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34.1 Introduction

The dynamics of manufacturing systems has been a subject of study for several decades (Forrester, 1961;
Hopp and Spearman, 2000). Over the last years, manufacturing systems have become more and more
complex and therefore a good understanding of their dynamics has become even more important.

The goal of this chapter is to introduce a large variety of models for manufacturing systems. By means
of examples it is illustrated how certain modeling techniques can be used to derive models that can be used
for analysis or control. In addition to references that can be used as a starting point for further inquiry,
recent developments in the modeling, analysis, and control of manufacturing systems are presented.

Since no familiarity with manufacturing systems is assumed, in Section 34.2 some terminology and basic
properties of manufacturing systems are introduced. Section 34.3 provides some analytical modeling
techniques and methods for analyzing steady-state behavior. Section 34.4 is concerned with deriving
discrete-event models, which yield a more detailed insight in the dynamics of a manufacturing system. To
reduce the complexity of discrete-event models, the concept of effective process times (EPTs) is introduced
in Section 34.5, which results in modeling a manufacturing system as a large queueing network. This way
of modeling a manufacturing system is a first step in a larger control framework, which is introduced in
Section 34.6. This control framework makes it possible to study problems of controlling the dynamics
of manufacturing systems by means of the available inputs. An important role in this control framework
is played by approximation models. The most commonly used approximation models are presented in
Section 34.7. Recently, a new class of approximation models has been proposed, which is presented in
Section 34.8. Section 34.9 concludes this chapter.

34-1
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FIGURE 34.1 Basic quantities for manufacturing systems.

34.2 Preliminaries

First a few basic quantities are introduced as well as the main principles for manufacturing system analysis.
The items produced by a manufacturing system are called lots. Also the words product and job are
commonly used. Other important notions are throughput, flow time, wip, and utilization. These notions
are illustrated in Figure 34.1 at factory and machine level.

Raw process time t0 of a lot denotes the net time a machine needs to process the lot. This process time
excludes additions such as setup time, breakdown, or other sources that may increase the time a lot
spends in the machine. The raw process time is typically measured in hours or minutes.

Throughput δ denotes the number of lots per unit time that leaves the manufacturing system. At a
machine level, this denotes the number of lots that leave a machine per unit time. At a factory
level it denotes the number of lots that leave the factory per unit time. The unit of throughput is
typically lots/hour.

Flow time ϕ denotes the time a lot is in the manufacturing system. At a factory level this is the time
from the release of the lot into the factory until the finished lot leaves the factory. At a machine
level this is the time from entering the machine (or the buffer in front of the machine) until leaving
the machine. Flow time is typically measured in days, hours, or minutes. Instead of flow time the
words cycle time and throughput time are also commonly used.

Work in process (wip) w denotes the total number of lots in the manufacturing system, i.e., in the factory
or in the machine. Wip is measured in lots.

Utilization u denotes the fraction a machine is not idle. A machine is considered idle if it could start pro-
cessing a new lot. Thus process time as well as downtime, setup time, and preventive maintenance
time all contribute to the utilization. Utilization has no dimension and can never exceed 1.0.

Ideally, a manufacturing system should both have a high throughput and a low flow time or low wip.
Unfortunately, these goals are conflicting (cf. Figure 34.2) and both cannot be met simultaneously. If a
high throughput is required, machines should always be busy. As from time to time disturbances like
machine failures happen, buffers between two consecutive machines are required to make sure that the
second machine can still continue if the first machine fails (or vice versa). Therefore, for a high throughput
many lots are needed in the manufacturing system, i.e., wip needs to be high. As a result, if a new lot
starts in the system it has a large flow time, since all lots that are currently in the system need to be
completed first.
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FIGURE 34.2 Basic relations between basic quantities for manufacturing systems.
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FIGURE 34.3 A characteristic time-behavior of wip at a workstation.

Conversely, the least possible flow time can be achieved if a lot arrives at a completely empty system and
never has to wait before processing takes place. As a result, the wip level is small. However, for most of the
time machines are not processing, yielding a small throughput.

When trying to control manufacturing systems, a trade-off needs to be made between throughput and
flow time, so the nonlinear (steady-state) relations depicted in Figure 34.2 need to be incorporated in any
reasonable model of manufacturing systems.

A final observation of relevance for modeling manufacturing systems is the nature of the system signals.
In Figure 34.3 a characteristic graph of the wip at a workstation as a function of time is shown. Wip always
takes integer values with arbitrary (nonnegative real) duration. One could consider a manufacturing
system to be a system that takes values from a finite set of states and jumps from one state to the other as
time evolves. This jump from one state to the other is called an event. As we have a countable (discrete)
number of states, it is clear that discrete-event models are often used in modeling manufacturing systems.
Discrete-event models for manufacturing systems are considered in Section 34.4. But first some analytical
models for analyzing steady-state behavior of manufacturing systems are presented in the next section.

34.3 Analytical Models for Steady-State Analysis

To get some insights in the steady-state performance of a given manufacturing system simple relations
can be used. In this section, we deal with mass conservation for determining the mean utilization of
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workstations and the number of machines required for meeting a required throughput. Furthermore,
relations from queueing theory are used to obtain estimates for the mean wip and mean flow time.

