla82] and Wein [Wei82] have provided a survey
of these rules. A more recent policy is the Variable Priority Policy (VPP) by Tsakalis et al.
[Tsa97, Var03]. This policy is ideal to use in a system where two buffers serve one machine.
It is a combination of two classic heuristic dispatching rules, a first buffer first serve policy
(FBFS) for the upstream buffer and last buffer first serve policy (LBFS) for the downstream
buffer.
The VPP sequencing policy decides which heuristic rule should be used by calculating the
values of the equations (5.1) and (5.2). Then the values are used to determine the position
in Figure 5.1, which leads to a dispatching rule and the buffer that should be used.

∆Sx = AO(Sx)− EO(Sx), (5.1)
∆Sy = AO(Sy)− EO(Sy) (5.2)

In (5.1) ∆Sx corresponds to the upstream buffer and in (5.2) ∆Sy corresponds to a down-
stream buffer. With AO standing for the Actual Out of a buffer of the corresponding stream
and EO is the Estimated Outs (the targets) of that stream. The VPP rule also needs a second
condition that the chosen buffer is not empty. When both buffers have reached their targets
the machine is allowed to be idle.

5.3. Discussion 37

∆Sx

∆Sy

Do Sx

Do Sy Do Sy

Do Sy

If If

If If

and and

andand

∆Sx < 0

∆Sx < 0

∆Sx ≥ 0

∆Sx ≥ 0

∆Sy > 0 ∆Sy > 0

∆Sy ≤ 0 ∆Sy ≤ 0

Figure 5.1: Priority chart

In this research project the machine targets are calculated by taking the calculated throughput
and multiplying them with the time the throughput is optimal. This result in a number of
lots that have to be made during each optimal interval. And at the machine level the VPP
decides which buffer is served.

5.3 Discussion

The interaction between the controller and the manufacturing line is done by converting the
signals between the two parts. This is needed because the controller uses a continuous signal
and the manufacturing line uses a discrete signal. The conversion between the manufacturing
line and the controller is done by measuring the buffer level and by determining the fraction
of time a lot has been processed on that machine. This fraction is added to the buffer after
the machine and the remaining part of that fraction is added to the buffer in front of the
machine.
The conversion from the controller to the manufacturing line is performed, by calculating the
target of each machine. The targets are calculated by taking the optimal throughputs of the
controller and multiplying them with the duration that the throughputs are optimal. This
results into a set of target that has to be reached in the specified time. At the machine level
a sequencing policy determines which lot should be processed first to reach the given target.

With these definitions of the conversions, the hierarchal structure is completed. The next
phase is to present the simulation models and the results of the simulation using a event-
driven sample scheme.

38 Chapter 5. Conversion

Chapter 6

Event-driven simulations

The research objective of this project is to investigate the possibility of using an event-
driven scheme in a hierarchical approach for inventory control and production optimization
of a manufacturing line. To achieve this objective, a hierarchical structure (Figure 1.1) was
presented. The elements in this structure were explained in the chapters that followed. So
far, the gray marked elements in Figure 6.1 have been explained. This chapter explains the
remaining element, the Discrete Event Model (DEM). This chapter first explains the DEM,
then it defines what is considered to be a resample-event and finally the simulations and their
results are presented.

Conversion

Conversion

Discrete Event Model

MPC

SCLP

Controller

1st Layer

2nd Layer

Figure 6.1: Hierarchical control structure

39

40 Chapter 6. Event-driven simulations

6.1 Discrete Event Models

The final step to complete the hierarchical structure is the creation of the DEM, a model of
a manufacturing line. To test the new sample scheme, it is best to first test it on a simple
manufacturing line. The manufacturing line is represented by a discrete event model of a
GBMBME line, as shown in Chapter 3 in Figure 3.1. This model is placed into the hierarchical
structure, see Figure 6.2. This figure shows the interactions between the Controller and the
DEM and in what languages the elements are programmed.

EG BB MM

DCP

pymath

MPC SCLP

MATLAB 6.0

Python

χ-language

Controller

Discrete Event Model

Figure 6.2: Discrete event Model of GBMBME-line and its interactions

The DEM is programmed in the specification language χ [Roo01, Ver03] developed by the
Systems Engineering group at the Technische Universiteit Eindhoven. The χ-language is a
modelling and simulation tool for designing manufacturing systems.

The DEM consist of 7 processes, namely: a Generator (G), two buffers (B), two machines
(M), an Exit process, and a dispatcher (DCP). The Generator, buffers, machines and Exit
process are processes that speak for themselves, but the dispatcher needs more explanation.
The dispatcher is the process that arranges the communication between the controller and
DEM, it also performs the conversions and it sends the targets to the machines. For a more
elaborate explanation and for the χ-codes the reader is referred to Appendix D.3.

Figure 6.2 also shows the controller, this controller is divided into two parts, namely: the
pymath process programmed in Python and the MPC/SCLP controller programmed in MAT-
LAB 6.0. The pymath process is required for the communication between χ and MAT-
LAB, and this communication is needed, because a SCLP solver operates in MATLAB. Ap-

6.2. Type of sample schemes 41

pendix D.2 contains the codes for the communication between MATLAB and χ. For a user
manual of pymath see [Ste99, Hof03].
The solver used was supplied by Weiss and the instruction on how to use it, can be found in
Appendix D.1.

6.2 Type of sample schemes

In this research project a resample-event is defined as a moment in time when something
happens relevant for the manufacturing system. For example an event is the moment when
a finished product leaves the system or a machine breaks down. In this research project four
type of resample-events schemes are defined:

Type 1) Moments of (re)optimization after 12 hours
Type 2) Moments of (re)optimization after a product finishes on one machine
Type 3) Moments of (re)optimization after a finished product leaves the line
Type 4) Moments of (re)optimization after a machine breakdown

The first type of scheme (type 1) is chosen as a reference, because the discrete-time MPC
uses similar types of sample schemes. The second type (type 2) is chosen to see what happens
when the targets are determined at a high frequency. The third type (type 3) is chosen to
see what happens, when the line is regulated based on finished products. The final sampling
scheme is (type 4) a breakdown of a machine, which is an event that is very likely to occur
in any manufacturing line. Usually the line is not recalculated after a breakdown. However,
the recalculation could be useful to adjust the system to a situation in which the capacity is
temporarily reduced.

6.3 Set-up of experiments

In the previous sections the final part of the hierarchical structure was build and the definition
of a sample scheme was given. This section focuses on the set-up of the experiments used as
basis for the simulations.
The goals of these experiments is to investigate the use of an event-driven sample scheme, the
influence of a high or a low frequency of (re)optimization on the DEM, and the third goal is
to determine the influence of stochastic process times.
To achieve these goals, three experiments are performed with the system described above.
For each goal one experiment is performed. The experiments are:

1. Simulating using one fixed process time for all machines,

2. Simulating using different process times for each machine, the process times are fixed,

3. Simulating using different process times for each machine, the process times are stochas-
tic.

42 Chapter 6. Event-driven simulations

Each experiment is simulated using the four sample schemes defined in Section 6.2 and the
initial conditions of the DEM are constant in each experiment. These conditions are:

The initial buffer levels =⇒ y =
(

2
3

)
[lots]

The maximal buffer levels =⇒ ymax =
(

10
10

)
[lots]

The cost of having lot in the buffer =⇒ p =
(
−10
−20

)
[100 Euro/lot]

The cost of producing lot =⇒ r =
(

0.2
0.2

)
[100 Euro/lot]

A time horizon =⇒ T = ∞

The arrival rate of the system =⇒ λ =
(

3
0

)
[lots/hour]

The last initial value the DEM requires is the process time of the machines. This depends
on the type of experiment that is performed. In the case that experiment 1 is performed, the
process time of both machines are set at 5 [min/lot], in the second experiment the process
time of the first machine is set at 5 [min/lot] and the second machine has a process time of
15 [min/lot], and in the final experiment the process times of both machines are stochastic,
with a mean process time equal to the process times of the second experiment.

The stochastic process times are determined by taking the average process times of the ma-
chines, 5 [min/lot] for the first machine and 15 [min/lot] for the second machine, and adding
a normal distribution with a mean of 0.0 and a variance of 1.0 to the process times. It is
important that the process time may not become negative. This is achieved by checking the
probability of a negative process time. The result are shown in Figure 6.3, these figures show
the probability density function of the process times. The probability of a negative process
time is e−6 for machine 1 and e−50 for machines 2. These probabilities are very small, which
means that a new pulling is sufficient to prevent the use negative process time.

Experiment Sample Process time M1 Process time M1 Stochastic process times
1 type 1 5 [min/lot] 5 [min/lot] n/a

type 2 5 [min/lot] 5 [min/lot] n/a
type 3 5 [min/lot] 5 [min/lot] n/a
type 3 5 [min/lot] 5 [min/lot] n/a

2 type 1 5 [min/lot] 15 [min/lot] n/a
type 2 5 [min/lot] 15 [min/lot] n/a
type 3 5 [min/lot] 15 [min/lot] n/a
type 4 5 [min/lot] 15 [min/lot] n/a

3 type 1 5 [min/lot] 15 [min/lot] µ = 0.0 and σ2 = 1.0
type 2 5 [min/lot] 15 [min/lot] µ = 0.0 and σ2 = 1.0
type 3 5 [min/lot] 15 [min/lot] µ = 0.0 and σ2 = 1.0
type 4 5 [min/lot] 15 [min/lot] µ = 0.0 and σ2 = 1.0

Table 6.1: Machine process times.

6.4. Expected results 43

0.1

0.2

0.3

0.4

f
(x

)

x

0
0

0.05

0.15

0.25

0.35

5 10 15 20 25 30

(a) Process time, machine 1

0.1

0.2

0.3

0.4

f
(x

)

x

0
0

0.05

0.15

0.25

0.35

5 10 15 20 25 30

(b) Process time, machine 2

Figure 6.3: Probability density functions of the process time

6.4 Expected results

Now, the simulation models were created, the sample schemes were defined, and the experi-
ments were formulated, the next step is to predict how the DEM reacts to the control actions
of each sample scheme.

MPC/SCLP controller

The first expectation is to know how the MPC/SCLP controller reacts. The optimization
function of the controller is designed in such away that, when a stock is in the line, it tries
to empty the stock. As a result, it reduces the cost of cost-function. These costs are higher
for lots that are further in the line, so these are emptied first. This means that the controller
firsts set targets that will empty the buffers and subsequently issue a target that is equal to
the rate in which the lots enter the line.

DEM

The expectation of the DEM is divided into four categories which are directly related to the
sample schemes defined in Section 6.2. The first category is Type 1.

Type 1. Moments of (re)optimization after 12 hours

The first sampling scheme is the scheme where (re)optimization occurs after 12 hours. This
frequency of (re)optimization is considered to be a low frequency. This means that the con-
troller is not able to adjust the DEM when the buffer increases, until the next (re)optimization
moment.

In the first experiment, all machines have the same process time, the controller starts emp-
tying the buffers. When the buffers are empty, the controller and DEM produce with the

44 Chapter 6. Event-driven simulations

same rate as arrival rate of the lots. In the second experiment, the machines have different
fixed process times and the controller tries to empty the buffers. However, since the process
times differ, the buffer of the slower machine is initially increase. In the third experiment,
the machine with stochastic process times is almost the same as in the second experiment.
In this case the stochastic behavior has the consequence that the DEM might not reach its
targets and this causes an increase of the buffer level.

Type 2. Moments of (re)optimization after a product finishes on one machine

In this case the (re)optimization is determined after a product has finished on a machine
and the controller operates at a high frequency. It is expected that the controller will have
difficulties to stabilize to zero due to the many control actions, so that the DEM cannot reach
its targets.
When experiment one is executed, the DEM starts emptying the buffers and when it reaches
zeros it starts fluctuating between zero and certain buffer level. In the second and third
experiment the DEM also starts emptying the buffers, but it takes longer because of different
process times per machine and the stochastic nature of the process times.

Type 3. Moments of (re)optimization after a finished product leaves the line

In this type of sample scheme the departure of a product triggers the controller. The number
of products that leave the line can be large. This means that the controller has to (re)optimize
at a higher frequency. This results in a lot of control actions and this causes that the DEM
does not reach the targets given. The expectations are the same as with the sample scheme
type 2, but with a lower intensity.

Type 4. Moments of (re)optimization after a machine breakdown

The last expectation is of a sample scheme, where the sample is performed after a machine
breakdown. This sample scheme is expected to show that the DEM is controlled with a low
frequency of control actions, which can cause the DEM to initially operate at a higher buffer
level. In the first experiment the DEM starts to empty the buffers, when the buffers are
empty it produces with the same rate as the arrival rate. The second experiment shows that,
when using this sample scheme, the buffer level of the first buffer does not fluctuate close
to a buffer level of zero, because the second machine produces at a slower rate. In the final
experiment the DEM is expected to empty the buffers and also to fluctuate close to an empty
buffer level. However, the time in which the buffer is emptied is longer, due to the fact that
not all targets are reached. The stochastic process time causes an error between the target
and the actual output.

6.5. Results 45

6.5 Results

This section presents the results of each experiment, with the four different sample schemes.
These categories show the results of the three experiments of the specified sample scheme.
Each experiment shows the two buffer levels, the level of the exit buffer, and a figure that
shows the error between the actual output and the target buffer level.

In the figure of the buffer level, the red line represents the calculated targets issued by
the MPC/SCLP controller (translated to buffer levels), the blue lines are the buffer levels
produced by the DEM. The plot of the exit buffer also show the desired output level. This
level is determined by using the arrival rate (~λ) of the system multiplied it with the duration
of the simulation.
Then, the first three categories are compared to answer the questions formulated in the goal
of this experiment. The fourth category is presented to show the effects of an event-driven
sample scheme.

Type 1. Moments of (re)optimization after 12 hours

The first category is the sample scheme, that samples every 12 hours. This means that
the controller (re)optimizes after 12 hours and calculates the targets for that period. The
simulations have a duration of 2 shifts of 12 hours.

Experiment 1

In the first experiment the process times are fixed and both machines have the same process-
ing rate (see Table 6.1) . The results are shown in Figure 6.4 and Figure 6.5. Figure 6.4 shows
the buffer levels and the level of the exit process and Figure 6.5 shows the error between the
actual output and the estimated output. The first figure in Figure 6.4 shows the level of
the first buffer. This buffer receives the lots with a rate of 3 [lots/hour]. At the beginning of
the simulation the first machine is idle, this causes the buffer to increase. The controller sets
the machine to idle to enable the second machine to empty its buffer first, because those lots
have more added economical value than the lots in the first buffer. After 0.25 [hours] the
second buffer is emptied and the first buffer starts emptying its content. The second machine
operates with the same rate as the first since both machines have the same process time,
which means that the lots are almost immediately processed. When both buffers are empty
the machines produces with the same rate as the lots arrive. The MPC/SCLP controller
shows this by forcing the buffer level to zero and with the DEM this can be seen the by fact
that when the DEM receives a lot, it immediately sends the lot to the machine.
The final figure of Figure 6.4 shows the cumulative number of lots produced during the sim-
ulations. The dotted line shows the rate of finished products. The cumulative level of the
DEM and controller are higher than the arrival rate. A closer look shows that the difference
between the level of the arrival rate and the number of lots leaving the system is roughly
5 lots and this is the number of lots that initially were in the buffers.

