
Markov based modeling of manufacturing

systems dynamics

R.T.N.Beijsens

SE 420424

Master’s thesis

Supervisor: Prof.dr.ir. J.E. Rooda

Coach: Dr.ir. A.A.J. Lefeber

Eindhoven University of Technology

Department of Mechanical Engineering

Systems Engineering Group

Eindhoven, April 2005

FINAL ASSIGNMENT

EINDHOVEN UNIVERSITY OF TECHNOLOGY April 2004
Department of Mechanical Engineering
Systems Engineering Group

Student R.T.N. Beijsens

Supervisor Prof.dr.ir. J.E. Rooda

Advisor Dr.ir. A.A.J. Lefeber

Start April 2004

Finish February 2005

Title Properties of DEM and PDE models for manufacturing systems

Subject
In order to design control laws (that are used in the field of mechanical and electrical sys-
tems) for manufacturing systems suitable models are needed. Discrete event models (DEMs)
are well-accepted for representing a manufacturing system, but are computationally expensive.
Furthermore, no suitable control theory for real-life discrete event models is available.
Therefore, continuous time approximation models have been developed based on conservation
laws resulting in Partial Differential Equations (PDEs). In recent research several PDE mod-
els have been developed. Currently, validation studies have shown that PDE models poorly
describe transient behavior of manufacturing systems.

Assignment
Determine properties of DEMs to enable improvement of the behavior of PDE models. Thus,
features of DEMs for several cases of manufacturing lines (e.g. identical machines in line,
reentrant line) have to be worked out. Before starting with these cases averaging methods of
simulations have to be studied. Then, cases can be started and for instance scaling aspects of
performance are researched when machines in the line are doubled.
With for example scaling aspects DEM properties can be determined and herewith PDE models
can be validated. In validating PDE models new conditions have to be formulated to which
PDEs have to apply. Finally, the results of this study has to be presented in a report.

Prof.dr.ir. J.E. Rooda Dr.ir. A.A.J. Lefeber

Systems

Engineering Department of Mechanical Engineering

i

ii Assignment

Preface

Help, I am running out of days in my student life. Mayday. I am running low on days:

‘Time is the best teacher; unfortunately it kills all its students’.

To avoid an early learning death, I have stretched the five year curriculum of my study
of Mechanical Engineering with a couple of years. Most important though, I have
enjoyed my student days, which began in an impoverished attic of the Edelweisstraat.
Fortunately, I have looked for other housing and, moreover, other interests besides
studying. For example, I have joined the student futsal organization of E.S.Z.V.V.
Totelos and became a member of their committee for one year. In this year, I have
learned a lot about non-study related activities.

After this (sabbatical) year, I have focussed on my study in which I had to choose a
graduate group. From some interesting graduate groups, the Systems Engineering group
applied to me the most, since the improvement of advanced manufacturing systems
seemed very rewarding. Thanks to χ.
Furthermore, with this graduate group, I was able to follow mathematical courses like
Process Algebra and Stochastic Performance Modeling, which amused me. As part of
the graduate program, I went abroad to follow my internship in England at Hagemeyer
UK Ltd. Logically, I would like to thank professor Udding for providing me with this
internship and supporting me during this three month period.
Hereafter, I was ready for my master’s project. For this project, I would like to thank
Erjen Lefeber for coaching me and his support. Besides, I want to thank professor
Rooda for supervising this project.

Some other thanks go out to all fellow-students and PhD students from the SE-lab,
such as S.E.R.R. Tosserams, E.P.T. Kock, Miel and Wouter and Bas for the mini-golf
competition. Moreover, I would like to thank my parents, who believed in me and gave
me the genetic (and financial) power to study. Last but not least, a special thank goes
out to my girlfriend Eefje who supported me during a big part of my student days.

Over and out.

Rolf Beijsens

iii

iv Preface

Summary

The subject of this thesis finds its origin in a control framework developed by the Sys-
tems Engineering group of the department of Mechanical Engineering of the Technische
Universiteit Eindhoven. The aim of this framework is to control a discrete manufac-
turing system with a continuous controller. For the development of the controller, a
continuous model of the considered manufacturing system has to be made. The con-
tinuous model can be validated with a discrete-event model (DEM). After a successful
validation, the designed controller can be tested when connected to a DEM. Finally,
the designed controller can be implemented in a real-life plant.

The first objective of this thesis is to find and define properties of manufacturing sys-
tems. These properties have to be be used to validate manufacturing system models
such as the Ordinary Differential Equation (ODE) and Partial Differential Equation
(PDE) models. Second, the search for properties needs to lead to the development of
alternative models and improvement of current models that meet these properties.

The search for properties of manufacturing systems started with an analysis of a sin-
gle server queue with exponential arrival and process rates and an infinite buffer, the
M/M/1 queue. The focus in this search has been put on three properties that can be
used to scale performance measures of the model in time.
The first suggested property multiplies the process rate with time and is called the
process rate property. With help of Markov theory, it has been proven that this prop-
erty is exact for the M/M/1 queue. The process rate property can be used for scaling
performance measures like the flow time, throughput and wip-level, the number of lots
in the system. With help of the process rate property, M/M/1 queues with different
process rates show identical behavior when scaled using this property. Besides single
server queues, multiple M/M/1 queues in series have been considered as well. A Markov
proof of a scaling factor for M/M/1 queues in series has not been found. Therefore, a
validation has been performed for queues in series, which showed that the process rate
property holds also for queues in series.
For the other two suggested scaling properties, a proof has not been made, since these
are approximations. Consequently, validations have been made with DEMs. For the
second suggested property, the possibility of scaling time-dependent performance mea-
sures has been investigated for queues with different utilizations, the utilization prop-
erty. Given that an exact approach with the time-dependent Markov solution has not

v

vi Summary

succeeded, the relaxation time has been used as an approximation to determine the
utilization property. The effect of the relaxation time on the utilization property has
been validated with a DEM. From the validation, it appeared that the approximation
for the utilization property corresponds better for the asymptote to steady state than
the initial transient of time-dependent performance measures.
Finally, the regarded scaling property has been the workstation property in which the
number of identical workstations in series has been studied. This property should con-
nect performance measures of queues with a different number of identical workstations.
Since the determination of the workstation property has not been determined exact, an
approximation has been used. In this approximation, the influence of a single work-
station on the whole system has been defined with a time factor. This time factor
approximation shows that a system with two identical workstations finds itself in the
same situation 11

2 times later than a system with a similar single workstation.
In all, the effect of scaling properties on validation methods has not been considered in
this research, but the focus has been put on the definition of three scaling properties.
These three properties have been investigated. For the process rate property, a proof
has been made. The other two properties, the utilization and the workstation property,
have been approximated.

Markov theory has not been used for the proof of the process rate property only. In this
proof, Markov theory has been used to obtain the time-dependent solution of the single
server M/M/1 queue. Markov theory has been used for the development of transfer
function model as well.
The transfer function model has been developed to increase the applicability of the
time-dependent solution, since the derivation of this solution is very complex and has a
limiting applicability. The transfer function model uses an intermediate solution of the
time-dependent derivation to act as a transfer function. This intermediate solution has
been adjusted with Taylor and Padé approximations to make it suitable for a transfer
function. The result is an approximated transfer functions, which has a desired appli-
cability increase with respect to the original time-dependent solution of the M/M/1
queue.
The applicability has been increased, because transfer functions for single server queues
can be extended easily to transfer functions for queues in series. A disadvantage of the
approximated transfer functions is a reduced accuracy for high utilizations. Besides the
utilization accuracy loss, an accuracy also loss occurs when more servers in series are
considered.
In short, transfer function models are not perfect, since accuracy loss arises from Padé
and Taylor approximations. However, the developed transfer function is a new alterna-
tive which can be used to describe the behavior of M/M/1 queues. Furthermore, this
transfer function can certainly be used for systems which do not have high utilizations.

Alongside the consideration of infinite queues, finite queues have been considered as
well. These finite M/M/1/N queues have been modeled with transfer functions derived
again from Markov theory. The modeling of these transfer functions is a lot easier for
finite than infinite queues. This modeling simplicity originates from the finite number of

vii

Ordinary Differential Equations (ODEs), while infinite queues have an infinite number
of ODEs. Next to the simplicity advantage, the finite queue transfer function is exact.
However, the finite queueing transfer function also has some disadvantages, since the
applicability has been reduced in comparison with the infinite queue. First, an extension
from a single server queue to multiple queues in series is not straightforward anymore.
Therefore, a new model has to be made for every number of workstations. Second,
the applicability reduces, since a new model has to be made for every number of buffer
places. These two disadvantages can be avoided using a mathematical model to generate
the transfer function. The third disadvantage occurs, because the computation of the
transfer requires an inverse of the transition state matrix. Inverting this matrix can
take a long time as buffer places and the number of workstations increase.
In brief, the only remaining disadvantage is the applicability of finite queueing transfer
functions for large systems. The useability for large systems has not been considered in
this thesis. The advantages of the transfer function are the accuracy and the suitability
to describe a finite queue with a continuous model.

Finally, the design and DEM implementation of a controller has been discussed in this
thesis. The design of the controller is done with state feedback. With state feedback,
the controller uses the continuous model to generate all system states from the output
signal. With this state information, the controller provides the system with a new
input signal. Now, the designed controller can be used in a DEM implementation.
This implementation has been performed for two M/M/1/2 queues in series. In this
implementation, the wip-level has been used as output signal and the arrival rate as
input signal. The DEM implementation should show that the control signal depends
on actual wip-levels compared to steady state wip-levels. So, when the actual wip-
level is lower than its steady state value, the controller should increase the input rate.
Otherwise, a higher wip-level than steady state should lead to a decrease of the input
rate.
When an implementation of a single simulation run is considered, the controlled model
meets its desired behavior. However, averages of multiple simulations reveal that the
steady state wip-level of the controlled model exceeds the reference wip-level of the
uncontrolled model.
Although, the reference steady state wip-level is exceeded, the controller can be used
to absorb fluctuations in the process by varying the input signal.

viii Summary

Samenvatting

Het onderwerp van deze afstudeeropdracht ligt binnen het ontwikkelde regelconcept van
de groep Systems Engineering van de faculteit Werktuigbouwkunde van de Technische
Universiteit Eindhoven. Dit regelconcept richt zich op het regelen van fabricage syste-
men met een continue regelaar. Voor het ontwerpen van een dergelijke regelaar moet
het fabricage systeem beschreven worden met een continu model. Hierna kan de ont-
worpen regelaar getest worden door een implementatie uit te voeren op een Discrete
Event Model (DEM), waarna de ontworpen regelaar gëımplementeerd kan worden in
een fabriek.

Dit onderzoek richt zich op het vinden en definiëren van eigenschappen van fabricage-
systemen. Deze eigenschappen kunnen gebruikt worden om continue modellen zoals die
van partiële differentiaal vergelijkingen te valideren. Bovendien wordt de zoektocht naar
eigenschappen gebruikt om alternatieve modellen te ontwikkelen en deze te controleren
op juistheid.

De start van de zoektocht naar eigenschappen is begonnen met een model van een enkele
server wachtrij met exponentieel verdeelde aankomst en bewerkingssnelheden. Samen
met een oneindige buffer resulteert het in de M/M/1 wachtrij. De nadruk bij het zoeken
naar eigenschappen ligt op het schalen van parameters van een model in de tijd. In dit
verslag worden enkele suggesties gedaan voor schalingseigenschappen.
Voor één van de voorgestelde eigenschappen is met behulp van de Markov theorie be-
wezen dat de eigenschap geldt. Deze schalingseigenschap vermenigvuldigt de bewer-
kingssnelheden met de tijd, resulterend in de bewerkingssnelheid eigenschap. Met de
bewerkingssnelheid eigenschap kunnen prestatie indicatoren voor doorzet, doorlooptijd
en wip-niveau geschaald worden. Het wip-niveau komt overeen met het aantal producten
in het productieproces. Dit resulteert in onafhankelijkheid van de bewerkingssnelheid
in een dimensieloos tijdsdomein voor de enkele server M/M/1 wachtrij. Bovendien
worden meerdere M/M/1 wachtrijen in serie beschouwd. Hiervoor is geen Markov be-
wijs geleverd, maar er is een validatie uitgevoerd met een DEM. Hieruit blijkt dat voor
wachtrijen in serie de bewerkingssnelheid eigenschap ook van kracht is wanneer er meer-
dere wachtrijen in serie staan.
Vervolgens zijn er ook voor andere voorgestelde schalingseigenschappen DEMs validaties
gemaakt. Zo is de mogelijkheid onderzocht om tijdsafhankelijke prestatie-indicatoren
van modellen met verschillende bezettingsgraden naar elkaar schalen. Aangezien een

ix

x Samenvatting (in dutch)

exacte benadering met behulp van de tijdsafhankelijke Markov oplossing niet is geslaagd,
is de relaxatietijd gebruikt als benadering om de utilisatie eigenschap te bepalen. Om
het effect van de benadering te testen, is er een validatie verricht met een DEM. In deze
validatie is het effect van de relaxatietijd als schalingsparameter bekeken. Hierin is de
schaling voor de asymptoot beter dan voor het begin van het transiënte gedrag van de
prestatie indicatoren.
Tot slot is het aantal identieke werkstations in serie bekeken ofwel de werkstations ei-
genschap. Deze eigenschap probeert een verband te leggen tussen de tijdsafhankelijke
prestatie indicatoren van modellen, die een verschillend aantal werkstations hebben.
Aangezien deze eigenschap niet exact bepaald is, wordt deze eigenschap benaderd. De
gebruikte benadering geeft de invloed aan van het werkstation op tijdsafhankelijke pres-
tatie indicatoren. Zo heeft een systeem met twee werkstations in serie anderhalf keer
zoveel tijdsinvloed op een prestatie indicator in vergelijking met een systeem met een
enkel werkstation.
Het effect voor het gebruik van deze schalingseigenschappen als validatie methode is
niet beschouwd in dit onderzoek. Het is echter wel aan te raden om dit effect te testen,
waarna deze wel of niet gebruikt kunnen worden voor validatie.

Het bewijs van de eerder genoemde bewerkingssnelheid eigenschappen is geleverd met
behulp van Markov ketens en processen voor de enkele server M/M/1 wachtrij. Markov
theorie kan gebruikt worden om de tijdsafhankelijke oplossing voor het gedrag van fa-
bricagesystemen te verkrijgen. In deze analytische oplossing is tijd evenredig met de
bewerkingssnelheid. De afleiding van de tijdsafhankelijke oplossing is erg complex en
de tijdsafhankelijke oplossing heeft maar een beperkte toepasbaarheid.
Om dit op te lossen is er gezocht naar een meer algemeen model, waarin een tussenop-
lossing van de tijdsafhankelijke M/M/1 oplossing gebruikt wordt om als overdrachts-
functie te fungeren. Om die tussenoplossing geschikt te maken, is er een Taylor en
Padé benadering uitgevoerd met als gevolg de gewenste toegenomen toepasbaarheid in
de vorm van een overdrachtsfunctie. Deze overdrachtsfuncties hebben het voordeel dat
ze gemakkelijk kunnen worden omgezet om systemen met meer werkstations in serie
te beschrijven door machtsverheffen. Hiermee wordt de toepasbaarheid vergroot. Uit
een validatie met een DEM is gebleken dat het vergroten van de toepasbaarheid heeft
geleid tot een lagere nauwkeurigheid van de overdrachtsfuncties voor hoge utilisaties.
Daarnaast neemt de nauwkeurigheid van de benaderde overdrachtsfunctie af wanneer
deze uitgerekt wordt voor het beschrijven van meerdere werkstations.
Kortom, het model van de overdrachtsfuncties is niet perfect door een lagere nauw-
keurigheid, omdat er een Taylor en Padé benadering nodig waren. Het gevolg en het
vermijden van deze lagere nauwkeurigheid is niet onderzocht. Toch is het beschrijven
van het gedrag van M/M/1 wachtrijen met behulp van overdrachtsfuncties geslaagd.
Deze benaderingsmethode kan zeker gebruikt worden voor systemen met minder hoge
utilisaties.

Naast het beschouwen van oneindige wachtrijen, zijn er in dit onderzoek ook eindige
wachtrij meegenomen, de M/M/1/N . Voor eindige wachtrijen is eveneens gebruik ge-
maakt van Markov modellen waarvan wederom een overdrachtsfunctie is afgeleid. Het

xi

verkrijgen van een overdrachtsfunctie voor een eindige wachtrij is een stuk eenvoudiger
dan in het geval van oneindige wachtrijen. De eenvoud ontstaat doordat een eindi-
ge wachtrij beschreven kan worden met een eindig aantal differentiaal vergelijkingen.
Naast het voordeel van een eenvoudigere afleiding, is de overdrachtsfunctie van een ein-
dige wachtrij exact. Hierdoor is er ook bij hoge utilisaties een goede nauwkeurigheid
van het model. De overdrachtsfunctie van de eindige wachtrij heeft nadelen. Zo kan
de overdrachtsfunctie niet meer gebruikt worden om een wachtrij te beschrijven met
meerdere werkstations. Daarnaast moet er voor elke bufferinhoud een nieuw model ge-
genereerd worden. Dit probleem kan vermeden worden door een algoritme te ontwerpen
dat de overdrachtsfunctie uitrekent. Het uitreken van de overdrachtsfunctie heeft echter
wel een beperking, omdat hiervoor het inverteren van een toestandsmatrix vereist is.
Het inverteren van deze matrix kan erg lang duren zeker als het aantal bufferplaatsen
en werkstations groter wordt.
Het beschrijven van eindige wachtrijen met overdrachtsfuncties heeft als enige nadeel
dat de inzetbaarheid voor het beschreven van grote systemen niet is getoond. Verder
heeft de overdrachtsfunctie geen beperkingen en is uitermate geschikt om een continue
model te maken van ieder systeem met eindige wachtrij.

Tot slot wordt er in dit onderzoek nog een stap gemaakt om een regelaar te implemen-
teren op een DEM. Als regelwet wordt er een toestandsterugkoppeling gemaakt. De
regelaar voedt het fabricagesysteem met een nieuwe invoersnelheid van producten, de
input. De implementatie van de regelaar is uitgevoerd voor twee M/M/1/2 wachtrijen
in serie. De implementatie is verricht met het wip-niveau als uitgang en regelsignaal.
De regelaar zorgt ervoor dat een wip-niveau onder de steady state waarde wordt ge-
corrigeerd door een hogere invoersnelheid en met een wip-niveau boven de steady state
waarde wordt de invoer gecorrigeerd met een lagere input snelheid.
Uit een validatie met een DEM is gebleken dat de regelaar goed functioneert voor een
individuele simulatie. De input is hoger naarmate het wip-niveau lager wordt en vice
versa. Er is echter wel een nadeel wanneer het gedrag van meerdere simulaties gemid-
deld wordt. Na het middelen van meerdere simulaties wordt een andere steady state
waarde dan de gewenste waarde verkregen.
Ondanks het steady state verschil kan de regelaar wel degelijk gebruikt worden om de
schommelingen in de processen op te vangen door de invoersnelheid aan te sturen.

xii Samenvatting (in dutch)

Contents

Assignment i

Preface iii

Summary v

Samenvatting (in dutch) ix

Abbreviations and Symbols xvii

1 Introduction 1

1.1 Manufacturing systems . 1

1.2 Modeling and control . 2

1.3 Objective . 4

1.4 Outline . 5

2 Stochastic Processes 7

2.1 Markov chains and Markov processes . 7

2.2 Birth-death process . 8

2.3 Limiting behavior . 10

2.4 Time-dependent behavior . 12

2.5 Résumé . 16

xiii

xiv Contents

3 Discrete Event Modeling 19

3.1 Transient analysis . 19

3.2 Discrete Event Simulation . 22

3.3 Scaling properties . 23

3.4 Résumé . 27

4 Transfer Function 29

4.1 Analytical approach . 29

4.2 Results for single M/M/1 . 32

4.3 Results for M/M/1 in series . 33

4.4 Résumé . 37

5 Models for finite queues 39

5.1 M/M/1/N queue . 39

5.2 Single server queue . 44

5.3 Tandem queue . 47

5.4 Résumé . 51

6 Control 53

6.1 Control design . 53

6.2 Implementation . 56

6.3 Résumé . 61

7 Conclusions and Recommendations 63

Bibliography 69

A Time-dependent M/M/1 behavior 71

B χ code 75

B.1 χ code M/M/1 or G(BM)nE . 75

B.2 χ code M/M/1/N queue . 76

Contents xv

C Averaging discrete events 79

D Powering approximations 81

E Markov model of a GW2W2E queue 83

F Control 87

F.1 Simulink . 87

F.2 Implementation codes . 89

xvi Contents

Abbreviations and Symbols

Abbreviations

CONWIP Constanst Work-In-Process
DEM Discrete Event Model
GBME Generator Buffer Machine Exit
GBNME Generator N place Buffer Machine Exit
GBME Generator Buffer Machine Buffer Machine Exit
GWNE Generator N place Workstation Exit
GWWE Generator Workstation Workstation Exit
M/M/1 Queue with Memoryless arrivals and process rates
M/M/1/N M/M/1 queue with N places
LQR Linear Quadratic Regulator
ODE Ordinary Differential Equation
PDE Partial Differential Equation
WIP-level Work-In-Process level

Symbols

A State space matrix
B State space matrix
C State space matrix
C Controllability matrix
H(s) Transfer function
Iν Modified Bessel function of the first kind
i Initial value of a system
K Control gain
k State number in a Markov chain
L Observability gain
L Laplace operator
Pk(t) Probability of being in state k at time t

xvii

xviii Abbreviations and Symbols

pk(t) Probability of being in state k at time t
pk Steady state probability of state k
pn Padé coefficient n of numerator
Pn(s) Numerator of Padé approximation of order n
P ∗

0 (s) Laplace transform of P0(t)
P ∗(z, s) Laplace transform and z-transform of Pk(t)
O Observability matrix
Q Rate matrix of an ODE relation
Qm Denominator of Padé approximation of order m
Qlqr Q matrix for the LQR method
qn Padé coefficient n of denominator
Rlqr R element for the LQR method
s Frequency domain variable
Tn Taylor series of order n
U(s) Input relation of transfer function
u (Feedback) input of transfer function
uss (Feedback) steady state input of transfer function
w WIP
w(t) Time-dependent WIP
ŵ Estimated WIP
w Steady state WIP
w(t) Average time-dependent WIP
X Random variable
x State vector of state space
xss State vector of state space for steady state
Y (s) Output relation of transfer function
y Output of transfer function
t Time
z Discrete z-transforation parameter
x̂ Estimate state vector of state space

Γ Γ function
δ Throughput
δ(t) Time-dependent throughput

δ Steady state throughput

δ(t) Average time-dependent throughput
ζi Root i of the P ∗(z, s)
λ Arrival rate
µ Process rate

xix

ν Non-integer variable of the modified Bessel equation
ϕ Flow time
ϕ(t) Time-dependent flow time
ϕ Steady state flow time
ϕ(t) Average time-dependent flow time
ρ Utilization
τ Time
τr Relaxation time
τn Workstation influence parameter

xx Abbreviations and Symbols

Chapter 1

Introduction

In manufacturing systems research, a lot of interesting fields come to mind, such as
design, analysis, modeling, optimization and control. These topics are coherent and,
consequently, most research contains several aspects of them. In this thesis, the research
area can be characterized by model-based control and aspects involved are analysis,
modeling and control.