34.3.1 Mass Conservation (Throughput)
Using mass conservation the mean utilization of workstations can easily be determined.

Example 1
Consider the manufacturing system with rework and bypassing in Figure 34.4. The manufacturing
system consists of three buffers and four machines. Lots are released at a rate of λ lots/h. The numbers
near the arrows indicate the fraction of the lots that follow that route. For instance, of the lots leaving
buffer B1 90% goes to machine M1 and 10% goes to buffer B3. The process time of each machine is
listed in the table in Figure 34.4.

Let δMi and δBi denote the throughput of machine Mi (i = 1, 2, 3, 4) and buffer Bi (i = 1, 2, 3),
respectively. Using mass conservation we obtain

δM1 = 0.9δB1 δB1 = λ

δM2 = 0.2δB2 δB2 = δM1 + δM2

δM3 = 0.8δB2 δB3 = δM3 + 0.1δB1

δM4 = δB3 δ = δM4

Solving these linear relations results in:

δM1 = 0.9λ δB1 = λ

δM2 = 0.225λ δB2 = 1.125λ

δM3 = 0.9λ δB3 = λ

δM4 = λ δ = λ

Using the process times of the table in Figure 34.4, we obtain for the utilizations:

uM1 = 0.9λ · 2.0/1 = 1.8λ uM3 = 0.9λ · 1.8/1 = 1.62λ

uM2 = 0.225λ · 6.0/1 = 1.35λ uM4 = λ · 1.6/1 = 1.6λ

Clearly, machine M1 is the bottleneck and the maximal throughput for this line is λ = 1/1.8 =
0.56 jobs/h.

Using mass conservation, utilizations of workstations can be determined straightforwardly. This also
provides a way for determining the number of machines required for meeting a given throughput. By
modifying the given percentages the effect of rework or a change in product mix can also be studied.
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FIGURE 34.4 Manufacturing system with rework and bypassing.
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34.3.2 Queueing Relations (Wip, Flow Time)
For determining a rough estimate of the corresponding mean flow time and mean wip, basic relations
from queueing theory can be used.

Consider a single machine workstation that consists of infinite buffer B∞ and machine M (see
Figure 34.5). Lots arrive at the buffer with a stochastic interarrival time. The interarrival time distri-
bution has mean ta and a standard deviation σa, which we characterize by the coefficient of variation
ca = σa/µa. The machine has stochastic process times, with mean process time t0 and coefficient of varia-
tion c0. Finished lots leave the machine with a stochastic interdeparture time, with mean td and coefficient
of variation cd. Assuming independent interarrival times and independent process times, the mean waiting
time ϕB in buffer B can be approximated for a stable system by means of Kingman’s equation (Kingman,
1961):

ϕB = c2
a + c2

0

2

u

1 − u
t0 (34.1)

with the utilization u defined by: u = t0/ta. Eq. (34.1) is exact for an M/G/1 system, i.e., a single machine
workstation with exponentially distributed interarrival times and any distribution for the process time.
For other single machine workstations it is an approximation.

For a stable system, we have td = ta. We can approximate the coefficient of variation cd by Kuehn’s
linking equation (Kuehn, 1979):

c2
d = (1 − u2)c2

a + u2c2
0 . (34.2)

This result is exact for an M/M/1 system. For other single machine workstations it is an approximation.
Having characterized the departure process of a workstation, the arrival process at the next workstation
has been characterized as well. As a result, a line of workstations can also be described.

Example 2 (Three workstations in line)
Consider the three workstation flow line in Figure 34.6. For the interarrival time at workstation 0 we have
ta = 4.0 h and c2

a = 1. The three workstations are identical with respect to the process times: t0,i = 3.0 h
for i = 0, 1, 2 and c2

0,i = 0.5 for i = 0, 1, 2. We are interested to determine the mean total flow time
per lot.

Since ta > t0,i for i = 0, 1, 2, we have a stable system and ta,i = td,i = 4.0 h for i = 0, 1, 2. Subsequently,
the utilization for each workstation is ui = 3.0/4.0 = 0.75 for i = 0, 1, 2.
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2

FIGURE 34.5 Single-machine workstation.
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FIGURE 34.6 Three workstation flow line.
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Using Eq. (34.1) we calculate the mean flow time for workstation 0

ϕ0 = ϕB + t0 = c2
a + c2

0

2

u

1 − u
t0 + t0 = 1 + 0.5

2

0.75

1 − 0.75
3.0 + 3.0 = 9.75 h

Using Eq. (34.2), we determine the coefficient of variation on the interarrival time ca,1 for work-
station W1

c2
a,1 = c2

d,0 = (1 − u2)c2
a + u2c2

0 = (1 − 0.752)1 + 0.752 · 0.5 = 0.719

and the mean flow time for workstation 1

ϕ1 = 0.719 + 0.5

2

0.75

1 − 0.75
3.0 + 3.0 = 8.49 h

In a similar way, we determine that c2
a,2 = 0.596, ϕ2 = 7.93 h. We then calculate the mean total flow time

to be

ϕtot = ϕ0 + ϕ1 + ϕ2 = 26.2 h

Note that the minimal flow time without variability (c2
a = c2

0,i = 0) equals 9.0 h.

