
Analysis of the Intel Five-Machine Six

Step Mini-Fab

Ing. J.P.A. van den Berk

SE 420383

Masters thesis

Supervisor: Prof.dr.ir. J.E. Rooda

Coach: Dr.ir. A.A.J. Lefeber

Eindhoven University of Technology

Department of Mechanical Engineering

Systems Engineering Group

Eindhoven, May 2004





Contents

Summary iii

Samenvatting v

Preface vii

1 Introduction 1

2 Case description 3

2.1 Basic flow line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Flow line with machine input restrictions and product transportation . . 4

2.3 Flow line with operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Flow line with operators and a technician . . . . . . . . . . . . . . . . . 5

3 χ model 7

3.1 Modelling elegantly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Basic flow line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Flow line with machine input restrictions and product transportation . . 10

3.4 Flow line with operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Flow line with operators and a technician . . . . . . . . . . . . . . . . . 13

3.6 Analysis of the χ model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i



ii Contents

4 Control problem analysis 17

4.1 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Computer aided analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Stochastics analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Improved control of the flow line 27

5.1 Design of improved control . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Implementation of improved control . . . . . . . . . . . . . . . . . . . . 30

5.3 Analysis of improved control . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusions 37

7 Recommendations 41

Bibliography 43

A χ model 45

B Adjusting the time between failure 57

C χ validation examples 59

D Steady state behavior 65

E Flow line productivity 67

F Maximal δ with accompanying ϕ 71

G Little’s law 73

H Capacity analysis 75

I Applied product transportation and buffer level analysis 79

J Computer aided analysis 81

K χ model with improved control 87



Summary

Controlling a re-entrant flow line, as commonly used in the semi-conductor industry, is
complex. The complexity is illustrated well by the Intel Five-Machine Six Step Mini-
Fab case. The case contains all difficulties that need to be dealt with in practice.
Equipment and personnel can be unavailable, products need to be transported and
stocked and machines have various properties to account for. The target of the case is
to reach a throughput of 84 products per week despite the difficulties.

The re-entrant flow line of the Intel case has been modelled in χ, because χ is well
suited for modelling discrete-event systems like the line. Techniques for modelling ele-
gantly in χ were used to acquire an elegant model. For the construction of the model,
first a basic flow line has been considered, that contains only a product generator,
buffers, machines and an exit process. Subsequently, the model is extended with ad-
ditional complexity until every aspect of the case has been modelled. Firstly, machine
input restrictions and a product transporter are added to the model. Next, two opera-
tors are added and finally a technician is added to the model. The flow line is controlled
by push control and the flow line elements operate FIFO (First In First Out). After
the model has been designed, it is validated. It behaves as it was designed to behave
and represents the case correctly. After the validation of the model, simulations can be
run. With the current control the simulation results show that the required throughput
can not be met. The maximal throughput, neglecting the buffer capacity constraints,
equals 57.5 products per week. To increase the throughput, the control of the flow line
needs to be improved.

Before the control of the flow line is improved, the control problem of the Intel
case is analyzed to determine if the required throughput can be met. The analysis
is firstly performed by hand. Capacity analysis of the flow line elements shows that
the elements have enough capacity. However, the personnel availability issues are not
combined with the machine availability issues in the capacity analysis. To combine these
issues, an educated schedule of one shift without machine break down is constructed
manually. The schedule shows that the control problem without break down is feasible.
Next, machine break down is added to the schedule. To account for the stochastics of
the break down, the estimated required extra capacity of the machines is also added.
To include the break down behavior correctly, multiple shifts have to be scheduled.
Therefore, an integer linear programming model of the case is designed. Because the
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iv Summary

model is too complex to be solved with the available optimization tools, even after
simplification, the model is relaxed by neglecting the integer constraints. Under this
assumption production for one week can be scheduled in 0.97 weeks. Since the model
is relaxed, the resulting schedule is not feasible. However, all machines except the
bottleneck machine have some surplus capacity and the schedule may be prolonged by
0.03 weeks. Therefore, it is assumed that a feasible schedule of the production can be
constructed and that the control problem of the Intel case is feasible.

Finally, the control of the flow line is improved. When machine break down is
neglected, the control problem becomes deterministic and a repetitive schedule can
be implemented. The required throughput can then be reached, as described in the
previous paragraph. When machine break down is not neglected, a repetitive schedule
can not be used to control the flow line, due to stochastics. Instead, heuristic control is
implemented in small steps to acquire elegant control. The control remains as simple
as possible, so it can be easily understood and adjusted. Firstly, the control of the
product generator and the buffers is improved to increase the throughput. Secondly,
the operating and off time priorities of personnel are improved. To make the control
easier to analyze, machine break down is neglected. The maximal throughput equals
80.4 products per week, while the buffer capacity constraints are neglected. Finally, the
control should be refined and control for after a machine break down occurs should be
implemented. Due to lack of time in the project, this has not been done yet.



Samenvatting

Het aansturen van een teruggekoppelde productielijn, zoals vaak voor komt in de semi-
conductor industrie, is complex. De complexiteit wordt duidelijk weergegeven door de
Intel Five-Machine Six Step Mini-Fab casus. De casus bevat alle problemen die men
in de praktijk tegenkomt. Productie gereedschap en personeel zijn niet altijd aanwezig,
producten dienen te worden getransporteerd en opgeslagen en machines hebben diverse
eigenschappen waar rekening mee gehouden moet worden. Het doel van de casus is een
doorzet van 84 producten per week te bereiken, ondanks de problemen.

De teruggekoppelde productielijn van de Intel casus is gemodelleerd in χ, omdat
χ uitermate geschikt is voor het modelleren van systemen die op discrete tijdstippen
van toestand veranderen, zoals de lijn. Technieken voor elegant modelleren in χ zijn
toegepast om een elegant model te verkrijgen. Voor de opbouw van het model is eerst
een eenvoudige productielijn beschouwd, die slechts een product-generator, buffers, ma-
chines en aan het einde een opslag proces bevat. Het model is achtereenvolgens uitge-
breid met additionele complexiteit, totdat elk aspect van de casus gemodelleerd is. In
eerste instantie zijn restricties op de toevoer van producten aan machines alsmede een
product-transportsysteem toegevoegd aan het model. Vervolgens zijn twee operators
toegevoegd en als laatste is een monteur toegevoegd aan het model. De productielijn
wordt aangestuurd door producten in de lijn te duwen. De elementen van de lijn werken
op volgorde van aankomst. Nadat het model ontworpen is, wordt het gevalideerd. Het
model gedraagt zich zoals het zich dient te gedragen en vertegenwoordigt de casus cor-
rect. Na de validatie van het model kunnen simulaties worden gedraaid. De simulatie
resultaten laten zien dat met de huidige aansturing van de productie lijn de gevraagde
doorzet niet kan worden behaald. Indien de restricties op de capaciteit van buffers
verwaarloosd worden, bedraagt de maximale doorzet 57.5 producten per week. Om de
doorzet te verhogen, moet de aansturing van de productie lijn verbeterd worden.

Voordat de aansturing van de productielijn verbeterd wordt, wordt het aanstuur
probleem van de Intel casus geanalyseerd om te bepalen of de gevraagde doorzet gehaald
kan worden. De analyse wordt in eerste instantie met de hand uitgevoerd. Capaciteit-
sanalyse van de elementen van de productielijn laat zien, dat alle elementen voldoende
capaciteit hebben. De beschikbaarheid kwesties van het personeel zijn echter niet gecom-
bineerd met de beschikbaarheid kwesties van de machines in de capaciteitsanalyse. Om
deze kwesties wel te combineren, is handmatig een goed doordachte planning gemaakt
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van een halve werkdag, waarin het faalgedrag van machines wordt verwaarloosd. De
planning laat zien dat het aanstuurprobleem zonder faalgedrag van machines oplosbaar
is. Vervolgens wordt het faalgedrag toegevoegd aan de planning. Om de stochastiek
van het faalgedrag in de planning mee te nemen, wordt ook de geschatte benodigde ex-
tra capaciteit van de machines toegevoegd. Meerdere werkdagen zijn gepland, om het
faalgedrag correct toe te voegen. Daarom is een integer lineair programmeringsmodel
van de casus ontworpen. Omdat het model zelfs na simplificatie te complex is om
opgelost te worden met de beschikbare optimalisatie gereedschappen, is het model gere-
laxeerd door de integer restricties te verwaarlozen. Onder deze aanname kan de pro-
ductie van een week gepland worden in 0,97 weken. Aangezien het model gerelaxeerd
is, is de resulterende planning niet uitvoerbaar. Alle machines behalve de bottleneck
machine hebben echter enige capaciteit over en de planning mag verlengd worden met
0,03 weken. Daarom wordt aangenomen dat een uitvoerbare planning van de productie
gemaakt kan worden en dat het aanstuur probleem van de Intel casus oplosbaar is.

Tot slot wordt de aansturing van de productielijn verbeterd. Wanneer het faalgedrag
van machines verwaarloosd wordt, wordt het aansturingsprobleem deterministisch en
kan een vaste planning telkens herhaald worden. De gevraagde doorzet kan dan gehaald
worden, zoals in de vorige paragraaf beschreven is. Wanneer het faalgedrag van machines
niet verwaarloosd wordt, kan de aansturing van de productielijn niet plaatsvinden door
telkens een vaste planning te herhalen, omdat de stochastiek van de lijn dit niet toelaat.
In plaats daarvan wordt heuristische aansturing gëımplementeerd in kleine stappen,
zodat een elegante aansturing verkregen wordt. De aansturing wordt zo eenvoudig
mogelijk gehouden, zodat hij gemakkelijk te begrijpen en aan te passen is. Op de eerste
plaats is de aansturing van de product-generator en de buffers verbeterd om de doorzet
te verhogen. Op de tweede plaats zijn de prioriteiten van het personeel voor bediening en
afwezigheid verbeterd. Om de aansturing gemakkelijker te kunnen analyseren, wordt het
faalgedrag van machines verwaarloosd. De maximale doorzet bedraagt 80,4 producten
per week, terwijl de restricties op de capaciteit van buffers verwaarloosd worden. Tot
slot dient de aansturing verfijnd te worden en dient de aansturing voor de situatie dat
een machine faalt te worden gëımplementeerd. Door gebrek aan tijd voor het project,
heeft deze implementatie nog niet plaats gevonden.
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Chapter 1

Introduction

Controlling a re-entrant flow line, as commonly used in the semi-conductor industry,
is complex. To illustrate the complexity of the control problem, Dr. Kempf from Intel
composed the Intel Five-Machine Six Step Mini-Fab [2] case. As the title suggests,
this case concerns a production facility in which products are processed on five ma-
chines in six steps. The products are wafers, which are silicon plates produced in the
semi-conductor industry. They contain hundreds of identical chips used in electronic
accessories like computers and mobile phones. The case clearly illustrates the difficulties
that need to be dealt with in practice. Equipment and personnel can be unavailable,
products need to be transported and stocked and machines have various properties to
account for. The target of the case is to reach a required amount of throughput with
the flow line despite the difficulties.

In this masters project the re-entrant flow line of the Intel case is simulated, analyzed
and controlled. First, an elegant discrete-event model with FIFO (First In First Out)
control of the flow line is designed to simulate the factory. The χ formalism is used
to design the model, because χ is well suited for modelling discrete-event systems like
many production environments. Before improving the control of the flow line, the
control problem of the Intel case is analyzed to determine if the required throughput
can be met. Initially the stochastics of the flow line are neglected in this analysis.
The case is analyzed manually by capacity analysis and by constructing an educated
schedule. Next, computer aided analysis is performed by designing and optimizing a
linear programming model of the case. And finally, the influence of stochastics on the
control problem is analyzed. After the analysis of the problem, the control of the flow
line is improved in the discrete-event model to increase the throughput of the line. The
implemented heuristic control is derived from analyzing the behavior of the flow line.
The control is now ready to be implemented in a real flow line.

The simulation, analysis and control of the Intel case are described in this report,
after the case is presented in Chapter 2. The discrete-event model with FIFO control
is presented in Chapter 3. First, the designing guidelines are presented. Next, the
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2 Chapter 1. Introduction

designing of the model is described. Finally, the model is verified and the simulation
results of the flow line are discussed. Chapter 4 describes the analysis of the control
problem. The manual analysis is reported in the first section, followed by the computer
aided analysis in the second section and the stochastic analysis in the final section. The
control of the re-entrant flow line is improved in Chapter 5. Finally, the conclusions
and recommendations are presented in Chapters 6 and 7.



Chapter 2

Case description

Before presenting the research of the project, the Intel Five-Machine Six Step Mini-Fab
case is described in this chapter. The case is a simple model of a factory. The description
starts with the basic flow line and adds complexity to the line in steps. In Section 2.1 the
basic flow line is presented. It contains the factory areas, the products, the production
sequence and the basic production equipment. Section 2.2 adds restrictions on machine
input and product transportation to the basic flow line. Section 2.3 adds operators to
the flow line. They load and unload the machines and perform setup on them. Finally,
the flow line is completed by adding a technician to it in Section 2.4. The technician
performs scheduled and unscheduled maintenance on the machines.

2.1 Basic flow line

PSfrag replacements

0

1

2

3

4

5

6

B BB

M

M

M

M

M

start

diffusion lithography implantation

finish

Figure 2.1: Basic flow line

In this section the basic flow line of the Intel case is described. The line is shown
in Figure 2.1. It operates non-stop and contains five areas. The first area is the start
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4 Chapter 2. Case description

area. Before the products of the flow line are processed, they are stocked in this area.
The next three areas are the workstation areas diffusion, lithography and implantation.
They contain the diffusion, the lithography and the ion implantation process of the
wafer fabrication. The final area is the finish area. The finished products are stocked
in this area.

Three types of products flow through the areas. The first type is the test product. It
is used to monitor the accuracy of the production process. The other two types (type A
and type B) are commercial products. They are to be sold to customers. Per week 3 test
products, 51 type A products and 30 type B products are taken from the stock in the
start area and are released into the flow line. The released products follow the predefined
production sequence visualized in Figure 2.1. Six production steps are performed on
them in three workstations. Each workstation is entered twice. The products are
processed in the sequence diffusion, implantation, lithography, implantation, diffusion
and lithography. Finally, the finished products are stocked in the finish area.

The production equipment inside the workstations is shown in Figure 2.1. Each
workstation contains one buffer (B) for stocking the incoming and outgoing products
of the workstation. The capacity of the buffer in the diffusion workstation equals 18
products. In the lithography and the implantation workstation the capacity of the buffer
equals 12 products. Apart from a buffer, the diffusion and the implantation workstation
contain two machines (M) and the lithography workstation contains one machine. A
machine receives a product from the workstation buffer and processes it. Next, it returns
the product to the buffer. All machines perform a low and a high production step on a
product respectively the first and the second time the product enters the workstation.
The production times of the low and high step of the diffusion process are respectively
225 min and 255 min. The production times of the lithography process are 55 min and
10 min and the production times of the ion implantation process are 30 min and 50 min.
Equipment preemption is excluded from the case, thus once a machine starts a job, it
finishes it before starting another one. Apart from preemption also rework is excluded
from the case. This concludes the basic elements of the flow line.

2.2 Flow line with machine input restrictions and product

transportation

In this section restrictions on machine input and product transportation are added to
the basic flow line of the previous section. Machine input has two restrictions. Firstly,
test products are processed once by both machines in multi-machine workstations. So
when a test product enters the diffusion or the implantation workstation for the second
time it can only be processed on the machine it was not processed on the first time.
Thus, the entire flow line is monitored. Secondly, diffusion machines require input of
batches. A batch contains three products of equal production step. It also contains
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less than two test products. Furthermore a high step batch does not contain a mix of
commercial products.

Next, product transportation between areas is added to the flow line. The trans-
portation is performed by the product transporter. The transporters capacity equals
one product. At the start of a transportation cycle, it moves empty to the pickup area.
Next, the product is loaded from a stocker or a buffer, depending on the area, into the
transporter and is transported to the desired area. When it arrives, the product is un-
loaded from the transporter into a stocker or a buffer, again depending on the area, and
the cycle is finished. The transporter moves in 4 min empty or full to an adjacent area
and loads or unloads a product in 1 min. This concludes the product transportation.

2.3 Flow line with operators

In this section two operators (operator 0 and operator 1) are added to the flow line with
machine input restrictions and product transportation. The operators have three tasks.
Firstly, they load the machines. The machine input is retrieved from the workstations
buffer and is loaded into the machine. The loading times of the diffusion, the lithography
and the ion implantation process are respectively 20 min, 10 min and 15 min. Secondly,
the operators unload the machines, after the machines have processed their input. The
machine output is stocked in the workstations buffer. The unloading times of the
diffusion, the lithography and the ion implantation process are respectively 40 min, 10
min and 15 min. Finally, an operator performs setup on the lithography machine when
the machines input changes. Setup times for a change in product type, product step
or both are respectively 5 min, 10 min or 12 min. The setup is performed immediately
prior to the loading of the machine. During setup the machine is empty.

Operators not only have tasks, but also have restrictions. Firstly, operator 0 serves
the diffusion and the implantation workstation and operator 1 serves the lithography
and the implantation workstation. Secondly, each operator has two breaks of 60 min
and one meeting of 60 min per shift of 720 min. Their off time is unrestricted to
synchronization. Thirdly, operators operate non-preemptive, so once they start a task,
they finish it before starting another one. Finally, operators require 1 min to move to
an adjacent workstation. The number of operators that are simultaneously in transport
is unrestricted. All operator restrictions have now been discussed and the operators
have been added to the flow line.

2.4 Flow line with operators and a technician

Next to the operators that have been added to the flow line in the previous section, the
factory employs a technician to perform maintenance on the machines. The technician
performs two types of maintenance. The first type is ’scheduled maintenance’ and is
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required by every machine. A machine is empty when it starts and remains empty during
it. The scheduled maintenance for the machines in the diffusion, the lithography and
the implantation workstation takes respectively 75 min, 30 min and 120 min. A window
exists in which the maintenance should be started. If the maintenance is not started
in the window, then the current machine cycle is finished, but the machine will reject
new input until the technician performs the maintenance. The window opens for the
diffusion machines at the beginning of each day or 720 min after the previous scheduled
maintenance, whichever is later. It closes at the end of the day. For the lithography
machine and the ion implantation machines the window opens at the beginning of each
shift or 360 min after the previous scheduled maintenance, whichever is later. It closes
at the end of the shift.

The second type of maintenance that the technician performs is ’unscheduled main-
tenance’ and is required by the ion implantation machines, because the machines break
down during processing. The current product inside a down machine is wasted and the
machine rejects new input until the machine has been repaired. The repair time and the
time between failure are stochastically distributed and are respectively 420 min ± 60
min and 3000 min ± 1560 min. Scheduled and unscheduled maintenance are required
independently of each other.

Similar to the operators, the technician has restrictions. Firstly, he has two breaks
of 45 min and one meeting of 30 min per shift. Secondly, he operates non-preemptive.
Finally, the technician requires 1 min to move to an adjacent workstation. This com-
pletes the description of the factory. In the next chapters the research of the project
will be presented, starting with the χ model of the case.



Chapter 3

χ model

In the previous chapter the Intel case has been described. In this chapter the χ model
of the case is presented. Information on the χ formalism can be found in [7] and
[1]. An introduction to modelling a flow line in χ can be found in [4]. The model is
build starting with a simple version that contains the basic production processes and
subsequently extending it with additional complexity until every aspect of the case has
been included in the model. FIFO (First In First Out) control is present at this stage of
the project. Before describing the χ modelling, Section 3.1 presents the used modelling
techniques for designing elegant models. Sections 3.2 through 3.5 describe the modelling
of the case according to the structure of the case description of the previous chapter.
The analysis of the model is presented in Section 3.6.

3.1 Modelling elegantly

Before the modelling of the case is described, the used modelling techniques are pre-
sented. They are not rules to assure an elegant χ model, but are guidelines for design-
ing elegant models. Two general techniques for modelling are used. Firstly, record the
choices made in earlier stages of the design to aid making correct decisions in the later
stages. Secondly, design a basic model and increase the complexity of it in small steps
until the model is complete. Not only does this approach result in an elegant model, but
it also simplifies the verification of the model. Next to general modelling techniques,
also techniques that focus on the model itself are used. Firstly, move the complexity of
the model to functions. They are more transparent than processes, because they do not
permit synchronization statements, communication statements or channels. Secondly,
avoid non-determinism in the model to make it predictable. Next, avoid deadlocking
and live-locking. A process that is interacting with another process causes deadlock if
the other process remains blocked in a synchronization or communication action that
will no longer succeed. A process causes live-lock if it is never blocked by a synchro-
nization or communication action. Furthermore, increase the readability of the model
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8 Chapter 3. χ model

by designing clear, compact and insightful constructions and by using consistent in-
dentation and nomenclature in the model. Next, utilize library functions to increase
the compactness of the model. Finally, gather the modelling parameters in a separated
section of the model. In this way the parameters and thus the simulation scenario can
be changed easily. All used modelling techniques for modelling elegantly in χ have now
been described. Before presenting the χ model, the modelling of the case is described
in the next four sections.

