
Discrete event system analysis using the

max-plus-algebra

D.Wetjens

SE 420388

Master’s Thesis

Supervisor: Prof. dr. ir. J.E. Rooda

Coaches: Dr. ir. A.A.J. Lefeber

Ir. J.A.W.M. van Eekelen

Eindhoven University of Technology

Department of Mechanical Engineering

Systems Engineering Group

Eindhoven, June 2004

Preface

Almost six years ago, September 1998, I started my study Mechanical Engineering at
the Eindhoven University of Technology. My interests in formula one cars, airplanes,
and large factories were the main reasons to choose for the world of technique. After
three years of basic courses and group work, a choice of specialization had to be made.
I decided to join the Systems Engineering Group (SE) of Professor Rooda. This group
develops methods, techniques and tools for design, optimization and control of advanced
industrial systems. After some courses with respect to the area of SE, I enjoyed two
external internships. During the first internship, in cooperation with label factory
Royal Sens in Rotterdam, I studied their product stream. During my second internship
I stayed at the Nanyang Technological University (NTU) in Singapore. Beside working
at my assignment of comparing two different dispatching rules I enjoyed to live in a
multi-cultural (Asian) environment. Next to my life as a student I worked two summers
as a travel guide in Spain for a company that organizes holidays for Dutch teenagers.
Here, I learned how to organize, cooperate with all kinds of people, solve the most
unbelievable problems and especially develop myself as a person.

This master’s thesis is a result of a final assignment at the TU/e. During this last periode
I have mentioned that besides my technological interests my interests in business topics
have grown. Therefore, I have decided to start the Master of Science in Management
Program of Nyenrode University, the Netherlands Business School.

I want to thank my coaches Erjen Lefeber and Joost van Eekelen for their pleasant
and enthusiastic support and discussions, Ad Kock for reviewing my report, Professor
Rooda for his support and advices with respect to my future plans, and Mieke Lousberg
for her interests and nice conversations.
A special thank goes to my mom and dad. They have always supported and inspired
me during my study. Their sober and realistic view on life guided me through rel-
ative tough times. I love you! I also want to thank my friends Roel, Simon, and
Rob. Thanks guys, I enjoyed studying with you. Last but certainly not least I want to
thank my girlfriend Majella for her support and patience during this busy recent period.

Dennis Wetjens
Eindhoven, June 2004.

i

ii Preface

Assignment

Student D. Wetjens

Supervisor Prof. dr. ir. J.E. Rooda

Advisors Dr. ir. A.A.J. Lefeber
Ir. J.A.W.M. van Eekelen

Start September 2003

Finish July 2004

Title Discrete Event System analysis using the max-plus-algebra

Subject

One approach to model and control manufacturing systems are Discrete Event Systems
(DESs). For many years now, DESs, like flexible manufacturing systems, telecommu-
nication networks, traffic control systems and logistic systems have been studied and
analyzed. Therefore, many different modelling and analysis methods exist for DESs.
Up to now, the most widely used technique to study DESs certainly is computer simu-
lation, but sometimes analytic (mathematical) techniques can provide a better insight
in the effect of parameter changes in DESs. Max-plus algebra is such a technique. The
basic operations of the max-plus-algebra are maximization and addition. Using the
max-plus-algebra, some properties of the system can fairly easily be derived, whereas
in some cases brute force simulation might require a large amount of computation time.
On the other side, the max-plus-algebra makes it possible to control DESs, by using
extended model predictive control (MPC).

Assignment

Analyse and try to understand the max-plus-algebra ’language’ by literature investiga-
tion. Study (simple) manufacturing systems by using the max-plus-algebra; important

iii

iv Assignment

items are determination of properties of the system, controlling of the systems and the
limits of the algebra. The manufacturing systems that are going to be used will have de-
terministic process times. Present the results in a report and provide recommendations
for further research.

Notation

In this report all sorts of symbols and abbreviations are used. It is possible that these are
not familiar to the reader. These notations, and their short explanation, are represented
here.

List of symbols

R set of the real numbers
Z set of the integers

(a, b) open interval in Z : (a, b) = {x ∈ Z|a < x < b}
∼ asymptotic equivalence

x̄(k) state vector at sample k
ū(k) input vector at sample k
ȳ(k) output vector at sample k
ỹ(k) predicted output vector at sample k

ŷ(k + j|k) predicted output element of ỹ(k) at sample k + j, based
on information at sample k

xT transpose of vector x
ai ith component of the vector a

aij entry of the matrix A on the ith row and the jth column
|x| 1-norm of the vector x
⊕ max-algebraic addition
⊗ max-algebraic multiplication
ε zero element for max-plus-algebra: ε = −∞

En n by n max-algebraic identity matrix
εm×n m by n max-algebraic zero matrix
A⊗n

nth max-algebraic power of the matrix A
Pi product of type i
di deterministic process time of machine i

dij deterministic process time of machine i for product Pj

v

vi Notation

Jin tracking error or output cost criterion
Jout control effort or input cost criterion

J objective function
Nc length of control horizon
Np length of prediction horizon

λ, and µ MPC weighting parameters
x0 initial state vector (= x(0))
ρ average duration of a production cycle

k0 length of impuls response
Gk response matrices or Markov parameters

4s(k) s(k) − s(k − 1)
ū∗(k) optimal input sequence of the relaxed

and the original optimization problem
ȳ∗(k) optimal output sequence of the relaxed

optimization problem
ȳ](k) optimal output sequence of the original

optimization problem

List of abbreviations

DES Discrete Event System
MPC Model Predictive Control
SISO Single Input, Single Output

MIMO Multi Input, Multi Output
FIFO First In, First Out

LP Linear Programming
SQP Sequential Quadratic Programming

ELCP Extended Linear Complementarity Problem

Summary (in Dutch)

Bij academisch onderzoek en in de industrie gebruikt men sinds vele jaren simulatie
methoden en analytische modellen om inzicht te verkrijgen in het gedrag van fabricage
systemen. Het gedrag van deze systemen wordt middels deze modellen beschreven door
wiskundige vergelijkingen. Deze vergelijkingen kunnen gebruikt worden voor het anal-
yseren, optimaliseren en regelen van systemen. Sommige event gestuurde processen in
de industrie kunnen worden geanalyseerd middels discrete modellen. Deze industriële
systemen worden Discrete-Event Systemen (DES) genoemd. Typische voorbeelden van
DES zijn transport systemen, communicatie netwerken, logistieke systemen en flexibele
fabricage systemen. Het modelleren en analyseren van DES kan gedaan worden middels
verschillende technieken. Computersimulatie is, tot nu toe, de meest gebruikte techniek
om DES te bestuderen en vereist een hoge mate van abstractie van het systeem. Dit
leidt tot een grote mate van overeenstemming tussen het model en het werkelijke sys-
teem. Echter leidt computer simulatie niet altijd tot een duidelijke verklaring van het
vertoonde gedrag van het systeem bij een parameter verandering. Een alternatief voor
het analyseren van een DES is het gebruik van een wiskundig model.

De max-plus-algebra is zo’n wiskundige techniek die gebruikt kan worden voor het
analyseren en modelleren van fabricage systemen. Systemen die gemodelleerd kunnen
worden met alleen de max en de plus operatoren worden max-lineair in de max-plus-
algebra en kunnen geschreven worden middels een max-algebräısche toestandsvergeli-
jking. De max-plus-algebra bestaat uit twee basis operatoren: maximalisatie of de
max-plus optelling, ⊕ en de optelling of max-plus vermenigvuldiging, ⊗. Vergeleken
met de conventionele algebra, wordt de max vervangen door ⊕ en de + door ⊗.

Het belangrijkste doel van dit project is om te bepalen of de max-plus-algebra een
bruikbare techniek is voor het analyseren, modelleren en regelen van fabricage systemen.
Twee belangrijke objecten in de industrie zijn machines en buffers met een (on)eindige
capaciteit. Deze en andere basis elementen, zoals samenvoegen en batchprocessing,
zijn gemodelleerd met behulp van de max-plus-algebra. De modellen van de basis
elementen, zoals machines en buffers, hebben twee ingaande en twee uitgaande stromen.
De ene ingang ontvangt informatie betreffende de beschikbaarheid van de gekoppelde
structuur in stroomafwaartse richting, terwijl de andere ingang producten ontvangt van
de structuur in stroomopwaartse richting. Een soortgelijke situatie geldt voor de twee
uitgangen van het model. Het modelleren van een compleet fabricage systeem wordt

vii

viii Summary (in Dutch)

gedaan door de processen eerst individueel te modelleren en deze vervolgens te koppelen.

Om de geschiktheid van de max-plus-algebra te evalueren is een theoretische case ge-
analyseerd. In deze case is een compleet fabricage systeem bestaande uit verschillende
structuren en verschillende soorten gedrag gemodelleerd met behulp van de max-plus-
algebra en het formalisme χ. Zowel de max-plus-algebra als χ beschrijven het gedrag
van een systeem exact. Tijdens het gebruik van de max-plus-algebra zijn een aantal za-
ken waargenomen. De elegante en overzichtelijke toestandsbeschrijving kan veel inzicht
geven in het gedrag van een fabricage systeem. Dit inzicht vermindert echter als de sys-
temen groter en complexer worden. Dit wordt veroorzaakt door het groter worden van
de systeemmatrices. De max-plus-algebra is, tot nu toe, nog niet bruikbaar als simu-
latie gereedschap ter bepaling van de invloed van een bepaalde parameter. Hierbij moet
bijvoorbeeld gedacht worden aan de invloed van het aantal machines of aantal buffer
plaatsen met betrekking tot de prestaties van een fabricage systeem. Daarom wordt
aanbevolen om automatisering door te voeren bij het gebruik van de max-plus-algebra
om systemen te analyseren en te modelleren.

Een tweede doel van dit project is het gebruik van ’Model Predictive Control’ (MPC) in
combinatie met de max-plus-algebra. In dit onderzoek is MPC gebruikt om de uitgang
van het fabricage systeem van de theoretische case te regelen met betrekking tot een
bepaald referentie signaal. Deze regelmethode bepaalt een optimaal ingangssignaal met
betrekking tot een doelfunctie. Het optimaliseren is gedaan met behulp van Lineair
Programmeren (LP).

Waargenomen is, gedurende de implementatie van de max-plus-algebra in combinatie
met MPC, dat het gebruik van de max-plus-algebra en de conventionele algebra zorgt

voor moeilijkheden. Vooral het gebruik van ε
def
= −∞ en de max-algebräısche toestands-

beschrijving in combinatie met de conventionele algebra zorgt voor een onordelijk geheel
en is tijdrovend. Het gebruik van de elegante toestandsbeschrijving om het gedrag van
een fabricage systeem te beschrijven zorgt voor een overzichtelijk en inzichtelijk geheel.
Echter, dit voordeel vervaagt als de algebra wordt gebruikt in combinatie met de con-
ventionele algebra.

Het fabricage systeem dat is gebruikt in de theoretische case bewijst geschikt te zijn als
model en voor analyse. Het dominante gedrag van enkele processen in het systeem, de
van te voren vastgestelde route van de producten door het systeem, en de deterministis-
che bewerkingstijden maken dat het fabricage systeem helaas niet het vooraf gewenste
dynamische gedrag vertoont. Hierdoor lijkt het regelen van een fabricage systeem met
behulp van de max-plus-algebra en MPC een onordelijk en triviaal geheel. Een case
studie met een fabricage systeem dat een meer dynamisch gedrag vertoont zou meer
informatie kunnen geven over de kracht van de combinatie van de max-plus-algebra en
MPC.

Summary

Since many years, academic research and industrial practice use simulation- and ana-
lytical models to gain insight in the behavior of manufacturing systems. These models
are sets of mathematical equations that describe the behavior of a system. They can be
used for analysis, optimization and control. Some event-driven processes in industry can
be analyzed by means of discrete models. These industrial systems are called Discrete
Event Systems (DESs). Typical examples of DESs are transportation systems, commu-
nication networks, logistics systems, and (flexible) manufacturing systems. Modelling
and analysis of DESs can be done using many different techniques. Up to now, the
most widely used technique to study DESs certainly is computer simulation. Computer
simulation can require a high degree of detail in the model which leads to a high degree
of correspondence between the model and the real system. However, computer simula-
tions do not always give a real understanding and explanation of the effects of parameter
changes on the behavior of the system. An alternative way of analyzing DESs, is using
mathematical models.

The max-plus-algebra is such a mathematical technique. It can be used to model and
analyze manufacturing systems. Systems that can be modelled using only maximiza-
tion (max) and addition (plus) become max-linear in the max-plus-algebra and can be
written using the max-algebraic state-space description. The max-plus-algebra consists
of two basic operators: maximization or the max-plus addition, ⊕ and addition or the
max-plus multiplication, ⊗. Compared to the conventional algebra, the max is replaced
by ⊕ and the + by ⊗.

The main objective of this project is to determine whether the max-plus-algebra is suit-
able as a technique to model, analyse and control manufacturing systems. In industry,
main elements of manufacturing systems are machines and (in)finite buffers. These el-
ements and some other basic structures, for instance merging and batching, have been
modelled using the max-plus-algebra. In these models, main elements such as machines
and buffers have two incoming streams and two outgoing streams. One input receives
availability information of the coupled structure from the downstream direction, while
the other input receives products from the coupled structure in the upstream direction.
A similar approach is valid for the outputs of the system. Modelling an entire manu-
facturing system can be done best by individually modelling the processes and coupling
these structures afterwards.

ix

x Summary

To evaluate the suitability of the max-plus-algebra a theoretical case has been analyzed.
In this case, a manufacturing system with all sorts of structures and policies has been
modelled using both the max-plus-algebra and the formalism χ. Both tools describe
the behavior of the system exactly. Using the max-plus-algebra, many observations
are done. The elegant state-space description can provide good insight in the behavior
of a system. This insight decreases if the system becomes larger and more complex
due to the increased size of the system matrices. The max-plus-algebra is, up to now,
not useful if simulations are required to determine the influence on certain parameters
or the performance of a system with respect to e.g. the number of machines or the
number of buffer places. Some automation in combination with the max-plus-algebra
is recommended.

A second aim of this research project is to use Model Predictive Control (MPC) in com-
bination with the max-plus-algebra. In this research, MPC is used to control the output
sequence of the manufacturing system of the theoretical case with respect to a certain
reference signal. This control approach finds an optimal input sequence with respect
to a certain objective function. This optimization is done using Linear Programming
(LP).

An observation obtained during the implementation of the max-plus model in combi-
nation with MPC, is that the use of both the max-plus-algebra and the conventional

algebra causes some difficulties. Especially the use of ε
def
= −∞ and the max-algebraic

state-space description in combination with the conventional algebra results in a some-
times untidy and time-consuming approach as a whole. The elegant state-space descrip-
tion of the manufacturing system gains an orderly effect, but this advantage decreases
if this algebra is used in combination with the conventional algebra.

The manufacturing system that is used as a theoretical case proved to be a good study
for both modelling and analysis. Unfortunately the dominant behavior of certain pro-
cesses and the fixed product route and deterministic process times did not turn out
to have the diverse dynamic behavior as desired. Therefore, controlling a manufactur-
ing system in combination with the max-plus-algebra and MPC seems to be untidy
and trivial as a whole. However, a more dynamic case study might give some more
information about the strength of this combination.

Contents

Preface i

Assignment iii

Notation v

Summary (in Dutch) vii

Summary ix

1 Introduction 1

2 Introduction to the max-plus-algebra 5

2.1 Basic operations . 5

2.2 Main elements and standard matrices 7

2.3 Summary . 9

3 Modelling manufacturing systems using the max-plus-algebra 11

3.1 Building a max-plus model . 11

3.2 General approach . 13

3.3 Introduction of a new structure . 14

3.4 Finite and infinite buffers . 17

3.5 Multi product structures . 19

3.6 Coupling structures . 22

3.7 Re-entrancy . 26

xi

xii Contents

3.8 Model reduction . 31

3.9 Summary . 32

4 Theoretical case 33

4.1 General information . 33

4.2 Infinite buffer . 34

4.3 Machines 1 and 2 . 37

4.4 Finite buffer . 38

4.5 Batch machine . 42

4.6 Coupling . 45

4.7 Output explanation and validation . 46

4.8 Discussion . 51

5 Control of a manufacturing system 55

5.1 Model Predictive Control . 55

5.2 The standard MPC problem . 57

5.3 Tuning the MPC parameters . 64

5.4 MPC implementation and simulation results 66

5.5 Discussion . 76

6 Conclusions and recommendations 77

6.1 Conclusions . 77

6.2 Recommendations for future research . 81

Bibliography 85

A Algorithms to calculate system matrices 87

B Details model reduction 89

B.1 The minimal system order . 90

B.2 Minimal state-space realization . 90

B.3 Summary . 92

Contents xiii

C System matrices theoretical case 93

D Matlab model of the theoretical case 97

E χ validation files 101

E.1 Standard χ model . 101

E.2 Specified χ model . 106

E.3 Simulation results of both χ files . 113

F MPC implementation 117

G Matlab file of MPC implementation 127

G.1 mainfile.m . 127

G.2 calcHg.m and process.m . 133

xiv Contents

Chapter 1

Introduction

Background

According to the neo-Darwinistic view, evolution takes place through the creation of
random combinations. Some of these evolutions will result in a struggle for existence.
Some combinations will survive and proliferate, while other perish. This is a typical
example of trial and error-elimination. In industry, this trial and error method is not
desirable due to the fact that time and money would be wasted. Instead of trial and
error, models are used to predict the behavior of processes in industry. Since many years,
academic research and industrial practice use simulation- and analytical models. An
important class of models consists of mathematical equations that describe the behavior
of a system and they can be used for analysis, optimization and control. During the
last decade, these models have become more complex due to the increased complexity
of these systems.

Some event-driven processes in industry can be analyzed using discrete models. These
industrial systems are called Discrete Event Systems (DESs). Typical examples of
DESs are transportation systems, communication networks, logistics systems, (flexible)
manufacturing systems, parallel processing systems, and traffic control systems. DESs
are characterized by two main items. First, their dynamics are event-driven instead
of time-driven, in other words, the behavior of a DES is governed by occurrences of
different types of events over time rather than ticks of a clock [Sch96]. Compared to
conventional time-driven systems, the expired time between event occurrences does not
necessarily have a visible effect on the system. Second, at least some of the natural
variables necessary to describe a DES are discrete [Cas95]. Examples of events are an
arrival of a product at a machine, the completion of a product on a machine, an arrival
of a product in a buffer or a machine breakdown. The intervals between events do not
have to be identical, they can be deterministic or stochastic [Cas95]. The theory of
DESs has been developed enormously the last decades.

1

2 Chapter 1. Introduction

Modelling and analysis of DESs

A certain class of DESs exists where synchronization, but no concurrency takes place.
Synchronization requires the availability of several resources (e.g. machines) at the
same time. Concurrency appears when a choice has to be made between the use of
several resources, or, in other words, the product flow through the systems is variable
[Sch96]. These general DESs can be modelled using only the maximization (max) and
the addition (plus) operations, which leads to a non-linear description in conventional
algebra.

Modelling and analysis of DES can be done using many different techniques (Petri nets,
finite state machines, automata, formal languages, process algebra, computer languages,
etc). Up to now, the most widely used technique to study DESs certainly is computer
simulation [Sch96], such as χ formalism. Computer simulation can require a high degree
of detail in the model which leads to a high degree of correspondence between the model
and the real system. A computer simulation does not always give a real understanding
of the effects of parameter changes on properties of the system. An alternative way of
analyzing DESs, is mathematical modelling.

The max-plus-algebra is such a mathematical technique to analyse and model DESs.
Systems that can be modelled using only maximization (max) and addition (plus),
become ’linear’, when formulated in the max-plus-algebra. Such a model is called max-
linear. Compared to the linear system algebra, the max-plus-algebra has not been
developed equally far. The max-plus-algebra consists of two main basic elements: max-
imization or the max-plus addition, ⊕, and addition or the max-plus multiplication, ⊗.
Compared to the conventional linear algebra, the max is replaced by ⊕ and the + by
⊗. Other properties (e.g. eigenvalues) can be translated from the conventional algebra
to the max-plus-algebra.

To illustrate the use of the max-plus-algebra, consider a single lot machine with a known,
deterministic process time that can always send finished products to a free output. In
this simple example, the variables of interest are the arrival and the departure times
of the products. The machine can start working if it received its raw material and if
the previous (finished) product has been sent away. These two conditions reflect the
synchronization feature. The start of the process is the maximum of the arrival time of
the raw material and the time instant at which the previous product leaves the machine.
Hence, the max operation is the basic operator through which variables interact. The
departure time is the sum of the time instant at which a machine starts processing and
the deterministic process time. There is no concurrency since the route of the prod-
uct is fixed. This implies that an algebra exists in which DESs that do not involve
concurrency can naturally be modelled as max-linear systems [Bac92]. This machine
example shows that the max is the essential operation that captures the synchroniza-
tion phenomenon. Start times are computed from arrival and departure times. This
example also indicates that the conventional addition operation is necessary to add the
deterministic process time to the time instant the machine starts working. Using these

3

main max-plus operations, entire manufacturing systems can be modelled using the
max-plus-algebra.

Previous research and objectives

Previous work of Baccelli, Cassandras and de Schutter [Bac92, Cas95, Sch96, Sch97]
show that DESs can be modelled and analyzed using the max-plus-algebra. In general,
all sorts of DESs have been modelled in the max-plus-algebra (e.g. railway systems
and manufacturing systems). The modelled and analyzed manufacturing systems are
rather small and simple and, up to now, not suitable to model entire manufacturing
systems. In [Sch00a] and [Sch01] a Model Predictive Control (MPC) control frame-
work is presented for max-plus-linear systems. This framework is only used on small
manufacturing systems.

The main objective of this project, is to determine whether the max-plus-algebra is
suitable as a tool to model, analyse and control manufacturing systems. Therefore, in
this Master’s thesis only the modelling of max-linear manufacturing systems is consid-
ered. A systematic approach will be presented to model large systems which contain
all sorts of structures and policies. All different kinds of structures (and its policies)
are modelled separately. The model of the entire manufacturing system is obtained
by coupling all the small structures. Another objective is to use MPC to control the
manufacturing systems.

Outline

In this Master’s thesis only DESs of manufacturing systems that can be described by
max-linear time-invariant state-space models are considered. Here, a time-invariant sys-
tem is a system that responses to a certain input sequence and that is not dependent on
absolute time [Sch96]. These systems are modelled and analyzed, using the max-plus-
algebra. In Chapter 2, an introduction of the max-plus-algebra is given. The theory
is discussed using some examples to make the algebra clear. In Chapter 3, the mod-
elling of manufacturing systems, using the max-plus-algebra is discussed. This is done
by introducing structures of a machine and a(n) (in)finite buffer. Using this module
a more extended manufacturing system can be modelled with a general approach. In
this chapter, several structures are modelled using the max-plus-algebra. The resulting
models of entire manufacturing lines unfortunately become large for simple structures.
To reduce the number of states, at the end of this chapter a method of model reduction
is discussed. In Chapter 4, a theoretical case containing several structures is worked out
in detail to demonstrate how to use max-plus-algebra to model (large) manufacturing
systems. In Chapter 5, the manufacturing system that is modelled in Chapter 4 is con-
trolled using Model Predictive Control (MPC). Using this control method, the output

4 Chapter 1. Introduction

sequence of the system is controlled with respect to a certain reference signal. In the
last chapter, conclusions and recommendations for future research are discussed.

Chapter 2

Introduction to the
max-plus-algebra

Most readers are familiar with the conventional algebra. However, the conventional
algebra differs significantly from the max-plus-algebra. In this chapter the basic oper-
ations, the main elements and the standard matrices, necessary to work with this new
algebra, are discussed.

2.1 Basic operations

As explained in Chapter 1, the max-plus-algebra can be used as an analysis tool that
exists for discrete event systems. With this technique, properties of DESs (eg. uti-
lization, bottleneck, critical path) are derived easily, whereas in some cases brute force
simulation might require a large amount of computation time [Sch96]. In this chapter
the differences between the max-plus-algebra and the conventional algebra are clarified.
Conventional algebra refers to the algebra of the real (or the complex) numbers with
addition and multiplication as basic operations [Sch96]. Examples of these operations
are addition (+), subtraction (−), multiplication (×) and division (÷). In the max-
plus-algebra, only two main operations are known. The first operation is maximization
or the so called max-plus addition. This operation is represented by ⊕. The ⊕ can
best be explained using two examples. Two scalars and two matrices are added in the
max-plus domain.

1 ⊕ 2 = max(1, 2) = 2

5

6 Chapter 2. Introduction to the max-plus-algebra

A ⊕ B =

(
a11 a12

a21 a22

)
⊕

(
b11 b12

b21 b22

)

=

(
a11 ⊕ b11 a12 ⊕ b12

a21 ⊕ b21 a22 ⊕ b22

)

=

(
max(a11, b11) max(a12, b12)
max(a21, b21) max(a22, b22)

)

= max(aij , bij).

Here aij and bij denote the elements in the ith row and the jth column of matrix A
and B respectively.

The max-plus addition of two matrices can be compared to the matrix addition in the
conventional algebra. The same calculation rules apply here. It should be noted that, as
in the conventional algebra, the max-plus addition of two matrices A and B is defined
only if A and B have the same number of rows and the same number of columns, in
other words, if A and B are of equal size.

The second operation is addition or the so called max-plus multiplication. This op-
eration is represented by ⊗. Similar to the max-plus multiplication, the ⊗ can be
explained best with two examples. Again two scalars and two matrices are used to
make this operation more clear.

1 ⊗ 2 = 1 + 2 = 3

A ⊗ B =

(
a11 a12

a21 a22

)
⊗

(
b11 b12

b21 b22

)

=

(
(a11 ⊗ b11) ⊕ (a12 ⊗ b21) (a11 ⊗ b12) ⊕ (a12 ⊗ b22)
(a21 ⊗ b11) ⊕ (a22 ⊗ b21) (a21 ⊗ b12) ⊕ (a22 ⊗ b22)

)

=

(
max(a11 + b11, a12 + b21) max(a11 + b12, a12 + b22)
max(a21 + b11, a22 + b21) max(a21 + b12, a22 + b22)

)
.

Here aij and bij denote the elements in the ith row and the jth column of matrix A
and B respectively.

Observe that, A ⊗ B 6= A + B.

As mentioned previously, matrix multiplication rules in the conventional algebra are
equal to matrix multiplication rules in the max-plus-algebra. The difference here, is
that in the max-plus-algebra, (+) and (×) are replaced by the max-plus operators (⊕)

2.2. Main elements and standard matrices 7

and (⊗). Observe, that, as in the conventional algebra, the product of A and B is
defined only if the number of rows of B is identical to the number of columns of A.

The reason for using the above mentioned symbols, is the remarkable analogy between
⊕ and addition and between ⊗ and multiplication: many concepts and properties from
conventional linear algebra (such as the eigenvectors and eigenvalues, etc.) can be
translated to the max-plus-algebra [Sch96].

Now the basic operations, ⊕ and ⊗, have been described, their power, that follows from
these two operations can be explained. For scalars this is easy to understand:

x ⊗ x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸
n

= x⊗n

= nx.

This means that x⊗0

= 0. Multiplying identical matrices (or vectors), can be simplified
using the power operator. This is shown below:

A ⊗ A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
n

= A⊗n

.

The rules for the order of evaluation of the max-algebraic operators are similar to those
of conventional algebra. So max-algebraic power has the highest priority, and max-
algebraic multiplication has a higher priority than max-algebraic addition.

2.2 Main elements and standard matrices

Now the two basic operations and their represented symbols are known, the elements
used in the max-plus-algebra can be defined. The elements of the max-plus-algebra are

the real numbers (R) and ε
def
= −∞. This means that all real numbers, ε, the operations

⊕ and ⊗ together define the max-plus-algebra. Now, R ∪ {ε}, ⊕, and ⊗ define the
max-plus-algebra.

There is another important difference between the conventional algebra and the max-
plus-algebra. Part of the basics of the conventional algebra are the rules of equality.
These rules give the properties of the zero-element, 0, and the one-element, 1.

For 0, the following equality rule is valid:

for 0: 0 + x = x + 0 = x (∀ x). (2.1)

This equality does not exist in the max-plus-algebra due to the new operator ⊕. There-
fore, 0 has to be replaced by an other element. In the max-plus-algebra, the 0 is be
replaced by ε. Now, the equality rule of the form (2.1) is valid in the max-plus-algebra:

for ε: ε ⊕ x = x ⊕ ε = x (∀ x).

8 Chapter 2. Introduction to the max-plus-algebra

A similar equality rule is valid for the one-element, 1.

for 1: 1 × x = x × 1 = x (∀ x). (2.2)

In the max-plus-algebra, the equality rule of the form (2.2) can not be used, due to the
max-plus operator ⊗. Therefore, in the max-plus domain, 1 is replaced by 0. This gives
the following max-plus equality rule:

for 0: 0 ⊗ x = x ⊗ 0 = x (∀ x).

The replacements described above for the zero- and one-element, result in different zero-
and identity matrices (so called standard matrices) when compared to the conventional
algebra. The matrix En is the n × n max-algebraic identity matrix:

(En)ii = 0 for i = 1, 2, · · · , n,

(En)ij = ε for i = 1, 2, · · · , n with i 6= j.

An example is an E3 identity matrix:




0 . .
. 0 .
. . 0


 .

For reasons of clarity, the ε’s in this identity matrix are replaced by dots. The ’zero’
power of a matrix, for example A⊗0

is equal to En.

The m × n max-algebraic zero matrix is represented by εm×n:

(Em×n)ij = ε for all i, j

An example is an ε3×2 zero matrix:




. .

. .

. .


 .

2.3. Summary 9

2.3 Summary

In this chapter, the max-plus-algebra has been introduced. The two main operations,
maximization (max-plus-addition) and addition (max-plus multiplication) have been
explained with examples together with the the algebra’s elements and standard matrices.
Now, R ∪ {ε}, ⊕, and ⊗ define the max-plus-algebra.