Eq. (34.1) and Eq. (34.2) are particular instances of a workstation consisting of a single machine. For
workstations consisting of m identical machines, in parallel the following approximations can be used:

ϕB = c2
a + c2

0

2

u
√

2(m+1)−1

m(1 − u)
· t0 (34.3)

c2
d = (1 − u2)c2

a + u2 c2
0 + √

m − 1√
m

(34.4)

Note that in case m = 1 these equations reduce to Eq. (34.1) and Eq. (34.2).
Once the mean flow time has been determined, a third basic relation from queueing theory, Little’s law

(Little, 1961), can be used for determining the mean wip level. Little’s law states that the mean wip level
(number of lots in a manufacturing system) w is equal to the product of the mean throughput δ and the
mean flow time ϕ, provided the system is in steady state

w = δϕ (34.5)

An example illustrates how Kingman’s equation and Little’s law can be used.

Example 3
Consider the system of Example 2 as depicted in Figure 34.6. From Example 34.3.2 we know that the
flow times for the three workstations are, respectively,

ϕ0 = 9.75 h, ϕ1 = 8.49 h, ϕ2 = 7.93 h

Since the steady-state throughput was assumed to be δ = 1/ta = 1/4.0 = 0.25 lots/h, we obtain via
Little’s law

w0 = 0.25 · 9.75 = 2.44 lots

w1 = 0.25 · 8.49 = 2.12 lots

w2 = 0.25 · 7.93 = 1.98 lots

The above-mentioned relations are simple approximations that can be used for getting a rough idea about
the possible performance of a manufacturing system. These approximations are fairly accurate for high
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degrees of utilization but less accurate for lower degrees of utilization. A basic assumption when using
these approximations is the independence of the interarrival times, which in general is not the case, e.g., for
merging streams of jobs. Furthermore, using these equations only steady-state behavior can be analyzed.
For studying things like ramp-up behavior or for incorporating more details like operator-behavior, more
sophisticated models are needed, as described in the next section.

34.4 Discrete-Event Models

In the previous section simple methods have been introduced for analyzing steady-state behavior of
manufacturing systems. For analyzing the dynamics of manufacturing systems, more sophisticated models
are required. Using Figure 34.3 in Section 34.2 it was illustrated that typical models of manufacturing
systems are the so-called discrete-event models. In this section, we present examples how to build a
discrete-event model of a manufacturing system using the specification language χ, explained in more
detail in Chapter 19 of this handbook.

The way to build a discrete-event model is to consider the manufacturing system as a network of
concurrent processes through which jobs and other types of information flows. For example, a basic
machine can be modeled as a process which repeatedly tries to receive a lot, waits for the period of time
(the process time), and tries to send a lot. Using χ, we can write

proc M(chan a?b! : lot, var te:real)= |[var x : lot :: (a?x; �te ; b!x)]|
The machine is able to receive lots via external channel a, is able to send lots via external channel b, and
the process time of the machine is given by parameter te . Repeatedly, the machine tries to receive a lot over
external channel a and store this lot in discrete variable x. Next, the machine waits for te , after which the
machine tries to send x via external channel b.

A buffer can be modeled as a process that may receive new lots if it is not full and may send lots if it is
not empty. Using χ, a finite first in, first out (FIFO) buffer with a maximal buffer size n can be modeled as

proc B (chan a?b! : lot, var n : nat) =
|[ disc xs : [lot] = [], x : lot
::(len(xs) < n → a?x; xs : = xs++[x]
[] len(xs) > 0 → b!hd(xs); xs : = tl(xs)
)

]|
This process can receive lots via external channel a, send lots via external channel b, and has its maximal
buffer size n as a parameter. Repeatedly, two alternatives can be executed:

• Trying to receive a lot via channel a (only if the length of the list xs is less than n) into discrete
variable x and consecutively adding it to list xs of lots (using a concatenation of lists).

• Trying to send the head of the list (its first element) via channel b (only if the list is not empty) and
consecutively reducing list xs to its tail (everything but the first element).

These two processes can be used to model a workstation that consists of a 3-place buffer and a machine
with process time te by simply executing the two previously specified processes in parallel:

procW (chan a?b! : lot, var te : real) = |[chan c : lot :: B(a,c,3)‖M(c,b,te)]|
We assume that lots arrive at this workstation according to a Poisson arrival process with mean arrival rate
of λ jobs per unit time. This can be modeled by means of the generator process

proc G (chan a! : lot, var λ : real) =
|[disc u: → real= exponential(1/λ) :: (a!τ; �σu; b!x)]|

Here the type lot is a real number which contains the time this lot entered the system. Generator G is able
to send lots via external channel a and has a mean departure rate, which is given by parameter λ. The
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discrete variable u contains an exponential distribution with mean 1/λ. Repeatedly, the generator tries
to send a lot over external channel a, where at departure it gets assigned the current time τ. Next, the
generator waits for a period which is given by a sample from the distribution u.

Once a lot has been served by workstation W it leaves to the exit process E:

proc E(chan a? : lot) = |[var x : lot :: (a?x)]|
This process repeatedly tries to receive a lot via external channel a.