3.2 Basic flow line

In the previous section the modelling techniques have been discussed. In this section
they will be used to design the basic flow line. Not only the modelling techniques, but
also state diagrams of the case elements are used during modelling to get a correct and
elegant model of the case. The diagrams are shown in [2].

The design of the basic flow line starts with determining the time unit for simulation
time. The unit is set equal to one minute, so all time-related model parameters are inte-
gers. The next step in the design is modelling the factory operating time. Because the
factory operates non-stop, no forced production idle time is modelled. The production
start time is 0 min and it continues endlessly.

The products that are processed during production are represented in the model
by a record tuple containing the strictly necessary information. The first element of
the tuple is the product identification number. The number is required to identify the
products in the flow line. The second element is the production step of the product,
which is required to define the production state of the product. The last element of the
tuple is the release time of the product and equals the time that a product is released
into the flow line. The release time is used to calculate the products individual flow
time that is required to determine the mean flow time of the line.

The products are processed in the factory areas by the basic production equipment,
as shown in Figure 3.1. The factory areas are not modelled as processes, but are
represented by the production equipment inside the areas. The start area is represented
by a product generator that releases products into the flow line. Two options exist to
model the generator. The first option is to model one process that creates products. It
uses a function to determine the product type. The process releases the products into
the flow line with constant time intervals. The second option is to model two types of
generator processes, the signal generator (Gs) and the collector process (Gc). The signal
generator represents a product type. It determines the release times of the products
of its type by signalling the collector with constant time intervals. The length of the
intervals depends on the number of products per type that are released per week. Three
signal generators are required to model all product types. The collector receives signals
from the signal generators and therefore knows when to release a product of which type
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Figure 3.1: Basic production equipment in χ

into the flow line. The function that determines the product type in the first option
brings unnecessary complexity into the model and therefore the second option is chosen.

After the generator has been modelled, the workstation areas are designed. The
diffusion and the implantation area are represented by two buffers (Bmi and Bmo) and
two machines (M). To exclude blocking from the model, the buffers are modelled to have
infinite capacity. The finite buffer capacity should be modelled by improved control,
which is not included in this model. The products that enter the workstations, arrive
at the incoming buffer (Bmi) and are stocked. When a machine is idle, it requests the
incoming buffer for a product. Without this construction the buffer would not know
which machine requires a product. As a consequence the buffer would have to try to
send the product to both machines. If both machines want to receive a product at the
time of sending, then it is not known to which machine the product is sent. This would
therefore include much non-determinism in the model. After a machine has placed a
request for input, the buffer sends a product from its contents to the machine. Because
at this stage of the project FIFO control is modelled, the buffer operates FIFO (First
In First Out). When a machine receives a product, it has to determine the processing
time. All machines are instances of the same process, but have different processing
times. These times are put into an array tuple. The machine determines the correct
processing time from the tuple using the production step of the product it has received.
Another option to determine the processing time would have been to include processing
time parameters in the machine process. Because of the extra parameters, this options
increases the complexity of the model unnecessarily. Now the processing time has been
determined the machine waits for the duration of it. Next, the production step of the
product is increased by one and the machine sends the product to the outgoing buffer
(Bmo). Modelling an incoming and an outgoing buffer per workstation instead of one
multi functional buffer clarifies the flow of products through the line. The outgoing
buffer receives the product and sends it directly to the next area. It has two product
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sending channels, as is visualized in Figure 3.1, and uses the production step of the
product to determine the correct channel to send over.

The lithography workstation area is represented by two buffers and one machine.
The structure of the area is similar to the other workstation areas. The only difference
is formed by the incoming (Bsi) and the outgoing (Bso) buffer of this area. Because
they serve only one machine, they require only half of the channels that are used by the
diffusion and implantation buffers for connection to the machines in the workstation.
Therefore different buffer processes are modelled. Another option would have been
to use the multi-machine workstation buffers in this area. But then half of the buffer
channels that should be connected to a machine, is connected only to the buffer process.
This option is therefore less elegant.

The finish area is the final area of the flow line. The area is represented by the exit
process (E). This process continuously accepts products and can be used to determine
the throughput and the mean flow time of the flow line. The products leave the flow
line at the exit process. This concludes the areas and their production equipment.

After describing the areas, the channels through which the products are passed
between the areas are presented. Figure 3.1 shows the channels. The collector process
of the generator sends the products to the incoming buffer of the diffusion workstation.
The outgoing buffer of each workstation sends the product to the incoming buffer of the
next production area. Therefore all incoming and outgoing buffers have two connection
channels. The correct channel to send the products over is determined by observing
the production step of the products. When all the processing of a product has been
finished, the outgoing buffer of the lithography workstation sends the product to the
exit process. The modelling of the basic flow line has now been presented.

3.3 Flow line with machine input restrictions and product

transportation

According to the structure of the case description in Chapter 2, restrictions on machine
input and product transportation are added to the basic flow line in this section. Two
machine input restrictions are modelled. Firstly, test products are processed once by
both machines in the multi-machine workstations. To identify test products, a type
number is inserted as second element in the product representation tuple. The restric-
tion can now be modelled in three ways. Firstly, a controller can be designed that
governs the machine routing of test products. Secondly, all incoming buffers in multi-
machine workstations can record the machine history of the test products and send
them to the correct machine. Finally, the machine history of the test products can be
added to the product representation tuple, so the incoming buffers can determine the
correct machine to send the products to. The first option adds much complexity to
the model, because an extra process and extra communication channels are necessary.
The second option makes the buffers unnecessarily complex, while they should remain
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basic processes. The final option is chosen for its simplicity. Not only test products,
but all products record their machine history to keep the product representation tuples
uniform. The history is inserted as fourth element in the product representation tuple.
The history is updated simultaneously with the processing step of the product after the
product has been processed on a machine. The history update is required only after
a product has been processed in a multi-machine workstation for the first time. If the
product is processed in the lithography workstation or in any workstation for the second
time, then the history update is not required. Since the update is not harmful and the
prevention of it adds unnecessary actions to the model, the history update is performed
after every processing step. The machine history of a product is recorded in an array
tuple with three elements. One element is used for each workstation. The elements con-
tain the identification number of the machine on which the product was last processed
per workstation. Now the machine history is recorded, an incoming multi-machine
workstation buffer uses it to send the test products to the correct machine.

The second machine input restriction is applied to diffusion machines. They require
batches of products for input. The incoming buffer of the diffusion workstation remains
basic by generating the batches in functions. Three options exist for selecting batches
from a buffers contents. The first option is to search the contents directly for one of the
allowed product combinations. If the combination is not present in the contents, then
the next combination is searched for. This process is repeated until a batch is found or
no combinations are left to search for. The second option is to split the contents of the
buffer into separate lists for each product type and processing step. Next, a function
determines an allowed combination of products from the lists, if such combination is
present. The final option is to use a select expression to construct a list of all allowed
product combinations from the contents of the buffer. This expression uses a function
to determine the correctness of a batch. After the list has been constructed, a selection
function selects a batch from it. The final option is chosen, because the programming
of it results in the most compact formulation. After a batch has been determined, it is
sent to one of the diffusion machines. To communicate products uniformly, all processes
now send and receive products in a list. This can either be a list of three products for
the diffusion machines or a singleton list for all other processes. Due to the batching
restriction, the incoming buffers of the diffusion and the implantation workstations
determine machine input of a different amount of products. The buffer process remains
universal by including a parameter in the process that selects the correct function for
generating the machine input. This concludes the restrictions on machine input.

Next, product transportation between areas is added to the basic flow line with
machine input restrictions. The transportation can be added in three ways. Firstly,
a transporter can be modelled that can always receive and administer requests from
buffers for product transportation. At the start of a transportation cycle the prod-
uct that will be transported is determined from the administered requests. Secondly, a
transporter can be designed that selects at the start of its transportation cycle a product
to transport randomly from all buffers that are trying to send a product to the trans-
porter. Next, it performs its cycle sequentially. Finally, a transporter that is dispatched
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by a transporter dispatcher process can be designed. The dispatcher administers the
requests from buffers for product transportation. Again the transporter operates se-
quentially. The first design requires a complicated transportation process, because the
transporter must always be able to receive requests from buffers. The second design
introduces much non-determinism in the model. The final design is the most elegant
one, because it contains only basic processes and excludes most non-determinism from
this part of the model. Now the basic design has been chosen, the details are mod-
elled. The transporter dispatcher receives requests for transportation of products from
the generator collector and from the outgoing buffers. Furthermore, it dispatches the
transporter to one of the requesting processes at the start of the transportation cycle.
The transporter moves to the area of the requesting process. After the transporter
has arrived, the process passes the product that needs to be transported to it and the
transporter determines the drop area of the product. To this end the production se-
quence of the products is predefined in an array tuple of area identification numbers.
The production step of the product is used to determine the drop area from this tuple.
Finally, the transporter moves to the drop area and unloads the product into the incom-
ing buffer of the area or into the exit process, dependent on the drop zone. Hereafter a
new transportation cycle starts. Now, the machine input restrictions and the product
transportation have been added to the model of the basic flow line.

3.4 Flow line with operators

In this section the operators are added to the flow line with machine input restric-
tions and product transportation. Three options exist to model the operators. Firstly,
each operator can be modelled as a process that receives requests for operators from
the incoming buffers and the machines. Furthermore it receives and sends products
during loading and unloading and determines its off time. Secondly, the requests can
be received by a personnel dispatcher. The dispatcher also dispatches the operators,
which are individual processes, and determines their off time. Finally, operators can
be modelled not as processes, but as pieces of information. The information contains
the strictly necessary elements to model the operator. A dispatcher again receives the
requests for operators. When an operator is dispatched by the personnel dispatcher
to a process in a workstation or to an off time process, the information is sent to the
process. When an operator is loading or unloading a machine, the information is passed
either from the buffer to the machine or vice versa together with the products that are
loaded or unloaded. The first option requires a complicated communication structure
between the individual operators and the processes requesting the operators, especially
for the implantation workstation because both operators can serve there. Furthermore,
it requires complicated operator processes. The second option still requires complicated
operator processes. The third option is the most compact and insightful one and also
requires only basic processes. It is therefore chosen.

Now the basic design has been chosen, the details can be modelled. The operators are
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represented by an array tuple containing their identification number and their position.
When the operators are idle, the information is present in the dispatcher process. Next,
the dispatcher receives a request for an operator from an incoming buffer or a machine
and determines the correct operator to dispatch to the process by using a function.
Then the operator is sent via the personnel transporter process, which determines and
applies the operators transportation time, to the requesting process. After operating
in the workstation the operator is returned to the personnel dispatcher. Apart from
dispatching the operators to the workstations, the dispatcher also initiates the operator
off time by sending the operators to the off time process. The dispatcher knows when
it may send an operator to the process by administering the allowed off time. After
a predefined time has passed, the off time counter is raised by one and the operator
can take his off time. Meetings and breaks are modelled similarly, but have individual
counters so they can be given different priorities. A number that represents the type
of off time is therefore sent together with the operator to the off time process. After
the off time, the operator is returned to the dispatcher. With FIFO control of the flow
line the off time has a higher priority than the dispatching to workstations to assure all
breaks are held and meetings are attended.

When an operator is dispatched to a workstation to load a machine, the operator
receiving process is an incoming buffer. The buffer sends the operator and the machine
input directly to the machine. If the machine is the lithography machine, then the setup
time is determined with a function by using the type and processing step of the product
and the setup is applied. The machine remains a universal process by adding the setup
to it in a selection statement guarded by a workstation identification parameter. Next,
all machines apply the loading time of the product similarly to the application of the
processing time. So a machine first determines the loading time from an array tuple
of loading times by using the production step of the product and then applies the
loading. After the loading, the machine returns the operator to the dispatcher. When
an operator is dispatched to a workstation to unload a machine, the operator receiving
process is the machine. It applies the unloading time similarly to the application of
the loading time and then sends the operator and the machine output to the outgoing
buffer. The buffer directly returns the operator to the dispatcher. Now the operators
have been added to the model.

3.5 Flow line with operators and a technician

In this section the technician is added to the model of the flow line. The technician
is modelled similarly to the operators. His identification number and position are sent
by the personnel dispatcher to the workstation areas via the personnel transporter and
to the off time process. The technician has two tasks. The first task is to perform
scheduled maintenance. If the maintenance window is modelled in the machine process,
this process will become very complex. Therefore all windows are modelled in the
dispatcher process. This process administers apart from the windows also the number
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of scheduled maintenances that have to be performed. When maintenance has to be
performed on an machine and the machine and the technician are idle, the personnel
dispatcher sends the technician to the machine. To determine if a machine is idle, the
machine status is administered by the dispatcher. Furthermore, the dispatcher prevents
operators from loading a machine that is receiving maintenance. After the machine has
applied the maintenance time similarly to the loading time in the previous section, the
technician is returned to the dispatcher. If a machine has not received maintenance on
time, the dispatcher prevents operators from loading the machine until the maintenance
has been performed.

The second task of the technician is to perform unscheduled maintenance. The ion
implantation machines break down during processing. The break down is initiated by
the finishing of an unscheduled down timer. Two options exist to prevent a machine
from going down while it is not processing. The first option is to flag if the timer is
finished while the machine is not processing. The break down then occurs immediately
after the machine starts processing. The second option is to freeze the unscheduled
down timer while the machine is not processing. The second option is chosen, because
it represents the factory more accurately. Because the timer is paused when the machine
is not processing, the start value of the timer does not equal the time between failure.
Instead the value equals the time between failure adjusted by a parameter to model
the correct number of downs. When a down occurs, the personnel dispatcher receives
a request from the down machine for the technician. After the machine receives the
technician, the machine applies the repair time and returns the technician to the dis-
patcher. Restrictions on unscheduled down time distributions are omitted in the case.
To get an evenly spread distribution of down times, the uniform distribution is used in
the model. Machine failure is added to the machine process similarly to machine setup,
so the failure is added in a selection statement guarded by a workstation identification
parameter. The process therefore remains universal. This concludes the technician and
the χ modelling of the case elements. Now the design of the model has been presented,
the χ model with push control and with and flow line elements that operate FIFO is
shown in Appendix A together with the description of the model.

3.6 Analysis of the χ model

In the previous sections the χ model has been designed. In this section the model is
analyzed. The entire case has been designed, except the constraints on the buffer capac-
ities. These constraints require implementation of improved control to avoid blocking.
They are omitted because the improved control is excluded from this model. Therefore,
the analysis of the flow line at this stage of the project will be done without applying
the buffer capacity constraints. Before the Intel case is modelled correctly, the param-
eter that adjusts the time between failure of the ion implantation machines needs to
be determined. This is necessary to model the right number of unscheduled downs and
is done every time the model is changed. Appendix B presents the adjustment proce-
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dure. The value of the parameter is determined by counting the number of unscheduled
downs, while varying the parameter until the number equals the desired value. Now
the model has been adjusted, it can be validated. But first the non-determinism in the
model is determined. The non-determinism occurs in the model when more than one
process starts attempting to communicate with the same process at the same time. All
communication will take place instantly, but the sequence of communication can not
be determined in advance. The non-determinism occurs in four sections of the model.
Firstly, it occurs when two signal generators try to signal the collector at the same time.
Secondly, it occurs when two processes request for product transportation at the same
time. Thirdly, it occurs when two machines request for a product at the same time.
Finally, it occurs when two processes request for personnel at the same time.

Before simulations are run, the model is validated. During validation the model
behavior is compared to the flow line behavior prescribed in the case. The simulation
results can only be trusted after validation. The validation techniques used in this
project are ’transient calculation’, ’steady state calculation’, ’visualization using Gantt
charts’ and ’function analysis’. In transient calculation a few products are inserted
into the flow line and the simulation output is compared to manual calculation. The
outcome should be identical. In steady state calculation the model output in steady
state is compared to manual calculations. Again the outcome should be identical. In
visualization using Gantt charts the behavior of the flow line is visualized in Gantt
charts and the occurring events are analyzed. Finally, the functions in the model are
validated by analyzing the output of their input domain. The output should be correct
over the entire domain. Appendix C shows examples of the used validation techniques.
The model behaves as it was designed to behave and represents the case correctly.

After validation of the model, simulations can be run. In this project the most
interesting behavior of the flow line is the steady state behavior. The first one hundred
weeks of production are not used for the analysis of this behavior, so the influence of
the transient state of the flow line can be neglected. The steady state behavior of the
flow line with required input is presented in Appendix D. From this appendix results
that the bottleneck machine of the flow line is the lithography machine. Furthermore,
the capacity of the product transporter is sufficient for this flow line and a throughput
(δ) is reached of 47.4 products per week or 56.4% of the required δ. The mean flow
time (ϕ) of the products is increasing, because the work in process (w) is increasing.
Finally, the control of the flow line is analyzed. The processes have much idle time and
the machines have to wait for loading and unloading. Furthermore, the lithography
machine has much setup time and all machines have a poor reaction to the unscheduled
down of an ion implantation machine. It can be concluded that the control of the flow
line is poor.

Four important control topics need improvement. Firstly, the personnel of the flow
line operates FCFS (First Come First Served), whereas the priority of personnel should
be directed at assisting the bottleneck machine. Secondly, personnel off time is scheduled
independently of the personnel need of the machines, whereas it should be scheduled
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when personnel is least needed. Thirdly, the setup time of the lithography machine
should be minimized by releasing the right type of products into the flow line and by
changing the control of incoming buffers. The buffers operate at the moment FIFO
(First In First Out), but they should send the optimal available input to the succeeding
machine. Finally, unscheduled down events should be handled by improved control.

The implementation of improved control in the flow line, has to increase the reached
δ of the line by 43.6% to meet the required δ. However, the amount of work performed
by the line has to increase less than 43.6% to meet the required δ, because some work
is wasted on the increasing amount of w. The productivity of the flow line is defined as
the total amount of work performed by the line divided by the required amount of work
and is calculated in Appendix E. The productivity equals 81.5% and thus the required
increase of productivity equals 18.5%.

Now the maximal throughput (δmax) that can be reached with FIFO control shall
be determined. It equals δ when w is only just non-increasing in steady state, because
then no work is wasted on the semi-finished products that form the increasing w. To
determine δmax, the input of the flow line is decreased until w does not increase during
simulation. The ratio of the product types is kept identical to the ratio in the case. δmax

and the accompanying ϕ are determined in Appendix F. δmax equals 57.5 products per
week or 68.5% of the required δ. ϕ equals 4580 min when 57.5 products are released per
week. The productivity of the flow line with required input is greater than δmax, because
the flow line with required input allows the non-bottleneck machines to perform more
work than the bottleneck machine. This work is wasted on the increasing w. Whereas
δmax is limited to the maximal work of the bottleneck machine.

Now the final analysis of the flow line will be performed. Appendix G shows that
Little’s law can be applied to the flow line with non-increasing w. This concludes the
analysis of the flow line together with the χ modelling of the case. In the next chapter
the feasibility of the control problem is determined.



Chapter 4

Control problem analysis

The χ model of the Intel case has been designed in the previous chapter. Before im-
proved control will be added to the model in the next chapter, the feasibility of the
control problem is determined in this chapter. So, it is determined if the required
throughput of 84 products per week can be met. Initially the stochastics of the flow line
are neglected in the analysis. In Section 4.1 the manual analysis is presented. Capacity
calculations of the flow line elements are performed and a schedule is constructed manu-
ally. In Section 4.2 the computer aided analysis is described. The analysis is performed
by optimizing a linear programming model of the case. Finally, the influence of the
stochastics of the flow line is considered in Section 4.3.

4.1 Manual analysis

To provide a first impression of the feasibility of the control problem of the Intel case,
the problem is analyzed manually. The manual analysis consists of two parts. Firstly,
the capacity of the flow line elements is analyzed and secondly, an educated schedule
is constructed manually. For the analysis of the capacity, the required and the avail-
able capacity of the flow line elements are calculated. Appendix H shows that the
required capacity is calculated for the exact number of products that needs to be pro-
cessed, accounting for wasted products in the implantation workstation. The buffers
are assumed to have sufficient capacities when improved control is implemented. The
required capacity of the machines, the transporter and the personnel is less than their
available capacity. Therefore, the available capacity of all elements is sufficient for the
control problem. However, only one personnel availability issue has been combined with
the machine availability issues, because it is the only personnel issue, that influences
machine availability for certain. The lithography machine will have at least three idle
periods of 5 min per shift, because operator 2 has three off time periods per shift, that
are 5 min longer than the maximum processing time on the machine. An example of an
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availability issue that has not been included in the availability calculations is, that op-
erators can not serve more than one machine at the same time. Therefore, in a feasible
schedule the machines will have idle time that is not included in the calculations.