46 Chapter 6. Event-driven simulations

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.4: Buffer levels of experiment 1 with sample scheme type 1

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.5: Error between actual output and the estimated output of experiment 1 with scheme type 1

Figure 6.5 shows the error between the actual output and the estimated output. The figure
shows that DEM is reaches its targets most of the time except in one situation. This is caused
by the fact that the buffer is empty and is waiting for a new lot to arrive. After this error,
the system corrects this by producing more. In the figure it seems that the reaction to the
shortage is longer, but this is caused by a numerical delay of the DEM. The DEM uses the
optimal targets of the controller, but when the sample period is longer than the beginning of
the last validity region the targets are calculated by taking one hour and multiplying this with
the target. This is repeated until the end of the sample. However, the error measurements

6.5. Results 47

are taken at the moment a new target is calculated, which results in a larger error.

The second error in Figure 6.5 occurs at moment a (re)optimization is done (after 12 hours).
At this point it is possible that the actual output is lower then the estimated output, because
the time period of that target has not yet ended.

Experiment 2

The second experiment uses a fixed process time and the machines have different processing
rates (see Table 6.1). The first machine produces with a rate of 12 [lot/hour] (process time
of 5 [min/lot]) and the second machine produces with a rate of 4 [lots/hour] (process time
of 15 [min/lot]). In Figure 6.6 and Figure 6.7 the results experiment 2 are presented for a
simulation of 24 hours. These results are similar to the results of experiment 1. The difference
is that due to the different processing times, the second machine takes longer to empty its
buffer and this causes an increase of the first buffer. When the first machines start emptying
its buffer it processes the lots at a higher rate than the second machine, this causes an increase
of the second buffer. The figure also shows that the control signal is different from the DEM
signal. This is caused by the fact that the controller only sets the targets at the beginning of
the sample period. The second machine processes the lots of machine 1. When both buffers
reach the level of zero, the system has reached it steady state.

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.6: Buffer levels of experiment 2 with sample scheme type 1

48 Chapter 6. Event-driven simulations

The error plot in Figure 6.7 has the same moments when an error occurs, namely: the
moment a buffer reaches an empty state or when the (re)optimization is done. However there
is something wrong with the error moment when a buffer becomes empty. In Figure 6.7,
buffer 2 become empty at t = 1 hour and at that point an should occur.

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.7: Error between actual output and the estimated output of experiment 2 with scheme type 1

Experiment 3

The final experiment for this sample scheme uses a stochastic process time and the machines
have different processing rates (see Table 6.1). The mean of these stochastic process time is
equal to the process time described in experiment 2. The results are presented in Figure 6.8
and Figure 6.9. The simulations are performed for a duration of 24 [hours], just as in the first
two experiments. The results of the stochastic system have the same structure as the results
of experiment 2, with the difference that the system needs more time to reach its steady state.
The stochastic process times causes a higher level of the second buffer. The second machine
causes the second buffer to increase due to the fact that the process times are longer. The
stochastic process times are also has the consequence that the buffer is sometimes not able
to send a lot directly to the machine.
The error plot shows the error of the actual output minus the estimated target. The results
of experiment 3, Figure 6.9, show that the number of error are larger than in the previous
experiments. The errors occur at the moment the buffer is empty and waiting for a new lot.
In Figure 6.9 the duration of this error is larger then in previous experiment, this is caused
by the fact that the controller presumes that the buffer is empty, but the buffer in the DEM
increases to a level of 4 lots. Due to the low frequency of (re)optimization an error occurs.

6.5. Results 49

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.8: Buffer levels of experiment 3 with sample scheme type 1

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.9: Error between actual output and the estimated output of experiment 3 with scheme type 1

Discussion

Comparing the sample types of experiment 1

The results of experiment 1 showed that when the results of the sample types are compared
the differences are very small. With sample type 1 the steady state is reached after 1 hour.
Sample type 2 takes about 5 hours to reach its steady state mode and sample type 3 reaches
the steady state mode after 13 hours, with the notion that due to the stochastic process times

50 Chapter 6. Event-driven simulations

the lots remain a little longer in the buffer compared to the other sample types.
The error figures of experiment 1 all show that at the moment of (re)optimization an error
occurs. However the results of the sample type 2 and 3 have a different shape, but the reason
for the difference between the errors at the moment a buffers empties is not clear.

Comparing the results with the expectations

When comparing the results of the simulations with the expectations given in Section 6.4, the
results of the first experiment are correct. The buffers are first emptied and when they are
empty they produce with the rate the lots arrive. The second expectation is slightly differ-
ent, it does take longer to reach the empty state of the buffer and the second buffer increase
initially. However, the system corrects this and reaches the same state as in experiment 1.
The differences between the prediction and the actual results are caused by the fact that the
prediction did not take the idle time of the first machine into account. The third expectation
was wrong, the controller is influenced by the stochastic of the process times, but the DEM
and controller are able to adjust in such away that the system reaches a steady state. During
the prediction it was expected that the stochastic would have more influence on the system.

Type 2. Moments of (re)optimization after a product finishes produced on
one machine

The second category is the simulation were a sample scheme is used that samples after a
product has be produced on of the machines. These simulations have been running for 150
sample periods which is equal to 2 shifts of 12 [hours].

Experiment 1

In the first experiment the process times are fixed and both machines have the same process-
ing rate (see Table 6.1). The results are shown in Figure 6.10 and Figure 6.11.

The results show that the controller initially performs a lot of control actions to empty the
buffers. After that the control actions have little influence on the behavior of the system.
This is logical, because when the buffers are empty, the system produces with the same rate
as the arrival rate. This means that each lot that comes into the buffer is immediately sent
to the machine.
The exit process shows that the line produces with the rate of the arrival rate and it has an
offset of the size of the total initial buffer level.

In Figure 6.11 the error is plotted. The figure shows that the error is between zero and
one and the number of error is larger due to the high frequency of (re)optimizations.

6.5. Results 51

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.10: Buffer levels of experiment 1 with sample scheme type 2

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.11: Error between actual output and the estimated output of experiment 1 with scheme type 2

Experiment 2

This experiment uses a fixed process time and the machines have different processing rates
(see Table 6.1). The first machine produces with a rate of 12 [lot/hour] (process time of
5 [min/lot]) and the second machine produces with a rate of 4 [lots/hour] (process time of
15 [min/lot]). The results are presented in Figure 6.12 and in Figure 6.13.

52 Chapter 6. Event-driven simulations

The results of the second experiment show that controller needs more time to empty its

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.12: Buffer levels of experiment 2 with sample scheme type 2

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.13: Error between actual output and the estimated output of experiment 2 with scheme type 2

buffer, similar as in experiment 2 of type 1. The difference with that figure is that the control
and DEM signal are almost the same. In the second figure of Figure 6.12, the second buffer
empties its content but the level does not stay close too zero, because the first machine has
not reached zero yet and produces with higher rate than the second machine. After 8 [hours]
the system reaches it steady state.

6.5. Results 53

The third figure in Figure 6.12 and the error plot in Figure 6.13 are the same as in ex-
periment 1.

Experiment 3

The final experiment for this sample scheme uses a stochastic process time and the machines
have different processing rates (see Table 6.1). The mean of these stochastic process time is
equal to the process time described in experiment 2. The results are presented in Figure 6.14
and Figure 6.15.

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.14: Buffer levels of experiment 3 with sample scheme type 2

54 Chapter 6. Event-driven simulations

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.15: Error between actual output and the estimated output of experiment 3 with scheme type 2

In the third experiment the process times become stochastic. This influence of the stochastic
process times on the result using the current sample scheme are limited. The buffer level
initially fluctuates a bite more, but the system reaches its steady state at the same moment
as in experiment 1. The stochastic process times influence the calculated error of the second
buffer. In the transient time period the error fluctuates between one and minus one.

Discussion

Comparing the sample types of experiment 2

When comparing the transient periods of the results of experiment 2, the transient time
of sample type 1 is smaller than the time of the other types. Sample type 1 reaches the
steady state mode after 1 hour. And the types 3 and 4 reach the steady state after 7 respec-
tively 8 hours.
The error all have the same characteristic features, expect that the error of sample type 3
differs during the transient time. This is due to the stochastic process times.

Comparing the results with the expectations

In Section 6.4 the expectations were that the system would have difficulties with finding
its steady state. The results show that only when the buffer is not near to zero, the system
has some difficulties with stabilizing. But long after the buffers are emptied the system op-
erates in a steady state mode. It was also expected that in the second and third experiment
the DEM would need more time to empty the buffer. The results confirmed this.

Type 3 Moments of (re)optimization after a finished product leaves the line

The final case of the simulations, is the case where a product leaves the line is considered an
event. The simulations are run for 78 product leaving the lines (this is equal to a duration of
one day). The results are shown in Figure 6.18 - 6.21.

6.5. Results 55

Experiment 1

In the first experiment the process times are fixed and both machines have the same processing
rate (see Table 6.1). The results are shown in Figure 6.16 and Figure 6.17. Experiment 1

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.16: Buffer levels of experiment 3 with sample scheme type 1

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.17: Error between actual output and the estimated output of experiment 3 with scheme type 1

showed identical results as the results of experiment 1 with sample type 2. The only differences
are the errors. In this experiment the error only fluctuates at the beginning between zero and
one. And it becomes one after the line has reached it steady state.

56 Chapter 6. Event-driven simulations

Experiment 2

This experiment uses a fixed process time and the machines have different processing rates
(see Table 6.1). The first machine produces with a rate of 12 [lot/hour] (process time of
5 [min/lot]) and the second machine produces with a rate of 4 [lots/hour] (process time of
15 [min/lot]). The results are presented in Figure 6.18 and Figure 6.19.

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.18: Buffer levels of experiment 2 with sample scheme type 3

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.19: Error between actual output and the estimated output of experiment 2 with scheme type 3

6.5. Results 57

The second experiment also shows that there is no difference between sample type 2 and 3.
Only the error is slightly different, it has a lower frequency, but the errors are between zero
and one. Except for one measurement and this is caused by the fact that the buffer became
empty.

Experiment 3

The final experiment for this sample scheme uses a stochastic process time and the machines
have different processing rates (see Table 6.1). The mean of these stochastic process time is
equal to the process time described in experiment 2. The results are presented in Figure 6.20
and Figure 6.21.

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

2

4

6

0 5 10 15 20 25
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.20: Buffer levels of experiment 3 with sample scheme type 3

58 Chapter 6. Event-driven simulations

0 5 10 15 20 25
−2

−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.21: Error between actual output and the estimated output of experiment 3 with scheme type 3

In the third experiment the results show a more regular pattern than the results of exper-
iment 3 with a sample type 2. The stochastic has less influence on the behavior of the
controller. The same applies for the error plot.

Discussion

Comparing the sample types of experiment 3

The result show that sample type 1 reaches a steady state mode after 1 hour and the other
two sample types reach the steady state mode at t = 4 hours.
During the steady state mode, the error of the sample types have the same shape and value.
But during the transient phase the samples differ slightly, due to the stochastic process times.

Comparing the results with the expectations

The expectation was the the behavior would be the same as in sample type 2, but with
a lower intensity. And the results confirmed these findings.

Type 4 Moments of (re)optimization after a machine breakdown

The third sample scheme is the sample after a machine breakdown. The machine breakdowns
are created by using an exponential distribution, with a mean of one shift of 12 [hours]. The
simulations were run for 5 breakdowns. The duration of the simulation is different than other
experiments, due to stochastic breakdown time the The results are shown in Figure 6.22-
Figure 6.27.

6.5. Results 59

Experiment 1

In the first experiment the process times are fixed and both machines have the same processing
rate (see Table 6.1). The results are shown in Figure 6.22 and Figure 6.23.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.22: Buffer levels of experiment 1 with sample scheme type 4

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.23: Error between actual output and the estimated output of experiment 1 with scheme type 4

60 Chapter 6. Event-driven simulations

The results of experiment 1 show that, when evaluating a system with equal process times,
a breakdown has little influence on the output of the line. It is noted that during the
(re)optimization de capacity constraints did not change, only the buffer level changed.
In this situation the results are similar to the results found with experiment 1 with a sample
type 1.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40
DEM

DEM

DEM

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.24: Buffer levels of experiment 2 with sample scheme type 4

Experiment 2

This experiment uses a fixed process time and the machines have different processing rates
(see Table 6.1). The first machine produces with a rate of 12 [lot/hour] (process time of
5 [min/lot]) and the second machine produces with a rate of 4 [lots/hour] (process time of
15 [min/lot]). The results are presented in Figure 6.24 and Figure 6.25.

The second experiments show that the control actions are low, because there is a big
difference in action between the controller and the DEM. It also shows that when the system
has emptied its buffer the controller actions are very limited.

6.5. Results 61

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.25: Error between actual output and the estimated output of experiment 2 with scheme type 4

Experiment 3

The final experiment for this sample scheme uses a stochastic process time and the machines
have different processing rates (see Table 6.1). The mean of these stochastic process time is
equal to the process time described in experiment 2. The results are presented in Figure 6.26
and Figure 6.27.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

MPC/SCLP controller

MPC/SCLP controller

MPC/SCLP controller

DEM

DEM

DEM

Expected buffer level

y
[l
o
ts

]
y

[l
o
ts

]
y

[l
o
ts

]

time [hours]

Buffer 1

Buffer 2

exit process

Figure 6.26: Buffer levels of experiment 3 with sample scheme type 4

62 Chapter 6. Event-driven simulations

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

e
rr

o
r

time [hours]

Buffer 1

Buffer 2

Figure 6.27: Error between actual output and the estimated output of experiment 3 with scheme type 4

Figure 6.26 shows the results of the buffer levels. The results are slightly different from the
results found in experiment 3 with sample type 1, because during the period that the buffers
are being emptied a breakdown occurs and the control actions are changed. The controller
focuses the DEM to empty the buffers. However, the machine is not able to process all the
lots that arrive in the buffer and the buffers increase.
The error plot, Figure 6.27, shows that when a breakdown happens, an error occurs.

Discussion

Comparing the sample types of experiment 4

The comparison of the sample types of experiment 4 is not possible, the problem is caused
by the differences in length of breakdown intervals. However, the pattern of the results are
similar compared to experiment 1.

Comparing the results with the expectations

For sample type 4 the expectations were that the buffers are empty with a limited num-
ber of control actions. The results show that the controller starts emptying the buffers and
the DEM deviates from the signal of the controller except when a breakdown occurs. In that
case the deviation is smaller.