1.1 Manufacturing systems

According to Hopp and Spearmann [Hop01], a manufacturing system is an objective-
oriented network of processes through which entities flow. The objective of a manu-
facturing system can be improving throughput or flow time. In addition, it contains
processes that are not only physical, but can include support of direct manufacturing
(e.g., order entry, maintenance). Entities include the parts being manufactured and the
information that is used to control the system. Moreover, the flow of entities describes
how materials and information are processed. Finally, a manufacturing system is a net-
work of interacting parts. Managing the network of interacting parts is as important as
managing individual parts, if not so more.

In this thesis, manufacturing systems are also considered as a discrete event system.
Here, the state of a system is instantaneously changed by an event at a certain point
in time. Only arrival and departure times at processes are regarded as events, so the
action of a process itself is not an event. An example of arriving and departing events
at a process is shown in Figure 1.1. One can imagine that events in Figure 1.1 can
correspond with arriving and departing products or lots at for example a workbench
of an engineering factory. Furthermore, Figure 1.1 can be seen as a starting point
for evaluating and analyzing performance of a process or manufacturing system. In
manufacturing system analysis, commonly used parameters are flow time, throughput,

1

2 Chapter 1. Introduction

0
1
2
3
4
5
6
7
8
9

10

w

↓

↑

ϕ →←

ev
en

t

time

Figure 1.1: Example of arrival and departure times at a process

utilization and the Work-In-Process. In Rooda and Vervoort [Roo03], these are defined
as:

• flow time (ϕ), the time it takes to travel through the system;

• throughput (δ), the number of lots per time unit that leave the system;

• utilization (ρ), the fraction of time lots possess a machine;

• Work-In-Process or wip-level (w), the number of lots in the manufacturing system.

From Figure 1.1, a couple of these indicators can be derived. The flow time is the
horizontal difference and the wip-level is the vertical difference between arrivals and
departures. The throughput can be computed from the departures. The utilization
is not determined with graph data; it is predetermined by the quotient of arrival rate
(λ) and processing rate (µ). In this study, λ and µ will be considered constant and
therefore the utilization is also a constant. The expression of the utilization results in
the following relation:

ρ =
λ

µ
< 1. (1.1)

Thus, in the models discussed later the utilization is a fixed input parameter, which in
general has to be less than ’1’ one for infinite buffers. Otherwise, an instable system
results. Accordingly, the performance measures concern flow time, throughput and wip-
level with a settled utilization as a starting point. Another remarkable observation of
Figure 1.1 can be the difference or variability between duration of events. Variability
is very common in all kinds of processes. Due to variability in manufacturing systems,
values of performance measures fluctuate, resulting in complexity. Therefore, models
are required to imitate behavior of manufacturing systems.

1.2 Modeling and control of manufacturing systems

During the last century, a lot of activity has occurred in the manufacturing environment.
Designing and improving manufacturing systems has become an important discipline in

1.2. Modeling and control 3

daily life. Together with variability, the evolution of manufacturing systems leads to a
need for predicting behavior of the manufacturing systems. Consequently, models are
developed to describe manufacturing behavior. In this thesis, three types of models can
be distinguished:

• queueing models, based on queueing theory;

• discrete-event models, performed by computer simulations;

• continuous models, using e.g. differential equations.

The first one contains models that are derived from queueing theory, for example Markov
theory, the Pollazcek and Khinchin formula [Pol30, Khi32] and Jackson networks of
R.R.P. Jackson and J.R. Jackson [Jac54, Jac63]. The application of these models is
for relatively simple systems. However, the development of manufacturing systems in
the 20th century asked for a better representation of system behavior. With the aid
of computers, simulation models have been developed like the Discrete Event Model,
abbreviated as DEM. The DEM is part of the second approach. Currently, DEMs are
well-accepted for representing manufacturing systems. The last approach originates
from traffic modeling ideas. Traffic modeling usually consists of continuous models that
are based on for example flows using conservation laws. Traffic modeling results in
ordinary or partial differential equations. Unfortunately traffic models cannot describe
manufacturing systems as accurate as DEMs, but using ordinary or partial differential
equations creates new possibilities, since these equations are continuous.

One of these new possibilities is developing controllers for manufacturing systems based
on standard control theory instead of working with heuristics. CONstant Work-In-
Process, CONWIP is one of the simplest heuristics. When a product leaves the manu-
facturing system, the CONWIP controller releases a new product into the system. The
concept of using controllers from standard control theory forms one of the fundamentals
for the developed research framework of which this study is part of. In Figure 1.2, the
research framework is split in three parts. The first part contains modeling and design.
Modeling concerns development of a DEM and a continuous approximation model for a
manufacturing system. With a continuous model, a controller has to be designed using
standard control theory. The second part consists of testing the controller on the DEM.
Logically, the signals to and from the controller have to be transformed to continuous
or discrete values. Consequently, two conversion steps are necessary for controlling the
system and therefore have to be developed. Finally, in the third part the controller is
implemented on the manufacturing system.

In order to be able to create a controller for a system, the models have to accurately
describe time-dependent behavior. Especially the dynamics, or transient behavior, are of
great importance for the controller. Transient behavior occurs in the start-up period of
a system. Herein, the system starts empty and is fed with a certain rate. Therefore, the
useability of queueing models is limited, since they describe mostly limiting behavior

4 Chapter 1. Introduction

manufacturing
system

discrete event
model

continuous
approximation

controller

(a) modeling and de-
sign

manufacturing
system

discrete event
model

continuous
approximation

controller

conversion conversion

(b) conversion and test

manufacturing
system

discrete event
model

continuous
approximation

controller

conversion conversion

(c) implementation

Figure 1.2: Research framework

and not dynamical behavior. DEMs are less suitable to design a controller, because
current design techniques result in highly complex computation efforts for even the
most simple practical situations. Consequently, a continuous model is desired to apply
control theory.

1.3 Objective

In previous research on the framework of Figure 1.2 validation studies have been per-
formed. Van den Berg and Platschorre [Ber04, Pla04] have validated continuous PDE
models using the output of a DEM as a validation model. From the validation study,
it appeared that in accurately describing transient behavior PDE models, ‘leave much
to be desired’. Therefore, improvement of continuous models is required within the
framework of Figure 1.2. The objective of this research can be distinguished from the
desire to improve continuous models and can be described as:

• determine properties of manufacturing systems;

• develop alternatives that satisfy these properties.

The first objective can be interpreted in the sense of the possibility of making general
characteristics to which models have to fulfill. The second objective uses properties
to develop new or adjust existing models. For example, Daganzo [Dag95] shows that
with a simple observation an important modeling property can be found with respect
to backward flow. In higher order PDE models, the flow of a manufacturing model
can run backward. In manufacturing, products cannot run back, since backward flow
corresponds with de-processing of products. Therefore, models in which backward flow
might occur, can be rejected as suitable models for describing manufacturing systems.

1.4. Outline 5

1.4 Outline

The two part objective will be performed by the following approach. In Chapter 2,
the basis of queueing theory is treated, namely stochastic processes. The next two
sections refine these processes by considering Markov chains and the birth-death process.
In the birth-death process, the transition is made to the first queueing model, the
Markovian single server queue. The following two sections examine the limiting and
time-dependent behavior for the single server queue. Furthermore, the first property is
defined in Section 2.4.

Chapter 3 deals with the discrete event modeling. Herein, averaging of and performance
measures of simulations are regarded in the first section. In the next section, the simu-
lation itself is discussed. The last section has been used to investigate some properties
of DEMs with respect to time scaling possibilities.

In the fourth chapter, a continuous model is presented in which the dynamics will be
described by a transfer function. In the first section, an analytical approach has been
made to approximate a transfer function of a queueing model.

Until Chapter 5, only infinite buffer queues have been discussed. From Chapter 5 on,
the step towards finite buffers has been made to show the differences between finite and
infinite buffers. Section 5.1 makes some changes in the birth-death process of Chapter 2
to introduce the finite buffer. Sections 5.2 and 5.3 consider and compare the Markov
models with the DEM and its applicabilities for the single server queue as well as two
queues in series. Moreover, the Markov models have been used to obtain a transfer
function for some performance measures.

In Chapter 6, an earlier derived model has been used for designing a control law. The
derived control law will be used to implement a controller on a DEM. Hereafter, results
of the implementation will be discussed with the use of the control input and the model
output.

Finally, Chapter 7 presents conclusions of this study. After the conclusions, some rec-
ommendations have been made for future research.

6 Chapter 1. Introduction

Chapter 2

Stochastic Processes

In the previous chapter, terms such as manufacturing systems have been defined. Fur-
thermore, the chapter describes performance measures which can be used to evaluate
manufacturing systems. Besides, the evaluation itself has been treated by introducing
three different modeling types.
In this chapter, the first modeling type, queueing models, will be discussed. Evidently,
these queueing models are based on queueing theory. The fundamentals of queueing
theory are formed by stochastic processes. Within the area of stochastic processes, one
can specify the class of Markov chains and Markov processes. In Section 2.1, Markov
theory has been treated in order to define a first queueing model in Section 2.2 with
the specification of birth-death processes. The last two sections consider the behavior
of queueing models to achieve more insight in the manufacturing and to gain more
information about properties of manufacturing systems.

2.1 Markov chains and Markov processes

In daily life, queues occur when customers cannot be served immediately due to limited
capacities of service facilities. In manufacturing, queues happen as well. Now, customers
represent products or lots, service facilities become machines and queues are formed in
buffers. Both cases result in a queueing system, which can be seen as a stochastic
process. Stochastic processes are processes of systems that evolve randomly, see e.g.
Kleinrock [Kle75]. Such a process is a collection of states of random variables {X(t), t ∈
T} where for each t ∈ T, X(t) is a random variable.

Stochastic processes can be divided into several classes. Markov chains constitute an
important class of discrete time stochastic processes. Moreover, using Markov chains
forms the essential first step to compose a model for a manufacturing system. These
Markov chains have a discrete state space containing a set of random variables {Xn}
which form a chain where the next state {Xn+1} depends upon the current state {Xn}

7

8 Chapter 2. Stochastic Processes

only. The continuous time variant of a Markov chain is called a Markov process, where
transitions between (discrete) states take place at a certain time. In this research, the
continuous time variant is of most interest, since this variant is most suitable to describe
a manufacturing system. In this description, the discrete state of the Markov chain can
correspond with a product that stays in a machine (process) for a certain timespan
before ‘jumping’ to the next process.

As mentioned above, the next state of a Markov chain depends on the current state
only. Therefore, the specification of the current state contains the past history com-
pletely. This lack of history results in a strict constraint on the distribution function
of a process. An exponential distribution satisfies the lack of history constraint, the so
called ‘memoryless property’, and is specified below:

P (X > t + x|X > t) = P (X > x) = e−µt. (2.1)

The memoryless property is required for all Markov chains and restricts the generality
of processes to concern. In terms of states, it is called the ‘Markov property’ and can
be expressed as,

P
(

X(tn+1) = xn+1|X(tn) = xn, X(tn−1) = xn−1, . . . , X(t1) = x1

)

= P
(

X(tn+1) = xn+1|X(tn) = xn

)

. (2.2)

Unfortunately, the presence of exponential arrival and process rates is not the most
realistic distribution in manufacturing systems, especially for process rates. However,
other distributions can be approximated with a sum of a finite sequence of exponential
distributions. Therefore, the consideration of Markov processes is used.

2.2 Birth-death process

The second important step towards a queueing model is to define the birth and death
process. The class of the birth-death process forms a part of the Markov chains and
processes. Then, the birth-death process can be characterized by Markov chains and
process that allow transitions between neighboring states only. These process state
changes correspond with a population size that will either increase or decrease through
birth or death. In the state changes, births occur with birth rate λk and deaths occur
with death rate µk. Both rates of the birth-death process are exponentially distributed,
because the considered class lies within the area of the Markov theory. Therefore, the
birth-death process can be represented with a Markov chain, as is shown in Figure 2.1.
In the birth-death process, one can assume a pure birth process when µk=0. Moreover,
if one considers a birth process with constant coefficients (λk = λ), the famous Poisson
process is obtained. The state changes of the poisson process can be characterized by

2.2. Birth-death process 9

0 1 2 k-1 k k+1

replacemen

λ0 λ1 λk−1 λk

µ1 µ2 µk µk+1

Figure 2.1: Transition state diagram of birth and death process

the following set of ordinary difference equations:

dpk(t)

dt
= −λpk(t) + λpk−1(t) ∀ k = 1, 2, . . . (2.3a)

dp0(t)

dt
= −λp0(t). (2.3b)

In Cohen [Coh82], these equations are further analyzed. In this analysis, the set of
equations (2.3) have been solved via induction, which results in the time-dependent
Poisson distribution:

pk(t) =
(λt)k

k!
e−λt. (2.4)

Thus, the time-dependent probability distribution of Poisson process has been derived
from a birth process with constant birth rates. According to [Kle75], a birth process is
relevant in queueing theory for two reasons. First, analytical or probabilistic properties
can be simplified by e.g. the PASTA property. PASTA stands for ‘Poisson Arrivals
See Time Averages’, see Wolff [Wol82]. Second, numerous natural physical and organic
processes exhibit behavior that is probably meaningfully modeled by Poisson processes.
Therefore, Poisson processes are used to describe arrivals of customers or lots to a
service facility or machine.

Another possibility in the birth-death process is to assume a pure death situation when
λk = 0. In queueing systems, a death situation may correspond to a service comple-
tion. Consequently, discussing a pure death situation is not relevant, since a service
completion is not possible without arriving customers, products or events.

However, combining the pure birth and pure death processes with constant coefficients
µk = µ and λk = λ is relevant, because the combination results in perhaps one of
the simplest queueing model: the single server queue with exponential arrivals and
departures. In Kendall [Ken53], a quite popular notation has been introduced for the
Markov single server queue namely the M/M/1. Here, the ’M ’s stand for Memoryless
or Markov arrivals and departures respectively and these occur at ’1’ present server.
The M/M/1 forms the basis of the queueing models considered in this thesis. The
time-dependent notation of an M/M/1 has been expressed by the forward Chapman-

10 Chapter 2. Stochastic Processes

Kolmogorov’s equations:

dPk(t)

dt
= −(λ + µ)Pk(t) + λPk−1(t) + µPk+1(t) ∀ k = 1, 2, . . . (2.5a)

dP0(t)

dt
= −λP0(t) + µP1(t). (2.5b)

These equations can be derived using the flow diagram in Figure 2.1. [Kle75] refers
to (2.5) as a set of differential-difference equations. In this thesis, (2.5) is seen an
infinite number of ordinary differential equations (ODEs).

2.3 Limiting behavior

It is very complicated to obtain the time-dependent solution of the forward Chapman-
Kolmogorov’s equations. Therefore, the much easier to analyze limiting behavior is
discussed first. Limiting behavior is also be referred as steady state, or equilibrium,
behavior. Logically, equilibrium behavior holds for t→∞:

pk = lim
t→∞

P (X(t) = k) = lim
t→∞

Pk(t). (2.6)

Thus, limiting behavior isolates the system dynamics and basically, limiting behavior is
the opposite of transient behavior.

Definition 2.1. Transient and recurrent
The Markov process is transient if the state can only be visited a finite number of times.
Otherwise, the state is recurrent.

The above stated definition results in time-independency for limiting behavior, while
transient behavior only occurs during a certain time. Transient behavior stops when
the time of steady state has been reached. Although transient behavior is of most
interest in this research, limiting behavior is important for several reasons. Limiting
behavior shows to which equilibrium transient behavior leads. Besides, research on
limiting behavior is not as complicated as time-dependent behavior. Finally, steady
state behavior gives insights of transient behavior. The limiting distribution can be
computed with the forward Chapman-Kolmogorov’s equations and (2.6). However, a
limiting distribution only exists when certain conditions have been fulfilled. First, the
Markov process has to be irreducible.

Definition 2.2. Irreducible
In Kulkarni [Kul99], a Markov process {X(t), t ≥ 0} is said to be irreducible if the
corresponding Markov chain is irreducible. A Markov chain {Xn(t), n ≥ 0} on state
space S = {1, 2, . . . , N} is said to be irreducible if ∀ i, j

P (Xk = j|X0 = i) > 0.

2.3. Limiting behavior 11

The birth-death process as shown in Figure 2.1, shows that all states are adjacent and
transitions are possible between neighbors only. Thus, all states can be reached via each
other, which means that no absorption takes place in a certain state. Therefore, the
birth-death process is an irreducible Markov process. Second, the Markov process has
to be positive recurrent.

Definition 2.3. Positive recurrent
A Markov process is said to be positive recurrent, if the corresponding Markov chain
has a finite mean return time to a recurrent state.

The positive recurrence condition affects the quotient between input rate and output
rate. Intuitively, when the input rate is larger than the output rate, the system expands.
A continuously expanding system results in an increase in states to infinity. After some
time, the system never runs empty anymore and not all states can be reached. Not being
able to reach all states results in the following condition, λ > 0 and µ > λ. Obviously,
positive recurrence restricts the process to utilizations less than ’1’, i.e. ρ < 1.

Given that an M/M/1 system is irreducible and that ρ < 1, the equilibrium behavior
can be computed. An approach to compute the limiting distribution is to take (2.5)

and set dPk(t)
dt = dP0(t)

dt = 0, which leads to the following stationary expression:

0 = −(λ + µ)Pk(t) + λPk−1(t) + µPk+1(t) ∀ k = 1, 2, . . .

0 = −λP0(t) + µP1(t).

Along with the sum of all probabilities,

∞
∑

k=0

Pk(t) =
∞

∑

k=0

pk = 1, (2.7)

the limiting distribution can be derived when the mean transition rates have been be
computed. After some rearranging, a limiting distribution can be specified as:

pk = (1− ρ)ρk ∀ k ≥ 0.

The limiting distribution function pk can be used to obtain relevant performance mea-
sures as treated in Section 1.1. First, the steady state wip-level can be computed using
the sum over all probabilities pk times the number of the state in that probability:

w =

∞
∑

k=0

kPk =

∞
∑

k=0

k(1− ρ)ρk =
ρ

1− ρ
∀ 0 ≤ ρ < 1. (2.8)

The flow time can be computed with the use of Little’s Law [Lit61]. Little’s Law
(w = δ ϕ) links the WIP-level, throughput and flow time for steady state. The wip-
level has been stated above and the throughput in steady state is the same as the input
rate. So, with the aid of Little’s law the equilibrium flow time results in,

ϕ =
1

µ(1− ρ)
.

12 Chapter 2. Stochastic Processes

The denominator contains the (1−ρ) term implying that flow time goes to infinity when
the utilization approaches ’1’. Therefore, in the models of this thesis, utilizations will
not exceed ’0.9’.

