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1 Introduction

Starting with [7] controlling chaotic systems has recently become an extremely
exciting and interesting research area, see the bibliography [1] and the papers-
collection [8]. Basically, the method advocated by Ott, Grebogi and Yorke
[7] consists of making small time-dependent perturbations on available sys-
tem parameters so that an initially chaotic system is steered towards any or-
bit contained in the chaotic attractor. Since the original OGY-paper various
modifications and adaptations on the forementioned method have appeared.
Also a number of experimental case studies have illustrated the idea. On the
other hand, the OGY-method, and more general, most literature on control of
chaos, seems distinct from what is called control theory, although some clear
connections exist.

The purpose of the present note is to work out from a control theoretic point
of view, a feedback control scheme that ensures the tracking of any desired
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trajectory under given input constraints, by means of a specific example. The
example we consider is the controlled forced Duffing equation [2,6]:

ẍ + pẋ + p1x + x3 = u + q cos(ωt) (1)

with p ≥ 0, p1, q and ω constants and u(·) the (physical) control. For u ≡ 0,
depending on the choice of the constants, it is known that solutions of (1)
exhibit periodic, almost periodic, and chaotic behaviour; see e.g. [2]. Note
that, in contrast to [2] we consider (1) as the controlled form of the Duffing
equation, and for obvious reasons we do not allow for control actions in the ẋ
direction. Typically the control u in (1) can be understood as a force (torque)
applied to the physical system that obeys the uncontrolled forced Duffing
equation. Clearly this also distinguishes the way controls appear from typical
’control of chaos’ work like in the OGY-method, see [7], where control actions
are generated via parameter perturbations. Most notably, the differences with
the OGY-method may be summarized as:

– The proposed state feedback controller achieves global tracking, i.e. no mat-
ter where the original system starts and no matter whether the uncontrolled
system has a chaotic attractor or not.

– Tracking towards any desired trajectory is guaranteed; in particular the de-
sired trajectory may not be an uncontrolled system trajectory, the prize
being that a nonzero control action is needed to stay on the desired trajec-
tory.

– The tracking is achieved by means of a state feedback controller, which
automatically acts as an error correction mechanism.

The above differences with the OGY-method are from one side overempha-
sized. It will turn out that each aspect mentioned above also has elements in
common with the OGY-method, and even more, the OGY-methodology may
be considered as a driving force for our present work.

The results we present here are based on the analysis of one specific model
(the uncontrolled Duffing equation) and are motivated by earlier work, [2,6],
where the systematic use of, not necessarily bounded, feedback was proposed.
We do think that our results are mutatis mutandis also valid for various other
systems, but certainly not for all systems.

The organization of this paper is as follows. In section 2 bounded feedback
controllers, which are of composite form, are given. Simulations illustrating
the control performance and tracking ability of the controllers are given in
section 3. Section 4 contains concluding remarks.

We conclude this introduction with some terminology and notation.
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Let F denote the class of nondecreasing continuous differentiable functions
f : IR → IR satisfying f(0) = 0, f ′(0) > 0 and supx∈IR |f(x)| ≤ 1. This class
is a subset of the class of saturating functions proposed in [3]. Examples of
functions f(x) ∈ F are f(x) = tanh(x) and f(x) = 2

π
arctan(x).

Throughout we want to discuss the tracking problem under input constraints.
Therefore we assume that the desired trajectory xd we want to track is bounded
and has bounded first and second derivative, i.e. there exist positive constants
B0, B1, and B2 such that

|xd(t)| ≤ B0, |ẋd(t)| ≤ B1, |ẍd(t)| ≤ B2, t ≥ 0 (2)

A specific case which deserves separate attention, is formed by those desired
trajectories that satisfy

|ẍd + pẋd + p1xd + x3
d − q cos(ωt)| ≤ B̄ (3)

for some B̄ ≥ 0. Clearly, when B̄ = 0, xd is a trajectory of the uncontrolled
system, and in this case our work is related to (but different from) various
other control of chaos papers, see e.g. [8].