For an arrival rate of λ = 0.5 and a process time of te = 1.5, the specification of the discrete-event model
can be completed by

model GWE() = |[chan a,b : lot :: G(a,0.5) ‖W (a,b,1.5)‖E(b)]|
In this way a manufacturing system can be modeled as a network of concurrent processes through which
jobs and other types of information flows. The presented model is rather simple, but clearly many more
ingredients can be added. For example, to include an operator for the processing of the machine we can
modify the process M into

proc M̄ (chan a?b! : lot, c?, d! : operator, var te : real) =
|[var x : lot, y : operator :: (c?y; a?x; �te; b!x; d!y)]|

Highly detailed models of manufacturing systems can be made in this way, even before the system has been
build. The influence of parameters can be analyzed by running several experiments with the discrete-event
model using different parameter settings. This is common practice when designing a several billion wafer
fab. However, since in practice manufacturing systems are changing continuously, it is very hard to keep
these detailed discrete-event models up-to-date.

Fortunately, for a manufacturing system in operation it is possible to arrive at more simple/less detailed
discrete-event models by using the concept of EPTs as introduced in the next section.

34.5 Effective Process Times

As mentioned in the previous section, for the processing of a lot at a machine, many steps may be required.
It could be that an operator needs to get the lot from a storage device, set up a specific tool that is required
for processing the lot, put the lot on an available machine, start a specific program for processing the lot,
wait until this processing has finished (meanwhile doing something else), inspect the lot to determine if all
went well, possibly perform some additional processing (e.g., rework), remove the lot from the machine
and put it on another storage device, and transport it to the next machine. At all of these steps something
might go wrong: the operator might not be available, after setting up the machine the operator finds out
that the required recipe cannot be run on this machine, the machine might fail during processing, no
storage device is available anymore so the machine cannot be unloaded and is blocked, etc.

It is impossible to measure all sources of variability that might occur in a manufacturing system. While
some of the sources of variability could be incorporated into a discrete-event model (tool failures and
repairs, maintenance schedules), not all sources of variability can be included. This is clearly illustrated in
Figure 34.7, obtained from Jacobs et al. (2003).

The left graph contains actual realizations of flow times of lots leaving a real manufacturing system,
whereas the right graph contains the results of a detailed deterministic simulation model and the graph in
the middle contains the results of a similar model including stochasticity. It turns out that in reality flow
times are much higher and much more irregular than simulation predicts. So, even if one tries hard to
capture all variability present in a manufacturing system, still the outcome predicted by the model is far
from reality.

The term EPT has been introduced by Hopp and Spearman (2000) as the time seen by lots from a
logistical point of view. To determine the EPT they assume that the contribution of the individual sources
of variability is known.
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FIGURE 34.8 Gantt chart of five lots at a single machine workstation.

A similar description is given in Sattler (1996) where the effective process time has been defined as all
flow time except waiting for another lot. It includes waiting owing to machine down time and operator
availability and a variety of other activities. In Sattler (1996) it was also noticed that this definition of
effective process time is difficult to measure.

Instead of taking the bottom-up view of Hopp and Spearman, a top-down approach can also be taken,
as shown by Jacobs et al. (2003), where algorithms have been introduced that enable determination of
effective process time realizations from a list of events.

We consider a single machine workstation and assume that the Gantt chart of Figure 34.8 describes a
given time period.

• At t = 0 the first lot arrives at the workstation. After a setup, the processing of the lot starts at t = 2
and is completed at t = 6.

• At t = 4 the second lot arrives at the workstation. At t = 6 this lot could have been started, but
apparently there was no operator available, so only at t = 7 the setup for this lot starts. Eventually,
at t = 8 the processing of the lot starts and is completed at t = 12.

• The fifth lot arrives at the workstation at t = 22, processing starts at t = 24, but at t = 26 the machine
breaks down. It takes until t = 28 before the machine has been repaired and the processing of the
fifth lot continues. The processing of the fifth lot is completed at t = 30.

From a lot’s point of view we observe:

• The first lot arrives at an empty system at t = 0 and departs from this system at t = 6. Its processing
took 6 units of time.

• The second lot arrives at a nonempty system at t = 4 and needs to wait. At t = 6, the system becomes
available again and hence from t = 6 on there is no need for the second lot to wait. At t = 12 the
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FIGURE 34.9 EPT realizations of five lots at a workstation.

second lot leaves the system, so from the point of view of this lot, its processing took from t = 6 till
t = 12; the lot does not know whether waiting for an operator and a setup is part of its processing.

• The third lot sees no need for waiting after t = 12 and leaves the system at t = 17, so it assumes to
have been processed from t = 12 till t = 17.