6.6 Global discussion

The sample types of each experiments are already compared with each other. It is now time
to compare the experiments with each other, this is done for the experiments 1–3. Experi-
ments 4 is left out because of the difference in the durations of the simulations.
The first comparison is made between the low frequency and high frequency (re)optimization.
When the controller (re)optimizes with al low frequency, the lots stay longer in the buffer until

6.6. Global discussion 63

a (re)optimization is performed. The signals of the DEM and the controller initially differ
due to the low frequency of (re)optimization. With a high frequency of (re)optimizations this
problem does not occur.
When the results of experiment 1 are compared with the results of experiment 2 and 3 for
each sample type. The results show that in experiment 1 for all of the sample types the
controller is able to bring the DEM into a steady state after approximately 1 hour. In case
of experiment 2 the length of the transient times differ, sample type 1 has transient period of
4 hours, sample type 2 has a transient period of 7 hours, and sample type 3 has a transient
time of 5 hours. With the experiment 3 the transient periods are 13 hours, 8 hours, and
5 hours respectively. In all the sample types the initial buffer levels are higher then the other
experiments.

The comparison of the error plots is difficult, because the way they are measures in the
model might not be correct.

64 Chapter 6. Event-driven simulations

Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The research objective of this project is to investigate the possibility of using an event-driven
sample scheme in a hierarchical approach for inventory control and production optimization
of a manufacturing line. In addition to the first objective it was desired to investigate the in-
fluence of the conversion of the continuous MPC into discrete-event decisions on the controller.

To achieve these objectives a hierarchical framework was build and an MPC controller was
designed. In order to use the MPC controller it is important to understand the SCLP algo-
rithm, created by Weiss [Wei04]. The principle of this algorithm is relatively simple, but the
implementation of the algorithm is more complex and difficult to understand. In this report
it was attempted to explain the principles of the algorithm and how the algorithm should be
implemented. Due to the complexity of the algorithm there are still a few questions how the
algorithm should be used and which limitations the algorithm has. But with the use of the
SCLP solver designed by Weiss, it was possible to simulate the concept of an event-driven
sample scheme with test cases of a manufacturing line.

In the investigation of the influence of the conversion of the continuous MPC into the discrete
event decisions, several types of conversion were explored. The final conclusion is that when a
controller is used to control a discrete-event system with variable process times, it is optimal
to use a conversion method that consist of two parts. The first part is used to translate the
throughput targets into the number of lots a machine has to produce during a time interval.
The last part uses sequencing policies to decide which buffer should serve the machine in
order to reach the estimated targets. The second part of the conversion is only needed when
the line has machines with multiple buffers.

With the knowledge of the hierarchical approach, the MPC controller, the SCLP algorithm,
and the conversions, a number of simulations were carried out with four different type of
sampling schemes. The sample schemes investigated where: 1) every 12 hours, 2) after a
product finishes on one machine, 3) a product leaves the line and 4) after a machine breaks
down.

65

66 Chapter 7. Conclusions and Recommendations

The sample schemes are tested by using a simple model of a manufacturing line with two
buffers and two machines. Both machines are connected to one single buffer. The focus of
these tests was to investigate the possibility of an event-driven sample scheme.
The simulations were carried out for three experiments, that used a model of a GBMBME-
line. In the first experiment the process times are fixed at 5 [min/lot], the second experiment
also uses a fixed process times, but the process times are different (the first machine has a
process time of 5 [min/lot] and second machine has a process time of 15 [min/lot]). The final
experiment uses a model that has stochastic process times with a mean of 5 [min/lot] for the
first machine and 15 [min/lot] for the second machine.
In each experiment the four sample schemes are used. The results showed that the controller
first starts with emptying the buffers and when the buffers are empty the machine produces
with the same rate as the lots arrive, the controller and DEM ends in a steady state position.
The results also showed that when the system is controlled using a sample scheme with high
(re)optimization frequency, the system is still able reach steady state behavior. When as low
frequency sample scheme is used a difference can occur between the DEM and control signal,
but the system still reaches a steady state.
This means that when using a hierarchical approach for inventory control and production
optimization of a manufacturing line, it is possible to use an event-driven sample scheme.

7.2 Discussion

The research objectives are obtained, but this path to obtain this objective should be criti-
cally reviewed.
The first part that should be reviewed is the SCLP algorithm. In the process of understanding
the algorithm an attempt was made to program the algorithm, but due to the time limitations
of this project this attempt had to be stopped. However, the programming of the algorithm
gave a valuable inside in how the algorithm works exactly. So finishing a program of the
algorithm is very valuable.
The next step was the translation of the MPC problem into a SCLP problem. This can be
achieved in several ways, but not all the translations were solvable by the SCLP solver and
the reason why the solver cannot find a solution is unknown. To find out why the translations
do not work, a better understanding of the solver is needed. Another factor of the translation
is that it is unknown whether this is the ideal way of representing an MPC problem.
The second part that should be reviewed is conversion from the manufacturing line to the
controller. This conversion was chosen because it was the easiest to implement, but it is
unknown whether this is the best conversion.
The simulation part also has some elements that should be reviewed. In this report a simple
model of a manufacturing line with different type of process times was tested and the model
was tested by using constant initial values. How the controller would react in more complex
system and what the influences of the test strategy is, is unknown. To determine, this further
research is needed.
The last part that should be evaluated are the error calculations made in Chapter 6. As
mentioned in that chapter the error is caused by the way the measurement are done and the
by the timing of the measurement.

7.3. Recommendations 67

7.3 Recommendations

The discussion has created a few questions, for which further research is needed to answer
them. This leads to five recommendations.

The first recommendation is to program the algorithm for a better understanding of the
algorithm.

The second recommendation is about the investigation of the limitations of the algorithm
and an investigation into the best way to operate this algorithm, while keeping in mind the
MPC principles. This might create a more transparent model.

The third recommendation is about the conversion from the manufacturing system to the
controller. In the analysis of the conversion it is recommended that the conversion method
applied in this report is compared to an alternative method using an observer.

The last two recommendations are related to the simulations. It is recommended to sim-
ulate a larger and a more complex line like a reentrant line, to find out how the controller
would react. When simulating it is advisable that experiments are done by using different
initial settings.
The last recommendation is about the use of error plots to determine how many targets are
not reached. It is recommended to investigate the correctness of the error measurement used
in this report.

68 Chapter 7. Conclusions and Recommendations

Bibliography

[All00] F. Allgöwer and A. Zheng, editors. Nonlinear Model Predictive Control, volume 26.
Birkhäuser, 2000.

[All01] F. Allgöwer and R. Findeisen, editors. An Introduction to Nonlinear Model Pre-
dictive Control. Dutch Institute of Systems and Control (DISC), Summerschool on
‘The Impact of Optimization in Control’, 2001. 3.1–3.45.

[Bla82] J.H. Blackstone, D.T. Philips, and G.L. Hogg. A state-of-the-art survey of dispatch-
ing rule for manufacturing job shop operations. International Journal of Production
Research, 20(1):27–45, 1982.

[Cam99] E.F. Camacho and C. Bordons. Model Predictive Control. Springer, 1999.

[Dan68] G.B. Dantzig and M.N. Thapa. Linear programming and extensions/ by George
B. Dantzig. Princeton University Press, 4 edition, 1968.

[Ess02] H.A. van Essen and M. Steinbuch. Lecture notes on model predictive control for the
course ’Capita Selecta in Control’. Eindhoven University of Technology, Department
of Mechanical Engineering, 2002.

[Fin00] R. Findeisen and F. Allgöwer. Nonlinear model predictive control for index-one DAE
systems. In F. Allgower and A. Zheng, editors, Nonlinear Model Predictive Control,
volume 26 of Progress in systems and control theory, pages 145–161. Birkhäuser,
2000.

[Gar89] C.E. Garcia, D.M. Prett, and M. Morari. Model predicitve control: theory an
practice — a survey. Automatica, 25(3):335–347, 1989.

[Gre93] M.S. Grewal and A.P. Andrews. Kalman Filtering Theory and Practice. Prentice
Hall, 1993.

[Hof02] A.T. Hofkamp and J.E. Rooda. χ reference manual. Eindhoven University of Tech-
nology, Department of Mechanical Engineering, System Engineering Group, Novem-
ber 2002. http://se.wtb.tue.nl/documentation.

[Hof03] A.T. Hofkamp. Python from χ. Eindhoven University of Technology, Department of
Mechanical Engineering, System Engineering Group, χ-0.8 edition, December 2003.

[Mac02] J.M. Maciejowski. Predicive Control with Constraints. Prentice Hall, 2002.

69

70 Bibliography

[Roo01] J.E. Rooda and J.J.T. Kleijn. χ Manual. Eindhoven University of Technology,
Department of Mechanical Engineering, System Engineering Group, October 2001.
http://se.wtb.tue.nl/documentation.

[Roo03] J.E. Rooda and J. Vervoort. Analysis of Manufacturing Systems. Eindhoven Uni-
versity of Technology, Department of Mechanical Engineering, System Engineering
Group, February 2003.

[Ste99] A. Sterian. Pymat - an interface between python and matlab, July 1999. http:
//claymore.engineer.gvsu.edu/∼steriana/Python/pymat.html.

[Tsa97] K.S. Tsakalis, J.J. Flores Godoy, and A.A Rodriguez. Hierarchical modeling and con-
trol for re-entrant semiconductor industry fabrication lines: A mini-fab benchmark.
In 6th IEEE Int. Conference on Emerging Technologies and Factory Automation
(ETFA’97),Los Angles, CA, 1997.

[Van96] R.J. Vanderbei. Linear Programming foundations and extensions. Kluwer Academic
Publishers, 1996. http://www.princeton.edu/∼rvdb/LPbook/index.html.

[Var03] F.D. Vargas-Villamil, D.E. Rivera, and K.G. Kempf. A hierarchical approach to pro-
duction control of reentrant semiconductor manufacturing lines. IEEE Transactions
on control Systems technology, 11(4):pp. 578–587, July 2003.

[Ver03] J. Vervoort and J.E. Rooda. Learning χ-0.8. Eindhoven University of Technology,
Department of Mechanical Engineering, System Engineering Group, October 2003.
http://se.wtb.tue.nl/documentation/.

[Wei82] L.M. Wein. Scheduling semiconductor wafer fabrication. IEEE Transactions on
Semiconductor Manufacturing, 1(3):115–130, 1982.

[Wei04] G. Weiss. A simplex based algorithm to solve separated continuous linear pro-
grams. submitted to Mathematical Programming, 2004. http://stat.haifa.ac.
il/∼gweiss/.

Appendix A

Translation to a primal SCLP

In Chapter 3 a continuous-time MPC problem is formulated. For solving this problem an
algorithm is presented in Chapter 4, the SCLP algorithm. The MPC formulation (3.6a) is
different from the SCLP formulation. This means that the MPC problem has to be trans-
lated, to be able to solve it with the SCLP algorithm. In this translation a choice is made not
to include all the parameters of the SCLP-algorithm. The choice is based on the examples
Weiss uses about a flowshop and a reentrant line. The translation of the MPC problem is
shown below.

The continuous-time MPC problem as described in Chapter 3:

min
u,x

J =
∫ T

0
(T − t)~r ′ ~u(t) + ~p ′ ~x(t)dτ, (A.1a)

s.t. model constraint

~̇x(t) = B~u(t) + B̄~λ, (A.1b)
~y(t) = I~x(t),

s.t. inequality constraints 0
...
0

 ≤

 y1
...

yn

 ≥

 β1
...

βn


 0

...
0

 ≤

 u1
...

un

 ≥

 µ1
...

µn

 (A.1c)

The translation can be divided into three parts. The translation of the cost function, the
translation of the buffer constraints and finally the translation of the capacity constraints.

71

72 Appendix A. Translation to a primal SCLP

A.1 Cost function

The desired cost function is:

max
u

J =
∫ T

0
(T − t)~c ′ ~u(t)dτ, (A.2)

The continuous-time MPC problem has the following function:

min
u,x

J =
∫ T

0
(T − t)~r ′ ~u(t) + ~p ′ ~x(t) dτ. (A.3)

The first difference between the cost functions is that (A.3) minimize the cost and (A.2) is
maximization. This is translated by maximizing the negative of the cost function (A.3).

max
u,x

J =
∫ T

0
−(T − t)~r′ ~u(t)− ~p′ ~x(t) dτ. (A.4)

The next phase of the translation of the cost function is to write (A.4) as a function of u(t).
This means that the second term in (A.4) needs to be translated.∫ T

0
−~p′ ~x(t)dτ. (A.5)

By using partial integration (A.5) can be translated to a function of u(t).∫ T

0
−~p′ ~x(t) · 1 dτ = (A.6a)

− ~p ′ ~x(t) · t|T
0
−
∫ T

0
−~p ′ ~̇x(t) · t dt =

− ~p′ ~x(T) T −
∫ T

0
−t ~p ′ (B~u(t) + B̄ ~λ)dt =

− ~p ′ ~x(T) T −
∫ T

0
(T − t)~p ′ (B~u(t) + B̄~λ) dt−

∫ T

0
T ~p ′ (B~u(t) + B̄ ~λ) dt =

− ~p′ ~x(T) T −
∫ T

0
(T − t)~p′ B~u(t) dt +

∫ T

0
(T − t)~p′ B̄ ~λ dt− T ~p′ ~x(T) =

−
∫ T

0
(T − t)~p′ B~u(t) dt− 2 T ~p′ ~x(T). (A.6b)

The second term (−2 T ~p ′ ~x(T)) in (A.6b) has a constant value during the optimization.
This means that it can be neglected in the cost function. Which result into the following cost
function:

max
u

J =
∫ T

0
−(T − t)~r ′ ~u(t)−

∫ T

0
(T − t)~p ′ B~u(t) dτ (A.7)

=
∫ T

0
(T − t)(−~r′ − ~p ′ B)~u(t) dτ.

With the desired cost function:

max
u

J =
∫ T

0
(T − t)~c ′ ~u(t)dτ, (A.8)

c′ = (−~r ′ − ~p ′ B).

A.1. Cost function 73

Constraints

In Chapter 3 a buffer and a capacity constraint are defined. The buffer constraint needs to
be rewritten into a constraint that is a function of u(t). This is done by using the model
constraints to rewrite y(t):

∫ t

0
ẋ(s)ds =

∫ t

0
(Bu(s) + B̄ ~λ) ds, (A.9a)

x(t) =
∫ t

0
Bu(s) ds + x(0) + B̄ ~λ t,

 y1(t)
...

yn(t)

 =
∫ t

0
IB~u(s) ds + B̄ ~λ t + ~x(0),

=
∫ t

0
B~u(s) ds + B̄ ~λ t + ~x(0).

~0 ≤
∫ t

0
B~u(s) ds + B̄ ~λ t + ~x(0) ≤ ~Ymax (A.9b)

Equation (A.9b) can also be written as:

∫ t

0
−B~u(s) ds ≤ ~x(0) + B̄ ~λ t (A.10a)∫ t

0
B~u(s) ds ≤ (~Ymax − ~x(0)) − B̄ ~λ t

This creates the desired buffer constraint function.∫ t

0
G~u(s) ds ≤ ~α + ~a t (A.10b)

G =
(
−B
B

)
~α =

(
~x(0)

~Ymax − ~x(0)

)
~a =

(
B̄ ~λ

−B̄ ~λ

)

The capacity constraint can be rewritten into, with the notion that the SCLP algorithm states
that ~u(t) ≥ 0 and H ≥ 0:

H~u(t) ≤ ~b. (A.11)
~b = ~M
H = R

74 Appendix A. Translation to a primal SCLP

All these translations together result into an SCLP format as presented in Chapter 4 (in these
equation ~x(t) is replaced by ~z(t)).

max
∫ T

0
(~γ ′ + (T − t)~c ′~u(t) + ~d

′
~z(t))dt, (A.12)

s.t.