These relations can be derived also via the Pollazcek-Khinchin formula [Khi32, Pol30].
The Pollazcek-Khinchin formula is an approximation of the G/G/1 queue, which is a
queue with generally distributed arrival and process rates G:

ϕ =

(

c2
a + c2

p

2

)(

ρ

1− ρ

)

1

µ
+

1

µ
. (2.9)

The generally distribution uses coefficients of variation of arrival and process rates, ca

and cp respectively. The variability coefficient is defined as: c = σµ. From this formula,
the exact solution can be determined for a M/G/1 queue, Thus, the exact solution for
the memoryless system can be derived using c2

a = c2
p = 1. In case of deterministic arrival

and process rates (D/D/1) the exact behavior can found with c2
a = c2

p = 0 and common
sense, of course.

There are even more ways to determine limiting behavior. For example, limiting behav-
ior characteristics have been obtained by applying the ‘mean value approach’. This ap-
proach uses the PASTA property, some other approaches can be found in Adan [Ada02].

2.4 Time-dependent behavior

Instead of looking for limiting behavior, this section considers transient behavior to
capture the dynamics of the M/M/1 queue. Gathering time-dependent relations is
very complicated for even the most simple systems. However, continuous relations are
necessary for using controllers and this Markov theory forms the basis. Therefore,
studying the basics of deriving transient behavior can be important to give insight in
the M/M/1 process.

The derived of time-dependent behavior has been treated shortly in Takacs [Tak62].
In this thesis, the time-dependent behavior derivation will be treated more extensively.
The first step contains rewriting the set of ordinary differential equations (2.5) using
Z-transformation. Basically, Z-transformation is a domain transition from discrete to
continuous in which |z| < 1 holds. The Z-transform is defined as,

P (z, t) =
∞

∑

k=0

Pk(t)z
k. (2.10)

Of (2.5), the kth differential equation is multiplied by zk. Now, (2.7) has been used
together with properties of the Z-transform, see [Kle75]. After some rearranging, the
result leads to the following expression:

z
∂

∂t
P (z, t) = (1− z)

[

(µ− λz)P (z, t)− µP0(t)
]

. (2.11)

2.4. Time-dependent behavior 13

On this equation a Laplace transformation has been applied, to lose the time-derivative.
A Laplace transform makes a conversion from the time domain to the frequency domain.
Besides, an initial condition has been used, which is defined as P (z, 0+) = zi. The initial
condition specifies the initial number of events i in the queue. With the formulation in
the Laplace domain and the initial condition, the following important expression can
be obtained:

P ∗(z, s) =
zi+1 − µ(1− z)P ∗

0 (s)

zs− (1− z)(µ− λz)
. (2.12)

The expression of P ∗(z, s) will be used later, in Chapter 4. Sofar, Equation (2.12) cannot
be used, since P ∗

0 (s) is unknown. Therefore, Rouche’s theorem has been applied to
find the relation of P ∗

0 (s). In the unit circle P ∗(z, s) has to be finite, since the sum
of all probabilities is ’1’. Therefore, the root of the denominator has to be root in
the numerator, leading to the same zeros. Consequently, with Rouche’s Theorem the
following relations have been obtained:

P ∗
0 (s) =

ζ1(s)
i+1

µ(1− ζ1(s))
(2.13)

where,

ζ1(s) =
(λ + µ + s)−

√

(λ + µ + s)2 − 4λµ

2λ
.

With (2.12) and (2.13), the time-dependent relation can be completed for an M/M/1
queue by applying inverse Laplace and Z-transformations. However, from this point on,
the calculations of inverting Z-transformation and Laplace transformation get very com-
plex. Only the final solution is relevant. Therefore, more detailed calculations can be
found in in Appendix A. This leaves the final time-dependent solution of Equation (2.5)
as,

Pk(t) = e−(λ+µ)t

[

ρ(k−i)/2Ik(2t
√

λµ) + ρ(k−i−1)/2Ik+i+1(2t
√

λµ)

+ (1− ρ)ρk
∞

∑

j=k+i+2

ρ−j/2Ij(2t
√

λµ)

]

. (2.14)

Herein, Iν is the modified Bessel function of the first kind. Solutions of the modified
Bessel equation have been formed by the modified Bessel function. The modified Bessel
equation has been expressed as:

z2 d2y

dz2
+ z

dy

dz
− (z2 + ν2)y = 0.

The fundamental set of solutions for non-integer ν are defined as:

Iν(z) =

(

z

2

)ν ∞
∑

k=0

(

z2

4

)k

k!Γ(ν + k + 1)
.

14 Chapter 2. Stochastic Processes

Furthermore, in (2.14) an initial buffer occupancy is defined by i. With Pk(t), the
wip-level can be computed by taking an infinite sum over all k, just like the steady
state:

w(t) =
∞

∑

k=0

k Pk(t) =
∞

∑

k=1

k Pk(t).

The full relation has not been expressed, since it leads to a formulation similar to
Equation (2.14) see Appendix A. However, when the derivative of (2.4) is taken, more
understandable relations appear. After some calculations and rearranging, it results in:

∂w(t)

∂t
=

∞
∑

k=1

k
∂Pk(t)

∂t

= λ− µ(1− P0(t)). (2.15)

With this relation, the throughput can be computed, since the input rate is a Poisson
process with rate λ. Consequently, the throughput can be expressed in (2.17). The
throughput expression seems very logical, since the output rate is the processing rate
times the probability of being non-idle. However, P0(t) has not been determined yet.
Therefore, when (2.13) is rearranged to the following expression the solution can be
determined:

P ∗
0 (s) =

ζ1(s)
i+1

µ(1− ζ1(s))
=

1

µ

∞
∑

k=1+i

ζ1(s)
k =

1

µ

∞
∑

k=1+i

ρ−kζ2(s)
−k.

In Erdelyi, Magnus, Oberhettinger and Tricomi [Erd54], the inverse Laplace transform
for ζ2(s)

−k has been expressed. The following equation is the result of applying inverse
Laplace:

P0(t) =
e−(λ+µ)t

µt

∞
∑

k=i+1

kρ−k/2Ik(2µt
√

ρ). (2.16)

Now, all the required behavior of the manufacturing system has been obtained for the
M/M/1 queue. The time-dependent probability distribution function Pk(t) has been
derived for every state k in (2.14). Furthermore, (2.16) presents an easier relation for
k = 0. Both equations consist of an e−(λ+µ)t term and term (s) with a Bessel’s function,
Ik(2µt

√
ρ). These term keep each other in balance when steady state has been reached

for t→∞.

When the relation of P0(t) is examined further, a remarkable property can be found.
If λ is substituted with ρ µ, all terms of time are directly linked with the process rate;
leading to the process rate independency. Basically, the relation between process rate
and time can be seen as a general property. When the process rate is doubled, the
number of lots can be processed in half the time. Herein, µ t has the same value.
Therefore, the investigation of theory of stochastic processes and especially Markov
chains and processes have become of interest, since it can be used to derive the process
rate property.

2.4. Time-dependent behavior 15

Property 2.1 (Process rate).
For every state k, the probability distribution Pk(t) can be formed such that the process
rate µ is proportional with time. Consequently, the curve of Pk(t) depends on µ t. The
proportionality of the process rate and time lead to process rate property. Herein, time
can be scaled to every process rate without extra computation effort.

For example, processes with different process rates can have identical wip-levels in
dimensionless time, when time has been multiplied with process rate under the condition
of a similar utilization. If process B has a process rate that is twice as much as the
other, then the wip-levels will be similar when the time of process B is multiplied with
2.

When other models have been formulated in this thesis, it is possible to use Property 2.1
to approve M/M/1 models. In Section 3.3, other properties have looked for in area of
scaling.

(2.16) can be used also for expressing performance measures. So, the following time-
dependent relation can be derived for the throughput:

δ(t) = µ
(

1− P0(t)
)

= µ− e−(λ+µ)t

t

∞
∑

k=i+1

k ρ−k/2Ik(2µt
√

ρ). (2.17)

Moreover, another relation for the wip-level and a relation for the flow time can been
obtained. These can be derived from the throughput using Figure 1.1. If the input-event
are seen as λ t and the output events can be seen as the integral of the throughput, then
the following relations can be derived:

w(t) = λ t−
∫ t

0
δ(τ)dτ (2.18)

ϕ(t) = t− 1

λ

∫ t

0
δ(τ)dτ. (2.19)

For these performance measures, time-dependent behavior can be visualized. To test
the applicability of these performance measures, Example 2.1 has been performed.

Example 2.1 (M/M/1 throughput for ρ = 0.5).
A single server queue with exponential arrival and process rate with infinite buffer places
or the M/M/1 queue has been considered for this example.
The used time-dependent probability relations are stated in (2.14) and (2.16). How-
erver, time-dependent probability functions are not of interest. Therefore, from (2.16),
performance measures have been derived for the throughput (2.17), wip-level (2.18) and
flow time (2.19). The wip-level and flow time are left behind in this example, since the
throughput forms a big part of the wip-level and flow time. For the M/M/1 queue, the
chosen arrival rate is λ = 0.5 and the chosen process rate is µ = 1.0. With (1.1), the
utilization becomes ρ = 0.5. Moreover, the system is initial empty.
An initial empty system leads to an initial empty throughput. The expected limiting

16 Chapter 2. Stochastic Processes

behavior can be computed with Section 2.3. Herewith, the steady state throughput can
be derived, which results in the input rate, δ = λ. Therefore, the example should show
an initial zero throughput, which evolves towards δ = 0.5. With Mathematica, (2.17)
has been plotted as is done for the throughput in Figure 2.2.

0

0.1

0.2

0.3

0.4

0.5

δ

time

Figure 2.2: Throughput for ρ = 0.5 and µ = 1.0

Herein, the dimensionless time versus the throughput has been illustrated. As expected,
the throughput starts in zero and reaches the steady state value of δ = λ = 0.5. In
all, (2.17) gives a throughput relation which is satisfying and when integration of the
throughput has been performed, the flow time and wip-level can be obtained.

2.5 Résumé

The derivation of the M/M/1 queueing model has been treated in this chapter. The
derivation of the M/M/1 model started with the basics of stochastic processes. Within
the stochastic processes, Markov chains and processes have been distinguished, which
restrict the involved processes to exponential distributions. Furthermore, Markov chains
and processes have been detailed even more with the birth-death process, which restrict
transition changes to neighboring states only. Finally, constant birth and death rates
are introduced in the birth-death process to obtain the M/M/1 model.

The developed M/M/1 queueing model includes a distribution function from state prob-
abilities only. In manufacturing, other measures are of great interest. Therefore, perfor-
mance measures have been derived from the M/M/1 probability distribution functions.
These performance measures have been derived with probability distribution functions
of limiting and time-dependent behavior. The achievement of limiting distribution func-
tions is quite straightforward, while the derivation of time-dependent behavior is very
complex. This complex derivation has been treated entirely to gain more insight of the
M/M/1 queue. Finally, the solution of the time-dependent derivation has been used to
define the process rate property, in which time is proportional with the process rate.

2.5. Résumé 17

In all, an analytical model of the M/M/1 queue has been presented and derived in this
chapter. The M/M/1 model will be used as a validation model later in this thesis.
Furthermore, the achieved insight during the derivation of the M/M/1 model will be
used to determine a transfer function in Chapter 4. Finally, Chapter 5 uses the M/M/1
model to arrange ODE relations of the finite buffer.

18 Chapter 2. Stochastic Processes

Chapter 3

Discrete Event Modeling

In the previous chapter, Markov theory has been used to develop a queueing model of a
manufacturing system. The considered manufacturing system is an M/M/1 queue. The
behavior of the M/M/1 queue has been distinguished in two types, limiting and time-
dependent behavior. The relation of time-dependent behavior showed an interesting
proportionality between time and the process rate. The proportionality of time and the
process rate resulted in the specification of the process rate property, see Property 2.1.
The realization of the process rate property showed that deriving a time-dependent
relation via queueing theory is very complicated for even the most simple systems.
To avoid complex derivations, this chapter considers computer simulation models and
especially the Discrete Event Model (DEM). The DEM is very suitable for simulating
manufacturing systems. After simulating, it is common to perform an analysis of the
simulation output data to obtain the desired data. The data of interest is transient
and therefore Section 3.1 treats transient analysis of DEMs. After a proper transfer
analysis, the simulations itself can be set-up, see Section 3.2. Finally, Section 3.3 will
use the transient analysis and simulation knowledge to discuss scaling properties of
manufacturing systems.

3.1 Transient analysis

In Law and Kelton [Law00], two types of DEM evaluation methods are described. The
first method deals with transient analysis, which is used for time-dependent behavior.
The second method is steady state analysis, which is independent of time and the initial
transient may not participate. The focus will be put on the first method, because
the considered control strategy requires transient analysis. Transient analysis excludes
equilibrium behavior of manufacturing systems. However, the start time of equilibrium
behavior cannot be determined explicitly. The hardness to obtain this start time is
illustrated in Figure 3.1 , where an example of a transient analysis is shown for the wip-
level of a DEM output. The DEM output has been averaged and stochastic behavior

19

20 Chapter 3. Discrete Event Modeling

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

w

µ t

Figure 3.1: Initial transient and steady state

restricts the determination of the start time of steady state and the end time of transient
state. Consequently, a certain end time has been chosen close the steady state indication
to avoid superfluous computation time.

Thus, transient behavior ends when the slope reaches 0. In theory, the horizontal
asymptote holds for t→∞ in practice though, this time cannot be observed explicitly.
Consequently, simulations are run to a certain time when it can be visually observed
that performance measures flatten.

Performance measures of simulation output

A sample of input and output events is shown from a single DEM simulation of an
M/M/1 queue in Figure 3.2. This figure indicates the flow time and wip-level, which can

0
1
2
3
4
5
6
7
8
9

10

w

↓

↑

ϕ →←

ev
en

t

time

Figure 3.2: Sample of simulated events

be computed with figure data. Furthermore, the figure data can be used to determine
the throughput by computing the output events derivative. One complication though,
the derivative of output events results in an infinite throughput at an event change time.
All other times have a zero throughput which result in a throughput that becomes ’0’
almost everywhere. Consequently, a throughput computation requires a sample time
and multiple simulations, since variability can give complete different outputs of two

3.1. Transient analysis 21

single simulations. When multiple simulations are taken a correlation occurs. This
correlation can be obtained by taking averages of various simulations to compute the
desired performance measure.

Averaging of output

Normally, averaging comes down to the standard procedure of dividing the sum of values
by the number of considered values, x = 1

n

∑n
i=1 xi. However, the standard procedure

can give problems, since the discontinuity of discrete events result in any data between
events. With this lack of data, one can consider two possible averages methods, namely
‘event averaging’ and ‘time-averaging’.

The first method, event averaging, takes the mean of events at every point in time of
the simulation clock. This mean results in an average at every time unit. The only
problem of this method occurs when two or more events happen at the same time. For
example, event i ends and event i+1 starts at the same time. The question arises which
event has to be used in the average. In this study, only the starting points of events
are used. Consequently, a graph can be drawn as in Figure 3.3(a). Herein, the policy
is to take the mean of ti,1, ti,2, . . . , ti,n for n simulations at event i. The second method

0

1

2

3

4

ev
en

t

time

(a) Method 1: time-averaging

0

1

2

3

4

ev
en

t

time

(b) Method 2: event averaging

Figure 3.3: Average (–) of simulation 1 (- ·) and simulation 2 (- -)

averages times of every event number. These events occur at a certain time τ . The τ
values should be averaged for every event i and then Figure 3.3(b) can be obtained.

Although the averages of these methods look very different in Figure 3.3, the expectation
of both methods is to result in the same averages for large numbers of simulations.
Appendix C shows that for larger simulation amounts the averages converge to each
other. But, is there a better method or which method is preferred? Event averaging
has the advantage of the possibility of making it ‘real time’, since one does not have to
wait until an event is finished to take the mean. So, the history can be kept up-to-date
immediately with event averaging. The greatest disadvantage of time-averaging occurs
when the wip-level is taken from averaged output. The averaged output shows ‘jumping’
of the wip-level to the nearby levels, see Figure 3.4. Basically, the jumping is the result

22 Chapter 3. Discrete Event Modeling

0

1

2

3

4

5

w

time

Figure 3.4: Jumping of wip-level

of a single event step which logically changes by ’1’, while time units change by 10−5

in χ. In brief, event averaging is preferred, because event averaging can be performed
‘real-time’ and has a finer grid.

3.2 Discrete Event Simulation

The DEM is simulated by letting it evolve over time. In this time, state variables
change instantaneously at separate points in time. Thus, changes can only be made at
a countable number of points in time. An event is represented by that instant change
and time is represented by a simulation clock. The simulation output data will be a
sequence of times at which an event occurs. One could imagine that the amount of
data that has to be stored and manipulated in a simulation can become very large.
Therefore, computers are used to perform a simulation of a DEM.

M/M/1 model

In this thesis, DEMs are simulated using χ 0.8, see Vervoort and Rooda [Ver03]. Since
an analytical solution for the M/M/1 has been derived earlier, this queueing system
will also be considered here. The DEM of an M/M/1 queue has been divided in several
straightforward processes.

The first process is the generator, which create events that can represent customers,
products, lots etc. This generator (G) feeds, with an exponentially distributed rate
λ, the infinite buffer (B). A nonempty buffer supplies an idle machine (M) with an
event. The supplied event will be processed with exponential rate µ on Machine (M).
Finally, machine (M) leads the processed event to exit (E) process, where the event
leaves the system. In Figure 3.5, a schematic overview is given of the structure of the
M/M/1 or GBME queue. The combination of a buffer and machine (BM) is also
referred as a workstation (W). The occupation of workstation changes in a transient
analysis simulations. A simulation with increasing workstation occupancies is referred

3.3. Scaling properties 23

B M EG

Figure 3.5: DEM structure of the M/M/1

to a ramp-up simulation, otherwise a ramp-down simulation occurs. Both simulations
can be performed with χ to obtain transient occupancies and wip-levels. Steady state
wip-levels can be computed with definition of (2.8) and DEM simulation of the GBME
queue. Finally, the GBME queue is specified with its χ code in Appendix B.

Comparison of analytical and simulation models

With the specification of the GBME queue, a DEM-simulation can be performed to
computed performance measures. These measures have been compared with the earlier
derived analytical model in Figure 3.6. This figure shows the wip-levels in time for

0

0.2

0.4

0.6

0.8

1

w

time

Figure 3.6: WIP-levels of the DEM (–) and the analytical model (- ·)

both models and these models have almost identical wip-levels except for some DEM
fluctuations. These irregularities are a result from variability and become less when
the number of simulations increases. Increasing numbers of simulations lead to more
computational efforts. The need for increasing the number of simulations is one of
the reasons that a DEM can result in a computationally expensive situation. Even
more fluctuations occur for the throughput, since a derivative is more sensitive for
inconsistencies. To avoid these inconsistencies in a validation process, properties have
been researched in this thesis. The next section deals with properties.

3.3 Scaling properties

A DEM simulation has to meet Property 2.1, where process rate independency is defined.
Of course, process rate independency is a property that has to be satisfied by a DEM.
Besides, a DEM can contain more corresponding properties than cannot be determined
in the analytical model. Consequently, DEMs have involved in search for properties

24 Chapter 3. Discrete Event Modeling

that can be used to validate other modeling techniques. Furthermore, the property
search can give more insight of manufacturing systems. Besides, properties can make
simulations at e.g. different process rates redundant. The term properties is quite
general. Here, the discussed properties are based on scaling and the following scaling
properties have been proposed:

1. process rate scaling

2. utilization scaling

3. workstations scaling

Process time scaling

The first property of concern is a simple one. The analytical proof of the M/M/1
in (2.14) already showed that the process rate µ is proportional to time, such that
µ ∼ t. Note that the process rate independency only holds for identical utilizations.
Consequently, process times with constant utilizations and different process times can be
scaled. Then, a DEM simulation meets the process rate property. Intuitively, one would
think the process rate property holds for several identical single server queues in series.
To validate this suggestion, a DEM has been set-up with 10 identical workstations.

This 10 workstation queue in series has been simulated for an utilization of ρ = 0.5 and
process rates of µ1 = 0.2 and µ2 = 0.1. These process rates have been used to determine
the wip-level in a scaled time with Property 2.1. The scaled wip-levels should result
in an identical curve in dimensionless time for both situations, µi t. In Figure 3.7,
the described DEM experiments can be seen, where time has been made dimensionless

0

0.2

0.4

0.6

0.8

1

w

µ t

Figure 3.7: Scaling of process rates µ1 = 0.2 (–) and µ2 = 0.1 (- ·) for 10 identical M/M/1’s

by multiplying it with the corresponding µi and plotting it against the wip-level. As
expected, both simulation runs have identical curves, but sometimes the wip-levels differ
due to variability.

3.3. Scaling properties 25

Utilization scaling

The second suggested property of interest is the utilization scaling. Instead of process
rate scaling, utilization scaling has not been determined in Chapter 2. Therefore, an
approach to determine the utilization scaling factor has been chosen that uses several.
One of those options used a trail and error factor to make graphs with a different
utilization come to each other when plotted in e.g. wip-level versus time. A disadvantage
of this option was the lack of fundamental strategy. Another option came forward
in [Coh82]. Herein, asymptotic relations have been expressed for utilizations, ρ < 1,
ρ = 1 and ρ > 1. In these asymptotic expressions for ρ < 1 and ρ > 1, a time dependent
correction term decreases mainly exponentially with:

τr =
1

µ(1−√ρ)2
∀ ρ < 1.