10 Chapter 2. Introduction to the max-plus-algebra

Chapter 3

Modelling manufacturing systems
using the max-plus-algebra

In Chapter 2, the basic operations, elements and standard elements have been discussed.
This knowledge is necessary to build max-plus models of manufacturing systems. In
general, DESs lead to a non-linear description in conventional algebra, but a subclass
of DESs exists for which this model becomes ’linear’ when it is formulated in max-
plus-algebra [Sch96]. Such a model is called max-linear. In this chapter manufacturing
systems are modelled using the max-plus-algebra. Different structures and situations
are discussed. If possible, the max-plus models are reduced using model reduction.

3.1 Building a max-plus model

Using the conventional algebra for modelling DESs leads to non-linearities [Sch96]. In
the max-plus-algebra, DESs lead to max-linear models and can be written in the fol-
lowing max-linear time-invariant state-space description, henceforth called state-space
description:

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k) (3.1a)

y(k) = C ⊗ x(k) ⊕ D ⊗ u(k). (3.1b)

To show that manufacturing systems can be modelled using the max-plus algebra, and
specifically the state-space description, a single machine is modelled. Before this simple
machine is modelled, a few assumptions have to be made:

• all process times are deterministic,

• the process time includes setup times,

11

12 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

• the process sequence in which products go through the manufacturing line is given
and not variable,

• no machine failures take place,

• transportation times are negligible,

• the free output of the system can always receive a finished product.

Using these assumptions, the modelling of the machine can be started. A schematic
representation of this machine is given in Figure 3.1.

M
)
(
k
u
)
(
k
y

)
(
k
x

d

Figure 3.1: Single machine

In this figure, u(k), x(k), y(k), and d are defined as follows:

• u(k): time instant at which raw material is fed to the input of the system for the
(k+1)st time,

• x(k): time instant at which the processing unit starts working for the kth time,

• y(k): time instant at which a finished product leaves the system for the (k+1)st
time,

• d: deterministic process time.

Counter k is increased by 1 every time a new product is fed to the system. An important
note here, is that k counts events rather than ticks of the clock. Input u is related to
(k + 1) to keep the state-space relations comprehensible. Output y is related to (k + 1)
to obtain easy coupling, which is further discussed in Section 3.6.

The machine can only start processing if two main conditions are true:

• condition 1: the raw material or (half)-product that has to be processed is avail-
able,

• condition 2: the machine has finished processing its previous product.

This implies that, when the machine has received the raw material or half-product, it
can only start processing when the machine has finished the previous product. The
opposite situation is possible as well: the machine has finished its previous product,

3.2. General approach 13

but the raw material or half-product that has to be processed is not yet available. In
this situation, the machine can only start working on the next product when the raw
material or next halfproduct is available. In both situations, the machine can start its
next job if the above described two conditions are both true. The machine eventually
starts if the last condition becomes true. The machine starts on the latest (= maximum)
of both times the condition becomes true. Hence, the machine can start with its next
operation, x(k + 1), if the raw material is available at u(k) + 0, and if the previous
product is finished at x(k) + d. Here, x(k) + d is the moment a product leaves the
system, which can be written as:

x(k + 1) = max(

raw material︷ ︸︸ ︷
u(k) + 0 ,

previous product︷ ︸︸ ︷
x(k) + d) (3.2)

y(k) = x(k + 1) + d. (3.3)

This model would, because of the maximization, lead to non-linearity into the conven-
tional algebra. In order to write the above equations in the state-space description (3.1),
one extra step has to be done. If (3.2) is substituted in (3.3), this results in:

x(k + 1) = max(u(k) + 0, x(k) + d)

y(k) = max(u(k) + d, x(k) + 2d).

These equations can be written in state-space description, see (3.1). For that, the max
has to be replaced by ⊕ and the + has to be replaced by ⊗. This leads to the following
equations:

x(k + 1) = d ⊗ x(k) ⊕ 0 ⊗ u(k)

y(k) = 2d ⊗ x(k) ⊕ d ⊗ u(k).

Here, the A, B, C and D matrices in (3.1) are equal to the scalars d, 0, 2d and d.
The notation of the C-matrix, 2d, is not correct in the max-plus domain. The correct
notation is d⊗

2

. For reasons of clarity, the notation of 2d is used.

The simple model, described above, shows that it is possible to describe a manufacturing
system using the max-plus-algebra.

3.2 General approach

In the previous section, a single machine has been modelled using the max-plus-algebra.
This model shows that simple models can be modelled using the state-space description.
In industry, many structures exist to produce all sorts of products. Examples are

14 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

splitting, merging, by-passing, back-tracking, batching, re-entrancy etc. In order to
show the applicability of the max-plus-algebra to analyze and model DESs, all these
structures have to be written down in this algebra.

A manufacturing system used in industry can contain many of the (complex) structures
mentioned above. To model these systems using the max-plus-algebra, an algorithm
has to be found to make the modelling understandable.

A commonly applied approach (e.g. systems theory), is to model each structure sepa-
rately, which results in system matrices A, B, C and D. This model can be seen as a
module which can be coupled to other modules (with other system matrices A, B, C and
D) to model a complete manufacturing system. The coupled structures with (small)
system matrices lead to 4 large system matrices of the total manufacturing system. A
schematic illustration of this approach can be seen in Figure 3.2,

A-, B-, C and

D-matrix

A-, B-, C and

D-matrix

A-, B-, C and

D-matrix

Figure 3.2: Coupling systematics

Important is that the structure of the original small system matrices does not change
if the coupling takes place. The structure as described in Section 3.1 or represented
in Figure 3.1 cannot be used, since the system matrices of the modules change if the
modules are combined.

If a max-plus model is made of a manufacturing system, the assumptions as described
in Section 3.1 are valid. If another (second) structure is coupled to this first structure,
the assumption that the free output can always receive a product is not necessarily
valid anymore for the first structure. If the second structure is not available, the first
structure can not send its product, which affects the original state-space description
(system matrices).

To use the general approach, a new structure has to be introduced. This is done in the
next section.

3.3 Introduction of a new structure

The previous section explains why a new structure is needed to use the general approach;
i.e. the necessity of availability information. An availability information ’stream’ has
to be added to extend the old model. This new structure is illustrated in Figure 3.3

3.3. Introduction of a new structure 15

M

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

d

)
(
1
 k
x

)
(
2
 k
x

Figure 3.3: New structure

In this figure, the inputs, outputs and states etc. are defined as follows:

• u1(k): time instant at which raw material is fed to the input of the processing
unit for the (k + 1)st time,

• y1(k): time instant at which a finished product leaves the processing unit for the
(k + 1)st time,

• u2(k): time instant at which the processing unit, directly coupled to this process-
ing unit, can receive a product for the (k + 1)st time,

• y2(k): time instant at which the processing unit becomes available for the (k+1)st
time (=y1(k − 1)),

• x1(k): time instant at which the processing unit starts working on a product for
the kth time,

• x2(k): time instant at which the processing unit, directly coupled to this process-
ing unit, can receive a product for the kth time (=u2(k − 1)).

Variables with index 2 are the additional definitions added to define the availability
information.

Two main conditions that have to be true before a machine can start processing are de-
fined in Section 3.1. Using the new structure, a third condition, linked to the availability
information, is necessary.

• condition 3: the structure, directly coupled to the machine, has to be available to
receive the finished product.

To explain this new structure, the machine of Section 3.1 is remodelled. The schematic
representation can be seen in Figure 3.1.

The machine can start processing a new product for the (k + 1)st time if all three men-
tioned conditions become true: the raw material is fed to the machine for the (k + 1)st
time, represented by u1(k). Another condition is that the machine has to be finished
processing the kth product (this is the previous product). Taking into account the new

16 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

third condition, the start of the new process is dependent of the availability information.
If the previous product has been finished, but the next structure is not available yet,
the machine can not start processing the (k + 1)st product. The next structure has to
be available to receive a product for the kth time. This means that the third element
in the x1(k + 1) equation is u2(k − 1). This results in the following equation:

x1(k + 1) = max(u1(k), x1(k) + d, u2(k − 1)). (3.4)

The last element of this equation, u2(k − 1), leads to the addition of an extra state,
x2(k). This state is defined as:

x2(k + 1) = u2(k). (3.5)

Substitution of (3.5) in (3.4) gives:

x1(k + 1) = max(u1(k), x1(k) + d, x2(k)). (3.6)

Now the two states are known, the first part of the state-space description of the form
(3.1a), is given:

x̄(k + 1) =

(
d1 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k)

where:

x̄(k) =

(
x1(k)
x2(k)

)
ū(k) =

(
u1(k)
u2(k)

)
.

The output of the system can be determined as follows. The machine can send a product
to the other structure for the (k + 1)st time if the machine has finished the processing
for the (k + 1)st time, x1(k + 1) + d, and if the coupled structure can receive a product
for the (k + 1)st time, u2(k). This all can be expressed in the following equation:

y1(k) = max(x1(k + 1) + d, u2(k)). (3.7)

The substitution of (3.6) in (3.7) results in:

y1(k) = max(u1(k) + d, x1(k) + 2d, x2(k) + d, u2(k)). (3.8)

The other output, y2(k), is defined as y1(k − 1) (see definitions). Using (3.7) y2(k)
becomes:

3.4. Finite and infinite buffers 17

y2(k) = max(x1(k) + d, u2(k − 1))

= max(x1(k) + d, x2(k)). (3.9)

These two output equations ((3.8) and (3.9)) are captured in the second part of the
state-space description of the form (3.1b). As the state equations, the C and D are
matrices instead of the scalars used in the ’old’ structure.

ȳ(k) =

(
2d d
d 0

)
⊗ x̄(k) ⊕

(
d 0
ε ε

)
⊗ ū(k)

with:

ȳ(k) =

(
y1(k)
y2(k)

)
.

Now the total max-plus model of a machine that processes one product per system feed
can be seen below:

x̄(k + 1) =

(
d 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k) (3.10)

ȳ(k) =

(
2d d
d 0

)
⊗ x̄(k) ⊕

(
d 0
ε ε

)
⊗ ū(k). (3.11)

Compared to the model described in Section 3.1, the structure introduced in this section
has a state-space that is twice as large. For large manufacturing systems this can lead
to an explosion of the state-space description. The numbers of states might be reduced
if necessary (see Section 3.8). This model reduction results in a decreased number of
states, but also in the loss of information (e.g., the time instants at which machines
start processing). This can be a disadvantage, if the models get larger, e.g. if complete
manufacturing systems are modelled.

3.4 Finite and infinite buffers

In the previous section, a machine has been modelled in the max-plus-algebra. Next
to machines, buffers are important objects of a DES. Buffers can have a finite or an
infinite capacity, called respectively finite or infinite buffers.

18 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

The finite buffer has a finite capacity. This means that if the buffer is full, the buffer can
not receive a product. This finite buffer is illustrated in a similar way as the machine.
This all is illustrated in Figure 3.4. Here, n represents the number of buffer places.

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

)
(
1
 k
x

)
(
2
 k
x

0

d

B

n

Figure 3.4: n-place finite buffer

Modelling a 1-place buffer using the max-plus-algebra is easy, because the model is
equal to the model of the machine described above with a process time d = 0. The total
model of this finite buffer with one buffer place, that receives one product per feed, can
be seen below. Modelling a finite buffer with n buffer places can be done by coupling n
of these one place finite buffers in sequence. This results in large system matrices and
thus an increase in the number of dimensions. Coupling is discussed in Section 3.6.

x̄(k + 1) =

(
0 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k)

ȳ(k) =

(
0 0
0 0

)
⊗ x̄(k) ⊕

(
0 0
ε ε

)
⊗ ū(k).

Another buffer is the infinite buffer. This buffer has an infinite capacity and can always
receive a product. An example of an infinite buffer is illustrated in Figure 3.5. Here, n
has been removed due to the infinite number of buffer places.

B

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

)
(
1
 k
x

)
(
2
 k
x

0

d

Figure 3.5: Infinite buffer

The model of this infinite buffer can be compared to the model of the finite buffer.
The second state x2(k) and the second output y2(k) are added because of the needed
availability stream. An infinite buffer can always receive products due to its infinite
capacity. As mentioned before, an n place buffer can be modelled by coupling n finite
buffers (coupling is described in Section 3.6). This increase of the number of states
is caused by the events that occur inside the buffer. Information of the location of
products inside the buffer have to be saved. This increase of the number of states does

3.5. Multi product structures 19

not occur with infinite buffers because no information of the location of products has
to be saved. The infinite buffer is always available, in other words, y2(k) = ε (∀k). This
results in the following model for the infinite buffer that receives one product per feed:

x̄(k + 1) =

(
0 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k)

ȳ(k) =

(
0 0
ε ε

)
⊗ x̄(k) ⊕

(
0 0
ε ε

)
⊗ ū(k).

Note, that the number of states of a finite buffer increases if the number of products
per feed increase, and if the number of buffer places increases. The number of states of
the infinite buffer, however, only increases if the number of products per feed increases.
The significant difference between the infinite buffer and the finite buffer is that the
infinite buffer does not need extra states to be modelled due to the amount of buffer
places. The finite buffer needs to save information about the position of the product in
the buffer. The infinite buffer does not have to save this information, which results in
less states.

3.5 Multi product structures

The machine, finite and infinite buffer have been modelled in the max-plus-algebra for
only one product per feed to the system. If, for example a situation in which splitting
or merging has to be modelled, more than one product per feed of the system can
be required. This means that the structures presented above have to be modelled for
multi-products instead as well. Note, that a feed of 2 products does not necessarily
meen that both products are fed to the system at the same time instant.

To start easily, the standard single machine machine is extended from one product per
feed of the system to two products. This results in the model of Figure 3.6.

M

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

i
d
1

)
(
k
x

Figure 3.6: Multi product machine

20 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

with:

x̄(k) =




x1(k)
x2(k)
x3(k)
x4(k)


 ū(k) =




u1(k)
u2(k)
u3(k)
u4(k)


 ȳ(k) =




y1(k)
y2(k)
y3(k)
y4(k)


 .

This figure illustrates that the number of inputs, states and outputs doubles. This
observation in combination with some more investigation show that the model of a
machine and infinite buffer has dimension 2n (=number of states) if n products are
received per feed of the system. The process time of the machine of the n different
products are not necessary similar. Therefore, the deterministic process time of multi
product structures are indexed: dij (see Figure 3.6). Here, i and j represent respectively
the machine- and product number.

The machine receives two products per feed, say product P1 and P2. Or in other words,
the product mix is P1, P2, P1, P2 etc. The process time of P1 is called d11, for P2, this
is d12. The first two states are the time instants at which the machine starts working
on the two products. This means that x1(k) is the time instant at which the machine
starts working on P1 for the kth time. The same definition is valid for x2(k) and P2.

The machine starts working on P1 for the (k+1)st time when it receives the raw material
for P1 for the (k + 1)st time, u1(k). Another condition is that the machine needs to
have finished processing its previous product. This is not a product of type P1, but a
product of type P2, according to the product mix, which results in x2(k) + d12. The
coupled structure has to be available to receive P2 for the kth time, u4(k − 1). This
results into the following equation for x1(k + 1):

x1(k + 1) = max(u1(k), x2(k) + d12, u4(k − 1)). (3.12)

For product P2 a similar calculation can be done. The machine can start processing
product P2 if it receives its raw material, u2(k) and if the machine finished its previous
product, in this case product P1 (for the (k + 1)st time, according to the product mix),
x1(k+1)+d11. The last condition that is needed before the machine can start processing
P2 is the availability of the coupled structure to receive P1 for the (k +1)st time, u3(k).
This results in the following equation:

x2(k + 1) = max(u2(k), x1(k + 1) + d11, u3(k)). (3.13)

Substitution of (3.12) in (3.13) gives:

x2(k +1) = max(u2(k), u1(k)+ d11, x2(k)+ d11 + d12, u4(k− 1)+ d11, u3(k)). (3.14)

The variable u4(k − 1) results in the addition of an extra state. Later in this section,
it can be seen that the output equations y3(k) and y4(k) result in addition of another

3.5. Multi product structures 21

extra state. Therefore, the two additional states are given here.

x3(k + 1) = u3(k) (3.15)

x4(k + 1) = u4(k). (3.16)

Substitution of (3.15) and (3.16) in (3.12) and (3.14) results in:

x1(k + 1) = max(u1(k), x2(k) + d12, x4(k)) (3.17)

x2(k + 1) = max(u2(k), u1(k) + d11, x2(k) + d11 + d12, x4 + d11, u3(k)). (3.18)

Combining (3.17) and (3.18) the first part of the state-space description of the form,
(3.1a), can be obtained:

x̄(k + 1) =




. d12 . 0

. d11 + d12 . d11

. . . .

. . . .


 ⊗ x̄(k) ⊕




0 . . .
d11 0 0 .
. . 0 .
. . . 0


 ⊗ ū(k). (3.19)

Calculation of the system’s output is similar to the deduction presented above. The
machine can send product P1 for the (k + 1)st time if it finished P1 for the (k + 1)st
time, x1(k + 1) + d11 and if the coupled structure can receive P1 for the (k + 1)st time,
u3(k). This results into the following equation for y1(k):

y1(k) = max(x1(k + 1) + d11, u3(k)). (3.20)

Product P2 is sent to the coupled structure by the machine for the (k +1)st time, if the
machine finished processing this product for the (k + 1)st time, x2(k + 1), and if the
coupled structure can receive this product for the (k + 1)st time, u4(k). This gives the
following equation for y2(k):

y2(k) = max(x2(k + 1) + d12, u4(k)). (3.21)

Substitution of (3.17) in (3.20) and (3.18) in (3.21) gives:

y1(k) = max(u1(k) + d11, u3(k), x2(k) + d11 + d12, x4(k) + d11)

y2(k) = max(u1(k) + d11 + d12, u2(k) + d12, u3(k) + d12, u4(k),

x2(k) + d11 + 2d12, x4(k) + d11 + d12).

As discussed previously, the outputs of the availability information, y3(k) and y4(k),
equal y1(k − 1) and y2(k − 1). This results in the following equations:

y3(k) = max(x1(k) + d11, x3(k))

y4(k) = max(x2(k) + d12, x4(k)).

22 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

The above calculation leads to the second part of the state-space description, (3.1b):

ȳ(k + 1) =




. d11 + d12 . d11

. d11 + 2d12 . d11 + d12

d11 . 0 .
. d12 . 0


 ⊗ x̄(k) ⊕




d11 . 0 .
d11 + d12 d12 d12 0
. . . .
. . . .


 ⊗ ū(k).

Summarized, the state-space description of a machine that processes two products per
feed of the system can be seen below:

x̄(k + 1) =




. d12 . 0

. d11 + d12 . d11

. . . .

. . . .


 ⊗ x̄(k) ⊕




0 . . .
d11 0 0 .
. . 0 .
. . . 0


 ⊗ ū(k)

ȳ(k + 1) =




. d11 + d12 . d11

. d11 + 2d12 . d11 + d12

d11 . 0 .
. d12 . 0


 ⊗ x̄(k) ⊕




d11 . 0 .
d11 + d12 d12 d12 0
. . . .
. . . .


 ⊗ ū(k).

If more than one product is fed to the system per feed, (n > 1), a general structure can
be found to calculate system matrices A, B, C and D. This structure can be seen in
Appendix A.

3.6 Coupling structures

The general approach as discussed in Section 3.2 and illustrated in Figure 3.2 can be
applied using the structure as introduced Section 3.3. If, for instance, two structures are
coupled, the output of the first structure has to be coupled to the input of the second

3.6. Coupling structures 23

structure. Using this substitution, the max-plus model of the overall system can be
calculated. This all can be explained best using an example.

Two single lot machines, as discussed in Section 3.3 are coupled. These machines only
receive one product per system feed. A schematic representation of the coupling can be
seen in Figure 3.7

M

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

1
d

)
(
1
 k
x

)
(
2
 k
x

M

)
(
3
 k
u
)
(
3
 k
y

)
(
4
 k
u
)
(
4
 k
y

2
d

)
(
3
 k
x

)
(
4
 k
x

Figure 3.7: Coupling illustration

The state-space descriptions of both machines are identical. The only difference is the
process time. For machine 1 the process time is d1. Machine 2 has a process time of d2.
The state-space description now becomes:

x̄(k + 1) =

(
di 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k)

ȳ(k) =

(
2di di

di 0

)
⊗ x̄(k) ⊕

(
di 0
ε ε

)
⊗ ū(k).

The process times are indexed with i, identifying machine 1 or 2. If the 2 machines are
coupled, it is obvious that the output of machine 1, y1(k) is coupled to the input of
machine 2, u3(k). The output of machine 2, u4(k) is coupled to the input of machine
1, y2(k). This means that the coupling equations are:

u2(k) = y4(k)

u3(k) = y1(k).

In order to ensure correct coupling, the structures, the input u and the output y both
have to be related to (k + 1). This explains why y(k) is labelled to (k + 1) instead of k.

Substitutions of y1(k) and y4(k), lead to the following equation for u2(k) and u3(k):

u2(k) = d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k) (3.22)

u3(k) = 2d1 ⊗ x1(k) ⊕ d1 ⊗ x2(k) ⊕ d2 ⊗ x3(k) ⊕ 0 ⊗

x4(k) ⊕ d1 ⊗ u1(k). (3.23)

24 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

The coupled structure consists of four states, x1(k) to x4(k). Now the coupling is
explained stepwise.

First the four (new) states are calculated. The first original two states, of the first
machine are:

x1(k + 1) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k) ⊕ 0 ⊗ u1(k) (3.24)

x2(k + 1) = 0 ⊗ u2(k). (3.25)

Substitution of (3.22) in (3.25) gives:

x1(k + 1) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k) ⊕ 0 ⊗ u1(k)

x2(k + 1) = d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k).

The original two states of the second machine are:

x3(k + 1) = d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k) ⊕ 0 ⊗ u3(k) (3.26)

x4(k + 1) = 0 ⊗ u4(k). (3.27)

Substitution of (3.23) in (3.26) gives:

x3(k + 1) = 2d1 ⊗ x1(k) ⊕ d2 ⊗ x2(k) ⊕ d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k)

⊕d1 ⊗ u1(k)

x4(k + 1) = 0 ⊗ u4(k).

As has been seen before, a single machine has two outputs. Two coupled machines have
two outputs as well. In this case, the outputs, y1(k) and y4(k) are connected and are
no longer outputs of the coupled system. The outputs y2(k) and y3(k) are the outputs
of the total system. Similarly, the inputs of the overall system are u1(k) and u4(k).
Observe that the first outputs in the output vector always contain the product flow
information. Therefore, the sequence in the output vector becomes first y3(k), followed
by y2(k).

ū(k) =

(
u1(k)
u4(k)

)
ȳ(k) =

(
y3(k)
y2(k)

)
.

This gives the following first equation of the state-space description:

x̄(k + 1) =




d1 0 . .
. . d2 0
2d1 d2 d2 0
. . . .


 ⊗ x̄(k) ⊕




0 .
. .
d1 .
. 0


 ⊗ ū(k).

3.7. Re-entrancy 25

As mentioned before, the outputs of the coupled system are y2(k) and y3(k):

y3(k) = 2d2 ⊗ x3(k) ⊕ d2 ⊗ x4(k) ⊕ d2 ⊗ u3(k) ⊕ 0 ⊗ u4(k) (3.28)

y2(k) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k). (3.29)

Substitution of (3.23) in (3.28) gives:

y3(k) = 2d1 ⊗ x1(k) ⊕ d1 ⊗ x2(k) ⊕ 2d2 ⊗ x3(k) ⊕ d2 ⊗ x4(k) ⊕

d1 ⊗ u1(k) ⊕ 0 ⊗ u4(k)

y2(k) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k).

Note that, if a substitution leads to, for example (d1 ⊕ 0) ⊗ x1(k), this is equal to
d1 ⊗ x1(k), because the process time is always greater than or equal to 0.

Now, the second part of the equation of the state-space description, of the form (3.1b),
can be denoted:

ȳ(k) =

(
2d1 d1 2d2 d2

d1 0 . .

)
⊗ x̄(k) ⊕

(
d1 0
. .

)
⊗ ū(k).

The total state-space description (3.1) of the coupled system is represented here:

x̄(k + 1) =




d1 0 . .
. . d2 0
2d1 d2 d2 0
. . . .


 ⊗ x̄(k) ⊕




0 .
. .
d1 .
. 0


 ⊗ ū(k) (3.30)

ȳ(k) =

(
2d1 d1 2d2 d2

d1 0 . .

)
⊗ x̄(k) ⊕

(
d1 0
. .

)
⊗ ū(k). (3.31)

This section shows that the basic element, introduced as the new structure, enables
usage of the general approach. All sort of structures in industry can be modelled using
the basic element and the general approach. To illustrate this, a model is made for a
theoretical case (see Chapter 4).

26 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

S

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

)
(
k
x

Figure 3.8: Representation re-entrancy

3.7 Re-entrancy

In the previous sections, different manufacturing situations have been described in the
max-plus-algebra. In this section, a special situation is discussed. If products enter a
manufacturing line more than once (re-enter) this is called re-entrancy. A schematic
illustration of this situation can be seen in Figure 3.8. Here products enter system S
with system matrices A, B, C and D more than one time. This way of processing can
be described in the max-plus-algebra. In the situations discussed earlier, the products
only enter the system in a certain sequence one time per system feed. After one feed,
indicated with k, the next feed, indicated with (k + 1), starts. The product flow of the
(k + 1)th feed is identical to the flow of the kth feed, with the only difference that feed
(k + 1) runs in a later time stadium. Consider a certain structure that is described
in the max-plus-algebra using a state-space description. In other words, the system
matrices of this structure, A, B, C and D, are known. These matrices are only valid in
case the product enter the manufacturing system one time. If these products have to
enter the same manufacturing system more than once, the system becomes re-entrant.
Previously, a manufacturing system with system matrices A, B, C and D has been
considered, where products enter the system only once. Now, the same manufacturing
system becomes re-entrant, which results in a change of the system matrices. One
way to model this new situation in the max-plus-algebra is to start all over. In other
words, observe the new situation and determine the new state-space -description (system
matrices). A more efficient way of determining the state-space description of this new
process, is to use the known, ’old’ system matrices A, B, C and D.

In this section, an algorithm is presented to calculate the new system matrices A, B,
C and D from the ’old’ matrices of the state-space description if products enter the
manufacturing system n times (n > 1). The machine described in Section 3.3 is used
as an example to explain re-entrancy. Instead of entering the machine one time, the
products enter the machine twice. The presented algorithm introduces a new state
vector. The vector contains, all states, indexed from k to k + (n − 1) if the products
enter the system n times. This results in the following state vector x of the machine in

3.7. Re-entrancy 27

a re-entrant situation:

x̄(k) =




x1(k)
x1(k + 1)
x2(k)
x2(k + 1)


 .

This definition of the x̄(k)-vector is not suitable for the re-entrant situation, because the
definition of this vector changes per event. Therefore, it is decided that the state vector
in case of a re-entrant situation in which products enter the manufacturing system two
times becomes:

x̄(k) =




x1(2k)
x1(2k + 1)
x2(2k)
x2(2k + 1)


 .

This also results in different definitions for u(k) and y(k):

ū(k) =




u1(2k + 1)
u1(2k + 2)
u2(2k + 1)
u2(2k + 2)


 ȳ(k) =




y1(2k + 1)
y1(2k + 2)
y2(2k + 1)
y2(2k + 2)


 .

Note that counter k in the vector notation x̄(k) is not the same counter as in the
elements of the vector. The counter k in the elements notation counts n times faster
than the counter k in the vector notation if the products enter the system n times.
Therefore, the vector elements of x̄(k + 1) have to be calculated as can be seen below.
To make this all more clear, a representation is given in Figure 3.9. This has to be

A
 B

C
 D

)
1
2
(

k
u

)
2
2
(

k
u

)
1
2
(

k
y

)
2
2
(

k
y

)
(
k
u
new

)
(
k
y
new

system

Figure 3.9: Representation new vectors

written in the standard state-space description of the form (3.1).

The new x̄(k) results in the following x̄(k + 1):

x̄(k + 1) =




x1(2 · {k + 1})
x1(2 · {k + 1} + 1)
x2(2 · {k + 1})
x2(2 · {k + 1} + 1)


 =




x1(2k + 2)
x1(2k + 3)
x2(2k + 2)
x2(2k + 3)


 .

28 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

All system matrices of the single lot machine are 2×2 and have the following structure:

X =

(
X11 X12

X21 X22

)
.

The new elements in the state vector can be written as follows:

x1(2k + 2) = A11 ⊗ x1(2k + 1) ⊕ A12 ⊗ x2(2k + 1) ⊕ B11 ⊗ u2(2k + 1) ⊕

B12 ⊗ u2(2k + 1) (3.32)

x1(2k + 3) = A11 ⊗ x1(2k + 3) ⊕ A12 ⊗ x2(2k + 2) ⊕ B11 ⊗ u2(2k + 2) ⊕

B12 ⊗ u2(2k + 2) (3.33)

x2(2k + 2) = A21 ⊗ x1(2k + 1) ⊕ A22 ⊗ x2(2k + 1) ⊕ B21 ⊗ u2(2k + 1) ⊕

B22 ⊗ u2(2k + 1) (3.34)

x2(2k + 3) = A21 ⊗ x1(2k + 2) ⊕ A22 ⊗ x2(2k + 2) ⊕ B21 ⊗ u2(2k + 2) ⊕

B22 ⊗ u2(2k + 2). (3.35)

Substitution of (3.32) in (3.33) and (3.34) in (3.35) lead to the system matrices of the
first state-space description:

A =




. A11 . A12

. A⊗2

11 ⊕ (A12 ⊗ A21) . (A11 ⊗ A12) ⊕ (A12 ⊗ A22)
. A21 . A22

. (A21 ⊗ A11) ⊕ (A22 ⊗ A21) . A⊗2

22 ⊕ (A21 ⊗ A12)




B =




B11 . B12 .
(A11 ⊕ B11) ⊕ (A12 ⊗ B21) B11 (A11 ⊗ B12) ⊗ (A12 ⊗ B22) B12

B21 . B22 .
(A21 ⊗ B11) ⊕ (A22 ⊗ B21) B21 (A21 ⊗ B12) ⊕ (A22 ⊗ B22) B22


 .