∫ t

0
G~u(s)ds + F~z(t) ≤ ~α + ~at,

H~u(t) ≤ ~b,

~z(t), ~u(t) ≥ ~0, t ∈ [0, T].

min
∫ T

0
(~α ′ + (T − t)~a ′)~u(t) + ~b

′
~z(t))dt, (A.13)

s.t.

∫ t

0
G′~u(s)ds + H ′~z(t) ≤ ~γ + ~ct,

F ′~u(t) ≤ ~d,

~z(t), ~u(t) ≥ ~0, t ∈ [0, T].

With:

~γ = ~0, ~c = (−~r ′ − ~p ′ B), ~d =
()

,

G =
(

B
−B

)
, F =

()
, ~α =

(
~x(0)

~xm − ~x(0)

)
, ~a =

(
B̄ ~λ

−B̄ ~λ

)
,

H = R, ~b = ~M.

Appendix B

Explaining the SCLP algorithm

In Chapter 4 a algorithm was presented to solve a continuous-time MPC problem, the SCLP
algorithm [Wei04]. It showed the rules of the algorithm. This appendix explains the algorithm
graphically by showing some of the steps the algorithm makes. By doing so it should create
a better understanding of the algorithm.

B.1 The SCLP Algorithm

To understanding how the algorithm finds the optimal solution it is important to understand
the mean principle of this algorithm. This principle is stated in Theorem 1. It says that
the solutions should be feasible and bounded and that the SCLP/SCLP* problems have a
complementary slack optimal primal and dual solution. This means that there is no duality
gap between the solutions of SCLP and SCLP*, strong duality hold. The theorem also states
that the control variables (~u(t), ~p(t)) are piecewise constant and that the state variables
(~x(t), ~q(t)) are continuous piecewise linear. This is shown in Figure B.1, which shows the
variables ~u(t), ~x(t), ~̇x as a function of time.

τ1 τ2 τ3 τ4

T

u

(a) u piecewise constant,

τ1 τ2 τ3 τ4

T

x

(b) x piecewise linear.

τ1 τ2 τ3 τ4

T

ẋ

(c) ẋ piecewise constant.

Figure B.1: The piecewise constant property of an SCLP problem

By using this property, that the variables ~u(t), ~p(t), ~̇x, ~̇q of an SCLP/SCLP* are piecewise
constant, the time horizon can be divided into N intervals. Which means that when an op-
timal solution is found at the boundary of the problem it is also the solution for the first
interval. And because the variables are piecewise constant only one optimal solution can be

75

76 Appendix B. Explaining the SCLP algorithm

found per interval. This means that the problem can be solved 0 . . . T by starting at T = 0
and letting T increase. As T is increasing the algorithm is able to move iteratively from one
optimal solutions to another in the next interval.

The process of solving an SCLP problem is shown in Figure B.2. Vertically it shows the
time horizon, from T = 0 to T = inf, of the solution to the SCLP problem and horizontally
the increase of time, going from t = 0 to t = inf.

θ0

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

I

I

II

II

II

III

III

∆1

∆2

∆3

∆4

∆5

∆6

∆7

∆8

∆9

B1

B1

B1

B1

B1

B2

B2

B3

B3

B3

B3

B3

B3

B3

B4

B4

B4

B4

B5

B5

B5

B6

B6

B6

B6

B6

B6

B6

B7

B7

B7

B7

B7

B7

B8

B8

B8

B9

B9

B9

x4

x4

x4

x3

x3

x3

x2

q14

q14

q14

q6

q6

q12

t

T

Figure B.2: An example of the iterations of the SCLP algorithm

The figure shows, a problem that has eight intervals, θ0−θ8, with the length of each intervals
represented by ∆i i = 1, . . . , 9. The last interval ∆9 is from θ8 → inf.

B.2. Validity regions 77

At θ0 (T = 0) the SCLP solver starts with the optimal solution of the boundary of the SCLP
problem. This is found by solving the LP optimization, Boundary-LP/LP* (4.5,4.6) and
rates-LP/LP*(K0,JN) (4.9,4.10). The solution to these optimizations are the base-sequence
(B1 or B1∗). These base-sequences are sets of variables consisting out of the variables uj , xk

respectively pk, qj or a set of their indexes. The base-sequences have a range from B1, . . . , BN

or B∗
N , . . . , B∗

1 . The complementary slackness (see C.2) makes it possible to find the comple-
mentary dual basis B∗ if the primal basis is known or the other way around, find de primal
basis when the dual is known. This is done by using the following rules ẋ ∈ B ⇒ pk /∈ B∗,
q̇j ∈ B∗ ⇒ uj /∈ B.

The first base-sequences is valid for the neighborhood around T = 0 and T = N . At θ1

the base-sequences are no longer optimal, which ends the first interval. The new optimal
solution is found by performing a pivot operation, which changes the bounds of the rates-
LP/LP* and so creating new base-sequences D. The pivot operation makes it possible to go
from one optimal base-sequence to another optimal base-sequence. This is done by removing
one variable for the first base-sequences B′ (the leaving variable) and to place the a new vari-
able into the second base-sequences B′′ (the entering variable). In the Figure B.2 the pivot
operations are represented by the vertical lines with xk or qj next to it. It should be noted
that when a variable leaves a base-sequences it can enter an other neighboring base-sequence
and at a later point in time.

When the new base-sequence D is adjacent to B′ (adjacent is when |B′ \D| = 1) the neigh-
boring base-sequences is found. But when |B′ \ D| > 1 a subproblem is need to find the
optimal sequences of basis. The situations were a subproblem are needed are represented by
points I in the Figure B.2.

Figure B.2 shows that the set of base-sequences changes al long the time horizon. Base-
sequences can disappear from the optimal solution, when |B| = 0 (see point II). And in
point III one base-sequences disappears and another appears. The Base-sequences that ap-
pears has been empty up till that point in time.

B.2 Validity regions

A base-sequence is valid for interval of ∆, this intervals is also called the validity region. In
Figure B.2 shows that the length of an interval varies. To determine the length of a validity
region, one need to check when a solution is no longer feasible. This is done by checking when
a constraint is violated. Since the control variables are constant, the state variable determines
which variable causes a constraint violation. This means that only the constraints F~x(t) ≤ ~α
and H ′~q(t) ≤ ~γ and these are the same as the boundary-LP/LP*. So the constraints are
violated when the values for ~x, ~q are larger than the boundary values (~x 0, ~q n). This means
that the boundary values minus the values for ~x(t) and ~q(t) have to be larger than zero. This
is graphically shown in Figure B.3. Where the course of the control (u) and state (x) variables
is shown (Figure B.3(b)) and the position on the time horizon (Figure B.3(a)).

78 Appendix B. Explaining the SCLP algorithm

Step a
Step b

Step c

x4

x4

x4

x3

x3

x3

x2

q14

q14

q14

q6

q6

q12

t

T
(a)

00

00

00

a a

a a

a a b

b

bb

b

b

c c

c c

c c

TT

TT

TT

u

u

u

x

x

x

(b)

Figure B.3: Determining the interval length

After the validity region has been calculated a pivot step is performed and a new optimal
base-sequence is determined. The next step is to determine how long this solution is optimal.
The value of x or q at the start of new base-sequence is the end values of the old base-sequence.
This means that the value of the state variables can be plotted as shown in Figure B.4. The
rates calculated for a base-sequence do not change as the time horizon is increased. But it is
possible that the length of an old interval changes due to the new base-sequence, because a
different state causes a violation of the boundary constraints at an earlier point in time.

� �� � �� �τ1 τ2 τ3 τ4 τ5 τ6 τ7

x0

x1

x2 x3

x4

x5

x6

x7 x8

ẋ
1

ẋ
2

ẋ
3

ẋ
4

ẋ
5

ẋ
6

ẋ
7

T

x

Figure B.4: The path of a state variable

Reduction of the number validity regions of importance

The equations used to determine the length of the validity region use all regions, but not
all of them are needed. In fact at every breakpoint (the intersection of two regions) exactly

B.3. Pivoting 79

one event happens, either xk hits zero or qj hits zero. This means to determine the length
of an interval, not all the validity regions are needed. Only the region(s) where ẋ, q̇ < 0 are
of interest for determining the length of the validity region. In Figure B.4 the intervals of
interest are marked. By only checking the regions where ẋ, q̇ < 0 the size of the problem
(4.14) can be reduced.

B.3 Pivoting

Pivoting is one the most import elements of the SCLP algorithm. As mentioned earlier the
pivoting operation is needed to move from one optimal base-sequence to the next neighboring
optimal base. The common boundary between these neighboring basis is called θ = 0. The
optimal base-sequence on the left side of the boundary is valid for θ < 0 and the base-sequence
on the right side is valid for θ > 0. The SCLP algorithm has four mean types of pivoting
operations called case i-iv, with some having a sub groups. These cases are graphically shown
in the Figures B.5-B.8.

Figure B.5 shows the three situations (θ < 0, θ = 0 and θ > 0) for case ii, with a simple pivot.
The first situation is Figure B.5(a), it shows the optimal base-sequences is B′, C, B′′ with the
intervals (t′, tn−1),(tn−1, tn) and (tn, t′′). The variable that leave B′ is B′ \ C = ẋ′ , with
x′ (t) > 0 for t′ < t < tn−1 and x′ (t) = 0 during tn−1 < t < t′′. And for C the leaving variable
is C \ B′′ = u′′ , with q′′ (T − t) > 0 for tn < t < t′′ and q′′ (T − t) = 0 during t′ < t < tn−1.
The second situation is for θ = 0, shown in Figure B.7(b). It shows the boundary between
the validity region of B′ and B′′. Where the time interval tn−1 < t < tn (τn = tn − tn−1) has
shrunk to zero. The final situation is for the optimal base-sequence B′, D, B′′, which is valid
for θ > 0, shown in Figure B.5(c). The intervals are the same as in B.5(a), but B′ \D = u′′

and D \ B′′ = ẋ′ . Such that x′ (t) > 0 for t′ < t < tn and q′′ (T − t) = 0 for tn−1 < t < t′′.
And in the interval (tn−1, tn) both are > 0.

For this pivot operations the collision occurred at time tn, the collision is classified as a
case ii simple collision. This is valid for both θ ↗ 0 and θ ↘ 0. This means that when a
optimal solution is known for the region θ < 0 the solution for θ > 0 can be constructed, by
discarding C and inserting D.

x
′

q
′′

t
′

t
′′

tn−1 tn
B
′ C B

′′

(a) θ < 0

x
′

q
′′

t
′

t
′′

tn
B

′
B

′′

(b) θ = 0

x
′

q
′′

t
′

t
′′

tn−1 tn
B
′ D B

′′

(c) θ > 0

Figure B.5: A simple collision case ii, with a simple pivot

The second type of pivot operation is a Simple collision case i/iii, shown in Figure B.6. It
is similar to the previous case, for θ < 0 (Figure B.6(a)) the optimal basis are B′, C, B′′ in
the intervals (t′, tn−1),(tn−1, tn) and (tn, t′′). Where B′ \ C = ẋ′ and C \ B′′ = u′′ , but in
this collision case the variable that leaves during the pivot operation B′ −→ C (ẋ′) enters the

80 Appendix B. Explaining the SCLP algorithm

basis again in the pivot C −→ B′′. This means that x′(t) > 0 for t′ < t < tn−1, x′ (t) = 0
for tn−1 < t < tn and finally x′ (t) > 0 for tn < t < t′′. For the situation that θ = 0 (Figure
B.6(c)) the interval τn also shrinks to zero, where B′ \ B′′ = u′′ (B′ and B′′ are adjacent)
and the state variable x′ has a strict local minimum of 0 at tn. And the final situation θ > 0,
the interval (tn−1, tn) remains of length zero, with the optimal basis B′,B′′ for (t′, tn),(tn, t′′).
And the state variable x′ (t) has a strict local minimum at tn, with a value σ = x′ (tn) > 0.
The collisions in these cases occur at tn and are classified as a case i, simple collision, when
θ ↗ 0 and as a case iii, simple collision, when θ ↘ 0. This means that when the optimal
solution for the region θ < 0 is known the solution for θ > 0 can be constructed by discarding
the basis C. In case the optimal solution is known for the region θ > 0, the solution for θ < 0
can be constructed by inserting the basis C between B′, B′′.

x
′x

′

q
′′

t
′

t
′′

tn−1 tn
B
′ C B

′′

(a) θ < 0

x
′

x
′

q
′′

t
′

t
′′

tn
B

′
B

′′

(b) θ = 0

x
′

x
′

q
′′

t
′

t
′′

tn

σm

B
′

B
′′

(c) θ > 0

Figure B.6: Simple collisions case i/iii, with a simple pivot

The third type of pivot operations is described in Figure B.7. This type of collision is more
complicated. The first two parts (θ < 0, θ = 0) are the same as in Figure (B.5(a),B.7(b)), but
the solution for the region θ > 0 (see Figure B.7(c)) is different. The optimal base-sequence is
B′, D1, D2, D3, B′′, with B′ \B′′ = {ẋ′ , u′′}, but the basis B′ and B′′ are separated by several
intervals. These intervals all shrink to zero when θ ↘ 0. This means that x′ (t) > 0 for
t′ < t < tn+1 and q′′ (T − t) > 0 for tn < t < t′′, while the other state variables xk(t), qj(T − t))
that appear in this figure are zero outside the region of (tn−1, tn+2). The base-sequences are
link as follow: B′ \D1 = uj , D1 \D2 = u′′ , D2 \D3 = ẋ′ and B3 \B′′ = ẋk.