This term τr has been denoted as the relaxation time of the M/M/1 queue. The
relaxation time gives an idea about the speed of approach to the stationary situation.
Consequently, the relaxation time is proposed as an estimator for scaling time versus
e.g. wip-level at different utilizations. The advantage of the relaxation time option is
that the relaxation time has a fundamental background.

Two simulation runs have been performed to give an indication about the effectiveness
of the relaxation time for the utilization property. Both experiments consist of a single
server M/M/1 queue in which the process rate has been set-up as µ = 1.0. Of course,
the utilization differs in the experiments. The considered utilizations have a value of
ρ = 0.5 and ρ = 0.75, since the relaxation is an approximation a limited distinction
has been chosen. With these utilizations, the relaxation time becomes τr = 11.7 and
τr = 55.7 respectively.

The expected behavior of the approximation is a difference in the initial transient behav-
ior and a good approximation of the asymptotic behavior, since the relaxation considers
asymptotic behavior. The experiment has to show how much the transient behavior
differs from both simulations. Furthermore, in the experiment the wip-level has to be
scaled as well, because w = ρ

1−ρ in steady state. So, that both corrected wip-levels
have been indexed to one. The experiment is shown in Figure 3.8, where the indexed

0

0.2

0.4

0.6

0.8

1

w

time/τr

Figure 3.8: Utilization scaling for ρ1 = 0.5 (–) and ρ2 = 0.75 (- ·)

26 Chapter 3. Discrete Event Modeling

wip-level has been put out in time over the relaxation time. In the resulting graph, the
indexed wip-levels correspond to each well except for the initial transient wip-levels.
Shortly, the relaxation time is a reasonable estimator for the utilization property in
which it can be used to validate other models. Herein, the other models can show a
contrast in behavior which is not substantiality large.

Workstation scaling

Another question is whether or not it is possible to scale performance measures to the
number of identical M/M/1 queues in series. Therefore, the third suggested property is
the one of workstation independency. Scaling workstations seems to result in a trial and
error process. However, a relation has been formed based on the fact that workstation n
is responsible for 1/n of the total occupancy time influence of the whole system. This
proposal leads to the following expression of the workstation time:

τn =
1

µ

n
∑

i=1

1

i
(3.1)

A test has been composed for the case of a single server M/M/1 queue and five M/M/1
queues in series. Both queues have the same utilization of ρ = 0.5 and the same process
rate of µ = 1.0. The experiment hes been performed for the wip-level in time, where
time will be corrected with the workstation time τn. The wip-levels should result in
w = 1.0 and w = 5.0 in steady state respectively. Consequently, the wip-level has been
corrected by its steady state value and will be indexed at one. The wip-level correction
should result in identical steady state values for both simulations. To anticipate on the
transient behavior is more difficult, but both wip-levels should more or less in agree
with each other.

The result of both cases is shown in Figure 3.9, where wip-level has been plotted in time.

0

0.2

0.4

0.6

0.8

1

w

time/τn

Figure 3.9: Scaling of workstations with ρ = 0.5 where n1 = 1 (–) and n2 = 5 (- ·)

The accuracy of the approximation scaling appears to be in reasonable agreement for the
transient wip-levels and (3.1) gives a nice approximation for showing the independency
of the number of identical workstation in a queue in series. However, the accuracy is
not ideal, since a lack of fundamental proof is present.

3.4. Résumé 27

In all, a lot of possible properties come to mind for manufacturing systems. Unfortu-
nately, an explicit determination and derivation is hard to obtain for scaling properties.
The choice of scaling properties has proven that approximations can be found for dif-
ferent characteristics. Though, the validation effect and usability are not yet known,
setting-up scaling properties is a step towards validating models using properties of
manufacturing systems.

3.4 Résumé

This chapter deals with Discrete-Event Models (DEMs). The translation of DEM out-
put data has been treated in which events are transformed to performance indicators.
Furthermore, performance measures are discussed with respect to issues of averaging
events of several simulations. Besides, some attention has been paid to the number of
simulations to be run. Logically, when more simulation runs are performed, a higher
accuracy of the average can be obtained.

The considered DEMs consisted of single and multiple server M/M/1 queues in se-
ries. Consequently, the M/M/1 queues have an infinite buffer and exponential arrival
and process rates. The DEM variant of the M/M/1 queue has been referred as the
GBME queue. The GBME queue will be used further in this thesis and can be seen
as standard. Sometimes the standard GBME queue requires adjustments and then
these adjustments will be treated in the upcoming chapters. In Section 3.3, the GBME
queue has been used to search for properties of manufacturing systems. In the search
for properties, three suggestions have been made. The first suggested property is the
earlier proved process rate property and this property has been validated for several
workstations in series. The second suggested property is the utilization property for
which an approximation has been found in the relaxation time. Finally, a workstation
property has been considered in which no exact solution has been found either. How-
ever, an approximation has been used which connects queues with a different number
of workstations. The useability of these suggested properties have not been discussed.
Obviously, the search of (scaling) properties can be continued with these ideas in mind.

In brief, this chapter presents the DEM as modeling technique for manufacturing sys-
tems. In Chapter 2, the presented modeling technique uses queueing theory, especially
Markov chains and processed. The next chapter will be used to describe a third mod-
eling type of this thesis, continuous models.

28 Chapter 3. Discrete Event Modeling

Chapter 4

Transfer Function

In the previous two chapters, two well-known modeling techniques have been discussed.
This chapter shows another modeling method that can represent the dynamics of man-
ufacturing system with a transfer function.
A transfer function can be seen as a linear differential relation between input and out-
put signals. This linear relation can be obtained with two possible approaches. The
first approach is capturing the dynamics via system identification, see e.g. Sage and
Melsa [Sag71]. System identification is an experimental approach in which the trans-
fer function can be computed using the output of a sine input signal. Obtaining the
transfer function via system identification becomes very hard due to variability. There-
fore, this chapter presents the second approach in which the transfer function has been
determined analytically based on queueing models. In Section 4.1, queueing models of
chapter 2 have been transformed with Taylor and Padé approximation into a transfer
function. Finally, the obtained transfer functions will be validated for single server
queues and queues in series in Section 4.2 and Section 4.3.

4.1 Analytical approach

By making a linear relation between input and output signals, dynamics of manufac-
turing systems can be represented. The relation between them is a transfer function
H(s) and is expressed below:

Y (s) = H(s)U(s). (4.1)

The procedure is schematically shown in Figure 4.1 to obtain a dynamical model of the

H(s) yu

Figure 4.1: Representation of the relation between input and output

29

30 Chapter 4. Transfer Function

manufacturing system. The response of the transfer function can be computed with
the step routine of Matlab. The step that has to be taken can be the input rate (λ) of
the M/M/1. For example, a step from ’0’ to ’λ’ on time ’0’ corresponds with initially
empty buffers or, in other words, with a ramp-up simulation. Obviously, the response
has to be the output rate, which is similar to the throughput (δ) in this case.

From this point on, the concept arises of determining a transfer function with the
analytical solution derived in Chapter 2. To obtain the transfer function for input and
output rate of the M/M/1, the wip-level is computed in the frequency domain;

P (z, t) =
∞

∑

k=0

Pk(t)z
k

∂P (z, t)

∂z
=

∞
∑

k=0

k Pk(t)z
k−1

∂P (1, t)

∂z
=

∞
∑

k=0

k Pk(t) = w(t)

L
(

∂P (1, t)

∂z

)

=
∂P (1, s)

∂z
=

λ

s2
− µ

(

1

s2
− P ∗

0 (s)

s

)

.

From these equations, the input rate is defined as λ/s and the output rate or throughput
is defined as µ(1/s−P ∗

0 (s)). So, with Equation (4.1) the following transfer function can
be computed:

h∗(s) = µ

(

s

λ

)(

1

s
− P ∗

0 (s)

)

=
1

ρ

(

1− sP ∗
0 (s)

)

. (4.2)

However, this transfer function cannot be used, since transfer functions have to be
linear ODE relations. In Laplace, a transfer function is the quotient of two polynomial
relationsThe resulting problem lies in the square root of ζ1(s) function, which is part of
P ∗

0 (s) in (2.13). Therefore, a Taylor series should be used to estimate a transfer function.
The Taylor approximation has been performed around the steady state frequency s = 0.
Logically, steady state is constant and therefore the steady state frequency becomes
s = 0. Around the steady state frequency, the Taylor approximation becomes:

Tn(s) = h∗(0) + h∗′(0)s +
1

2!
h∗′′(0)s2 + · · ·+ 1

n!
h∗(n)(0)sn + · · · . (4.3)

Yet, the output of the dynamical model cannot be computed, since the output of the
model requires a transfer function that has to be the ratio of two polynomials. So,
the function needs a numerator and a denominator. The following step consists of the
approximation of the numerator and denominator of a transfer function. Obtaining
the numerator and denominator is an obstacle that can be conquered by using a Padé
approximation. Initially, the approximation assumes that every polynomial function can
be written as a function whose singularities are poles of the ratio of two polynomials.
Of course, most functions have singularities which are not poles, therefore the previous

4.1. Analytical approach 31

stated Taylor approximation has been performed. The general specification of the Padé
approximation is expressed as,

fn+m+1(z) =
Pn(z)

Qm(z)
=

pnzn + · · ·+ p2z
2 + p1z + p0

qmzm + · · ·+ q2z2 + q1z + q0
.

Herein, coefficients p0, p1, . . . , pn and q0, q1, . . . , qm can be computed by an n + m + 1
order Taylor series.

Before determining a specific Padé approximation, two conditions are required that the
approximation has to meet. First, when a step of λ is put on the transfer function the
response at t = 0 has to be ’0’. Second, for t → ∞ the response has to be λ. Given
these conditions and rewriting them results in the following expression:

lim
t→∞

δ(t) = lim
s↓0

δ(s) = λ

lim
t=0

δ(t) = lim
s→∞

δ(s) = 0.
(4.4)

Anticipating on these conditions respectively, the approximation has to meet p0

q0
= 1

and the numerator has to be of a lower order m > n.

Example 4.1 (Derivation of a 2nd order transfer function).
In this example, a transfer function will be composed using (4.2). This equation has
been derived with Markov theory for the M/M/1 queue. A transfer function will be
determined in this example with a denominator of the second order. Consequently, the
Padé structure of the desired transfer function results in:

T4(s) =
P1(s)

Q2(s)
=

p1s + p0

q2s2 + q1s + q0
.

The next step towards a transfer function is to compute the Taylor series T4(s), which
has been done using Maple. However, the ability of solving the Taylor series depends on
two assumptions, which are quite trivial. First, the arrival rate (λ) has to be positive,
otherwise products flow backwards or they do not flow at all. Second, the process rate
(µ) has to be greater than the arrival rate, because the utilization has to be less than
one. Now, the solution for the Taylor series becomes:

T4(s) = 1 +
1

−µ + λ
s− µ

(−µ + λ)3
s2 +

(λ + µ) µ

(−µ + λ)5
s3 + O

(

s4
)

∀ µ > λ > 0,

which is the approximation of Equation (4.2). With these series, the following Padé
approximant has been obtained:

H2(s) =

λ+µ
(µ−λ)2

s + 1

µ
(µ−λ)3

s2 + 2µ
(µ−λ)2

s + 1
.

Obviously, the example has been taken just for a second order approximation to main-
tain the overview of the example. Of course, one can take higher orders for Padé and
Taylor. A higher order will lead to an awful lot of terms which are not significant to
show for this example.

32 Chapter 4. Transfer Function

The derived transfer function of Example 4.1 satisfies conditions of (4.4). Moreover,
the transfer function meets the scaling property as defined in Section 3.3. The property
can be found easily by substituting λ with ρ µ and then the powers of µ and s have to
be equal.

4.2 Results for single M/M/1

After being able to identify the M/M/1 system, the performance of the transfer func-
tion has to be investigated. For the performance evaluation, it turned out that the
performance of a 2nd order approximation as in Example 4.1 was not satisfying enough.
Therefore, a 6th order Padé approximation is composed that meets the criteria. Exam-
ple 4.2 has been set-up to compare the obtained transfer function with the analytical
model.

Example 4.2 (M/M/1 queue).
This example will be used to validate a transfer function that will be approximated with
the use of earlier defined Markov model for the M/M/1 queue. The analytical solution
of (2.17) has been used to validation the transfer function approximation. The transfer
function has been obtained on a similar way as in Example 4.1. However, a sixth order
transfer function has been created to increase the accuracy of the approximation. The
experiment has been performed for two different utilizations of ρ = 0.5 and ρ = 0.9.
The considered process rates are µ = 1.0 for both cases, resulting in arrival rates λ = 0.5
and λ = 0.9 respectively.
The output of the transfer function has been generated with putting a step λ on the
input. So, the step λ will be put on a sixth order Padé approximation with the use
of the step routine of Matlab. In Figure 4.2, the result is shown for the throughput

0

0.1

0.2

0.3

0.4

0.5

δ

time

(a) ρ = 0.5

0

0.2

0.4

0.6

0.8

δ

time

(b) ρ = 0.9

Figure 4.2: Throughput for analytical (- ·) and Padé transfer function (–)

in time. Furthermore, the throughput of the analytical solution of (2.17) has been
shown in time as a validation model. Figure 4.2(a) shows the result for an utilization
of ρ = 0.5. Herein, both experiments are identical, since the throughputs overlap for
both situations. The other graph, in Figure 4.2(b), shows a difference between the ap-
proximated transfer function model and the analytical solution of the M/M/1 Markov

4.3. Results for M/M/1 in series 33

model. Obviously, the difference is a result of the approximation. Shortly, the Padé
approximation has its best accuracy for the lower utilization.
For the situation of Figure 4.2(b), the wip-level and the flow time have also been com-
puted to see the difference on another performance measures. Besides, the wip-level
and flow time have computed to see the effect of required integration of throughput,
see (2.18) and (2.19). Using this integration together with the input, these performance
measures have been computed. Figure 4.3 shows the wip-level only, since the flow time

0

1

2

3

4

5

6

7

w

time

Figure 4.3: wip-level of the analytical model (- ·) and Padé transfer function (–)

results in a similar graph. In Figure 4.3, the inaccuracy of the throughput in Fig-
ure 4.2(b) is only marginally influenced by the required integration of the throughput
to obtain the wip-level. Furthermore, the focus of Figure 4.3 has been put on the be-
ginning of the wip-level in time, otherwise the difference cannot be seen clearly.
In conclusion, although the accuracy of higher utilizations can be put on the line for
the throughput, the accuracy of the wip-level and flow time seem to be more satisfying.

In brief, the transfer function has been validated in this section. Herein, the transfer
function model has been created with the queueing theory solution for the M/M/1
in (2.17). The results of the Padé approximations have been satisfying, especially for
utilizations below ρ = 0.9. The satisfaction of the approximated transfer function raises
the question of the possibility of expanding the transfer function to several M/M/1
queues in series.

4.3 Results for M/M/1 in series

The Padé approximation of the M/M/1 has to be converted for queues in series, since
the single server transfer function changes for a queue in series. Fortunately, the single
server transfer function describes the behavior of every individual server of queues in se-
ries. Therefore, the transfer function of queues in series can be obtained by multiplying
transfer functions for every considered single server in series. The required multipli-
cation can not performed with the Padé approximation, because terms get lost due to
the Padé approximation. Appendix D shows that terms get terms lost. To avoid lost

34 Chapter 4. Transfer Function

terms, the transfer function of queues in series has to be derived with a multiplied Tay-
lor approximation. This Taylor outcome has to be approximated with Padé to obtain a
transfer function of queues in series. The transfer function of a queue of n workstations
can be determined with the nth power of the Taylor approximation.

In this section, the results are compared of the developed transfer function with a DEM
output, since an analytical solution for the M/M/1 has not been derived. Furthermore,
this section examines the wip-level only, since the wip-level is the smoothest curve from
the DEM simulation output. DEM simulations have been performed for the following
three cases of serial queueing transfer functions: the five-in-line queue, the identical and
the non-identical tandem queue.

Example 4.3 (Identical tandem queue).
In this example, an experiment has been performed which compares the approximated
transfer function model with a DEM as a validation model. The approximated transfer
function has been obtained from the sixth order transfer function for the M/M/1 queue.
The Taylor series approximation has been powered to determined a transfer function
with help of a sixth order Padé approximation.
The tandem queue contains two identical M/M/1 queues in series. Logically, a queue
of two servers is the closest possible to the M/M/1. The experiment has been executed
for two kind of utilizations ρ = 0.5 and ρ = 0.9. Moreover, both workstations have a
process rate of µ = 1.0, which results in a arrival rate of λ = 0.5 and λ = 0.9.
The experiment has been performed only for the wip-level, because the wip-level is
the easiest to determine from a DEM simulation. For steady state, wip-levels for the
simulations should result in w = 2 and w = 18, for ρ = 0.5 and ρ = 0.9 respectively.
Figure 4.4 indicates the results of both examples, where wip-level in time has been

0 20 40
0

1

2

w

µ·time

(a) ρ = 0.5 with two workstations

0 500 1000
0
2
4
6
8

10
12
14
16
18

w

µ·time

(b) ρ = 0.9 with two workstations

Figure 4.4: The wip-level of the DEM (- ·) and the Padé approximation

plotted. As expected, the wip-levels reach the desired steady state values. For both
utilizations, one can distinguish the DEM from the transfer function approximation.
However, the accuracy of the transfer function model is better for an utilization of ρ =
0.5 than ρ = 0.9. From the wip-levels of Figure 4.4, it appears that the approximation
holds quite well compared with the validation model of the DEM even for an utilization
of ρ = 0.9.

4.3. Results for M/M/1 in series 35

In Example 4.3, the expansion of the single server transfer function model has been
validated for identical servers with similar process rates. The accuracy of the approxi-
mation has been satisfying and accordingly another example has been set-up to validate
the transfer function approximation on non-identical tandem queues.

Example 4.4 (Non-identical tandem queue).
This example uses a DEM to validate the transfer function approximation of non-
identical tandem queues. The non-identical tandem queue has two servers with differ-
ent process rates, µ1 and µ2. For the non-identical case, two possibilities have been
examined with different process rates µ1 > µ2 and µ1 < µ2. Consequently, a different
utilization on each server is the result, since the same lots flow through the servers.
Therefore, the example has been performed two times, for utilizations ρ1 = 0.9 with
ρ2 = 0.5 and for utilizations ρ1 = 0.5 with ρ2 = 0.9. Both experiments have been exe-
cuted for an arrival rate of λ = 0.1. For the first experiment of ρ1 = 0.9 with ρ2 = 0.5,
the combination of arrival rate and utilization results in process rates µ1 = 1/5 and
µ2 = 1/9. For the second case of ρ1 = 0.5 with ρ2 = 0.9, the arrival rate sets the
process rates on µ1 = 1/9 and µ2 = 1/5.
The transfer functions have been determined with two Taylor approximations for M/M/1
queue. One approximation derives a sixth order transfer function for ρ = 0.9 via Padé
approximation. The other sixth order approximation transfer function has been made
for ρ = 0.5. These two transfer functions have been multiplied with each other to obtian
the transfer function used in this experiment.
Both cases have been performed for the wip-level in time, since the wip-level is the
easiest performance indicator to obtain from the DEM. The expected wip-levels are
the same for the different utilizations, since the server are switched. For steady state,
wip-levels have to be w = 10. The result of both cases is shown in Figure 4.5, in which

0 5000 10000
0

2

4

6

8

10

w

time

(a) ρ1 = 0.9, µ1 = 1/9 and ρ2 = 0.5, µ2 = 1/5 for
each workstation respectively

0 5000 10000
0

2

4

6

8

10

w

time

(b) ρ1 = 0.5, µ1 = 1/5 and ρ2 = 0.9, µ2 = 1/9 for
each workstation respectively

Figure 4.5: The wip-level of the DEM (- ·) and Padé approximation for the non-identical tandem queue

the wip-level is stated against time. The accuracy of both graphs fulfill the steady state
wip-level demand of w = 10. Furthermore, the graphs seem to be as accurate as the
one of the single server for ρ = 0.9 in Figure 4.3. Finally, both results are more or less
similar, except for some variability differences.

After satisfactory results for two M/M/1 queues in series, the effect on the Padé ap-

36 Chapter 4. Transfer Function

proximation can be tested for a queue in series that is even stretched further. Therefore,
an example has been introduced which considers five queues in series.