2 State feedback control of the Duffing equation

Assume we want the system (1) to follow any smooth desired trajectory xd(t),
satisfying (2). For this purpose, we select the control via a state feedback law

u = ẍd + pẋd + p1xd + x3
d − q cos(ωt) − Kpe − Kdė (4)

where e ≡ x − xd, Kd and Kp are positive constants, and f1, f2 ∈ F .

The controller (4) consists of two components, namely

(i) a feedforward part: ẍd+pẋd+p1xd+x3
d−q cos(ωt), which can be computed

off-line,
(ii) a P(roportional) D(ifferential) feedback part: Kpe + Kdė.

The feedback terms in (ii) are required to guarantee that the system converges
towards xd(t). Once on this trajectory, the feedforward component keeps the
system moving along it; note that this part equals zero if xd is a trajectory of
the uncontrolled system.
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The closed-loop system consisting of (1) and (4) is described by the time-
varying second-order dynamics

ë + (p + Kd)ė + (p1 + Kp)e + e3 + 3e2xd + 3ex2
d = 0 (5)

Proposition 1 Let xd(t) be any smooth bounded reference trajectory, satisfy-
ing (2). Then the state feedback controller (4) guarantees that (1) asymptoti-
cally converges towards xd(t), i.e.

lim
t→∞(e(t), ė(t)) = (0, 0)

provided that Kp > −p1 and Kd ≥ −p + 2B0

√
3.

PROOF. We will use Lyapunov’s direct method for obtaining our results,
see for instance [4,5,9].

Define λ = (Kd + p)/2 and consider the candidate Lyapunov function

V (e, ė) =
1

2
(ė + λe)2 +

1

2
(λ2 + p1 + Kp)e

2 +
1

4
e4; (6)

which is positive definite. Along the closed-loop error dynamics (5), its time-
derivative becomes:

V̇ (e, ė) = −λė2 − (3xde + 3x2
d)eė − (p1 + Kp + e2 + 3xde + 3x2

d)λe2 (7)

which is negative definite on Ω provided that

(3xde + 3x2
d)

2 − 4λ2(p1 + Kp + e2 + 3xde + 3x2
d) < 0.

Since λ ≥ |xd|
√

3 and (p1+Kp+e2+3xde+3x2
d) = p1+Kp+(e+ 3

2
xd)

2+ 3
4
x2

d > 0
we obtain:

(3xde + 3x2
d)

2 − 4λ2(p1 + Kp + e2 + 3xde + 3x2
d) ≤

≤ (3xde + 3x2
d)

2 − 12x2
d(e

2 + 3xde + 3x2
d) − 4λ2(p1 + Kp) =

= −3x2
d(3xd + e)2 − 4λ2(p1 + Kp) < 0

Therefore, V̇ (e, ė) is negative definite which completes the proof. 2

When we know the initial error-state, we are able to determine an upperbound
for the control law. Since (6) is a decreasing function along solutions of (5), it
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follows that for all t ≥ 0:

|e(t)| ≤
√√

(λ2 + p1 + Kp)2 + 4V (e(0), ė(0)) − (λ2 + p1 + Kp) ≡ D0 (8)

and

|ė(t)| ≤
√

4V (e(0), ė(0)) ≡ D1 (9)

resulting in

|u(t)| ≤ B̄ + KpD0 + KdD1 (10)

This upperbound on the controller (4) depends on V (e(0), ė(0)), and the larger
the initial errors are, the larger the upperbound will be.

To overcome this problem, we use a ’composite control law’. Apart from the
tracking controller (4) we develop a bounded controller that globally controls
the system into a specific area containing the origin. As soon as the system is
in that area, we have bounds on both e and ė, such that we can switch to the
tracking controller (4). Since the first phase controller will be globally, i.e. it
controls the system towards the specific area from any initial error state, the
composite controller will be a bounded globally asymptotically stable tracking
controller.

Proposition 2 Consider the system (1) (with p ≥ 0), together with the con-
trol law

u = −q cos(ωt) − Kpf1(x) − Kdf2(ẋ) (11)

with Kp ≥ 0, Kd > 0 and f1, f2 ∈ F . Then for all C0 > 0 and C1 > 0 there
exists a ts ≥ 0 such that |x(t)| ≤ C0 and |ẋ(t)| ≤ C1 for all t ≥ ts, provided
that Kp is chosen large enough, i.e. Kp > 0 for p1 > 0 and

Kp > max
x∈[−√−p1,

√−p1]
− p1x

f1(x)

otherwise.