In the second part of the manual analysis all availability issues have been combined
and an educated schedule is constructed manually. Constructing a schedule of one
week is very time consuming. Therefore, instead of scheduling 84 products in one
week, 6 products are scheduled in one shift. In this schedule the stochastics of the
flow line are neglected, but unscheduled maintenance could be included in the model
as scheduled maintenance. The maintenance time would be the mean repair time.
Because only one shift is scheduled, the maintenance time would have to be scaled.
The scaled maintenance represents the unscheduled maintenance behavior poorly and
is therefore not included in the schedule. Because no products are wasted by the ion
implantation machines, some surplus production is scheduled. The correct number of
products that have to be produced per shift has been determined in Appendix H. The
surplus production equals 2.6% of the correct production. The surplus production will
not be taken into account during this analysis. The production will be scheduled cyclicly,
which means that the schedule returns at the end to its initial state. It can therefore
be repeated without adjustments. If the schedule of one shift is repeated 14 times, a
schedule of one week is constructed. Therefore, the analysis of a schedule of one shift is
indeed sufficient for the analysis of the control problem. To simplify the construction of
the schedule, some assumptions are made. Firstly, the capacity analysis of Appendix H
shows, that the capacity of the product transporter is sufficient for this flow line. Also,
the transporter operates independently of other resources in the line and the buffers in
the line handle the stochastics in the product transportation requests. Without loss of
generality it can be assumed, that the improved control that will be implemented in the
next chapter assures the incoming buffers contain enough products to feed the machine
at any time. Therefore, the product transportation can be neglected in the schedule
and products are always available. Secondly, the improved control is assumed to assure
that the incoming buffers of the flow line contain correct machine input. Therefore,
restrictions on machine input can be neglected in the schedule. The assumptions result
in a schedule of the loading, the processing and the unloading of six low and six high
production steps per workstation. Furthermore, the setup of the lithography machine is
included in the schedule. Appendix H shows that the average setup time equals 24 min
per shift. The setup is scheduled as two individual setups of 12 min upon production
step change. Finally, the scheduled maintenance of the machines and the personnel
off time are included in the schedule. All jobs are scheduled on the machine bars and
the personnel bars of a Gantt chart. During scheduling, the objective was to construct
a cyclic schedule which fits in a shift of 720 min. Figure 4.1 shows the legend of the
manually constructed schedule and Figure 4.2 shows the schedule.

Figure 4.2 shows all processes have little idle time, except the ion implantation
machines and the technician. This results from neglecting machine break down in the
schedule. The length of the cyclic schedule equals 700 min and fits in a shift. Therefore,
the control problem without machine break down is feasible. The lithography machine
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Figure 4.2: Manually constructed schedule

is fully utilized in this schedule and is the bottleneck of the flow line. Therefore, the
length of the schedule is minimal. As was mentioned in the first paragraph of this
section, the lithography machine has three idle periods of 5 min per shift, because
operator 1 has three off times that are 5 min longer than the maximum processing time
on the machine. Finally, the product transportation and the buffer levels are analyzed
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in Appendix I to confirm, that transporter and buffer capacities are indeed sufficient
for this schedule. An example transportation scenario is used for this analysis. The
transporter and buffer capacities are indeed sufficient for the schedule of Figure 4.2.

4.2 Computer aided analysis

In the previous section it has been determined by manual analysis that the control
problem without machine break down is feasible. Now, it will not be as easy to determine
the feasibility of the control problem with deterministic (planned) machine failure by
constructing a schedule manually. Also, multiple shifts have to be scheduled, to include
the break down behavior correctly. Therefore, a linear programming model of the flow
line, that is ready for optimization, is designed in this section. The model will provide
a lower bound on the length of the schedule of one weeks production. The model has
to be linear, because the size of the Intel case results in a model that is too large, even
with simplifications, for other solving techniques than linear ones.

In the linear model the production of 84 products per week is modelled and machine
break down is included in the model. But no products are wasted when a break down
occurs. So, like in the second part of the manual analysis, some surplus production
is scheduled. Section 4.1 shows this surplus production equals 2.6% of the correct
production. Again, the surplus production is not taken into account during the analysis.

To reduce the number of variables and constraints in the model, while representing
the crucial parts of the case, the following modelling assumptions are made. Firstly, in
the previous section it has been determined, that the capacity of the product transporter
is sufficient for the flow line. Therefore, the transportation of products is not considered
in the model. The previous section also showed, that the buffer capacities will be
sufficient when the control of the flow line is improved and therefore the buffers do not
have to be included in the model. It was assumed in the previous section, that improved
control assures that the incoming buffers of the flow line contain correct machine input
on time. Therefore, the processing steps can be scheduled without release dates and
precedence relations for the processing sequence of the products. Only the total number
of jobs scheduled for each production step needs to be correct. Without modelling the
transporter and the precedence relations, the modelling of the start and the exit area
is not necessary. Because the correct machine input is handled by improved control,
machine input restriction do not have to be modelled. Furthermore, it is assumed that
personnel transportation can be neglected, because it is assumed that improved control
assures the bottleneck machine receives personnel on time. The other machines are
less crucial to the length of the schedule and the transportation times are substantially
smaller than the times of the tasks of personnel and the off times. Finally, all scheduled
maintenance can be combined with an unscheduled maintenance without violating the
scheduled maintenance window restrictions. Therefore, the window restrictions are
neglected initially. If they are violated in the resulting schedule, they can be added to
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the model.

With the presented assumptions two models can be used to represent the case.
The first model [5] uses variables to assign jobs to positions on a machine and to
assign start times to the positions of the machine. For example, job 7 is scheduled at
position 10 of a machine and position 10 starts after 200 min. The second model [6]
is a time-indexed model. It uses variables to assign start times of jobs to discrete
time intervals on a machine. For example, job 7 starts on a machine after 200 min.
Both models are focussed on the scheduling of jobs on machines and require additional
constraints to prevent personnel from performing more than one job at a time. Because
all personnel operate on multiple machines, it is necessary to know which job is processed
at what time. In the first model the processing time of a job can only be coupled to
the identification of the job via the processing position on a machine. The coupling
therefore requires many extra variables and constraints. The time-indexed model is
better suited to represent the case, because the coupling is performed directly by the
variables. Therefore, a time-indexed model is designed.

Now the type of the model has been determined, an attempt is made to further
reduce the number of variables and constraints by simplification techniques, while still
representing the crucial parts of the case. The reduction is necessary to allow solving
of the model. Firstly, in the modelling assumptions it was explained that product and
personnel transportation can be neglected. All jobs except the setup jobs that have
been determined in the previous section, have a duration that are a multiple of five.
The setup jobs are given in this section a duration of 10 min, so a time discretization
step can be taken of 5 min instead of 1 min. Secondly, instead of scheduling three jobs
per machine run, one for loading, one for processing and one for unloading, only two
jobs are scheduled. Because the loading of a product is always directly followed by the
processing of the product, the loading and processing can be combined into one job.
This combined job has a duration for the operators of only the loading time and for
the machines of the total of the loading time and the processing time. The unloading
job has a duration of the unloading time for both the operators and the machines.
Next, instead of scheduling individual jobs for each production step of each product
one time, general jobs can be scheduled. Each general job represents a production step
in the flow line and is scheduled once for every product that flows through the line.
Furthermore, instead of modelling five individual machines, the identical machines of
the line are modelled as one machine with doubled capacity. As a consequence, every
job has one machine on which it can be scheduled. Next, the operators are modelled
without employment area restrictions. This simplification prevents, as calculated in
Appendix H, per shift 15 min idle time of the lithography machine. Because if one
operator is having off time, the other one remains available to serve the machine. This
is accounted for in the length of the schedule. The advantages of this simplification
for the diffusion machines are negligible, because one operator spends almost all of
his time serving at the lithography workstation. For the implantation workstation
the simplification provides no advantages. Because both operators are now identical
they can be modelled as one operator with doubled capacity, similar to the identical
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machines. As a consequence, all jobs are loaded and unloaded by one operator. Finally,
the setup time of the lithography machine is included in the appropriate loading jobs
by prolonging them.

After the reductions of the model have been discussed, the principle modelling el-
ements are presented. Two types of variables are used in the model. The first type
represents the main variables of the model xjk. The value of the variables equals 1 if
job j is started at time k and 0 otherwise. The second type is the minimization variable
z. It equals the maximum completion time of all jobs. Next to variables, the model
also contains constraints. The first type of constraints, used to assure that all general
jobs j with process time pj are processed for the required amount of times bj , before
the maximal length of the schedule T has passed, is

T−pj
∑

k=0

xjk = bj ∀j.

The second type of constraints, used to prevent machines and personnel from scheduling
more jobs at a time than their capacity bS allows, is

∑

j∈S

k
∑

l=k+1−pj

xjl ≤ bS ∀k, S. (4.1)

From all the jobs of the subset of jobs S that are processed on the same machine or
handled by the same personnel, there can only be bS jobs in process or being handled
at time k. The duration of the job pj can be different for a machine and an operator, as
described in the previous paragraph. The third type of constraints, used to introduce
a relaxed precedence relation for the processing and unloading of the products in the
model, is

T−pj
∑

k=0

(k + pj) · xjk ≤

T−pj+1
∑

k=0

k · xj+1,k ∀j.

The precedence relation is relaxed, because the relation is applied to general jobs instead
of individual jobs. So, on average the processing jobs j are completed earlier than the
unloading jobs j + 1 are started. The fourth type of constraints is

T−pj+1
∑

k=0

k · xj+1,k ≤

T−pj
∑

k=0

(k + pj) · xjk + ∆ ∀j.

It resembles the third type and prevents that first all processing jobs are scheduled
and next all unloading jobs. The constant ∆ allows a small time interval between the
completion of the processing jobs j and the start of the unloading jobs j+1, because the
operator will not always be directly available for unloading. The fifth type of constraints,
used to equate the variable z to the maximum completion time of all jobs, is

z ≥ (k + pj) · xjk ∀j, k.
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Now, z represents the length of the schedule and will be minimized. The final type
of constraints, used to restrict the main variables xjk to integer values and to present
them a lower and an upper boundary, is

xjk ∈ {0, 1} ∀j, k.

The complete integer linear programming model that is used for optimization is shown
in Appendix J.

After the design of the mathematical model, attempts are made to solve the model
with branch and bound techniques and with the program LP-solve. The attempts have
failed, because the number of variables (40,000) and constraints (50,000) and also the
number of variables in the constraints (700,000) is too great. Next, the model has
been reduced to schedule one shift instead of one week. The time to repair the ion
implantation machines is therefore scaled. In this way, the break down behavior is not
modelled well, as described in the previous section. After the reduction remain 3,000
variables, 4,000 constraints and 50,000 variables in the constraints. The resulting model
is still too complex to solve integer with the available tools.

A new model has been designed to further reduce the number of variables and
constraints. In this model only one job is scheduled per machine run. The constraints
for the operator (4.1) are now replaced by

∑

j∈S





k+1−qj
∑

l=k+1−pj

xjl +

k
∑

l=k+1−rj

xjl



 ≤ 2 ∀k. (4.2)

The set of jobs S in (4.2) includes all jobs performed by the operator. The run time of
job j, thus the total loading, processing and unloading time, is represented by pj and
qj is the total processing and unloading time of the job. Finally, the unloading time of
the job is represented by rj . The operator is forced to perform unloading directly after
processing and it will therefore be more difficult to schedule the jobs in the given time
period than with the previous set of constraints. The lithography machine could present
a problem, because in the Intel case the machine is served by only one operator and the
operator off time duration is greater than the maximal processing time. Therefore, the
operator can not take off time during processing on the machine. This forces much idle
time on the lithography machine. The identical operators that are modelled according
to the model reductions of this section are the solution to the problem. One operator
can take off time, while the other operator unloads the lithography machine on time.
Now, the number of variables is reduced to 2,000 and the number of variables in the
constraints becomes 35,000. The number of constraints remains equal. The problem is
still too complex to solve integer and therefore, this model is not used anymore. The
first model of this section is used for the remainder of the solving process, so again one
week is scheduled. The model is relaxed, thus the integer constraints are neglected, to
allow optimization. The minimization variable z is not sufficient anymore to determine
the minimal length of the schedule, because the main variables do not necessarily have
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integer values. The constraints for z are therefore neglected and the minimization
is performed by hand. But first, the model is validated by comparing the number of
scheduled general jobs, the scheduled machine and personnel capacity and the difference
between the loading and unloading time of the general jobs to the required values. The
validation shows that the model behaves correctly.

Now, the optimization will be described. The mathematical model is build in Matlab

and is solved using the linprog function from the optimization toolbox. The object
function is not provided in the function call and therefore, any feasible schedule is a
solution to model. By reducing the maximal finish time of any job until the problem
becomes infeasible, the minimal length of the schedule is found. The minimal length
equals 0.94 weeks. The lithography machine is fully utilized in this schedule and is
therefore the bottleneck of the flow line. The minimal length of the schedule should
be prolonged with 15 min per shift, because in any feasible schedule the lithography
machine has 15 min idle time per shift, while the serving operator has off time. Another
4 min are added to the length of the schedule to account for the rounding of the setup
time, as explained in Section 4.2. The resulting length of the schedule equals 0.97 weeks.
In the resulting schedule the lithography machine is again the bottleneck of the flow
line and is fully utilized. The length of the schedule is therefore indeed minimal. The
schedule is relaxed and therefore not feasible, but all machines except the lithography
machine have some surplus capacity. It is assumed that the surplus capacity is sufficient
to allow an integer solution. Because the model is solved without the integer constraints,
the scheduled maintenance jobs are spread all over the scheduled maintenance variables.
Therefore, all maintenance window restrictions improve the model negligibly and remain
excluded from the model as was done initially in this section. According to this analysis,
the control problem with deterministic (planned) machine break down is assumed to be
feasible.

4.3 Stochastics analysis

In the previous section it has been determined, that the control problem with deter-
ministic (planned) machine break down is assumed to be feasible. Now, the stochastics
of the flow line will be added to the analysis. So, the ion implantation machines break
down with stochastically distributed repair time and time between failure. The stochas-
tics do not influence the required capacity of the flow line, as calculated in Appendix H,
but do influence the available capacity of the machines. An ion implantation machine
breaks down without warning and therefore, a choice needs to be made upon break
down to directly repair the broken down machine or to firstly perform scheduled main-
tenance on other machines. If repair starts directly, the scheduled maintenance of the
machines can not always be performed on time and therefore, all machines will have less
available capacity on average, even the bottleneck machine. It is therefore preferred,
that scheduled maintenance is performed before the repair starts. Now the broken down
machine loses extra available capacity, but the other machine will loose less capacity.
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The improved control, that will be implemented in the next chapter, determines which
machines require scheduled maintenance before the repair starts. The control can be
designed to be account for the buffer levels. The improved control can furthermore
be designed to perform all scheduled maintenance as early as possible in the shift, so
the available capacity of the machines is least effected by the unscheduled down. The
diffusion machines in general are not effected much by the unscheduled down, because
they only receive scheduled maintenance once per day. If the ion implantation ma-
chines have enough spare capacity, it can be concluded, that the control problem with
stochastic machine break down is feasible. An educated guess is made of the extra loss
in availability of the broken down machine. The guess is based on the scheduled main-
tenance time of the lithography and the ion implantation machines and accounts for
the chance that scheduled maintenance has already been performed during the shift in
which a machine breaks down. The loss in availability equals 120 min per break down.
A prolonged break down is modelled in the linear programming model of Appendix J.
The resulting minimal length of the schedule of one weeks production equals again 0.97
weeks. It will be less easy to change the relaxed schedule in a feasible one than it was
in the previous section, but the schedule can be prolonged by 0.03 weeks and also the
2.6% surplus production that is scheduled can be omitted in the actual schedule. The
control problem of the case is assumed to be feasible, according to this analysis. To
analyze the sensitivity of the outcome of the analysis for the guessed loss in availability
of the ion implantation machines, the maximal allowed loss in availability upon break
down is determined. The maximal loss equals 225 min and therefore, the outcome of
the analysis is insensitive to the made guess. Now the control of the flow line of the
case will be improved in the next chapter.
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Chapter 5

Improved control of the flow line

In the previous chapter it has been determined, that the control problem of the Intel
case is likely to be feasible. It will however be difficult to implement control in the flow
line that results in the required throughput, if such control exists. Currently in the
χ model the most simple control, which is push control, is implemented. Furthermore,
the products are released into the flow line without an educated control of the product
type. Each type has its own constant inter departure time. Next, the transporter,
buffers and personnel operate FIFO (First In First Out). This should be interpreted for
the diffusion buffer, that it passes the first available batch. Furthermore, personnel take
off time as soon as they are allowed to. Finally, unscheduled down events are treated
like ordinary loading or unloading events without specific control. These were also the
control topics that need to be improved according to Section 3.6. In Section 5.1 the
design of the improved control is described. Next, in Section 5.2 the designed control
is implemented and finally the simulation results of the flow line with improved control
are analyzed in Section 5.3.

5.1 Design of improved control

In this section the design of improved control of the flow line is described. The control
initially remains push control. The control problem becomes deterministic, when ma-
chine break down is neglected. The improved control for the deterministic flow line can
be designed as a repetitive schedule. For example, the manually constructed schedule
from Section 4.1 can be implemented. The required throughput will be met with this
control and the buffer capacity constraints will not be violated. When machine break
down is not neglected, the stochastics of the flow line prevent the implementation of
a repetitive schedule. Instead heuristic sequencing rules can be applied. The rules are
derived from analyzing the behavior of the flow line and they are mostly directed to
aiding the bottleneck of the flow line, which is the lithography machine. This machine
should be utilized maximally. Next, the ion implantation machines should be utilized as
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much as possible, because they loose the most available capacity due to the stochastics
of the flow line. Finally, the diffusion machines are served with least priority, because
they are least affected by the stochastics of the line and have more surplus capacity
than the lithography machine.

The control of the flow line is improved in small steps to acquire elegant control and
to make it easier to validate the model. The first control topic to be improved, is the
type of the products that are released into the flow line. First all commercial products
of type A are released and next all products of type B. The test products are released
in between, to monitor the quality of the flow line correctly. Due to the scheduled down
of the ion implantation machines, the final batch of the high production step of each
series of commercial products can perhaps not be completed by the diffusion buffer.
Therefore, the incomplete batch will have to wait in the buffer until the new series of
products has been processed and the old series is started again. So, a few products will
have very long flow times.

The next control topic is the policy of the incoming buffers. The buffers try to
present the machines series of six products of equal production step. In this way, cyclic
behavior is implemented into the flow line. Furthermore, the buffer of the lithography
workstation processes test products last in a series of equal step, because type and step
setup can then be combined. Now, the lithography machine has least setup time.

The third control topic is the control of personnel. Operator 1 is the most important
operator, because he serves the lithography machine, which is the bottleneck of the
flow line. Therefore, his control is determined firstly. His primary task is to serve the
lithography machine. But when the machine processes a product for the low production
step, operator 1 has time to serve the ion implantation machines or to take off time.
He serves the machines when he can start serving within the next 8 min or when he
has no off time left and otherwise he takes off time. When he starts serving within
the next 8 min, he has time to perform three load or unload tasks before he has to
return to the lithography workstation. He has to return on time to prevent extra idle
time of the lithography machine. When scheduled maintenance is performed on the
lithography machine, operator 1 can also serve at the implantation workstation. Again
the operator returns on time to prevent idle time of the lithography machine. Next, the
control of operator 0 is designed. He serves mainly the implantation workstation when
operator 1 does not serve the workstation. Furthermore, operator 0 serves the diffusion
machines when he can not start serving an ion implantation machine directly or operator
1 is present at the implantation workstation. Operator 0 takes off time when he can
not serve an ion implantation machine or a diffusion machine within the next 20 min.
Both operators prioritize loading tasks above unloading tasks inside a workstation to
increase the throughput. Finally, the control of the technician is designed. He performs
scheduled maintenance on the diffusion machines and the lithography machine as soon
as possible and on the ion implantation machines during a high processing step series
on the lithography machine. The technician takes off time when he can not perform
maintenance during the next 30 min.
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Figure 5.1: Manually constructed schedule using improved control strategy

After the design of the third topic, a schedule similar to the schedule of Section 4.1
is constructed manually to analyze the behavior of the control. Machine break down
is neglected in the schedule and the production for two shifts is scheduled. Figure 4.1
shows the legend of the manually constructed schedule and Figure 5.1 shows the sched-
ule. The lithography machine is not the bottleneck of the flow line anymore and is
finished producing after 1399 min. Furthermore, The ion implantation machines and
the technician show much idle time, because machine break down is neglected in the
schedule. The schedule also shows, that diffusion machine 1 is the bottleneck of the
flow line and is finished after 1518 min, which is also the cyclic length of the schedule.
Therefore, the schedule does not fit in two shifts. However, due to the stochastics of the
flow line, the personnel will make different operating decisions in each shift. Therefore,
the idle time of the machines will vary per shift. Furthermore, like in Section 4.2, 2.6%
surplus production has been is scheduled. So, the required production without machine
break down can perhaps be produced with the designed control.