Following this reasoning, the resulting effective process times for lots are as depicted in Figure 34.9.
Note that only arrival and departure events of lots to a workstation are needed for determining the
effective process times. Furthermore, none of the contributing disturbances needs to be measured. In
highly automated manufacturing systems, arrival and departure events of lots are being registered, so for
these manufacturing systems, effective process time realizations can be determined rather easily. These
EPT realizations can be used in a relatively simple discrete-event model of the manufacturing system.
Such a discrete-event model only contains the architecture of the manufacturing system, buffers, and
machines. The process times of these machines are samples from their EPT distribution as measured
from real manufacturing data. There is no need for incorporating machine failures, operators, etc., as
this is all included in the EPT-distributions. Furthermore, the EPTs are utilization independent. That
is, EPTs determined collected at a certain throughput rate are also valid for different throughput rates.
Also, machines with the same EPT-distribution can be added to a workstation. This makes it possible
to study how the manufacturing system responds in case a new machine is added, or all kinds of other
what-if-scenarios. Finally, since EPT-realizations characterize operational time variability, they can be
used for performance measuring. For more on this issue, the interested reader is referred to Jacobs et al.
(2003, 2006). What is most important is that EPTs can be determined from real manufacturing data and
yield relatively simple discrete-event models of the manufacturing system under consideration. These
relatively simple discrete-event models can serve as a starting point for controlling manufacturing systems
dynamically.

34.6 Control of Manufacturing Systems: A Framework

In the previous section, the concept of effective process times has been introduced as a means to arrive
at relatively simple discrete-event models for manufacturing systems, using measurements from the real
manufacturing system under consideration. The resulting discrete-event models are large queueing net-
works which capture the dynamics reasonably well. These relatively simple discrete-event models are not
only a starting point for analyzing the dynamics of a manufacturing system, but can also be used as a
starting point for controller design. If one is able to control the dynamics of the discrete-event model of
the manufacturing system, the resulting controller can also be used for controlling the real manufacturing
system.

Even though control theory exists for controlling discrete-event systems, unfortunately none of it is
appropriate for controlling discrete-event models of real-life manufacturing systems. This is mainly due
to the large number of states of a manufacturing system. Therefore, a different approach is needed.
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FIGURE 34.11 Control framework (II).

If we concentrate on mass production, the distinction between lots is not really necessary and lots
can be viewed in a more continuous way. Therefore, instead of the discrete-event model we consider an
approximation model.

Using the approximation model, we can use standard control theory to derive a controller for the
approximation model (cf. Figure 34.10).

When the closed-loop system of the approximation model and the controller behaves as desired, the
controller can be connected to the discrete-event model. However, since the derived controller is not a
discrete-event controller its control actions still need to be transformed into events. It might very well
be that the optimal control action would be to produce 2.75 lots during the next shift. One still needs
to decide how many jobs to really start (2 or 3), and also when to start them. This is the left conversion
block in Figure 34.11. Similarly, a conversion is needed from discrete-event model to controller: a simple
conversion would be to sample the discrete-event model once every shift, but other sampling strategies
might also be followed. For example, if at the beginning of a shift a machine breaks down it might not be
such a good idea to wait until the end of the shift before setting new production targets.

Once the two conversion blocks have been properly designed a suitable discrete-event controller for the
discrete-event model is obtained, as illustrated in Figure 34.11 (dashed).

Eventually, as a final step, the designed controller can be disconnected from the discrete-event model,
and attached to the real manufacturing system.

In the presented control framework two crucial steps can be distinguished. First, the discrete-event
model should be a good enough approximation of the real manufacturing system, i.e., the model needs to
be validated and if found unsatisfactory it needs to be improved. Second, the approximation model should
be a good enough approximation of the discrete-event model, or actually, of the discrete-event model
and conversion block(s), since that is the system that needs to be controlled by the continuous controller.
Depending on the variables of interest, a valid approximation model needs to be used. An overview of

© 2007 by Taylor & Francis Group, LLC



34-12 Handbook of Dynamic System Modeling

common used approximation models, assuming mass production, is provided in the next two sections.
In Section 34.7 approximation models are presented that mainly focus on throughput. In Section 34.8
approximation models are presented that incorporate both throughput and flow time, taking into account
the nonlinear relations as depicted in Figure 34.2.

34.7 Standard Fluid Model and Extensions

The analytical approximations models of Section 34.3 are only concerned with steady state, no dynamics
is included. This disadvantage is overcome by discrete-event models as discussed in Section 34.4. However,
since they model each job separately and stochastically long simulation times are required for obtaining
satisfactory results. Using an approximation model where jobs are viewed in a continuous way we can
overcome these long simulation times.

34.7.1 A Common Fluid Model
The current standard way of deriving fluid models is most easily explained by means of an example.
Consider a simple manufacturing system consisting of two machines in series, as displayed in Figure 34.12.
Let u0(t) denote the rate at which jobs arrive at the system at time t , ui(t) the rate at which machine Mi

produces lots at time t , yi(t) the number of lots in buffer Bi at time t (i ∈ {1, 2}), and y3(t) the number of
lots produced by the manufacturing system at time t . Assume that machines M1 and M2 have a maximum
capacity of µ1 and µ2 lots per time unit, respectively.

The rate of change of the buffer contents is given by the difference between the rates at which lots enter
and leave the buffer. Under the assumption that the number of lots can be considered continuously, we get

ẏ1(t) = u0(t) − u1(t),

ẏ2(t) = u1(t) − u2(t),

ẏ3(t) = u2(t)

(34.6)

which can be rewritten as

ẋ(t) =
⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ x(t) +

⎡
⎣

1 −1 0
0 1 −1
0 0 1

⎤
⎦ u(t) (34.7a)

y(t) =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ x(t) +

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ u(t) (34.7b)

where u = [u0, u1, u2]� and y = [y1, y2, y3]�. We also have capacity constraints on the input as well as the
constraint that the buffer contents should remain positive, i.e.,

0 ≤ u1(t) ≤ µ1, 0 ≤ u2(t) ≤ µ2 and y1(t) ≥ 0, y2(t) ≥ 0, y3(t) ≥ 0 (34.8)

This system is a controllable linear system of the form ẋ = Ax + Bu, y = Cx + Du, extensively studied in
control theory.

