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Abstract

So far, the research on controlling chaos has mainly been directed to controlling the system towards
fixed points or periodic orbits of the system. Nijmeijer and Berghuis for the first time considered
the problem of controlling the chaotic forced Duffing system towards any desired trajectory, using
feedback control. Since in practice one has to deal with input limitations, bounded control laws
have to be developed.
This thesis introduces the concept of a composite controller, in order to achieve global convergence
of the systems state to any desired trajectory. In case no suitable velocity measurements are
available, suitable observers will be introduced. Also adaptive control laws will be proposed, in
case some parameters are unknown.
The systems considered are the forced Duffing equation, the forced van der Pol equation, and
rigid robot systems. All proposed controllers satisfy input limitations, independent of the initial
conditions, such that global trajectory tracking will be achieved.





Preface

September, 1995: There are some remaining courses I still have to complete, but there is one
problem: How? Since I have been asked to participate in the Onderwijs Visitatie Commissie, I
have very little spare time to study. Three days a week in some city, visiting its University, or
to be more precise the Department of Mathematics of that University, and that does not even
include the time needed for preparation! What should I do? Waste two months of study? I prefer
not to.
Fortunately, a solution has been found: I will start with my MSc-project: Adaptive and robust
control of chaotic systems. Since I first have to read about the subject of controlling chaotic
systems, I can use the few days left to get familiar with the subject. The remaining days, during
the visitations, can be used for reflection. My only order is: Just think about it.
Well, that worked. While taking a shower at my parents home on a Saturday morning, the idea
of a composite controller has been borne. Exploiting that idea takes a lot of time, and it has
already become December. I was supposed to pick up my study in November but my advisor,
Henk Nijmeijer, will soon leave for three months to Australia (as I beforehand knew). What to
do now?
We decided that I should go on with my project, and use the three months of absence of my
advisor to complete my study. Easy said, easy done.

April 1996: My advisor is back and I (almost) completed my study. The results of my Msc-project
have been gathered in this report. I want to thank Henk Nijmeijer for all the advices he gave, and
the attention he paid to me. I hope reading this report, will enjoy you as much as I enjoyed my
conversations (face to face, or by email) with him.

Erjen Lefeber
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Chapter 1

Introduction

Recently, much theoretical and experimental work has been done on the use of control theory to
improve the performance of a system that behaves chaotically in the absence of control. This
chapter will briefly introduce this subject. The chaotic systems considered in this thesis will be
described.

1.1 Chaotic systems

Chaotic systems are characterised, amongst others, by their extreme sensitivity to small perturba-
tions in their initial conditions. This hypersensitivity is called the butterfly effect, an allusion to
the suggestion that a butterfly fluttering its wings somewhere in, say, Canberra can influence the
weather in the Netherlands a few days later. In mathematical terms, two trajectories that appear
to start from the same initial conditions, will diverge, due to some tiny, impossible-to-measure
difference. Thus, even if we know the equations that describe the behaviour of a chaotic system,
we are unable to predict a trajectory for any significant length of time.
Two important paradigms for the study of chaos are the forced Duffing and van der Pol systems.

1.1.1 The Duffing system

In the mass-spring mechanical system, shown in figure 1.1, we consider a mass m sliding on a
horizontal surface and attached to a vertical surface by a spring.

F
x

Fsp
Ff

Figure 1.1: Mass-spring mechanical system
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6 CHAPTER 1. INTRODUCTION

An external force F is applied to the mass. Denoting the resistive force due to friction as Ff and
the restoring force of the spring as Fsp we can write this system as

mẍ + Ff + Fsp = F

For a relatively small displacement, the restoring force of the spring can be modeled as a linear
function Fsp = kx, where k is the spring constant. For a large displacement however, the restoring
force may depend nonlinearly on x. The function

Fsp = k(1 + a2x2)x

for example models the so-called hardening spring, where, beyond a certain displacement, a small
displacement increment produces a large force increment.
As the mass moves in the air, a viscous medium, there will be a frictional force due to the viscosity.
For small velocity, we can assume that Ff = cẋ.
The combination of a hardening spring, linear viscous damping, and a periodic external force
F = A cosωt results in the forced Duffing equation

mẍ + cẋ + kx + ka2x3 = A cosωt (1.1)

This equation was first studied in 1918 by Duffing and can also be used to describe a pendulum
moving in a viscous medium.
In order to describe the dynamics of a buckled beam which is set in a nonuniformed field of two
fixed permanent magnets, when only one mode of vibration is considered, we can use the model