With the output equation, y(k), the same can be done:

y1(2k + 1) = C11 ⊗ x1(2k + 1) ⊕ C12 ⊗ x2(2k + 1) ⊕ D11 ⊗ u1(2k + 1) ⊕

D12 ⊗ u2(2k + 1) (3.36)

y1(2k + 2) = C11 ⊗ x1(2k + 2) ⊕ C12 ⊗ x2(2k + 2) ⊕ D11 ⊗ u1(2k + 2) ⊕

D12 ⊗ u2(2k + 2) (3.37)

y2(2k + 1) = C21 ⊗ x1(2k + 1) ⊕ C22 ⊗ x2(2k + 1) ⊕ D21 ⊗ u1(2k + 1) ⊕

D22 ⊗ u2(2k + 1) (3.38)

y2(2k + 2) = C21 ⊗ x1(2k + 2) ⊕ C22 ⊗ x2(2k + 2) ⊕ D21 ⊗ u1(2k + 2) ⊕

D22 ⊗ u2(2k + 2). (3.39)

3.7. Re-entrancy 29

After the substitution of (3.32) and (3.34) in (3.37) and (3.39), the system matrices of
the second state-space description become:

C =




. C11 . C12

. (C11 ⊗ A11) ⊕ (C12 ⊗ A21) . (C11 ⊗ A12) ⊕ (C12 ⊗ A22)

. C21 . C22

. (C21 ⊗ A11) ⊕ (C22 ⊗ A21) . (C21 ⊗ A12) ⊕ (C22 ⊗ A22)




D =




D11 . D12 .
(C11 ⊗ B11) ⊕ (C12 ⊗ B21) D11 (C11 ⊗ B12) ⊕ (C12 ⊗ B22) D12

D21 . D22 .
(C21 ⊗ B11) ⊕ (C22 ⊗ B21) D21 (C21 ⊗ B12) ⊕ (C22 ⊗ B22) D22


 .

The model of the machine, (3.10) and (3.11), as described in Section 3.3 is used to
extend from a normal to a re-entrant structure. As is described above, the system
matrices become complex, even for a simple model with two dimensions. Therefore, the
elements A11, A12 etc. are replaced by the values of the original elements of the system
matrices. This results into the following simplified matrices (due to the ε-elements):

A =




. d . 0

. 2d . d

. . . .

. . . .


 B =




0 . . .
d 0 0 .
. . 0 .
. . . 0




C =




. 2d . d

. 3d . 2d

. d . 0

. 2d . d


 D =




d . 0 .
2d d d 0
. . . .
d . 0 .


 .

In a re-entrant manufacturing line, the machine is fed for the (k + 1)th time by the
finished products of feed k. In other words, u1(k +1) = y1(k). The same is valid for the
availability information, u2(k + 1) = y2(k). In the re-entrant situation, these coupling
equations become:

u1(2k + 2) = y1(2k + 1)

= 2d ⊕ x1(2k + 1) ⊕ d ⊗ x2(2k + 1) ⊕ d ⊕ u1(2k + 1) ⊕

0 ⊗ u2(2k + 1)

u2(2k + 2) = y2(2k + 1)

= d ⊗ d ⊗ x1(2k + 1) ⊕ 0 ⊗ x2(2k + 1).

Using the coupling equations, the inputs, labelled with (2k + 2) are eliminated. This
results into two inputs instead of four. The same can be seen with the number of states

30 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

used in the state-space description:

A =




. d . 0

. 2d . d

. . . .

. d . 0


 B =




0 . . .
d . 0 .
. . 0 .
. . . .




C =




. 2d . d

. 3d . 2d

. d . 0

. 2d . d


 D =




d . 0 .
2d . d .
. . . .
d . 0 .


 .

Obviously, the columns one and three of matrices A and C only contain ε’s. This means
that these states, x1(2k) and x2(2k) are not used. Clearly, the number of states can be
reduced. Model reduction is further discussed in Section 3.8.

ū(k) =




u1(2k + 1)
u1(2k + 2)
u2(2k + 1)
u2(2k + 2)


 A =




. d . 0

. 2d . d

. . . .

. d . 0


 B =




0 .
d 0
. 0
. .




C =




. 2d . d

. 3d . 2d

. d . 0

. 2d . d


 D =




d 0
2d d
. .
d 0


 .

If the system matrices of a manufacturing system, with m states and p in- and outputs,
are known and the products go through the line n times, the x-, u- and y-vector become:

x̄(k) =




x1(nk)
x1(nk + 1)
...
x1(nk + n − 1)
x2(nk)
...
xm(nk + n − 1)




, ū(k) =




u1(nk + n − 1)
u1(nk + n)
...
u1(nk + 2n − 2)
u2(nk + n − 1)
...
up(nk + 2n − 2)




, ȳ(k) =




y1(nk + n − 1)
y1(nk + n)
...
y1(nk + 2n − 2)
y2(nk + n − 1)
...
yp(nk + 2n − 2)




u1(nk + n) = y1(nk + n − 1)
u1(nk + n + 1) = y1(nk + n)

...
u1(nk + 2n − 2) = y1(nk + 2n − 3)

u2(nk + n) = y2(nk + n − 1)
...

up(nk + 2n − 2) = yp(nk + 2n − 3).

3.8. Model reduction 31

3.8 Model reduction

In this chapter, manufacturing structures have been modelled using the max-plus-
algebra. The number of states is equivalent to the size of the x-vector. The general
modelling problem invariably involves a trade-off between complexity and accuracy of
models. Simple models are preferred to models which contain many details and accurate
models are preferred to models which have poor descriptive power. In order to obtain
high accuracy models, one usually needs to resort to high detail models , while simple,
low complexity models are generally inaccurate.

The complexity of max-linear time-invariant models is generally defined as the dimen-
sion of the state vector of any minimal state-space representation of the system, or
the order of the system. Depending on the states of interest (e.g. the input-output
behavior) most of the max-linear time-invariant systems, given in this chapter, can be
reduced.

The minimal realization problem in linear system theory can be solved very efficiently.
Some examples are state truncations, modal truncations, balanced truncations and Han-
kel norm reductions [Wei03]. Nevertheless, there still are no efficient algorithms to solve
the minimal state-space realization problem in the max-plus-algebra [Sch97]. Many in-
vestigations were performed to find the minimal system order [Sch97, Gau92, Gau94]
or minimal state-space realizations [Sch97, Sch96]. Details can be seen in Appendix B.

In Appendix B one can see that the presented methods to reduce the number of states
of a max-plus model has major disadvantages. Because of these difficulties, the models,
constructed in this chapter, can be reduced using the conventional way. If a state can be
written in a max-plus-linear combination of two other states, this leads to reduction of
the number of states. In this section, no algorithm is given for model reduction. This is
an item for future work. Note that reduction leads to the loss of certain states. Most of
the states are time instants a buffer or machine starts buffering or processing a product.
If this information is needed, and the model is reduced to the minimal number of states,
a transformation from the new states into the ’old’ states is needed to calculate the time
instants at which machines start working.

To show that the discussed models can be reduced, a simple example is given, as in
Section 3.6, of two coupled machines who receive one product per feed.

If these machines are coupled, the number of states becomes four (recall (3.30)):

x1(k + 1) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k) ⊕ 0 ⊗ u1(k)

x2(k + 1) = d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k)

x3(k + 1) = 2d1 ⊗ x1(k) ⊕ d1 ⊗ x2(k) ⊕ d2 ⊗ x3(k) ⊕ 0 ⊗ x4(k) ⊕

d1 ⊗ u1(k)

x4(k + 1) = 0 ⊗ u4(k).

32 Chapter 3. Modelling manufacturing systems using the max-plus-algebra

Searching for max-plus-linear combinations, it can be seen that x3(k+1) is a max-plus-
linear combination of x1(k + 1) and x2(k + 1):

x3(k + 1) = d1 ⊗ x1(k + 1) ⊕ x2(k + 1).

Using this equation, the number of states can be reduced from four to three as follows:

x1(k + 1) = d1 ⊗ x1(k) ⊕ 0 ⊗ x2(k) ⊕ 0 ⊗ u1(k)

x2(k + 1) = (d1 ⊗ d2) ⊗ x1(k) ⊕ d2 ⊗ x2(k) ⊕ 0 ⊗ x3(k)

x3(k + 1) = 0 ⊗ u4(k).

The number of in- and outputs remains the same. This means that if n machines are
coupled, without model reduction the dimension of this coupled structure is 2n. After
some more research can be concluded that the model reduction described above can lead
to a n + 1 dimensional model. Compared to the model as described in Section 3.1, the
structure, with availability information stream, introduced in Section 3.3 in combination
of the above mentioned model reduction leads to a small increase in the number of states.

3.9 Summary

In this chapter, manufacturing systems are modelled using the max-plus-algebra. A ba-
sic element is given which contains two streams. The first one is a product flow stream,
the other stream contains availability information. Models of machines and buffers can
be made using a number of assumptions, correct definitions, and some main conditions
before the machine/buffer can start processing/buffering. Where DESs written in con-
ventional algebra lead to non-linearity, machines, finite buffers and infinite buffers can
be modelled and written into a max-linear time-invariant state-space description. Using
the four system matrices A, B, C and D of the state-space description and a general
(coupling) approach, entire manufacturing systems (which contain all sorts of struc-
tures) can be build. The system matrices of the individual structures form four new,
large system matrices. These matrices can be used in a new state-space description.
A special structure such as re-entrancy, where products go through the manufacturing
system more than one time is discussed. Depending on the states of interest, the models
as discussed in this chapter can be reduced.

Chapter 4

Theoretical case

Chapter 3 illustrates how max-plus models of a manufacturing system can be built. A
basic element of a machine (or finite buffer) and an infinite buffer is introduced in Sec-
tion 3.3. Using this element and the general approach, as described in Section 3.2, makes
it possible to model (large) manufacturing systems that contain all sorts of structures,
using the max-plus-algebra. In this chapter an analytical case is worked out. After
this, simulations (using Matlab) and verification are done. The case is simulated using
Matlab and validated.

4.1 General information

In the theoretical case, different structures are used to illustrate the expressiveness of
the max-plus-algebra. The case contains the following structures: one infinite buffer,
two single lot machines, one finite buffer with three buffer places and a batch machine
with batch size two. Besides this, the case contains the structures splitting and merging.

The number of products that the entire system receives per feed, depends on the diverse
structures in the manufacturing system. The products that enter the manufacturing
system that is worked out in this section are split, merged, buffered in a 3-place buffer
and processed in batches of two according to a certain product mix. Due to splitting,
merging and batching two products are fed to the system per system feed. The product
mix is chosen to be P1, P2, P1, etc. Here P1 stands for product type one and P2 stands
for product type two. The total structure of the case can be seen using a simplified
illustration in Figure 4.1.

If the two products are fed to the system, they are split. Product P1 is sent to machine
one for processing. The other product type, P2, is processed at machine two. Both
machines send the products to the finite buffer. This buffer has three buffer places
but can only send and receive products in a certain product mix. This product mix
is similar to the mix of the total system: P1, P2, P1, etc. The last operation before

33

34 Chapter 4. Theoretical case

B

M1

M2

B
 bM
)
(
k
u
)
(
k
y

Figure 4.1: Case structure

the products leave the system is done by the batch machine. This machine needs two
products, one of each product type, before it can start processing. If the products are
processed by the batch machine they leave the system one by one. Now each structure
with its policies are discussed stepwise.

The states of the structures are indexed in increasing order. The states of the infinite
buffer are indexed with the lowest numbers and the states of the batch machine are
indexed with higher numbers.

As in the rest of this report, the ε’s in the state-space descriptions are replaced by dots
for reasons of clarity.

4.2 Infinite buffer

In Section 3.4 the infinite buffer has been discussed. Here the buffer only receives
one product per system feed. This has to be extended to two products per feed. A
schematical representation can be seen in Figure 4.2

B

)
(
1
 k
u

)
(
2
 k
u

)
(
1
 k
y

)
(
2
 k
y

)
(
3
 k
u

)
(
4
 k
u

)
(
3
 k
y

)
(
4
 k
y

)
(
1
 k
x

)
(
2
 k
x

)
(
3
 k
x

Figure 4.2: Infinite buffer

with:

• u1(k): time instant at which product P1 is fed to the buffer for the (k +1)st time,

• u2(k): time instant at which product P2 is fed to the buffer for the (k +1)st time,

4.2. Infinite buffer 35

• u3(k): time instant at which the processing unit, directly coupled to the buffer,
can receive product P1 for the (k + 1)st time,

• u4(k): time instant at which the processing unit, directly coupled to the buffer,
can receive product P2 for the (k + 1)st time,

• y1(k): time instant at which product P1 leaves the buffer for the (k + 1)st time,

• y2(k): time instant at which product P2 leaves the buffer for the (k + 1)st time,

• y3(k): time instant at which the buffer becomes available for the (k + 1)st time
to receive product P1,

• y4(k): time instant at which the buffer becomes available for the (k + 1)st time
to receive product P2,

• x1(k): time instant at which the buffer starts buffering product P1 for the kth
time,

• x2(k): time instant at which the buffer starts buffering product P2 for the kth
time,

• x3(k): time instant at which product P2 leaves the buffer for the (k)th time
(= y2(k − 1)).

As mentioned previously, the max-plus models of (in)finite buffers are almost similar to
the machine models with process time d = 0 (for the differences, see Section 3.4). The
model of the infinite buffer is built up as a machine, with a process time that equals 0.
Due to one of the main conditions (see Section 3.1), the deterministic process time has
to be added in certain situations, to a time instant (state x or input u). However, the
addition of the process time is ignored in this section, since d = 0. The buffer receives
and sends the products according to the system product mix, P1, P2, P1, etc.

The buffer starts buffering P1 for the (k + 1)st time, x1(k + 1), if the product is fed to
the system for the (k+1)st time, u1(k), and if, according to the product mix, the second
product, P2, has been buffered for the kth time, x2(k). This results in the following
equation for x1(k + 1):

x1(k + 1) = max(u1(k), x2(k)). (4.1)

The same can be done for the second state. The buffer starts buffering P2 for the
(k + 1)st time if this product has been fed to the system for the (k + 1)st time, u2(k)
and if product P1 has been buffered for the (k + 1)st time, x1(k + 1). This results in
the following equation for x2(k + 1):

x2(k + 1) = max(u2(k), x1(k + 1)). (4.2)

36 Chapter 4. Theoretical case

Substitution of (4.1) in (4.2) gives:

x2(k + 1) = max(u1(k), u2(k), x2(k)). (4.3)

Product P1 leaves the system for the (k + 1)st time if it is fed to the system for the
(k + 1)st time, u1(k), if it is buffered for the (k + 1)st time, x1(k + 1), if, according to
the product mix, P2 has left the buffer for the (k)th time, y2(k− 1), and if machine one
can receive P1 for the (k + 1)st time, u3(k). This all results, using (4.1):

y1(k) = max(u1(k), u3(k), x2(k), y2(k − 1)). (4.4)

The same can be done for the second product, P2. This product leaves the system for
the (k + 1)st time if it is fed to the system for the (k + 1)st time, u2(k), if it is buffered
for the (k + 1)st time, x2(k + 1), if, according to the product mix, P1 has left the buffer
for the (k + 1)st time, y1(k), and if machine 1 can receive P2 for the (k + 1)st time,
u4(k). This all, including the substitution of (4.3) and (4.4), results in the following
equation for y2(k):

y2(k) = max(u1(k), u2(k), u3(k), u4(k), x2(k), y2(k − 1)). (4.5)

Due to the last term in (4.4) and (4.5), y2(k − 1), information of the previous step has
to be saved to determine the two outputs y1(k) and y2(k). Therefore, an extra state
has to be added:

x3(k + 1) = y2(k)

= max(u1(k), u2(k), u3(k), u4(k), x2(k), x3(k)). (4.6)

Using (4.6), (4.4) and (4.5) become:

y1(k) = max(u1(k), u3(k), x2(k), x3(k))

y2(k) = max(u1(k), u2(k), u3(k), u4(k), x2(k), x3(k)).

The infinite buffer can always receive a product, which implies that the value of the
outputs y3(k) and y4(k) (availability information stream) are equal to ε for all k’s:

y3(k) = ε ∀ k

y4(k) = ε ∀ k.

4.3. Machines 1 and 2 37

Now the entire state-space description becomes:

x̄(k + 1) =




. 0 .

. 0 .

. 0 0


 ⊗ x̄(k) ⊕




0 . . .
0 0 . .
0 0 0 0


 ⊗ ū(k)

ȳ(k) =




. 0 0

. 0 0

. . .

. . .


 ⊗ x̄(k) ⊕




0 . 0 .
0 0 0 0
. . . .
. . . .


 ⊗ ū(k)

where:

x̄(k) =




x1(k)
x2(k)
x3(k)


 ū(k) =




u1(k)
u2(k)
u3(k)
u4(k)


 ȳ(k) =




y1(k)
y2(k)
y3(k)
y4(k)


 .

4.3 Machines 1 and 2

The machines used in this case, are equal to the machines described in Section 3.3. They
receive one product per feed. The process times are named d1 for machine 1 and d2 for
machine 2. A schematic representation of the two machines can be seen in Figure 4.3.

M1

)
(
4
 k
x

)
(
5
 k
x

)
(
5
 k
u
)
(
5
 k
y

)
(
6
 k
u
)
(
6
 k
y
 d
1

(a) Machine 1

M2

)
(
6
 k
x

)
(
7
 k
x

)
(
7
 k
u
)
(
7
 k
y

)
(
8
 k
u
)
(
8
 k
y
 d
2

(b) Machine 2

Figure 4.3: Single lot machines 1 and 2

The definitions can be seen in Section 3.3. The increased numbering of the states results
in x4(k) and x5(k) for machine 1 and x6(k) and x7(k) for machine 2. The state-space
description of the machine can be seen below. Here, di is the process time of machine i.

38 Chapter 4. Theoretical case

x̄(k + 1) =

(
di 0
ε ε

)
⊗ x̄(k) ⊕

(
0 ε
ε 0

)
⊗ ū(k)

ȳ(k) =

(
2di di

di 0

)
⊗ x̄(k) ⊕

(
di 0
ε ε

)
⊗ ū(k)

with (for machine 1):

x̄(k) =

(
x4(k)
x5(k)

)
ū(k) =

(
u5(k)
u6(k)

)
ȳ(k) =

(
y5(k)
y6(k)

)

and with (for machine 2):

x̄(k) =

(
x6(k)
x7(k)

)
ū(k) =

(
u7(k)
u8(k)

)
ȳ(k) =

(
y7(k)
y8(k)

)
.

4.4 Finite buffer

As mentioned in Section 4.1 the finite buffer can only send and receive according to a
certain product mix. This product mix is P1, P2, P1 etc. Due to this additional policy,
the finite buffer as discussed in Section 3.4 cannot be used here. A new buffer has to
be modelled. A schematic representation of this finite buffer can be seen in Figure 4.4.

)
(
9
 k
u

)
(
10
 k
u

)
(
9
 k
y

)
(
10
 k
y

)
(
11
 k
u

)
(
12
 k
u

)
(
11
 k
y

)
(
12
 k
y

B

)
(
8
 k
x

)
(
9
 k
x

)
(
10
 k
x

)
(
11
 k
x

)
(
12
 k
x

Figure 4.4: Finite buffer

with:

• u9(k): time instant at which product P1 is fed to the buffer for the (k +1)st time,

• u10(k): time instant at which product P2 is fed to the buffer for the (k+1)st time,

4.4. Finite buffer 39

• u11(k): time instant at which the processing unit, directly coupled to this pro-
cessing unit, can receive product P1 for the (k + 1)st time,

• u12(k): time instant at which the processing unit, directly coupled to this pro-
cessing unit, can receive product P2 for the (k + 1)st time,

• y9(k): time instant at which product P1 leaves the buffer for the (k + 1)st time,

• y10(k): time instant at which product P2 leaves the buffer for the (k + 1)st time,

• y11(k): time instant at which the buffer becomes available for the (k + 1)st time
to receive product P1,

• y12(k): time instant at which the buffer becomes available for the (k + 1)st time
to receive product P2,

• x8(k): time instant at which the buffer starts buffering product P1 for the kth
time,

• x9(k): time instant at which the buffer starts buffering product P2 for the kth
time,

• x10(k): time instant at which product P1 leaves the buffer for the (k)th time
(= y9(k − 1)),

• x11(k): time instant at which product P2 leaves the buffer for the (k)th time
(= y10(k − 1)),

• x12(k): time instant at which product P2 leaves the buffer for the (k − 1)st time
(= y10(k − 2)).

The finite buffer is modelled using a similar way of modelling that is used to model a
machine (Section 3.3), with the difference that the buffer has no process time. In other
words, di = 0. Due to one of the main conditions (see Section 3.1), the deterministic
process time has to be added in a certain situation, to a time instant (state). However,
the addition of the process time is ignored in this section, since di = 0.

PSfrag replacements

P1 P1 P2P2

Figure 4.5: Finite buffer, situation 1

Due to the product mix, the determination of the states is more complicated than in
the previously modelled structures. To calculate the first state, x8(k), a schematic
representation of the situation is needed. If the buffer has to receive a product of type
1, the situation in the buffer can be seen in Figure 4.5. In Figure 4.5 it can be seen,

40 Chapter 4. Theoretical case

that two products of type 2 and one product of type 1 are inside the buffer. The buffer
can only start buffering a product of type 1 for the (k + 1)st time, x8(k + 1), if its
raw material has been fed to the system for the (k + 1)st time, u9(k), if the buffer has
buffered product type 2, for the kth time, x9(k) (due to its product mix) and if the
last product in the buffer at that moment, P2, see Figure 4.5, leaves the buffer for the
(k − 2)nd time, y10(k − 2). Now, x8(k + 1) becomes:

x8(k + 1) = max(u9(k), x9(k), y10(k − 2)). (4.7)

PSfrag replacements

P1P1P2 P2

Figure 4.6: Finite buffer, situation 2

The same can be done for the second product. The buffer can only start buffering a
product of type 2 for the (k+1)st time, x9(k+1), if its raw material has been fed to the
system for the (k + 1)st time, u10(k), if the buffer has buffered product type 1, for the
(k + 1)st time, x8(k + 1) (due to its product mix) and if the last product in the buffer
at that moment, P1, see Figure 4.6, leaves the buffer for the (k − 1)st time, y9(k − 1).
Now:

x9(k + 1) = max(u9(k), u10(k), x9(k), y10(k − 2), y9(k − 1)). (4.8)

Product P1 leaves the finite buffer for the (k + 1)st time, y9(k) if it is fed to the buffer
for the (k + 1)st time, u9(k), if it is buffered for the (k + 1)st time, x8(k + 1), if the
batch machine can receive P1 for the (k + 1)st time, u11(k) and if, according to its
product mix, P2 has been sent away for the kth time, y10(k− 1). This all, including the
substitution of (4.7) results in:

y9(k) = max(u9(k), u11(k), x9(k), y10(k − 1), y10(k − 2)). (4.9)

A similar approach can be used to calculate output y10(k). Product P2 leaves the finite
buffer for the (k+1)st time, y10(k), if it is fed to the buffer for the (k+1)st time, u10(k),
if it is buffered for the (k + 1)st time, x9(k + 1), if the batch machine can receive P2 for
the (k + 1)st time, u12(k) and if, according to its product mix, P1 has been sent away
for the (k + 1)st time, y9(k). With substitution of(4.8) and (4.9), this gives:

y10(k) = max(u9(k), u10(k), u11(k), u12(k), x9(k), y10(k−1), y10(k−2), y9(k−1)). (4.10)

4.4. Finite buffer 41

Due to the last terms in (4.7) to (4.10), y10(k − 2) and y9(k − 1), three extra states are
needed to save the information of previous steps:

x10(k + 1) = y9(k)

= max(u9(k), u11(k), x9(k), x11(k), x12(k)) (4.11)

x11(k + 1) = y10(k)

= max(u9(k), u10(k), , u11(k), u12(k), x9(k), x10(k),

x11(k), x12(k)) (4.12)

x12(k + 1) = x11(k). (4.13)

Substitution of (4.11) to (4.13) in (4.7) to (4.10) results in :

x8(k + 1) = max(u9(k), x9(k), x11(k))

x9(k + 1) = max(u9(k), u10(k), x9(k), x10(k), x12(k)).

and:

y9(k + 1) = max(u9(k), u11(k), x9(k), x11(k), x12(k))

y10(k + 1) = max(u9(k), u10(k), u11(k), u12(k), x9(k), x10(k),

x11(k), x12(k)).

Now, the availability information has to be determined. The finite buffer can receive a
product of type 1 for the (k+1)st time, y11(k) if a product of type 2 has been sent away
for the (k − 2)nd time, y10(k − 2) (see Figure 4.5). The buffer can receive a product of
type 2 for the (k + 1)st time, y12(k), if a product of type 1 has been sent away for the
(k − 1)st time, y9(k − 1) (see Figure 4.6). This results in the following equations:

y11(k) = y10(k − 2) = x12(k)

y12(k) = y9(k − 1) = x10(k).

Now the entire state-space description of the form (3.1) becomes:

42 Chapter 4. Theoretical case

x̄(k + 1) =




. 0 . . 0

. 0 0 . 0

. 0 . 0 0

. 0 0 0 0

. . . 0 .




⊗ x̄(k) ⊕




0 . . .
0 0 . .
0 . 0 .
0 0 0 0
. . . .




⊗ ū(k)

ȳ(k) =




. 0 . 0 0

. 0 0 0 0

. . . . 0

. . 0 . .


 ⊗ x̄(k) ⊕




0 . 0 .
0 0 0 0
. . . .
. . . .


 ⊗ ū(k)

where:

x̄(k) =




x8(k)
x9(k)
x10(k)
x11(k)
x12(k)




ū(k) =




u9(k)
u10(k)
u11(k)
u12(k)


 ȳ(k) =




y9(k)
y10(k)
y11(k)
y12(k)


 .

4.5 Batch machine

The last machine in the manufacturing system is the batch machine. As mentioned
in Section 4.1, the batch size of this machine is two. The process time equals d3 time
units. The machine produces the products P1 and P2 in one batch. After the products
have been processed, the machine sends them individually, in the standard product
mix, P1, P2, P1, etc., to the output of the system. The batch machine can only receive
new products if both products have left the machine. The output can always receive
products. A schematic illustration can be seen in Figure 4.7.

bM

)
(
13
 k
u
)
(
13
 k
y

3
d

)
(
14
 k
u
)
(
14
 k
y

)
(
15
 k
u

)
(
16
 k
u

)
(
15
 k
y

)
(
16
 k
y

)
(
13
 k
x

)
(
14
 k
x

)
(
15
 k
x

Figure 4.7: Batch machine

with:

4.5. Batch machine 43

• u13(k): time instant at which product P1 is fed to the batch machine for the
(k + 1)st time,

• u14(k): time instant at which product P2 is fed to the batch machine for the
(k + 1)st time,

• u15(k): time instant at which the free output can receive product P1 for the
(k + 1)st time,

• u16(k): time instant at which the free output can receive product P2 for the
(k + 1)st time,

• y13(k): time instant at which finished product P1 leaves the batch machine for
the (k + 1)st time,

• y14(k): time instant at which finished product P2 leaves the batch machine for
the (k + 1)st time,

• y15(k): time instant at which the batch machine becomes available for the (k+1)st
time to receive product P1,

• y16(k): time instant at which the batch machine becomes available for the (k+1)st
time to receive product P2,

• x13(k): time instant at which the batch machine starts processing a batch con-
taining P1 and P2 for the (k + 1)st time,

• x14(k): time instant at which finished product P1 leaves the batch machine for
the (k)th time (= y13(k − 1)),

• x15(k): time instant at which finished product P2 leaves the batch machine for
the (k)th time (= y14(k − 1)).

The machine can start processing a new batch for the (k + 1)st time, x13(k + 1), if the
products P1 and P2 are fed for the (k + 1)st time, u13(k) and u14(k), if the previous
batch has been processed, x13(k) + d3 and if both processed products have left the
batch machine for the kth time, y13(k − 1) and y14(k − 1). This results in the following
equation:

x13(k + 1) = max(u13(k), u14(k), x13(k) + d3, y13(k − 1), y14(k − 1)). (4.14)

As mentioned in the beginning of this section, the batch machine sends the products to
the output in the standard product mix. Product P1 leaves the machine for the (k+1)st
time, y13(k), if the machine processed the batch for the (k+1)st time, x13(k+1)+d3, if
the output can receive P1 for the (k +1)st time, u15(k) and if, according to the product
mix, P2 has left the batch machine for the (k)th time, y14(k−1). Now, y13(k) becomes:

44 Chapter 4. Theoretical case

y13(k) = max(u13(k) + d3, u14(k) + d3, u15(k), x13(k) + 2d3,

y13(k − 1) + d3, y14(k − 1) + d3). (4.15)

A similar approach is used to determine y14(k). Product P2 leaves the machine for
the (k + 1)st time, y14(k), if the machine processed the batch for the (k + 1)st time,
x13(k+1)+d3, if the output can receive P2 for the (k+1)st time, u16(k) and if, according
to the product mix, P1 has left the batch machine for the (k + 1)st time, y13(k). This
all, including the substitution of (4.14), results in the following equation for y14(k):

y14(k) = max(u13(k) + d3, u14(k) + d3, u15(k), u16(k), x13(k) + 2d3,

y13(k − 1) + d3, y14(k − 1) + d3). (4.16)

Due to the items y13(k − 1) and y14(k − 1) in (4.14) to (4.16), two extra states are
necessary:

x13(k + 1) = y13(k) (4.17)

x14(k + 1) = y14(k). (4.18)

Substitution of (4.17) and (4.18) in (4.14) to (4.16) gives:

x13(k + 1) = max(u13(k), u14(k), x13(k) + d3, x14(k), x15(k)). (4.19)

and:

y13(k) = max(u13(k) + d3, u14(k) + d3, u15(k), x13(k) + 2d3,

x14(k) + d3, x15(k) + d3)

y14(k) = max(u13(k) + d3, u14(k) + d3, u15(k), u16(k), x13(k) + 2d3,

x14(k) + d3, x15(k) + d3).