PROOF. The controller (11) results in the time-invariant closed-loop system

ẍ + pẋ + p1x + x3 + Kpf1(x) + Kdf2(ẋ) = 0. (12)

5

148



Consider the radially unbounded candidate Lyapunov function

V1(x, ẋ) =
1

2
ẋ2 +

1

2
p1x

2 +
1

4
x4 + KpF1(x) (13)

where F1(x) =
∫ x
0 f1(ζ)dζ . This Lyapunov function is positive definite. Differ-

entiating (13) along solutions of (12) yields

V̇1(x, ẋ) = −pẋ2 − Kdẋf2(ẋ),

which is negative semi-definite in the state (x, ẋ). Therefore, we have to de-
termine the largest invariant set in {(x, ẋ) ∈ IR2|V̇1(x, ẋ) = 0}, which is the
origin. Application of LaSalle’s theorem completes the proof. 2

Corollary 3 Consider the system (1). For all C0 > γ and C1 > 0, there exists
a switching time ts ≥ 0 such that the composite control law

u =




−q cos(ωt) − Kp,1f1(x) − Kd,1f2(ẋ) t < ts

ẍd + pẋd + p1xd + x3
d − q cos(ωt) − Kp,2e − Kd,2ė t ≥ ts

(14)

results in a globally asymptotically stable closed-loop system, provided that
Kp,2 > −p1, Kd,2 > −p + 2B0

√
3 and Kp,1 > maxx∈[−√−p1,

√−p1] − p1x
f1(x)

Furthermore, there exists a β > 0 such that the composite controller (14)
satisfies |u(t)| ≤ β for all t ≥ 0.

PROOF. Let ts be a moment both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. From
Proposition 2 the existence of ts follows and from Proposition 1 it follows that
the second phase controller is asymptotically stable. Therefore the composite
controller (14) is globally asymptotically stable.

Since |xd(t)| ≤ B0 and |ẋd(t)| ≤ B1 for all t ≥ 0, we have |e(ts)| ≤ B0 + C0

and |ė(ts)| ≤ B1 + C1, resulting in (10) for t ≥ ts. For the first phase we have
|u(t)| ≤ |q| + Kp,1 + Kd,1, therefore we have |u(t)| ≤ β for all t ≥ 0 with

β = max{|q| + Kp,1 + Kd,1, B̄ + Kp,2D0 + Kd,2D1} (15)

It may be observed that the upperbound (15) is not very accurate and thus
possibly a better bound exists. 2
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3 Simulations

To support our results, we simulated with MATLABTM the system (1) with the
controller (4). The Duffing parameters were selected as p = 0.4, p1 = −1.1,
q = 2.1 and ω = 1.8, in which case the Duffing equation displays chaotic
behaviour [2].

In our first simulation we initialize our system in (x(0), ẋ(0)) = (0, 0) and
the desired trajectory we want to track is an orbit of the uncontrolled system
(i.e. B̄ = 0), initiated in (xd(0), ẋd(0)) = (0, 1). To see clearly the difference
between the chaotic uncontrolled motion and the regulated system, no control
is applied during the first 30 seconds. At t = 30s we initiate the composite
controller (14) with Kp,1 = 5, Kd,1 = 3, Kp,2 = 5 and Kd,2 = 7. The switching
moment ts is taken as the first moment t at which both |x(t)| ≤ C0 = 0.1 and
|ẋ(t)| ≤ C1 = 0.1. The resulting performance is depicted in figure 1

We can see in figure 1a that within five seconds the system perfectly follows
the desired trajectory. In figure 1b we can see the control-effort is initiated at
t = 30. At t = 32.6 the state is small enough to switch to the second phase
controller in order to establish tracking of the desired trajectory.

To show that we are able to track any desired trajectory, figure 2 shows
an anologous simulation, only our desired trajectory xd(t) has been taken as
xd(t) = sin(t). We again see that within five seconds, our controller succeeds
in tracking the desired trajectory, but, of course, a nonzero control-action in
order to follow the desired trajectory is needed.