B1 M1 B2 M2 B3

u0 u1 u1 u2 u2

y1 y2 y3

FIGURE 34.12 A simple manufacturing system.
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Note that instead of a description in continuous time, a description in discrete time can also be used:

ẋ(k + 1) =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ x(k) +

⎡
⎣

1 −1 0
0 1 −1
0 0 1

⎤
⎦ u(k) (34.9a)

y(k) =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ x(k) +

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ u(k) (34.9b)

Also, the description of Eq. (34.7) is not the only possible input/output/state model that yields the
input/output behavior Eq. (34.6). To illustrate this, consider the change of coordinates

x(t) =
⎡
⎣

1 −1 0
0 1 −1
0 0 1

⎤
⎦ x̄(t) (34.10)

which results in the following input/output/state model:

x̄(t) =
⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ x̄(t) +

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ u(t) (34.11a)

y(t) =
⎡
⎣

1 −1 0
0 1 −1
0 0 1

⎤
⎦ x̄(t) +

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ u(t) (34.11b)

Note that in this description, the state x̄ denotes the cumulative production at each workstation.
We would like to study the response of the output of the system Eq. (34.7), or equivalently Eq. (34.11).

Assume we initially start with an empty production line (i.e., x(0) = 0), that both machines have a capacity
of 1 lot per unit time (i.e., µ1 = µ2 = 1) and that we feed the line at a rate of 1 lot per time unit (i.e.,
u0 = 1). Furthermore, assume that machines produce at full capacity, but only in case something is in the
buffer in front of it, i.e.,

ui(t) =
⎧⎨
⎩

µi if yi(t) > 0
i ∈ {1, 2}

0 otherwise
(34.12)

Under these assumptions, the resulting contents of buffer B3 are as displayed in Figure 34.13. Note that
immediately lots start coming out of the system. Clearly, this is not what happens in practice. Since both
machines M1 and M2 need to process the first lot, it should take the system at least (1/µ1) + (1/µ2) time

0 1 2 3 4 5 6 7 8

0

2

4

6

8

System response

Time

y 3

FIGURE 34.13 Output of the manufacturing system using model Eq. (34.6).
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B1 M1 B2 M2 B3

u0(t )
y1(t )

u1(t ) u2(t )
y2(t ) y3(t )u1 �t � �m1

1
u2 �t � �m2

1

FIGURE 34.14 A simple manufacturing system revisited.
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Time

y 3

FIGURE 34.15 Output of the manufacturing system using model Eq. (34.13).

units before lots can come out. This illustrates fluid models as given by Eq. (34.7) or Eq. (34.11) do not
incorporate flow times.

34.7.2 An Extended Fluid Model
In the previous subsection, we noticed that in the standard fluid model lots immediately come out of the
system, once we start producing. A way to overcome this problem is to explicitly take into account the
required delay. Whenever we decide to change the production rate of machine M1, buffer B2 notices this
1/µ1 time units later. As a result, the rate at which lots arrive at buffer B2 at time t is equal to the rate
at which machine M1 was processing at time t − 1/µ1. This observation results in the following model
(see also Figure 34.14):

ẏ1(t) = u0(t) − u1(t)

ẏ2(t) = u1

(
t − 1

µ1

)
− u2(t)

ẏ3(t) = u2

(
t − 1

µ2

)
(34.13)

Clearly, the constraints of Eq. (34.8) also apply to the model given by Eq. (34.13).
Figure 34.15 shows the response of the system given by Eq. (34.12) to the ramp-up experiment that lead

to Figure 34.13. Comparing these two figures we see that no products enter buffer B3 during the first 2.0
time units for the extended fluid model. Clearly, the extended fluid model produces more realistic results
than the standard fluid model.

34.7.3 An Approximation to the Extended Fluid Model
In the previous subsection, we proposed an extended version of the standard fluid model. Although the
model of Eq. (34.13) still is a linear model, standard linear control theory is not able to deal with this
model, due to the time delay. Instead we have to rely on control theory of infinite-dimensional linear
systems (see, e.g., Curtain and Zwart, 1995).
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FIGURE 34.16 Output of the manufacturing system using model Eq. (34.14).

Another possibility would be to approximate the time delays by means of a Padé approximation (Baker,
1965). Using a second-order Padé approximation, the model of Eq. (34.13) can be approximated as:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 4 6 −3 0 0
0 0 0 4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 6 −3
0 0 0 0 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u (34.14a)

y =
⎡
⎣

1 −1 0 0 0 0 0
0 1 −3 0 −1 0 0
0 0 0 0 1 −3 0

⎤
⎦ x +

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ u (34.14b)

Note the structure in Eq. (34.14). In bold face we can easily recognize the dynamics of Eq. (34.11). The
additional dynamics results from the Padé approximation.