The availability information stream can be calculated as follows. The batch machine
can receive a product P1 for the (k+1)st time, y15(k), if product P2 (and automatically,
according to the policy, P1) has left the machine for the kth time, y14(k− 1), or x15(k).

4.6. Coupling 45

For P2, the same approach is used. The machine can receive a product of type 2 for the
(k + 1)st time, y16(k), if a product P2 has left the machine for the kth time, y14(k − 1),
or x15(k). This results in the following equations:

y15(k) = y14(k − 1) = x15(k)

y16(k) = y14(k − 1) = x15(k).

Now, the state-space description of the entire batch machine of the form (3.1) becomes:

x̄(k + 1) =




d3 0 0
2d3 d3 d3

2d3 d3 d3


 ⊗ x̄(k) ⊕




0 0 . .
d3 d3 0 .
d3 d3 0 0


 ⊗ ū(k)

ȳ(k) =




2d3 d3 d3

2d3 d3 d3

. . 0

. . 0


 ⊗ x̄(k) ⊕




d3 d3 0 .
d3 d3 0 0
. . . .
. . . .


 ⊗ ū(k)

where:

x̄(k) =




x13(k)
x14(k)
x15(k)


 ūk =




u13(k)
u14(k)
u15(k)
u16(k)


 ȳ(k) =




y13(k)
y14(k)
y15(k)
y16(k)


 .

4.6 Coupling

The individual modules (structures) still should be coupled to obtain the overall system
dynamics, which is done by connecting the outputs to the corresponding inputs. The
structures have to be coupled using the following coupling equations:

u3(k) = y6(k) u9(k) = y5(k)
u4(k) = y8(k) u10(k) = y7(k)
u5(k) = y1(k) u11(k) = y15(k)
u6(k) = y11(k) u12(k) = y16(k)
u7(k) = y2(k) u13(k) = y9(k)
u8(k) = y12(k) u14(k) = y10(k).

This substitution, which is done by hand, is not presented explicitly. The state-space
description of the entire manufacturing system can be written down. This model has a

46 Chapter 4. Theoretical case

dimension of fifteen, has four inputs, u1(k), u2(k), u15(k), and u16(k), and four outputs,
y1(k), y2(k), y15(k), and y16(k). The system matrices A, B, C, and D can be seen in
Appendix C.

Now the state-space description is known, simulations can be done using Matlab. This
program uses a max-plus toolbox with max-plus functions to calculate max-plus addition
and max-plus multiplication [Sta03]. To simulate and analyse this case, initial values
are needed. Nine iterations are done to keep the notation of the products simple (see
Figures 4.8 and 4.9). The first product of type 1 is presented as P11 and the ninth
product is presented as P19. Here, the input time instants u(k) are given. Using this
input vector, the time instants at which the products leave the system, y(k) and the time
instants at which machines (buffers) start processing (buffering) can be determined. In
the next section the simulation results are presented and the max-plus model is validated
using the formalism χ.

4.7 Output explanation and validation

Before the model of this manufacturing system can be analyzed, first validation has to
be done. According to Kleijnen [Kle92] validation is concerned with determining that a
simulation model (as opposed to the computer program) is an accurate representation
of the system under study. This validation is done using a simple test, such as graphical
analysis, and the relationship between the simulations and other models (for example
the results obtained by calculation by hand and a χ model). Using these validation
methods, the model should be valid under ’extreme’ conditions [Kle92]. Now the initial
conditions, the input time instants and the availability information are known, the
time instants at which the machines and buffers start processing respectively buffering
products, can be calculated by hand using the standard state-space description (3.1).
The results of these calculations have to be compared with the results of the simulation.
If these results are equal, the model behaves as expected and desired, and is validated
successfully.

Aside from the calculations by hand, the max-plus model is validated with the formal-
ism χ, which is a specification language designed for describing real-world concurrent
systems [Hof02]. In this report, two χ models are made to validate the max-plus model.
In the first χ model, which can be seen in Appendix E.1, the manufacturing system
of the theoretical case is modelled using the standard modelling techniques according
to [Hof02]. In the second χ model, the manufacturing system is modelled according to
the actions and events that take place in the max-plus model (see Appendix E.2). The
validation of the max-plus models is done using two different sessions of in- and output
sequences. In the first session, the input sequence is non-decreasing and the output
of the system can always receive products, see Table 4.1. The second session contains
all kind of special situations in the input sequence and the output cannot always re-
ceive products, see Table 4.2. First the calculations by hand are presented, followed

4.7. Output explanation and validation 47

by simulation results of the χ model. Then, the results are compared to the results of
the max-plus model. If the results of the calculation by hand, the χ models and the
max-plus model are equal, the max-plus model is validated successfully.

To simulate this manufacturing system, system matrices A, B, C, and D of the state-
space description are necessarily. These can be seen in Appendix C. To calculate the
time instants of step k + 1, information of the previous step, k, is needed. To calculate
values for k = 1, the initial state values (for k = 0), x̄(0), are necessary. These initial
states, input time instants of raw material (u1(k) and u2(k)), and output time instants
of availability information, (u15(k) and u16(k)) enables simulation of this model. Their
values for k = 1 to k = 9 can be seen in Table 4.1. The free output can always receive
products, which results in u15(k) = u16(k) = ε ∀k. The process time of machine 1,
machine 2 and the batch machine are respectively 1, 3, and 10 time units. The initial
state vector is: x̄(0) = x0 = [ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε]T . This initial state vector
indicates an empty manufacturing system. If the manufacturing system is not empty
another initial state vector has to be chosen. As mentioned before, the validation of the
max-plus model is done using two different sessions of in- and output sequences. These
sessions can be seen in Tables 4.1 and 4.2.

The first session of in- and output sequences do not need an extensive explanation. The
input sequence is non-decreasing and the output is a free output, which means that it
can always receive products.

systemfeed nr. 1 2 3 4 5 6 7 8 9

u1(k) 0 5 10 15 20 25 30 35 40
u2(k) 1 6 11 16 21 26 31 36 41
u15(k) ε ε ε ε ε ε ε ε ε
u16(k) ε ε ε ε ε ε ε ε ε

Table 4.1: Input and output values of session 1

The second session contains all kind of input sequences and at one system feed, the
output can only receive products at a certain time instant. A short description of the
values in Table 4.2 is given here, where u(k + 1) is assumed to takes place later than
u(k). Three situations in which this in not true, are simulated, to check the correctness
of the model, for instance: u1(k) < u1(k − 1). This situation takes place in feed nr. 3;
u1(3) = 0 and u1(2) = 5. The second situation is u2(k) < u2(k−1). This situation takes
place in feed nr. 5; u2(5) = 11 and u2(4) = 16. Third, u1(k) < u2(k − 1), this situation
takes place in feed nr. 7; u1(7) = 21 and u2(6) = 26. The last situation represents that
the inputs u15(k) and u16(k) are not equal to ε and u15(k) 6= ε, u16(k) 6= ε. In this case,
the batch machine can not send its products immediately to the output. This situation
takes place in feed nr. 9; u15(9) = u16(k) = 100. These input values can be seen in
Table 4.2.

Now the results of the calculations by hand, the χ model and the max-plus model are
discussed.

48 Chapter 4. Theoretical case

systemfeed nr. 1 2 3 4 5 6 7 8 9

u1(k) 0 5 0 15 20 25 21 35 40
u2(k) 0 6 11 16 11 26 31 36 41
u15(k) ε ε ε ε ε ε ε ε 100
u16(k) ε ε ε ε ε ε ε ε 100

Table 4.2: Input and output values session 2

Results of the calculations by hand

Here, the results of the calculations by hand are determined. This is done using the
values of both Tables 4.1 and 4.2 and a lot-time diagram. A short description of the
computation of the events at the resources is illustrated subsequently. The results can
be seen in Figure 4.8 and 4.9 and Tables 4.3 and 4.5 for respectively session 1 and
session 2.

system feed nr. 1 2 3 4 5 6 7 8 9

x1(k) 0 5 10 15 20 25 30 35 40
x2(k) 1 6 11 16 21 26 31 36 41
x4(k) 0 5 10 15 20 25 34 44 54
x6(k) 1 6 11 16 24 34 44 54 64
x8(k) 1 6 11 16 24 34 44 54 64
x9(k) 4 9 14 24 34 44 54 64 74
x13(k) 4 14 24 34 44 54 64 74 84

Table 4.3: Time instants of start processing/buffering, session 1

system feed nr. 1 2 3 4 5 6 7 8 9

y13(k) 14 24 34 44 54 64 74 84 94
y14(k) 14 24 34 44 54 64 74 84 94

Table 4.4: Time instants at which products leave the system, session 1

The first raw material is fed to the system at time instant 0 (for P1) and 1 (for P2), see
Table 4.1. Consequently, the infinite buffer starts buffering P1 and P2 at time instant
0 and 1 respectively. Machines 1 and 2 are idle at time instant 0. Therefore, they start
processing the products at time instant 0 and 1 respectively. Machine 1 has a process
time of 1 time unit. This means that P1 is sent to the finite buffer at time instant 1.
The buffer starts buffering P1 at time instant 1. The process time of machine 2 is 3 time
units. This means that P2 has been finished at time instant 4 and is buffered by the
finite buffer immediately. Now two products of different type are in the buffer. As long
as the batch machine is idle, these products are sent to the batch machine. Therefore,
this machine starts processing the batch at time instant 4. The process time of the
batch machine is 10 time units, which means that the products can leave the system at

4.7. Output explanation and validation 49

time instant 14. The new products are fed to the system at time instant 5 (for P1) and
6 (for P2). Machine 1 and 2 receive the products immediately because they are idle at
that time. Machine 1 finishes P1 at time instant 6 and the finite buffer start buffering
this product at the same time. Machine 2 finishes P2 at 9 according to its process time.
The batch machine can start processing the new batch if the previous batch has been
finished, at time instant 14. This all can be validated using Figure 4.8 and Tables 4.3
and 4.4.

These calculated results can be seen in Table 4.3. States x1(k) and x2(k) are the time
instants at which the infinite buffer starts buffering respectively P1 and P2 for the kth
time. States x4(k) and x6(k) are the time instants at which respectively machine 1
starts processing P1 and machine 2 starts working on P2 for the kth time. States x8(k)
and x9(k) are the time instants at which the finite buffer starts buffering respectively
P1 and P2 for the kth time. State x13(k) is the time instant at which the batch machine
starts processing a batch (P1 and P2) for the kth time.

The time instants at which the products leave the manufacturing system, y13(k) for
product P1 and y14(k) for product P2 are presented in Table 4.4:

The values in Tables 4.1, 4.3, and 4.4 do not give a clear view of the events that occur
during the production of the two products. A graphic representation is needed to make
this output understandable. This can be done by using a lot-time diagram. In these di-
agrams, one can see when and on what machine/buffer products are processed/buffered
to become a finished product. Lot-time diagrams are simple to understand and easy
to construct. Therefore, the results calculated by hand are represented in a lot-time
diagram chart, see Figure 4.8.

In the lot-time diagram, the horizontal axis represents time and the vertical axis rep-
resents the product type and number. For instance, 14 signifies the fourth product of
type 1 (P1).

For the second session, the same approach as mentioned above, is used to determine
the start and end time instants of all events. Now, the input sequence and availability
information can be seen in Table 4.2. Tables 4.6 and 4.5 and the lot-time diagram
(Figure 4.9) illustrate the results of these input values.

system feed nr. 1 2 3 4 5 6 7 8 9

x1(k) 0 5 6 15 20 25 26 35 40
x2(k) 0 6 11 16 20 26 31 36 41
x4(k) 0 5 6 15 20 25 33 43 53
x6(k) 0 6 11 16 23 33 43 53 63
x8(k) 1 6 9 16 23 33 43 53 63
x9(k) 3 9 14 23 33 43 53 63 73
x13(k) 3 13 23 33 43 53 63 73 83

Table 4.5: Time instants of start processing/buffering, session 2

50 Chapter 4. Theoretical case

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

29

19

28

18

27

17

26

16

25

15

24

14

23

13

22

12

21

11

PSfrag replacements

time [hour]

p
ro

d
u
ct

n
u
m

b
er

[t
y
p
e,

lo
t]

PSfrag replacements
Infinite buffer

Machine 1

Machine 2

Finite buffer

Batch machine

Blocking

Figure 4.8: Lot-time diagram, session 1

system feed nr. 1 2 3 4 5 6 7 8 9

y13(k) 13 23 33 43 53 63 73 83 100
y14(k) 13 23 33 43 53 63 73 83 100

Table 4.6: Time instants at which products leave the system, session 2

In Figure 4.9 can be seen that in the first situation (u1(k) < u1(k−1)) machine 1 starts
working immediately on the third P1 when the second P1 has been finished. In the
second situation (u2(k) < u2(k − 1)), the fifth product of type two is fed to the system
when machine 2 is still processing. Therefore, this product is first buffered in the infinite
buffer. A similar situation exist for u1(k) < u2(k − 1), here the seventh product of type
one has to wait in the finite buffer until machine 1 becomes idle. The last situation can
be seen in the last products (ninth feed). Here the products leave the batch machine at
time instant 100, a result of the values of u15(9) and u16(9).

Results of the χ and max-plus model

In the previous part of this chapter, the results of both input sequences and availability
information are presented. These results are shown using a lot-time diagram. Both
the max-plus model, see Appendix C for the system matrices A, B, C, and D, and
the χ models, see Appendix E, return data that has to be treated first before lot-time
diagrams can be made. The returned data are the time instants at which events occur.

4.8. Discussion 51

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

29

19

28

18

27

17

26

16

25

15

24

14

23

13

22

12

21

11

PSfrag replacements

time [hour]

p
ro

d
u
ct

n
u
m

b
er

[t
y
p
e,

lo
t]

PSfrag replacements
Infinite buffer

Machine 1

Machine 2

Finite buffer

Batch machine

Blocking

Figure 4.9: Lot-time diagram, session 2

Using this information, the lot-time diagrams can be made. The χ models are made
using the inputs as can be seen in Tables 4.1 and 4.2. The returned data of both the χ
files after simulations is used to make lot-time diagrams with Matlab. The diagrams of
both these files (see Appendix 4.7) are equal to the diagrams as can be seen in Figure 4.8
and 4.9.

The max-plus model is implemented in Matlab. To simulate, first the max-plus toolbox
of Stanczyk [Sta03], and the values as presented in Tables 4.1 and 4.2 are needed. Similar
to the χ model the returned data by the model is used to make the lot-time diagrams
with Matlab. These lot-time diagrams are equal to the diagrams that are presented in
Figure 4.8 and 4.9. All three methods, (1) calculations by hand, (2a) χ specifications
using a standard file and (2b) a specified file that corresponds to the max-plus dynamics
and (3) the max-plus model return the same results after simulations. Therefore, the
max-plus model is validated successfully. In Chapter 5 this model is used to control the
output sequence with respect to a certain reference signal in combination with Model
Predictive Control (MPC).

4.8 Discussion

In this chapter a manufacturing system with all sorts of structures and policies has been
modelled using the max-plus-algebra and the formalism χ. Both the max-plus-algebra

52 Chapter 4. Theoretical case

and χ can serve as a tool to model and analyse DESs. As mentioned in Chapter 1, com-
puter simulation (e.g. the formalism χ) is, up to now, the most widely used technique
to study DESs. In this section, the max-plus-algebra is analyzed and compared to the
χ language.

Using both the max-plus-algebra and χ to model a manufacturing system result in
models that describe the behavior (both the transient and steady state) of this DES
exactly. The best way to study a manufacturing system with its structures and policies
using both the max-plus-algebra and the χ language, is to cut the system into sev-
eral small pieces. The smallest piece of the entire puzzle (or module) is an individual
modules (e.g. a finite buffer) with a certain policy (e.g. FIFO). If all these individual
pieces are modelled into both methods, coupling takes places. This coupling results in
a max-plus model of the entire manufacturing system. Now, the entire manufactur-
ing system is, for the max-plus-algebra written in two matrix formulations, called the
standard max-algebraic state-space description, and in case of χ in a formal language
specification. One can gain, in case of a relative simple manufacturing system, good
insight in its dynamics and structure by using the elegant max-plus state-space descrip-
tion, that contains four system matrices A, B, C and D. Unfortunately, this insight
decreases if the size and/or complexity of the manufacturing system increases due to
the increasing size of the system matrices. Here, complexity can depend on e.g. certain
scheduling rules, the structure of the system, re-entrancy etc. If a manufacturing system
is modelled using χ, these (relative) complex situations can be modelled with functions
outside the process environment. Large structures that contain similar processes can
be modelled by defining the process only once and duplicate it in the xper -environment
or use clusters. However, even the use of functions and the duplication of processes
in the xper -environment in the χ model might also lead to a decrease of insight of a
manufacturing system.

If the input time instants of raw material are known, the time instants at which fin-
ished products leave the system and time instants at which machines or buffers start
processing respectively buffering are easy to compute using the standard state-space
description of a max-plus model. Of course, this advantage is only valid if deterministic
process times are used. Using χ, this simple, elegant calculation with a matrix formu-
lation is not possible. These calculations can be done by hand if the system matrices
are known. The formalism χ requires simulations to determine start and end times of
events. This formalism makes it possible to model machines with stochastic process
times. Due to the limited duration of this project, these stochastic process times are
not taken into account. The use of max-plus-algebra requires (in contrast to χ), up to
now, that the route of the products through the manufacturing system has to be fixed.
In Chapter 6 some recommendations about these topics are given.

In this report, several basic structures are modelled in the max-plus-algebra. In industry
all kind of policies and structures are used. This means that these basic structures
cannot always be used. Adapting these basic max-plus structures or modelling new
structures from the starts is time consuming. A χ model of a manufacturing system

4.8. Discussion 53

can, in some cases, easily be adapted, if the policy and/or structure of a manufacturing
system changes. If a max-plus model is used to analyse a manufacturing system, a small
policy change means that this particular structure has to be modelled all over again.
If the structure contains the new policy, all structures have to be coupled again before
new analysis is possible. If, for example the number of buffer places of a finite buffer
changes, in the max-plus-algebra, the buffer has to be modelled all over again. In case
of using χ, this only is a matter of changing a parameter. In Appendix A, an algorithm
is presented to calculate the system matrices if a machine or buffer receive more than
one product per feed. If the use of the max-plus-algebra to model manufacturing system
can be explored, more algorithms can be found to determine system matrices in all sorts
of situations. This automation might increase the suitability of the max-plus-algebra
to model and analyze manufacturing systems.

Summarized, the max-plus-algebra is not useful if simulations are required to determine
the influence on certain parameters or the performance of a manufacturing system with
respect to for instance the number of machines or the number of buffer places. Man-
ufacturing systems with a non-fixed product route and/or stochastic process times are
not considered to model with the max-plus-algebra. Therefore, some recommendation
with respect to these topics are given in Chapter 6.

54 Chapter 4. Theoretical case

Chapter 5

Control of a manufacturing
system

In the previous chapters, the max-plus-algebra has been discussed in detail, applied to
model different structures and an entire manufacturing system with all kind of structures
and policies has been modelled and analyzed. One of the main purposes of this research
project is to control a manufacturing system that is modelled using the max-plus-
algebra. A control strategy may be described as the set of rules defining at which
conditions, which controlled event should take place. An example of such an event
may be the release of lots into the system. The control strategy that is used in this
project is Model Predictive Control (MPC). MPC is a control strategy that is widely
used in the process industry. Normally MPC uses linear discrete-time models for the
process that has to be controlled. Van den Boom and De Schutter have extended MPC
to max-plus-linear systems [Sch00a, Sch01]. In this chapter, an introduction to this
max-plus extended MPC is given, followed by an implementation of MPC applied to
the theoretical case of Chapter 4.

5.1 Model Predictive Control

The control strategy MPC is named model-based because it uses an internal dynamical
model of the process that has to be controlled and it is predictive because this internal
model is used to predict the future behavior of the process. Based on this prediction, an
objective function is optimized with regard to the future control inputs of the process.
MPC is optimal with respect to this chosen objective function. Only the first input
of the generated optimal inputs over the future horizon is implemented for the next
sample. After this implementation, the same procedure is repeated during this next
sample. This mechanism is called the moving or receding horizon strategy.

Now the concept of MPC is discussed in more detail. MPC uses two horizons, the

55

56 Chapter 5. Control of a manufacturing system

prediction horizon and the control horizon, with respectively a length of Np and Nc

samples. The length of the control horizon is smaller than or equal to the prediction
horizon due to a reduction of optimization variables. This results in less computation
time, a smoother controller signal (because of the emphasis on the average behavior
rather than on aggressive noise reduction) and a stabilizing effect (since the output
signal is forced to its steady state value) [Sch01]. The use of a finite prediction horizon
distinguishes MPC from standard feedback control. This prediction horizon allows
MPC to take a control action at the current time step, in response to a possible future
error between the reference and the actual output, even if the error is zero at that time
[Ess02].

An important advantage of MPC is its constraint handling capability. All kinds of con-
straints (e.g. physical, safety and performance constraints) on the input(s), output(s)
and state(s) can be taken into account. The use of MPC has some disadvantages.
First, a model of the process that has to be controlled is needed. The performance of
MPC depends on the accuracy of the available model. Secondly, the use of a suitable
computer is necessary because MPC can be computationally demanding. Thirdly, the
performance of MPC is also strongly dependent on the tuning parameters including
weighting factors/parameters, and the length of both the control and prediction hori-
zon. A schematic representation of the discussed MPC concept and its receding horizon
is given in Figure 5.1. In contrast to the theoretical case, for reasons of clarity a Single-
Input-Single-Output (SISO) system is considered here. The manufacturing system that
has been worked out in Chapter 4 has four in- and outputs.

Reference trajectory

y(k+N
c
|
k)

Time (in samples)

k-2
 k-1
 k
 k+1
 ...
 k+N
c

...
 k+N
p

Future
Past

O
ut

pu
t

y(k+N
p
|
k)

y(k+1
|
k)

y(k
|
k)

Time (in samples)

k-2
 k-1
 k
 k+1
 ...
 k+N
c

...
 k+N
p

In
pu

t

u(k
|
k)

u(k+1
|
k)

u(k+N
c
-1
|
k)

control horizon

prediction horizon

Figure 5.1: Concept of MPC

5.2. The standard MPC problem 57

In the previous chapters, many structures of manufacturing systems have been modelled
using the standard state-space description (3.1). At the present sample k, output y(k|k)
is known, and the response of output y over the future prediction horizon is predicted:

ỹ(k) =




ŷ(k + 1|k)
...

ŷ(k + Np|k)




Here, ŷ(k + j|k) and ỹ(k) stand for respectively the predicted value of the output y at
sample k + j based on information that is available at sample k and the vector that
contains these values. The prediction ŷ(k + j|k) is based on:

• the past input u(k|k),

• the current internal model state x(k|k),

• the proposed future inputs over the control horizon:

ū(k) =




u(k + 1|k)
...

u(k + Nc|k)


,

• the future reference signal r̄(k) and if possible, the prediction is also based on
predicted or estimated future disturbances. These disturbances are not considered
in this thesis.

At sample k the future input ū(k) is determined such that a certain objective function
J is minimized subject to certain constraints. Consecutive in- and outputs of max-
plus models of manufacturing systems are time instants that should be non-decreasing.
Therefore, is, compared to MPC of linear discrete-time systems, instead of the input u,
the input rate 4u taken to be constant between the end of the control horizon and the
end of the prediction horizon: 4u(k + j) = 4u(k + Nc) for j = Nc, . . . , Np. Here 4u
is defined as: 4u(k) = u(k) − u(k − 1).

5.2 The standard MPC problem

In the previous section, the concept of MPC has been considered. Main MPC items such
as the objective function J and constraint handling have been briefly introduced. In this
section, the objective function and the constraint handling to be used in this project
are treated. Combining the objective function, the constraints and the dynamics of the
manufacturing system as described in Chapter 4, a standard MPC control problem is
composed that is used in this project.

58 Chapter 5. Control of a manufacturing system

Objective function

As mentioned in the previous section, the input vector determined by MPC, is optimal
with respect to the chosen objective function or cost criterion. This objective function
reflects the reference tracking error or output cost criterion (Jout) and the control effort
or input cost criterion (Jin). Several objective functions can be chosen. In this report,
the difference between the due dates (reference signal) and the actual output time
instants is minimized. This objective function should, on the one hand, prevent finished
products to leave the system too early (which would result in stock), on the other hand
this function should prevent finished products to leave the system too late (to prevent
back log). This stock and tardiness result in certain penalties. The tracking error (Jout)
becomes:

Jout =
l∑

i=1

Np∑

j=1

|ŷi(k + j|k) − ri(k + j)|. (5.1)

In (5.1), l denotes the number of in- and outputs. For the manufacturing system of
the theoretical case, see Chapter 4, that is modelled using the max-plus-algebra, the
number of inputs is equal to the number of outputs.

The tracking error (5.1) can be written using the maximization operator:

Jout =
l∑

i=1

Np∑

j=1

max(ŷi(k + j|k) − ri(k + j), ri(k + j) − ŷi(k + j|k)). (5.2)

If, according to the reference signal r̄(k), finished products have to leave the manufactur-
ing system in a certain (too) high production rate this results in an instable situation.
Stability in conventional system theory is concerned with boundedness of the states.
In max-plus linear systems the sequence of consecutive states is always nondecreasing.
This means that for k → ∞, the time instants xi(k) will be unbounded. Therefore, De
Schutter and Van den Boom define stability for DES as follows: a discrete event system
is called stable if all its buffer levels remain bounded [Sch00b]. To prevent this instable
situation, another part of the objective function, Jout has to result in a maximization
of the control input. This maximization prevents the overflow of the input buffer. The
necessary raw material is fed to the system as late as possible and the internal buffer
levels are kept as low as possible. The input cost criterion Jin then becomes:

Jin = −
l∑

i=1

Np∑

j=1

ui(k + j). (5.3)

The entire objective function becomes the sum of the output (5.2) and input (5.3)
criterion with a certain (weighting) parameter λ. This parameter λ makes a trade-off
between minimization of the tracking error and the needed control effort.

5.2. The standard MPC problem 59

J = Jout + λJin.

Constraint handling

As mentioned before, a great benefit of MPC is the possibility to use constraints on the
input(s), output(s) and/or state(s). For manufacturing systems, typical constraints are
a lower bound (lb) or an upper bound (ub) on the input or output rates:

lb1 ≤ 4u(k + j) ≤ ub1 for j = 1, . . . , Np, (5.4)

lb2 ≤ 4y(k + j|k) ≤ ub2 for j = 1, . . . , Np, (5.5)

where, 4u(k) = u(k) − u(k − 1).

As mentioned before, consecutive inputs and outputs of max-plus models of manufac-
turing systems are time instants that should be non-decreasing. Therefore, the lower
bounds of (5.4) and (5.5) should always be greater than zero.

Output prediction

Using the standard max-algebraic state-space description (3.1a) and (3.1b), the future
values of the output can be computed. An important assumption is that the states at
event step k can be measured or estimated using (3.1). In order to keep the number
of variables in the resulting optimization problem as low as possible, the predictions
of the output values are not determined by (3.1b). A different, more efficient way of
determining the predicted output, which leads to faster computation of the optimal
input and is explained as follows. Recall that (3.1) gives the standard state-space
description:

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k) (5.6a)

y(k) = C ⊗ x(k) ⊕ D ⊗ u(k). (5.6b)

for k = 0, (5.6a) and (5.6b) become:

x(1) = A ⊗ x(0) ⊕ B ⊗ u(0) (5.7a)

y(0) = C ⊗ x(0) ⊕ D ⊗ u(0). (5.7b)

60 Chapter 5. Control of a manufacturing system

for the next sample (k = 1), (5.6a) and (5.6b) become:

x(2) = A ⊗ x(1) ⊕ B ⊗ u(1) (5.8a)

y(1) = C ⊗ x(1) ⊕ D ⊗ u(1). (5.8b)

Substitution of (5.7a) in (5.8b) gives:

y(1) = C ⊗ A ⊗ x(0) ⊕ C ⊗ B ⊗ u(0) ⊕ D ⊗ u(1).

Note that now, only the initial state vector (here x(0) = x0) is needed to determine
future output values. The number of optimization variables is reduced. Using this way
of predicting the output values, the following matrix notation can be used:

ỹ(k) = H ⊗ ū(k) ⊕ g ⊗ x0 (5.9)

with:

H =




D ε · · · · · · ε

C ⊗ B D
. . . ε

C ⊗ A ⊗ B C ⊗ B
. . .

. . .
...

...
...

. . .
. . . ε

C ⊗ A⊗
Np−1

⊗ B C ⊗ A⊗
Np−2

⊗ B · · · C ⊗ B D




(5.10)

g =




C
C ⊗ A

C ⊗ A⊗2

...