Example 4.5 (Five-in-line queue).
In this example, five identical M/M/1 queues have been placed in series to demonstrate
the maximum possible extension of the single server transfer function. The result of the
transfer function model will be validated with a DEM. The simulations for the five-in-
line queue has been performed for a process rate µ = 1.0. Furthermore, two utilizations
have been regarded ρ = 0.5 and ρ = 0.9, which results in arrival rates of λ = 0.5 and
λ = 0.9.
The transfer function has been obtained from the single server Taylor series from the
M/M/1 queue. The Taylor approximation of the M/M/1 queue has been taken to the
fifth power, respecting the original order of the Taylor approximation. The powered
Taylor approximation has been converted to a transfer function using Padé approxima-
tion. Finally, a sixth order transfer function has been obtained for this example.
Again, only the wip-level has been considered in this example, since the easiness to de-
termine the wip-level from a DEM. The steady state outcome of the sixth order transfer
function should be a wip-level of w = 5 and w = 45 for utilizations ρ = 0.5 and ρ = 0.9
respectively.
Figure 4.6 shows the validations for both experiments, where wip-levels are plotted in

0 50 100
0

1

2

3

4

5

w

µ·time

(a) ρ = 0.5 with 5 workstations

0 1000 2000
0
5

10
15
20
25
30
35
40
45

w

µ·time

(b) ρ = 0.9 with 5 workstations

Figure 4.6: The wip-level of the DEM (- ·) and the Padé approximation for the five-in-line queue

time. The steady state wip-levels correspond for both experiments, but the transient
behavior does not agree for the considered utilizations. The inaccuracy of the utiliza-
tion ρ = 0.5 seems acceptable when the results of Figure 4.6(a) and Figure 4.4(a) are
compared. The comparison of DEM and the transfer function shows a disappointing
accuracy for an utilization ρ = 0.9. The utilization ρ = 0.9 seems the maximum trans-
fer function extension in combination with a five-in-line queue and a sixth order Padé
approximation.
In short, the validation results show that the transfer function extension can reach fur-
ther for the utilization ρ = 0.5. However, the transfer function extension has reached a
maximum for the utilization ρ = 0.9.

In all, during the study of multiple identical workstations in series, it appeared that

4.4. Résumé 37

the influence of the order of the approximation reduces when transfer function has been
powered. Furthermore, the sixth order transfer function model has reached a maximum
when the M/M/1 model has been extended to a five-in-line queue with the utilization
ρ = 0.9.

4.4 Résumé

In this chapter, an earlier derived solution (2.13) in the derivation of the time-dependent
behavior has been used to describe an M/M/1 queue with a transfer function. This
transfer function cannot be obtained immediately, since the transfer function has to
be the quotient of two polynomials. The polynomial quotient has been computed by
applying a Taylor and Padé approximation to develop a transfer function model of the
M/M/1 queue.

The M/M/1 transfer function model has several advantages compared to the used
time-dependent solution of Chapter 2. The first advantage involves the increased appli-
cability, since the single server transfer function can describe multiple M/M/1 queues
in series as well. A second advantage occurs when one wants to design a controller,
since controller design is quite straightforward with transfer functions.

Results of the developed transfer functions have been discussed in Section 4.2 and
Section 4.3. These sections examine the consequences of the approximation in the
developed transfer function with validation models. Section 4.2 regards the single server
queue validation results in which accuracy loss have been observed for queues with high
utilizations. Furthermore, accuracy loss has been observed for the expansion to queues
in series, see Section 4.3.

In brief, this chapter deals with the development of transfer functions for infinite queues.
Therefore, finite queues will be considered in the next chapter, where similar modeling
techniques of the last three chapters come forward again.

38 Chapter 4. Transfer Function

Chapter 5

Models for finite queues

Sofar, modeling techniques from queueing theory, DEMs and transfer functions have
been used to describe infinite queues. This chapter switches to modeling finite buffers
to show the contrast between infinite and finite buffers. Finite buffers will be consid-
ered, since the assumption of infinite buffers cannot be realistic in some manufacturing
environments.
Furthermore, Section 5.1 shows that assuming finite buffers has the advantage of a
finite description with Markov theory . Besides Markov theory, DEMs and transfer
function models have been treated in Section 5.1. These models are further worked
out in Section 5.2, where adjustments to the Markov model and DEM will be made.
These adjustments will be used to match these models. The adjusted models have been
validated in this section 5.2 as well. Finally, Section 5.3 considers two queues in series
to show the transition from single server queues to queues in series. Again, the DEM
and Markov model will be modified to result in similar models and these models will
be validated as well.

5.1 M/M/1/N queue

The Markov model of the M/M/1/N queue can be obtained easily using the model of
the M/M/1 queue. Instead of having an infinite number of states, the M/M/1/N queue
has a number of N +1 states. So, the process of the M/M/1/N queue also corresponds

0 1 2 N-1 N

λλλ

µµµ

Figure 5.1: The transition state diagram of an M/M/1/N queue

39

40 Chapter 5. Models for finite queues

to a Markov birth-death process. In the M/M/1/N queue, the birth and death rates
are constant and the population has an N -size boundary. The transition state diagram
of the N -state birth-death process is shown in Figure 5.1. In manufacturing, an N -state
birth-death process corresponds with a server process, which can hold a single job and
a buffer which contains N − 1 waiting places. As done in Section 2.2, a time-dependent
notation will be derived. In this notation, three ordinary differential equations are
required, a single equation for the most left and for the most right state of Figure 5.1.
Furthermore, N − 1 identical equations can describe the states in between. Thus, an
extra equation has to be added to the M/M/1 forward equations of (2.5) for state N .
Moreover, (2.5a) is adapted and limited to state N − 1. With these two modifications,
the time-dependent expression of the M/M/1/N queue results in:

dP0(t)

dt
= −λP0(t) + µP1(t) (5.1a)

dPk(t)

dt
= −(λ + µ)Pk + λPk−1(t) + µPk+1(t) ∀ k = 1, 2, . . . , N − 1 (5.1b)

dPN (t)

dt
= −µPN (t) + λPN−1(t). (5.1c)

Again, these ODEs form the fundamentals for deriving the limiting and time-dependent
behavior of the M/M/1/N process. The limiting and time-dependent behavior are
shortly discussed.

Limiting behavior

Limiting behavior can be derived from the set of differential equations (5.1) by setting
dP (t)

dt = 0. As for the M/M/1 case, certain conditions can be addressed which can be
relevant before computing limiting behavior. Like the M/M/1 queue, the M/M/1/N
queue {X(t), t ≥ 0} is an irreducible continuous time Markov chain, see Definition 2.2.
Note that X(t) denotes the number of customers in the system at time t. The second
condition applies to recurrence, for an M/M/1/N queue all states are positive recurrent
even for ρ > 1. When ρ > 1, (5.1) remains valid, because every state can be reached at
all times.

The irreducibility and positive recurrence conditions lead to the ability of no constric-
tions in computing the limiting distribution. In the steady state, the probability distri-
bution function satisfies the equation:

pk =
1− ρ

1− ρN+1
ρk, ∀ k = 0, 1, . . . , N, (5.2)

as can be found in e.g. Buzacott and Shanthikumar [Buz93]. The steady state perfor-
mance measures are computed in a similar way as the M/M/1 case. Thus, the wip-level
is the sum of all probabilities times the state-k,

w =

∞
∑

k=0

k pk, (5.3)

5.1. M/M/1/N queue 41

and the throughput is the process rate times the non-idle probability,

δ = µ
(

1− p0

)

. (5.4)

These equations also hold for time-dependent probabilities. Finally, the flow time can
be calculated by using Little’s Law.

Time-dependent behavior

The time-dependent probability distribution function is much harder to obtain. How-
ever, the time-dependent probability distribution function is still complex but not as
complex in comparison to the time-dependent solution of the M/M/1 queue. There-
fore, the derivation of the time-dependent solution is not treated here and can be found
in [Tak62]. Takacs solution is presented as:

Pk(t) = pk − C0

N
∑

j=1

Cj

γj
e−γj µt

pk =
1− ρ

1− ρN+1
ρk

C0 = −2 ρ(k−i)/2

N + 1

Cj =

[

sin

(

i j π

N + 1

)

−√ρ sin

(

(i + 1)j π

N + 1

)] [

sin

(

k j π

N + 1

)

−√ρ sin

(

(k + 1)j π

N + 1

)]

γj = ρ + 1− 2
√

ρ cos

(

jπ

(N + 1)

)

.

Other interesting solutions of the time-dependent probability distribution function are
treated in Sharma and Tarabia [Sha00], where easier to compute formulas are presented.
Kulkarni [Kul95] also presents some methods to compute the time-dependent behavior.
One of them puts (5.1) in matrix notation, Ṗn(t) = Pn(t)Q and takes its Laplace
transform. Then, together with an initial condition of P (0) = I, the following approach
results in:

P ∗(s) = [sI −Q]−1. (5.5)

In this equation, P ∗(s) results in an (N + 1)× (N + 1) matrix with all time-dependent
probabilities (N +1) from every initial state (N +1). For an initially empty system, the
row P ∗

1j(s) holds all probabilities for single states, j = 0+1, . . . , N +1. At this point, the
individual equations of P ∗

1j(s) can be seen as probability transfer functions. Of course,
transfer functions which can be used easily for applying control theory with standard
ODE solvers. Now, a transfer function of performance measures for the wip-level and
the throughput can be derived with the obtained probability transfer functions. In
Example 5.1, transfer functions of the throughput will be worked out further.

Unfortunately, some issues remain. The problem for the derivation of performance
measures is to define the flow time. For infinite buffer queues, the flow can be expressed

42 Chapter 5. Models for finite queues

using the poisson input of λt. However, finite queues do not have a constant input rate
λ anymore due to blocking. The flow time can be obtained numerically in spite of the
lack of a linear input relation. Nevertheless, an explicit expression cannot be formed
for the flow time.

Another problem of (5.5) is the calculation of the inverse. Computing an inverse of
a matrix is a time consuming process. Fortunately, matrix Q contains a lot of zeros
and can be formed sparse, which results in less computation time. For example, the
matrix to be inverted for an M/M/1/100 is occupied with 2·2+3·98

10.000 = 3% of the places.
Although, the lack of an expression for the flow time and the presence of an inverse,
solving (5.5) is quite straightforward when the Q matrix is available. The following
example has been used to illustrate a relatively simple method to compute a transfer
function for an M/M/1/2 queue and its performance measures.

Example 5.1 (Derivation of a transfer function for an M/M/1/2 queue).
Here, a derivation has been performed for finite queue to obtain a transfer function. Fur-
thermore, the result of the derivation has been illustrated with a graph of the through-
put. The considered finite queue contains a single buffer and one machine place, thus
an M/M/1/2 queue is of concern.
The previously described forward equations (5.1) will be used to compute a transition
state matrix, Q. Accordingly, the following relation holds for the forward equations:
∂P (t)/∂t = P (t)Q. Herein, the transition state matrix for the M/M/1/2 queue is stated
as:

Q =

−λ λ 0
µ −(λ + µ) λ
0 µ −µ

and with probabilities,
P (t) = [P0(t) P1(t) P2(t)] .

Accordingly, P ∗(s) can be computed with (5.5):

P ∗(s) =

s + λ −λ 0
−µ s + λ + µ −λ
0 −µ s + µ

−1

=
1

s
(

(λ + µ + s)2 − λµ
)×

s2 + 2 sµ + λ s + µ2 λ (s + µ) λ2

µ (s + µ) (s + λ) (s + µ) (s + λ) λ
µ2 (s + λ)µ s2 + 2 λ s + sµ + λ2

 .

In P ∗(s), transfer functions are stated for all possible probabilities with all initial possi-
bilities on t = 0. In row P ∗

1j(s), the probabilities are given for an initial empty system.
So, the wip-level in the system correspond with zero, w = 0. Transfer functions of the
throughput and wip-level can be derived using (5.3) and (5.4). The transfer function
for the throughput only needs the zero probability transfer function P ∗

0 (s), accordingly
the equation for P ∗

0 (s) results in:

P ∗
(1,1)(s) = P ∗

0 (s) =
s2 + 2 sµ + λ s + µ2

s (s2 + 2 sµ + 2 λ s + µ2 + λ µ + λ2)
. (5.6)

5.1. M/M/1/N queue 43

With P ∗
0 (s), the transfer function for the throughput has been computed and after some

simplification it becomes:

Hδ(s) =
1

ρ

(

1− sP ∗
0 (s)

)

=
(s + λ + µ)µ

s2 + (2 µ + 2 λ) s + µλ + λ2 + µ2
. (5.7)

The throughputs transfer function holds the exact time-dependent solution of the M/M/1/N
queue, while in Chapter 4 an approximation has been made for the M/M/1 queue. In
the throughput’s transfer function only two poles appear, while matrix Q is a 3 × 3
matrix. One pole disappears due to the sum of probabilities, which is one of course.
Furthermore, limits for t ↓ 0 and t→∞ can be computed with (5.7). The general result
for t→∞ corresponds with the limiting or steady state throughput:

δ = µ

(

1− 1− ρ

1− ρN+1

)

and for t ↓ 0 the throughput comes down to, δ = 0.
Now, (5.7) can be used to generate the transfer function which can be visualized in
a plot. For this occasion, an arrival rate λ = 0.5 and process rate µ = 1.0 have
been chosen, resulting in a utilization ρ = 0.5. So, the expected throughput evolves

to δ = 1 ·
(

1− 1−0.5
1−0.53

)

≈ 0.43 instead of a steady state δ = λ for the infinite queue.

In Figure 5.2, the time-dependent result of the throughput has been given for a step λ

replacemen

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

time

δ

Figure 5.2: Throughput response for µ = 1.0 and ρ = 0.5

using Matlab. The asymptotic value of the graph corresponds with the expected steady
state throughput δ ≈ 0.43.
Shortly, a straightforward technique has been used to determine a probability transfer
function of a finite queue. Besides, the transfer function has been adjusted to describe
performance measures in time on a step response.

In a similar way, the wip-level can be computed. For the wip-level one has to sum up
all probabilities times its corresponding wip-level. Note that, the wip-level can also be
computed by using integrals of the influx and outflux (throughput) of the system. Then,
not all probabilities are demanded for computing the wip-level. The computation of the

44 Chapter 5. Models for finite queues

flow time can be performed with computing the integral of the throughput and the
wip-level minus the integral of the throughput. Then, with the use of an interpolation
algorithm the flow time can be numerically derived.

5.2 Single server queue

In this section, the DEM performance will be compared with the Markov theory stated
in the previous section. At first, the GBME model in Section 3.2 has been inspected.
The GBME χ code can be found in Appendix B. In the GBME model the buffer is
infinite. Consequently, the GBME queue has to be provided with a finite buffer which
results in the GBN−1ME queue. Therefore, the buffer process of the GBME model has
been adapted to a finite one with a change the repetitive selective waiting statement,
see (χ-5.1).

∗[len(xs) < N − 1; a?x −→xs := xs ++ [x]
[] len(xs) > 0; b! hd(xs)−→xs := tl(xs)
]

(χ-5.1)

The finite buffer contains N − 1 places. Together with a single place in the machine M ,
the workstation contains N places. Therefore, the DEM will be referred to a GBN−1ME
or GWNE queue. Herein, WN is a workstation consisting of N places.

The outcome of the GWNE model can be compared with the behavior of the M/M/1/N
queue. Then, both models are not in agreement with each other. The discrepancy
between the GBN−1ME and the M/M/1/N model occurs due to different handling
situations with full buffers. In the M/M/1/N model, arriving jobs disappear when the
buffer is full. In other words, the queueing system is not fed with arrivals anymore.
Whereas in the DEM, the generator still creates new jobs with rate λ, even when the
buffer is full. The generator stops producing lots when it cannot send lot to the buffer
anymore. So, the generator does not stop immediately when the buffer is full, but the
generator blocks when it tries to send a lot to a full buffer. Since, the M/M/1/N and
DEM do not correspond to each other, two possibilities remain to let them agree. First,
the DEM can be adjusted and second the Markov model can be changed.

Adjustments DEM

In the first case, the generator of the DEM must be switched off when the buffer is
full. Therefore, the generator of the χ model has to be equipped with a communication
signal from the buffer. A non-full buffer should authorize the generator to produce lots
by a communication signal. This extra communication changes both processes and the

5.2. Single server queue 45

codes of these processes can be seen in (χ-5.2) and (χ-5.3).

proc G(a : !lot, z : ?void, ρ, µ : real) =
|[i : nat, u :→real
| i := 1; u := negexp(1/ρ/µ)
; ∗[true−→ z?; ∆σu; a!〈i, τ〉; i := i + 1

]
]|

(χ-5.2)

proc B(a : !lot, a : ?lot, z : ?void, N : nat) =
|[xs : lot∗, x : lot, sent : bool
|xs := []; sent := false

; ∗[len(xs) < N − 1; z! −→ sent := true

[] sent; a?x −→xs := xs ++ [x]; sent := false

[] len(xs) > 0; b! hd(xs)−→xs := tl(xs)
]

]|

(χ-5.3)

In (χ-5.2), the generator receives an authorization of a non-full buffer to create lots.
These created lots are sent after some exponential sampled time to the non-full buffer.
The buffer can send lots to the next process for a non-full and full situation. With a
full situation, the buffer cannot send the authorization signal to the generator leaving
the generator switched off until an established communication. The appending of a
communication signal results in another structure of the standard GBN−1ME into the
modified GBN−1ME, see Figure 5.5. Example 5.2 makes a validation for the modified

B M EG

Figure 5.3: Structure of the modified DEM

GBN−1ME queue and the complete χ code of this modified queue can be found in
Appendix B.2.

Adjustments M/M/1/N model

Instead of changing the DEM, one can also obtain a Markov model which describes
the standard GBN−1ME model. When the Markov chain of Figure 5.1 is considered,
the construction of the Markov model is adjusted by appending a new state N + 1, see
Figure 5.4. Then, in state N the generator still releases new lots with rate λ and when
a lot has been created the system blocks in state N + 1. The only remaining situation
to leave state N + 1 is via rate µ or a service completion.

The adjustment of the M/M/1/N into the M/M/1/(N +1) model has consequences for
the performance measures. The throughput will agree with the one of an M/M/1/(N +

46 Chapter 5. Models for finite queues

0 1 2 N-1 N N+1

λλλλ

µµµµ

Figure 5.4: The transition state diagram of an M/M/1/(N + 1) queue

1) Markov model. However, a more serious change is required for the wip-level, since
the system holds only N jobs in state N + 1. Thus, the expression of the wip-level
becomes:

w(t) =
N

∑

k=0

kpk(t) + NPN+1(t). (5.8)

In the next example, both adjustment methods are validated for the wip-levels.

Example 5.2 (Single server validation).
In this example, a validation has been made for a queue with four workstation places,
thus N = 4. The validation has been performed for the wip-level with an utilization of
ρ = 0.9 and a process rate of µ = 1.0.
Two validations have been executed: one for a standard M/M/1/N model and one for
a modified M/M/1/(N +1) model. The validation models are DEMs: one is a modified
GWNE queue and the other is a standard GWNE model. Since wip-levels are easy to
obtain of the DEM, only the wip-level will be considered in this example. Furthermore,
the derived Markov models should be exact and, accordingly, an extensive validation is
not required when the wip-levels correspond.
With (5.2), (5.3) and (5.8), the steady state values of the experiment can be com-
puted. The steady states values of the validation should respect wip-levels, w ≈ 1.79
and w ≈ 2.07 for the standard M/M/1/N and modified M/M/1/(N + 1) as can be
computed with (5.3) and (5.8) respectively. In Figure 5.5, the results of the wip-level

0

0.5

1

1.5

2

2.5

w

time

(a) Validation of modified GBME model

0

0.5

1

1.5

2

2.5

w

time

(b) Validation of the M/M/1/(N + 1) model

Figure 5.5: Validation of the adjusted models

validation have been plotted for the adjustment of the DEM and for the adjustment of
the M/M/1/N Markov model. Herein, wip-level has been stated against time. More-
over, the validation of the models has been successful, because the wip-level are equal
except for some variability in the DEM. Furthermore, the steady state values match

5.3. Tandem queue 47

their expected value.
Besides, a substantial contrast can be distinct between both figures 5.5(a) and 5.5(b)
especially in steady state, because of different blocking policies. The M/M/1/N queue
has a wip-level of 86% of the standard GBN−1ME. Consequently, blocking policies can
differ a lot in wip-levels and other performance measures.
In short, a successful validation has been made for the earlier composed models in which
the standard M/M/1/N and GWNE models have been adjusted.

5.3 Tandem queue

Usually, manufacturing systems consist of more than a single buffer and machine. Con-
sequently, extending the single server system is of great interest. Unfortunately, transfer
functions of the M/M/1/N queue cannot be powered as in the case of an M/M/1 queue.
The ability of powering transfer functions falls away when finite buffers are introduced.
Mainly, because of the influence on the transfer function of the first workstation by
processes later in the queue. So, process times of workstation not only depend on be-
havior in front of the line, but also on behavior behind the workstation in question of
the system. Therefore, a 2D transition state diagram has been made, representing two
M/M/1/N queues in series. In Figure 5.6, the visualization of the tandem M/M/1/N

(0,0)

(N,0)

(0,2)

(1,2)(1,1)(1,0)

(0,1)

(N,2)(N,1)

(0,N)

(1,N)

(N,N)

λλλ λ
µ1µ1

µ2

µ2

µ2µ2

µ2

µ2

Figure 5.6: The transition state diagram of an M/M/1/N queue

queue is shown. Note that, a transition state diagram does not have to be 2D, an 1D
composition is also possible for queues in series. The situation of two M/M/1/N queues
in series become more clear in a 2D illustration. As for the single M/M/1/N queue,
the forward equations can be easily derived using Figure 5.6:

dP00(t)

dt
= −λP00(t) + µ2P01(t)

dPm0(t)

dt
= −(λ + µ1)Pm0(t) + λPm−1,0(t) + µ2Pm1(t) ∀ m = 1, 2, . . . , N − 1

dP0n(t)

dt
= −(λ + µ2)P0n(t) + µ1P1,n−1(t) + µ2P0,n+1(t) ∀ n = 1, 2, . . . , N − 1

48 Chapter 5. Models for finite queues

dPmn(t)

dt
= −(λ + µ1 + µ2)Pmn(t) + λPm−1,n(t) + µ1Pm+1,n−1(t) + µ2Pm,n+1(t)

∀ m, n = 1, 2, . . . , N − 1

dPN0(t)

dt
= −µ1PN0(t) + λPN−1,0(t) + µ2PN1(t)

dPNn(t)

dt
= −(µ1 + µ2)PNn(t) + λPN−1,n(t) + µ2PN,n+1(t) ∀ n = 1, 2, . . . , N − 1

dP0N (t)

dt
= −(λ + µ2)P0N (t) + µ1P1,N−1(t)

dPmN (t)

dt
= −(λ + µ2)PmN (t) + λPm−1,N (t) + µ1Pm+1,N−1(t) ∀ m = 1, 2, . . . , N − 1

dPNN (t)

dt
= −µ2PNN (t) + λPN,N−1(t).