The fourth control topic is the control after an unscheduled down event occurs.
When an ion implantation machine breaks down, it is not repaired directly, because the
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other machines of the flow line could require scheduled maintenance before the repair
is finished. Scheduled maintenance is performed on the diffusion machines and the ion
implantation machine that did not break down, if the machines require maintenance
during the next six hours after the repair starts. The machines will not be loaded until
the scheduled maintenance has been performed. The maintenance is performed on the
lithography machine if the machine requires maintenance during the next eight hours
after the repair starts. This machine will be loaded for a new run if the technician does
not perform the maintenance directly. Finally, when no scheduled maintenance has to be
performed anymore, unscheduled maintenance is performed. The lithography machine
and the diffusion machines receive scheduled maintenance as soon as possible, so it is
likely they do not require scheduled maintenance before the unscheduled maintenance
is performed. All times in the design of improved control can be adjusted if simulation
results encourage adjustment. All times except the times involving operator 1 are
determined by an educated guess.

The final control topic is the control of the work in process (w). When the flow
line is controlled by push control, w can become very large and the line can become
congested. When the buffer capacity constraints are violated to reach the required
throughput with push control, pull or conwip (constant work in process) control could
be the solution to the problem. Pull control should result, with equal throughput, in a
smaller w, because the products are pulled out of the flow line. A sort of pull control
for this re-entrant flow line could be designed by prioritizing the high production step.
With conwip control, the work in process is kept constant. So, every time a product
leaves the flow line, a new product is released into the line.

5.2 Implementation of improved control

In this section the improved control is implemented in the χ model. The implemented
control topics of the previous section are shown in the χ model that is presented in
Appendix K. It is reminded, that the parameter that adjusts the time between failure
of the ion implantation machines needs to be adjusted every time the control or the input
of the flow line is changed, as was mentioned in Section 3.6. The first improved control
topic is the type of the products that are released into the flow line. The generator
of the flow line without improved control is adjusted. The three signal generators
are replaced by two signal generators, one for test products and one for commercial
products. A counter in the collector process determines the type of commercial product
that is released in the flow line whenever the signal generator for commercial products
signals the collector.

The second control topic is the policy of the incoming buffers. The diffusion and
ion implantation buffers record the production step of the current machine input series
and the number of products in the current series. Furthermore, the input generating
functions are adjusted to return machine input of the current production step series
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if possible, until the maximal length of the series has been reached. Then, the other
production step series is started. The lithography buffer records next to the current
production step also the current product type. The buffer determines in an input
generating function the most preferable input for the lithography machine, so the setup
time is minimized, while the production is cyclic.

The third control topic is the control of personnel. To make the improved control
easier to analyze, machine break down is neglected. Due to lack of time in the project,
the control topic has not been implemented exactly as described in the previous section.
Therefore, the implemented control will be described firstly. Operator 1 serves mainly
the lithography machine. When the lithography machine performs a low production
step, operator 1 may take off time. He serves at the implantation workstation, if there
are no requests placed for service at the lithography workstation. Operator 0 serves
mainly at the diffusion workstation, because the implantation workstation has more
spare capacity than the diffusion workstation due to the neglecting of machine break
down. Operator 0 serves the implantation workstation, when there are no requests
placed for service at the diffusion workstation. He may take off time when both diffusion
machines are busy for the next 20 min and there are no requests placed for service at the
implantation workstation. The technician performs scheduled maintenance according
to the previous section. He may take off time when he can not perform maintenance
on the diffusion machines and the lithography machine during the next 30 min. In
the implementation, the personnel dispatcher process is firstly adjusted to record the
processing step of all machines and the time a machine finishes processing or scheduled
maintenance. The dispatcher also records for all machines the earliest time the current
machine run will be finished. With this information the dispatching function can be
adjusted to prioritize the requests for personnel and the off time of personnel. The
dispatching function is also adjusted to prioritize loading tasks above unloading tasks.
Finally, the initiation conditions for scheduled maintenance are adjusted to represent
the designed control of the previous section. Attempts to implement control as it was
designed in the previous section, have shown that a lot of exception handling is needed
to get good results. The attempts have also shown, that it is important to implement
simple control, because it is easy to understand and to adjust if simulation results
present reason for adjustment.

The fourth control topic is the control after an unscheduled down event occurs. This
control has not been implemented yet, again due to lack of time in the project. The final
model of the flow line with improved push control and without machine break down is
presented in Appendix K.

Finally, pull and conwip control are implemented to analyze their effect on the
maximal throughput and the buffer levels of the flow line. The designed pull control of
the previous section is implemented by adjusting the machine input selection functions
of the incoming buffers. Now, the buffers always try to send a product with the high
production step to machines. Next, the designed conwip control is implemented. Every
time a product leaves the flow line, a new product is released into the line. This control
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requires three communication channels between the collector process of the generator,
which releases the products into the line, and the exit process and ion implantation
machine processes, by which a product leaves the flow line. The signal generators
are now superfluous and the product type is determined by the collector process in a
function. This concludes the implementation of improved control.

5.3 Analysis of improved control

The simulation results of the flow line with improved control are analyzed in this section.
When the flow line is controlled by push control and the flow line elements operate FIFO
(First In First Out), the maximal throughput (δmax) equals 57.5 products per week and
the mean flow time (ϕ) equals 4580 min, as described in Section 3.6. The accompanying
work in process (w) equals 26.1 products. After each implementation of control, the
model is validated. The validation is performed according to the validation in Section 3.6
and the flow line behaves correctly after each implementation of improved control.

After implementation of the first control topic, the type of the products that are re-
leased into the flow line, simulations are run to evaluate the control. Like in Section 3.6,
the steady state behavior of the flow line is analyzed. The first one hundred weeks of
production are not used for the analysis, so the influence of the transient state of the flow
line can be neglected. Without applying the buffer capacity constraints, δmax equals
58.1 products per week. Only a small increase in δmax results from this improvement of
control, because the input for the bottleneck of the flow line, the lithography machine,
switches much between low and high production step and therefore, the setup time for
the lithography machine is still great. The average ϕ has decreased, because the high
production step batches of the diffusion workstation are completed earlier. ϕ equals
4510 min. w equals 26.0 products.

Improvement of the second control topic, the policy of the incoming buffers, increases
δmax, because it decreases the setup time of the bottleneck machine much. Without
applying the buffer capacity constraints, δmax equals 60.4 products per week. ϕ de-
creases to 4340 min, because the setup time has decreased. w remains fairly constant
and equals 26.2 products.

Improvement of the third control topic, the control of the personnel of the flow
line, is done in two steps. Firstly, the designed control of the off time of operator 1 is
implemented. Furthermore, the production sequence of the products is adjusted, so the
products only enter the lithography workstation twice and then go to the exit. Now, it
is analyzed if the off time control is sufficiently improved to allow the bottleneck of the
flow line, the lithography machine to process the required input. Simulations show that
the control is sufficient for the lithography machine to process all the input. Figure 5.2
shows a Gantt chart of the lithography machine and operator 1. Figure C.1 shows the
legend of chart.
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Figure 5.2: Gantt chart of the lithography machine and operator 1 during the last two shifts of one
hundred weeks of production

Figure 5.2 shows that the lithography machine changes its production step much.
This occurs because the machine has only few products in its incoming buffer. Further-
more, the lithography machine has no idle time. However, in the complete model some
products will be wasted and when the lithography buffer contains more products, it will
change the production step of the machine input less often. Figure 5.2 also shows that
operator 1 has four periods per shift in which he can serve at the implantation worksta-
tion. Three periods coincide with the processing of the products of low production step
and one period coincides with the scheduled maintenance of the lithography machine.

The second step in the improvement of the control of personnel, involves the entire
control as it was described in the previous section. Now, the break down behavior
of the ion implantation machines is neglected. δmax equals 80.4 products per week.
ϕ and w respectively equal 3204 min and 25.6 products. Simulations show that the
buffer capacity constraints of the lithography and the implantation buffer are violated
at different times. Furthermore, the number of off times is analyzed and all off time is
taken. Not necessary three periods of off time are taken per shift. When 81 products
are released per week the contents of the lithography and the implantation buffers keeps
increasing. The buffers contain approximately an equal amount of products. Therefore,
both the lithography and the implantation workstation are the bottleneck of the flow
line. Figure 5.3 shows a Gantt chart of the activity of the machines, the personnel
and the transporter during the last four shifts of one hundred weeks of processing with
flow line input of 80.4 products per week. The legend of the chart is presented in
Figure C.1. The Gantt chart clearly shows, that the processes have little idle time,
except the ion implantation machines and the technician, because machine break down
is neglected. The flow line behaves well with the implemented control. It appears from
this chart, that the lithography machine is fully utilized, but other Gantt charts have
shown idle time of the machine. The chart also shows, that all scheduled maintenance
is performed on time. Finally, personnel take enough off time per shift, but the off time
is not necessarily evenly spread over the duration of the shift. All processes show idle
time in the Gantt charts and therefore, the throughput of the flow line can probably be
improved by implementing more suitable control in the flow line.

The previous paragraph showed, that the buffer capacity constraints are violated
when 80.4 products are released into the flow line per week and machine failure is
neglected. When machine failure is not neglected, the buffer capacity constraints will
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Figure 5.3: Gantt chart of the production of the last four shift of one hundred weeks of processing with
improved push control

be violated even more and push control will probably not be sufficient for the flow line.
Therefore, pull and conwip control, as described in the previous section, are analyzed.
The push control of the model of the previous paragraph is firstly replaced by pull control
for the re-entrant flow line. δmax equals 79.4 products per week, which is less than with
the push control. The input for lithography machine changes often of production step
with this control and therefore, the machine has a lot of setup time and has become
solely the bottleneck of the flow line. ϕ and w respectively equal 3258 min and 25.5
products. Therefore, for the flow line of the Intel case, this type of pull control is not
preferred above push control.

The push control is secondly replaced by conwip control. The control requires a w

value and then determines automatically when to release a product into the flow line. If
w equals 25 products, then δmax is reached and equals 79.4 products. The accompanying
ϕ equals 3160 min and is, due to the smaller w level, smaller than with improved push
or pull control. Simulations show that both the lithography and the implantation work-
station are the bottleneck of the flow line, as was the case with improved push control,
because the buffers contain on average a high amount of products. Both buffers contain
up to 14 products at different times and thus, the buffer capacities are insufficient for
this w level. δmax is a little smaller than with improved push control, probably because
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the behavior of the flow line is less cyclic due to the irregular release of products into
the flow line.

It can be concluded from this analysis, that for the flow line without machine break
down and with the currently implemented control, the maximal throughput is reached
by push control and not by pull or conwip control, when buffer capacity constraints
are neglected. With the current improved control, the required throughput can not
be reached, but not all designed control has yet been implemented. Therefore, the
required throughput can perhaps be met with the designed control. This concludes the
improvement of the control of the flow line.
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Chapter 6

Conclusions

The complexity of controlling a re-entrant flow line is illustrated well by the Intel Five-
Machine Six Step Mini-Fab case. It contains all difficulties that need to be dealt with
in practice and the target of the case is to reach a throughput of 84 products per week
despite the difficulties. The re-entrant flow line of the Intel case has been modelled in χ,
because χ is well suited for modelling discrete-event systems like the line. Techniques
for modelling elegantly in χ have been used to acquire an elegant model. For the
construction of the model, first a basic flow line has been considered, that contains
only a product generator, buffers, machines and an exit process. The generator uses
signal generators to conveniently determine what type of product to release into the
flow line. Next, to avoid non-determinism in a workstation in which a single buffer
serves multiple machines, a product request structure is modelled. When a machine
becomes idle it requests the buffer for input. Furthermore, the generation of machine
input is moved to functions to keep the buffer processes basic. In the next model,
machine input restrictions are added to the flow line in the functions that generate
the input and also product transportation is added. The transportation is modelled
by a basic transporter process that is dispatched by a transporter dispatcher. In the
third model two operators are added to load and unload the machines and to perform
setup on one of the machines. The operators have the same dispatching structure as
the transporter. However, the operators are not modelled as processes, but as operator
state information. The information is passed either to the flow line processes where the
operators are performing a task or to an off time process when the operators are having
off time. In the final model a technician is added to the flow line to perform scheduled
and unscheduled maintenance. The technician is modelled similarly to the operators.
The personnel dispatcher determines when scheduled maintenance is performed on the
machines. The machines request for the technician when they break down. The flow
line is controlled by push control and the flow line elements operate FIFO (First In
First Out).

After the model has been designed, it is validated. The model behaves as it was
designed to behave and represents the case correctly. After the validation of the model,
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simulations can be run. The simulation results show that the required throughput can
not be met with the current control of the flow line. The maximal throughput, ignoring
the buffer capacity constraints, equals 57.5 products per week. The bottleneck of the
flow line is the lithography machine. The simulations also show, that four important
control topics need improvement. Firstly, the priority of personnel should be directed at
assisting the bottleneck machine. Secondly, the personnel off time should be scheduled
when the personnel is least needed. thirdly, the setup time of the machine that requires
setup should be minimized by implementing an improved product release strategy in
the generator and by improving the machine input selection procedure of the buffers.
Finally, unscheduled down events should be handled by improved control.

Before the control of the flow line is improved in the model, the control problem of
the Intel case has been analyzed to determine if the required throughput can be met.
Initially the stochastics of the flow line is neglected in this analysis. Firstly, the case is
analyzed manually. Capacity analysis shows all flow line elements have sufficient capac-
ity. However, most personnel availability issues were not included in that analysis and
therefore, in a realizable schedule the machines will have idle time that is not accounted
for in the analysis. To include these issues, an educated schedule of the production for
one shift without machine break down is constructed manually. The schedule fits in
one shift, so the control problem without break down is feasible. Next, deterministic
machine break down is added to the schedule. It will not be easy to manually con-
struct a schedule that fits in the given time period. Also, to include the break down
behavior correctly in the model, multiple shifts have to be scheduled. Therefore, an
integer linear programming model of the case is designed. Because the model is too
complex to be solved with the available optimization tools, even after simplification,
the model is relaxed. That is, the integer constraints are neglected. The model can now
be solved. The production for one week is scheduled in 0.97 weeks. The lithography
machine is again the bottleneck of the flow line. All machines except the bottleneck
machine have some surplus capacity. It is assumed the surplus capacity is sufficient to
allow an integer solution. Therefore, the control problem with deterministic (planned)
machine break down is assumed to be feasible. Next, the influence of stochastics on
the control problem is analyzed. The stochastics is present in the break down behavior
of the machines. An educated guess of the required extra capacity of the machines
during a break down is made. This extra capacity is modelled and the model is solved
again. The production for one week is still scheduled in 0.97 weeks and the lithography
machine is the bottleneck of the flow line. Again the resulting schedule is not feasible
due to the relaxation of the model. It will now be harder to make the schedule feasible,
but all machines except the bottleneck machine still have some surplus capacity and the
schedule can be prolonged by 0.03 weeks. Therefore, the control problem of the Intel
case is assumed to be feasible.

Finally, the control of the flow line is improved. When machine break down is
neglected, the control problem becomes deterministic and a repetitive schedule can
be implemented. The required throughput can then be reached, as described in the
previous paragraph. When machine break down is not neglected, a repetitive schedule
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can not be used to control the flow line, due to stochastics. Instead, heuristic control is
implemented in small steps to acquire elegant control. The control remains as simple
as possible, so it can be easily understood and adjusted. Firstly, the product generator
releases commercial products in series of equal type to minimize the setup time of
the machine that requires setup. The generator releases the test products in between.
Furthermore, the policy of the buffers is improved. They now present the machines with
series of low and high production step products to acquire cyclic behavior and again
to minimize the setup time. Next, the operating and off time priorities of personnel
are improved. Personnel priority is directed mainly at the bottleneck machine of the
flow line, the lithography machine, and off time is taken when personnel is least needed.
Firstly, only the lithography machine is included in the χ model to determined whether
the bottleneck machine has enough capacity to meet the required throughput with the
designed control. From simulations results that the capacity is sufficient. Secondly, all
machines are included in the model. To make the control easier to analyze, machine
break down is neglected. Now, the lithography machine will loose some throughput,
because the serving operator also assists at the implantation workstation. The maximal
throughput equals 80.4 products per week, while the buffer capacity constraints are
neglected. The lithography and the implantation workstation have equal throughput
and both are the bottleneck of the flow line. Finally, the control should be refined and
control for machine break down should be implemented. Due to lack of time in the
project, this has not been done yet. Next to push control, also a sort of pull and conwip
control have been implemented. Both pull and conwip control performed worse than
push control for the flow line with current improved control.
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Chapter 7

Recommendations

Five recommendations result from this research project. Firstly, in Chapter 4 an integer
linear programming model of the Intel case has been designed to determine the feasibility
of the control problem of the case. However, the model could not be solved and therefore
the relaxed model was solved. The integer model could be adjusted, so the number of
variables and constraints decreases and the model can be solved with the available
optimization tools. Another option is to use other optimization tools. By solving the
integer linear programming model instead of the relaxed model, the feasibility of the
control problem of the Intel case is determined with more accuracy. It will also give a
more accurate lower bound on the length of the schedule.

Secondly, due to lack of time in the project, the control has not been improved
enough to reach the required throughput. The improvement should therefore be re-
sumed. Initially, machine break down remains neglected. The designed control of Sec-
tion 5.1 that has not been implemented yet, can be implemented and validated. Next,
the maximal throughput is determined. If the required throughput can not be met,
the control should be improved by analyzing the flow line behavior until the required
throughput can be met. Then, the designed control after an unscheduled down event
occurs can be implemented and machine break down is not neglected in the model.
Again, the control should be validated and the maximal throughput should be deter-
mined. If the required throughput can not be met, the control should be improved until
the throughput is met.

Thirdly, during implementation of the improved control, a problem occurred. The
personnel can not be send in advance to the workstation it will operate in next. There-
fore, all machines, including the lithography machine will have extra idle time, in which
the personnel is transported. If the required throughput can not be met with the imple-
mentation of improved control, the model can be adjusted. The personnel can be sent
to the personnel transporter and then back to the personnel dispatcher, from where it
is dispatched to the destination process.

Fourthly, if the case is a model of an existing factory, then the control of the χ model
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could be implemented in the real flow line. The flow line can then be monitored and
the change in throughput of the line, hopefully an increase of throughput, can then
be determined. Also, the control can be analyzed in practice. If the control is not
satisfactory, it can be adjusted firstly in the model. The model can then be used to
predict the effect of change in control on the throughput, flow time and work in process
of the flow line. If the effect is desirable it can be implemented in the real flow line.

Finally, the χ model of the flow line contains all difficulties that need to be dealt
with in practice and could therefore be used as test case for other research projects. For
example, it could be used for research on control of re-entrant flow lines or for testing
of scheduling algorithms. Although the model is fairly complex, it can also be used for
educational projects.
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Appendix A

χ model

In this appendix the χ model with FIFO (First In First Out) control is presented in
four sections. In the first section the general elements of the model are described. In
the next two sections the framework of the model is presented. It consists of two levels.
First the upper level is described followed by the lower level. The χ model is shown in
the final section.

General elements

The general elements of the χ model are put at the top and at the bottom of the model.
The top contains the elements that are available throughout the model. These elements
are divided into three sections. The first section contains the libraries that need to be
imported. After importing a library, the functions that are defined in the library can be
used in the model. In the second section the model parameters are defined as constants.
They can now be used throughout the model and are easily adjusted, because they are
gathered at the top of the model. The final section contains the aliased variable types.
The aliases are used in the model to increase the readability of the model. One of the
aliases is the lot. This term is used to represent a product as it flows through the line.
The bottom of the model contains the initiation command, which initiates the entire
flow line. This concludes the general elements of the model.

Upper level

After the general elements have been described, the framework of the χ model is pre-
sented. This section presents the upper level of the framework and the next section the
lower level. The upper level contains the entire flow line and is represented by cluster
Intel. The cluster consists of five types of clusters and two types of processes. The
first cluster is the generator. It signals a lot transporter when a lot is released into the
flow line and passes the lot when the lot transporter has arrived. The second cluster
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is the lot transporter. It receives requests for lot transportation from the generator
and the workstation buffers. Furthermore, it receives lots from the generator and the
buffers, when the transporter has arrived. Finally, it sends the lots to the buffers and
the exit, depending on the production step of the lot. The multi-machine workstation
buffer is the third cluster. Firstly, it receives lots from the lot transporter and receives
requests for input from the workstations machines. Next, when the buffer has both a
request and correct machine input, it sends a request for an operator to the personnel
cluster. When the operator has been received, he is sent together with the input to the
requesting machine. After a machine has been unloaded, it sends its output together
with the operator that performed the unloading to the buffer. Next, the buffer returns
the operator to the personnel cluster and requests for lot transportation. Finally, when
the transporter has arrived, it receives a lot from the buffer. The fourth cluster is the
single-machine workstation buffer. It operates similar to the multi-machine workstation
buffer, but it serves only one machine. The final cluster is the personnel cluster. It re-
ceives requests for personnel from the buffers and the machines. Furthermore, personnel
is received from and dispatched to them by the personnel cluster.