When θ ↘ 0 this collision is called a compound collision (case ii). So if the solution of
the region θ > 0 is known, the solution for θ < 0 can be constructed by erasing the bases
D1, D2, D3 and inserting basis C. But in opposite directions, the solution of θ > 0 is known
and the solution of θ < 0 is needed, the basis C can be erased and the bases D1, D2, D3
need to be constructed and inserted between the bases B′ and B′′. The bases D1, D2, D3
is obtained by solving a subproblem, the solution to this subproblem is part of the pivot
operation.

x
′

q
′′

t
′

t
′′

tn−1 tn
B
′ C B

′′

(a) θ < 0

x
′

q
′′

t
′

t
′′

tn
B

′
B

′′

(b) θ = 0

x
′

q
′′

qj

xk

t
′

t
′′

tn−1 tn tn+1 tn+2

B
′ D1 D2 D3 B

′′

(c) θ > 0

Figure B.7: Simple collisions case ii, pivot requires solution of a subproblem

B.3. Pivoting 81

In the next three figures (Figure B.8-B.10), different examples of a single collision and pivot
at 0 < t < T are shown. They can be interpreted in the same way as Figures B.5-B.7.

x
′

x
′′

t
′

t
′′

tn−1 tn
B
′ C B

′′

(a) θ < 0

x
′

x
′′

t
′

t
′′

tn
B

′
B

′′

(b) θ = 0

x
′

x
′′

t
′

t
′′

tntn−1

B
′ D B

′′

(c) θ > 0

Figure B.8: Simple collisions case ii, simple pivot v′ = ẋ′, v′′ = ẋ′′

x
′′

q
′

q
′

qj

xk

t
′

t
′′

tntn−1 tn+1 tn+2

B
′ C1 C2 C3 B

′′

(a) θ < 0

x
′′

q
′q

′

t
′

t
′′

tn

B
′

B
′′

(b) θ = 0

x
′′

q
′

q
′

t
′

t
′′

tn

B
′

B
′′

(c) θ > 0

Figure B.9: Collisions case i, serval intervals shrink to 0, v′ = u′, v′′ = u′′

x
′′

x
′′

q
′

t
′

t
′′

tn
B

′
B

′′

(a) θ < 0

x
′′

x
′′

q
′

t
′

t
′′

tn

B
′

B
′′

(b) θ = 0

x
′′

x
′′

q
′

qj

xk

t
′

t
′′

tntn−1 tn+1 tn+2

B
′ D1 D2 D3 B

′′

(c) θ > 0

Figure B.10: Collisions case iii, with a subproblem v′ = u′, v′′ = ẋ′′

There are also single collisions at t = 0 or t = T , related to the cases ia, iiia, ib, iiib, iva and
ivb. These are shown in Figures B.11-B.13.

q
′′

t
′

t
′′

tn
C B

′′

(a) θ < 0

q
′′

0 t
′′

B
′′

(b) θ = 0

q
′′

0 t
′′

B
′′

(c) θ > 0

Figure B.11: Collisions case ia interval shrinks to zero at time 0

82 Appendix B. Explaining the SCLP algorithm

x
′′

Tt
′

B
′

(a) θ < 0

x
′′

Tt
′

B
′

(b) θ = 0

x
′′

qj

Tt
′

tn−1 tn

B
′ D1 D2

(c) θ > 0

Figure B.12: Collisions case iiib slack hits zero at time T, with subproblem v′′ = ẋ′′

Is infeasible

(a) θ < 0

0
 t
′′

B
′′

(b) θ = 0

x
′

0 t
′′

tn
D1 B

′′

(c) θ > 0

Figure B.13: Collisions case iiib slack hits zero at time T, with subproblem v′′ = ẋ′′

B.4 Subproblem

In case of a Compound collision B′ \ B′′ > 1, this means that B′ is not adjacent to B′′, a
subproblem is needed to obtain the sequence of bases. The subproblem is actually a smaller
SCLP problem, with a subset of the variables of the main problem. By removing the variables
which are zeros from primal and dual set of variables. The subproblem is solved for the
boundary values l(θ), with 0 < θ < 1. At θ = 0 the optimal base-sequences D, this is the
base-sequences found by the rates-LP/LP*, and at θ = 1 the optimal base-sequences are
B′, B′′. This is graphically described in Figure B.14.

B
′

B
′

B
′′

B
′′

D

D1 D2 D3 D4 D5

t

T = θ

new subproblem

Figure B.14: The iteration of a subproblem

B.4. Subproblem 83

The first step in solving a subproblem is to make an initial pivot. At θ = 0 the initial base-
sequences is D. By performing a pivot operation according to case iiia or iva to obtain the
basis D−. To obtain the basis D+ the pivot operation according to case iiib or ivb has to be
performed. When D− or D+ are not adjacent to D, a new subproblem needs to be solved to
find the sequence of bases D−M ′ , . . . , D−1 respectively D1, . . . , DM ′′ .

x1
x2

10D
− D

+
D

θ = 0

(a)

x1
x2

10 D
−

D
+

D

(b)

x1

x2

10 D
+

D

(c)

Figure B.15: Initial solutions of the subproblem, for θ > 0

The next step is to determine the initial solution. Depending on the situation (D−, D),
(D−, D, D+) or (D,D+) a valid adjacent base is chosen for a neighborhood of θ > 0. If the
new base are not adjacent a new subproblem(s) need to be defined. When a neighboring
base is found. The validity region of the base-sequence needs to be determined. The next
step is to check whether the base-sequence contains all the variable of the main problem, if
not, a pivot step is made and a new base-sequence is determined. When all variables of the
main problem are part of the base-sequence the excluded variable are re-introduced and the
algorithm returns to the main problem.

84 Appendix B. Explaining the SCLP algorithm

Appendix C

LP theory

Linear Programming theory is a theory that is widely used. In this report this theory is used
to solve an SCLP problem. For better understanding the SCLP algorithm, an appendix is
made that contains some of the basics of Linear Programming theory. This appendix con-
tains the theory and a small example. For a more detailed explanation of the LP theory see
[Van96, Dan68].

To explain the LP-theory the following standard form of a linear programming problem is
used:

max
n∑

j=1

cjxj , (C.1)

s.t.
n∑

j=1

aijxj ≤ bi,

xj ≥ 0. j = 1, 2, . . . , n i = 1, 2, . . . ,m

C.1 The Simplex Method

The simplex method is a method to find the optimal solution of the LP problem (C.1)(or it
determines whether or not the optimal solution exists). The simplex method does this by
rewriting the inequality constraints into equality constraints (C.2) and by introducing extra
variables (the slack variables). (The notation of the slack variables can be less indistinguish-
able by just adding them to the end of the list of x-variables. ({1, 2, . . . , n + M}))

ζ =
n∑

j=1

cjxj , (C.2)

wi = bi −
n∑

j=1

aijxj ,

xj , w1 ≥ 0. j = 1, 2, . . . , n i = 1, 2, . . . ,m

85

86 Appendix C. LP theory

The system of equations in (C.2) is called a dictionary. The variables on the left are called
the basic variables, with the exception of ζ and the variables on the right are the nonbasic
variables. The solution found by setting the nonbasic variables to zero is called the basic
feasible solution.

Pivoting

To solve the LP problem (C.1), the equations are transformed into the starting dictionary as
mentioned in (C.2). The optimal solution is found by searching iteratively for it. This is done
by starting with a feasible solution, for example the basic feasible solution, and determining
the value for the objective function ζ. The next step is to change the dictionary in such a
way that the value of ζ is increased. In each iteration only one variable changes from basic to
a nonbasic variable. This is called pivoting. The rules for making this choice are called pivot
rules.

Each dictionary has m basic variables and n nonbasic variables. B denotes the indices of
basic variables and N the nonbasic variables. For the first dictionary N = {1, 2, . . . , n} and
B = {n + 1, n + 2, . . . , n + m}. When a variable goes from a nonbasic to basic variable it is
called an entering variable. The other way around it is called a leaving variable.

The choice of which variable enters the dictionary is determined with the aim to increase
ζ. This means that {j ∈ N : cj > 0} has to be valid. If this set is empty then the current
solution is optimal. If the set is larger than one, it suffices to say that the largest value of cj

is usually picked. When the values are equal the variable which creates the largest one-step
increase of the objective function is chosen.

After the entering variable is selected (xk), the leaving variable is chosen by changing xk

from zero to a positive value. This increases the values of the basic variables.

xi = bi − aikxk, i ∈ B (C.3)

The basic value have to be nonnegative, so it is required that

bi − aikxk ≥ 0, i ∈ B. (C.4)

As xk increases the expression in (C.4) can only go negative, when the values of aik are
positive. The remaining expression remain fixed or increase. To determine which value
leaves, the attention can be restricted to those i for which aik is positive. The next step is to
check for which values of xk the expressions becomes zero

bi − aikxk = 0, (C.5)

xk =
bi

aik
. (C.6)

Since non of the basic variable may become negative, xk can only be raised to the smallest
of the values found in (C.6)

xk = min
i∈B:aik>0

bi

aik
. (C.7)

C.2. Duality theory 87

Another method for finding the leaving variable is by rewriting (C.4) to:

1
xk

≥ aik

bi
, i ∈ B. (C.8)

This method use the convention that 0
0 = 0. To find the leaving variable, the largest possible

increase of xk is needed. This is equivalent to:

xk = (max
i∈B

aik

bi
)−1. (C.9)

Degeneracy and Non-degeneracy

A dictionary is called degenerate if bi vanishes for some i ∈ B. (If bi = 0 for at least one i.)
When a dictionary is degenerate it produces a degenerate pivot. A pivot is degenerate, when
one of the ratios of the leaving variables is +∞. In case that a dictionary is non-degenerate
it means that non of the pivot operations become ∞.

When a degenerate dictionary is reached, one or more of the subsequent pivots are degenerate,
but eventually a non-degenerate pivot breaks away from the degenerate dictionary. This does
not always happen. It is also possible that after a sequence of degenerate pivots the dictionary
returns to a dictionary that has appeared before. In this case the simplex method enters into
an infinite loop and never finds the optimal solution. This behavior is called cycling.

C.2 Duality theory

Duality theory states that for every linear program (primal), another program exists, called
its dual. This aspect is very import in the LP theory, because by determining the dual of the
primal problem it is possible to find the optimal solution faster. The feasible solution of the
dual gives a bound on the optimal objective function value of the primal problem and the
primal feasible solution is a bound for the dual problem.
The standard form for primal and dual LP problem is:

Primal

max
n∑

j=1

cjxj , (C.10)

s.t.
n∑

j=1

aijxj ≤ bi,

xj ≥ 0, j = 1, 2, . . . , n

i = 1, 2, . . . ,m

Dual

min
m∑

j=1

bixj , (C.11)

s.t.
m∑

j=1

yiaij ≥ cj ,

yi ≥ 0, j = 1, 2, . . . , n

i = 1, 2, . . . ,m
For finding the dual problem, the primal problem is rewritten as mentioned in C.1. And by
taking the negative transpose of the primal dictionary the dual dictionary can be found:

88 Appendix C. LP theory

Primal LP problem

max x1 + x2, (C.12)
s.t. x1 ≤ 1,

x2 ≤ 2,

3x1 + x2 ≤ 6,

x1, x2 ≥ 0,

Primal dictionary

ζ = x1 + x2, (C.13)
w1 = 1− x1,

w2 = 2− x2,

w3 = 6− 3x1 − x2,

x1, x2, w1, w2, w3 ≥ 0,
0 1 1
1 −1 0
2 0 −2
6 −3 −1

 Negative transpose
⇐⇒

 0 −1 −2 −6
−1 1 2 3
−1 0 2 1

 , (C.14)

Dual dictionary

−ξ = −y1 − 2y2 − 6y3, (C.15)
z1 = −1 + y1 + 2y2 + 3y1,

z2 = −1 + 2y2 + y1,

y1, y2, y3, z1, z2 ≥ 0.

By using this quality of the duality theory, it is possible to solve both primal and dual prob-
lem at the same time. This is done by using the simplex method on the primal problem and
at the same time perform the analogous pivot on the dual problem. When this technique is
used it does not mean that both primal and dual problem have to be feasible dictionaries.
Only when the primal optimal dictionary is found, the corresponding dual dictionary is also
be feasible.

As mentioned above, the duality theory determines the bound of the primal/dual LP problem.
The quality of the bound can be determined by the weak and strong duality theorems. The
weak duality theorem states that when the primal feasible solution is (x1, x2, . . . , xn) and the
dual feasible solution is (y1, y2, . . . , ym) and∑

j

cjxj ≤
∑

i

biyi (C.16)

holds, it is a weak duality problem. And that the set of the primal values lies completely
to the left of the set of dual values. When the right endpoint of the primal set is next to
the left endpoint of dual set, there is no gap between the optimal objective functions values.
Otherwise there is a duality gap, which means that the optimal solution cannot be verified.

If the optimal set of the primal (x∗1, x
∗
2, . . . , x

∗
n) and dual (y∗1, y

∗
2, . . . , y

∗
m) problem are:

∑
j

cjx
∗
j =

∑
i

biy
∗
i . (C.17)

The solution of the problem is then referred as a strong duality problem, which means that
there is no duality gap and the optimal solution can be verified.

C.3. An example of how to solve an LP problem 89

In some case the dual optimal solution is needed, but only the primal optimal solution is
know. In that case the Complementary Slackness Theorem can be used (cf. [?, Chapter 5.6]).
The Complementary Slackness Theorem states that when x = (x1, x2, . . . , xn) is primal
feasible and y = (y1, y2, . . . , ym) is dual feasible. (w1, w2, . . . , wm) denotes the primal slack
variables and (z1, z2, . . . , zn) are the dual slack variables, then x and y are optimal for their
respective problems if and only if

xjzj = 0 for j = 1, 2, . . . , n, (C.18)

wiyi = 0 for i = 1, 2, . . . ,m.

C.3 An example of how to solve an LP problem

The first step in solving an LP problem is by introducing slack variables and by determining
the dual problem.

Primal

max x1 + x2, (C.19)
s.t. x1 + 2x2 ≤ 2,

2x1 + x2 ≤ 3,

x1, x2 ≥ 0.

Primal dictionary

ζ = x1 + x2, (C.20)
w1 = 2− x1 − 2x2,

w2 = 3− 2x1 − x2,

x1, x2, w1, w2 ≥ 0.

Dual problem

min 2y1 + 3y2, (C.21)
s.t. y1 + 2y2 ≥ 1,

2y1 + y2 ≥ 1,

y1, y2 ≥ 0.

Dual Dictionary

−ξ = −2y1 − 3y2, (C.22)
z1 = −1 + y1 + 2y2,

z2 = −1 + 2y1 + y2,

y1, y2, z1, z2 ≥ 0.

Step 1:

The primal basic solution is: x1 = 0, x2 = 0, w1 = 2, w2 = 3 → ζ = 0
The dual basic solution is: y1 = 0, y2 = 0, z1 = −1, z2 = −1 → −ξ = 0

In Figure C.1 the constraints of the primal problem are shown graphically and the primal
basic solution is represented by a ∗.

The solution of the primal basic problem is feasible.

B1 = {w1, w2} i = 1, 2,

N1 = {x1, x2} j = 1, 2.

For making the choice which variable leaves or enter the dictionary, the following equations
are needed:

{j ∈ N : cj > 0} ⇒ {x1, x2} k = 1, 2, (C.23)

90 Appendix C. LP theory

x1 ≥ 0

2x1 + x2 ≤ 3

x1 + 2x2 ≤ 2

x2 ≥ 0

x1

x2

−1.0

−0.5

0.0

0.0

0.5

1.0

1.0

1.5

2.0

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Figure C.1: A graphical representation of the constraints of the primal problem, with solution (x1 = 0, x2 = 0)

In this case (C.23) has two possible variables. And the values (cj) are equal, so the leaving
variable is determined by checking which variable creates the largest one-step increase of the
objective value. The answer to that question is x1. This means that x1(k = 1) is the leaving
variable for the primal problem and z1 for the dual problem.