Remarkable of the change to 2D is that the number of equations are squared for the
two server queue in comparison with the single server. Logically, when more queues in
series are considered the number of equations expand rapidly.

Similar to the finite single server queue in Section 5.2, the earlier treated tandem DEM
(GBMBME) of Chapter 3 does not correspond with the tandem M/M/1/N queue by
only adding a finite amount of buffer places. Moreover, adding a workstation to the
DEM of Figure 5.3 is not sufficient enough to describe this Markov model. So, to let
these models match, one of them has to be adjusted.

Adjustments two workstation DEM

In the first case, the DEM has been modified to satisfy the tandem M/M/1/N behavior.
The tandem M/M/1/N behavior cannot be described with the modified GWNE queue
by appending an extra workstation. An extra placed workstation results in a GWNWNE
queue. This queue describes the tandem M/M/1/N when a non-full buffer allows first
machine to produce lots. Therefore, the lot production should be authorized by the
buffer with an extra communication signal of the buffer. This communication signal
results in another DEM structure that has been visualized in Figure 5.7. The introduced

B M EG B M

Figure 5.7: Structure of the DEM of two M/M/1/N queues in series

communication between the first machine and the second buffer requires a change in χ
codes. The χ has been discussed already and is shown in (χ-5.3). The χ adjustment of
the first machine needs a straightforward replacement of the repetition, which is shown
in (χ-5.4).

; ∗[true−→ a?x; z?; ∆σu; b!x
]

(χ-5.4)

5.3. Tandem queue 49

In this χ code, the machine requires an authorization signal from the buffer before lot
production starts. The complete χ code can be found in Appendix B.2. The complete
modified GWNWNE queue has been validated with a Markov model of two M/M/1/N
queues in series in Example 5.4.

Adjustments Markov model of two M/M/1/N queues in series

Of course, the other option is to adjust the Markov M/M/1/N model. In this case,
the different blocking conditions in the DEM have to be described by the Markov
model. These blocking situations can occur at the generator and the first machine. The
generator blocks when a new lot has been made with a saturated first buffer. The first
machine blocks when the processing of a lot has finished and the second buffer is full.
In Figure 5.8, a transition state diagram can be seen for the situation of N = 2 or a
GW2W2E queue with a single buffer place and one machine position.

(0,0) (0,2)

(1,2)(1,1)(1,0)

(0,1) (0,3)

(1,3)

(2,0) (2,2)

(3,2)(3,1)(3,0)

(2,1) (2,3)

λλλ λ

λλ λ

λλλ λ

µ1µ1µ1

µ1µ1µ1

µ1µ1µ1

µ2

µ2

µ2µ2

µ2

µ2

µ2

µ2

µ2µ2

µ2

Figure 5.8: State transition diagram of the GW2W2E model

Below, an example has been performed to clarify Figure 5.8. Herein, an illustration has
been made with a walk through the diagram. Moreover, a comparison has been using
to find the Markov state with the corresponding DEM situation.

Example 5.3 (Diagram walk).
This example should clarify Figure 5.8, because an example walk will be made through
the diagram.
The start of the walk has been chosen to be state (2, 2) of Figure 5.8. So, the system
finds itself in state (2, 2). In state (2, 2), every buffer and machine are filled with one
lot, so the maximum wip-level of four has been reached.
In the (2, 2) position, the DEM’s generator still creates lots with rate λ and the machines
produces lots with rates µ1 and µ2.

50 Chapter 5. Models for finite queues

If the situation happens that a new lot has been generated via rate λ, the system blocks
at the generator in state (3, 2). Or, if the situation happens that the first machine
finishes processing, the system blocks at machine one in state (1, 3).
From both states (1, 3) and (3, 2), the possibility of reaching both blocking situations
is present by a single ‘jump’. Then, the double blocking situation occurs with arrival
rate λ or with processing rate µ1 respectively.

Obviously, one can make the transitions for a lot of situations. For all these possibilities
equations can be expressed. Like the previously discussed Markov process, a set of
ODEs can be formed. In Appendix E, the derivation of the ODEs has been treated
extensively. To complete the adjustment of the tandem M/M/1/N queueing model, a
validation has been made for the wip-level in Example 5.4.

Example 5.4 (Validation of tandem queues).
This example treats a validation of the model for two workstations in series, where each
workstation contains two places. The validation has been performed for the wip-level
with an utilization of ρ = 0.9 and a process rates of µ = µ1 = µ2 = 1.0.
The modified GW2W2E will be tested with the Markov model of two M/M/1/2 queues
in series. Moreover, the modified Markov model describing the standard GW2W2E has
been validated with the χ simulation data of the DEM. Therefore, only the wip-levels
have been considered, because these are easy to obtain from the DEM. From the Markov
theory, steady state values of the wip-level can be derived. The tandem M/M/1/2 queue
has a wip-level w = 1.88 and the wip-level of Markov model of the GW2W2E queue
becomes, w = 2.38.
In Figure 5.9, the validations are shown of both experiments for the wip-level in time.

0

0.5

1

1.5

2

2.5

w

time

(a) Validation of the tandem M/M/1/2 model

0

0.5

1

1.5

2

2.5

time

w

(b) Validation of modified GW2W2E model

Figure 5.9: Validation results

Both situations, the DEM and Markov model correspond well to each other. Fur-
thermore, it appears that the difference between both steady state wip-levels remain
evidently visible due to other blocking policies. The M/M/1/2 queue has a wip-level
of only 79% of the GW2W2E queue. Consequently, blocking policies can make a large
difference, while the buffer places are the same. Logically, the wip-level difference has
consequences for other performance measures. However, the difference in wip-levels
decrease with larger buffer capacities or with lower utilizations.

5.4. Résumé 51

5.4 Résumé

The advantage of using finite queueing transfer functions is the exact solution in com-
parison with transfer functions of infinite queueing models. Infinite queueing transfer
functions have a reduced accuracy for high utilizations, while the accuracy of finite
queueing transfer functions are not restricted by the utilization. Actually, the accu-
racy forms the main reason to prefer a transfer function of a finite queue, since some
disadvantages are present as well.

The transfer functions’ computation time can become very large for large finite queues,
since it requires the inverse of the transition state matrix, see (5.5). A second disadvan-
tage occurs when one wants to use a single server transfer function to describe queues
in series. The extension to queues in series is not possible with finite buffers, since com-
bining transfer functions cannot be used for extension of queues. This lack of extension
ability results in new computation efforts for a Markov model. A third disadvantage
is the missing of a relation of the flow time. The flow time cannot be obtained with
a transfer function relation from the Markov theory, but a numerical derivation of the
flow time is possible.

Probably, the influence of these disadvantages can be reduced with some extra research.
Extra research can been demanded for studying the possibility of using network queue-
ing theory relations to avoid extra computation efforts when single server had to be
extended. Furthermore, these extra computation efforts may be avoided by studying
differences in the transfer function between a single and a tandem system. This study
seems relevant, since the transfer function of the first workstation changes due to an
added second workstation.

Another interesting part of this chapter occurs during the validation the transfer func-
tions. Observations of the derived transfer showed that the standard M/M/1/N model
and GBME model do not correspond. The discrepancy between these queues is a result
of different blocking policies. Consequently, the blocking policies in both models have
been changed for each model such that the standard M/M/1/N agrees with a adjusted
GBME model and vice versa. These model differences are essential to know before
modeling a real-life manufacturing system.

In all, the derivation of the transfer function itself is quite straightforward, while prob-
lems can occur due to an inverse of large system matrices. The critical size of large
system matrices has to be investigated to reveal the boundaries of the used Markov
theory. Finally, the Markov models of this chapter will used in Chapter 6 to develop of
a controller for a finite queue. Besides, the developed controller will implemented on a
DEM.

52 Chapter 5. Models for finite queues

Chapter 6

Control

In this thesis, a lot of references have been made to ‘control’ and its requirements.
Sofar, control has not been treated, since the focus has been on modeling aspects of
the presented control framework in Chapter 1. Finally, control aspects of the control
framework are discussed in this chapter.
The control aspects part starts with the design of a control-law in Section 6.1. This
control-law uses a state-feedback method, which estimates all system states with the
earlier developed models. The estimated system states supply the system with a new
input signal. These estimations should be based on the output signal of the χ model.
Consequently, the χ model and the controller have to be integrated, which is treated in
the implementation of Section 6.2. Finally, the implementation considers two queues in
series for which single run simulation results and average performance measures have
been shown.

6.1 Control design

The state space design method has been chosen to develop a control law for a manufac-
turing system. State space manipulates the earlier derived transfer functions into the
following state-variable form [Fra94]:

ẋ = Ax + Bu

y = Cx.

A state space notation is easy to obtain from the transfer function with Matlab’s tf2ss

function. The advantages of state space design are especially for systems with more than
one control input or more than one sensed output. In this thesis, only the applicability
of a control implementation will be shown and therefore the state space design has been
used for the simpler single input single output systems.

53

54 Chapter 6. Control

In control engineering, stability is one of the main issues of dynamic systems and for
applying control. For the considered manufacturing systems, stability depends on the
mean return time to a certain state or wip-level. If the mean return time to all is states
is finite then the manufacturing system meets stability. In Definition 2.3, stability has
been described in the positive recurrent condition. Moreover, the system is stable, since
a transfer function can be derived. If the poles of (5.7) in Example 5.2 are in the left
half plane, then a stable response occurs on an impulse.

In this chapter, control will be applied only to the finite buffer queues, resulting in a
stable system to be controlled no matter the utilization.

Design of full state state feedback control

Instead of stability, controllability is required for the design of a control law. Conse-
quently, one has to check whether or not the system is controllable. For the controlla-
bility, a controllability matrix has been defined as:

C = [B AB · · · An−1B],

where A is N × N matrix [Fra94]. When the controllability matrix C is nonsingular
the corresponding A and B matrices are said to be controllable for single input single
output systems. Controllability is a function of the state of the system and cannot
be decided from a transfer function. However, a system is always controllable with an
available transfer function. For the controllability, a minimal state-space realization has
to be made of the transfer function. A minimal realization is automatically composed
with Matlab’s tf2ss routine.

Now, a control law can be developed. The purpose of a control law,

u = −Kx,

is to derive a set of pole locations for feedback that will agree with the desired behavior.
The control gain K can be computed in several ways. The control gains most important
task is to set the pole locations in the left half plane for stability reasons. The control
matrix K can be computed via various algorithms [Fra94], such as Ackermann’s formula
with given pole locations . Yet, the selection of pole locations remain and this selection
of poles have to be examined and determined. Accordingly, another most effective
technique, which can be used of linear control law design, is the optimal linear quadratic
regulator (LQR) [Fra94]. Since the primary goal is to obtain a controller which improves
the performance of the system, the LQR is not discussed any further. In this study, the
LQR design method has been used to solve the optimal control law and K has been
obtained with the lqr function in Matlab.

6.1. Control design 55

Observer design

The design of the control law applies to all state variables of the system, since a full
state feedback has been chosen for the system. The determination of all state-variables
is not possible in most systems. Consequently, the next step is to design an observer
or estimator which estimates all states of the system with the aid of a single measured
value such as the wip-level. The full state estimate is referred to x̂ and with the following
equations the model of the observer has been expressed as:

˙̂x = Ax̂ + Bu + L(y − ŷ)

ŷ = Cx̂.

The observer is a full-order estimator of the desired DEM model to control. Here,
instead of controllability, one has to check observability. Likewise, the observability
Matrix O has to be nonsingular or have a non-zero determinant. The observability
matrix is defined as:

O =

C
CA
...

CAn−1

.

Now, the only required element for the observer is the observer gain L. The observer
gain L can be computed using the control gain. The selection of poles can be derived
from the control law. In general, the estimator poles have to be faster than controller
poles, resulting in faster reaction of the observer. As a rule of thumb, the estimator
poles can be chosen to be a factor two to six greater than the controller poles [Fra94].
With the use of the observer, the control feedback becomes:

u = −Kx̂.

To make the control system complete, the steady state has to be introduced. In steady
state, reference signal uss supplies the system of the desired input rate. Besides, the
full state steady state value xss provides the system with steady state correction for the
observer. When the steady state has been included, the final control law becomes:

u = uss −K(x̂− xss).

With this final step, the whole control system can be schematically drawn. In Figure 6.1,
the control diagram can be seen. For this occasion, the observer in the figure contains
matrices, Ã, B̃, C̃ which can be computed with the Markov model. The matrices of the
plant model are, A, B, C. These matrices cannot be obtained and can be considered
as the χ model. Therefore, the rest of this report considers, A, B, C as state space
matrices of the observer.

56 Chapter 6. Control

plant

ẋ = Ax + Bu
y = Cx

observer
˙̂x = Ãx̂ + B̃u + L(y − ŷ)

ŷ = C̃x̂

control law

−K

uss + Kxss
u y

x̂−Kx̂

Σ

Figure 6.1: Schematic diagram of the control strategy

6.2 Implementation

The GW2W2E queue has been used for the implementation of a control law. The values
used for the utilization and process rates of the GW2W2E queue are the same as in
Example 5.4. The wip-level has been considered as output signal y of the controlled
system. In Figure 5.9, the uncontrolled wip-level is shown with respect to time. With
the control law, the target is to increase the wip-level earlier, so that the same steady
state is reached sooner.

Simulink testing

First, a test has been made in Simulink. From the derived transfer function for a
GW2W2E queue with ρ = 0.9 and µ1 = µ2 = 1.0, a state space realization has been
made. In the state space, A is a (14 × 14) matrix, B is a (14 × 1) matrix and C is an
(1× 14) matrix as stated in Appendix F.1.

With the obtained state space realization, the control gain can be computed with the
linear quadratic regulator technique. The observability gain L can be computed with
the help of the rule of thumb, where the observer is chosen two times faster than the
control gain. With these conditions, the model has been put in Simulink. Then, the
control implementation can be made very clearly and understandably using Simulink.
In Figure 6.2, the global Simulink testing model is shown and the total Simulink model
can be found in Appendix F.1. Before the controller can be implemented a test has
been performed. In the test, Simulink uses the Markov model as the plant and as
the observer. Consequently, the choice of the observer gain L is not important in this
situation, since y − ŷ is zero. Logically, an observer is not demanded in this case, since
y and ŷ are identical scalars. The results of the Simulink test model can be seen in
Figure 6.3. For the implementation the output y in the Simulink model corresponds
with the wip-level and the input u with arrival rate λ. The graph of the Simulink test
shows that steady state is reached sooner and that the demands have been fulfilled.
Now, the ‘plant’ in the Simulink model has to be substituted by the χ model. This is
simply performed by replacing the Markov model with an input and output signal to

6.2. Implementation 57

Figure 6.2: Simulink model

0

0.5

1

1.5

2

2.5

w

time

Figure 6.3: Uncontrolled (–) versus controlled (·−) model

the Matlab workspace. Python is perfectly suitable as an interface between Matlab’s
workspace and χ. In the next section, the χ integration will be discussed further and
Appendix F.1 presents the whole Simulink model.

χ integration

Two important changes have to be made before the controlled χ model can be used.
First, the χ file has to be adapted to the ability of control. Second, an interface has to
be made which couples the Simulink model and the χ file.

1. χ adjustments.
The χ file has to be adjusted to the possibility of applying control. The generator
will be modified for controlling the DEM in the χ model, since the generator
releases lots with rate λ and Simulink supplies the generator of the input rate.
Accordingly, the generator has been adjusted to receive a new λ as arrival rate.
The generator consists of three tasks:

1. track the wip-level of the whole system;

2. communicate with the controller for the control signal;

3. send lots.

58 Chapter 6. Control

In order to receive a new λ, the generator has to keep up with the current wip-level
(1). Simulink has to know the current wip-level to supply the generator with the
control signal. Consequently, the generator has to communicate with Simulink
(2). Finally, the generator has to be able to send lots (3). These three generator
changes of the χ model are treated below.

First to be able to track the wip-level, a communication with the exit process
has to be created in the generator process. Therefore, the exit process sends a
void when it receives a lot. So, the generator can keep with the input lots and
thus, can obtain the current wip-level. The communication between the generator
and the exit process has to be able to happen at all time. Consequently, this
communication comes with a boolean which is true in the first statement of the
repetitive selective waiting of (χ-6.1).

Second, to provide the generator with the desired input rate, a sample frequency
dt has been introduced. The update of the controller is performed at sample times
tσ, where the controller receives the current wip-level. In return, the generator
receives the new input rate from the controller. The controlled input rate has
to be exponentially distributed, so the new arrival time becomes a sample of the
exponential distribution of one divided by the controllers output λ. The χ code
of keeping the controller up-to-date can be found in the second option of the
repetitive selective waiting of (χ-6.1).

Third, the issue of the release time to send lots remains. Therefore, the send time
tsend has been introduced. The send time computes the absolute time when a lot
has to be released. Consequently, the previous release time has to be included
in tsend. Of course, the send time can be elapsed when the received λ has been
increased by the controller. Accordingly, the send time becomes the maximum of
the just computed send time and the absolute time:

tsend := max(τ, tprev +
texp

λ
).

When the time reaches tsend, the generator tries to send a lot. Depending on
the buffer quantity, the lots will immediately be sent or the generator switches
to trysend. The trysend boolean is required to be able to sample at the sample
frequency and to be able to receive the synchronization from the exit process con-
tinuously. In (χ-6.1), the new generator process has been stated. In Appendix F.2,
the χ code of the whole model is shown.

6.2. Implementation 59

proc G(a : !lot, z : ?void, ρ, µ : real) =
|[dum, trysend : bool, i, wip : nat, u :→real, λ, dt, tσ, texp, tprev, tsend : real
| i := 0; wip := 0; u := negexp(1.0); dt := 0.01; tσ := τ ; texp := σu; tprev := τ
; dum := openmatlab()
;λ := runmodel(n2r(wip)); tsend := max(τ, tprev +

texp

λ)
; ∗[true; b? −→wip := wip− 1

[] true; ∆tσ − τ −→λ := runmodel(n2r(wip))
; tsend := max(τ, tprev +

texp

λ)
; tσ := dt + τ

[]¬trysend; ∆tsend − τ−→ trysend := true

[] trysend; a!〈i, τ〉 −→ trysend := false

; i := i + 1; wip := wip + 1
; tprev := τ ; texp := σu
; texp := σu + τ

; tsend := max(τ, tprev +
texp

λ)
]

; dum := closematlab()
]|

(χ-6.1)

2. Interface.
Since χ cannot communicate directly with Matlab, an interface is required. Python
has been chosen as an interface, since a Python-to-Matlab communication is
present with the Pymath module. Furthermore, the Pymath module can be im-
ported in the χ file. Then, Matlab and Simulink can accessed in the χ file. With
Pymath, the χ function runmodel has been defined, see Appendix F.2 for the
code of the python script. Function runmodel runs the Simulink model with the
current wip-level as income and a new arrival rate λ as outcome.

Results of implementation

Two kinds of results will be treated from the control implementation. First of all, one
can be interested in a single simulation run. Then one would like to know how the
controller works and what kind of control signal has been given in a single simulation.
Second, the interest goes to multiple simulations runs. Then, one can see if the controller
provides the desired average limiting behavior. Before discussing the average results of
the controller, a single simulation will be treated.

The working of the controller will be looked upon from the χ outputs’ perspective.
Consequently, the χ output signal of interest is the wip-level (wχ). The controlled
χ model is a GW2W2E queue with identical process rates of µ = 1.0 and a desired
utilization of ρ = 0.9. So, the average input should be an arrival rate of λ = 0.9.
Finally, a sample time of 1% of the process rate has been chosen, thus dt = 0.01.