The first process of the upper level is the machine. It requests the workstation
buffer for input and receives the input together with an operator. If the machine is
the lithography machine, then the setup is applied. Next, the loading time of the
machine is applied. After the loading, the operator is returned to the personnel cluster
and the machine input is processed. If the machine is an ion implantation machine,
then the unscheduled down timer is started. If a break down occurs during processing,
then a technician is requested from the personnel cluster. After the technician has been
received, unscheduled maintenance is applied and he is returned to the personnel cluster.
If the break down does not occur or the machine is not an ion implantation machine,
then an operator is requested from the personnel cluster, after the machine input has
been processed. When the operator has been received, the machine output is unloaded
and updated. Next, the output is sent together with the operator to the workstation
buffer. Finally, if the machine receives a technician from the personnel cluster instead
of input from a buffer, then scheduled maintenance is performed on the machine and
the technician is returned to the cluster. The second and final process is the exit. Its
function is to receive the finished lots from the lot transporter.

After the description of the clusters and the processes, the flow of lots through the
upper level of the framework is presented. The lots flow from the generator via the
lot transporter to the first workstation buffer. This buffer sends them to one of the
machines in the workstation. The machine returns them to the buffer after they are
processed. Next, the lot transporter transports the lots to the next processing area.
After the processing of the lots has been finished, the lot transporter transports them
to the exit. This concludes the upper level of the framework of the model.
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Lower level

The lower level of the framework of the model is represented by the five clusters inside
the upper level, which has been described in the previous section. The first cluster is
the generator. It contains two types of processes. The first type is the signal generator,
which has the task of signalling a collector process with predetermined time intervals.
The second type is the collector, which receives signals from the signal generators. After
the collector has received a signal, it constructs a lot and puts it in a buffer. Further-
more, it requests for lot transportation and when the transporter arrives, the collector
sends the lot to the transporter. The generator consists of three signal generators and
one collector.

The second cluster is the lot transporter. It consists of two processes. The first
process is the lot transporter dispatcher. It receives requests for transportation from
the generator and the workstation buffers and dispatches the lot transporter. The
second process is the lot transporter. It requests a pickup position from the dispatcher
and moves to the position. When it has arrived, it receives a lot and determines the
drop position. Finally, it moves to the drop position and drops the lot.

The third cluster is the multi-machine workstation buffer. It contains two processes.
The first process is the incoming multi-machine workstation buffer. The incoming buffer
starts with determining correct machine input from the lots that are present in the buffer
together with the placed requests for machine input. To this end, the functions dispd

and dispi both return the first element of the list of all correct input of respectively
the diffusion and the ion implantation machines. Next, the buffer tries to receive lots
and also requests for input from machines. If correct machine input is available, then
the buffer requests an operator from the personnel cluster. Finally, after the operator
has arrived, the input and the operator are sent to the requesting machine. The second
process is the outgoing multi-machine workstation buffer. Firstly, it receives machine
output together with an operator. Next, it returns the operator and requests for lot
transportation. Finally, when the lot transporter has arrived, it receives a lot from the
buffer.

The fourth cluster is the single-machine workstation buffer. It contains the two pro-
cesses incoming single-machine workstation buffer and outgoing single-machine work-
station buffer. They operate similar to the multi-machine workstation buffers. Only
two differences exist. Firstly, the former buffers serve only one machine and secondly
the incoming single-machine workstation buffer does not require a function to determine
correct machine input, because every single lot is correct input.

The final cluster is the personnel cluster. It consists of three processes. The first
process is the personnel dispatcher. It starts with determining via functions the per-
sonnel options for off time and operating. Next, it determines the earliest scheduled
down window and counter events of all the machine. Furthermore, it determines the
earliest off time counter event of all personnel. After this has been determined, the
dispatcher tries to receive requests for personnel and also the personnel itself from the
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workstations. When it has received personnel, the dispatcher updates the machine and
the scheduled down status of the flow line, because the personnel has changed the state
of the line with its action. Next, the dispatcher tries to receives personnel from an off
time process and tries to dispatch personnel to the process. It also tries to dispatch
personnel to the workstations via a personnel transporter. When the personnel is sent
to the transporter, the necessary adjustments are made to represent the state of the flow
line correctly. Finally, the scheduled maintenance window and counter events and also
the off time counter events are handled. The second process in the personnel cluster
is the personnel transporter. It receives personnel from the personnel dispatcher and
applies its transportation time. Furthermore, it sends the personnel to the destination
process, that is determined by the dispatcher. The final process is the off time process.
It receives personnel from the personnel dispatcher and applies the off time. After the
off time, the personnel is returned to the dispatcher. This concludes the lower level of
the framework of the model and now the entire model has been described.

χ model with FIFO control

In this section the χ model with FIFO control is shown. Information on the χ formal-
ism can be found in [7] and [1]. To increase the readability of the model, consistent
nomenclature is used. The channel names are formed by the letters of the alphabet
starting from a. The variable names also show consistency. Firstly, the i is used as a
counter and the j is used to construct bundles. Furthermore, a list of variables ends
with s and the variables that represent a time quantity start with t. Finally, a product
is represented by x, y or z. The readability of the model is also increased by visualizing
the clusters. Figure A.1 shows the legend of the visualizations of the clusters and Fig-
ure A.2 visualizes the upper level of the χ model, which is represented by cluster Intel.
This cluster contains all the clusters and the processes that have been discussed in the
section of the upper level. Next to the clusters and the processes, also the communica-
tion channels are shown. Figures A.3 through A.7 show the same elements for the lower
level of the framework. The figures show respectively the generator, the lot transporter,
the multi-machine workstation buffer, the single-machine workstation buffer and the
personnel cluster. They are followed by the χ model of the model, which concludes this
appendix.

cluster

process

communication channel

Figure A.1: Cluster visualization legend
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from std import *

from random import *

const ih: nat^3 = <|2,2,2|> // ini history

, imst: nat^5 = <|0,0,0,0,0|> // ini machine status

, iot: nat^3^2 = <|<|0,0,0|>,<|0,0,0|>|> // ini off-times

, ip: nat^2* = [<|0,0|>,<|0,1|>,<|0,2|>] // ini state personnel (pos,type)

, isdc: nat^5 = <|0,0,0,0,0|> // ini sched down counter

, isdw: nat^5 = <|2,2,2,2,2|> // ini scheduled down window

, isp: nat^2 = <|2,0|> // ini setup (sp,tp)

, itl: nat = 0 // ini pos. transporter lots

, itsd: real^5 = <|0.0,0.0,0.0,0.0,0.0|> // ini sched down couter raise time

, mca: nat^8 = <|0,0,0,1,1,2,2,2|> // channel to op area mapping

, mfp: real = 0.455 // mach fraction processing

, mcm: nat^8 = <|0,0,1,2,2,3,3,4|> // channel to machine mapping

, mmc: nat^5 = <|1,2,4,6,7|> // machine to channel mapping

, mr: nat^7 = <|1,3,2,3,1,2,4|> // lot routing mapping

, pim: bool^8 = <|false,true,true,false,true,false,true,true|> // process is machine

, tasd: real^5 = <|1440.0,1440.0,720.0,720.0,720.0|> // average time betw sched down

, tbo: nat^2 = <|360,720|> // time between break,meeting

, tbud: real^2 = <|1440.0,4560.0|> // time between unsch down (lb,ub)

, to: nat^3^2 = <|<|45,60,60|>,<|30,60,60|>|> // off times (break,meeting)

, te: nat^6 = <|225,30,55,50,255,10|> // process times

, ti: real^3 = <|10080/3,10080/51,10080/30|> // inter departure times

, itno: nat^3^2 = <|<|180,150,210|>,<|360,330,390|>|> // next off times

, tol: nat^3 = <|20,10,15|> // op load times

, tou: nat^3 = <|40,10,15|> // op unload times

, tsd: nat^3 = <|75,30,120|> // scheduled down times

, tsp: nat^4 = <|0,5,10,12|> // setup times (none,tp,sp,both)

, ttlu: nat = 2 // transp loading + unloading time

, ttr: nat^2 = <|4,1|> // transport times (transp,pers)

, tud: real^2 = <|340.0,480.0|> // unscheduled down time (lb,ub)

type lot = id.nat#tp.nat#sp.nat#hs.nat^3#st.real

// identification#type (0,1,2)#step (0..6)#history#starttime

, n1ls = nat#lot*

, n2ls = nat#nat#lot*

, n3ls = nat#nat#nat#lot*

, n4ls = nat#nat#nat#nat#lot*

proc Gs(a: !void, n: nat) = |[ *[ true -> a!; delta ti.n ] ]|

proc Gc(a: (?void)^3, b: !void, c: !lot*) =

|[ xs: lot*, i: nat

| xs:= []; i:= 0

; *[ j: nat <- 0..3: true; a.j? -> xs:= xs ++ [<i,j,0,ih,time>]; i:= i + 1; b!

| len(xs) > 0; c![hd(xs)] -> xs:= tl(xs)

]

]|

clus G(a: !void, b: !lot*) = |[ c: (-void)^3 | j: nat <- 0..3: Gs(c.j,j) || Gc(c,a,b) ]|

proc Tpld(a: (?void)^4, b: !nat) =

|[ xs: nat*

| xs:= []

; *[ j: nat <- 0..4: true; a.j? -> xs:= xs ++ [j]

| len(xs) > 0; b!hd(xs) -> xs:= tl(xs)

]

]|

func tt(ft: nat^2, n,k: nat) -> int = |[ ret n * abs(+ft.0 - ft.1) + k ]|
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proc Tpl(a: ?nat, b: (?lot*)^4, c: (!lot*)^4) =

|[ ft: nat^2, xs: lot*

| ft.0:= itl

; *[ true

-> a?ft.1; delta tt(ft,ttr.0,0); b.(ft.1)?xs; ft:= <| ft.1, mr.(hd(xs).sp) |>

; delta tt(ft,ttr.0,ttlu); c.(ft.1 - 1)!xs; ft.0:= ft.1

]

]|

clus Tl(a: (?void)^4, b: (?lot*)^4, c: (!lot*)^4) =

|[ d: -nat | Tpld(a,d) || Tpl(d,b,c) ]|

func sel(xs: n1ls*) -> n1ls =

|[ [ len(xs) = 0 -> ret <0,[]> | len(xs) > 0 -> ret hd(xs) ] ]|

func feasbat(r: nat, x,y,z: lot) -> bool =

|[ testlots: lot*, a,b,c: bool, n: nat

| testlots:= [ p | p: lot <- [x,y,z], p.tp = 0 ]; n:= len(testlots)

; a:= x.tp = y.tp; b:= x.tp = z.tp; c:= y.tp = z.tp

; [ n >= 2 -> ret false

| n < 2 and x.sp < 3 -> ret true

| n = 0 and x.sp >= 3 -> ret a and b

| n = 1 and x.sp >= 3 -> ret (a or b or c) and hd(testlots).hs.0 /= r

]

]|

func dispd(rs: nat*, xs: lot*) -> n1ls =

|[ ret sel([ <r,[x,y,z]>

| r: nat <- rs

, x: lot <- xs, y: lot <- xs, x.id < y.id, x.sp = y.sp

, z: lot <- xs, y.id < z.id, y.sp = z.sp

, feasbat(r,x,y,z)

])

]|

func dispi(rs: nat*, xs: lot*) -> n1ls =

|[ ret sel([ <r,[x]> | r: nat <- rs, x: lot <- xs, x.tp /= 0 or x.hs.2 /= r ]) ]|

proc Bmi(a: ?lot*, b: (?void)^2, c: !n2ls, d: ?n2ls

, e: (!n1ls)^2, disp: (nat*,lot*) -> n1ls) =

|[ xs,ys,zs: lot*, p,r: nat, rs: nat*, rzss: (n1ls)*

| xs:= []; rs:= []; rzss:= []

; *[ true

-> <r,zs>:= disp(rs,xs)

; [ true; a?ys -> xs:= xs ++ ys

| j: nat <- 0..2: true; b.j? -> rs:= rs ++ [j]

| len(zs) > 0; c!<1,r,zs>

-> rzss:= rzss ++ [<r,zs>]; rs:= rs -- [r]; xs:= xs -- zs

| true; d?<p,r,zs> -> rzss:= rzss -- [<r,zs>]; e.r!<p,zs>

]

]

]|

proc Bmo(a: (?n1ls)^2, b: !nat^2, c: !void, d: !lot*) =

|[ xs,ys: lot*, i,p: nat

| xs:= []

; *[ j: nat <- 0..2: true; a.j?<p,ys>

-> xs:= xs ++ ys; b!<|p,j|>; i:= len(ys); *[ i > 0 -> c!; i:= i - 1 ]

| len(xs) > 0; d![hd(xs)]

-> xs:= tl(xs)

]

]|
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clus Bm(a: ?lot*, b: (?void)^2, c: !n2ls, d: ?n2ls, e: (!n1ls)^2, f: (?n1ls)^2, g: !nat^2

, h: !void, i: !lot*, disp: (nat*,lot*) -> n1ls) =

|[ Bmi(a,b,c,d,e,disp) || Bmo(f,g,h,i) ]|

proc Bsi(a: ?lot*, b: ?void, c: !n2ls, d: ?n2ls, e: !n1ls) =

|[ xs,ys: lot*, rq: bool, p,q: nat

| xs:= []; rq:= false

; *[ true; a?ys -> xs:= xs ++ ys

| true; b? -> rq:= true

| rq and xs /= []; c!<1,0,[hd(xs)]> -> rq:= false

| true; d?<p,q,ys> -> xs:= xs -- ys; e!<p,ys>

]

]|

proc Bso(a: ?n1ls, b: !nat^2, c: !void, d: !lot*) =

|[ xs,ys: lot*, p: nat

| xs:= []

; *[ true; a?<p,ys> -> xs:= xs ++ ys; b!<|p,0|>; c!

| len(xs) > 0; d![hd(xs)] -> xs:= tl(xs)

]

]|

clus Bs(a: ?lot*, b: ?void, c: !n2ls, d: ?n2ls, e: !n1ls, f: ?n1ls, g: !nat^2, h: !void

, i: !lot*) =

|[ Bsi(a,b,c,d,e) || Bso(f,g,h,i) ]|

func su(psp,ptp,sp,tp: nat) -> nat =

|[ [ sp = psp and tp = ptp -> ret tsp.0

| sp = psp and tp /= ptp -> ret tsp.1

| sp /= psp and tp = ptp -> ret tsp.2

| sp /= psp and tp /= ptp -> ret tsp.3

]

]|

func updm(x: lot, wi,mi: nat) -> lot = |[ x.sp:= x.sp + 1; x.hs.wi:= mi; ret x ]|

proc M(a: !void, b: ?n1ls, c: !nat^2, d: !n2ls

, e: ?n2ls, f: !n1ls, wi,mi: nat) =

|[ dtbud,dtud: -> real, tnud: real, p,q,psp,ptp,sp,tp: nat, ud: bool, qs,xs: lot*

| dtbud:= uniform(mfp*tbud.0,mfp*tbud.1); dtud:= uniform(tud.0,tud.1)

; tnud:= sample dtbud; <|psp,ptp|>:= isp; ud:= false; a!

; *[ true; b?<p,xs>

-> [ wi = 1

-> sp:= hd(xs).sp; tp:= hd(xs).tp; delta su(psp,ptp,sp,tp); psp:= sp; ptp:= tp

| wi /= 1 -> skip

]

; delta tol.wi; c!<|p,0|>

; [ wi = 2

-> tnud:= tnud + time

; [ true; delta te.(hd(xs).sp)

-> tnud:= tnud - time

| true; delta tnud - time

-> ud:= true; d!<0,0,[]>; e?<p,q,qs>; delta sample dtud

; c!<|p,0|>; tnud:= sample dtbud

]

| wi /= 2 -> delta te.(hd(xs).sp)

]

; [ ud -> ud:= false

| not ud -> d!<1,0,[]>; e?<p,q,qs>; delta tou.wi

; f!<p,[ updm(x,wi,mi) | x: lot <- xs ]>

]
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; a!

| true; e?<p,q,qs>

-> delta tsd.wi; c!<|p,0|>

]

]|

func feaswp(w,j,p: nat) -> bool =

|[ ret w = p and (w = 0 or w = 1 and (j < 3 or j > 4)) or w = 2 and p = 1 and j > 2 ]|

func dispp(ot: nat^3^2, rs: (n3ls)*, wps: nat^2*, mst,sdw: nat^5)

-> (nat#nat^2)*#((n3ls)#nat^2)*#nat^5 =

|[ ops: (nat#nat^2)*, dps: ((n3ls)#nat^2)*, dp: (n3ls)#nat^2, k,m: nat

| ops:= [ <n,w> | w: nat^2 <- wps, n: nat <- [0,1], ot.n.(w.1) > 0 ]

; dps:= [ <<j,p,q,xs>,w> | w: nat^2 <- wps, ot.0.(w.1) = 0 and ot.1.(w.1) = 0

, <j,p,q,xs>: n3ls <- rs, feaswp(w.1,j,p)

, sdw.(mcm.j+q) > 0 or pim.j ] ++

[ <<mmc.n,0,0,[]>,w> | ot.0.0 = 0 and ot.1.0 = 0, w: nat^2 <- wps, w.1 = 0

, n: nat <- [0,1,2,3,4], mst.n = 0, sdw.n /= 1 ]

; [ len(dps) = 0

-> skip

| len(dps) > 0

-> dp:= hd(dps); k:= dp.0.1; m:= mcm.(dp.0.0)

; [ k = 0 and mst.m = 0 -> sdw.m:= 0 | k /= 0 or mst.m /= 0 -> skip ]

]

; ret <ops,dps,sdw>

]|

func pns(x,y: real#nat) -> real#nat = |[ [ x.0 <= y.0 -> ret x | x.0 > y.0 -> ret y ] ]|

func nsdwe(sdw: nat^5, twc,two: real^5) -> (real#nat)* =

|[ nsdwns: (real#nat)*

| nsdwns:= [ <twc.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 2 ] ++

[ <two.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 1, twc.n - tasd.n <= two.n ] ++

[ <twc.n-tasd.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 1, twc.n - tasd.n > two.n ]

; [ len(nsdwns) = 0 -> ret [] | len(nsdwns) > 0 -> ret [fold(tl(nsdwns),pns,hd(nsdwns))] ]

]|

func nsde(tnsd: real^5) -> real#nat#real^5 =

|[ sdns: (real#nat)*, tsdc: real, u: nat

| sdns:= [ <tnsd.n,n> | n: nat <- [0,1,2,3,4] ]

; <tsdc,u>:= fold(tl(sdns),pns,hd(sdns)); tnsd.u:= tnsd.u + tasd.u; ret <tsdc,u,tnsd>

]|

func pno(x,y: nat^3) -> nat^3 = |[ [ x.0 <= y.0 -> ret x | x.0 > y.0 -> ret y ] ]|

func no(tno: nat^3^2) -> nat#nat#nat#nat^3^2 =

|[ mns: nat^3*, tot,u,v: nat

| mns:= [ <|tno.m.n,m,n|> | m: nat <- [0,1], n: nat <- [0,1,2] ]

; <|tot,u,v|>:= fold(tl(mns),pno,hd(mns)); tno.u.v:= tno.u.v + tbo.u; ret <tot,u,v,tno>

]|

func updp(j,p,q: nat, mst,sdc,sdw: nat^5, twc,two: real^5, t: real)

-> nat^5#nat^5#nat^5#real^5#real^5 =

|[ n: nat, trem: real

| n:= mcm.j + q

; [ p = 0 and mst.n = 1

-> sdw.n:= 1; sdc.n:= sdc.n - 1; two.n:= t + (tasd.n)/2; mst.n:= 0

; trem:= t + tasd.n - rmod(t,tasd.n)

; [ sdc.n = 0 -> twc.n:= trem + tasd.n

| sdc.n = 1 -> twc.n:= max(two.n,trem)

| sdc.n > 1 -> twc.n:= two.n

]
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| p > 0 or mst.n /= 1

-> mst.n:= mst.n mod 2

]

; ret <mst,sdc,sdw,twc,two>

]|

proc Pd(a: (?n2ls)^8, b: (?nat^2)^8, c: ?nat^2*, d: !nat#nat^2, e: !n4ls) =

|[ dps: ((n3ls)#nat^2)*, rs: (n3ls)*, wps,ws: nat^2*, w: nat^2, mst,nsdw,sdc,sdw: nat^5

, ops: (nat#nat^2)*, op: nat#nat^2, r: n3ls, m,n,p,q,u,tot: nat, xs: lot*

, nsdwes: (real#nat)*, ntnsd,tnsd,twc,two: real^5, ot,ntno,tno: nat^3^2, tsdc: real

| rs:= []; wps:= ip; mst:= imst; twc:= tasd; sdc:= isdc; sdw:= isdw; ot:= iot

; tno:= itno; tnsd:= itsd

; *[ true

-> <ops,dps,nsdw>:= dispp(ot,rs,wps,mst,sdw); nsdwes:= nsdwe(sdw,twc,two)

; <tsdc,u,ntnsd>:= nsde(tnsd); <tot,m,n,ntno>:= no(tno)

; [ j: nat <- 0..8: true; a.j?<p,q,xs>

-> rs:= rs ++ [<j,p,q,xs>]

| j: nat <- 0..8: true; b.j?<|p,q|>

-> wps:= wps ++ [<|j,p|>]