The entering variable is determined by calculating (C.6):

x1 = min
i∈B:aik>0

= { b1

a11
=

2
1

,
b2

a21
=

3
2
} = min{2 , 1

1
2
} ⇒ i = 2, (C.24)

The entering variable is w2 for the primal problem and y2 for the dual problem.

Rewriting w2 results in:

x1 =
3
2
− 1

2
w2 −

1
2
x2,

The new primal and dual dictionary are:

(P)

ζ =
3
2
− 1

2
w2 −

1
2
x2, (C.25)

w1 =
1
2

+
1
2
w2 − 1

1
2
x2,

x1 =
3
2
− 1

2
w2 −

1
2
x2,

(D)

−ξ = −3
2
− 1

2
y1 −

3
2
z2, (C.26)

y2 =
1
2
− 1

2
y1 +

1
2
z2,

z2 = −1
2

+ 1
1
2
y1 +

1
2
z2.

Step 2:

The primal basic solution is: x1 = 3
2 , x2 = 0, w1 = 1

2 , w2 = 0 → ζ = 3
2

The dual basic solution is: y1 = 0, y2 = 1
2 , z1 = 0, z2 = −1

2 → −ξ = −3
2

In Figure C.2 the basic solution of step 2 is shown in combination with the constraints

C.3. An example of how to solve an LP problem 91

x1 ≥ 0

2x1 + x2 ≤ 3

x1 + 2x2 ≤ 2

x2 ≥ 0

x1

x2

−1.0

−0.5

0.0

0.0

0.5

1.0

1.0

1.5

2.0

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Figure C.2: A graphical representation of the constraints of the primal problem, with solution (x1 = 3
2
, x2 = 0)

of the primal problem.

The solution of the primal basic problem is feasible and the basic dual problem is infea-
sible. This means that for the second step a pivot is performed on the primal problem.

B2 = {w1, x1} i = 1, 2,

N2 = {w2, x2} j = 1, 2,

{j ∈ N : cj > 0} ⇒ {x2} k = 2,

min
i∈B:aik>0

= { b1

a12
=

1
2
3
2

,
b2

a22
=

3
2
1
2

} = min{1
3

, 3} ⇒ i = 1, (C.27)

The leaving and entering variables of the primal problem are x2 and w1. For the dual problem
z2 and y1 are the entering and leaving variables.

Rewriting w1 results in:

x2 =
1
3
− 1

3
w2 −

2
3
w1, (C.28)

The new primal and dual dictionary are:

(P)

ζ =
4
3
− 1

3
w2 +

1
3
w1, (C.29)

x2 =
1
3

+
1
3
w2 −

2
3
w1,

x1 =
4
3
− 1

3
w2 +

1
3
w1,

(D)

−ξ = −4
3
− 1

3
z2 −

4
3
z1, (C.30)

y2 =
1
3
− 1

3
z2 +

1
3
z1,

y1 =
1
3

+
2
3
z2 −

1
3
z1.

92 Appendix C. LP theory

Step 3:

The primal basic solution is: x1 = 4
3 , x2 = 1

3 , w1 = 0, w2 = 0 → ζ = 4
3

The dual basic solution is: y1 = 1
3 , y2 = 1

3 , z1 = 0, z2 = 0 → −ξ = −4
3

In Figure C.3 the optimal solution of the primal problem is shown by ∗, in combination
with the constraints of the primal problem.

B3 = {x2, x1} i = 1, 2,

N3 = {w2, w1} j = 1, 2,

{j ∈ N : cj > 0} ⇒ {}. (C.31)

The set of (C.31) is empty. This means that the solution is optimal. In the optimal solution
the primal and dual dictionary are both feasible.
The optimal solution to this LP problem is:

x1 =
4
3
, x2 =

1
3

x1 ≥ 0

2x1 + x2 ≤ 3

x1 + 2x2 ≤ 2

x2 ≥ 0

x1

x2

−1.0

−0.5

0.0

0.0

0.5

1.0

1.0

1.5

2.0

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Figure C.3: A graphical representation of the constraints of the primal problem, with solution (x1 = 4
3
, x2 = 1

3
)

C.4 Discussion

This appendix showed some of the basic theories of the Linear Programming theory and some
examples were presented to illustrated the use of LP theory.

Appendix D

Programs

As mentioned this project uses a hierarchical approach to control the manufacturing system.
In the simulation the manufacturing system is modeled by using χ-language, a language which
was specially designed for modelling, simulation and control of concurrent manufacturing sys-
tems. This is the heart of the simulation. The controller actions needed in the hierarchical
approach are calculated by using an optimization solver in MATLAB. The communication be-
tween χ and MATLAB is done by using pytmath [Ste99, Hof03] interface in Python language.
In this appendix the programs is explained in combination with the codes used.

D.1 MATLAB

In the hierarchical approach used in this project the control actions are calculated by the
SCLP algorithm described in Chapter 4. This algorithm is translated to a solver and was
supplied to use by Weiss. The solver is made for MATLAB as pcode files, which means that
the solver should be seen as a black box, where the translation of the MPC problem is the
input for the solver and it calculates the optimal solution.

This section explains how the pcode files should be used. An explanation of the way the
input for the solver has to be generated and a file that processes the data to compare the
calculated targets with the actual output of the discreet event model.

SCLP algorithm

The SCLP solver contains a set of pcode files that perform the steps of the SCLP algorithm.
The main file is an m-file that combines all these files into one solver. In order that the
solver can operate properly the subdirectories with the pcode need to be added to the path
definition of MATLAB. To do so the following script is created.

93

94 Appendix D. Programs

% Creating path definitions in a Linux environment

%

%

cd /mnt/hit/s444792/Afstuderen/Programs/Reprog-SCLP/Reprog-MATLAB-Pcode

pa = pwd; % finding the path

% Setting the directories and subdirectories into the path

addpath(pa)

addpath([pa ’/DisplayPlot’])

addpath([pa ’/MainRoutines’])

addpath([pa ’/Scripts’])

addpath([pa ’/Subroutines’])

The script first sets the directory of the SCLP solver and then adds the separated directories
to the path of MATLAB.

When the directories are added to the path, the input parameters of the SCLP algorithm
are needed. These parameters are the Matrix G, H,F and the vectors a, b, c, d, γ, α, T . To
formulate the input matrix and vectors the following function is created. This function needs
the arrival rate of the system (ar), the number of buffer (K), the number of machines (I), a
vector with the process times (te) and the routing of the machines (route).

% Creating input of the simulation model

function [G,H,F,a,b,c,d,gamma,T,K,B,y_buf,pp,pu,tt]=inputSCLP(ar,K,I,te,route) %

% K is number of buffers

% I is number of machines

% p are the cost of having product in the buffer (p < 0, because the

% problem is a Max and the buffer level should be as low as possible).

% r are the cost of producing

% Ym is the buffer capacity

% ta is the speed with which the product should leave the line.

% b is the machine capacity

p = -(10:10:10*K);

r = -0.2.*ones(1,K);

T = inf;

b = ones(I,1);

B = -eye(K)+diag(ones(1,K-1),-1);

G = [-B ;B];

% Cost function

gamma = zeros(1,K);

c = (r+p*B);

d = [];

% Buffer constraint

F = [];

l = [1; zeros((K-1),1)];

a = ar.*[l; -l];

% Machine constraint

H = zeros(I,K);

for i=1:size(te,1)

H(route(i,:),i)= te(i,:);

end

% Inisiliting the datalogging

y_buf.lev = [];

y_buf.lt = [];

y_buf.mul = [];

y_buf.mut = [];

D.1. MATLAB 95

y_buf.levSCLP = [];

y_buf.ltSCLP = [];

y_buf.uSCLP = [];

y_buf.utSCLP = [];

pp = zeros(K+1,1);

pu = zeros(I+1,1);

tt = zeros(K+1,1);

The vector α is not defined in this function because this vector changes each run. This means
that this vector is determined before each run of the SCLP solver. Appendix A shows that
the vector α is determined by using the maxim buffer level and the buffer level at the moment
of the calculation. When the vector is determined the SCLP solver can calculate the optimal
solution.

The SCLP solver is called by using the functions SCLP and the parameters mentioned above.
It also needs the parameters messages, graph, taxis, xaxis and qaxis. The messages level
is needed to determine what type output is needed. There are five type of message levels.
The first message level is 1, in this case the solver only shows the end results (the objective,
the error, the number of intervals, the number of pivot, the number of flops and the cpu us-
age). When the messages level is set to 2, the solver also shows the start setting of the mean
problem and the subproblems. In case of Massages level 3 the solver shows all the iterations.
The solution to each iteration is shown in nine columns. The meaning of each is described as
follows:

1. The first column is the step count,

2. The second column is the depth of a problem (0 main problem, 1 subproblem),

3. The third column is the iteration within a subproblem,

4. The fourth column shows the dimensions of the problem (K, J, I, L),

5. The fifth column are the number of intervals, dictionaries, bases,

6. The sixth column is the validity region of that interval,

7. The seventh column shows the collision case,

8. The eighth column represents the indices of the interval preceding and succeeding the
collision and finally

9. The ninth column shows the collision variable with + for the x variables and − for the
q variables.

The parameter graph is used to define the graphical solution of the solver, with graph level
1 no graphical results are shown and level 2 shows the results of the main problem and a
graph with the result of the subproblem. The last three parameters are needed to decrease
the length of the axis to improve the graphical results.

96 Appendix D. Programs

function [Output,t,u] = weissSCLP(G,H,F,a,b,c,d,gamma,Ym,y,T)

x0 = y(1:(size(y,1)-1));

alpha = [Ym ; Ym - x0];

Output = [];

messages = 1;

graphs = 1;

[t,x,q,u,p,Obj,Err,NN,stepcount,flopss,ecpu] = ...

SCLP(G,H,F,a,b,c,d,alpha,gamma,T,messages,graphs,Inf,Inf,Inf);%

% transforming the matrix into a vector. Needed for the communication

% with pytmat.

for i=1:size(G,2)

Output = [Output u(i,:)];

end

t=t’;

After the solver has found a set of optimal solutions and the durations the solution are op-
timal. These optimal solutions are the target throughputs (u[lot/hour]). These targets are
sent to the discrete event model, to simulate what would happen in a manufacturing line
when these targets are the input for a manufacturing line.

To compare the result of the discrete event model with calculated the targets, targets need to
be translated into buffer levels or the buffer levels of the discrete event model into through-
puts. In this project the calculated targets are translated into buffer levels, by using the
duration a solution is optimal and the dynamics of the system. With the notion that not
the entire range of each optimal solution is taken into account. Only the duration that the
discrete event model operates between two calculations is taken into account.

y_buf.lev = [y_buf.lev; zeros(max(sl),size(sl,1))];

y_buf.lt = [y_buf.lt; zeros(max(sl),size(sl,1))];

y_buf.mul = [y_buf.mul; zeros(max(su),size(su,1))];

y_buf.mut = [y_buf.mut; zeros(max(su),size(su,1))];

% Transforming the collum with all the buffer level and de collum

% with all time registration into two matrix.

for i=1:size(sl,1)

if i == 1

bg = 0;

else

bg = bg + sl(i-1,:);

end

lev = zeros(sl(i,:),1) ;

lt = zeros(sl(i,:),1);

for j=1:sl(i,:)

k = bg + j;

lev(j,1) = mlev(k,:);

lt(j,1) = lmt(k,:);

end

y_buf.lev(((pp(i,:)+1):(pp(i,:)+ size(lev,1))),i)= lev;

y_buf.lt(((pp(i,:)+1):(pp(i,:)+ size(lt,1))),i)= lt;

pp(i,:) = pp(i,:) + sl(i,:);

end

% Transforming the collum with all the utilisation level and de collum

% with all time registration into two matrix.

for m=1:size(su,1)

D.1. MATLAB 97

if m == 1

bu = 0;

else

bu = bu + su(m-1,:);

end

mul = zeros(su(m,:),1) ;

mut = zeros(su(m,:),1);

for n=1:su(m,:)

h = bu + n;

mul(n,1) = mull(h,:);

mut(n,1) = mutl(h,:);

end

y_buf.mul(((pu(m,:)+1):(pu(m,:)+ size(mut,1))),m)= mul;

y_buf.mut(((pu(m,:)+1):(pu(m,:)+ size(mut,1))),m)= mut;

pu(m,:) = pu(m,:) + su(m,:);

end

if size(y_buf.ltSCLP,1) == 0

ltend = zeros(1,size(y,1));

else

ltend = y_buf.ltSCLP(end,:);

end

ten = lmt(end,:);

tt = lmt(end,:)-ltend(1,1);

BB = [B ; zeros(1,(size(B,2)-1)) 1];

aa = [a((1:2),:); 0];

tm = [];

uu = [];

fi = zeros(1,size(y,1));

% translating the calculated throughput’s into buffer levels.

for w=1:size(y,1)

tme = [];

for v= 1:size(t,2)

if tt >= t(1,v) & (v <= size(u,2))

tme(:,v) = (ltend(1,w) + t(1,v));

elseif (tt < t(1,v)) & (fi(:,w) == 0)

tme(:,v) = ten;

fi(:,w) = 1;

end

end

if tt > t(1,end)

tme = [tme ten];

end

tm = [tm ; tme];

end

for z= 1:size(t,2)

if tt >= t(1,z) & (z <= size(u,2))

uu(:,z) = u(:,z);

elseif (tt >= t) & (z > size(u,2))

uu(:,z) = u(:,end);

elseif (tt < t(1,z)) & (fi(:,w) == 0)

uu(:,z) = u(:,(n-1))

fi(:,w) = 1;

end

end

y_buf.uSCLP = [y_buf.uSCLP; uu(1:K,:)’];

y_buf.utSCLP = [y_buf.utSCLP; tm(1,:)’];

Y = y;

for n = 1:size(y,1)

for l= 1:size(uu,2)

o = l + 1;

98 Appendix D. Programs

if o <= size(tm,2)

xx= (BB(n,:)*uu(1:K,l).*(tm(n,o)-tm(n,o-1)));

ra= (aa(n,:).*(tm(n,o)-tm(n,o-1)));

Y(n,o)= round((Y(n,l)+ xx + ra)*100)/100;

end

end

end

y_buf.levSCLP = [y_buf.levSCLP; Y’];

y_buf.ltSCLP = [y_buf.ltSCLP; tm’];

With the following script the results are plotted.