60 Chapter 6. Control

One can expect that the controller adjusts input rate λ depending on the actual wip-
level in the system. A wip-level of w ≈ 2.38 corresponds with an utilization ρ = 0.9.
Of course, a wip-level has an integer value and, consequently, the expected arrival rate
cannot be λ = 0.9. The controlled input rate should be higher for a wip-level lower
than w ≈ 2.38. On the other side, a higher controlled input should result from a wip-
level lower than steady state. So, the actual wip-level and the input rate have to be
considered in the single run evaluation. Furthermore, since the steady state wip-level
cannot occur in a single simulation run, the observer has to keep up with the current
wip-level. Therefore, the observer estimate is of interest as well for the evaluation.
Accordingly, Figure 6.4 shows he controlled input rate λ (- -), the estimate wip-level of

0

1

2

3

4 wχ

ŵ
λ

time

Figure 6.4: Result of the implementation

the observer ŵ(·−) and of the χ output wχ in time. The estimate of the observer has
to meet two situations: a decrease and an increase from the reference (steady state)
wip-level. For wip-levels three and four, the input signal has to be lower than the
reference input, λ = 0.9. Otherwise, for wip-levels zero to two, the input rate has to
be higher than λ = 0.9, since this is the corresponding input rate of a steady state
wip-level of w ≈ 2.38. In the graph, the input rate meets these requirements. The
graph also shows that the estimate of the observer stays behind on the wip-level for the
step from wip-level two to three. The observer cannot reach the wip-level, since the
observer always leaves a little difference between the estimate and the actual value. The
difference between the observers’ wip-level and DEM output can result in poor overall
behavior. Consequently, an average of multiple simulations has to be taken.

In Figure 6.5, the average result of multiple simulations are shown. In this figure, the
controlled and uncontrolled wip-levels have been plotted for the GW2W2E queue in
time. The simulation results for the controlled system do not meet the desired steady
state value of the uncontrolled system. However, the transient phase does meet the
requirements, since the transient controlled wip-level increases more than the uncon-
trolled wip-level. The discrepancy between both steady states can be related to several
circumstances. First, the difference can be a result of the discrete wip-levels, e.g. the
wip-level jump from two to three is not reached by the estimate in Figure 6.4. Second,
the sample time can be the deciding factor of different results. With a higher sample
time, the observer is able to keep up more frequently with the controller. Third, an

6.3. Résumé 61

0

1

2

3

w

time

Figure 6.5: Result of the implementation for the uncontrolled (–) and controlled (−·) wip-level

incorrect model can be a result of the steady state difference. Due to continuously
changing input rates λ the used observer model is not correct, since the model has
been composed with constant arrival rates. These rates have been determined from the
process rate and the desired utilization. Finally, the steady state error can be related
to the effect of the choice of the control gain K and the observer gain L.

In addition to the wip-level, responses from other performance measures of the control
model are also of interest. Therefore, Figure 6.6 shows the results of the controlled
and uncontrolled GW2W2E queue. In Figure 6.6, the controlled model has a higher

0

0.2

0.4

0.6

δ

time

(a) Throughput of uncontrolled (–) and controlled
(·−) model

0

2

4

ϕ

time

(b) Flow time of uncontrolled (–) and controlled
(·−) model

Figure 6.6: Result of the implementation for the throughput and the flow time

throughput and an approximately similar flow time for steady state.

6.3 Résumé

The development of a controller has been treated in this chapter. The controller has been
designed with the state feedback method of standard control theory. The state feedback
controller has been made in Simulink with the earlier derived Markov model. The
Markov model estimates all system states with a system output signal. The considered
output signal should be obtained from the χ model.

62 Chapter 6. Control

As the χ model’s output, the wip-level has been chosen, since determining this perfor-
mance measure is straightforward. For the input signal, a straightforward technique has
been chosen as well. The selected input signal will provide the controlled system with
an arrival rate. The arrival rate input and the wip-level output have to passed with a
communication between the controller in Simulink and the DEM in χ. The required
communication has been established with Python as an interface to be able to test the
controlled DEM.

The controlled DEM has been tested with a single run simulation and with averages of
multiple simulations. The results of the single run simulation fulfilled the expectations,
since an increase of the arrival rate occurs when the actual wip-level is below the steady
state wip-level. Furthermore, a decrease of the arrival rate happens when the actual
wip-level is lower than the the steady state wip-level.
A successful test has not been obtained for the averages of multiple simulations. These
averages consider performance measures of the flow time, throughput and wip-level.
The wip-level should result in a the desired reference steady state value. Unfortunately,
the wip-levels do not match the reference steady state value. Perhaps, the steady
state difference occurs due to the discrete wip-levels, since a continuous model does not
accounter discrete values. A second possibility of the difference can be the choice of
the gain K or the observability gain L. Finally, the significance of Markov model can
be reduced, because the arrival rate is not a constant exponentially distributed rate
anymore.

In all, a partially successful control implementation has been performed on a DEM.
The DEM wip-level has been used as the only output signal for the controller, while
other performance measures have not been examined as output signal. Studying these
other performance measures can be relevant for the control of manufacturing systems.
Furthermore, the study of achieving the reference steady state value can be considered.

Chapter 7

Conclusions and
Recommendations

In this chapter, findings of this study are discussed. In the first section, conclusions are
presented and finally , recommendations are made for future research.

Conclusions

The conclusions are divided into four categories. The first category deals with properties
of manufacturing systems. Second and third, conclusions for infinite and finite queueing
models are discussed. In the last category, conclusions of the control implementation
will be treated.

Properties of manufacturing systems

During the search for properties of manufacturing systems, the focus has been put on
scaling properties of behavior in time. By introducing scaling properties, a new time
scale has been introduced to result in independency for fluctuations of that particu-
lar modeling parameter. Three types of scaling properties have been presented which
should create independency of parameter changes in the process rate, utilization and
number of workstations. Each scaling factor has been studied to determine the possible
related scaling factor. This scaling factor enables someone to compare performance
measures in time under different conditions of the process rate, utilization and number
of workstations. The process rate, utilization and number of workstations should be
isolated in the compared behavior. Then, the comparison between models with different
conditions can be used as a validation method. Below, the results are presented for each
suggested scaling factor.

63

64 Chapter 7. Conclusions and Recommendations

Process rate The process rate property makes time dimensionless by multiplying it
with the process rate. With the process rate property, different M/M/1 systems
can show identical behavior in dimensionless time for e.g. wip-levels. The adopted
identical behavior holds under the conditions that the utilization and number of
workstations are the same in the M/M/1 queues. For a single server M/M/1
queue, Markov theory has been used to proof the process rate property. Besides,
the process rate property has been validated for queues in series.

Utilization In contrary to the process rate property, an exact solution of the utilization
property has not been found with Markov theory. Consequently, one has to settle
with an approximation. This approximation has been formed by the relaxation
times. The relaxation time indicates the speed of approach to the stationary
situation.

Number of workstations An exact solution for the workstation property has not
been found, but the influence of number of workstations in a system has been
determined with an approximation. The approximation reduces the influence per
workstation on the whole system when the number of workstations increases.

Infinite queueing models

Three modeling techniques have been used to describe infinite queues, the single server
M/M/1 queues and M/M/1 queues in series.

First, the single server M/M/1 queue has been modeled using Markov chains and pro-
cesses. Deriving a time-dependent model with Markov theory appeared to be very
complex for even the simplest queueing systems. Besides, the Markov model has a
limiting applicability, since only a model of a single server queue has been derived.

Second, DEMs have been used to describe a single server queue as well as multiple
M/M/1 queues in series. Disadvantages of DEMs include computational expensiveness
of simulations and complexity of controller design for large queueing systems.

Third, transfer functions have been modeled to avoid computation expensiveness and
control design issues of the DEM. These transfer functions have been derived with
ODEs from Markov theory. The infinite number of ODEs has to be rewritten with
Z-transformation. Then, a transfer function can be obtained with the use of Rouché
theorem, Taylor series and Padé approximation. So, the derived transfer function is an
approximation of the M/M/1 queue. This approximated transfer function satisfies the
earlier proven process rate property. An advantage of the derived transfer function is
the ability to expand a single server queue to queues in series. Consequently, a more
useable model has been developed than the single server time-dependent M/M/1 model.
Furthermore, the developed model is perfectly suitable for the design of controllers with
straightforward control engineering techniques.
A disadvantage of the developed transfer function is caused by the approximation, since

65

this approximation reduces the accuracy for high utilizations and extension to queues
in series.

Finite queueing models

Similar to infinite queues, three modeling type for finite queues have been discussed in
this study: Markov models, DEMs, and transfer functions.

Although, the first modeling type, Markov modeling, is not as complex to compute for
finite as for infinite queues, several issues remain. Markov models for M/M/1/N queues
in series have the disadvantage of a limiting applicability, since every number of servers
requires a new computation. Furthermore, this required computation is still complex.
Therefore, expanding the model to queues in series consumes a lot of time.

The DEM is the second considered modeling type. This modeling type can be ad-
justed easily from infinite to finite buffers. However, the same problems remain for the
finite case: computational expensiveness and complex controller development. Further-
more, a new problem occurs, the blocking policy. The standard blocking policies of
an M/M/1/N model and GBNME model do not correspond. Therefore, one of these
models has to be adjusted to meet the other blocking policy.

The third modeling type considers transfer functions that have been derived with ODEs
from Markov theory. The derivation of these transfer functions is much easier for finite
queues compared to infinite queues. However, the finite queue transfer function has a
lower usability, since it is not possible to extend the single server transfer function to
transfer functions for queues in series. This disadvantage can be overcome when an
algorithm derives the transfer function of the Markov ODE probability relations. A
more important disadvantage that cannot be solved immediately is the impossibility of
deriving a transfer function for the flow time.

Control implementation

In Chapter 6, an implementation of a controller has been presented. The integration of
a controller on a χ model has been successfully accomplished.

The implementation has been performed for two queues in series with a single buffer
and one machine place, a GW2W2E queue. This queueing system has been modeled
with a Markov based transfer function. The obtained transfer function has been used
for a state space notation to develop the observer for a state feedback controller. The
feedback controller has been designed in Simulink. The Simulink controller has been
connected to the χ model with Python to be able to perform a simulation.

A single simulation of the controlled χ model showed an increase of the input rate for
a steady state value lower than the reference value. Furthermore, a steady state value
higher than the reference value leads to a decrease of the input rate. Unfortunately, the

66 Chapter 7. Conclusions and Recommendations

reference signal is exceeded in steady state when multiple simulation runs are performed.
So, the control implementation has succeeded partially, the expectations of a single
simulation have been reached, but the desired steady state has not been obtained in
multiple runs.

Recommendations

Several questions have come forward in this study that remain unanswered. These open
issues will be discussed in this section.

Properties of manufacturing system

The search for relevant properties of manufacturing systems appeared to be very dif-
ficult. Therefore, only properties with respect to scaling have been treated. One can
expect that more properties exist like the physical property which prohibits backward
flow. Consequently, another perspective can be used to search for other properties that
are not related to scaling with the use of Markov models. Besides, more research can
be performed on the effect on validation of the process rate property with e.g. PDE
models. Finally, within the scaling properties one can study the existence of nonlinear
relations between queueing systems with different parameters like the utilization.

Approximated transfer function of an M/M/1 queue

The approximated transfer function, defined in this thesis, appeared to be very ap-
plicable and useable for control. The major disadvantage of the determined transfer
function is the accuracy decrease for high utilizations due to linearization. So, this
linearization has to be avoided to increase the accuracy. For example, the possibility of
developing a nonlinear control law can be investigated. This nonlinear control law has
to be derived using the nonlinear probability relation of the M/M/1 queue. With the
nonlinear relation, the exact expression of the M/M/1 queue will be used. Therefore,
the controller should hold at every utilization for ρ < 1 and the controller should control
the manufacturing system perfect.

Exponential distribution

The models in this thesis come along with an exponential distribution. Research on a
general distribution can be of interest as well.

Markov theory can still be used with non exponential distributions, for a coefficient of
variation c 6= 1. With c < 1, the Erlang distribution can be used which is based on a
sequence of identical exponential distributions. The distribution sequence allows several

67

exponential phases in the arrival and process rates. The exponential phase corresponds
with a Markov state, where a service completion consists of a sequence of states.

A sequence of states can be defined for c > 1 as well. For c > 1, a study can be
made which uses a sequential exponential distribution with different means, a Coxian
distribution. Now, an identical traject of creating transfer functions can be followed
with the use for control.

Finite queue transfer function

The applicability of the finite queueing transfer function models seems endless, but
there will be a maximum number of states in the model. Especially, the inverse of the
probability function asks for computation time and is a limiting factor.

Another shortcoming is the lack of an expression for the flow time. The flow time is a
highly important parameter to decrease in manufacturing. Consequently, research on
the flow time could be performed, since controlling the flow time is desired in a lot of
situations. Although the flow time cannot be expressed, one can compute the flow time
numerically. Furthermore, the wip-level and flow time can be seen as a dual problem,
since the basic difference is hooked orientation. With the orientation and a numerical
data, creating a control law for flow time seems possible with the use of Markov theory.

Control

In this thesis, the focus has been put on modeling techniques and scaling properties
that are relevant for considered framework. The control part of the framework has been
introduced to show the effect of a controller on the entire system. The result of the
controlled system has not been totally satisfied, since the focus was not put on control.
Therefore, the issues of the control implementation need some extra attention.

Extra effort can be made for the discrete wip-level, which can give problems for the
reference output signal. A reference signal for other performance measures result in
issues that need to be addressed for the throughput and flow time. Reference signals of
the throughput and flow time contain the issue of having only one sample that can be
obtained by the DEM over an unknown time span. Besides, a throughput and flow time
can have inaccuracies, since the flow time and throughput are derived from a single lot.
This single lot contains information about that particular lot and not of the system as
a whole. These remaining issues need to be addressed in other research studies.

68 Chapter 7. Conclusions and Recommendations

Bibliography

[Ada02] I. Adan and J. Resing. Queueing theory. Lecture notes, Eindhoven University
of Technology, Department of Mathematics and Computer Science, 2002.

[Ber04] R.A. van den Berg. Partial differential equations in modelling and control of
manufacturing systems. Master’s thesis, Technische Universiteit Eindhoven,
Systems Engineering Group, 2004.

[Buz93] J. A. Buzacott and J. G. Shanthikumar. Stochastic Models of Manufacturing

Systems. Prentice Hall, Englewood Cliffs, 1993.

[Coh82] J.W. Cohen. The single server queue. North-Holland, Amsterdam, 1982.

[Dag95] C.F. Daganzo. Requiem for second-order fluid approximations of traffic flow.
Transportation Research. Part B, Methodological, 29(4):277–286, 1995.

[Erd54] A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. Tables of Integral

Transforms. McGraw-Hill, New York, 1954.

[Fra94] Gene F. Franklin, Abbas Emami-Naeini, and J. David Powell. Feedback Control

of Dynamic Systems. Addison-Wesley Longman Publishing Co., Inc., third
edition, 1994.

[Hop01] W.J. Hopp and M.L. Spearman. Factory physics: Foundations of Manufac-

turing Management. Irwin/McGraw-Hill International Editions, Singapore,
second edition, 2001.

[Jac54] R.R.P. Jackson. Queueing systems with phase-type service. Operational re-

search quarterly, 5, 1954.

[Jac63] J.R. Jackson. Jobshop-like queueing systems. Management Science, 10, 1963.

[Ken53] D.G. Kendall. Stochastic processes occuring in the theory of queues and their
analysis by the method of the imbedded markov chain. Ann. Math. Stat, pages
338–354, 1953.

[Khi32] A. Khinchine. Mathematical theory of stationairy queues. Mat. Sbornik, 39:73–
84, 1932.

69

70 Bibliography

[Kle75] L. Kleinrock. Queueing systems, volume I: Theory. Wiley-Interscience, London,
1975.

[Kul95] V.G. Kulkarni. Modeling and analysis of stochastic systems. Chapman-Hall,
London, 1995.

[Kul99] V.G. Kulkarni. Modeling, analysis, design and control of stochastic systems.
Springer-Verlag, New York, 1999.

[Law00] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw-Hill
Higher Education, New York, third edition, 2000.

[Lit61] J.D.C. Little. A proof of queueing formula l = λw. Operations Research,
(9):338–387, 1961.

[Pla04] S. Platschorre. Modelling of manufacturing lines using higher order PDEs. Mas-
ter’s thesis, Technische Universiteit Eindhoven, Systems Engineering Group,
Eindhoven, 2004.

[Pol30] F. Pollazcek. Über eine Aufgabe der Wahrscheinlichkeitstheorie. I-II Math.

Zeitschrift, 32:64–100, 729–750, 1930.

[Roo03] J.E. Rooda and J. Vervoort. Analysis of manufacturing systems. Lecture notes,
Eindhoven University of Technology, Department of Mechanical Engineering,
2003.

[Sag71] A.P. Sage and J.L. Melsa. System identification. Academic Press, London,
1971.

[Sha00] O.P. Sharma and A.M.K. Tarabia. A simple transient analysis of an M/M/1/N
queue. Sankhyā Ser. A, 62(2):273–281, 2000.

[Tak62] L. Takacs. Introduction to the theory of queues. Oxford University Press,
Oxford, 1962.

[Ver03] J. Vervoort and J.E. Rooda. Learning χ 0.8. Preliminary version, Eindhoven
University of Technology, Department of Mechanical Engineering, 2003.

[Wol82] R.W. Wolff. Poisson arrivals see time averages. Oper. Res., 30, 1982.

Appendix A

Time-dependent M/M/1
behavior

The time-dependent solution of an M/M/1 queue has been derived in this appendix.
Here, almost all essential and less essential steps are worked out. The forward Chapman-
Kolmogorov’s equations form the starting point for the derivation:

dPk(t)

dt
= −(λ + µ)Pk + λPk−1(t) + µPk+1(t) ∀ k = 1, 2, . . . (A.1)

dP0(t)

dt
= −λP0(t) + µP1(t). (A.2)

The first step is the transition to a continuous domain. This is performed by the Z-
transform:

P (z, t) ,

∞
∑

k=0

Pk(t)z
k (A.3)

Now, the kth differential equation is multiplied by zk, leading to:

∞
∑

k=1

dPk(t)

dt
zk = −(λ + µ)

∞
∑

k=1

Pk(t)z
k + λ

∞
∑

k=1

Pk−1(t)z
k + µ

∞
∑

k=1

Pk+1(t)z
k.

After some rearranging, this yields to:

∂

∂t

[

P (z, t)− P0(t)
]

=

− (λ + µ)
[

P (z, t)− P0(t)
]

+ λzP (z, t) +
µ

z

[

P (z, t)− P0(t)− zP1(t)
]

.

Certain terms can be eliminated using the equation for k = 0 and it results in:

∂

∂t
P (z, t) = −λP (z, t)− µ[P (z, t)− P0(t)] + λzP (z, t) +

µ

z
[P (z, t)− P0(t)].

71

72 Appendix A. Time-dependent M/M/1 behavior

After rearranging this equation the following equation is obtained:

z
∂

∂t
P (z, t) = (1− z)

[

(µ− λz)P (z, t)− µP0(t)
]

(A.4)

To lose the time derivative Laplace-transformation has been applied, see:

z
[

sP ∗(z, s)− P (z, 0+)
]

= (1− z)
[

(µ− λz)P ∗(z, s)− µP ∗
0 (s)

]

.

Rearranging gives

P ∗(z, s) =
zP (z, 0+)− µ(1− z)P ∗

0 (s)

zs− (1− z)(µ− λz)
(A.5)

With initial condition P (z, 0+) = zi

P ∗(z, s) =
zi+1 − µ(1− z)P ∗

0 (s)

zs− (1− z)(µ− λz)

To determine P ∗
0 (s), the roots of the denominator have been used,

g(z) = λz2 − (λ + µ + s)z + µ

In the unit circle of |z| < 1 the denominator has only one root, since g(0) = µ > 0 and
g(1) = −s < 0. Therefore the numerator must have that same root, since

∑∞
k=0 zk =

1
1−z is finite at all time.

ζ1(s) =
(λ + µ + s)−

√

(λ + µ + s)2 − 4λµ

2λ

Using this in the root of the numerator

P ∗
0 (s) =

ζ1(s)
i+1

µ(1− ζ1(s))

Let
ζ2(s) =

µ

λζ1(s)

be the other root, now return to

P ∗(z, s) =
µ(1− z)P ∗

0 (s)− zi+1

λ(z − ζ1(s))(z − ζ2(s))

=
µ(1− z)P ∗

0 (s)− zi+1

λ(z − ζ1(s))(z − ζ2(s))

(z − ζ1(s))− (z − ζ2(s))

ζ2(s)− ζ1(s)

=
µ(1− z)P ∗

0 (s)− zi+1

λ(ζ2(s)− ζ1(s))

(

1

z − ζ2(s)
− 1

z − ζ1(s)

)

=
µ(1− z)P ∗

0 (s)− zi+1

λ(ζ2(s)− ζ1(s))

[

1

ζ1(s)

∞
∑

n=0

(

z

ζ1(s)

)n

− 1

ζ2(s)

∞
∑

n=0

(

z

ζ2(s)

)n
]

.

73

Rearranging gives:

P ∗(z, s) =
µP ∗

0 (s)

λ(ζ2(s)− ζ1(s))

[

(

1

ζ1(s)

∞
∑

n=0

(z

ζ1(s)

)n
− 1

ζ2(s)

∞
∑

n=0

(z

ζ2(s)

)n
)

−
(

z

ζ1(s)

∞
∑

n=0

(z

ζ1(s)

)n
− z

ζ2(s)

∞
∑

n=0

(z

ζ2(s)

)n
)

]

− 1

λ(ζ2(s)− ζ1(s))

[

(

zi+1

ζ1(s)

∞
∑

n=0

(z

ζ1(s)

)n
− zi+1

ζ2(s)

∞
∑

n=0

(z

ζ2(s)

)n
)

]

.