C ⊗ A⊗
Np




. (5.11)

5.2. The standard MPC problem 61

Standard MPC problem

So far, the objective function, the constraint handling, and the output prediction have
been discussed. By combining these items, an optimization problem can be composed.
This problem is called the standard MPC problem, as presented in (5.12). In this
problem, only the input rates are limited by a lower- and upper bound. The original
problem can be denoted as follows:

min
ū(k)

J = min
ū(k)

Jout + λJin (5.12a)

with:

Jout =
l∑

i=1

Np∑

j=1

max(yi(k + j|k) − ri(k + j), ri(k + j) − yi(k + j|k))

Jin =
l∑

i=1

Np∑

j=1

ui(k + j)

subject to:

ỹ(k) = H ⊗ ū(k) ⊕ g ⊗ x0 (5.12b)

lb ≤ 4u(k + j) ≤ ub for j = 1, . . . , Np (5.12c)

42u(k + j) = 0 for j = Nc, . . . , Np. (5.12d)

with: 42u(k) = 4u(k) −4u(k − 1)

= u(k) − 2u(k − 1) + u(k − 2).

Solving this problem, the input rates in ū(k) are the only optimization variables. The
output predictions ỹ(k) are determined using (5.12b). In general this standard MPC
problem (5.12) is a nonlinear nonconvex optimization problem due to (5.12b). The
equality constraint (5.12d) and inequality constraint (5.12c) are convex in u. Equality
constraint (5.12b) is in general not convex due to the max-plus operators ⊕ and ⊗.

Many methods exist for solving the standard optimization problem (5.12). In this
research project three optimization methods are implemented in Matlab. The first
method is a constrained nonlinear optimization solver from Matlab, called fmincon.
This solver finds the constrained minimum of a function of several variables using Se-
quential Quadratic Programming (SQP) and can deal with linear and nonlinear con-
straints and objective functions [Pap00]. Fmincon does not need information about the

62 Chapter 5. Control of a manufacturing system

properties of the optimization problem (such as gradients and information on convex-
ity and linearity). The standard MPC problem is a nonlinear nonconvex optimization
problem due to (5.12b). De Schutter and Van den Boom describe in [Sch00a] a method
to reformulate this problem as a convex optimization problem. This so called relaxed
problem can be solved very efficiently by replacing the = – sign in (5.12b) with ≥.
This relaxed problem is called the relaxed MPC problem. Compared to the standard
MPC problem (5.12), now both u(k) and y(k) are optimization variables. Due to the
replacement of the = – sign to the ≥ – sign the feasible area becomes larger. In
[Sch00a] is proven that if the objective function J is a monotonically nondecreasing
function of ỹ and (ũ∗

nlcon, ỹ
∗

nlcon) is an optimal solution of the relaxed MPC problem,

then (ũ∗

nlcon, ỹ
]
nlcon) is an optimal solution of the standard original MPC problem. Here,

ỹ]
nlcon = H ⊗ ũ∗

nlcon ⊕ g ⊗ x0. In this research project, the objective function J is not
monotonically nondecreasing. Therefore, no proof exists that if (ũ∗, ỹ∗) is an optimal
solution of the relaxed problem, (ũ∗, ỹ]) is an optimal solution of the original problem.
Due to the lack of this proof, the difference between the output of the relaxed problem,
ỹ∗, and the original problem, ỹ] has to be zero to know if the solution is optimal. The
feasible solution of the original problem is a subset of the set of feasible solutions of the
relaxed problem. Unfortunately the constrained nonlinear optimization method using
fmincon does not converge to an optimal input sequence, but keeps oscillating. Detailed
information, of the Matlab implementation of this optimization method, can be seen on
the CD-rom that goes with this report.

Therefore, (5.12) is implemented as a linear constraint optimization problem where a
penalty function is used for the nonlinear constraints. The nonlinear constraint (5.12b)
is no longer described as a constraint. Problem (5.12) is relaxed by adding the difference
of the output of the relaxed problem and the output of the original problem, multiplied
by a weighting parameter µ. Using a high value for µ, compared to λ, results in an
optimal solution whereas

∑l
i=1

∑Np

j=1(y
∗
i, pen(k + j) − y]

i, pen(k + j)) is dominant with
respect to the original terms in the original objective function. Unfortunately, this
optimization method with a penalty function does not give satisfying results due to the
significant differences between the output of the relaxed problem and the standard MPC
problem. More information about this linear constraint optimization with a penalty
function can be seen on the before mentioned CD-rom.

Due to the difficulties and the poor results of both the optimization methods mentioned
above, the search for an efficient and suitable optimization method leads to Linear Pro-
gramming (LP). The standard MPC problem has to be transformed into the following
standard LP problem:

min
ū(k),ȳ(k),z̄(k)

J = min
ū(k),ȳ(k),z̄(k)

cT x̄ (5.13a)

5.2. The standard MPC problem 63

subject to

Ax̄ ≤ b (5.13b)

Aeqx̄ ≤ beq (5.13c)

lb ≤ x̄ ≤ ub. (5.13d)

Variables ū(k), ȳ(k) and z̄(k) in (5.13a) are elements of the vector x that contains
all decision variables, as presented in Appendix F. Transforming the standard MPC
problem (5.12) into an LP problem means that the objective function and all constraints
have to be written in a linear formulation. Therefore, the objective function will be of
the form:

J = c1x1 + c2x2 + . . . + cnxn. (5.14)

In addition to the objective function, also the equality and/or equality constraints have
to be written in a linear combinations of the decision variables:

a1x1 + a2x2 + . . . + anxn

{
≤
=

}
b. (5.15)

In Appendix F, the transformation of (5.12) into an LP problem of the form (5.13) is
worked out. This transformation results in an adapted objective function due to the
addition of dummy variables z:

J = λ
2∑

i=1

Np∑

j=1

ui(k + j) +
2∑

i=1

Np∑

j=1

yi(k + j) +
2∑

i=1

Np∑

j=1

zi(k + j). (5.16)

In Appendix F the transformation is explained using an example. In this example, the
length of the prediction horizon equals 2 and the length of the control horizon equals 1.
Transformation of (5.16) into an objective function of the form (5.14) results in:

J = cT x̄ (5.17)

with (in case of Np = 2 and Nc = 1):

cT =
(

λ λ λ λ 1 1 1 1 1 1 1 1
)

64 Chapter 5. Control of a manufacturing system

x̄ =
(

u1(1) u2(1) u1(2) u2(2) y1(1) y2(1) y1(2) y2(2)

. . . z1(1) z2(1) z1(2) z2(2)
)T

.

The (in)equality constraints remain, in contrast to the objective function, similar to the
original problem (5.12). Constraints (5.12c) and (5.12d) are reformulated as (5.13c) and
(5.13b). Before the manufacturing system that is worked out in Chapter 4 is controlled
using MPC and (5.13), certain parameters have to be tuned to gain satisfactory results.
This parameter tuning is discussed in Section 5.3.

5.3 Tuning the MPC parameters

A proper MPC controller contains certain parameters that need to be tuned to gain
satisfactorily results. In this section, the parameters that have most influence on the
performance of the controller are presented and their way of tuning is discussed. Here,
only the necessary aspects or guidelines with relation to parameter tuning that leads to
a good working controller are given. The following parameters are considered:

• prediction horizon Np,

• control horizon Nc,

• weighting parameter λ.

In this report, time-invariant state-space models are used to describe manufacturing
systems. As mentioned in Chapter 1, time-invariant systems respond to a certain input
sequence, which means that these systems are not dependent on absolute time. There-
fore, the term sample time can not be used here. Sample time is a parameter of MPC
that has to be tuned only if models are used that are dependent on absolute time.

Prediction horizon Np

The first parameter that is tuned is the prediction horizon Np. The event interval (1, Np)
has to contain the crucial dynamics of the process. Or, in other words, the prediction
horizon has to be taken at least long enough for the complete effect of an input can be
seen within Np samples. Determination of Np can be done using the max-plus-algebraic
impulse response, or short impuls response [Sch00b, Sch96]. The impuls response can

5.3. Tuning the MPC parameters 65

be defined as the output sequence that results from a max-plus-algebraic unit impulse
applied to a max-plus system. This unit impulse e(k) can be interpreted as follows:

{
e(k) = 0 if k = 0
e(k) = ε if k 6= 0.

Feeding a max-algebraic unit impuls to the ith input of the system with x(0) = εn×1,

results in y(k) = C ⊗A⊗k−1

⊗Bi for k = 1, 2, .. as the output of the system, where Bi is
the ith column of B. Using this unit impuls for all the inputs i = 1, 2, ..., m of the system,
this can be written using matrix Gk−1 = C ⊗ A⊗k−1

⊗ B for k = 1, 2, The {Gk}
∞

k=0

is called the impuls response of the system. Note, that there is an analogy between
the impuls response and the H matrix (5.10). The Gk’s are called response matrices or
Markov parameters [Sch96]. Considering a manufacturing system, the following physical
interpretation of the impulse response can be given. At event counter k = 0, all the
internal buffers of the system are empty. Then, raw material is fed to the system and
this is done at such a rate that the internal buffers never become empty. The time
instants at which the finished products leave the system correspond to the terms of the
impulse response [Sch00b]. Using this theory, a lower bound for Np can be determined.
Let {Gk}

∞

k=0 be the impuls response of a max-plus-linear manufacturing system, then
there exist constants c, k0 and ρ, such that:

G(k) = cρ + G(k − c) ∀ k ≥ k0. (5.18)

A specific impuls response, such as (5.18), is called ultimately periodic with cycle period
c. Variable ρ gives the average duration of a cycle. The length of the impuls response
is now defined as the minimal value of k0 for which (5.18) holds [Sch00b]. The average
production rate of the manufacturing system, then becomes 1/ρ because every ρ time
units (a) finished part(s) leave(s) the manufacturing system. Next, an upper bound has
to be found. The upper bound of the prediction horizon length is determined by the
available computation time, since a larger horizon requires more computation time. By
using this approach to determine the lower bound of Np, the manufacturing system is
asumed to behave according to (5.18) and that no noise or peaks appear using a unit
impulse.

Control horizon Nc

The second parameter that has to be tuned is the control horizon Nc. If the reference
trajectory that has to be followed by the manufacturing system varies relatively fast
in time, a longer control horizon is more suitable. A large interval of (1, Nc) results
therefore, in more ’aggressive’ control. On the other hand, and similar to the prediction
horizon, a larger control horizon leads to larger computation time. A smaller control
horizon leads to less computational effort, but results in a slower system response. Since
the reference trajectory varies slowly, Np can be chosen small. A rule of thumb is that
the length of the control horizon is chosen to be between 1/6 and 1/3 of the prediction
horizon [Ess02].

66 Chapter 5. Control of a manufacturing system

Weighting parameter λ

The last parameter to tune is the weighting parameter λ. Parameter λ makes, in the
original objective function (5.12a), a trade-off, between minimization of the tracking
error and the needed control effort. In case of λ = 0, the control effort is no part of
the objective function to be minimized. This means that the input time instants of
the products are not longer maximized. Using this setting, no unique solution of this
optimization problem exists, any input u(k) that results in the minimization of the
output and the reference signal can be a solution. One of these solutions is u(k) =
u(k − 1) ∀k which causes stability problems due to the overflow of the input buffer. In
this thesis, the input rate is bounded between a lower- and a upper bound. Therefore,
for λ = 0, u(k)−u(k−1) is equal to the lower bound. A situation where λ < 0, results in
minimization of the control input and is, as mentioned earlier, in practice not suitable.
Therefore, the parameter λ, has to be chosen larger than zero. For values of λ larger
than a certain value λ0, the cost criterion Jin in the objective function (5.12a) can be
dominant compared to the tracking error Jout. This setting results in the maximization
of the control input. As mentioned before (5.12c) prevents a strongly varying input
rate. Therefore, in cases of λ > λ0, u(k)− u(k − 1) becomes equal to the upper bound.
Preventing that, if the reference signal does not require a minimum or maximum input
rate, u(k) − u(k − 1) becomes equal to the lower- or the upper bound, parameter λ
should be in the following interval :

0 < λ < λ0. (5.19)

and is usually chosen as small as possible [Sch00b].

5.4 MPC implementation and simulation results

Now, the standard MPC problem with its objective function, constraint handling, out-
put prediction and its parameter tuning has been discussed, the theoretical case of
Chapter 4 has to be controlled. The objective here is controlling the output sequence of
the manufacturing system with respect to a given desired output sequence of finished
products. In this section, the implementation of the MPC approach and the theoretical
case and its results are given.

Explanation of MPC implementation

A graphical representation and the Matlab file of this implementation can be seen in
respectively Figure 5.2 and Appendix G.

In Figure 5.2 four gray blocks can be distinguished. The first block increases counter
k by 1. This block receives as input the ’old’ value of k, and the ’old’ state vector
x0. The second gray block, represents the optimization method. In this thesis this

5.4. MPC implementation and simulation results 67

PSfrag replacements

Start

k = 0
x0

objective function
constraints
max-plus dynamics
reference signal
upper bounds
lower bound
Np

Nc





k = k + 1

optimization
method

state-space
description

x̄(k + 1)

(u∗(k), y](k))

(ū∗, ȳ])

xnew
0 = x̄(k + 1)

(u∗(k), y∗(k))

Figure 5.2: MPC implementation

optimization method is LP, which needs a certain input to determine an optimum.
The parameters such as the objective function and the constraints have been discussed
already in Section 5.2. Other important inputs of the optimization method are the
reference signal r̄(k) and the max-plus-dynamics of the manufacturing system using the
standard state-space description (3.1). The second part of the state-space description
(3.1b) can be written as (5.9) to keep the number of variables in the optimization
problem as low as possible. Using (5.9) to obtain the output predictions, an initial
state vector x0 is needed. This state vector is updated after each sample. The upper
and lower bounds of the input rate are chosen to be equal to 5, respectively 12 time
units. The upper bound is chosen to be smaller than the minimum cycle time of the
manufacturing system, which is 13 time units due to the process time of machine 2
and the batch machine. The lower bound is chosen to be not too small to prevent
buffers overflow. Last, the length of both Nc and Np are needed. These are parameters
to tune and are determined later in this section. Due to the LP transformation (see
Appendix G), the original problem (5.12) is relaxed. This means that the optimal input
and output sequence (u∗

LP (k), y∗LP (k)) does not accompany the original problem, but
corresponds to the relaxed problem (5.13). As mentioned in Section 5.2, if (ũ∗

LP, ỹ∗LP) is

an optimal solution of the relaxed MPC problem, then (ũ∗

LP, ỹ]
LP) is an optimal solution

of the standard original MPC problem, only if ỹ∗

LP = ỹ]
LP. Here, ỹ]

LP = H⊗ ũ∗

LP⊕g⊗x0.
In Figure 5.2 can be seen that the found optimal input sequence ũ∗

LP (k) is substituted
in the state-space description of the manufacturing system. Using this approach, the

68 Chapter 5. Control of a manufacturing system

state vector x̄(k + 1) and the optimal output ŷ]
LP can be determined. Due to the use

of a theoretical case, no error exists between the model and the physical manufacturing
system. At each step, the state is assumed to be measurable or reconstructible from
previous measurements. Since a state x(k) correspond to event times, they are in general
easy to measure [Sch00b]. Now the optimal in- and output sequences zijn known, only
the first sequences are implemented. The initial state vector x0 is updated and becomes
equal to x̄(k +1). Then, the entire procedure is repeated until the number of maximum
steps, kmax, is reached, see Appendix G.

Application of tuning guidelines

In Section 5.3, the tuning guidelines of MPC parameter Np, Nc, and λ have been
discussed to obtain a proper MPC controller for the manufacturing system described in
Chapter 4. First, the length of the prediction horizon, Np is tuned. In Section 5.3, an
Np tuning approach has been discussed. The max-plus dynamics of the manufacturing
system can be seen in Section 3.6 and Appendix C. To find the minimum length of
Np, the impuls response of the manufacturing system has to be determined. The length
of this impuls response is defined as the minimum value of k0 for which (5.18) holds
[Sch00b]. Experiments show that the average duration of a cycle equals 10 time units.
According to the output sequence the value of k0 equals 0. In practice, this means that
the manufacturing system immediately reaches a certain constant state. This constant
state can not be compared to a steady state situation, due to the overflow of the internal
buffers. A value of k0 = 0 results in a length of the prediction horizon Np that equals
one. A prediction horizon equal to one sample should give satisfactorily results, within
its constraints with respect to a strongly changing reference signal. This remarkable
result can be explained by analyzing the structure of the manufacturing system. The
bottleneck of the system is without doubt the batch machine due to its long process
time (d3 = 10). The utilization level of a machine is in [Sch96] defined as:

ui =
di

λ
(5.20)

where: i is the machine number.

Using (5.20), the utilization of the batch machine is computed as 100%. A utilization
level of 100% refers to an instable situation if process time is stochastic. The 100% uti-
lization level does not necessarily correspond to an instable situation if the process times
are deterministic. The use of the max-algebraic unit impulse response on a manufactur-
ing system results in an instable situation due to the overflow of the buffers. Therefore,
the utilization level of 100%, determined using (5.20) confirms the instable situation.
The behavior of this machine dominates the dynamics of the entire system. Another
possible reason for the minimum length of the prediction horizon that equals one are
the two parallel machines. The difference between the process times and the fact that
the batch machine can only start if both machines finished their products, make the
machine with the longest process time dominant compared to the other machine. This

5.4. MPC implementation and simulation results 69

dominance and the deterministic behavior of the entire manufacturing system might
explain the short length of the prediction horizon. If, in practice, Np is required to
be equal to 1, this means that the manufacturing system does not need much future
information to deliver products on time with respect to its constraints, which is a huge
economical advantage. The length of the control horizon is equal to or smaller than the
length of the prediction horizon. In case of Np = 1, the length of Nc becomes 1 as well.

Now the length of both the prediction horizon and the control horizon are known,
weighting parameter λ can be tuned, where: 0 < λ < λ0. To determine the value of
λ0, two reference signals are fed to the system. The first reference, r1(k), see Table 5.2,
should be achievable by the manufacturing system. In contrast with r1(k), the second
reference signal, r2(k), see Table 5.3, is not achievable by the manufacturing system.
Weighting parameter λ varies from 0 to 10. Two criteria are used to find a good value
for λ. The first criterium is the absolute value of the difference between the reference
signal and the actual output sequence of the original MPC problem:

2∑

i=1

Np∑

j=1

|(ŷ]
i (k + j|k) − ri(k + j)|. (5.21)

The second criterium is the absolute value of the difference between the optimal output
sequence of the relaxed and the original optimization problem:

2∑

i=1

Np∑

j=1

|(ŷ∗i (k + j|k) − ŷ]
i (k + j|k)|. (5.22)

The optimal solution of the relaxed MPC problem is only an optimal solution of the
original problem if ỹ∗ = ỹ]. This means that both criteria should be, in best case, equal
to zero.

The results of the two reference signals to tune λ can be seen in Figure 5.3. In Fig-
ures 5.3(a) and 5.3(b) the results of the value of the first criterium, (5.21), with respect
to respectively r1(k) and r2(k) can be seen. The second criterium has to be equal to
zero in all cases. Only then, the optimal solution of the relaxed MPC problem is an
optimal solution of the original MPC problem. In case of almost all values of λ and both
reference signals, this criterium equals zero. However, if λ = 0 and the use of the achiev-
able reference signal r1(k), criterium 2 does not equal zero. In the objective function
(5.12a), λ = 0 implies that the maximization of the control input is ignored and that
only the reference signal has to be followed. Since the reference signal r1(k) is achievable
by the manufacturing system, this result is remarkable. Therefore, a recommendation
for future research is to compose another LP formulation to prevent this error. This
difference between ỹ∗ and ỹ] for λ = 0 and the results presented in Figures 5.3(a) and
5.3(b) imply that the value of λ should be between 0 and 2, thus (λ0 = 2). A value of
λ > 2 results in the dominance of the maximization of the objective function. Therefore,
lambda should be in the following interval:

0 < λ < 2. (5.23)

70 Chapter 5. Control of a manufacturing system

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

PSfrag replacements

λ

|y
∗
−

r 1
|

(a) Reference signal 1

0 1 2 3 4 5 6 7 8 9 10
500

550

600

650

700

750

800

PSfrag replacements

λ

|y
∗
−

r 2
|

(b) Reference signal 2

Figure 5.3: Graphical representation of results due to tuning of λ

and is usually chosen as small as possible [Sch00b]. In this research is chosen to set λ
at 0.01.

Now, all three parameters have been tuned. The fixed values of Np, Nc and λ that are
used in the rest of this report can be seen in Table 5.1.

MPC parameters fixed value

Np 1
Nc 1
λ 0.01

Table 5.1: Fixed values of Np, Nc, and λ

Control simulations

Now, the tuning parameters are set at fixed values (see Table 5.1), the MPC controller
should give satisfactorily results. To test the MPC controller, several different reference
signals are fed to the MPC controller. The performance of the controller is determined
with respect to the criteria as mentioned earlier in this section, (5.21) and (5.22). The
first criterium, (5.21) can be greater than zero, if the reference signal is not achieved.
The second criterium, (5.22), should always be equal to zero, due to the dynamics of the
manufacturing system. Hereafter, the expectations of the simulations are given. Here,
only expectations are done with respect to (5.21), because (5.22) has to be equal to zero
in all cases. The process times of machine 1, 2 and the batch machine are, as mentioned

5.4. MPC implementation and simulation results 71

in Chapter 4, respectively 1, 3 and 10 time units. The upper- and lower bounds of the
input rates are chosen to be respectively 12 and 5 time units.

The five different reference signals can be seen in Tables 5.2 to 5.6. The first reference
(see Table 5.2), r̄1(k), that is fed to the MPC controller should be achievable by the
manufacturing system, due to the minimum cycle time of a product. This minimum
cycle time through the manufacturing system is 13 time units due to the process time
of machine 2 which is 3 time units and the process time of the batch machine of 10
time units. Expected is that the input rate becomes equal to the upper bound, which
is 12 time units. One exception is the time instant at which the first two products are
fed to the system. These products have to be fed to the system at time instant 11 to
leave the system at time instant 24, see Table 5.2. Criterium (5.21) is expected to be
equal to zero. Simulation shows that the above mentioned expectations are correct. In

system feed nr. 1 2 3 4 5 6 7 8 9

r̄1(k) of P1 24 36 48 60 72 84 96 108 120
r̄1(k) of P2 24 36 48 60 72 84 96 108 120

Table 5.2: Reference signal 1

Figures 5.4(a) and 5.4(b) the results of the simulations can be seen. In Figure 5.4(a) the
input sequence can be seen. Note that since the input sequence of both product P1 and
P2 only one line is plotted. In Figure 5.4(b) the reference signal and the actual output
sequence can be seen. The output sequence of both products P1 and P2 is always equal
due to the batch machine policy and the free output that can always receive products.
In Figure 5.4(b) one can see that the reference signal is equal to the actual output
sequence of the products. This results in a value of criterium 1, (5.21) that equals zero.

The second reference signal, r̄2(k) is the opposite of the first reference, see Table 5.3.
This reference signal is not achievable for the manufacturing system due to its minimum
flow time. Feeding all products at an input rate that equals the lower average duration
of a cycle of the manufacturing system (see Section 5.4). Due to the maximization of
the input in the objective function, one expects the input to equal 10. Criterium 1,
(5.21), does not equal zero due to the reference signal which is not achievable.

system feed nr. 1 2 3 4 5 6 7 8 9

r̄2(k) of P1 10 15 20 25 30 35 40 45 50
r̄2(k) of P2 10 15 20 25 30 35 40 45 50

Table 5.3: Reference signal 2

Figures 5.5(a) and 5.5(b) show a similar behavior of the manufacturing system as ex-
pected. As can be seen in Figure 5.5(a), the first products are fed to the system with an
input rate of 5. All next products are fed to the system with an input rate of 10. Fig-
ure 5.5(b) represents the difference between the actual output sequence of the products
and the reference signal.

72 Chapter 5. Control of a manufacturing system

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

110

PSfrag replacements ti
m

e
[h

ou
r]

product number [-]

input sequence P1

input sequence P2

(a)

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

100

110

120

PSfrag replacements

ti
m

e
[h

ou
r]

product number [-]

output sequence P1

output sequence P2

reference signal P1

reference signal P2

(b)

Figure 5.4: Graphical representation of results due to reference signal r1

The third reference signal, see Table 5.4, is almost similar to r̄1(k), with the difference
that in system feed number 4 the desired output sequence is not achievable for the
system. The input rate is expected to equal its upper bound, except for the first
products (due to the reference signal, see r̄1) and system feed number 4. Here, the
difference between the third and the fourth feed becomes equal to 10, due to its average
duration of a cycle and the input cost criterion of the objective function. The difference
between the desired output sequence and the actual output (5.21), does not equal zero,
due to system feed number 4.

system feed nr. 1 2 3 4 5 6 7 8 9

r̄3(k) of P1 24 36 48 12 72 84 96 108 120
r̄3(k) of P2 24 36 48 12 72 84 96 108 120

Table 5.4: Reference signal 3

The third reference signal that is fed to the system results in the expected in- and
output sequence. Due to the low reference signal in feed 4, the manufacturing system
is, due to its constraints on the input rate, not capable of following the desired reference.
The input sequence can be seen in Figure 5.6(a), the reference signal and the output
sequence can be seen in Figure 5.6(b).

The fourth reference signal, see Table 5.5, is the opposite of r̄3(k). Here, a signal is fed to
the system that is not achievable, with exception of feed number 4, by the manufacturing
system. In this feed, the desired output is achievable. The input rate of the first feed
is expected to become 5 and that it equals 10 for the rest of the system feeds, with

5.4. MPC implementation and simulation results 73

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

PSfrag replacements ti
m

e
[h

ou
r]

product number [-]

input sequence P1

input sequence P2

(a)

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

PSfrag replacements

ti
m

e
[h

ou
r]

product number [-]

output sequence P1

output sequence P2

reference signal P1

reference signal P2

(b)

Figure 5.5: Graphical representation of results due to reference signal r2

system feed number 4 as exception. Here, the difference between the input time instant
of system feed number 3 is equal to the upper bound, which is 12. Criterium (5.21)
does not equal zero due to the reference signal which is not achievable.

system feed nr. 1 2 3 4 5 6 7 8 9

r̄4(k) of P1 10 15 20 100 30 35 40 45 50
r̄4(k) of P2 10 15 20 100 30 35 40 45 50

Table 5.5: Reference signal 4

Figures 5.7(a) and 5.7(b) show that the expectations about the simulations are correct.
The first product is fed to the system at time instant 5. Due to the minimum cycle time
of 10, feeding the manufacturing system with an input that equals the lower bound is not
useful. As mentioned before, due to the maximization input sequence in the objective
function, an input rate of 10 is optimal. In feed number 4, the desired reference signal
requires an input rate that equals the upper bound. In all remaining feeds, the input
rate again becomes 10.

The last desired signal, r̄5(k) (see Table 5.6) that is fed to the MPC controller demands
the manufacturing system to finish product P2 earlier than product P1. This is, with
respect to the dynamics of the system, not possible due to the batch machine policy.
The MPC controller is expected to feed both products only with respect to the product
that has to leave the system earliest, in this case P2, in order to keep the difference
between P2 and its reference as low as possible. The difference between the reference
signal of P1 and the actual output of P1 remain the same. Therefore, the reference of

74 Chapter 5. Control of a manufacturing system

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

110

PSfrag replacements ti
m

e
[h

ou
r]

product number [-]

input sequence P1

input sequence P2

(a)

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

PSfrag replacements

ti
m

e
[h

ou
r]

product number [-]

output sequence P1

output sequence P2

reference signal P1

reference signal P2

(b)

Figure 5.6: Graphical representation of results due to reference signal r3

P2 is expected to become dominant. Criterium (5.21) does not equal zero due to the
non achievable reference signal in feed number 4.

system feed nr. 1 2 3 4 5 6 7 8 9

r̄5(k) of P1 24 36 48 60 72 84 96 108 120
r̄5(k) of P2 24 36 48 12 72 84 96 108 120

Table 5.6: Reference signal 5

The expectations of the behavior with respect to the fifth and last reference signal,
which can be seen in Table 5.6, are correct, see Figures 5.8(a) and 5.8(b). The reference
signal of the second product, P2 becomes dominant in feed number 4, with respect the
the first product, P1. Therefore, the input rate of both products becomes equal to the
minimum cycle time, which is 10 time units. Due to feed number 4 and its constraints,
the manufacturing system is not capable to follow the reference signal in feeds number
5 to 9.

Out of the simulation results can be concluded that an MPC controller has been designed
that is able to let a max-plus model of a manufacturing system follow an output reference
signal. If the reference signal not achievable by the manufacturing system, e.g. due to
its upper- and lower bound with respect to the input rate, the input rate equals the
upper bound, the lower bound or the average duration of a cycle.

5.4. MPC implementation and simulation results 75

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

PSfrag replacements ti
m

e
[h

ou
r]

product number [-]

input sequence P1

input sequence P2

(a)

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

PSfrag replacements

ti
m

e
[h

ou
r]

product number [-]

output sequence P1

output sequence P2

reference signal P1

reference signal P2

(b)

Figure 5.7: Graphical representation of results due to reference signal r4

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

110

PSfrag replacements ti
m

e
[h

ou
r]

product number [-]

input sequence P1

input sequence P2

(a)

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

PSfrag replacements

ti
m

e
[h

ou
r]

product number [-]

output sequence P1

output sequence P2

reference signal P1

reference signal P2

(b)

Figure 5.8: Graphical representation of results due to reference signal r5

76 Chapter 5. Control of a manufacturing system

5.5 Discussion

Chapter 5 presents an approach to control a manufacturing system that is modelled
using the max-plus-algebra with MPC. This discussion consists of a summary of this
chapter and a short revision of the most important observations. Before MPC can
be used to control a manufacturing system, first a model has to be made. In this
report, the max-plus-algebra is used as a tool to model and analyse DESs. Besides the
max-plus-algebra, many tools exist to describe the behavior of a manufacturing system.
Instead of the max-plus-algebra, any another suitable tool can be used in combination
with MPC to control a manufacturing system. As mentioned in Section 4.8, the use of
max-plus algebra has, as most tools, both advantages and disadvantages. An important
remark that goes with the implementation of the max-plus model in combination with
MPC is that the use of both the conventional and the max-plus algebra can cause some
difficulties. Especially the use of ε in combination with the conventional algebra due
to MPC results in a sometimes untidy and time-consuming approach as a whole. In
the max-plus-algebra, ε can be seen as the ’zero’-element. Using both the algebra’s,
this causes some difficulties. The elegant state-space description of the manufacturing
system gains an orderly effect, but this advantage decreases if this algebra is used in
combination with another algebra. Before the max-plus-algebra can be used to control
manufacturing systems, a recommendation is to introduce a certain level of automation.
Using this automation, the entire approach of MPC control in combination with the
max-plus-algebra becomes less time-consuming and more suitable to analyse, model and
control manufacturing systems.