; <mst,sdc,sdw,twc,two>:= updp(j,p,q,mst,sdc,sdw,twc,two,time)

| true; c?ws

-> wps:= wps ++ ws

| len(ops) > 0; d!hd(ops)

-> op:= hd(ops); wps:= wps -- [op.1]; m:= op.0; n:= op.1.1; ot.m.n:= ot.m.n - 1

| len(dps) > 0; e!<hd(dps).1.0,hd(dps).0.0,hd(dps).1.1,hd(dps).0.2,hd(dps).0.3>

-> <r,w>:= hd(dps); rs:= rs -- [r]; wps:= wps -- [w]; n:= mcm.(r.0) + r.2

; mst.n:= mst.n + 1; sdw:= nsdw

| len(nsdwes) > 0; delta hd(nsdwes).0 - time

-> n:= hd(nsdwes).1; sdw.n:= (sdw.n + 1) mod 3

| true; delta tsdc - time

-> sdc.u:= sdc.u + 1; tnsd:= ntnsd

| true; delta tot - time

-> ot.m.n:= ot.m.n + 1; tno:= ntno

]

]

]|

func ptpp(x,y: real#nat#nat#nat#lot*) -> bool = |[ ret x.0 <= y.0 ]|

proc Pt(a: ?n4ls, b: (!n2ls)^8) =

|[ xs: (real#nat#nat#nat#lot*)*, p,q,u,v: nat, ys:lot*, x: real#nat#nat#nat#lot*

| xs:= []

; *[ true; a?<u,v,p,q,ys>

-> xs:= insert(xs,<time+tt(<|mca.u,mca.v|>,ttr.1,0),v,p,q,ys>,ptpp)

| len(xs) > 0; delta hd(xs).0 - time

-> x:= hd(xs); b.(x.1)!<x.2,x.3,x.4>; xs:= tl(xs)

]

]|

func ppo(x,y: real#nat^2) -> bool = |[ ret x.0 <= y.0 ]|

proc Po(a: ?nat#nat^2, b: !nat^2*) =

|[ os: (real#nat^2)*, op: nat^2, m: nat

| os:= []

; *[ true; a?<m,op> -> os:= insert(os,<time+to.m.(op.1),op>,ppo)

| len(os) > 0; delta hd(os).0 - time -> b![hd(os).1]; os:= tl(os)

]

]|

clus P(a: (?n2ls)^8, b: (?nat^2)^8, c: (!n2ls)^8) =

|[ d: -nat^2*, e: -nat#nat^2, f: -n4ls

| Pd(a,b,d,e,f) || Pt(f,c) || Po(e,d)
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]|

proc E(a: ?lot*) = |[ xs: lot* | *[ true -> a?xs ] ]|

clus Intel()=

|[ a: (-void)^4, b,c: (-lot*)^4, d,n: (-void)^2, e,f: (-n2ls)^8, g,i,o,p: (-n1ls)^2

, h: (-nat^2)^8, l,m: -n1ls, k: -void

| G(a.0,b.0)

|| Tl(a,b,c)

|| Bm(c.0,d,e.0,f.0,g,i,h.0,a.1,b.1,dispd)

|| j: nat <- 0..2: M(d.j,g.j,h.(j+1),e.(j+1),f.(j+1),i.j,0,j)

|| Bs(c.1,k,e.3,f.3,l,m,h.3,a.2,b.2)

|| M(k,l,h.4,e.4,f.4,m,1,0)

|| Bm(c.2,n,e.5,f.5,o,p,h.5,a.3,b.3,dispi)

|| j: nat <- 0..2: M(n.j,o.j,h.(j+6),e.(j+6),f.(j+6),p.j,2,j)

|| P(e,h,f)

|| E(c.3)

]|

xper = |[Intel()]|



Appendix B

Adjusting the time between

failure

To model the Intel case correctly, the parameter that adjusts the time between failure
of the ion implantation machines needs to be determined. This is necessary to model
the right number of unscheduled downs. The parameter needs to be determined every
time the model is changed. This appendix presents the adjustment procedure.

The parameter that needs to be adjusted in the model is the mfp parameter. It rep-
resents the average fraction of time that the ion implantation machines are processing.
Its lower boundary equals 0 and is reached when the machines are continuously idle.
Its upper boundary equals 0.57 and is reached when the machines have no idle time.
The upper boundary equals less than 1, because the machines have to be loaded and
unloaded. The value of the parameter is determined by counting the number of un-
scheduled downs of both ion implantation machines during the last one hundred weeks
of the simulation of two hundred weeks of processing. After the first one hundred weeks
the transient behavior of the flow line can be neglected. The value of the parameter
is varied until the number of downs equals the prescribed amount of 400 downs per
one hundred weeks in steady state. Due to stochastics the number of downs varies per
simulation run. The number is therefore counted in six runs and the six values are
averaged to get the correct number of downs. For example, the correct value for the
mfp parameter equals 0.455 for the flow line with required input and with FIFO (First
In First Out) control.
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Appendix C

χ validation examples

When the χ model with FIFO (First In First Out) control has been designed, it has to
be validated before simulation results can be trusted. The four validation techniques [3]
used in this project are ’transient calculation’, ’steady state calculation’, ’visualiza-
tion using Gantt charts’ and ’function analysis’. Of each used validation technique an
example is presented in this appendix.

Transient calculation

In transient calculation a few products are released into the flow line and the simulation
output is compared to manual calculation. The outcome should be identical. The first
six products of the required input of the Intel case are released into the flow line. The
type restrictions on the diffusion machine input are neglected, so all batches can be
composed. The activity of the machines, the personnel and the transporter during the
flow of the products through the line is output by simulation and is calculated manually.
Of both results a Gantt chart is constructed. The legend of the charts is presented in
Figure C.1 and the charts are visualized in Figure C.2. The Gantt charts are identical
and therefore the model behaves correctly in this validation.
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Figure C.1: Legend of the Gantt charts of the flow line
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Figure C.2: Gantt charts made by simulation (top) and by manual calculation (bottom) of the flow of
six products through the line

Steady state calculation

In steady state calculation the model output in steady state is compared to manual
calculations. The outcome should be identical. In this example the compared output is
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the number of scheduled maintenances of the lithography machine during one hundred
weeks of production. the number of maintenances is not influenced by the transient be-
havior of the flow line, because the windows are independent of the state of the flow line.
Therefore, the counting of the maintenances can start directly. The model is changed
to output the total number of scheduled maintenances when the lithography machine
receives maintenance. Next, simulations are run six times for one hundred weeks to
account for stochastics. The average result of the simulations is 1399.8 maintenances.
The manual calculation results in 1400 maintenances per one hundred weeks. In one
simulation the maintenance of the final shift was too late and therefore a small differ-
ence in the outcome resulted. The difference is completely explicable and in this case
allowed. Therefore, the model behaves correctly in this validation.

Visualization using Gantt charts

In visualization using Gantt charts the behavior of the flow line is visualized in Gantt
charts and the occurring events are analyzed. In this example the number of scheduled
maintenances of all machines and the number of breaks and meetings of all personnel
per shift are validated by analyzing constructed Gantt charts of the activity of the
machines and the personnel of the flow line.
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Figure C.3: Gantt chart of the first four shifts of the flow line after twenty weeks of operating

The legend of the charts is presented in Figure C.1. Figure C.3 presents the Gantt
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chart of the first four shifts of the flow line after twenty weeks of operating. As the first
shift begins, ion implantation machine 1 is receiving unscheduled maintenance. The
lithography machine and the ion implantation machines therefore require one scheduled
maintenance from the previous shift. They can not accept new products until the
maintenance is performed. Therefore, scheduled maintenance is performed on each of
them five times during the shown four shifts. The diffusion machines are not influenced
by the unscheduled maintenance of the ion implantation machine, because they require
scheduled maintenance only once per day instead of once per shift. Therefore, they
each receive maintenance two times during the four shifts. Thus, the visualization
shows the correct number of scheduled maintenances. Now the breaks and meetings
of the personnel are evaluated. The technician takes nine breaks, which is one break
more than is expected in four shifts. The extra break remained from the previous
shift, because the technician was performing unscheduled maintenance and therefore
could not take the break. The technician also attends four meetings, so he behaves
as expected. Both operators each take eight breaks and attend four meetings, as they
should. Thus, in the visualization using Gantt charts the model behaves correctly.

Function analysis

The final validation technique used in this project is the function analysis. The functions
in the model are validated by analyzing the output of their input domain. The output
should be correct over the entire domain. In this example the function dispi is modified
for the validation to output all the allowed ion implantation machine input. The function
now reads

func dispi(rs: nat*, xs: lot*) -> n1ls =

|[ ret [ <r,[x]> | r: nat <- rs, x: lot <- xs, x.tp /= 0 or x.hs.2 /= r ] ]|.

The function receives for input subsequently four times a list of machines that are
requesting a product together with a list of products. The list of requesting machines
varies with every function call to cover the input domain. The lists are respectively [],
[0], [1] and [0,1]. The list of products is constant during all function calls and includes
all combinations of product type and ion implantation machine history. The list reads

[<0,0,5,<|2,2,2|>,0.0>,<1,1,5,<|2,2,2|>,0.0>,<2,2,5,<|2,2,2|>,0.0>

,<3,0,5,<|2,2,0|>,0.0>,<4,1,5,<|2,2,0|>,0.0>,<5,2,5,<|2,2,0|>,0.0>

,<6,0,5,<|2,2,1|>,0.0>,<7,1,5,<|2,2,1|>,0.0>,<8,2,5,<|2,2,1|>,0.0>]

The entire input domain of the function is covered. The output of the four function
calls is analyzed to validate the handling of the product type and the machine history
of the products by this function. The output consists of respectively an empty list, all
products except number 3, all products except number 6 and finally, the previous two
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outputs combined. All output is explicable. The empty list is output after the first
function call, because no machine has requested for a product. From respectively the
second and the third function input, the test products that have been processed on ion
implantation machine 0 respectively machine 1 are not allowed for input. Therefore,
only product 3 respectively product 6 is not allowed for machine input. The final input
combines the previous two inputs and therefore the outputs are also combined. Thus,
the function behaves correctly. This concludes the validation examples. All validation
of the model shows it behaves as it was designed to behave and represents the case
correctly.
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Appendix D

Steady state behavior

This appendix presents the steady state behavior of the flow line with required input.
Four aspects of the behavior are analyzed. Firstly, the bottleneck workstation of the
flow line is determined from the contents of the incoming buffers of the workstations.
The diffusion and the ion implantation buffer contain few products, while the lithog-
raphy buffer contains an increasing amount of products. Therefore, the lithography
workstation is the slowest workstation of the flow line and is the bottleneck. Secondly,
the capacity of the transporter is analyzed by administering the amount of requests
that are placed for product transportation. The amount remains small throughout the
simulation and therefore the transporter capacity is sufficient. Thirdly, the throughput
(δ) and the mean flow time (ϕ) of the flow line are determined. δ is defined as the total
number of products per week that reach the finish area and that leave the flow line
due to unscheduled down of the ion implantation machines. The products are counted
during the last one hundred weeks of simulations of two hundred weeks. To account for
stochastics, the simulations are run six times. The average δ equals 47.4 products per
week or 56.4% of the required δ. ϕ is defined as the average time a product spends in the
flow line including wasted products. ϕ is increasing during simulation with the required
flow line input, because the work in process (w) is increasing. Finally, the control of the
flow line is analyzed. To this end, the activity of the machines, the personnel and the
transporter during the flow of the products through the line is output. Gantt charts are
constructed from the output and are analyzed. The legend of the charts is presented in
Figure C.1. An example of the charts is shown in Figure D.1.

The Gantt chart visualizes the last two shifts of one hundred weeks of processing.
It clearly shows that the processes have much idle time, while the required δ is not
met. This results from the FIFO control of the flow line. It also shows by prolonged
operating times that the machines have to wait for unloading, because the operators are
unavailable. Next, it shows by analyzing the lithography machine bar and the operator 2
bar, that the lithography machine has much setup time. Finally, it shows that the
lithography machine has a poor reaction to the unscheduled down of ion implantation
machine 0. The poor reaction leads to much idle time of the lithography machine.
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Figure D.1: Gantt chart of the production of the last two shift of one hundred weeks of processing

Other Gantt charts show that all machines have a poor reaction to the unscheduled
down of an ion implantation machine. It can be concluded from the Gantt chart that
the control of the flow line is poor. This concludes the presentation of the steady state
behavior of the flow line.



Appendix E

Flow line productivity

In this appendix the productivity of the flow line with FIFO (First In First Out) control
is calculated. The productivity is defined as the total amount of work performed by
the line divided by the required amount of work. For a flow line with increasing work
in process (w) the productivity is greater than the reached throughput (δ), because the
machines perform work that is wasted on the increasing w. This work does not show
in δ. The productivity is therefore a more suitable measure to quantify the amount of
work that is done by a flow line with increasing w than the throughput.PSfrag replacements
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Figure E.1: Amount of work performed by the flow line

Figure E.1 visualizes the amount of work that is done by the flow line with required
input. The variables a through e represent the amounts of products per week that
flow from one area to another. To determine these amounts, the flow line is analyzed.
From the start area 84 products are released into the flow line per week. The diffusion
workstation processes all its input, because simulation shows that the diffusion buffer
contains at most a few products. Therefore, 84 products arrive per week for the first time
at the implantation workstation. Next, the implantation workstation processes all its
input and wastes during processing part x of the products. The chance for unscheduled
down to occur to products of both production steps is proportional to their processing
times and therefore part 3

8 · x of the products is wasted. Then the products enter the
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bottleneck workstation of the flow line, the lithography workstation, which processes
only part y of its input. Because the processing sequence is FIFO (First In First Out),
part y of both the low and the high production step input will be processed. Next,
the products enter the implantation workstation for the second time. Again all input is
processed, but this time part 5

8 · x of the products is wasted. Then the products are all
processed for the second time by the diffusion workstation and finally they arrive at the
lithography workstation for the second time. Again part y of the products is processed.
Now (E.1) through (E.5) can be composed,

a = 84, (E.1)

b = 84 · (1 − 3
8 · x), (E.2)

c = 84 · (1 − 3
8 · x) · y, (E.3)

d = 84 · (1 − 3
8 · x) · y · (1 − 5

8 · x), (E.4)

e = 84 · (1 − 3
8 · x) · y · (1 − 5

8 · x) · y. (E.5)

To acquire values for x and y, the number of finished products per week is counted
during six simulations of two hundred production weeks, so the influence of the transient
behavior of the flow line can be neglected. The counting is started after one hundred
weeks. On average 43.4 finished products leave the flow line per week. Next, a system
of two equations and two variables is constructed from the analysis of the production,

84 ·
3

8
· x + 84 · (1 −

3

8
· x) · y ·

5

8
· x = 4, (E.6)

84 · (1 −
3

8
· x) · y · (1 −

5

8
· x) · y = 43.4. (E.7)

Firstly, the number of wasted lots is equated to four in (E.6). Secondly, the theoretical
number of finished products is equated to the simulation result in (E.7). Solving the
system leads to x = 0.0576 and y = 0.739. From this result can be concluded that
the implantation workstation wastes 5.76% of the products that enter the workstation
and that the lithography workstation processes 73.9% of its input. This calculation
is checked by analyzing the contents of the lithography buffer in six simulations after
one hundred weeks of processing. Due to the stochastics of the flow line, the buffer
contains between 3620 and 3680 products, of which between 58.3% and 58.7% has
not been processed before by the lithography machine. By analytical calculation the
contents should be 3670 products, of which 58.4% has not been processed before by
the lithography machine. The analytical values lie inside the intervals of the simulation
values, as expected.

Now the number of products that are processed per workstation per week is known,
the total work that is performed by the workstations can be determined. To this end, the
run time of a machine is introduced and equals the total of the loading, the processing
and the unloading time of the machine. The run times of the low and high step of
the diffusion machines are respectively 285 min and 315 min. The run times of the
lithography machine are 75 min and 30 min and the run times of the ion implantation
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machines are 60 min and 80 min. Next, the workstation productivity is defined as
the total run time of the machines in the workstation divided by the required run
time. The total run time equals for the diffusion, the lithography and the implantation
workstation respectively 14130 min, 5850 min and 9620 min. To calculate the required
run time, x is resolved from (E.6). This time, the y is known in advance. Because all
workstations process their input, y equals 1. Solving the equation leads to x = 0.0482.
Therefore the implantation workstation now wastes 4.82% of the products that enter
the workstation. The required run time equals for the diffusion, the lithography and
the implantation workstation respectively 16380 min, 8590 min and 11350 min and the
workstation productivity equals respectively 86.3%, 68.2% and 84.8%. The lithography
machine has the least productivity and is the bottleneck of the line. The flow line
productivity equals 81.5%. This concludes the calculation of the productivity of the
flow line with FIFO control.
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Appendix F

Maximal δ with accompanying ϕ

In this appendix the maximal throughput (δmax) and the accompanying mean flow time
(ϕ) of the flow line with FIFO (First In First Out) control are determined. δmax will
be reached when the work in process (w) is only just non-increasing in steady state,
because then no work is wasted on the semifinished products that form the increasing
w. In that case δmax equals the flow line input.

flow line input
mfp

total test type A type B

84 3 51 30 0.457
59 2.11 35.82 21.07 0.375
58 2.07 35.21 20.72 0.372

57.5 2.05 34.9 20.55 0.369
57 2.03 34.61 20.36 0.367
56 2 34 20 0.364
55 1.97 33.39 19.64 0.361

Table F.1: Simulation based mfp parameter values for various flow line input

Because the input of the model is changed, the parameter that determines the time
between failure of the ion implantation machines needs to be adjusted. The adjustment
procedure is presented in Appendix B. Table F.1 shows the simulation based parameter
values for various flow line input. The ratio of the product types is kept identical to
the ratio in the case. The first column presents the total number of products released
into the flow line per week. The second through fourth column present respectively the
number of test products, type A products and type B products released into the flow
line per week. The final column presents the simulation based parameter values.

After determining the parameter values, w measurements can be performed to de-
termine the input of the flow line for which w is non-increasing in steady state. Since
the buffer capacity constraints are not included in this analysis, it is not necessary to
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determine the distribution of w over the flow line elements. Therefore, only the total
w in the flow line is measured by simulation. In the simulations w is defined by the
difference between the total number of products that have been released into the flow
line and the total number of products that have left the line via the exit process or via
an unscheduled down. To perform steady state measurements, w is measured after one
hundred weeks of simulation and to account for stochastics the simulation are run six
times for each flow line input. The input of the line is decreased after each set of simu-
lation runs until w does not increase anymore during simulation. Input of 57.5 products
results in an average w of 26.1, which is only just non-increasing. Therefore, δmax equals
57.5 products per week or 68.5% of the required δ. This percentage is smaller than the
flow line productivity percentage that is determined in Appendix E, because the non-
bottleneck machines perform extra production when the flow line receives the required
input.

Next to w, also ϕ can be measured using the determined parameter values for
adjusting the time between failure. ϕ has already been defined in Appendix D as
the average time a product spends in the flow line, including the wasted products.
ϕ is measured during the last one hundred weeks of six simulations of two hundred
weeks. For the flow line with input of 57.5 products per week, ϕ equals 4580 min.
The simulations show that releasing 57.5 products per week into the flow line results
in a strongly varying ϕ. This is explained by observing the influence of the stochastics
of the flow line. The line approaches its maximum processing with FIFO control and
therefore, the influence of the stochastics on ϕ is increased. This concludes δmax and
the accompanying ϕ.