ẍ + pẋ− x + x3 = q cosωt

with p > 0 and q some constants, which is of a similar structure as (1.1).
For certain parameters both systems exhibit chaotic behaviour. Since in this thesis we consider
the problem of controlling chaotic systems, we consider a controlled version of the forced Duffing
equation:

ẍ + pẋ + p1x + x3 = u + q cosωt (1.2)

where p > 0, p1, q, and ω are (un)known constants and u(·) is the, physically realisable, control
input. Notice that (1.1) can be written this way by rescaling time as well as state.
In case of no control (u ≡ 0) some typical periodic and chaotic solutions of (1.2) are [4] p = 0.4,
p1 = −1.1, ω = 1.8 and

1. q = 0.620 (period 1)

2. q = 1.498 (period 2)

3. q = 1.800 (chaotic)

4. q = 2.100 (chaotic)

1.1.2 The van der Pol system

In the electrical circuit, shown in figure 1.2, we assume the inductor and capacitor to be linear,
time-invariant and passive, that is, L > 0 and C > 0. The resistive element is an active circuit
characterized by the voltage-controlled i-v characteristic i = h(v).
Using Kirchhoff’s current law, we obtain iC + iL + i = 0, resulting in

C
dv

dt
+

1
L

∫ t

−∞
v(τ)dτ + h(v) = 0

Differentiating with respect to t and rescaling the time-variable, results in :

v̈ +
√

L/Ch′(v)v̇ + v = 0
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v

+

-

LC
Resistive

Element
iC

i

iL

Figure 1.2: Electrical circuit

In case h(v) = −v + 1
3v3 and a source of alternating voltage is added to the circuit, the circuit

equation takes the form
v̈ − µ(1− v2)v̇ + v = q cosωt

with µ > 0, which is known as the forced van der Pol oscillator. Van der Pol in 1922 used this
equation to model an electrical circuit with a triode valve.
This equation also exhibits chaotic behaviour. According to [13] using the parameters µ = 5,
q = 5, and ω = 2.463 results in chaotic behaviour.
Since in this thesis we consider the problem of controlling chaotic systems, we consider a controlled
version of the forced van der Pol oscillator:

ẍ− µ(1− x2)ẋ + x = u + q cosωt (1.3)

where µ > 0, q, and ω are (un)known constants and u(·) is the, physically realisable, control input.

1.2 Control of chaos

The research on controlling chaos started with an article of Ott, Grebogi and Yorke [12] in which
they described a general method to control a nonlinear system by stabilizing one of the unstable
periodic orbits embedded in its chaotic attractor, via small time-dependent perturbations of a
variable system parameter. Their idea, in short, is to wait until the chaotic system approaches
the desired orbit. When the system is close enough, we change one of the accessable parameters
for one period of the chosen orbit and the system settles onto the desired orbit. When the system
inevitably starts to stray from this orbit, we have to repeat the process.
All literature on controlling chaos can roughly be devided into three categories:

OGY-method The above mentioned idea of Ott, Grebogi and York has been extended and
applied to laser systems, electrical circuits, chemical reactions and many other systems.
Another method based on a similar idea and worth to be mentioned is the Occasional Pro-
portional Feedback (OPF) method.

External perturbation By injecting external signals to the system, independent of the state or
even structure of the system, it is possible to force a chaotic system to perform in a desired
way. Two main ideas are entrainment (a special chosen feedforward controller) and weak
periodic perturbation.

Feedback Also external signals are injected to the system but dependent of the state and struc-
ture of the system.
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A more extensive overview is presented in [8]. It contains a review on the literature in controlling
chaos. Two other reviews on this subject are [3, 11]. It is worth to mention that there exists an
extensive bibliography on this subject which can be found on internet [2].
This thesis belongs to the third category: feedback. A lot of interesting work on this subject has
been done by Chen and Dong (e.g. [3, 4]), who were able to prove (global) asymptotic stability of
their proposed feedbacks using Lyapunov theory. In continuation of their results, Nijmeijer and
Berghuis [10] used robotic control ideas to control Duffing’s equation not only towards a fixed
point or periodic orbit of the system but towards any desired trajectory xd(t) in C2. Their results
also include a robust system-parameter-independent controller-observer, that guarantees practical
stability towards the desired trajectory xd.