The manufacturing system that is used in combination with MPC contains all sorts of
structures and a certain product mix. This system proved to be a good case study for
modelling and analysis using the max-plus-algebra. Unfortunately the discrete behavior
of both the product route and the process time turn out not to give the diverse manufac-
turing system as desired. Time instants at which products leave the system if the input
time instants are known can easily be computed by hand. For the opposite situation,
if desired output time instants are known, the same is valid. This, in combination with
the dominance of the single lot machine with the largest process time and the batch
machine resulted in a system with predictable dynamics. Therefore, both the prediction
and the control horizon do not have to exceed a length of one sample. The simulations
show, that MPC can be used to control this manufacturing system. An item for future
research is, to replace this theoretical case by a more complex manufacturing system if
necessary with stochastic process times. Using this alternate manufacturing system in
combination with MPC might result in less predictable results and more insight about
the strengths and weaknesses of the combination between max-plus-algebra and MPC.

The remainder of this thesis consists of a conclusion of the total thesis followed by
recommendations for future research.

Chapter 6

Conclusions and
recommendations

Many frameworks exist to analyze and model DESs such as manufacturing systems.
The most widely used method is computer simulation, for example the formalism χ.
A model that is modelled using χ does not always give a real understanding and/or
explanation of the effects of parameter changes on properties of modelled systems.
Therefore, mathematical models are preferred for analysis. One of these mathematical
tools is the max-plus-algebra. In this thesis, the max-plus-algebra has been used as
a tool to build and analyse these models. Afterwards a max-plus model has been
used to control the output sequence of the manufacturing system with respect to a
given desired output sequence of finished products. This has been done using Model
Predictive Control (MPC). In this chapter the conclusions and recommendations for
further research are given.

6.1 Conclusions

The max-plus-algebra has been used to model, analyse and control manufacturing sys-
tems. In this section, a revision of the most important observations and conclusions are
presented. The limits and (dis)advantages of the max-plus-algebra are discussed and
are compared to the χ language.

Max-plus-algebra and manufacturing systems

The max-plus-algebra is a tool to model and analyse manufacturing systems. This max-
plus-algebra has been studied and analyzed in detail. At the beginning of this report,
the basic operations, maximization or max-plus addition, ⊕, and addition or max-plus
multiplication, ⊗, have been explained and the algebra’s main elements and standard

77

78 Chapter 6. Conclusions and recommendations

matrices have been discussed. The max-plus-algebra has been defined as R ∪ {ε}, ⊕,
and ⊗. In some cases, the max-plus-algebra has been compared to the conventional
algebra to show similarities and differences.

In industry, the main elements of manufacturing systems are machines and (in)finite
buffers. These elements and some other basic structures that are used in industry, for
instance merging and batching, have been modelled using the max-plus-algebra. Ma-
chines and (in)finite buffers are in the max-plus-algebra modelled with great similarity.
Main elements such as machines and buffers, have two incoming streams and two out-
going streams. One input receives availability information of the coupled structure in
downstream direction, while the other input receives products from the coupled struc-
ture in upstream direction. The same is valid for the outputs, one output sends finished
products to the coupled structure in downstream direction, the other output sends its
availability information to the structure upstream. In contrast with the conventional
algebra, where models of DESs lead to non-linearity, in the max-plus-algebra, these
DESs can be written in a max-linear time invariant state-space description of the form:

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k) ⊕ D ⊗ u(k)

In this standard state-space description, matrices A, B, C and D are the system ma-
trices. The states are in general time instants at which a buffer or machine starts
respectively processing or buffering, the inputs are time instants at which a structure
receives its raw material and the outputs are time instants at which a structure sends its
finished products away. In this max-plus model, synchronization is addressed whereas
concurrency is neglected. Synchronization requires the availability of several resources
(e.g. machines) at the same time. Concurrency appears when a choice has to be made
between the use of several resources, or, in other words, the product flow through the
systems is variable [Sch96]. Both the process times and the product route through the
manufacturing system are deterministic. The process times include setup times, while
machines are assumed to be reliable and transportation times are neglected. Machines
and (in)finite buffers are presented in a standard form because they are often used in
every manufacturing system.

Since machines and buffers can be modelled separately, entire manufacturing systems
can be modelled using a general coupling approach. This approach makes it possible
to couple (u(k) = y(k)) structures that are modelled separately to obtain entire manu-
facturing systems with all kinds of structures, for example splitting, merging, batching,
and re-entrancy. A model of a large manufacturing system obtains, using the use of
a standard state-space description, large system matrices. Therefore, model reduction
has been discussed shortly in this report.

6.1. Conclusions 79

Modelling and analysis

To test the observations discussed above and the standard forms of machines and buffers,
a test case has been introduced. This case contains a manufacturing system with all
sorts of structures and a certain product mix. The objective of this theoretical case is to
study the limits and (dis)advantages of the max-plus algebra with respect to modelling
and analyzing manufacturing systems. The manufacturing system of the theoretical case
has been built using the standard coupling approach. Many observations have been done
by modelling the entire manufacturing system of the theoretical case using the max-
plus-algebra. These observations can be used to compare the max-plus-algebra with χ.
Using both tools, each process or structure is modelled separately and an entire man-
ufacturing system is obtained by coupling inputs and outputs. The max-plus-algebra,
as well as the χ language describe the behavior (both the transient and the steady
state) of a manufacturing system exactly. The max-plus-algebra describes the behav-
ior of a manufacturing system using an elegant state-space description that provides
good insight in the dynamics of a manufacturing system. If input time instances are
known, the output time instants of the finished products and the time instants at which
machines start processing can be determined easily, due to the deterministic behavior.
Unfortunately, this insight decreases if the size and/or complexity of the manufacturing
system increases due to the increasing size of the system matrices. Here, complexity can
depend on e.g. certain scheduling rules, the structure of the system, re-entrancy etc. If
a manufacturing system is modelled using χ, these (relative) complex situations can be
modelled with functions outside the process environment. Large structures that contain
similar processes can be modelled by defining the process only once and duplicate it in
the xper -environment or using a cluster. However, even the use of functions and the
duplication of processes in the xper -environment in the χ model might also lead to a
decrease of insight of a manufacturing system.

Unfortunately, due to the limited duration of this project, up to now, only manufac-
turing systems with both deterministic process times and product route are considered.
Using the χ language to model and analyse manufacturing systems, stochastic process
times and a non-fixed route are items that can already be implemented. The standard
blocks of machines and buffers cannot be used if a certain policy or a special structure is
required. Modelling a manufacturing system using both χ and the max-plus-algebra is
time-consuming. Once both models are finished and a certain policy and/or a process
changes or an addition of one or more process(es) takes place, using the max-plus-
algebra this alternation takes time to change. A change in the χ specification might
also be time consuming, but in general, this model adaptation can be done in less time.
Therefore, the max-plus-algebra is, up to now, not useful if simulations are required to
determine the influence on certain parameters or the performance of a manufacturing
system with respect to for instance the number of machines or the number of buffer
places. Manufacturing systems in which non-determinism takes place are not consid-
ered in this thesis. Recommendations with respect to the use of the max-plus-algebra
in combination with a non-fixed product route and stochastic process times are done in

80 Chapter 6. Conclusions and recommendations

Section 6.2.

Max-plus-algebra and MPC

Due to the standard max-algebraic state-space description of a manufacturing system,
conventional control techniques can be used. In this report, MPC is used to control
the output sequence of a manufacturing system with respect to a desired reference
signal. MPC is a relatively recently developed control strategy that can deal with
constraints on the states, inputs and outputs. This constraint handling and the use of
a moving or receding horizon, makes MPC a suitable discrete event time controller to
control a manufacturing system. MPC finds an optimal input sequence with respect
to an objective function. In this thesis, the optimization is done by means of Linear
Programming (LP). LP is chosen due to difficulties with other optimization methods
and the LP suitability to solve the standard optimization problem. A standard MPC
optimization problem is composed. This standard problem contains the dynamics of
the manufacturing system of the theoretical case through a slightly adapted state-space
description. Due to the use of LP, the non-linearities have to be eliminated. The
operator that causes the non-linearity is ⊕, which is equal to the maximization operator
in the conventional algebra. The maximization operator can be reformulated such that
is becomes suitable with respect to LP. Due to the transformation of the maximization
that is required to obtain an LP problem, the non-linear, non-convex max-plus dynamics
becomes convex, implies that the standard MPC problem is replaced by a relaxed MPC
problem. Implementation of the optimal input sequence of the relaxed problem in the
state-space description of the manufacturing system, gains the optimal output sequence
with respect to the original MPC problem. To gain satisfactorily results using MPC,
first certain parameters have to be tuned. Both the control and the prediction horizon
are parameters to tune. Determination of the length of these parameters can be done
using a max-algebraic unit impulse. The use of this unit impuls results in a length of
one sample for both. This means that the manufacturing system in the case study does
not need future information to follow the desired reference signal with respect to its
constraints. Simulations implementing several different reference signals gave expected
and satisfactorily results.

An observation that goes with the implementation of the max-plus model in combination
with MPC, is that the use of both the max-plus-algebra and the conventional algebra

causes some difficulties. Especially the use of ε
def
= −∞ and the max-plus state-space

description in combination with the conventional algebra results in a sometimes untidy
and time-consuming approach as a whole. The elegant state-space description of the
manufacturing system is surveyable, but this advantage decreases if this algebra is used
in combination with the conventional algebra.

The manufacturing system that is used as a theoretical case proved to be a good study
for modelling and analysis. Unfortunately the dominant behavior of the batch machine
with a large process time, the single lot machine with the largest process time compared

6.2. Recommendations for future research 81

to the other single lot machine and the fixed product route and deterministic process
times did not turn out to have the diverse dynamic behavior as desired. Therefore,
controlling a manufacturing system in combination with MPC seems to be messy as a
whole. However, a more dynamic case study might give some more information about
the strength of the combination of the max-plus-algebra and MPC.

6.2 Recommendations for future research

During this research project, several questions about the max-plus-algebra have come up
that could not be solved due to the limited duration of the project. In this section, the
most important questions are treated here. Based on these questions, recommendations,
proposals and basic ideas that might be useful for further research are formulated.

Proposal to implement stochastic process times

An item that has not been discussed in this report, is the use of stochastic process times.
In this thesis only deterministic process times are used to model manufacturing systems.
Using for example the χ language to model industrial systems, stochastic process times
are modelled using a sample of a certain distribution. The same can be done using
the max-plus-algebra. This results in a difference between process times of different
samples, or in other words it might be possible that di(k) does not equal di(k+1). This
results in system matrices that depend on k. To make this more clear, the standard
machine is discussed in Section 3.3. A schematic representation of this machine with
process time d(k) can be seen in Figure 6.1.

M

)
(
1
 k
u
)
(
1
 k
y

)
(
2
 k
u
)
(
2
 k
y

)
(
k
d

)
(
1
 k
x

)
(
2
 k
x

Figure 6.1: Machine with stochastic process time

The state-space description of this machine with stochastic process times becomes dif-
ferent. The time instant at which the machine starts processing for the (k + 1)st time
becomes:

x1(k + 1) = max(u1(k), x1(k) + d(k), x2(k)) (6.1)

x2(k + 1) = u2(k). (6.2)

82 Chapter 6. Conclusions and recommendations

The time instant at which a product leave the system for the (k + 1)st becomes

y1(k) = max(x1(k + 1) + d(k + 1), u2(k)). (6.3)

Substitution of (6.1) in (6.3) results in:

y1(k) = max(u1(k) + d(k + 1), x1(k) + d(k) + d(k + 1),

x2(k) + d(k + 1), u2(k) + d(k + 1)). (6.4)

It can be seen that (6.4) contains two different process times of two different samples.
This results in variable system matrices that are dependent on k: A(k), B(k), C(k)
and D(k). This way of implementing stochastic process times is a recommendation for
future research.

Proposal to implement non-fixed product routes

One of the main shortcomings of the max-plus-algebra up to now, is that the product
route through a manufacturing system has to be fixed. Flexible manufacturing systems
cannot be modelled using the max-plus-algebra due to the flexible product route. Due
to the two basic operations of the max-plus-algebra, ⊕ and ⊗, the modelling of manu-
facturing system is limited with respect to this product route. Therefore, a proposal is
to introduce a third operator that is needed to model non-fixed product route of prod-
ucts through a manufacturing system. This third operator is minimization. Due to the
introduction of this third operator an entire new algebra is created, the max-min-plus-
algebra, see [Bac92]. Now, a simple example, see Figure 6.2, including minimization is
given to explain this basic idea. For reasons of clarity, the availability information is,
in this example, not taken into account.

B
 M1

B
 M2

M3

Figure 6.2: Schematic representation of proposal

In Figure 6.2, a simple production system can be seen. The two parallel single lot
machines have stochastic process times with mean process times d1 = d2. The machine
that finishes its product first, sends its finished product to the third single lot machine
with a certain process time d3. Due to the stochastic process times, the product route
through the manufacturing system is non-fixed. In case of both deterministic process
times and the introduction of machine break downs, the above mentioned way to model

6.2. Recommendations for future research 83

a non-fixed product route might be suitable. Using the max-plus-algebra as discussed
and worked out in this report, this simple manufacturing system cannot be modelled.
Using the so called max-min-plus systems the standard state-space description as used
in this report has to be adapted. Machine 3 can receive a finished product if it finished
its previous product and if the first incoming product of machine 1 or machine 2 has
arrived. This can be written down as follows:

x3(k + 1) = max(min(x1(k + 1) + d1, x2(k + 1) + d2), x3(k) + d3). (6.5)

Using only (6.5), the last product that arrives at machine 3 is not processed at all,
but leaves the system in some mysterious way. Therefore, a fourth equation has to
be introduced that takes care of last arriving product at machine 3. Using this fourth
equation results in a change of (6.5):

x3(k + 1) = max(min(x1(k + 1) + d1, x2(k + 1) + d2), x4(k) + d3) (6.6)

x4(k + 1) = max(max(x1(k + 1) + d1, x2(k + 1) + d2), x3(k + 1) + d3). (6.7)

Substitution of (6.6) in (6.7) results in:

x3(k + 1) = max(min(x1(k + 1) + d1, x2(k + 1) + d2), x4(k) + d3) (6.8)

x4(k + 1) = max(x1(k + 1) + d1, x2(k + 1) + d2, min(x1(k + 1) + d1 + d3,

x2(k + 1) + d2 + d3), x4(k) + 2d3). (6.9)

The use of the minimization operator might be a possible approach to model non-fixed
product routes.

General proposals

Now, a certain class of manufacturing systems can be modelled using the max-plus-
algebra, still a lot of work has to be done. In this section some proposals are done
for future research, which might increase the strength and suitability of the max-plus-
algebra.

In this report some statements have been done about the sometimes time-consuming
and untidy approach as a whole if the max-plus-algebra is used in combination with the
conventional algebra. This is caused especially by ε. A recommendation to solve this
problem, is to introduce a certain automation level. The use of this automation level
might result in a more user-friendly tool to model, analyse and control manufacturing
systems.

84 Chapter 6. Conclusions and recommendations

In this thesis, disturbances and noise have not been considered. A common disturbance
with respect to manufacturing systems are machine break downs. A proposal to model
these machine break downs using the max-plus-algebra is to abruptly enlarge the length
of the process time of a machine to simulate a break down. By enlarging the process time
of a machine, it cannot receive any products. Therefore, this state can be considered
as down. Using this approach, machine break downs might be modelled using the
max-plus-algebra.

The manufacturing system that has been used as a theoretical case does not have the
dynamical behavior as desired. Therefore, a recommendation for future research is to
investigate a manufacturing system with more structures (eg. re-entrancy) and policies
that increase the diversity of the dynamical behavior of the system. This in combination
with the use of MPC might give more information about the limits and strengths of the
max-plus-algebra.

The use of LP to determine an optimal solution gives satisfactory results, except when
the weighting parameter that makes a trade off between minimization of the tracking
error and the needed control effort equals zero. Using this value for λ the optimal
solution of the relaxed MPC problem is not equal to the original MPC problem. This
might be caused by the used LP formulation. A recommendation for future research is
to implement another LP formulation that looks after an optimal solution of the relaxed
MPC problem that is an optimal solution of the original MPC problem, since the set
of feasible solutions of the original problem is a subset of the set of feasible solutions of
the relaxed problem.

A last recommendation with respect to future research is the study of model reduction.
In this research, this model reduction has been done by manually search of max-plus
linear combinations. This way of searching is not efficient. A recommendation is to
increase the efficiency of this model reduction.

Bibliography

[Bab03] Babylon information @ a click. Babylon online dictionary. www.babylon.com,
2003.

[Bac92] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization and

Linearity: an algebra for discrete event systems. Wiley, 1992.

[Cas95] C.G. Cassandras, S. Lafortune, and G.J. Olsder. Introduction to the modelling,

control and optimization of Discrete Event Systems. Springer-Verlag, 1995.

[Ess02] H.A. van Essen and M. Steinbuch. Lecture notes on model predictive control

’Capita Selecta in Control’. Eindhoven University of Technology, 2002.

[Gau92] S. Gaubert. Théorie des Systèmes Linéaires dans les Diöıdes. PhD thesis,
Ecole Nationale Supérieure des Mines de Paris, France, 1992.

[Gau94] S. Gaubert. On rational series in one variable over certain dioids. Technical
Report 2162, INRIA, Le Chesnay, France, 1994.

[Hof02] A.T. Hofkamp and J.E. Rooda. χ reference manual. Systems Engineering
Group, Eindhoven University of Technology, http://se.wtb.tue.nl, 2002.

[Kle92] J.P.C. Kleijnen. Verification and validation of models. Technical report,
Tilburg University, department of economics, 1992.

[Pap00] P.Y. Papalambros and D.J. Wilde. Principles of optimal design. Cambridge
University Press, 2000.

[Sch94] B. de Schutter and B. de Moor. The characteristics equation and minimal
state-space realization of siso systems in the max algebra. In G. Cohen and J.P.
Quadrat, editors, 11th International Conference on Analysis and Optimization

of Systems, volume 199, pages 273–282. Springer-Verlag, 1994.

[Sch95] B. de Schutter and B. de Moor. The extended linear complementarity problem.
Mathematical Programming, 71(3):289–325, December 1995.

[Sch96] B. de Schutter. Max-algebraic system theory for discrete event systems. PhD
thesis, Katholieke Universiteit Leuven, 1996.

85

86 Bibliography

[Sch97] B. de Schutter, R. de Vries, and G.J. Olsder. The minimal realization problem
in the max-plus algebra: An overview. Technical report, Katholieke Univer-
siteit Leuven, 1997.

[Sch00a] B. de Schutter and T. van den Boom. Model predictive control for max-plus-
linear systems. Proceedings of the 2000 American Control Conference, pages
4046–4050, 2000.

[Sch00b] B. de Schutter and T. van den Boom. Model predictive control for max-plus-
linear systems: closed-loop behavior and tuning. Proceedings of the Workshop

on Systems with Time-Domain Constraints, pages 4046–4050, 2000.

[Sch01] B. de Schutter and T. van den Boom. Model predictive control for max-plus-
linear discrete event systems. Automatica, 37:1049–1056, 2001.

[Sch02] B. de Schutter and T. van den Boom. Model predictive control for perturbed
max-plus-linear systems. Systems and Control Letters, 37(1):21–33, January
2002.

[Sta03] J. Stanczyk. Max-plus algebra toolbox for Matlab. University of Magdeburg,
Germany, 0.1 edition, August 2003.

[Van01] R.J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer
Academic Publishers, 2001.

[Wei03] S. Weiland. Model approximations of dynamic systems. Hand-out Stochastic
Systems Theory, June 2003.

Appendix A

Algorithms to calculate system
matrices

This appendix represents the algorithm to calculate the system matrices A, B, C and
D of a machine or finite buffer who receives n products per system feed. Note that for
the algorithms presented in this appendix, n > 1. The process times of the machines
are indexed as follows: di. Index, i, represents the number of the product that is fed
to the machine, for instance, the process time of product 2 of a certain feed is d2. In
these matrices, some of the ε’s are indexed. These single indices are added to indicate
the number of columns only filled with ε’s of this heuristic. For instance, ε1 · · · εn−1

represents a block of (n − 1) columns filled ε’s

An×n =




ε1 · · · εn−1 dn ε1 · · · εn−1 0

ε · · · ε
1∑

i=1

di + dn ε · · · ε d1

..

.
..
.

..

.
..
.

..

.
..
.

ε · · · ε
n−1∑
i=1

di + dn ε · · · ε
n−1∑
i=1

di

ε · · · ε ε ε · · · ε ε

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ε · · · ε ε ε · · · ε ε




87

88 Appendix A. Algorithms to calculate system matrices

Bn×n =




0 ε · · · · · · ε ε · · · · · · · · · ε

d1 0
. . .

.

.

. 0
. . .

.

.

.

2∑
i=1

di d2

. . .
. . .

.

.. d2

. . .
. . .

.

..

..

.
..
.

. . .
. . . ε

..

.
. . .

. . .
. . . ε

n−1∑
i=1

di

n−1∑
i=2

di · · · dn−1 0
n−1∑
i=2

di · · · dn−1 0 ε

ε · · · · · · · · · ε 0 ε · · · · · · ε

.

.

.
.
.
. ε 0

. . .
.
.
.

.

..
.
..

.

..
. . .

. . .
. . .

.

..
.
.
.

.

.

.
.
.
.

. . .
. . . ε

ε · · · · · · · · · ε ε · · · · · · ε 0




Cn×n =




ε · · · · · · ε
1∑

i=1

di + dn ε · · · · · · ε d1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ε · · · · · · ε
n−1∑
i=1

di + dn ε · · · · · · ε
n∑

i=1

di

d1 ε · · · · · · ε 0 ε · · · · · · ε

ε
. . .

. . .
.
.. ε 0

. . .
.
..

..

.
. . .

. . .
. . .

..

.
..
.

. . .
. . .

. . .
..
.

.

.

.
. . .

. . . ε
.
.
.

. . .
. . . ε

ε · · · · · · ε dn ε · · · · · · ε 0




Dn×n =




d1 ε · · · ε 0 ε · · · ε

2∑
i=1

di d2

. . .
.
.
. d2

. . .
. . .

.

.

.

.

..
.
..

. . . ε
.
..

. . .
. . . ε

n∑
i=1

di

n∑
i=2

di · · · dn

n∑
i=2

di · · · dn 0

ε · · · · · · ε ε · · · · · · ε

.

..
.
..

.

..
.
..

ε · · · · · · ε ε · · · · · · ε




Appendix B

Details model reduction

In this Appendix, ways for reducing the number of states of max-plus models are dis-
cussed. Unfortunately, all these ideas have major disadvantages which are presented at
the end of the subsections.

Before definitions as state-space realization can be discussed, first the definition and the
determination of the impuls responses have to be explained. The standard state-space
description (see Chapter 3) is:

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k) ⊕ D ⊕ u(k)

Using the following unit impuls response:
{

e(k) = 0 if k = 0
e(k) = ε if k 6= 0

to the ith input of the system and if x(0) = εn×1, then y(k) = C ⊗ A⊗k−1

⊗ Bi for
k = 1, 2, .. as the output of the system, where Bi is the ith column of B. If this is done
for all the inputs i = 1, 2, ..., m of the system, and this can be written using matrix
Gk−1 = C ⊗ A⊗k−1

⊗ B for k = 0, 1, The Gk’s are called impuls response matrices

or Markov parameters [Sch96].

Consider a common max-linear time-invariant DES with m inputs and l outputs that
can be described by an nth order state-space model of the form (3.1a) and (3.1b).
Suppose that the matrices A, B and C are unknown, and that only the impuls response
gk = {Gk}

∞

k=0 are known. Constructing the matrices A, B and C from the impuls
response is called state-space realization. If the dimension of A is chosen to be minimal,
then the dimension of A, is equal to the minimal system order and matrices triple A,
B and C is called a minimal state-space realization of gk = {Gk}

∞

k=0. The problem
described above has, at present, not been solved entirely [Sch94]. This minimal state-
space realization problem for max-linear time-invariant DESs has been studied by many

89

90 Appendix B. Details model reduction

authors and for some specific cases the problems have been solved. In the rest of this
chapter, the minimal system order and the minimal state-space realization are discussed.
This is given in an overview of the obtained results so far.

B.1 The minimal system order

In conventional system theory, the minimal system order is given by the rank of the
Hankel matrix H(∞,∞). However, in contrast to linear algebra, the different notions
of rank (like column rank, row rank, minor rank etc.) are in general not equivalent in
the max-plus-algebra. In the literature upper and lower bounds of the minimal system
order can be found. Lower bounds can be found computing the minor rank and the
Schein rank of the Hankel matrix [Gau92, Gau94]. At present, there are no efficient
(i.e., polynomial time) algorithms to compute the max-plus-algebraic minor rank or the
Schein rank of a matrix. The upper bound of the system can be found by computing
the weak column rank. Many efficient methods exist, to compute the max-algebraic
weak column rank of a matrix [Sch97].

B.2 Minimal state-space realization

Until now, there are three different ways to compute a minimal state-space realiza-
tion can be distinguished: transformation to conventional algebra, partial state-space
realization and special sequences of Markov parameters. These three different ways of
computing the minimal state-space realization are discussed in the following subsections.

Transformation to conventional algebra

There exists a transformation from the max-plus-algebra to linear algebra that is based
on the following equivalences:

x ⊕ y = z ⇔ exs + eys ∼ cezs, s → ∞

x ⊗ y = z ⇔ exs · eys = ezs for all s > 0

with x, y, z ∈ Rε, and c = 2 if x = y and c = 1 otherwise. The symbol ∼ stands for
asymptotic equivalence.

Using this transformation, a minimal realization problem in the max-plus-algebra can
be mapped to a minimal realization problem for matrices with exponentials as entries
and with conventional addition and multiplication as basic operations [Sch97]. Now
the techniques used in the conventional algebra to calculate the minimal state-space
realization can give a result. The only step that is left now, is the transformation back
to the max-plus-algebra. However, only realizations with positive coefficients for the

B.2. Minimal state-space realization 91

leading exponentials can be mapped back to the max-plus-algebra, and it is not always
obvious how and whether such a realization can be constructed. In general the minimal
system order obtained using the procedure above is a lower bound for the minimal
system order.

Partial state-space realization

This is the second way of computing the minimal state-space realization. Given is a
finite sequence g1, g2, . . ., gN , find matrices A, B and C, such that Gk = C ⊗A⊗k

⊗B
holds for k = 1, 2, ..., N. It can be shown that this leads to a system of so-called max-plus-
algebraic polynomial equations and that such a system can be recast as a mathematical
programming problem that is called the Extended Linear Complementarity Problem
(ELCP) [Sch96]. This procedure can also be used for MIMO systems. This enables
that the partial minimal realization problem can be solved and by applying some limit
arguments this results in a realization of the entire impuls response. However, it can
be shown that the general ELCP is NP-hard [Sch95]. A problem is NP-hard if an
algorithm for solving it can be translated into one for solving any other NP-problem
(nondeterministic polynomial time) problem. Due to the limitation of this project,
NP-problems that might be difficult to solve, have not been considered.

Special sequences of Markov parameters

The last manner to calculate the minimal state-space realization is a way that only can
be used in special cases. Only then methods exist to compute on a efficient way the
minimal state-space realization. These two cases are [Sch97]:

• if the sequence gk={Gk}
∞

k=0 exhibits uniformly up-terrace behavior, i.e., if it con-
sists of a concatenation of, say, m, subsequences with rates c1, c2,...,cM , where in
the kth subsequence the following is valid: gi+1 = gi + ck and c1 < c2 < ... < cM ,

• if the sequence gk = {Gk}
∞

k=0 exhibits a convex transient behavior and an ulti-
mately geometric behavior with period 1:

gk+1 − gk ≥ gk − gk−1 for k = 2, ..., k0

gk+1 = λ ⊗ gk for k ≥ k0. (B.1)

However, this manner of minimizing the state-space realization can only be used in case
of SISO models [Sch96]. Some models described at the end in Chapter 3 are MIMO
systems.

92 Appendix B. Details model reduction

B.3 Summary

Some methods exist to compute the minimal system order and the minimal state-space
realization. However, for example the lower bound necessary to calculate the minimal
system order is a complex process (see Section B.1). The minimal state-space realiza-
tion can be computed with three methods described in Section B.2. Unfortunately, all
three methods have major disadvantages, which are represented at the end of the sub-
sections. The objectives as discussed in Chapter 1 limits the number of items that can
be investigated in the time that stands for this Master’s thesis. This explains why is not
chosen to use the techniques mentioned above, but to search manually for max-linear
combinations to reduce the models.

Appendix C

System matrices theoretical case

In this appendix the system matrices A, B, C, and D of the theoretical case as worked
out in Chapter 4 are presented.

A =




. 0 . . .

. 0 . . .

. 0 0 d1 0

. 0 0 d1 0

.

. 0 0 d1 0

.

. d1 d1 2d1 d1

. d1 ⊕ d2 d1 ⊕ d2 2d1 ⊗ (d1 ⊕ d2) d1 ⊕ d2

. d1 d1 2d1 d1

. d1 ⊕ d2 d1 ⊕ d2 2d1 ⊗ (d1 ⊕ d2) d1 ⊕ d2

.