If we initiate the system of Eq. (34.14) from x(0) = 0 and feed it at a rate u0 = 1 while using Eq. (34.12),
we obtain the system response as depicted in Figure 34.16. It is clear that we do not get the same response
as in Figure 34.15, but the result is rather acceptable from a practical point of view. At least it is closer to
reality than the response displayed in Figure 34.13.

34.7.4 A Hybrid Model
In the previous subsections, we provided extensions to the standard fluid model by taking into account
the time delay lots encounter owing to the processing of machines. We also mentioned the constraints of
Eq. (34.8) that have to be obeyed. These are constraints that we have to take into account when designing
a controller for our manufacturing system. The way we dealt with these constraints in the previous
subsections was by requiring the machines to produce only in case the buffer contents in front of that
machine were positive (cf. Eq. 34.12).

A way to extend the standard fluid model Eq. (34.7) is to think of these constraints in a different way. As
illustrated in Subsection 34.7.1, when we turn on both machines, immediately lots start coming out of the
system. This is an undesirable feature that we would like to avoid. In practice, the second machine can only
start producing when the first machine has finished a lot. Keeping this in mind, why do we allow machine
M2 to start producing as soon as the buffer contents of the buffer in front of it are positive? Actually,
machine M2 should only start producing as soon as a whole product has been finished by the machine M1.
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FIGURE 34.17 Output of the manufacturing system.

In words, machine M2 should only start producing as soon as the buffer contents of the buffer in front of
it becomes 1. Therefore, we should not allow for a positive u2 as soon as y2 > 0, but only in case y2 ≥ 1.

When we consider the initially empty system Eq. (34.7), i.e., x(0) = 0, and assume

ui(t) =
⎧⎨
⎩

µi if yi(t) ≥ 1
i ∈ {1, 2}

0 otherwise
(34.15)

the resulting system response to an input of u0 = 1 is shown in Figure 34.17. Note that we obtain exactly
the same response as in Figure 34.15.

While this hybrid model has an acceptable behavior when we ramp up our manufacturing system,
it stops producing at buffer level yi = 1 when we ramp down. This is not what we would like to have.
Therefore, in case u1 = 0, machine M1 should be allowed to produce until y1 = 0.

Under these conditions, we could also think of our model operating in different modes. For the
manufacturing system under consideration, we can distinguish the following modes:

mode 1: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 = 0, u1 ≥ 0, u2 = 0.
mode 2: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 ≥ 0, u1 =0, u2 ≥ 0.
mode 3: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 =0, u2 ≥ 0.
mode 4: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 ≥ 0, u2 = 0.
mode 5: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 = 0, u1 ≥ 0.
mode 6: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 ≥ 0, u1 = 0.
mode 7: 1 ≤ y1, 1 ≤ y2.

In all of these modes, the system dynamics is described by Eq. (34.7).
The hybrid model just presented is also known as a piecewise affine (PWA) system (Sontag, 1981).

Other well-known descriptions are linear complementarity (LC) systems (Heemels et al., 2000; Schaft
and Schumacher, 1998) and mixed logical dynamical (MLD) systems (Bemporad and Morari, 1999). In
Bemporad et al. (2000b) and Heemels et al. (2001) it was shown that (under certain assumptions like
well-posedness) these three descriptions are equivalent. This knowledge is useful, as each modeling class
has its own advantages. Stability criteria for PWA systems were proposed in DeCarlo et al. (2000) and
Johansson and Rantzer (1998), and control and state-estimation techniques for MLD hybrid models have
been presented in Bemporad et al. (2000a, 1999) and Bemporad and Morari (1999). These results can now
be applied for controlling the hybrid systems model of our manufacturing system.

34.8 Flow Models

The fluid models presented in the previous section are (still) not satisfactory. While they do not suffer
from the problem that lots come out of the system as soon as we start producing, flow times are not truly
present in these models. It is not possible to determine the time it takes lots to leave once they have entered
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the system. Furthermore, according to these models any throughput can be achieved by means of zero
inventory, whereas in Section 34.2 we already noticed that the nonlinear (steady-state) relations depicted
in Figure 34.2 should be incorporated in any reasonable model of manufacturing systems.

In this section, we present approximation models that do incorporate both throughput and flow
time. These dynamic models are inspired by the continuum theory of highway traffic. Therefore, before
presenting this dynamic model we first present some results from traffic theory.

34.8.1 Introduction to Traffic Flow Theory: The LWR Model
In the mid-1950s Lighthill and Whitham (1955) and Richards (1956) proposed a first-order fluid approx-
imation of traffic flow dynamics. This model nowadays is known in traffic flow theory as the LWR
model.