% plot function

close all

clear all

clc

for m = 1:12

type = m;

if m == 1

load sim12

nam =[’sim12’];

elseif m == 2

load sim12zvdp

nam =[’sim12zvdp’];

elseif m == 3

load sim12zv

nam =[’sim12zv’];

elseif m == 4

load sim2150

nam =[’sim2150’];

elseif m == 5

load sim2150zvdp

nam =[’sim2150zvdp’];

elseif m == 6

load sim2150zv

nam =[’sim2150zv’];

elseif m == 7

load sim478

nam =[’sim478’];

elseif m == 8

load sim478zv

nam =[’sim478zv’];

elseif m == 9

load sim478zvdp

nam =[’sim478zvdp’];

elseif m == 10

load sim35

nam =[’sim35’];

elseif m == 11

load sim35zv

nam =[’sim35zv’];

elseif m == 12

load sim35zvdp

nam =[’sim35zvdp’];

end

figure

for i=1:size(y,1)

subplot(size(y,1),1,i)

plev = plot(y_buf.lt(1:pp(i,:),i),y_buf.lev(1:pp(i,:),i),’linewidth’,1.5);

set(plev,’Color’,[0.753 0.753 0.753]);

hold on

plot(y_buf.ltSCLP(:,i),y_buf.levSCLP(:,i),’k’,’linewidth’,1.5);

grid

ylabel(’y [lots]’)

D.2. Python 99

title([’Buffer ’ num2str(i)])

if i == size(y,1)

act= y_buf.ltSCLP.*ar;

plot(y_buf.ltSCLP,act,’k:’,’linewidth’,1.5)

title([’exit process’])

legend(’DEM’,’MPC/SCLP controller’,’expected buffer level’,2)

xlabel(’time [hours]’)

else

legend(’DEM’,’MPC/SCLP controller’,0)

if type < 10

axis([0 25 0 6])

else

axis([0 ceil(max(y_buf.ltSCLP(:,1))) 0 6])

end

end

end

saveas(gcf, name, ’fig’)

print(’-depsc2’, name)

figure

name= [name ’er’];

for j=1:I

if j == 1

pmut = plot(y_buf.mut(1:pu(j,:),j),y_buf.mul(1:pu(j,:),j),’linewidth’,1.5);

set(pmut,’Color’,[0.753 0.753 0.753]);

hold on

else

plot(y_buf.mut(1:pu(j,:),j),y_buf.mul(1:pu(j,:),j),’k-.’,’linewidth’,1.5)

end

if type < 10

axis([0 25 -2 2])

end

end

grid

ylabel(’error’)

xlabel(’time [hours]’)

legend(’Buffer 1’,’Buffer 2’,0)

saveas(gcf, name, ’fig’)

print(’-depsc2’, name)

end

D.2 Python

With the optimal solution it, is not important to get this solution into the discrete event
simulation. This is done by using the pymath interface in python. For an explanation of the
use of pymath see [Ste99, Hof03].

The interface works by creating function that can be called upon in χ. In this project there
are five different functions. The two basic functions, opening MATLAB and closing it. The
other three functions are the systemInitialization, this function creates the input parameters
for the SCLP solver (see InputSCLP). The function WeissSCLP calculates the targets and
the function datalogging is used to log all the calculated targets and the buffer levels of the
discrete event system.

// com_SCLP.ext

//

language "python"

file "ComSCLP"

ext systemInitialization(depr: real,K,I: nat, Ym,root: nat*, te: real*) -> bool

ext weissSCLP(y: real*) -> (real*)^2

100 Appendix D. Programs

ext datalogging(let,lt,mull,mutl: real*, sl,su: nat*) -> bool

ext openMatlab(na: string) -> bool

ext closeMatlab(confirm: bool,na: string) -> bool

Com_SCLP.py

Version 1

Com_SCLP is a function that communicates with chi and matlab

using the pymat interface.

#

from Numeric import *

import pymat

With this function matlab 6.0 is opened.

And Setting the path to Matlab path, which enables the use of SCLP pcode Weiss created.

def openMatlab(name):

global H

H = pymat.open("matlab60 -nosplash")

pymat.put(H,"name",name)

pymat.eval(H,"diary(name)")

pymat.eval(H,"cd /mnt/hit/s444792/Afstuderen/Programs/Event")

pymat.eval(H,"Path_creationL")

return 1

This function initialize the parameter of the optimization problem

def systemInitialization(ar,K,I,Ym,route,te):

pymat.put(H,"ar",[ar])

pymat.put(H,"K",[K])

pymat.put(H,"I",[I])

pymat.put(H,"Ym",Ym)

pymat.put(H,"route",route)

pymat.put(H,"te",te)

pymat.eval(H,"[G,H,F,a,b,c,d,gamma,T,K,B,y_buf,pp,pu,tt]=inputSCLP(ar,K,I,te,route);")

return 1

Solving the optimization problem.

def weissSCLP(y):

pymat.put(H,"y",y)

pymat.eval(H,"[Output,t,u] = weissSCLP(G,H,F,a,b,c,d,gamma,Ym,y,T);")

Out = pymat.get(H,"Output")

ti = pymat.get(H,"t")

t = list(ti)

O = list(Out)

ou = tuple([O,t])

return ou

def datalogging(mlev,lmt,mull,mutl,sl,su):

pymat.put(H,"mlev", mlev)

pymat.put(H,"lmt",lmt)

pymat.put(H,"sl",sl)

pymat.put(H,"mull", mull)

pymat.put(H,"mutl",mutl)

pymat.put(H,"su",su)

pymat.eval(H,"Data_registration")

return 1

With this function matlab 6.0 is closed.

def closeMatlab(confirm,name):

pymat.put(H,"name",name)

if confirm==1:

confirmed=raw_input ("Hit enter to close Matlab and all figures.")

pymat.eval(H,"save(name)")

pymat.close(H)

return 1

D.3. χ model discription 101

D.3 χ model discription

Model description GBMBME line

In this section the model description of GBMBME line is given and the codes used to describe
this model. The model is built in such a way that it should be possible to create a model for
a larger line, by just changing the declaration and the cluster.

Declaration

The declaration is the first part of a χ model. In this part the standard and random libraries
are imported and the file needed to communicate (the pymath file) is also imported.
After these imports, the constants and the type definition are declared. These constants
and type definition are used to clarify the model. The constants declared in this model are
tm, nb, n,m, xe,Maxbuf, Y, ihs, route.

• The constant tm is the unit index of time to create one time unit for the entire hierar-
chical approach,

• The constant tmin is the minimum process time

• nb, n are constants related to the number of buffer and the number of machines,

• m is the number of buffer plus the exit process,

• xe is the last machine of the line,

• Maxbuf, Y are the maximum buffer size and the initial buffer level,

• ihs is the lot history,

• route is the routing of a lot in the line.

There is one type declaration, this is the representation of a lot in a line. The type contains
the lot identification, the type of product, the machine step, the lot history and the start time
of a lot.

Functions

The next part of the model are the definition of functions. In this model the following functions
are used: bufsize, transformation, sequence, seq, updHis, upd, start, collect, conversionCD
and type event. The function bufsize is used to determine the buffer level and warn when
it has reached its maximum level. Transformation is a function that translates the vector
receive by the controller into targets for each machine. Sequence, seq, seqw are functions
to create a tuple of booling values. The functions updHis, upd are used to update the lot
info. The start function creates the initial buffer list, these lists are the lots that are in the
system at the beginning of a simulation. The next function is the function collect, which is

102 Appendix D. Programs

used to collect the buffer level and its time instant. The function conversionCD is a very
important function, this function converts the optimal throughput into machine targets. The
final function, type event, is created to set the right type of handles for each type of event
that needs to be simulated.

Initialization

The Initialization process opens the MATLAB program and initiates the SCLP problem. It
sends the initial buffer lists to the buffers and the info about the type of event and number
of simulation are send to the machines and the control dispatcher (DCP).

DCP

DCP is the control dispatcher, it regulates and initiates the control optimization and it sends
the targets to the machines. Before every new optimization it also collects the buffer levels and
their time instances and these are processed by the function datalogging. When requesting
the buffer levels, the DCP also request the fraction of time a lot has been processed. This
time is added to the buffer after the machine and the remaining part of the lot is added to
the buffer in front of the machine.

G

Process G is the generator of the system it send lots into the line with the arrival rate of the
line. This process in only stopped at the moment a new target is calculated and when the
first buffer has reached its maximum size.

B

The process B is the buffer. The buffer can receive lot until it has reached its maximum size,
and sends a lot when the machine can receive a lot. At the end of one optimization run the
DCP process asks the buffer the current buffer level and the list with the changes of the buffer
levels and the time instant these change happened.

M

M stands for the machine. The machine receives its targets from DCP, the machine can
always receive new targets. The targets are converted at the beginning of the period that
these targets are optimal. When the target is larger then zero, and the machine is not
processing a lot and the machine in not down. It can receive a lot and start to process it. The
variable process time is determined by taking standard process time and adding a sample of
normal distribution, with mean zero and a variance of 1.0. When using a fixed process time
this distribution is left out.
The breakdown of a machine happens on a average of once a week. The moment depends on
the distribution, it is a negative exponential distribution with a mean of 2 shift of 12 hours.

D.3. χ model discription 103

In case the DCP requests the buffer levels for new optimization and the machine is process
a lot the machine determines the fraction of time the lot has been processed and sends this
fraction to the DCP.

E

The process E is the exit process of a lot. When a lot leaves the line it is logged by the exit
process and the process E communicates the changes of the exit process to the DCP when a
new optimization run is started.

exit

The exit process is created to shut down MATLAB.

cluster

The cluster connects all the channels between the processes as described in Figure D.1

104 Appendix D. Programs

G EM1B1 M2B2

Initial

DCP

Exit

SCLP

Pymat

re.0
re.1

re.2

cl.0

cl.1

cl.2

bu.0

bu.1

bu.2

da.0

da.1

da.2

s.0

s.1

na

bml.0

bml.1

bml.2

bl.0

bl.1

bl.2

ta.0

ta.1

out

st

a b c d e

id

Figure D.1: χ model structure.

D.4 χ-code

from std import *

from random import *

from ComSCLP import *

// Type of event possibilities

// -1- Every 12 hours

// -2- After every finished product

// -3- After a breakdown

// -4- After the product is finished on the bottleneck station

const tm: real = 60.0 // Unit index of the time (60 min)

, tmin: real = 0.0 // The lowest stochactic process time

, nb: nat = 2 // Number of buffers

, n: nat = 2 // Number of machines

, m: nat = 3 // Number of buffers + exit process

, w: nat = 3 // Number of machines + Genarator

, xe: nat = 1 // Number of the machine in front of the exit process (n-1)

D.4. χ-code 105

, Maxbuf: nat^2 = <|10,10|> // Maximum buffer size (B1,B2)

, Y: real* = [2.0,3.0,0.0] // Initial buffer level (B1,B2,E)

, ihs: nat^2 = <|1,1|> // Lot History (M1,..,M_n)

, route: nat^2 = <|1,2|> // which buffer service which machine (B1,..,B_nb)

type lot = id.nat#tp.nat#sp.nat#hs.nat^n#st.real

// identification#type(0,1)#step(0...n)#history#starttime

// Bufsize gives a warning when the buffer exceed there maximum

func bufsize(sbf: nat,sp: nat) -> nat =

|[[sbf < Maxbuf.sp

-> skip

|sbf >= Maxbuf.sp

-> !"Buffer = ", sp," is has reached the maximum buffer size.\n"

]; ret sbf

]|

// Transformation assigns the targets of each optimal solution, to a machines.

func transformation(SCLP: (real*)^2) -> (real*#real*)^n =

|[s,i,j,k: nat, targ: (real*#real*)^n, Output: real*

| s:=len(SCLP.1)-1; i:= 1; j:=0;k:=0; Output:= SCLP.0

;*[len(Output)> 0

-> [i<= s

-> targ.j.0:= targ.j.0 ++ [hd(Output)]

; Output:= tl(Output); i:= i + 1

|i> s

-> j:= j + 1; i:= 1

]

|len(Output) = 0

-> *[k<nb -> targ.k.1:= SCLP.1; k:= k + 1]; ret targ

]

]|

// sequence create a booling tuple size n

func sequence(send: bool^n) -> (bool^n)=

|[k: nat

| k:=0

;*[k<n -> send.k:=true; k:= k + 1]

; ret send

]|

// seq create a booling tuple size m

func seq(nu: bool^m) -> (bool^m)=

|[k: nat

|k:= 0

;*[k<m -> nu.k:= true; k:= k + 1]

; ret nu

]|

// seq create a booling tuple size m

func seqw(nu: bool^w) -> (bool^w)=

|[k: nat

|k:= 0

;*[k<w -> nu.k:= true; k:= k + 1]

; ret nu

]|

// updating history

func updHis(hs: nat^n, bn: nat) -> nat^n =

|[i,j: nat

| i:= 0

; *[i<bn

-> j:= (route.i-1); hs.j:= hs.j - 1; i:= i + 1

]

; ret hs

106 Appendix D. Programs

]|

// Update changes the lot parameters.

func upd(x:lot, j: nat) -> lot = |[x.sp:=x.sp + 1; x.hs.j:= x.hs.j - 1; ret x]|

// Start function creates the lots that are in the system at the beginning of the simulation.

func start(y: real*, t: real) -> (lot*)^m#nat=

|[i: real^m, j,k,l: nat, buf: (lot*)^m, ih: nat^n

|j:=0; k:=0; l:= 0; ih:= ihs

;*[k<m -> i.k:= 0.0; buf.k:=[]; k:=k+1]

; *[l<m -> [i.l<hd(y)

-> buf.l:=buf.l ++ [<j,0,l,updHis(ih,l),t>]; j:=j+1

; i.l:=i.l + 1.0

| i.l>= hd(y)

-> y:= tl(y); l:= l + 1

]

]

; ret <buf,j>

]|

// Function collect, gathers the buffer level en times. This is done to compare the

// error between the target and the actual production.

func collect(bu,t: real, lt, lev: real*) -> (real*#real*)=

|[lev:= lev ++ [hr(lev)];lt:= lt ++ [round(t*1000)/1000]

; lev:= lev ++ [bu]; lt:= lt ++ [round(t*1000)/1000]

; ret <lev,lt>

]|

// The function conversionCD translates the calculated speeds

// into machine targets.

func conversionCD(targ,opt: (real*),t: real) -> (int#real*#real*) =

|[tra: int, ta,op,t1,t2,tar: real, s: bool, tt: real*

| s:= false

; *[len(targ) > 0 and not s

-> [t <= hd(opt) or t = 0.0

-> tar:= hd(targ); s:=true

|t > hd(opt) and t /= 0.0

-> ta:= hd(targ); op:= hd(opt); targ:= tl(targ); opt:= tl(opt)

]

|len(targ) = 0 and not s

-> targ:= [ta]; opt:= [op];tar:= hd(targ); s:=true

| s

-> tt:= take(opt,2)

;[len(tt) > 1

-> t1:= hd(tt); t2:=hr(tt)

|len(tt) = 1

-> t1:= hd(tt); t2:=hd(tt)+ 1

]

; [(t2-t1) > 0 -> tra:= round(tar*(t2-t1))

|(t2-t1) = 0 -> tra:= round(tar*1)

]

; ret <tra,targ,opt>

]

]|

func type_event(event: nat,t,bt: real) -> (bool#bool#bool#real)=

|[ea,br,ex: bool, brt: real

|ea:= false; ex:= false; br:= false; brt:= 0.0

;[event = 1 // Type of sample scheme.