. d1 ⊕ d2 d1 ⊕ d2 2d1 ⊗ (d1 ⊕ d2) d1 ⊕ d2

. d1 ⊕ d2 ⊗ d3 d1 ⊕ d2 ⊗ d3 (2d1 ⊕ d1 ⊗ d2) ⊗ d3 d1 ⊕ d2 ⊗ d3

. d1 ⊕ d2 ⊗ d3 d1 ⊕ d2 ⊗ d3 (2d1 ⊕ d1 ⊗ d2) ⊗ d3 d1 ⊕ d2 ⊗ d3

93

94 Appendix C. System matrices theoretical case

.

.

. . . d2 0

.

. 0 . . .

. . . d2 0

. 0

. 0 . 0

. . . 2d2 d2 . 0 0 . 0 . . .

. 0 . 0 0 . . 0

. . . 2d2 d2 . 0 0 0 0 . . 0

. 0

. . . 2d2 d2 . 0 0 0 0 d3 0 0

. . . 2d3 ⊗ d3 d2 ⊗ d3 . d3 d3 d3 d3 2d3 d3 d3

. . . 2d2 ⊗ d3 d2 ⊗ d3 . d3 d3 d3 d3 2d3 d3 d3




(C.1)

95

B =




0 . . .
0 0 . .
0 0 . .
0 . . .
. . . .
0 0 . .
. . . .
d1 . . .
d1 ⊕ d2 d2 . .
d1 . . .
d1 ⊕ d2 d2 . .
. . . .
d1 ⊕ d2 d2 . .
d1 ⊕ d2 ⊗ d3 d2 ⊗ d3 0 .
d1 ⊕ d2 ⊗ d3 d2 ⊗ d3 0 0




(C.2)

C =




. d1 ⊕ d2 ⊗ d3 d1 ⊕ d2 ⊗ d3 (2d1 ⊕ d1 ⊗ d2) ⊗ d3 d1 ⊕ d2 ⊗ d3

. d1 ⊕ d2 ⊗ d3 d1 ⊕ d2 ⊗ d3 (2d1 ⊕ d1 ⊗ d2) ⊗ d3 d1 ⊕ d2 ⊗ d3

.

.

. . . 2d2 ⊗ d3 d2 ⊗ d3 . d3 d3 d3 d3 2d3 d3 d3

. . . 2d2 ⊗ d3 d2 ⊗ d3 . d3 d3 d3 d3 2d3 d3 d3

.

.


 (C.3)

D =




d1 ⊕ d2 ⊗ d3 d2 ⊗ d3 0 .
d1 ⊕ d2 ⊗ d3 d2 ⊗ d3 0 0
. . . .
. . . .


 (C.4)

96 Appendix C. System matrices theoretical case

Appendix D

Matlab model of the theoretical
case

In this chapter the mathematical max-plus model of the theoretical case as described
in Chapter 4 is presented. A max-plus-algebra toolbox for Matlab, has been used to
calculate the output [Sta03]. An important note here is that in the loop, the vector
u(k) has been labelled to (k + 1).

clear all;

e=-inf;

% process times machines

d1=1; % process time machine 1

d2=3; % process time machine 2

d3=10; % process time batch machine

% system matrices A, B, C, and D

A=[e 0 e e e e e e e e e e e e e;

e 0 e e e e e e e e e e e e e;

e 0 0 d1 0 d2 0 e e e e e e e e;

e 0 0 d1 0 e e e e e e e e e e;

e e e e e e e e e e e 0 e e e;

e 0 0 d1 0 d2 0 e e e e e e e e;

e e e e e e e e e 0 e e e e e;

e d1 d1 2*d1 d1 e e e 0 e e 0 e e e;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 e 0 e e e;

e d1 d1 2*d1 d1 e e e 0 e 0 0 e e 0;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 0 0 e e 0;

e e e e e e e e e e 0 e e e e;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 0 0 d3 0 0;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

97

98 Appendix D. Matlab model of the theoretical case

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3]

B=[0 e e e;

0 0 e e;

0 0 e e;

0 e e e;

e e e e;

0 0 e e;

e e e e;

d1 e e e;

mp_sum(d1,d2) d2 e e;

d1 e e e;

mp_sum(d1,d2) d2 e e;

e e e e;

mp_sum(d1,d2) d2 e e;

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3) 0 e;

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3) 0 0];

C=[e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3;

e e e e e e e e e e e e e e e;

e e e e e e e e e e e e e e e];

D=[mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3) 0 e;

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3) 0 e;

e e e e;

e e e e];

% initial values of x, u1, u2, u15, u16

x=[e; e; e; e; e; e; e; e; e; e; e; e; e; e; e];

u1= [e; 0; 5; 0 ; 15; 20; 25; 21; 35; 40; 39];

u2= [e; 0; 6; 11 ; 16; 11; 26; 31; 36; 41; 46];

u15=[e; e; e; e; e; e; e; e; e; 100; e; e; e];

u16=[e; e; e; e; e; e; e; e; e; 100; e; e; e];

% number of feeds

N=10;

% loop

for k=1:N

u(:,k)=[u1(k+1);

u2(k+1)

u15(k+1)

u16(k+1)];

x(:,k+1)=mp_sum(mp_multi(A,x(:,k)),mp_multi(B,u(:,k)));

y(:,k+1)=mp_sum(mp_multi(C,x(:,k)),mp_multi(D,u(:,k)));

99

end

%values on screen

% input values

u;

% x1: time instant at which the infinite buffer starts buffering product P1 for the kth time

% x2: time instant at which the infinite buffer starts buffering product P2 for the kth time

x1=[x(1,:)];

x2=[x(2,:)];

% x4: time instant at which machine 1 starts starts working on product P1 for the kth time

x4=[x(4,:)];

% x6: time instant at which machine 2 starts starts working on product P2 for the kth time

x6=[x(6,:)];

% x8: time instant at which the finite buffer starts buffering product P1 for the kth time

x8=[x(8,:)];

% x9: time instant at which the finite buffer starts buffering product P2 for the kth time

x9=[x(9,:)];

% x13: time instant at which the batch machine starts working on the batch (P1 and P2)

% for the kth time

x13=[x(13,:)];

% output vectors

u=[u(1,:); u(2,:)] % input

x=[x(1,:); x(2,:); x(4,:); x(6,:); x(8,:); x(9,:); x(13,:)] % states

y=[y(:,2) y(:,3) y(:,4) y(:,5) y(:,6) y(:,7) y(:,8) y(:,9) y(:,10) y(:,11)] % output

100 Appendix D. Matlab model of the theoretical case

Appendix E

χ validation files

In this appendix, two χ0.8-files of the manufacturing line, discussed in Chapter 4 that
are used to validate the max-plus model are presented. In Section E.1 a χ file can be
seen that is modelled using the standard modelling techniques according to [Hof02].
In Section E.2 a χ file is presented that is modelled such that its actions and events
corresponds to the actions and events of the max-plus model. In Section E.3 the results
of both χ models are discussed.

E.1 Standard χ model

In this section the χ model that is modelled using the standard modelling techniques in
case of manufacturing systems according to [Hof02]. Due to the used product mix and
the models determinism, the structure of the model might not look familiar immediately.
The model that is built using the standard modelling technique should behave similar to
the max-plus model. For reasons of clarity, a graphical representation of the standard
model and its channels can be seen in Figure E.1. In this figure G represents the

G
 B

M1

M2

bM
 E
B
gb

bm1

bm2
 m2b

m1b

bbm
 bme

Figure E.1: graphical representation of the standard χ-file

generator, Binf the infinite buffer, Mi machine i, Bfin the finite buffer, bM the batch
machine and E the exit process. Using this file, the situations with inputs as in Table 4.1
(session 1) and Table 4.2 (session 2) can by validated. The time instants at which G
sends products to the Binf and the time instants at which the E can receive products

101

102 Appendix E. χ validation files

from bM are given in the xper -environment of the model. The vector u1 and u2 contain
the time instants at which P1 and P2 enter the manufacturing system. Vectors u15 and
u16 contain the time instant at which P1 and P2 can leave the system. The booleans
receiveP1 and sendP1 etc. are added due to the product mix.

from std import *

type prodtypenum = nat // product type number, eg 11 means first P1

, Binfstart = real // time instant at which infinite buffer starts buffering,

// analogously to the case, this is equal to states x1 and x2

, Mstart = real // time instant at which the machines (M1 or M2) start processing,

// analogously to the case, this is equal to states x4 and x6

, Bfinstart = real // time instant at which the finite buffer starts buffering,

// analogously to the case, this is equal to states x8 and x9

, BMstart = real // time instant at which the batch machine starts working,

// analogously to the case, this is equal to state x13

, Eend = real // time instant at which the finished products leave the

// manufacturing system, analogously to the case this is equal

// to y13 and y14

// in this file a manufacturing system is modelled using the standard way of modelling to

// compare chi with the max-plus-algebra

// the manufacturing system that is modelled in this file behaves deterministic for both the

// process time and product route and contains a certain product mix: P1, P2, P1, etc.

// created by: D.Wetjens

// creation date: 16-05-04

type lot= prodtypenum # Binfstart # Mstart # Bfinstart # BMstart # Eend

proc G(a: !lot, u1: real*, u2: real*) =

|[sendp1, sendp2: bool, n1, n2: nat

| n1:= 11; n2:= 21

; sendp1:= true; sendp2:= false

; *[sendp1 and len(u1) > 0 and hd(u1) >= time; delta (hd(u1) - time)

-> a!< n1, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u1:= tl(u1)

; n1:= n1 + 1

; sendp1:= false

; sendp2:= true

; *[sendp1 and len(u1) > 0 and hd(u1) < time

-> a!< n1, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u1:= tl(u1)

; n1:= n1 + 1

; sendp1:= false

; sendp2:= true

| sendp2 and len(u2) > 0 and hd(u2) < time

E.1. Standard χ model 103

-> a!< n2, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u2:= tl(u2)

; n2:= n2 + 1

; sendp2:= false

; sendp1:= true

]

| sendp2 and len(u2) > 0 and hd(u2) >= time; delta (hd(u2) - time)

-> a!< n2, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u2:= tl(u2)

; n2:= n2 + 1

; sendp2:= false

; sendp1:= true

; *[sendp1 and len(u1) > 0 and hd(u1) < time

-> a!< n1, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u1:= tl(u1)

; n1:= n1 + 1

; sendp1:= false

; sendp2:= true

| sendp2 and len(u2) > 0 and hd(u2) < time

-> a!< n2, 0.0, 0.0, 0.0, 0.0, 0.0 >

; u2:= tl(u2)

; n2:= n2 + 1

; sendp2:= false

; sendp1:= true

]

]

]|

proc Binf(a: ?lot, b: !lot, c: !lot) =

|[x: lot, xs: lot*, sendp1, sendp2, receivep1, receivep2: bool

| xs:= []; sendp1:= true; sendp2:= false; receivep1:= true; receivep2:= false

; *[receivep1; a?x

-> x.1:= time

; xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

| receivep2; a?x

-> x.1:= time

; xs:= xs ++ [x]

; receivep2:= false

; receivep1:= true

| sendp1 and len(xs) > 0; b!hd(xs)

-> xs:= tl(xs)

; sendp1:= false

; sendp2:= true

| sendp2 and len(xs) > 0; c!hd(xs)

-> xs:= tl(xs)

; sendp2:= false

; sendp1:= true

]

]|

proc M (a: ?lot, b: !lot, pt:real) =

|[x: lot

104 Appendix E. χ validation files

| *[true

-> a?x

; x.2:= time

; delta pt

; b!x

]

]|

proc Bfin(a: ?lot, b: ?lot, c: !lot) =

|[x: lot, xs: lot*, sendp1, sendp2, receivep1, receivep2: bool

| xs:= []; sendp1:= true; sendp2:= false; receivep1:= true; receivep2:= false

; *[receivep1 and len(xs) < 3; a?x

-> x.3:= time

; xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

| receivep2 and len(xs) < 3; b?x

-> x.3:= time

; xs:= xs ++ [x]

; receivep2:= false

; receivep1:= true

| sendp1 and len(xs) > 0; c!hd(xs)

-> xs:= tl(xs)

; sendp1:= false

; sendp2:= true

| sendp2 and len(xs) > 0; c!hd(xs)

-> xs:= tl(xs)

; sendp2:= false

; sendp1:= true

]

]|

proc bM(a: ?lot, b:!lot, pt: real) =

|[x, y:lot, xs: lot*, sendp1, sendp2, receivep1, receivep2: bool, tready: real

| xs:= []; sendp1:= false; sendp2:= false; receivep1:= true; receivep2:= false

;*[len(xs) = 0 and receivep1; a?x

-> xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

| len(xs) = 1 and receivep2; a?x

-> xs:= xs ++[x]

; receivep1:= true

; receivep2:= false

; y:= hd(xs)

; y.4:= time

; xs:= tl(xs) ++ [y]

; y:= hd(xs)

; y.4:= time

; xs:= tl(xs) ++ [y]

; tready:= time + pt

| len(xs) = 2; delta pt

-> sendp1:= true

| sendp1; b!hd(xs)

-> xs:= tl(xs)

E.1. Standard χ model 105

; sendp1:= false

; sendp2:= true

| sendp2; b!hd(xs)

-> xs:= tl(xs)

; sendp2:= false

]

]|

proc E (a:? lot, u1: real*, u2: real*) =

|[x: lot, receivep1, receivep2: bool

| receivep1:= true; receivep2:= false

;*[receivep1 and len(u1) > 0 and hd(u1) >= time; delta (hd(u1) - time)

-> a?x

; u1:= tl(u1)

; x.5:= time

; !x, nl(), nl()

; receivep1:= false

; receivep2:= true

; *[receivep1 and len(u1) > 0 and hd(u2) < time

-> a?x

; u1:= tl(u1)

; x.5:= time

; !x, nl(), nl()

; receivep1:= false

; receivep2:= true

| receivep2 and len(u2) > 0 and hd(u2) < time

-> a?x

; u2:= tl(u2)

; x.5:= time

; !x, nl(), nl()

; receivep2:= false

; receivep1:= true

]

| receivep2 and len(u2) > 0 and hd(u2) >= time; delta (hd(u2) - time)

-> a?x

; u2:= tl(u2)

; x.5:= time

; !x, nl(), nl()

; receivep2:= false

; receivep1:= true

; *[receivep1 and len(u1) > 0 and hd(u2) < time

-> a?x

; u1:= tl(u1)

; x.5:= time

; !x, nl(), nl()

; receivep1:= false

; receivep2:= true

| receivep2 and len(u2) > 0 and hd(u2) < time

-> a?x

; u2:= tl(u2)

; x.5:= time

; !x, nl(), nl()

; receivep2:= false

; receivep1:= true

106 Appendix E. χ validation files

]

]

]|

clus S() =

|[gb, bm1, bm2, m1b, m2b, bbm, bme: -lot

| G(gb, [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0],

[1.0, 6.0, 11.0, 16.0, 21.0, 26.0, 31.0, 36.0, 41.0])

|| Binf(gb, bm1, bm2)

|| M(bm1, m1b, 1.0)

|| M(bm2, m2b, 3.0)

|| Bfin(m1b, m2b, bbm)

|| bM(bbm, bme, 10.0)

|| E(bme, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

]|

xper = |[S()]|

E.2 Specified χ model

In this section a χ model is presented that is used to validate the max-plus model in
a different way as the model that is presented in Section E.1. The χ model in this
section is modelled such that its actions and events correspond to the actions of the
max-plus model. Compared with the standard χ model, the specified model contains
synchronization channels that are needed to model the availability information. A
graphical representation can be seen in Figure E.2. All processes have to be able to

G
 B

M1

M2

bM
 E

gbi1

gbi2
 bim2

bim1

bme1

bme2

B

mbf2

mbf1

bfbm1

bfbm2

big1

big2

mbi1

mbi2

bfm1

bfm2

bmbf2

bmbf1
 ebm1

ebm2

Figure E.2: graphical representation of the specified χ-file

receive this availability information at all times. Even if, for example, a machine is
processing a product, the machine must be able to receive availability information from
the process downstream. Therefore, the systematic way of modelling of processes, such
as machines and buffers as presented in [Hof02], can not be used here. The specification
of the most simple form of a machine is given here:

E.2. Specified χ model 107

proc M(a: ?lot, b: !lot) =

|[x: lot

| *[true -> a?x; delta 3.0; b!x]

]|

A machine is modelled here, using a repetitive selection statement. Due to the boolean
that is always true, the machine can always receive a products if its state is idle. In case
of the max-plus model, a process can always receive availability information from the
connected process in downstream direction. This means that, for instance, a machine
should receive availability information, even if the machine is processing a product.
Using the most simple specification, the machine cannot communicate with other pro-
cesses while processing. Therefore, the most simple specification of a machine is not
useful if this model is used as a validation file with respect to the max-plus model. In
the χ file that is presented in Section E.1, instead of repetitive selection statement, a
repetitive selective waiting statement is used to model all processes. Using this state-
ment, a process can always receive availability information. If this information has been
received, a certain counter is increased by one. If this counter is not equal to zero, the
process can send a finished product to its connected process in downstream direction.
As mentioned earlier in this appendix, the availability information as used in the max-
plus model is modelled using synchronization channels. The input sequence and the
availability information of the output is, similar to the max-plus model given in vectors.
These vectors can be seen in the xper -environment. Due to the product mix P1, P2, P1

etc. the booleans such as receiveP1 and sendP1 are added.

from std import *

type prodtypenum = nat // product type number, eg 11 means first P1

, Binfstart = real // time instant at which infinite buffer starts buffering,

// analogously to the case, this is equal to states x1 and x2

, Mstart = real // time instant at which the machines (M1 or M2) start processing,

// analogously to the case, this is equal to states x4 and x6

, Bfinstart = real // time instant at which the finite buffer starts buffering,

// analogously to the case, this is equal to states x8 and x9

, BMstart = real // time instant at which the batch machine starts working,

// analogously to the case, this is equal to state x13

, Eend = real // time instant at which the finished products leave the

// manufacturing system, analogously to the case this is equal to

// y13 and y14

// in this file a manufacturing system is modelled conform the actions that go with the

// max-plus model

// the manufacturing system that is modelled in this file behaves deterministic for both the

// process time and product route and contains a certain product mix: P1, P2, P1, etc.

// if counter v is higher than zero, products can be sent downstream by the process

// if counter s is higher than zero, products can be received by the process

108 Appendix E. χ validation files

// if counter p is higher than zero, due to the way of modelling, a product can be

// sent by the generator

// or received by the exit process

// created by: D.Wetjens

// creation date: 16-05-04

type lot= prodtypenum # Binfstart # Mstart # Bfinstart # BMstart # Eend

proc G(a: !lot, b:!lot, c: ?void, d: ?void, u1: real*, u2: real*) =

|[sendp1, sendp2: bool, n1, n2, v1, v2, p1, p2: nat

| n1:= 11; n2:= 21; v1:= 0; v2:= 0; p1:= 0; p2:= 0

; sendp1:= true; sendp2:= false

; *[sendp1 and len(u1) > 0 and hd(u1) >= time and p1 = 0; delta (hd(u1) - time)

-> p1:= p1 + 1

; u1:= tl(u1)

| sendp1 and len(u1) > 0 and hd(u1) < time and p1 = 0 and v1 > 0

; a!< n1, 0.0, 0.0, 0.0, 0.0, 0.0 >

-> u1:= tl(u1)

; n1:= n1 + 1

; v1:= v1 - 1

; sendp1:= false

; sendp2:= true

| sendp2 and len(u2) > 0 and hd(u2) >= time and p2 = 0; delta (hd(u2) - time)

-> p2:= p2 + 1

; u2:= tl(u2)

| sendp2 and len(u2) > 0 and hd(u2) < time and p2 = 0 and v2 > 0

; b!< n2, 0.0, 0.0, 0.0, 0.0, 0.0 >

-> u2:= tl(u2)

; n2:= n2 + 1

; v2:= v2 - 1

; sendp2:= false

; sendp1:= true

| sendp1 and p1 > 0 and v1 > 0; a!< n1, 0.0, 0.0, 0.0, 0.0, 0.0 >

-> n1:= n1 + 1

; p1:= p1 - 1

; v1:= v1 - 1

; sendp1:= false

; sendp2:= true

| sendp2 and p2 > 0 and v2 > 0; b!< n2, 0.0, 0.0, 0.0, 0.0, 0.0 >

-> n2:= n2 + 1

; p2:= p2 - 1

; v2:= v2 - 1

; sendp2:= false

; sendp1:= true

| true; c?

-> v1:= v1 + 1

| true; d?

-> v2:= v2 + 1

]

]|

E.2. Specified χ model 109

proc Binf (a: ?lot, b: ?lot, c: !lot, d: !lot

,e: ?void, f: ?void, g: !void, h: !void, pnmb1: nat, pnmb2: nat) =

|[x: lot, sendp1, sendp2, receivep1, receivep2: bool, xs, ys: lot*, p1, p2, v1, v2: nat

| sendp1:= true; sendp2:= false; receivep1:= true; receivep2:= false

; xs:= []; ys:= []; p1:= 0; p2:= 0; v1:= 0; v2:= 0

; *[pnmb1 > 0; g!

-> pnmb1:= pnmb1 - 1

| pnmb2 > 0; h!

-> pnmb2:= pnmb2 - 1

| receivep1; a?x

-> x.1:= time

; xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

; p1:= p1 + 1

| receivep2; b?x

-> x.1:= time

; ys:= ys ++ [x]

; receivep2:= false

; receivep1:= true

; p2:= p2 + 1

| sendp1 and p1 > 0 and v1 > 0; c!hd(xs)

-> xs:= tl(xs)

; p1:= p1 - 1

; v1:= v1 - 1

; sendp1:= false

; sendp2:= true

| sendp2 and p2 > 0 and v2 > 0; d!hd(ys)

-> ys:= tl(ys)

; p2:= p2 - 1

; v2:= v2 - 1

; sendp2:= false

; sendp1:= true

| true; e?

-> v1:= v1 + 1

| true; f?

-> v2:= v2 + 1

]

]|

proc M(a: ?lot, b: !lot, c: ?void, d: !void, pt: real) =

|[x: lot, xs, ys: lot*, v, s: nat, tready: real

| xs:= []; ys:= []; v:= 0; s:= 0; d!

; *[len(xs) = 0 and len(ys) = 0 and s = 0; a?x

-> x.2:= time

; xs:= xs ++ [x]

; tready:= time + pt

| len(xs) > 0 and len(ys) = 0; delta (tready - time)

-> ys:= ys ++ [hd(xs)]

; xs:= tl(xs)

| len(xs) = 0 and len(ys) > 0 and v > 0; b!hd(ys)

-> ys:= tl(ys)

; s:= s + 1

; v:= v - 1

110 Appendix E. χ validation files

| true; c?

-> v:= v + 1

| s > 0; d!

-> s:= s - 1

]

]|

proc Bfin(a: ?lot, b: ?lot, c: !lot, d: !lot, e: ?void, f: ?void, g: !void, h: !void) =

|[xs, ys: lot*, v1, v2, s1, s2: nat, x: lot, receivep1, receivep2, sendp1, sendp2: bool

|xs:= []; ys:= []; v1:= 0; v2:=0; s1:= 1; s2:= 0; g!; h!

; receivep1:= true; receivep2:= false; sendp1:= true; sendp2:= false

; *[receivep1 and len(xs) < 3 and s1 = 0; a?x

-> x.3:= time

; xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

| receivep2 and len(xs) < 3 and s2 = 0; b?x

-> x.3:= time

; xs:= xs ++ [x]

; receivep2:= false

; receivep1:= true

| sendp1 and len(xs) > 0 and v1 > 0; c!hd(xs)

-> xs:= tl(xs)

; s1:= s1 + 1

; v1:= v1 - 1

; sendp1:= false

; sendp2:= true

| sendp2 and len(xs) > 0 and v2 > 0; d!hd(xs)

-> xs:= tl(xs)

; s2:= s2 + 1

; v2:= v2 - 1

; sendp2:= false

; sendp1:= true

| true; e?

-> v1:= v1 + 1

| true; f?

-> v2:= v2 + 1

| s1 > 0; g!

-> s1:= s1 -1

| s2 > 0; h!

-> s2:= s2 -1

]

]|

proc bM(a: ?lot, b: ?lot, c: !lot, d: !lot, e: ?void, f: ?void, g: !void, h: !void, pt: real) =

|[xs, ys: lot*, tready: real, v1, v2, s1, s2: nat, x, y: lot, sendp1, sendp2, receivep1, receivep2: bool

|xs:= []; ys:= []; v1:= 0; v2:= 0; s1:= 0; s2:= 0

; receivep1:= true; receivep2:= false; sendp1:= true; sendp2:= false; g!; h!

; *[receivep1 and len(xs) = 0 and len(ys) = 0 and s1 = 0 and s2 = 0; a?x

-> xs:= xs ++ [x]

; receivep1:= false

; receivep2:= true

| receivep2 and len(xs) = 1 and len(ys) = 0 and s1 = 0 and s2 = 0; b?x

-> xs:= xs ++ [x]

E.2. Specified χ model 111

; receivep2:= false

; receivep1:= true

; tready:= time + pt

; y:= hd(xs)

; y.4:= time

; xs:=tl(xs) ++ [y]

; y:= hd(xs)

; y.4:= time

; xs:=tl(xs) ++ [y]

| len(xs) = 2 and len(ys) = 0; delta(tready - time)

-> ys:= ys ++ [hd(xs)]

; xs:= tl(xs)

; ys:= ys ++ [hd(xs)]

; xs:= tl(xs)

| true; e?

-> v1:= v1 + 1

| true; f?

-> v2:= v2 + 2

| sendp1 and len(ys) > 0 and v1 > 0 ; c!hd(ys)

-> ys:= tl(ys)

; s1:= s1 + 1

; v1:= v1 - 1

; sendp1:= false

; sendp2:= true

| sendp2 and len(ys) > 0 and v2 > 0 ; d!hd(ys)

-> ys:= tl(ys)

; s2:= s2 + 1

; v2:= v2 - 1

; sendp2:= false

; sendp1:= true

| s1 = 1 and s2 = 1; g!

-> s1:= s1 - 1

| s1 = 0 and s2 = 1; h!

-> s2:= s2 - 1

]

]|

proc E(a: ?lot, b: ?lot, c: !void, d: !void, u1: real*, u2: real*) =

|[x: lot, receivep1, receivep2: bool, s1, s2, p1, p2: nat

| receivep1:= true; receivep2:= false; s1:= 0; s2:= 0; p1:= 0; p2:= 0

; *[receivep1 and len(u1) > 0 and p1 = 0 and hd(u1) >= time; delta (hd(u1) - time)

-> p1:= p1 + 1

; u1:= tl(u1)

| receivep1 and p1 > 0 and s1 = 0; c!

-> s1:= s1 + 1

| receivep1 and s1 > 0; a?x

-> x.5:= time

; p1:= p1 - 1

; s1:= s1 - 1

; receivep1:= false

; receivep2:= true

; !x, nl(), nl()

; [len(u2) > 0 and hd(u2) < time

-> p2:= p2 + 1

112 Appendix E. χ validation files

; u2:= tl(u2)

| len(u2) > 0 and hd(u2) >= time

-> skip

| len(u2) = 0

-> skip

]

| receivep2 and len(u2) > 0 and p2 = 0 and hd(u2) >= time; delta (hd(u2) - time)

-> p2:= p2 + 1

; u2:= tl(u2)

| receivep2 and p2 > 0 and s2 = 0; d!

-> s2:= s2 + 1

| receivep2 and s2 > 0; b?x

-> x.5:= time

; p2:= p2 - 1

; s2:= s2 - 1

; receivep2:= false

; receivep1:= true

; !x, nl(), nl()

; [len(u1) > 0 and hd(u1) < time

-> p1:= p1 + 1

; u1:= tl(u1)

| len(u1) > 0 and hd(u1) >= time

-> skip

| len(u1) = 0

-> skip

]

]

]|

clus S() =

|[gbi1, gbi2, bim1, bim2, mbf1, mbf2, bfbm1, bfbm2, bme1, bme2: -lot

, big1, big2, mbi1, mbi2, bfm1, bfm2, bmbf1, bmbf2, ebm1, ebm2: -void

| G(gbi1, gbi2, big1, big2, [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0]

, [1.0, 6.0, 11.0, 16.0, 21.0, 26.0, 31.0, 36.0, 41.0])

|| Binf(gbi1, gbi2, bim1, bim2, mbi1, mbi2, big1, big2, 9, 9)

|| M(bim1, mbf1, bfm1, mbi1, 1.0)

|| M(bim2, mbf2, bfm2, mbi2, 3.0)

|| Bfin(mbf1, mbf2, bfbm1, bfbm2, bmbf1, bmbf2, bfm1, bfm2)

|| bM(bfbm1, bfbm2, bme1, bme2, ebm1, ebm2, bmbf1, bmbf2, 10.0)

|| E(bme1, bme2, ebm1, ebm2, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

]|

xper = |[S()]|

E.3. Simulation results of both χ files 113

E.3 Simulation results of both χ files

The χ files presented and discussed in Sections E.1 and E.2 return data if simulations
are done. This data corresponds to the start and end times of events that take place.
Using this data, lot-time diagrams can be made. In Section 4.7 two sessions of input
sequences and availability information are presented to validate the max-plus model,
see Tables 4.1 and 4.2. The returned data of both the standard χ file and the specified
χ file is equal. The data that is returned by both models using the specifications of
session 1 is:

< 11 0 0 1 4 14 > < 16 25 25 34 54 64 >

< 21 1 1 4 4 14 > < 26 26 34 44 54 64 >

< 12 5 5 6 14 24 > < 17 30 34 44 64 74 >

< 22 6 6 9 14 24 > < 27 31 44 54 64 74 >

< 13 10 10 11 24 34 > < 18 35 44 54 74 84 >

< 23 11 11 14 24 34 > < 28 36 54 64 74 84 >

< 14 15 15 16 34 44 > < 19 40 54 64 84 94 >

< 24 16 16 24 34 44 > < 29 41 64 74 84 94 >

< 15 20 20 24 44 54 >

< 25 21 24 34 44 54 >

The data returns 18 tuples that represent the 18 lots that are processed by the manufac-
turing system. These products contain information about its type, product number and
time instants at which it is fed to the system, processed and buffered. Using these time
instants, a lot-time can be made. This can be seen in Figure E.3. This lot-time diagram
is equal to the lot-time diagram that is obtained by calculations by hand. Therefore,
based on session 1 the max-plus model is validated successfully.