With the above parameter setting, we may compute, using Corollary 3 an
upperbound for umax. For the first phase we have |u(t)| ≤ 5 + 3 + 2.1 = 10.1.
We switch to the second phase at a moment ts at which both |x(ts)| ≤ 0.1 and
|ẋ(ts)| ≤ 0.1 such that in the first simulation we guarantee that |e(ts)| ≤ 2.2
and |ė(ts)| ≤ 3.0 (since B0 = 2.1 and B1 = 2.9). Therefore V (ts) ≤ 110.5
and so for all t ≥ ts we have that |e(t)| ≤ 3.1 and |ė| ≤ 19.3 implying that
|u(t)| ≤ 151; a very poor estimate, which in the simulations turns out to be
about 15 times smaller.

To illustrate that the transient behaviour of the controlled system can be
influenced by a suitable choice of the gains Kp and Kd, we did the same
simulation as the first one (with the same initial conditions), only now using
Kp,1 = Kp,2 = 2 and Kd,1 = Kd,2 = 8. The resulting performance is depicted
in figure 3.

The main reason for the poor estimate on the upperbound is caused by large
|e(ts)|. Therefore, a way to reduce the value of 151 is to switch at a moment
that |e(ts)| is small, for instance as |e(ts)| ≤ 0.1. Notice we are only able to
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do this if the desired trajectory comes infinetely many times infinitely close
to the origin. The anology to the OGY-method seems obvious, allthough this
propery not only holds for chaotic reference trajectories, but also for other
signals. To illustrate this idea, figure 4 shows the resulting performance when
we redo our second simulation, tracking of xd(t) = sin(t), but this time we
switch as soon as both |e(t)| ≤ 0.1 and |ė(t)| ≤ 3.0. The resulting estimate for
the upperbound on the control-effort can be calculated to satisfy |u(t)| ≤ 35.7.

4 Concluding remarks

We have presented a bounded feedback controller for trajectory tracking in
the forced Duffing equation. The methodology under which we have set up
the controller (14) is subject to various modifications

(i) In the first stage of the composite controller we steer the system towards
the origin; if the desired trajectory is far away from the origin it may
become more profitable to steer the system with a slightly modified con-
troller towards a point closer to the desired trajectory.

(ii) The switching time ts in the controller (14) is in some sense very im-
portant. Switching immedeately once the controlled system has reached
the box where |x(ts)| ≤ C0 and ẋ(ts)| ≤ C1 may lead to relatively large
control actions due to relatively large errors (e(t0), ė(t0)). Thus it may
be more appropriate to switch the controller at a later time for which
||(e(t0), ė(t0))|| is smaller. Clearly this issue is strongly related with (i)
where we assure via a different initial controller that ||(e(t0), ė(t0))|| be-
comes small.

(iii) The upperbound (15) is not tight and can certainly be improved. However
in any case the main designer freedom in the composite controller (14)
lies in the selection of the gains Kp,i, Kd,i, i = 1, 2 (and as mentioned the
selection of ts). The larger the gains, the faster the controller becomes.

(iv) Our controller is globally defined and the trajectory tracking was estab-
lished for any initial state (x(0), ẋ(0)) and any desired trajectory. This
was achieved via a careful Lyapunov analysis. Clearly, other Lyapunov
functions may lead to other controllers and different convergence rates,
but this is a usual problem of how to select a candidate Lyapunov func-
tion.

(v) It is worthwhile to note that for the second part of the controller (14) the
closedloop system satisfies V̇ ≤ −αV for some α > 0 with V given by
(6). This implies that in this phase the controller guarentees exponential
convergence towards the desired trajectory.
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Fig. 1. xd solution of Duffing, Kp,1 = Kp,2 = 5, Kd,1 = 3, Kd,2 = 7.
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Fig. 2. xd(t) = sin(t), Kp,1 = Kp,2 = 5, Kd,1 = 3, Kd,2 = 7.
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Fig. 3. xd solution of Duffing, Kp,1 = Kp,2 = 2, Kd,1 = Kd,2 = 8.
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Fig. 4. xd(t) = sin(t), Kp,1 = Kp,2 = 5, Kd,1 = 3, Kd,2 = 7, OGY-like switching
strategy.
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