With the above equation the derivation of an inverse Z-transform is possible for k =
0, 1, 2, . . .

P ∗
k (s) = µP ∗

0 (s)(ak − ak−1)− ak−i−1 =
z1(s)

i+1

1− z1(s)
(ak − ak−1)− ak−i−1

where

an =

1

λ(ζ2(s)− ζ1(s))

(1

ζ1(s)n+1
− 1

ζ2(s)n+1

)

=
1

µ

n
∑

j=0

(

λ

µ

)n−j

ζ2(s)
n−2j if n ≥ 0

0 if n < 0
(A.6)

After some simplification:

Pk(s) =
1

λ

[

∞
∑

j=i+k+1

(

µ

λ

)j−k−1

ζ2(s)
−k +

k−1
∑

j=(k−i)∨0

(

λ

µ

)k−i−j

ζ2(s)
−(2j−k+i+1)

]

(A.7)

according to [Erd54]†

∫ ∞

0
e−ρtbjIj(bt)dt =

(

ρ−
√

ρ2 − b2
)j

√

ρ2 − b2
Re ρ > b, j = 0, 1, . . .

and,
∫ ∞

0
e−pt n a−n In(at)

t
dt =

(

p +
√

p2 − a2
)−n

(A.8)

This results in the inverse Laplace transform of ζ2(s)
−j

e−(λ+µ)tkρk/2 Ik(2µt
√

ρ)

t

†Volume I, p.237, property [49]

74 Appendix A. Time-dependent M/M/1 behavior

Where Ik is the modified Bessel function of the first kind and with identity, inverting
results in,

pk(t) =
e−(λ+µ)t

λt

[

ρk+1
∞

∑

j=k+i+1

ρk/2Ij(2t
√

λµ)

+ ρ(k−i+1)/2
k−1
∑

j=(k−i)∨0

(2j − k + i + 1)I2j−k+i+1(2t
√

λµ)

]

(A.9)

Using the identity
2k

x
Ik(x) = Ik−1(x)− Ik+1(x),

then some simplification leads to the final solution is:

pk(t) = e−(λ+µ)t

[

ρ(k−i)/2Ik(2t
√

λµ) + ρ(k−i−1)/2Ik+i1(2t
√

λµ)

+ (1− ρ)ρk
∞

∑

j=k+i+2

ρ−j/2Ij(2t
√

λµ)

]

(A.10)

Appendix B

χ code

B.1 χ code M/M/1 or G(BM)nE

from random import *

from std import *

// chi 0.8

type lot = nat#real

const ni : nat = 1 //number of workstations

, np1 : nat = 2 //number of workstations plus 1

// generator

proc G (a:!lot, u, te: real, bufi: nat)=

|[buf, n:nat, d:->real

| n:=1; d:= negexp (te/u); buf:=ni*bufi

; *[buf > 0 -> !0, tab (), 0.0, nl (); buf:= buf - 1]

; *[true -> delta sample d; a!<n, time>; n:=n+1; !0, tab (), time, nl ()]

]|

// buffer

proc B (a:?lot, b:!lot, bufi: nat)=

|[xs:lot*, x:lot

| xs:= []

; *[len (xs) < bufi -> xs:= xs ++ [<0,0.0>]]

; *[true; a?x -> xs:= xs ++ [x]

| len (xs)>0; b!hd (xs) -> xs:= tl (xs)

]

]|

// machine

proc M (a:?lot, b:!lot, te: real)=

|[x: lot, d:->real

| d:= negexp (te)

; *[true -> a?x; delta sample d; b!x

]

]|

// exit

proc E (a:?lot)=

|[x:lot

75

76 Appendix B. χ code

| *[true; a?x -> !1, tab (), time, nl ()

]

]|

// cluster declaration

clus S (u,te: real, bufi: nat)=

|[a : (-lot)^np1, b : (-lot)^ni

| G (a.0,u,te,bufi)

|| i:nat <- 0 .. ni: B (a.i,b.i,bufi)

|| i:nat <- 0 .. ni: M (b.i,a. (i+1),te)

|| E (a.ni)

]|

xper (u,te: real, bufi: nat) = |[S (u,te,bufi)]|

B.2 χ code M/M/1/N queue

from random import *

from std import *

// chi 0.8

type lot = nat#real

const ni : nat = 2 // number of workstations

, np1 : nat = 3 // number of workstations plus 1

, nm1 : nat = 1 // number of workstations minus 1

proc G(a:!lot, rho, mu:real, z:?void)=

|[i:nat, d:->real

| i:=1; d:= negexp(1/rho/mu)

; *[true

-> z?; delta sample d; a!<i, time>

; i:= i + 1; !0, tab(), time, nl()

]

]|

proc B(a:?lot, b:!lot, N:nat, z:!void)=

|[xs:lot*, x:lot, sent: bool

| xs:= []; sent:= false

; *[len(xs) < N-1; z! -> sent:= true

| sent; a?x -> xs:= xs ++ [x]; sent:= false

| len(xs) > 0; b!hd(xs) -> xs:=tl(xs)

]

]|

proc M(a:?lot, b:!lot, te: real, z:?void)=

|[x: lot, d: -> real, buffull, idle: bool, t:real

| d:= negexp(te); buffull:= false; idle:= true

; t:= sample d + time

; *[true

-> a?x

; z?; delta sample d; b!x

]

]|

proc Me(a:?lot, b:!lot, te: real)=

|[x: lot, d:->real

| d:= negexp(te)

; *[true -> a?x; delta sample d; b!x

B.2. χ code M/M/1/N queue 77

]

]|

proc E(a: ?lot)=

|[x: lot

| *[true; a?x -> !1, tab(), time, nl()]

]|

// Cluster declaration

clus S(rho,mu: real,N: nat)=

|[a: (-lot)^np1, b: (-lot)^ni, z: (-void)^ni

| G(a.0,rho,mu,z.0)

|| i: nat <- 0 .. ni: B(a.i,b.i,N,z.i)

|| i: nat <- 0 .. nm1: M(b.i,a.(i+1),mu,z.(i+1)) // forall nm1 > 0

|| Me(b.nm1,a.ni,mu)

|| E(a.ni)

]|

xper(rho,mu: real, N: nat) = |[S(rho,mu,N)]|

78 Appendix B. χ code

Appendix C

Averaging discrete events

Two methods of averaging can be distinguished:

Event averaging event averaging, takes the mean of events at every point in time of
the simulation clock. This results in an average at every time unit. The only
problem that occurs is at times where two or more events occur. For example,
event i ends and event i+1 starts. The question arises which event has to be used
in the average. In this case, only input events are used. Consequently, a graph
can be drawn as in Figure 3.3(a). Herein, the policy is used to take the mean of
ti,1, ti,2, . . . , ti,n for n simulations at event i.

Time-averaging The second possibility is to take the event numbers at a certain
time τ . So, for every τ all events are averaged, see Figure 3.3(a).

Here, the methods have been compared with each other. Note that, only the points are
compared at the number events only, so at event = 0, 1, 2, For these values, the
times are substracted from each other result in an error. It has been performed for both
signals, input and output in Figure C.1. From Figure C.1, it is obvious that output
behavior is more stochastic in this case. This is logical since input is Poisson process
and the output evolves to a Poisson process in time of the simulation clock.

79

80 Appendix C. Averaging discrete events

1000 5000 10000
0

0.2

0.4

0.6

0.8

er
ro

r

number of experiments

(a) Input error

1000 5000 10000
0

0.2

0.4

0.6

0.8

er
ro

r

number of experiments

(b) Output error

Figure C.1: Errors between averaging methods in relation with number of simulation

Appendix D

Powering approximations

This appendix treats reliability of the Taylor and Padé approximations when powered.
In the following equations, two suggestion are made. Herein the Taylor approximation
can and the Padé approximation cannot be powered:

(

T
(

f(x)
)

)m
= T

(

fm(x)
)

(D.1)
(

P
(

f(x)
)

)m
6= P

(

fm(x)
)

, (D.2)

This holds for a same order approximation. In the functions f(x) used in this thesis,
the Taylor approximation can be powered without the loss of accuracy, see (D.1). The
Padé approximation however cannot be powered, since the solutions do not have to be
the equal of (D.2). First, (D.1) will be treated and (D.1) can be written as:

Tn
(

f(x)
)

= f(0) + f ′(0)x +
1

2!
f ′′(0)x2 + · · ·+ 1

(n− 1)!
f (n−1)(0)x(n−1) + O(xn). (D.3)

With m = 2, (D.3) becomes:

(

f(0)+f ′(0)x+· · ·+ 1

(n− 1)!
f (n−1)(0)x(n−1)+O(xn)

)2
= f2(0)+2f(0)f ′(0)x+· · ·+O(xn)

Tn
(

f2(x)
)

= f2(0) + 2f(0)f ′(0)x + · · ·+ O(xn)

When, a second order Taylor approximation is considered for h(s) = (s + a) to the mth
power around s = 0:

T2(h(s)) = a + 2as + O(s2)

T2(hm(s)) = a2m + 2ma2m−1s + O(s2).

Now, if T2(h(s)) is powered, T2(h(s))m has to result in the same solution:

(

T2(h(s))
)m

=
(

a + 2as + O(s2)
)m

= a2m + 2ma2m−1s + O(s2).

81

82 Appendix D. Powering approximations

For Taylor series, a powering a approximation is not different than taking the original
function to the power. For the powering of the Padé approximation the structure of
Example 4.1 is used:

P5(T4(s)) =
p1s + p0

q2s2 + q1s + q0

P5(T m
4 (s)) =

p1s + p0

q2s2 + q1s + q0
.

With m = 2, these equations give the following solution:

P5(T4(s))2 =
2 (λ+µ)

µ2−2 λ µ+λ2 s + 1
(

−2 µ
−µ3+3 λ µ2−3 µ λ2+λ3 + 4 µ2

(µ2−2 λ µ+λ2)2

)

s2 + 4 µ
µ2−2 λ µ+λ2 s + 1)

(D.4)

P5(T 2
4 (s)) =

4 λ2

3 λ3−7 µ λ2+5 λ µ2−µ3 s + 1

µ2+λ2−6 λ µ
µ4−6 µ3λ+12 µ2λ2−10 λ3µ+3 λ4 s2 − 2 (λ2−4 λ µ+µ2)

3 λ3−7 µ λ2+5 λ µ2−µ3 s + 1
. (D.5)

Obviously, (D.4) and (D.5) are not the same. Consequently, (D.2) holds since both
methods do not have to be equal.

In short, Taylor approximations can be powered without accuracy loss in comparison
with the original function. Whereas, in a Padé approximation power loss can be present
in comparison with the original function.

Appendix E

Markov model of a GW2W2E
queue

The DEM of Appendix B can be formed with two workstations. Then, the GWnWnE
originates and together with a single buffer and machine place, the GW2W2E is born.
When the chi code of an GW2W2E process is translated to Markov, it does not corre-
spond with the tandem M/M/1/N model. Therefore, the standard M/M/1/N Markov
model has to be adjusted to be able to describe the GW2W2E queue. The Markov
description requires the specification of all states in the system of the GW2W2E queue.
The following states are present in the system for the idle first workstation:

(0,0) Both workstations are empty;

(0,1) First Workstation is empty and second workstation is occupied by a single lot;

(0,2) First Workstation is empty and second workstation is occupied by two lots (full).

A single blocking situation at the first workstation is present when:

(0,3) First Workstation tries to send a lot and second workstation is full. Thus,
blocking occurs between the first and second workstation.

Of course, the machine of the first workstation can be occupied with a single lot:

(1,0) First Workstation is occupied by a single lot and second workstation is empty;

(1,1) Both workstations are occupied by a single lot;

(1,2) First Workstation is occupied by a single lot and second workstation is full.

Again, a blocking possibility occurs when machine has finished processing and the sec-
ond workstation is full:

83

84 Appendix E. Markov model of a GW2W2E queue

(1,3) First buffer and machine are occupied by a single lot. Second workstation is full.

Now, the situations with a full first workstation can be looked upon:

(2,0) First workstation is full and second workstation is empty;

(2,1) Both workstations is full and second workstation is occupied by a single lot;

(2,2) Both workstations are full.

The state for the blocked situation is described as:

(2,3) First workstation is full and second workstation is full. The generator and the
first workstation try to send a lot.

In this case, a double blocking situation occurs. Blocking happens between the generator
and the first workstation and between the first and second workstation. The three
last states of the GW2W2E system contain blocking between the generator and first
workstation:

(3,0) Generator blocks, first workstation is full and second workstation empty;

(3,1) Generator blocks, first workstation is full and second workstation is occupied by
a single lot;

(3,2) Generator blocks and both workstations are full.

With the state specifications, the corresponding wip-levels can be formed, as can be seen
in Table E.1 All states can be reached via each other. So, all states are connected with

w states

0 (0,0)

1 (0,1), (1,0)

2 (0,2), (1,1), (2,0), (3,0)

3 (0,3), (2,1), (2,2), (3,1)

4 (1,3), (2,2), (2,3), (3,2)

Table E.1: Wip-levels and corresponding states

each other and with the use of the Markov theory they can be linked using arrival rate λ
and process µ1 and µ2, of machines one and two respectively. In Figure E.1, an illustra-
tion has been made, the transition-state diagram. With Figure E.1, a time-dependent

85

(0,0) (0,2)

(1,2)(1,1)(1,0)

(0,1) (0,3)

(1,3)

(2,0) (2,2)

(3,2)(3,1)(3,0)

(2,1) (2,3)

λλλ λ

λλ λ

λλλ λ

µ1µ1µ1

µ1µ1µ1

µ1µ1µ1

µ2

µ2

µ2µ2

µ2

µ2

µ2

µ2

µ2µ2

µ2

Figure E.1: State transition diagram of the GW2W2E model

probability notation can be derived easily. The following forward ODE probability
relations can expressed:

dP00(t)

dt
= −λP00(t) + µ2P01(t)

dP01(t)

dt
= −(λ + µ2)P01(t) + µ1P10(t) + µ2P02(t)

dP02(t)

dt
= −(λ + µ2)P02(t) + µ1P11(t) + µ2P03(t)

dP03(t)

dt
= −(λ + µ2)P03(t) + µ1P12(t)

dP10(t)

dt
= −(λ + µ1)P10(t) + λP00(t) + µ2P11(t)

dP11(t)

dt
= −(λ + µ1 + µ2)P11(t) + λP01(t) + µ1P20(t) + µ2P12(t)

dP12(t)

dt
= −(λ + µ1 + µ2)P12(t) + λP02(t) + µ1P30(t) + µ2P13(t)

dP13(t)

dt
= −(λ + µ2)P13(t) + λP03(t) + µ1P22(t)

dP20(t)

dt
= −(λ + µ1)P20(t) + λP10(t) + µ2P21(t)

dP21(t)

dt
= −(λ + µ1 + µ2)P21(t) + λP11(t) + µ1P30(t) + µ2P22(t)

dP22(t)

dt
= −(λ + µ1 + µ2)P22(t) + λP12(t) + µ1P31(t) + µ2P23(t)

dP23(t)

dt
= −µ2P23(t) + λP13(t) + µ1P32(t)

86 Appendix E. Markov model of a GW2W2E queue

dP30(t)

dt
= −µ1P30(t) + λP20(t) + µ2P31(t)

dP31(t)

dt
= −(µ1 + µ2)P31(t) + λP21(t) + µ2P32(t)

dP32(t)

dt
= −(µ1 + µ2)P32(t) + λP22(t).

Appendix F

Control

In this appendix, some aspects of the implementation of a controller are further clarified.
In the next section, the Simulink model is visualized. The last section deals with the
codes of χ and Python.

F.1 Simulink

The Simulink model of Figure F.1 has been used for the implementation of the controller.
In the figure, a feedback law will be created with steady state values u ss and x ss and

Figure F.1: Simulink model

the observer. With an utilization of rho = 0.9 and µ1 = µ2 = 1.0, the steady state
values will be:

u ss = 0.9

x ss =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 2003
]

.

A control gain K amplifies x ss and x hat (observer outcome). The control gain K
has been computed with the dynamical model of the observer. The overall input of the
plant will be:

u = uss −K(x− xss)

87

88 Appendix F. Control

The Simulink model consists of two components, the observer and the plant. The
observer in the model is visualized in Figure F.2. The observer contains the state space

Figure F.2: observer

model derived from the Markov theory. The state space includes the following matrices:

A =

−29.9 −6.5 −0.9 −0.2 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0
64 0 0 0 0 0 0 0 0 0 0 0 0 0
0 64 0 0 0 0 0 0 0 0 0 0 0 0
0 0 32 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/8 0

B = [1 0 0 0 0 0 0 0 0 0 0 0 0 0]T

C = [1.0 .47 .10 .026 .0094 .0047 .0035 .0019 .0015 .0009 0.0007 .0008 .0010 .0012] .

The Control gain K is computed with Matlab’s lqr function. Herein, state space ma-
trices A and B are used of the observer. The other two requirements of the lqr have
been chosen as:

Qlqr = CT · C
Rlqr = 1,

where C is a state space matrix from the observer. With the lqr algorithm, the control
gain becomes

K = [0.7163 .3308 .0705 .0183 .0065 .0032 .0024 .0013 .0010 .0006 .0005 .0005 .0007 .0008] .

The observer gain L has been determined with the rule of thumb Franklin, Emami-
Naeini and Powell [Fra94] in which L can be chosen to be two to six times faster than
the control gain K. In this case, the observer gain has been chosen to be two times
faster than the control gain. The integrator of the observer has an initial value which

F.2. Implementation codes 89

is set to the final x̂ for each simulation run. The initial value is set to zero, which
correspond with an initial empty system.

Finally, the plant communicates with Matlab’s workspace which is addressed by the χ
file via pymath. The plant model can be seen in Figure F.3. The ode45 function has

Figure F.3: plant

been used to solve the Simulink model.

F.2 Implementation codes

χ code

// chi 0.8

// GWnE.chi -> for describing G (Wn)^ (ni)E queues

from random import *

from std import *

from control import *

type lot = nat#real

const ni : nat = 2 //number of workstations

, np1 : nat = 3 //number of workstations+1

proc G (a:!lot, b:?void, rho, mu :real)=

|[dum, trysend: bool, i, wip: nat, u:->real

, tsample, lambda, dt, texp, tprev, tsend: real

| i:= 0; wip:= 0; u:= negexp (1.0)

; lambda:= rho*mu; dt:= 0.01

; texp:= sample u; tprev:= 0.0

; dum:= openmatlab (); lambda:= runmodel (n2r (wip))

; tsend:=max (time, tprev + texp/lambda)

; *[true; b? -> wip:= wip - 1

| true; delta tsample - time

-> lambda:= runmodel (n2r (wip))

; tsend:=max (time, tprev + texp/lambda)

; tsample:= dt + time

| not trysend; delta tsend - time

-> trysend:= true; wip:= wip + 1

| trysend; a!<i,time>

-> trysend:= false; i:= i + 1

; tprev:= time; texp:= sample u

; tsend:= texp/rho/mu + time

; !0, tab (), time, nl ()

]

; dum:= closematlab ()

]|

proc B (a:?lot, b:!lot, N:nat)=

|[xs:lot*, x:lot

| xs:= []

90 Appendix F. Control

; *[len (xs) < N-1; a?x -> xs:= xs ++ [x]

| len (xs) > 0; b!hd (xs) -> xs:= tl (xs)

]

]|

proc M (a:?lot, b:!lot, te: real)=

|[x: lot, d:->real

| d:= negexp (te)

; *[true -> a?x; delta sample d; b!x

]

]|

proc E (a:?lot, b:!void)=

|[x:lot

| *[true -> a?x; b!; !1, tab (), time, nl ()

]

]|

// Cluster declaration

clus S (rho,mu: real,N: nat)=

|[a : (-lot)^np1, b: (-lot)^ni, z:-void

| G (a.0,z,rho,mu)

|| i: nat <- 0 .. ni: B (a.i,b.i,N)

|| i: nat <- 0 .. ni: M (b.i,a. (i+1),mu)

|| E (a.ni,z)

]|

Python code

control.py

#!usr/bin/python2.2

Version 2 with Matlab interfacing

from Numeric import *

import pymat

global H

def runmodel (w):

pymat.put (H,’w’,[w])

pymat.eval (H,’wip0=[0 w]’)

pymat.eval (H,"if exist (’xFinal’)==0, xFinal=0, disp (num2str (xFinal)), end")

pymat.eval (H,’xFinal’)

pymat.eval (H,"sim (’impl_simlink50’,[0 .01])")

pymat.eval (H,’y=lambda1 (end)’)

y=pymat.get (H,’y’)

return y[0]

def openmatlab ():

global H

H=pymat.open ("matlab -nosplash")

return 1

def closematlab ():

pymat.close (H)

return 1

F.2. Implementation codes 91

External library file

\\ control.ext

language "python"

file "control"

ext runmodel (w: real)->real

ext openmatlab ()->bool

ext closematlab ()->bool

92 Appendix F. Control