The second session that is used to validate the max-plus model contains ’extreme’
conditions. These conditions are already mentioned in Section 4.7. Implementation of
these input sequence and availability information, result in the following similar returned
data for both χ files:

< 11 0 0 1 3 13 > < 16 25 25 33 53 63 >

< 21 0 0 3 3 13 > < 26 26 33 43 53 63 >

114 Appendix E. χ validation files

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

29

19

28

18

27

17

26

16

25

15

24

14

23

13

22

12

21

11

PSfrag replacements

time [hour]

p
ro

d
u
ct

n
u
m

b
er

[t
y
p
e,

lo
t]

PSfrag replacements
Infinite buffer

Machine 1

Machine 2

Finite buffer

Batch machine

Blocking

Figure E.3: Lot-time diagram, session 1

< 12 5 5 6 13 23 > < 17 26 33 43 63 73 >

< 22 6 6 9 13 23 > < 27 31 43 53 63 73 >

< 13 6 6 9 23 33 > < 18 35 43 53 73 83 >

< 23 11 11 14 23 33 > < 28 36 53 63 73 83 >

< 14 15 15 16 33 43 > < 19 40 53 63 83 100 >

< 24 16 16 23 33 43 > < 29 41 63 73 83 100 >

< 15 20 20 23 43 53 >

< 25 20 23 33 43 53 >

The returned data by the two χ files is treated and used to illustrate the outcome in a
lot-time diagram, see Figure E.4. Both lot-time diagrams as can be seen in Figures E.3
and E.4 are equal to the lot-time diagrams as obtained by calculations by hand and by
simulating the max-plus model, see Figures 4.8 and 4.9. Therefore, the max-plus model
is validated successfully.

E.3. Simulation results of both χ files 115

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

29

19

28

18

27

17

26

16

25

15

24

14

23

13

22

12

21

11

PSfrag replacements

time [hour]

p
ro

d
u
ct

n
u
m

b
er

[t
y
p
e,

lo
t]

PSfrag replacements
Infinite buffer

Machine 1

Machine 2

Finite buffer

Batch machine

Blocking

Figure E.4: Lot-time diagram, session 2

116 Appendix E. χ validation files

Appendix F

MPC implementation

Many methods exist to solve optimization problems. In this thesis, linear programming
(LP) is used to find the optimal input sequence to feed the raw material to the man-
ufacturing system with respect to a given reference signal at which products have to
leave the system. Using LP, the objective function has to be written as a linear function
of the decision variables (here called xj , j = 1, 2, . . . , n). These decision variables (in
problem (5.12) this is vector u(k)) are the variables whose values are to be decided in
some optimal fashion [Van01]. The objective function can be written in the following
form:

J = c1x1 + c2x2 + . . . + cnxn (F.1)

with: coefficients cj , j = 1, 2, . . . , n.

In addition to the objective function, also the equality and/or in-equality constraints
have to be written in linear combinations of the decision variables:

a1x1 + a2x2 + . . . + anxn

{
≤
=

}
b (F.2)

with: coefficients aj , j = 1, 2, . . . , n.

The original optimization problem (5.12) contains all sort of non-linearities. The objec-
tive function (5.12a) contains the maximization operator that is non-linear. Constraint
(5.12b) contains the operators ⊕ and ⊗. These operations are in general non-linear due
to the similarity with maximization. Using the LP method to solve this optimization
problem, the mentioned non-linear operations in problem (5.12) have to be transformed
to linear operations. This means that the structure of optimization problem will change,
but the dynamics of the problem will remain the same. The transformation of the origi-
nal non-linear problem into a linear problem is explained using an example. The size of

117

118 Appendix F. MPC implementation

the problem depends on the number of in- and outputs l and the size of the prediction
horizon Np. The number of inputs of the manufacturing line as described in Chapter 4
is four. Two inputs are used for availability information (u15(k) and u16(k)). Here, only
the inputs that receive products are considered, which means that this number is two
(u1(k) and u2(k)). For the number of outputs of the system, a similar approach is used.
This all can be seen in Figure F.1. The S stands for the entire manufacturing system.
In the notation of the original problem, the outputs are number from i to l. Therefore,
outputs y15(k) and y16(k) are in this LP formulation numbered from 1 to 2.

S

)
(
1
 k
u

)
(
2
 k
u

)
(
15
 k
y

)
(
16
 k
y

Figure F.1: Considered in- and outputs

In order to keep the example small and surveyable, Np and Nc are chosen to be 2,
respectively 1. First, the objective function (5.12a) and secondly the max-plus dynamics
and the constraints (5.12b) to (5.12c) are transformed in some linear function of the
decision variables.

The non-linear term in the objective function (5.12a) is the maximization operator in
Jout,1. If, for example, the maximum of two scalars x1 and x2 have to be determined
(max(x1, x2)), a dummy variable x3 has to be introduced. Now, the maximization can
be replaced by the following:

min x3

x3 ≥ x1

x3 ≥ x2.

In words, this means that the value of x3 has to be equal to or larger than x1 and
x2. If x1 ≥ x2, variable x3 will become equal to x1 (and larger than x2) due to its
minimization. Using this principle, the non-linear max term can be linearized. Using
MPC, Np future inputs and its outputs are determined. As mentioned earlier, Np is 2,
which means that if k = 0, the u(k) and ỹ(k) become:

ū(0) =
(

u1(1) u2(1) u1(2) u2(2)
)T

ỹ(0) =
(

ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2)
)T

.

Here, u1(1) stands for the time instant at which product P1 is fed to input 1 of the system
for the first time. The same is valid for the predicted output ỹ(k). The reference signal

119

r̄(k) (in case k = 0) becomes:

r̄(1) =
(

r1(1) r2(1) r1(2) r2(2)
)T

.

Here, r1(1) stands for the time instant at which product P1 has to leave the system
for the second time. Now, the maximization term in the objective function will be
transformed in a linear notation using the above explained principle. For i = 1 and
j = 1, Jout,1 becomes:

max(ŷ1(1) − r1(1), r1(1) − ŷ1(1)).

This can be transformed in:

min z1(1)

z1(1) ≥ ŷ1(1) − r1(1)

z1(1) ≥ r1(1) − ŷ1(1).

From mathematical point of view, there is a preferred presentation of constraints in gen-
eral. This presentation is to pose (in)equalities as less-than or equal to (≤) constraints
[Van01]. These constraints have to be written in the form (F.2). The decision variables
are z and y and the parameters are r. Therefore, these constraints become:

min z1(1)

ŷ1(1) − z1(1) ≤ r1(1)

−ŷ1(1) − z1(1) ≤ −r1(1).

This approach can be done for all combinations of i = 1, . . . l and j = 1, . . . , Np. In case
of Np = 2 and Nc = 1, this results in eight inequality constraints (two equations per
dummy variable z). These equations can be written in the following matrix formulation
(with A of the size 4Np × 6Np and b of the size 4Np × 1):

Ax̄ ≤ b (F.3)

with:

A =




0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 −1 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 0 −1 0
0 0 0 0 0 0 0 −1 0 0 0 −1




, b =




r1(1)
r2(1)
r1(2)
r2(2)

−r1(1)
−r2(1)
−r1(2)
−r2(2)




120 Appendix F. MPC implementation

where:

x̄ =
(

u1(1) u2(1) u1(2) u2(2) ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2) z1(1) z2(1) z1(2) z2(2)
)T

.

Note that transforming the original non-convex objective function into a LP formulation
results in an increase of the feasible area. Due to this relaxation the objective function
becomes convex.

Part Jin,1 of the objective function is the sum of all inputs over the prediction horizon.
Summation of these inputs in a linear function of decision variables can be done by
taking the relevant coefficients in (F.1) equal to one. Due to the weighting parameter
λ these coefficients become equal to −lambda (see (5.13)).

The next step is to transform the max-plus dynamics (5.12b) into a useful LP formula-
tion. In case of Np = 2, matrix H becomes of size 4× 4. Due to its dynamics, the right
upper elements of H are equal to ε. These right upper elements of H are H13, H14,
H23, and H24. If the size of the prediction horizon differs, the size of matrix H differs
as well and becomes 2Np × 2Np. The structure of matrix H can be seen in Figure F.2.
In this figure, the structure with respect to the elements equal to ε (indicated in grey)
can be seen.

Figure F.2: Structure of matrix H

Similar to the H matrix, the g matrix is dependent on Np. The size of this g matrix is
2Np × 15, due to the 15 × 1 the state vector. In case Np = 2 and Nc = 1, g becomes
of the size 4 × 15. Now, the the first equation, ŷ1(1), using matrices H and g, input u
and initial state vector x0 results in:

ŷ1(1) = H11 ⊗ u1(1) ⊕ H12 ⊗ u2(1) ⊕ H13 ⊗ u1(2) ⊕ H14 ⊗ u2(2) ⊕ (F.4)

g11 ⊗ x0,11 ⊕ g12 ⊗ x0,21 ⊕ . . . ⊕ g115 ⊗ x0,151.

As long as all states in the initial state vector x0 are equal to ε, g ⊗ x0 becomes a
vector that contains only ε’s. Therefore, this element (which is equal to −∞) can be
ignored in a max statement. The same is valid for the elements in the H matrix that
equal ε. In Chapter 5 the receding horizon has been explained. Only the first elements

121

of the optimal input are implemented, whereas the procedure is repeated. This means
that the x0 vector needs to be updated after each step and does only contain ε’s at the
beginning of the procedure. Therefore, the equations to predict the outputs in which
the Hij and/or gij ⊗ x0,i1 equals ε, are ignored. This is done by replacing all elements
in row i in the A and b matrix by zero.

Using this approach and the replacements of ⊗ by + and ⊕ by max (F.4) becomes:

ŷ1(1) = max(H11 + u1(1), H12 + u2(1), H13 + u1(2), H14 + u2(2), (F.5)

g11 + x0,11, g12 + x0,21, . . . , g115 + x0,151).

Transforming (F.5) into a LP formulation gives:

min y1(1)

ŷ1(1) ≥ H11 + u1(1)

ŷ1(1) ≥ H12 + u2(1)

ŷ1(1) ≥ H13 + u1(2)

ŷ1(1) ≥ H14 + u2(2)

ŷ1() ≥ g11 + x0,11

ŷ1(1) ≥ g12 + x0,21

...
...

ŷ1(1) ≥ g115 + x0,151.

Now, these equation have to be written in the preferred presentation:

min y1(1)

u1(1) − ŷ1(1) ≤ −H11

u2(1) − ŷ1(1) ≤ −H12

u1(2) − ŷ1(1) ≤ −H13

u2(2) − ŷ1(1) ≤ −H14

−ŷ1(1) ≤ −g11 − x0,11

−ŷ1(1) ≤ −g12 − x0,21

...
...

−ŷ1(1) ≤ −g115 − x0,151.

122 Appendix F. MPC implementation

The same can be done for y2(1), y1(2) and y2(2). Each output results in 19 equations.
Therefore, this LP transformation results in 19 × 2Np = 38Np equations. This can be
subdivided in two inequality systems. The first takes care of the equations that contain
elements of the H matrix. In case of Np the A matrix becomes 8Np × 6Np. The other
inequality system contains the constraints that contain elements of g and x0. This A
matrix becomes 30Np × 6Np. In case of the first inequality system of the form

Ax̄ ≤ b. (F.6)

the A and b matrices becomes:

A =




1 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0




, b =




−H11

−H12

−H13

−H14

−H21

−H22

−H23

−H24

−H31

−H32

−H33

−H34

−H41

−H42

−H43

−H44




. (F.7)

The size of the A and b matrices of the second inequality system is too large to present
here (60 × 12). Therefore, only the elements that correspond with y1(0) are shown:

A =




0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...




, b =




−g11 − x0,11

−g12 − x0,21

−g13 − x0,31

−g14 − x0,41

−g15 − x0,51

−g16 − x0,61

−g17 − x0,71

−g18 − x0,81

−g19 − x0,91

−g110 − x0,101

−g111 − x0,111

−g112 − x0,121

−g113 − x0,131

−g114 − x0,141

−g115 − x0,151

...




. (F.8)

123

In both the inequality systems, x becomes:

x̄ =
(

u1(1) u2(1) u1(2) u2(2) ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2) z1(1) z2(1) z1(2) z2(2)
)T

.

Merging both A matrices and b vectors, results in an A matrix of size 38Np × 6Np and
a b matrix of the size 38Np × 1.

Now, the objective function (5.12a) and the max-plus dynamics (5.12b) of the opti-
mization problem has been converted in a LP problem. Constraints (5.12c) and (5.12d)
are left. These constraints prevent strong variation in the input rate. Over the control
and prediction horizon, the input rate is bounded with a lower- and upper bound. The
input rate remains constant for the last Np − Nc samples. Due to this condition, the
input rate is automatically bounded between its boundaries. Therefore, in (5.12c) this
boundary is only valid for j = 1, . . . Np − 1. A prediction horizon Np = 2 and a control
horizon of Nc = 1 results in the following:

u1(1) − u1(0) ≥ lb (F.9)

u1(1) − u1(0) ≤ ub (F.10)

u1(2) − u1(1) ≥ lb (F.11)

u1(2) − u1(1) ≤ ub. (F.12)

Rewriting (F.9) to (F.12) in the preferred form results in:

−u1(1) ≤ −u1(0) − lb (F.13)

u1(1) ≤ u1(0) + ub (F.14)

−u1(2) + u1(1) ≤ −lb (F.15)

u1(2) − u1(1) ≤ ub. (F.16)

Using the same approach for the second output (u2), the general matrix formulation
becomes:




1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0




x̄ ≤




ub + u1(0)
ub + u2(0)
ub
ub
-lb − u1(0)
-lb − u2(0)
-lb
-lb




(F.17)

124 Appendix F. MPC implementation

where:

x̄ =
(

u1(1) u2(1) u1(2) u2(2) ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2) z1(1) z2(1) z1(2) z2(2)
)T

.

For the last Np −Nc samples, the input rate remains constant. This can be formulated
as follows:

u1(2) − u1(1) − u1(1) + u1(0) = 0 (F.18)

u2(2) − u2(1) − u2(1) + u2(0) = 0. (F.19)

Now, (F.18) and (F.19) can be written in a matrix formulation (Aeqx̄ = beq) with:

Aeq =

(
−2 0 1 0 0 0 0 0 0 0 0

0 −2 0 1 0 0 0 0 0 0 0

)
, beq =

(
−u1(0)
−u2(0)

)

where:

x̄ =
(

u1(1) u2(1) u1(2) u2(2) ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2) z1(1) z2(1) z1(2) z2(2)
)T

.

The size of the Aeq and beq become respectively 2Np(Np−Nc)×6Np and 2Np(Np−Nc)×1

The non-linear maximization terms in the objective function and the max-plus dynamics
are replaced by in-equality constraints. These transformation result in an increase of
the decision variables (due to dummy variables z). In the original problem, the decision
variables where the input variables. In the LP problem, not only the input variables are
the decision variables. The output variables y and the dummy variables z are added
to the original decision variables. In case of Np = 2 and Nc = 1, there are four input
variables, four output variables, four dummy variables. The entire decision variable
vector x̄ becomes 6Np × 1 = 12 × 1:

x̄ =
(

u1(1) u2(1) u1(2) u2(2) ŷ1(1) ŷ2(1) ŷ1(2) ŷ2(2) z1(1) z2(1) z1(2) z2(2)
)T

.

In this report the LP solver linprog is used to optain the optimal input sequence
with respect with a desired reference signal. This standard Matlab solver needs the
(in)equality constraint matrices if the problem is bounded. These constraints are written
in the standard matrix formulation:

Ax̄ ≤ b

Aeqx̄ = beq.

Merging all A matrices into one large A matrix results in a matrix of the size 46Np×6Np.
The same can be done for b. This results in a 46Np × 1 vector. Aeq and beq become of
the respectively size of 2Np(Np − Nc) × 6Np and 2Np(Np − Nc) × 1.

125

The original objective function (5.12a) contains a weighting parameter λ. Weighting
parameters make trade offs between different part of the objective function. A more
detailed explanation of weighting parameters is given in Section 5.3. Therefore, the
(LP) objective function becomes:

J = λ
2∑

i=1

Np∑

j=1

ui(k + j) +
2∑

i=1

Np∑

j=1

yi(k + j) +
2∑

i=1

Np∑

j=1

zi(k + j). (F.20)

This function is linear and can be written follows (F.1):

J = cT x̄ (F.21)

with (in case of Np = 2 and Nc = 1):

c =
(
−λ −λ −λ −λ 1 1 1 1 1 1 1 1

)
.

126 Appendix F. MPC implementation

Appendix G

Matlab file of MPC
implementation

In this Appendix, the MPC implementation in Matlab is presented. In Section G.1
the main file is given. In this main file, all inputs and settings can be changed. The
main file uses two other files to calculate the optimal input sequence with respect to
the objective function. These can be seen in Section G.2.

G.1 mainfile.m

clear all;

% process times machines

d1=1; % process time machine 1

d2=3; % process time machine 2

d3=10; % process time batch machine

% definition of epsilon (e)

e=-inf;

% systeemmatrices A, B, C, and D

% the last inputs, u15 and u16, are for all k equal to epsilon. Therefore,

% the last 2 columns of the original matrices B and D can be deleted. The same is done

% for the last 2 outputs, y3 and y4. Therefore, the last two rows of the original C

% and D matrix are deleted.

Asys=[e 0 e e e e e e e e e e e e e;

e 0 e e e e e e e e e e e e e;

e 0 0 d1 0 d2 0 e e e e e e e e;

e 0 0 d1 0 e e e e e e e e e e;

e e e e e e e e e e e 0 e e e;

e 0 0 d1 0 d2 0 e e e e e e e e;

127

128 Appendix G. Matlab file of MPC implementation

e e e e e e e e e 0 e e e e e;

e d1 d1 2*d1 d1 e e e 0 e e 0 e e e;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 e 0 e e e;

e d1 d1 2*d1 d1 e e e 0 e 0 0 e e 0;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 0 0 e e 0;

e e e e e e e e e e 0 e e e e;

e mp_sum(d1,d2) mp_sum(d1,d2) mp_sum(2*d1,mp_multi(d1,d2)) mp_sum(d1,d2)...

2*d2 d2 e 0 0 0 0 d3 0 0;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3];

Bsys=[0 e ;

0 0 ;

0 0 ;

0 e ;

e e ;

0 0 ;

e e ;

d1 e ;

mp_sum(d1,d2) d2 ;

d1 e ;

mp_sum(d1,d2) d2 ;

e e ;

mp_sum(d1,d2) d2 ;

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3) ;

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3)];

Csys=[e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3;

e mp_multi(mp_sum(d1,d2),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(mp_sum(2*d1,mp_multi(d1,d2)),d3) mp_multi(mp_sum(d1,d2),d3)...

mp_multi(2*d2,d3) mp_multi(d2,d3) e d3 d3 d3 d3 2*d3 d3 d3];

Dsys=[mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3);

mp_multi(mp_sum(d1,d2),d3) mp_multi(d2,d3)];

% the decision variables in this optimization problem are:

% 2*Np inputs u

% 2*Np output y

% 2*Np variables z

% total size of vector become 6*Np

Np = 1;

Nc = 1;

G.1. mainfile.m 129

% determination of matrices H and g

[H,g]=calcHg(Asys,Bsys,Csys,Dsys,Np);

% x0 vector

x0=ones(15,1)*e;

% u0 vector

u0 = [0;0];

% upper and lower bound

ub = 12;

lb = 5;

% reference signal

r = [2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13

14 14 15 15 16 16 17 17]*5;

% weighting parameters

lambda = 0.01;

% initial empty vectors for ustar, ystar and ybracket

vec_ystar = [];

vec_ustar = [];

vec_ybracket = [];

% kmax

kmax = 9;

for j = 1: kmax

if j <= kmax

% \\\

% BLOCK 1

% this block goes with the objective function J = Jout + lambda*Jin

A1 = [[zeros(2*Np,2*Np)] [eye(2*Np)] [-eye(2*Np)];

[zeros(2*Np,2*Np)] [-eye(2*Np)] [-eye(2*Np)]];

b1 = [r(2*j-1:2*Np+2*(j-1))’; -r(2*j-1:2*Np+2*(j-1))’];

A1eq = [];

b1eq = [];

% \\\

% \\\

% BLOCK 2

% this block goes with the max-plus dynamics: y = H*u + g*x0

% \\\

A2one = [];

b2one = [];

for i = 1:2*Np

A2oneS = [[eye(2*Np)] [zeros(2*Np,i-1) -ones(2*Np,1) zeros(2*Np,2*Np-i)] ... ;

[zeros(2*Np,2*Np)]];

b2oneS = [-H(i,1:2*Np)’];

A2one = [A2one; A2oneS];

130 Appendix G. Matlab file of MPC implementation

b2one = [b2one; b2oneS];

end

A2one;

A2two = [];

b2two = [];

for i = 1:2*Np

A2twoS = [[zeros(15,2*Np)] [zeros(15,i-1) -ones(15,1) zeros(15,2*Np-i)] [zeros(15,2*Np)]];

b2twoS = -[g(i,1) + x0(1); g(i,2) + x0(2); g(i,3) + x0(3); g(i,4) + x0(4); g(i,5) + x0(5); ...

g(i,6) + x0(6); g(i,7) + x0(7); g(i,8) + x0(8); g(i,9) + x0(9); g(i,10) + x0(10); ...

g(i,11) + x0(11); g(i,12) + x0(12); g(i,13) + x0(13); g(i,14) + x0(14); g(i,15) + x0(15);];

A2two = [A2two; A2twoS];

b2two = [b2two; b2twoS];

end

A2two;

A2 = [A2one; A2two];

b2 = [b2one; b2two];

% replacement of all elements in A2 at row i into zero elements if the element of b(i) equals e

for i = 1:4*Np^2 + 30*Np

if b2(i) == -e

A2(i,1:6*Np) = zeros(1,6*Np);

b2(i) = 0;

else

end

end

A2eq = [];

b2eq = [];

% \\\

% \\\

% BLOCK 3

% this block goes with the upper and the lower bounds of the input rates

% \\\

A3 = [[eye(2*Np) + diag(-ones(2*Np-2,1),-2)] [zeros(2*Np,2*Np)] [zeros(2*Np,2*Np)];

-[eye(2*Np) + diag(-ones(2*Np-2,1),-2)] [zeros(2*Np,2*Np)] [zeros(2*Np,2*Np)]];

b3 = [[ones(2,1)*ub + u0; ones(2*Np-2,1)*ub]; [-ones(2,1)*lb - u0; -ones(2*Np-2,1)*lb]];

A3eq = [];

b3eq = [];

% \\\

% \\\

% BLOCK 4

% this block goes with the difference between Np and Nc

% \\\

G.1. mainfile.m 131

A4eqS = [[diag(-2*ones(2*Np,1)) + diag(ones((2*Np-2),1),-2) + diag(ones((2*Np-2),1),2)]...

[zeros(2*Np,2*Np)] [zeros(2*Np,2*Np)]];

A4eq = [A4eqS(1:2*(Np - Nc),:)];

b4eqS = [[-ones(2,1) + u0]; [zeros(2*(Np - Nc)-2,1)]];

b4eq = [b4eqS(1:2*(Np - Nc),:)];

A4 = [];

b4 = [];

% \\\

% merging of all equality and in-equality matrices

A = [A1; A2; A3; A4];

b = [b1; b2; b3; b4];

Aeq = [A1eq; A2eq; A3eq; A4eq];

beq = [b1eq; b2eq; b3eq; b4eq];

c = [-lambda*[ones(1,2*Np)] [ones(1,2*Np)] [ones(1,2*Np)]];

lbx = [[zeros(1,2*Np)] [zeros(1,2*Np)] [ones(1,2*Np)*e]]’;

[x,fval,exitflag,output] = linprog(c,A,b,Aeq,beq,lbx);

% optimal vector with decision variables

x;

ustar = x(1:2*Np);

ystar = x(2*Np+1:4*Np);

% update vector ustar

vec_ustar = [vec_ustar; ustar(1:2*Np)];

% update vector ystar

vec_ystar = [vec_ystar; ystar(1:2*Np)];

% determination of xkplus1 and ybracket

[xkplus1,ybracket] = process(Asys,Bsys,Csys,Dsys,ustar,x0);

%

% update vector ybracket

vec_ybracket = [vec_ybracket; ybracket];

% update new initial vector x0

x0 = xkplus1;

% update new initial input vector

u0 = ustar;

else break

end

end

% determination vec_dustar

vec_dustar(1)=vec_ustar(1);

vec_dustar(2)=vec_ustar(2);

132 Appendix G. Matlab file of MPC implementation

for i=3:length(vec_ustar);

vec_dustar(i)=vec_ustar(i) - vec_ustar(i-2);

end

% merging of all results in a matrix

ustar__dustar__ystar__ybracket__ref = [vec_ustar vec_dustar’ vec_ystar vec_ybracket r(1:2*kmax*Np)’]

% 2 Np

% determination of sum sum |ystar - ybracket|

% i=1 j=1

error_y_y = sum(abs(vec_ystar - vec_ybracket))

% 2 Np

% determination of sum sum |ref - ybracket|

% i=1 j=1

error_y_r = sum(abs(r(1:2*kmax*Np)’ - vec_ybracket))

% \\\

%\\

% PLOTTING

% \\\

% \\\

% product vector

prod = [1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9]

% input vector

x = ustar__dustar__ystar__ybracket__ref(:,1);

% output vector

y = ustar__dustar__ystar__ybracket__ref(:,4);

% reference vector

z = ustar__dustar__ystar__ybracket__ref(:,5);

for i = 1: 0.5*length(x)

x1(i) = x(2*i-1);

x2(i) = x(2*i);

y1(i) = y(2*i-1);

y2(i) = y(2*i);

z1(i) = z(2*i-1);

z2(i) = z(2*i);

end

X1= [];

X2 = [];

Y1 = [];

Y2 = [];

Z1 = [];

Z2 = [];

for i = 1:length(x1)

X1S = [x1(i) x1(i)];

X2S = [x2(i) x2(i)];

G.2. calcHg.m and process.m 133

Y1S = [y1(i) y1(i)];

Y2S = [y2(i) y2(i)];

Z1S = [z1(i) z1(i)];

Z2S = [z2(i) z2(i)];

X1 = [X1 X1S];

X2 = [X2 X2S];

Y1 = [Y1 Y1S];

Y2 = [Y2 Y2S];

Z1 = [Z1 Z1S];

Z2 = [Z2 Z2S];

end

% input signal plot

figure(1)

clf

plot(prod,X1,’c’)

hold on

plot(prod,X2,’b’)

legend(’inputsequenceP1’ ,’inputsequenceP2’,0)

xlabel(’p’)

ylabel(’t’)

% output/reference signal plot

figure(2)

clf

plot(prod,Y1,’r’)

hold on

plot(prod,Y2,’b’)

plot(prod,Z1,’m’)

plot(prod,Z2,’k’)

legend(’outputsequenceP1’ ,’outputsequenceP2’,’referencesignalP1’, ’referencesignalP2’,0)

xlabel(’p’)

ylabel(’t’)

G.2 calcHg.m and process.m

calcHG.m

function [H,g]=calcHg(A,B,C,D,Np)

% m.file to calculate matrix H and g out of system matrices A, B, C and D

% which are used in the following state-space description:

% x(k+1) = A otimes x(k) oplus B otimes u(k)

% y(k) = C otimes x(k) oplus D otimes u(k)

% This m.file can be used in cases of one or more inputs!

134 Appendix G. Matlab file of MPC implementation

% here Np is the length of the prediction horizon.

% date: 17 March 2004

% D. Wetjens

% input values are the systems matrices A, B, C, and D and Np

% example: x(0) = intitial state

% y(0) = C otimes x(0) oplus D otimes u(0)

%

% x(1) = A otimes x(0) oplus B otimes u(0)

% y(1) = C otimes x(1) oplus D otimes u(1)

% = CA otimes x(0) oplus CB otimes u(0) oplus D otimes u(1)

% Using this algorithm, y(k) can be calculated as follows:

% then y(k) = H otimes u(k) oplus g otimes x(k)

% Matrices H and g are built up as follows (for reasons of clarity, the max-plus operations

% are replaced by conventional algebra operations):

% H = [D]

% [CB D]

% [CAB CB D . . .]

% [CA^2B CAB CB D . .]

% [: : : CB D :]

% [CA^(Np-1)B CA^(Np-1)B CB D]

% g = [C]

% [CA]

% [CA^2]

% [:]

% [CA^Np]

e=-inf;

d=length(D);

E=[ones(size(D))*e];

for i=1:Np;

for j=1:Np;

if i > j

H((i-1)*d+1:i*d,(j-1)*d+1:j*d)= mp_multi(mp_multi(C,mp_power(A,i-j-1)),B);

elseif i==j

H((i-1)*d+1:i*d,(j-1)*d+1:j*d)= D;

else

H((i-1)*d+1:i*d,(j-1)*d+1:j*d) = E;

end

g((i-1)*d+1:i*d,:)=mp_multi(C,mp_power(A,i-1));

end

end

G.2. calcHg.m and process.m 135

process.m

function [xkplus1,yk] = process(Asys,Bsys,Csys,Dsys,u1,xstart)

xkplus1 = mp_sum(mp_multi(Asys,xstart),mp_multi(Bsys,u1));

yk = mp_sum(mp_multi(Csys,xstart),mp_multi(Dsys,u1));