Traffic behavior for a single one-way road can be described using three variables that vary in time t and
space x: flow u(x, t), density ρ(x, t), and speed v(x, t). Flow is the product of speed and density:

u(x, t) = ρ(x, t)v(x, t) ∀x, t (34.16)

For a highway without entrances or exits, the number of cars between any two locations x1 and x2 (x1 < x2)
needs to be conserved at any time t , i.e., the change in the number of cars between x1 and x2 is equal to
the flow entering via x1 minus the flow leaving via x2:

∂

∂t

∫ x2

x1

ρ(x, t)dx = u(x1, t) − u(x2, t) (34.17a)

or in differential form:

∂ρ

∂t
(x, t) + ∂u

∂x
(x, t) = 0 (34.17b)

The two relations Eq. (34.16) and Eq. (34.17) are basic relations that any model must satisfy. As we have
three variables of interest, a third relation is needed. For this third relation, several choices can be made.
The LWR model assumes in addition to the relations Eq. (34.16) and Eq. (34.17) that the relation between
flow and density observed under steady-state conditions also holds when flow and density vary with x
and/or t ; i.e., for a homogeneous highway:

u(x, t) = S(ρ(x, t)) (34.18)

The model given by Eqs. (34.16)–(34.18) can predict some traffic phenomena rather well. To overcome
some of the deficiencies of the LWR model, in the early 1970s higher order theories have been proposed
where Eq. (34.18) has been replaced by another partial differential equation, containing diffusion or
viscosity terms. Unfortunately, these extended models experience some undesirable properties, as made
clear in (Daganzo, 1995). The most annoying of these properties is the fact that in these second-order
models cars can travel backward. Second-order models that do not suffer from this deficiency have been
presented in Jiang et al. (2002) and Zhang (2002).

34.8.2 A Traffic Flow Model for Manufacturing Flow
In the previous subsection, we introduced the LWR model from traffic flow theory. This model describes
the dynamic behavior of cars along the highway at a macroscopic level and contains information both
about the number of cars passing a certain point and about the time it takes cars to go from one point to
the other. The LWR model can not only be used for describing the flow of cars along the highway, but also
for describing the flow of products through a manufacturing line.

Consider, instead of a homogeneous highway, a homogeneous manufacturing line, i.e., a manufacturing
line that consists of a lot of identical machines. Let t denote the time and x the position in the manufacturing
line. The behavior of lots flowing through the manufacturing line can also be described by three variables
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that vary with time and position: flow u(x, t) measured in unit lots per unit time, density ρ(x, t) measured
in unit lots per unit machine, and speed v(x, t) measured in unit machines per unit time. Now we can
relate these three variables by means of Eqs. (34.16)–(34.18), where in Eq. (34.18) the function S describes
the relation between flow and density observed under steady-state conditions.

To make this last statement more explicit, consider a manufacturing line consisting of m machines with
exponentially distributed process times and an average capacity of µ lots per unit time. Furthermore,
consider a Poisson arrival process where lots arrive at the first machine with a rate of λ lots per unit time
(λ < µ), and assume that buffers have infinite capacity. Then we know from queueing theory (Kleinrock,
1975) that the average number of lots N in each workstation (consisting of a buffer and a machine) in
steady-state is given by

N =
λ
µ

1 − λ
µ

= λ

µ − λ
(34.19)

In words, in steady-state we have ρ(x, t) is constant and

1

m
ρ(x, t) = u(x, t)

µ − u(x, t)
(34.20)

from which we can conclude that in steady-state

u(x, t) = µρ(x, t)

m + ρ(x, t)
(34.21)

For this example, this is the mentioned function S(ρ).
With this information, we can conclude that the dynamics of this manufacturing line might be described

by means of the partial differential equation

∂ρ

∂t
+ µ

∂

∂x

(
ρ

m + ρ

)
= 0 (34.22a)

Together with the relations

u = µρ

m + ρ
and v = u

ρ
or v = µ

m + ρ
(34.22b)

this completes our model.
Note that contrary to the fluid models presented in the previous section, the dynamic model of

Eq. (34.22) is able to incorporate the stochasticity as experienced in manufacturing lines. If the man-
ufacturing line would be in steady-state, the throughput and flow time as predicted by the model of
Eq. (34.22) is exactly the same as those predicted by queueing theory. However, contrary to queueing
theory, the model of Eq. (34.22) is not a steady-state model, but also incorporates dynamics. Therefore,
the model Eq. (34.22) is a dynamic model that incorporates both throughput and flow time. Furthermore,
given the experience in the field of fluid dynamics, the model is computationally feasible as well. For more
on these flow models, the interested reader is referred to Armbruster et al. (2004, 2005) and Armbruster
and Ringhofer (2005).

34.9 Conclusions

In this chapter, we presented some of the models used in the modeling, analysis, and control of manufactur-
ing systems. In Section 34.3 some analytical modeling techniques and methods for analyzing steady-state
behavior of manufacturing systems have been introduced. To get a more detailed insight in the dynamics of
a manufacturing system discrete-event models, as introduced in Section 34.4 can be used. A disadvantage
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of discrete-event models is their complexity. To reduce the complexity of discrete-event models, EPTs have
been introduced in Section 34.5. This enables the modeling of a manufacturing system as a large queueing
network.

Once the dynamics of manufacturing systems can be well described by a relatively simple discrete-
event model, the problem of controlling the dynamics of manufacturing systems becomes of interest.
In Section 34.6 a control framework has been presented. A crucial role in this framework is played
by approximation models of manufacturing systems. In Section 34.7 the most common approximation
models, fluid models, have been introduced, together with some extensions of these models. These fluid
models mainly focus on throughput and do not contain information on flow times. Finally, in Section 34.8,
flow models have been presented that do incorporate both throughput and flow time information.
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