-> skip

|event = 2

-> ea:= true

|event = 3

-> br:= true; brt:= t + bt; !"brt= ",brt,nl()

|event = 4

-> ex:= true

D.4. χ-code 107

]

; ret <ea,br,ex,brt>

]|

// Initialization the input of the system

proc Initialization(da: (!nat^2)^m, bu: (!lot*)^m, iden: !nat, na: !string

, type_sym, nr_sym: nat, ar: real,tml: real*, name: string)=

|[open, iniM: bool, bb: bool^m, sim: (nat^2)

, buf: (lot*)^m, id,g,i,k: nat, Ym,rout: nat*, tb: real*

| g:=0; i:=0; k:=0; Ym:= []; tb:= [];rout:=[]

; na!name

; name:= name ++ ".txt"

; sim.0:= type_sym

; sim.1:= nr_sym

; open:= openMatlab(name) // Opening Matlab using Pymat interface.

; *[g < nb -> Ym:= Ym ++ [Maxbuf.g]

; tb:= tb ++ [hd(tml)/tm]; tml:= tl(tml)

; rout:= rout ++ [route.g]

;g:= g + 1

]

; iniM:= systemInitialization(ar,nb,n,Ym,rout,tb) // Initialization of the SCLP problem.

; bb:= seq(bb)

; *[j:nat <-0..m: bb.j // Sending type of sampling scheme and number

-> da.j!sim; bb.j:=false // of simulation to DCP and machines.

]

; <buf,id>:= start(Y,time) // Creating the initial buffer levels.

; iden!id

; *[l:nat <-0..m: not bb.l // Sending initial buffer level to the buffers.

-> bu.l!buf.l; bb.l:=true

]

]|

//

proc DCP(bl: (?real#real*#real*)^m, da: (?nat^2), s: (?void)^n, p: (?real#real*#real*)^n

, ta: (!(real*#real*))^n, cl,bml: (!void)^m, fi: (!void)^n, out,st: !void)=

|[q: nat,sl,su: nat*, sim: (nat^2), SCLP: (real*)^2

, targ: (real*#real*)^n, y,lmt,mlev,mutl,mull: real*, lt,lev: (real*)^m, mut,mul: (real*)^n, yj: real^m

, re: real^n, send,receiveM: (bool)^n, receive: (bool)^m, signal: (bool)^w, data: bool

| q:=0; lmt:= []; mlev:= []; y:=[]; sl:=[]; mutl:= []; mull:= []; su:=[]

; da?sim

; y:=Y

; *[q<sim.1

-> send:= sequence(send)

; SCLP:= weissSCLP(y) // Calculating new target with SCLP-algorithm.

; targ:= transformation(SCLP)

; *[i:nat <- 0..n: send.i; ta.i!targ.i // Sending target to machines.

-> send.i:=false

]

; st!

;[sim.0 = 1 // Event sampling.

-> delta 720

| sim.0 = 2 or sim.0 = 3

-> [j:nat <- 0..n: true; s.j? -> !"s.",j,nl(); *[ii:nat <- 0..n: not send.ii; fi.ii! -> send.ii:= true]]

| sim.0 = 4

-> [true; s.xe? -> skip]

]

; q:= q + 1

; y:= []

; receive:= seq(receive)

; *[j:nat <- 0..m: receive.j; cl.j! // Gathering buffer levels.

-> bl.j?<yj.j,lev.j,lt.j>; receive.j:=false

]

; *[x:nat <- 0..m: not receive.x -> y:= y ++ [yj.x]

; lmt:= lmt ++ lt.x

; mlev:= mlev ++ lev.x

108 Appendix D. Programs

; sl:= sl ++ [len(lev.x)]

; receive.x:= true

] // Sorting the buffer levels.

; signal:= seqw(signal)

; *[v:nat <- 0..w: signal.v; bml.v! -> [v = 0

-> skip

|v > 0

-> p.(v-1)?<re.(v-1),mut.(v-1),mul.(v-1)>

]

; signal.v:= false

]

; receiveM:= sequence(receiveM)

; *[l:nat <- 0..n: receiveM.l ->[re.l = 0.0 -> skip

| re.l > 0.0 -> yj.l:= yj.l+ (1-re.l)

; yj.(l+1):= yj.(l+1) + re.l

| re.l >= 1.0 -> yj.(l+1):= yj.(l+1) + 1.0

// In this case the lot is waiting to be send to the buffer.

]

; !"mul= ", mul.l,nl()

; mutl:= mutl ++ mut.l

; mull:= mull ++ mul.l

; su:= su ++ [len(mul.l)]

; receiveM.l:= false

]

; data:= datalogging(mlev,lmt,mull,mutl,sl,su) // Registering the data.

; sl:= []; mlev:=[]; lmt:=[]; su:= []; mull:=[]; mutl:=[]

]

; out!

]|

//

proc G(st,bml: (?void),iden: (?nat), a: (!lot*),ar: real) =

|[i: nat, t,rem: real, rq,tar: bool

| iden?i; tar:= false; rq:= false; rem:= 0.0

; *[true; st? // receiving start time.

->[rem > 0.0 -> tar:= true

|rem <= 0.0 -> rq:= true

]

; t:= time + rem

;!"G receives target at t= ",time," min",nl()

|rq; a![<i,0,0,ihs,time>] // Sending lot into the line.

-> i:= i + 1

; rq:= false; tar:= true; t:= time + (tm/ar)

|tar; delta (t-time)

-> rq:= true; tar:= false

|true; bml?

-> rem:= (t-time); rq:= false; tar:=false

]

]|

proc B(a,bu: (?lot*), cl: (?void), bl: (!(real#real*#real*)), b: (!lot*), stat: nat) =

|[bufs: nat, xs,buf: lot*, Bf: real, lt,lev: real*

| bu?buf; bufs:= bufsize(len(buf),stat);lev:=[n2r(bufs)]; lt:=[time/tm]

; *[bufs < Maxbuf.stat; a?xs // Receiving lot.

-> buf:= buf ++ xs; bufs:= bufsize(len(buf),stat)

; <lev,lt>:= collect(n2r(bufs),time/tm,lt,lev)

; !"B ",stat," receives lot ",hd(xs).id," at t= ",time," min\tlevel= ",bufs,nl()

|true; cl? // Receiving request for the buffer level.

-> Bf:= n2r(bufs)

; <lev,lt>:= collect(n2r(bufs),time/tm,lt,lev); !"Bf= ",Bf,nl()

; bl!<Bf,lev,lt>; lev:= [hr(lev)]; lt:= [hr(lt)]

; !"DCP sends Request to receive buffer level\n"

|bufs>0; b![hd(buf)] // sending lot to the machine.

-> !"B ",stat," sends lot ",hd(buf).id,"\tlevel= ",bufs,nl()

; buf:= tl(buf); bufs:= bufsize(len(buf),stat)

D.4. χ-code 109

; <lev,lt>:= collect(n2r(bufs),time/tm,lt,lev)

]

]|

//

proc M(ta: (?(real*#real*)), a: (?lot*), da: (?nat^2), bml,fi: ?void

, b: (!lot*), p: (!real#real*#real*),s: (!void), stat: nat, tml: real*)=

|[xs: lot*, ti: (real*#real*), wa,ea,ex,br,rq,st,fp,se: bool

, wait,t,tle,re,di,brt,tem,v,te,op,opr,sam: real, opt,mut,mul: real*, l: nat

, event: nat^2, tra,targ,i: int, bt: -> real, tel: -> real

| wa:= false ; st:= true; rq:= false; fp:= false; se:= true

; t:=time; i:=+0; l:= 0; tra:=+0; mut:= [0.0]; mul:= [time/tm]

; *[l = stat

-> te:= hd(tml); l:= n

|l /= stat and l < n

-> tml:= tl(tml); l:= l + 1

]

; bt:= negexp(720.0); da?event; tel:= normal(0.0,1.0)

; <ea,br,ex,brt>:=type_event(event.0,time,sample bt)

;*[true; ta?ti // receiving target.

-> t:= time; rq:= true; st:= true

; !"ti",stat,"= ",ti,nl()

; v:= time

; targ:= +0

; op:= hd(ti.1); opt:= tl(ti.1)

; <ea,br,ex,brt>:=type_event(event.0,time,sample bt)

; !"Machine ",stat," receives new target at t= ",time," min",nl()

|not wa and tra > 0 and st; a?xs // receiving lot.and v > time

-> wa:= true; sam:= sample tel

; *[sam >= tmin and se -> se:= false

|sam < tmin and se -> sam:= sample tel

]

; se:= true; tem:= te + sam

; wait:= time + tem; tle:= time

;!"Machine ",stat," receives lot ",hd(xs).id," at t= ",time

;!" min and the process time= ",tem,nl()

|true; fi?

-> fp:= false

|true; bml? // requesting wip level.

-> [not wa -> tle:= time

| wa -> skip

]

; di:= (time-tle); re:= (di/te); p!<re,mut,mul>; rq:= false; mut:= [hr(mut)]; mul:=[hr(mul)]

; !"request wip level ",stat," machine is processing t= ",time," min",nl()

|wa; delta (wait - time) // processing lot.

-> xs:=[upd(x,(route.stat-1))| x:lot <- xs]; b!xs

; wa:= false; i:= i + 1

; tra:= tra - 1

; !"\nMachine ",stat," finished its product \tt= ",(time-t)/tm," hours\nnumber lots made= ",i,nl()

; [ea

-> fp:= true; rq:= false // Request to calculate new targets.

| ex

-> [hd(xs).hs.xe = 0 -> fp:= true; rq:= false

|hd(xs).hs.xe > 0 -> skip

]

| not ea or not ex

-> skip

]

|fp; s!

-> fp:= false

|br; delta (brt - time) // Machine Breakdown.

-> fp:= true; !"machine breakdown at t= ", time," min",nl()

; rq:= false; wa:= false; br:= false; st:= false

|rq; delta (v - time)

-> <mul,mut>:= collect(i2r(i-targ),time/tm,mut,mul) // collecting the new error value

; !"io",stat,"= ",(i-targ)," targ= ",targ,nl()

110 Appendix D. Programs

; <tra,ti.0,ti.1>:= conversionCD(ti.0,ti.1,(time -t)/tm)

; targ:= tra

; [len(opt) >= 1 -> [(hd(opt)- op) > 0 -> opr:= ((hd(opt)- op)*tm)

| (hd(opt)- op) = 0 -> opr:= tm

]

; v:= time + opr; op:= hd(opt); opt:= tl(opt)

|len(opt) = 0 -> v:= time + tm

]

; i:= +0

; !"Machine ",stat," Calculated target at t= ",time," min \ttarget= ",tra,nl()

]

]|

// E is the exit process.

proc E(a,bu: (?lot*), cl: ?void, bl: !real#real*#real*) =

|[i: real, xs: lot*, lev,lt: real*

| bu?xs; i:= n2r(len(xs)); lev:= [i]; lt:= [time/tm]

; *[true; a?xs

-> i:= i + 1.0; <lev,lt>:= collect(i,time/tm,lt,lev)

;!"\nexit at t= ",time," min\nLot info= ",hd(xs)," \nNumber lot produced= ",i ,"\n",nl()

|true; cl?

-> <lev,lt>:= collect(i,time/tm,lt,lev)

; bl!<i,lev,lt> // The u is the work in progress of the Generator

// and ut is it’s time registration.

; lev:= [hr(lev)]; lt:= [hr(lt)]

]

]|

proc exit(out: ?void,na: ?string)=

|[close: bool, name: string

|na? name; out?; close:=closeMatlab(false,name)

]|

//

clus S(type_sym, nr_sym: nat,ar: real, te: real*,name: string)=

|[bl: (-real#real*#real*)^m

, a,b,c,d,e: -lot*

, bu: (-lot*)^m

, re: (-(real#real*#real*))^n

, ta: (-(real*#real*))^n

, da: (-nat^2)^m

, id: (-nat)

, s,fi: (-void)^n

, cl,bml: (-void)^m

, out,st: -void

, na: -string

| Initialization(da,bu,id,na,type_sym,nr_sym,ar,te,name)

|| DCP(bl,da.0,s,re,ta,cl,bml,fi,out,st)

|| G(st,bml.0,id,a,ar)

|| B(a,bu.0,cl.0,bl.0,b,0)

|| M(ta.0,b,da.1,bml.1,fi.0,c,re.0,s.0,0,te)

|| B(c,bu.1,cl.1,bl.1,d,1)

|| M(ta.1,d,da.2,bml.2,fi.1,e,re.1,s.1,1,te)

|| E(e,bu.2,cl.2,bl.2)

|| exit(out,na)

]|

xper(type_sym, nr_sym: nat,ar: real, te: real*,name: string)=

|[S(type_sym, nr_sym, ar, te, name)]|

	Event-driven Model Predictive Control of a manufacturing line
	Assignment
	Preface
	Summary
	Samenvatting (in dutch)
	Symbols
	Contents
	1 Introduction
	1.1 Framework
	1.2 Control strategy
	1.3 Research objective
	1.4 Approach
	1.5 Outline of the report

	2 Model Predictive Control (MPC)
	2.1 Model Predictive Control theory
	2.2 The concept of MPC
	2.3 Stability and Robustness of an MPC-controller
	2.4 Advantages and Disadvantages of MPC
	2.5 Discussion

	3 Formulating a continuous-time MPC problem
	3.1 Model
	3.2 The cost function and constraints
	3.3 Resulting continuous-time MPC problem
	3.4 Examples of continuous MPC problems
	3.5 Discussion

	4 Separated Continuous Linear Programming (SCLP)
	4.1 The SCLP algorithm
	4.2 Boundary-LP/LP*
	4.3 Rates-LP/LP*
	4.4 Base sequences
	4.5 Validity regions
	4.6 Pivoting
	4.7 Subproblem
	4.8 Discussion

	5 Conversion
	5.1 Conversion from manufacturing system to the controller
	5.2 Conversion from controller to manufacturing system
	5.3 Discussion

	6 Event-driven simulations
	6.1 Discrete Event Models
	6.2 Type of sample schemes
	6.3 Set-up of experiments
	6.4 Expected results
	6.5 Results
	6.6 Global discussion

	7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Discussion
	7.3 Recommendations

	Bibliography
	A Translation to a primal SCLP
	A.1 Cost function

	B Explaining the SCLP algorithm
	B.1 The SCLP Algorithm
	B.2 Validity regions
	B.3 Pivoting
	B.4 Subproblem

	C LP theory
	C.1 The Simplex Method
	C.2 Duality theory
	C.3 An example of how to solve an LP problem
	C.4 Discussion

	D Programs
	D.1 MATLAB
	D.2 Python
	D.3 model discription
	D.4 -code