Appendix G

Little’s law

As part of the analysis of the flow line, Little’s law [4]: δ = w
ϕ , is applied to the line in

this Appendix. The law can only be applied to a flow line in steady state with stable
work in process (w). To apply this law to the flow line, the line is treated as a black
box. The throughput (δ) has already been defined in Appendix D as the total number
of products per week that reach the finish area and that leave the flow line due to
unscheduled down of the ion implantation machines. This equals the total number of
products that leave the black box per week. For stable w, δ is determined analytically
and equals the flow line input. w has already been defined in Appendix F as the
difference between the total number of products that have been released into the flow
line and the total number of products that have left the line via the exit process or via
an unscheduled down. So, w equals the total number of products that are in the black
box. The mean flow time (ϕ) of the black box has already been defined in Appendix D
as the average time a product spends in the flow line, including the wasted products.
The average w and ϕ are measured for the flow line input of 57.5 products during six
simulations of two hundred weeks. The measuring starts after one hundred weeks of
production. The measured values are inserted in Little’s law and δ is determined. It
ranges from 57.4 to 57.5. The maximal deviation equals 0.17%, which shows the results
are very accurate. Little’s law has also been applied to other flow line inputs of less
products per week than 57.5 and the results are just as accurate. Finally, the law has
been applied to inputs of more products per week than 57.5 and then it produces an
incorrect result, as expected. Little’s law can thus be applied to the flow line in steady
state.
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Appendix H

Capacity analysis

In this appendix the required and the available capacity of the flow line elements, as
described in Chapter 2, are calculated to determine if the available capacity of the
elements is sufficient. According to the structure of the case description, the machines
will be analyzed first. Next, the transporter will be analyzed, followed by the operators
and the technician. The required capacity of the buffers is dependent of the implemented
improved control. It is assumed that the available capacity of the buffers is sufficient.
For simplicity the calculations will be applied to one shift instead of one week. Before
they commence, the exact number of products that need to be processed per production
step is calculated. Appendix E shows that the ion implantation workstation wastes
4.82% of the products during production with the required δ. The calculations are based
on this percentage. The first production step is performed in the diffusion workstation
and 6 products are processed per shift. The second step is performed in the implantation
workstation. The number of wasted products is dependent on the length of the run time
of the production step, as was described in Appendix E. Accounting for the run time
of the low production step, the number of wasted products equals 5

8 · 0.0482 · 6 = 0.18.
Because the distribution of the time between break down is uniform, the wasted products
are on average already half processed before the break down occurs. Therefore, 5.91
products are processed for the second production step. The third step is performed
in the lithography workstation. It receives 5.82 products for this step and processes
all of them. The fourth step is performed in the implantation workstation. This time,
3
8 ·0.0482 ·6 = 0.11 products are wasted and again on average they will be processed half
before they are wasted. Therefore, 5.77 products are processed for this step. The final
two steps receive 5.71 products for input and process all products. Now, the number of
products that is processed for each production step is known and the capacity analysis
can begin.
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Machine analysis

The run times of the machines have been determined in Appendix E and equal for the
low respectively high production step 285 min and 315 min. The total required capacity
of the diffusion machines equals the total run time of the low and high production step
accounting for batching, which is 285

3 · 6 + 315
3 · 5.71 = 1170 min. The total available

capacity of both machines considering scheduled maintenance once per day equals 720 ·
2 − 2 · 75

2 = 1365 min. The capacity index is defined as the required capacity divided
by the available capacity and equals 0.86.

Next, to determine the required capacity of the lithography machine, first the min-
imal setup time per shift is computed. The setup time equals the setup time per week
divided by 14. To acquire a cyclic schedule per shift and to keep the buffer contents low,
a series of low and of high production step products are processed in each shift. There-
fore, 28 step changes are needed per week. Furthermore, the setup time per week will be
minimal if first all commercial products of one type, and then all commercial products
of the other type are processed. Per switch between the two commercial product type
series 5 type setups are required. The first setup changes the type to the type of the
new series, because the low production step products of the new series have reached
the lithography machine. Then, the type is switched back for the production of the
high step series that were in the diffusion workstation at the moment of the first switch.
Next, the type is again switched to the new series, because the next low production
step products arrive. After that, the type is switched back again, to process the high
production step series that were in the implantation buffer at the moment of the first
switch. Finally, the type is switched to the new series. To acquire a cyclic schedule, two
series of switches between the two commercial product type series are required per week.
The test products are released in between the commercial products, because they are
used to monitor the quality of the production line. Per week 3 test products are released
into the flow line. Per released test product, 2 product type setups are required when
the input of the lithography machine changes to test products and back to commercial
products for both the low and the high production step. This amounts to 12 type setups
and the total number of type setups equals 22. All type changes are assumed to be per-
formed together with a step change, except half of the type changes involving the test
products, because the type is changed directly before and after the processing of those
products and the step is changed only once per half shift. The setup times are presented
in Section 2.3. The minimal setup time equals 6 ·5+12 ·10+16 ·12 = 342 min per week
or 24min per shift. From now on, all calculations are again performed per shift. Next to
the setup time, also the run time of the lithography machine is included in the required
capacity. The total run time of the machine is calculated according to the calculation
in the previous paragraph and equals 608 min. The total required capacity then equals
632 min. The available capacity is decreased not only by scheduled maintenance, but
also by forced idle time. Operator 2 is the only operator that is allowed to serve the
lithography machine. When he takes his three off times per shift during the processing
of the low production step, the forced idle time of the machine is minimal and equals
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15 min. The available capacity now equals 720 − 15 − 30 = 675 min and the capacity
index, as defined in the previous paragraph, equals 0.94.

Finally, the total required capacity of the ion implantation machines equals 816 min.
The total available capacity of the machines, considering scheduled and unscheduled
maintenance, equals 1440 − 2 · 120 − 4

14 · 420 = 1080 min. The capacity index equals
0.76. All machine capacity indices are less than 1, so the available capacity of the
machines is sufficient.

Transporter analysis

After the capacity analysis of the machines has been performed, the analysis is directed
to the transporter. The required capacity consists firstly of the loading time of the
transporter, which equals 41 min. Furthermore, it consists of the transportation time
and the unloading time, which respectively equal 233 min and 41 min. Finally, the
required capacity consists of the time the transporter is moving idle. This time is
chosen equal to the transportation time. This is a worst case scenario, because it will
occur that the transporter does not have to move idle to pick up the next product.
The total required capacity then equals 41 + 233 + 41 + 233 = 548 min. The available
capacity equals 720 min and therefore the capacity index is 0.76. Thus, the available
transporter capacity is sufficient.

Operator analysis

The required capacity for the operators equals the total setup, loading, unloading and
transportation time. In this appendix setup time has been determined to be 24 min.
The transportation time is assumed to be 20 min and the loading and unloading times
can be calculates using loading and unloading times of Section 2.3 and the amounts of
products calculated in the first paragraph of this appendix. The loading time equals
20 · 11.71

3 +10 ·11.53+15 ·11.82 = 371 min and the unloading time equals 40 · 11.71
3 +10 ·

11.53 + 15 · 11.53 = 444 min. The required capacity then equals 24 + 20 + 371 + 444 =
859 min. The available capacity considering off time equals 1080 min and therefore
the capacity index is 0.80. The individual operator capacity can not be determined,
because the ion implantation machines can be operated by both operators. However,
the combined available capacity is sufficient.

Technician analysis

The final flow line element that has to be analyzed is the technician. His required
capacity to perform scheduled and unscheduled maintenance, using the maintenance
times that are presented in Section 2.4, equals 2 · 75

2 + 30 + 2 · 120 + 4
14 · 420 = 465

min. His minimal transportation time per shift equals 4 min. The available capacity
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considering off time equals 600 min and therefore the index is 0.78. An unscheduled
maintenance can be handled together with the scheduled maintenances in two shifts, so
the machines have no forced idle time. The required capacity in the two shifts in the
worst case scenario equals 2 · 75 + 2 · 30 + 4 · 120 + 480 = 1170 min and the available
capacity equals 1200 min. The capacity index then is 0.98. All the capacity indices are
less than 1 and therefore the available capacity of the flow line elements is sufficient for
the required δ.



Appendix I

Applied product transportation

and buffer level analysis

In this appendix product transportation and buffer levels are analyzed for the schedule
of Figure 4.2 to confirm, that transporter and buffer capacities are sufficient for this
schedule. An example transportation scenario is used for this analysis. The transporter
transports in this scenario 6 products through the entire flow line. The diffusion work-
station starts with 6 high production step products in its incoming buffer and with 4
low step and 2 high step products in its outgoing buffer. The lithography workstation
starts with an empty incoming buffer and with 2 low step and 4 high step products in its
outgoing buffer. The ion implantation workstations starts with 3 low step products and
2 high step products in its incoming buffer and with 1 low step product in its outgoing
buffer. Since the schedule is cyclic, the buffers return at the end of the schedule to their
initial state. The transporter firstly performs four cycles in which it transports a prod-
uct from the generator to the diffusion workstation, from diffusion to implantation, from
implantation to lithography and from lithography to the exit. Then, it performs two
cycles in which it transports a product from the generator to the diffusion workstation,
from diffusion to lithography, from lithography to implantation and from implantation
to the lithography workstation. Next, it performs four cycles in which it transports
a product from the diffusion to the lithography workstation, from lithography to im-
plantation and from implantation to the diffusion workstation. Finally, the transporter
transports the remaining products as soon as they become available. Figure I.1 shows a
Gantt chart of the transporter (T). The periods that the transporter is busy are colored
blue. The figure shows that the transporter has much idle time.

PSfrag replacements
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T

Figure I.1: Gantt chart of the transporter
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Figure I.2: Buffer contents of the incoming and outgoing buffer of the diffusion workstation
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Figure I.3: Buffer contents of the incoming and outgoing buffer of the lithography workstation
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Figure I.4: Buffer contents of the incoming and outgoing buffer of the implantation workstation

Figures I.2 through I.4 show the contents of respectively the diffusion, lithography
and implantation buffers during the production. The blue lines represent the number of
products of the low production step in the buffer. The red lines represent the number
of products of the high production step in the buffer. The green lines represent the
total number of products in the incoming and outgoing buffers. The figures show
that the buffers have enough capacity, because the total buffer level remains for the
diffusion buffer below 18 products and for the lithography and the implantation buffer
below 12 products. Thus can be concluded, that the transporter and buffer capacities
are sufficient for the schedule of Figure 4.2, even with this suboptimal transportation
sequence.



Appendix J

Computer aided analysis

To determine the feasibility of the control problem with deterministic machine failure,
computer aided analysis is performed. A linear programming model of the flow line is
presented in this appendix. The solving of the model will provide a lower bound on the
length of the schedule of one weeks production.

In the linear model the production of 84 products per week is modelled, while ma-
chine break down is included in the model. The modelling assumptions and reductions
and also the principle modelling elements are presented in Section 4.2. In that section
it has been determined that a time-indexed model is used to model the case. Further-
more, two jobs are scheduled per machine run, because the loading is always directly
followed by the processing and therefore the loading and processing can be combined
into one job. The used job identification and duration in the model is presented in
Table J.1. The first column presents the identification number of the job in the model.
The second column presents the task that is represented by the job. The loading tasks
of the machines also include the processing tasks. Personnel off time is scheduled as jobs
on an ’off time machine’. Furthermore, the breaks and meetings of the operator, who
represents both operators of the case, have equal length and require therefore only one
identification number in the model. The third and fourth column present the duration
of the jobs for respectively the machines and the personnel. The machines have for the
load and process jobs a different job duration than the personnel, because the personnel
only performs the loading part of the jobs. The job durations are five times smaller
than the durations in the case, because the time discretization step in the model equals
5 min. Now, the model shall be presented.

Two types of variables are used in the model. The first type represents the main
variables of the model xjk. The value of the variables equals 1 if job j is started at time
k and 0 otherwise. Therefore, an integer linear programming model will result. The
second type is the minimization variable z. It equals the maximum completion time
of all jobs. The main variables xjk are used to minimize z. Next, the constraints are
defined.
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id task machine personnel

0 load diffusion low step 49 min 4 min
1 unload diffusion low step 8 min 8 min
2 load ion implantation step low 9 min 3 min
3 unload ion implantation low step 3 min 3 min
4 load lithography low step 13 min 2 min
5 setup and load lithography low step 15 min 4 min
6 unload lithography low step 2 min 2 min
7 load ion implantation high step 13 min 3 min
8 unload ion implantation high step 3 min 3 min
9 load diffusion high step 55 min 4 min
10 unload diffusion high step 8 min 8 min
11 load lithography high step 4 min 2 min
12 setup and load lithography high step 6 min 4 min
13 unload lithography high step 2 min 2 min
14 scheduled maintenance diffusion 15 min 15 min
15 scheduled maintenance lithography 6 min 6 min
16 scheduled maintenance ion implantation 24 min 24 min
17 break technician 9 min 9 min
18 meeting technician 6 min 6 min
19 off time operator 12 min 12 min
20 unscheduled maintenance ion implantation 84 min 84 min

Table J.1: Job properties

The first set of constraints, used to schedule the correct number of general jobs j, is

2016−49
∑

k=0

x0k = 28, (J.1)

2016−8
∑

k=0

x1k = 28, (J.2)

2016−9
∑

k=0

x2k = 84, (J.3)

2016−3
∑

k=0

x3k = 84, (J.4)

2016−13
∑

k=0

x4k = 70, (J.5)

2016−15
∑

k=0

x5k = 14, (J.6)

2016−2
∑

k=0

x6k = 84, (J.7)
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2016−13
∑

k=0

x7k = 84, (J.8)

2016−3
∑

k=0

x8k = 84, (J.9)

2016−55
∑

k=0

x9k = 28, (J.10)

2016−8
∑

k=0

x10k = 28, (J.11)

2016−4
∑

k=0

x11k = 70, (J.12)

2016−6
∑

k=0

x12k = 14, (J.13)

2016−2
∑

k=0

x13k = 84, (J.14)

2016−15
∑

k=0

x14k = 14, (J.15)

2016−6
∑

k=0

x15k = 14, (J.16)

2016−24
∑

k=0

x16k = 28, (J.17)

2016−9
∑

k=0

x17k = 28, (J.18)

2016−6
∑

k=0

x18k = 14, (J.19)

2016−12
∑

k=0

x19k = 84, (J.20)

2016−84
∑

k=0

x20k = 4. (J.21)

To schedule all jobs in one week, the maximal finish time of any job, accounting for
the discretization step of 5 min, equals 2016 min. The maximal start time of any job
equals the maximal finish time minus the production time and therefore, k runs in (J.1)
through (J.21) from 0 to the maximal start time.

The second set of constraints, used to prevent machines from scheduling more jobs
at a time than their capacity allows, is
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k
∑

l=k+1−49

x0l +

k
∑

l=k+1−8

(x1l + x10l) +

k
∑

l=k+1−55

x9l +

k
∑

l=k+1−15

x14l ≤ 2 ∀k, (J.22)

k
∑

l=k+1−13

x4l +

k
∑

l=k+1−15

x5l +

k
∑

l=k+1−2

(x6l + x13l) +

k
∑

l=k+1−4

x11l +

k
∑

l=k+1−6

(x12l + x15l) ≤ 1 ∀k, (J.23)

k
∑

l=k+1−9

x2l +

k
∑

l=k+1−3

(x3l + x8l) +

k
∑

l=k+1−13

x7l +

k
∑

l=k+1−24

x16l +

k
∑

l=k+1−84

x20l ≤ 2 ∀k. (J.24)

From all jobs that are processed on the same machine there can be at most one job,
(J.23), or two jobs, (J.22) and (J.24), in process at any time k. Equation (J.22) con-
straints the capacity of the diffusion machines, (J.23) of the lithography machine and
(J.24) of the ion implantation machines.

The third set of constraints, used to prevent personnel from performing more jobs
at a time than their capacity allows, is

k
∑

l=k+1−4

(x0l + x5l + x9l + x12l) +

k
∑

l=k+1−8

(x1l + x10l) +

k
∑

l=k+1−3

(x2l + x3l + x7l + x8l) +

k
∑

l=k+1−2

(x4l + x6l + x11l + x13l) +

k
∑

l=k+1−12

x19l ≤ 2 ∀k, (J.25)

k
∑

l=k+1−13

x14l +

k
∑

l=k+1−6

(x15l + x18l) +

k
∑

l=k+1−24

x16l +

k
∑

l=k+1−9

x17l +

k
∑

l=k+1−84

x20l ≤ 1 ∀k. (J.26)

The constraints are similar to the previous set of constraints. From all the jobs that
are performed by the same personnel there can be at most one, (J.26), or two, (J.25),
jobs being performed at any time k. Equation (J.25) constraints the capacity of the
operator and (J.26) of the technician.

The fourth set of constraints, used to introduce a relaxed precedence relation for
the processing and unloading of the products into the model, is

2016−8
∑

k=0

k · x1k ≥

2016−49
∑

k=0

(k + 49) · x0k, (J.27)

2016−3
∑

k=0

k · x3k ≥

2016−9
∑

k=0

(k + 9) · x2k, (J.28)

2016−2
∑

k=0

k · x6k ≥

2016−13
∑

k=0

((k + 13) · x4k + (k + 15) · x5k) , (J.29)

2016−3
∑

k=0

k · x8k ≥

2016−13
∑

k=0

(k + 13) · x7k, (J.30)

2016−8
∑

k=0

k · x10k ≥

2016−55
∑

k=0

(k + 55) · x9k, (J.31)

2016−2
∑

k=0

k · x13k ≥

2016−4
∑

k=0

((k + 4) · x11k + (k + 6) · x12k) . (J.32)
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The precedence relation in (J.27) through (J.32) is relaxed, because it is applied to
general jobs instead of individual jobs. This means that on average the processing jobs
are completed earlier than the unloading jobs are started.

The fifth set of constraints, used to prevents that first all processing jobs are sched-
uled and next all unloading jobs, is

2016−8
∑

k=0

k · x1k ≤

2016−49
∑

k=0

(k + 49) · x0k + ∆, (J.33)

2016−3
∑

k=0

k · x3k ≤

2016−9
∑

k=0

(k + 9) · x2k + ∆, (J.34)

2016−2
∑

k=0

k · x6k ≤

2016−13
∑

k=0

((k + 13) · x4k + (k + 15) · x5k) + ∆, (J.35)

2016−3
∑

k=0

k · x8k ≤

2016−13
∑

k=0

(k + 13) · x7k + ∆, (J.36)

2016−8
∑

k=0

k · x10k ≤

2016−55
∑

k=0

(k + 55) · x9k + ∆, (J.37)

2016−2
∑

k=0

k · x13k ≤

2016−4
∑

k=0

((k + 4) · x11k + (k + 6) · x12k) + ∆. (J.38)

The constant ∆ in (J.33) through (J.38) allows a small time interval between the com-
pletion of the processing jobs and the start of the unloading jobs, because the operator
will not always be directly available for unloading.

The sixth set of constraints, used to equate the lower boundary of the variable z to
the maximal completion time of all jobs, is

z ≥ (k + pj) · xjk ∀j, k. (J.39)

When z is minimized, it represents the minimal length of the schedule. Because general
jobs are used, in (J.39) this set can not be simplified by summing over k, because we
would not get the length of the schedule for result of the minimization of z.

The final set of constraints, used to restrict the main variables xjk to integer values
and to present them a lower and an upper boundary, is

xjk ∈ {0, 1} j /∈ {2, 3, 7, 8, 19}, ∀k, (J.40)

xjk ∈ {0, 1, 2} j ∈ {2, 3, 7, 8, 19}, ∀k. (J.41)

The upper boundary of the variables equals 2, (J.41), for the loading and unloading jobs
on the ion implantation machines, because both machines can be loaded and unloaded
at the same time. The boundary also equals 2 for the off time of the operators. All
other main variables have an upper boundary of 1, (J.40). This concludes the integer
linear programming model of the Intel case.
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Appendix K

χ model with improved control

In this appendix, the final χ model of the flow line with improved control is shown. This
model is based on the χ model of Appendix A. Machine break down has been removed
from the model. The design and implementation of the improvements are described
respectively in Section 5.1 and 5.2. The control of the generator, the incoming buffers
and the personnel dispatcher of the flow line is improved.

from std import *

from random import *

const ih: nat^3 = <|2,2,2|> // ini history

, imi: real^5 = <|600.0,600.0,55.0,600.0,600.0|> // ini machine idle times

, imit: real^5 = <|0.0,0.0,0.0,0.0,0.0|> // ini machine idle times tech

, imst: nat^5 = <|0,0,0,0,0|> // ini machine status

, imsp: nat^5 = <|0,0,2,1,1|> // ini machine step

, ip: nat^2* = [<|0,0|>,<|2,1|>,<|2,2|>] // ini state personnel (pos,type)

, isdc: nat^5 = <|0,0,0,0,0|> // ini sched down counter

, isdw: nat^5 = <|2,2,2,2,2|> // ini scheduled down window

, isp: nat^2 = <|2,0|> // ini setup (sp,tp)

, itl: nat = 0 // ini pos. transporter lots

, itsd: real^5 = <|0.0,0.0,0.0,0.0,0.0|> // ini sched down couter raise time

, mca: nat^8 = <|0,0,0,1,1,2,2,2|> // channel to op area mapping

, mcm: nat^8 = <|0,0,1,2,2,3,3,4|> // channel to machine mapping

, mmc: nat^5 = <|1,2,4,6,7|> // machine to channel mapping

, mr: nat^7 = <|1,3,2,3,1,2,4|> // lot routing mapping

, mw: nat^5 = <|0,0,1,2,2|> // machine to workstation mapping

, pim: bool^8 = <|false,true,true,false,true,false,true,true|> // process is machine

, rot: nat^3^2 = <|<|2,2,2|>,<|1,1,1|>|> // required off-times

, tasd: real^5 = <|1440.0,1440.0,720.0,720.0,720.0|> // average time betw sched down

, nos: real^3 = <|3.0,51.0,30.0|> // nr of starts per week

, to: nat^3^2 = <|<|45,60,60|>,<|30,60,60|>|> // off times (break,meeting)

, te: nat^6 = <|225,30,55,50,255,10|> // process times

, tol: nat^3 = <|20,10,15|> // op load times

, tou: nat^3 = <|40,10,15|> // op unload times

, trun: nat^6 = <|285,60,75,80,315,30|> // run times

, tsd: nat^3 = <|75,30,120|> // scheduled down times

, tsh: nat = 720 // shift time

, tsp: nat^4 = <|0,5,10,12|> // setup times (none,tp,sp,both)

, ttlu: nat = 2 // transp loading + unloading time

, ttr: nat^2 = <|4,1|> // transport times (transp,pers)

87
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type lot = id.nat#tp.nat#sp.nat#hs.nat^3#st.real

// identification#type (0,1,2)#step (0..6)#history#starttime

, n1ls = nat#lot*

, n2ls = nat#nat#lot*

, n3ls = nat#nat#nat#lot*

, n4ls = nat#nat#nat#nat#lot*

proc Gs(a: !void, n: nat) =

|[ ti: real

| [ n = 0 -> ti:= 10080/nos.0 | n = 1 -> ti:= 10080/(nos.1 + nos.2) ]

; *[ true -> a!; delta ti ]

]|

proc Gc(a: (?void)^2, b: !void, c: !lot*) =

|[ xs: lot*, i,n,lt: nat

| xs:= []; i:= 0; n:= 51; lt:= 1

; *[ j: nat <- 0..2: true; a.j?

-> [ j = 0 -> xs:= xs ++ [<i,j,0,ih,time>]

| j = 1 -> xs:= xs ++ [<i,lt,0,ih,time>]; n:= n - 1

; [ n = 0 -> [ lt = 1 -> lt:= 2; n:= 30 | lt = 2 -> lt:= 1; n:= 51 ]

| n > 0 -> skip

]

]; i:= i + 1; b!

| len(xs) > 0; c![hd(xs)] -> xs:= tl(xs)

]

]|

clus G(a: !void, b: !lot*) = |[ c: (-void)^2 | j: nat <- 0..2: Gs(c.j,j) || Gc(c,a,b) ]|

proc Tpld(a: (?void)^4, b: !nat) =

|[ xs: nat*

| xs:= []

; *[ j: nat <- 0..4: true; a.j? -> xs:= xs ++ [j]

| len(xs) > 0; b!hd(xs) -> xs:= tl(xs)

]

]|

func tt(ft: nat^2, n,k: nat) -> int = |[ ret n * abs(+ft.0 - ft.1) + k ]|

proc Tpl(a: ?nat, b: (?lot*)^4, c: (!lot*)^4) =

|[ ft: nat^2, xs: lot*

| ft.0:= itl

; *[ true

-> a?ft.1; delta tt(ft,ttr.0,0); b.(ft.1)?xs; ft:= <| ft.1, mr.(hd(xs).sp) |>

; delta tt(ft,ttr.0,ttlu); c.(ft.1 - 1)!xs; ft.0:= ft.1

]

]|

clus Tl(a: (?void)^4, b: (?lot*)^4, c: (!lot*)^4) =

|[ d: -nat | Tpld(a,d) || Tpl(d,b,c) ]|

func sel(xs: n1ls*, cs: bool, n,maxn: nat) -> (nat#lot*)#bool#nat =

|[ zs: n1ls*, x: lot, b: bool

| [ len(xs) = 0 -> ret <<0,[]>,cs,n>

| len(xs) > 0

-> zs:= xs

; *[ len(zs) > 0

-> x:= hd(hd(zs).1); b:= x.sp < 3 and not cs or x.sp >= 3 and cs

; [ b and n < maxn -> ret <hd(zs),cs,n+1>

| b and n = maxn -> zs:= tl(zs)

| not b and n < maxn -> zs:= tl(zs)
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| not b and n = maxn -> ret <hd(zs),cs,1>

]

]

; [ b -> ret <hd(xs),not cs,n>

| not b -> ret <hd(xs),not cs,1>

]

]

]|

func feasbat(r: nat, x,y,z: lot) -> bool =

|[ testlots: lot*, a,b,c: bool, n: nat

| testlots:= [ p | p: lot <- [x,y,z], p.tp = 0 ]; n:= len(testlots)

; a:= x.tp = y.tp; b:= x.tp = z.tp; c:= y.tp = z.tp

; [ n >= 2 -> ret false

| n < 2 and x.sp < 3 -> ret true

| n = 0 and x.sp >= 3 -> ret a and b

| n = 1 and x.sp >= 3 -> ret (a or b or c) and hd(testlots).hs.0 /= r

]

]|

func dispd(rs: nat*, xs: lot*, cs: bool, n,maxn: nat) -> (nat#lot*)#bool#nat =

|[ ret sel([ <r,[x,y,z]>

| r: nat <- rs

, x: lot <- xs, y: lot <- xs, x.id < y.id, x.sp = y.sp

, z: lot <- xs, y.id < z.id, y.sp = z.sp

, feasbat(r,x,y,z)

],cs,n,maxn)

]|

func dispi(rs: nat*, xs: lot*, cs: bool, n,maxn: nat) -> (nat#lot*)#bool#nat =

|[ ret sel([ <r,[x]> | r: nat <- rs, x: lot <- xs, x.tp /= 0 or x.hs.2 /= r ],cs,n,maxn) ]|

proc Bmi(a: ?lot*, b: (?void)^2, c: !n2ls, d: ?n2ls

, e: (!n1ls)^2, disp: (nat*,lot*,bool,nat,nat) -> (nat#lot*)#bool#nat, maxn: nat) =

|[ xs,ys,zs: lot*, n,p,r: nat, rs: nat*, rzss: (n1ls)*, ncs,cs: bool

| xs:= []; rs:= []; rzss:= []; cs:= false; n:= 0

; *[ true

-> <<r,zs>,ncs,n>:= disp(rs,xs,cs,n,maxn)

; [ true; a?ys -> xs:= xs ++ ys

| j: nat <- 0..2: true; b.j? -> rs:= rs ++ [j]

| len(zs) > 0; c!<1,r,zs>

-> rzss:= rzss ++ [<r,zs>]; rs:= rs -- [r]; xs:= xs -- zs; cs:= ncs

| true; d?<p,r,zs> -> rzss:= rzss -- [<r,zs>]; e.r!<p,zs>

]

]

]|

proc Bmo(a: (?n1ls)^2, b: !nat^2, c: !void, d: !lot*) =

|[ xs,ys: lot*, i,p: nat

| xs:= []

; *[ j: nat <- 0..2: true; a.j?<p,ys>

-> xs:= xs ++ ys; b!<|p,j|>; i:= len(ys); *[ i > 0 -> c!; i:= i - 1 ]

| len(xs) > 0; d![hd(xs)]

-> xs:= tl(xs)

]

]|

clus Bm(a: ?lot*, b: (?void)^2, c: !n2ls, d: ?n2ls, e: (!n1ls)^2, f: (?n1ls)^2, g: !nat^2

, h: !void, i: !lot*, disp: (nat*,lot*,bool,nat,nat) -> (nat#lot*)#bool#nat, maxn: nat) =

|[ Bmi(a,b,c,d,e,disp,maxn) || Bmo(f,g,h,i) ]|

func displ(xs:lot*, cs,ct,n:nat) -> lot*#nat#nat#nat =
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|[ zs: lot*

| zs:= [ y | y: lot <- xs, y.sp = cs, y.tp = ct, n < 6 ] ++

[ y | y: lot <- xs, y.sp = cs, y.tp /= ct, y.tp /= 0, n < 6 ] ++

[ y | y: lot <- xs, y.sp = cs, y.tp /= ct, y.tp = 0, n < 6 ] ++

[ y | y: lot <- xs, y.sp /= cs, y.tp = ct ] ++

[ y | y: lot <- xs, y.sp /= cs, y.tp /= ct, y.tp /= 0 ] ++

[ y | y: lot <- xs, y.sp /= cs, y.tp /= ct, y.tp = 0 ]

; [ len(zs) = 0 -> ret <[],cs,ct,n>

| len(zs) /= 0

-> [ hd(zs).sp = cs -> ret <[hd(zs)],hd(zs).sp,hd(zs).tp,n+1>

| hd(zs).sp /= cs -> ret <[hd(zs)],hd(zs).sp,hd(zs).tp,1>

]

]

]|

proc Bsi(a: ?lot*, b: ?void, c: !n2ls, d: ?n2ls, e: !n1ls) =

|[ xs,ys,zs: lot*, rq: bool, p,q,ncs,cs,nct,ct,n,nn: nat

| xs:= []; rq:= false; cs:= isp.0; ct:= isp.1; n:= 0

; *[ true

-> <zs,ncs,nct,nn>:= displ(xs,cs,ct,n)

; [ true; a?ys -> xs:= xs ++ ys

| true; b? -> rq:= true

| rq and zs /= []; c!<1,0,zs> -> rq:= false; cs:= ncs; ct:= nct; n:= nn

| true; d?<p,q,ys> -> xs:= xs -- ys; e!<p,ys>

]

]

]|

proc Bso(a: ?n1ls, b: !nat^2, c: !void, d: !lot*) =

|[ xs,ys: lot*, p: nat

| xs:= []

; *[ true; a?<p,ys> -> xs:= xs ++ ys; b!<|p,0|>; c!

| len(xs) > 0; d![hd(xs)] -> xs:= tl(xs)

]

]|

clus Bs(a: ?lot*, b: ?void, c: !n2ls, d: ?n2ls, e: !n1ls, f: ?n1ls, g: !nat^2, h: !void

, i: !lot*) =

|[ Bsi(a,b,c,d,e) || Bso(f,g,h,i) ]|

func su(psp,ptp,sp,tp: nat) -> nat =

|[ [ sp = psp and tp = ptp -> ret tsp.0

| sp = psp and tp /= ptp -> ret tsp.1

| sp /= psp and tp = ptp -> ret tsp.2

| sp /= psp and tp /= ptp -> ret tsp.3

]

]|

func updm(x: lot, wi,mi: nat) -> lot = |[ x.sp:= x.sp + 1; x.hs.wi:= mi; ret x ]|

proc M(a: !void, b: ?n1ls, c: !nat^2, d: !n2ls

, e: ?n2ls, f: !n1ls, wi,mi: nat) =

|[ p,q,psp,ptp,sp,tp: nat, ud: bool, qs,xs: lot*

| <|psp,ptp|>:= isp; ud:= false; a!

; *[ true; b?<p,xs>

-> [ wi = 1

-> sp:= hd(xs).sp; tp:= hd(xs).tp; delta su(psp,ptp,sp,tp); psp:= sp; ptp:= tp

| wi /= 1 -> skip

]

; delta tol.wi; c!<|p,0|>; delta te.(hd(xs).sp); d!<1,0,[]>; e?<p,q,qs>; delta tou.wi

; f!<p,[ updm(x,wi,mi) | x: lot <- xs ]>; a!

| true; e?<p,q,qs>
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-> delta tsd.wi; c!<|p,0|>

]

]|

func doscm(n: nat, msp: nat^5) -> bool =

|[ [ n < 3 -> ret true | n >= 3 -> ret msp.2 = 5 ] ]|

func feaswp(w,j,p: nat) -> bool =

|[ ret w = p and (w = 0 or w = 1 and (j < 3 or j > 4)) or w = 2 and p = 1 and j > 2 ]|

func saw(j,p: nat, ot: nat^3^2, mi: real^5, rs: (n3ls)*, t: real) -> bool =

|[ b0,b1: nat*

| b0:= [ 0 | r: n3ls <- rs, r.0 < 3 ]; b1:= [ 0 | r: n3ls <- rs, r.0 >= 3, r.0 < 5 ]

; [ p = 0 -> ret true

| p = 1 -> ret j < 3 or j > 4 and len(b0) = 0

| p = 2

-> ret j < 5 or j >= 5 and not (mi.2 - t = 55 and (ot.0.2 > 0 or ot.1.2 > 0)) and len(b1) = 0

]

]|

func tkot(p: nat, mi,mit: real^5, sdc: nat^5, t: real) -> bool =

|[ ns: nat*

| [ p = 0 -> ns:= [ n | n: nat <- [0,1,2], sdc.n > 0, mit.n - t <= 30 ]; ret len(ns) = 0

| p = 1 -> ns:= [ n | n: nat <- [0,1], mi.n - t <= 20 ]; ret len(ns) = 0

| p = 2 -> ret mi.2 - t = 55

]

]|

func dispp(ot: nat^3^2, rs: (n3ls)*, wps: nat^2*, mst,sdw,sdc,msp: nat^5, mi,mit: real^5, t: real)

-> (nat#nat^2)*#((n3ls)#nat^2)*#nat^5 =

|[ ops: (nat#nat^2)*, dps: ((n3ls)#nat^2)*, dp: (n3ls)#nat^2, k,m: nat

| dps:= [ <<mmc.n,0,0,[]>,w> | w: nat^2 <- wps, w.1 = 0, n: nat <- [0,1,2,3,4], mst.n = 0

, sdw.n /= 1, doscm(n,msp) or sdw.n = 0 ] ++

[ <<j,p,q,xs>,w> | w: nat^2 <- wps, <j,p,q,xs>: n3ls <- rs, feaswp(w.1,j,p), xs /= []

, saw(j,w.1,ot,mi,rs,t), sdw.(mcm.j+q) > 0 or pim.j ] ++

[ <<j,p,q,xs>,w> | w: nat^2 <- wps, <j,p,q,xs>: n3ls <- rs, feaswp(w.1,j,p), xs = []

, saw(j,w.1,ot,mi,rs,t), sdw.(mcm.j+q) > 0 or pim.j ]

; [ len(dps) = 0

-> ops:= [ <n,w> | w: nat^2 <- wps, n: nat <- [0,1], ot.n.(w.1) > 0, tkot(w.1,mi,mit,sdc,t) ]

| len(dps) > 0

-> ops:= []; dp:= hd(dps); k:= dp.0.1; m:= mcm.(dp.0.0)

; [ k = 0 and mst.m = 0 -> sdw.m:= 0 | k /= 0 or mst.m /= 0 -> skip ]

]

; ret <ops,dps,sdw>

]|

func pns(x,y: real#nat) -> real#nat = |[ [ x.0 <= y.0 -> ret x | x.0 > y.0 -> ret y ] ]|

func nsdwe(sdw: nat^5, twc,two: real^5) -> (real#nat)* =

|[ nsdwns: (real#nat)*

| nsdwns:= [ <twc.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 2 ] ++

[ <two.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 1, twc.n - tasd.n <= two.n ] ++

[ <twc.n-tasd.n,n> | n: nat <- [0,1,2,3,4], sdw.n = 1, twc.n - tasd.n > two.n ]

; [ len(nsdwns) = 0 -> ret [] | len(nsdwns) > 0 -> ret [fold(tl(nsdwns),pns,hd(nsdwns))] ]

]|

func nsde(tnsd: real^5) -> real#nat#real^5 =

|[ sdns: (real#nat)*, tsdc: real, u: nat

| sdns:= [ <tnsd.n,n> | n: nat <- [0,1,2,3,4] ]

; <tsdc,u>:= fold(tl(sdns),pns,hd(sdns)); tnsd.u:= tnsd.u + tasd.u; ret <tsdc,u,tnsd>

]|
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func updp(j,p,q: nat, mst,sdc,sdw,msp: nat^5, twc,two,mi: real^5, t: real)

-> nat^5#nat^5#nat^5#real^5#real^5#real^5 =

|[ n: nat, trem: real

| n:= mcm.j + q

; [ p > 0 and mst.n = 1 -> mi.n:= t + te.(msp.n)

| p = 0 or mst.n /= 1 -> skip

]

; [ p = 0 and mst.n = 1

-> sdw.n:= 1; sdc.n:= sdc.n - 1; two.n:= t + (tasd.n)/2; mst.n:= 0

; trem:= t + tasd.n - rmod(t,tasd.n)

; [ sdc.n = 0 -> twc.n:= trem + tasd.n

| sdc.n = 1 -> twc.n:= max(two.n,trem)

| sdc.n > 1 -> twc.n:= two.n

]

| p > 0 or mst.n /= 1

-> mst.n:= mst.n mod 2

]

; ret <mst,sdc,sdw,twc,two,mi>

]|

proc Pd(a: (?n2ls)^8, b: (?nat^2)^8, c: ?nat^2*, d: !nat#nat^2, e: !n4ls) =

|[ dps: ((n3ls)#nat^2)*, rs: (n3ls)*, wps,ws: nat^2*, w: nat^2, mst,nsdw,sdc,sdw,msp: nat^5

, ops: (nat#nat^2)*, op: nat#nat^2, r: n3ls, m,n,p,q,u,tno: nat, xs: lot*

, nsdwes: (real#nat)*, ntnsd,tnsd,twc,two,mi,mit: real^5, ot: nat^3^2, tsdc: real

| rs:= []; wps:= ip; mst:= imst; twc:= tasd; sdc:= isdc; sdw:= isdw; ot:= rot

; tno:= tsh; tnsd:= itsd; msp:= imsp; mi:= imi; mit:= imit

; *[ true

-> <ops,dps,nsdw>:= dispp(ot,rs,wps,mst,sdw,sdc,msp,mi,mit,time)

; nsdwes:= nsdwe(sdw,twc,two); <tsdc,u,ntnsd>:= nsde(tnsd)

; [ j: nat <- 0..8: true; a.j?<p,q,xs>

-> rs:= rs ++ [<j,p,q,xs>]

| j: nat <- 0..8: true; b.j?<|p,q|>

-> wps:= wps ++ [<|j,p|>]

; <mst,sdc,sdw,twc,two,mi>:= updp(j,p,q,mst,sdc,sdw,msp,twc,two,mi,time)

| true; c?ws

-> wps:= wps ++ ws

| len(ops) > 0; d!hd(ops)

-> op:= hd(ops); wps:= wps -- [op.1]; m:= op.0; n:= op.1.1; ot.m.n:= ot.m.n - 1

| len(dps) > 0; e!<hd(dps).1.0,hd(dps).0.0,hd(dps).1.1,hd(dps).0.2,hd(dps).0.3>

-> <r,w>:= hd(dps); rs:= rs -- [r]; wps:= wps -- [w]; n:= mcm.(r.0) + r.2

; [ mst.n = 0 and w.1 /= 0 -> msp.n:= hd(r.3).sp; mit.n:= time + trun.(msp.n)

| mst.n = 0 and w.1 = 0 -> mi.n:= time + tsd.(mw.n)

| mst.n = 1 and w.1 /= 0 -> skip

]

; mst.n:= mst.n + 1; sdw:= nsdw

| len(nsdwes) > 0; delta hd(nsdwes).0 - time

-> n:= hd(nsdwes).1; sdw.n:= (sdw.n + 1) mod 3

| true; delta tsdc - time

-> sdc.u:= sdc.u + 1; tnsd:= ntnsd

| true; delta tno - time

-> tno:= tno + tsh; m:= 2

; *[ m > 0

-> m:= m - 1; n:= 3; *[ n > 0 -> n:= n - 1; ot.m.n:= ot.m.n + rot.m.n ]

]

]

]

]|

func ptpp(x,y: real#nat#nat#nat#lot*) -> bool = |[ ret x.0 <= y.0 ]|

proc Pt(a: ?n4ls, b: (!n2ls)^8) =

|[ xs: (real#nat#nat#nat#lot*)*, p,q,u,v: nat, ys:lot*, x: real#nat#nat#nat#lot*
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| xs:= []

; *[ true; a?<u,v,p,q,ys>

-> xs:= insert(xs,<time+tt(<|mca.u,mca.v|>,ttr.1,0),v,p,q,ys>,ptpp)

| len(xs) > 0; delta hd(xs).0 - time

-> x:= hd(xs); b.(x.1)!<x.2,x.3,x.4>; xs:= tl(xs)

]

]|

func ppo(x,y: real#nat^2) -> bool = |[ ret x.0 <= y.0 ]|

proc Po(a: ?nat#nat^2, b: !nat^2*) =

|[ os: (real#nat^2)*, op: nat^2, m: nat

| os:= []

; *[ true; a?<m,op> -> os:= insert(os,<time+to.m.(op.1),op>,ppo)

| len(os) > 0; delta hd(os).0 - time -> b![hd(os).1]; os:= tl(os)

]

]|

clus P(a: (?n2ls)^8, b: (?nat^2)^8, c: (!n2ls)^8) =

|[ d: -nat^2*, e: -nat#nat^2, f: -n4ls

| Pd(a,b,d,e,f) || Pt(f,c) || Po(e,d)

]|

proc E(a: ?lot*) = |[ xs: lot* | *[ true -> a?xs ] ]|

clus Intelimproved()=

|[ a: (-void)^4, b,c: (-lot*)^4, d,n: (-void)^2, e,f: (-n2ls)^8, g,i,o,p: (-n1ls)^2

, h: (-nat^2)^8, l,m: -n1ls, k: -void

| G(a.0,b.0)

|| Tl(a,b,c)

|| Bm(c.0,d,e.0,f.0,g,i,h.0,a.1,b.1,dispd,2)

|| j: nat <- 0..2: M(d.j,g.j,h.(j+1),e.(j+1),f.(j+1),i.j,0,j)

|| Bs(c.1,k,e.3,f.3,l,m,h.3,a.2,b.2)

|| M(k,l,h.4,e.4,f.4,m,1,0)

|| Bm(c.2,n,e.5,f.5,o,p,h.5,a.3,b.3,dispi,6)

|| j: nat <- 0..2: M(n.j,o.j,h.(j+6),e.(j+6),f.(j+6),p.j,2,j)

|| P(e,h,f)

|| E(c.3)

]|

xper = |[Intelimproved()]|