1.3 About this thesis

This thesis is an attempt to extend the results of Nijmeijer and Berghuis in connection with input
constraints:

|u(t)| ≤ umax t ≥ 0 (1.4)

i.e. we consider the problem of developing a feedback control law u(t), satisfying (1.4), for the
systems (1.2) and (1.3) such that the resulting trajectory x(t) will follow any desired trajectory
xd(t) in C2, i.e.

lim
t→∞

|x(t)− xd(t)| = 0

Furthermore, in [10], Nijmeijer and Berghuis proposed a robust system-parameter-independent
controller-observer which guarantees that the tracking errors tend towards a closed region around
zero, under a high-gain assumption. Drawbacks of high-gain feedback are noice amplification and
large control efforts. Therefore, in this thesis also adaptive controllers are included.
In order to achieve global convergence of the state to any desired trajectory, the concept of a
composite control is introduced. In case locally stable results are available, the problem of finding
a globally stable control law can in most cases be reduced to finding a globally ultimately uniformly
bounded first phase controller.
Finally, the notion of composite control will also be used in the tracking control problem for rigid
robots.



Chapter 2

Preliminaries

This chapter introduces the basic definitions and results, to be used in this theses. The greater
part of its contents has been taken from a similar chapter of Sastry & Bodson [14].

2.1 Stability of systems

This section is concerned with differential equations of the form

ẋ = f(t, x) x(t0) = x0 (2.1)

where x ∈ IRn, t ≥ 0.

Definition 2.1.1 The system defined by (2.1) is said to be autonomous or time-invariant if
f does not depend on t, and non-autonomous or time-varying, otherwise.

We define by Bh the closed ball of radius h centered at 0 in IRn. Properties will be said to be true

locally if true for all x0 in some ball Bh.

globally if true for all x0 ∈ IRn.

in any closed ball if true for all x0 ∈ Bh with h arbitrary.

uniformly if true for all t0 ≥ 0.

Definition 2.1.2 x is called an equilibrium point of (2.1) if f(t, x) = 0 for all t ≥ 0.

If there exists an equilibrium point x0, we can translate it to the origin. This is of great notational
help, and we will assume henceforth that 0 is an equilibrium point or (2.1).

Definition 2.1.3 The equilibrium point x = 0 is called a stable equilibrium point of (2.1), if,
for all ts ≥ 0 and ε > 0 there exists δ(t0, ε) such that

|x0| < δ(t0, ε)⇒ |x(t)| < ε ∀t ≥ t0.

where x(t) is the solution of (2.1) starting from x0 at t0.

Definition 2.1.4 The equilibrium point x = 0 is called a uniformly stable equilibrium point
of (2.1) if, in the preceding definition, δ can be chosen independent of t0.

Definition 2.1.5 The equilibrium point x = 0 is called an asymptotically stable equilibrium
point of (2.1) if

1. x = 0 is a stable equilibrium point of (2.1)

9
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2. x = 0 is attractive, that is, for all t0 ≥ 0 there exists δ(t0) such that

|x0| < δ ⇒ lim
t→∞

|x(t)| = 0

Definition 2.1.6 The equilibrium point x = 0 is called an uniformly asymptotically stable
equilibrium point of (2.1) if

1. x = 0 is a uniformly stable equilibrium point of (2.1)

2. There exists δ > 0 and a function γ(τ, x0) : IR+× IRn 7→ IR+, such that limt→∞ γ(τ, x0) = 0
for all x0 and

|x0| < δ ⇒ |x(t)| ≤ γ(t− t0, x0) ∀t ≥ 0

Definition 2.1.7 The equilibrium point x = 0 is called a globally asymptotically stable
equilibrium point of (2.1), if it is asymptotically stable and limt→∞ |x(t)| = 0 for all x0 ∈ IRn.
Globally uniformly asymptotically stability is defined likewise.

Definition 2.1.8 The equilibrium point x = 0 is called an exponentionally stable equilibrium
point of (2.1) if there exist m, α > 0 such that the solution x(t) satisfies

|x(t)| ≤ me−α(t−t0)|x0| (2.2)

for all x0 ∈ Bh, t ≥ t0 ≥ 0.

Definition 2.1.9 Global exponential stability means that (2.2) is satisfied. for any x0 ∈ IRn

Definition 2.1.10 We say the system (2.1) is ultimately bounded if there is a b > 0 such that
corresponding to each solution x(t) of (2.1) there is a T > 0 with the property that |x(t)| < b for
all t > T .

2.2 Lyapunov stability theory

We now review some of the key concepts and results of Lyapunov stability theory for ordinary
differential equations of the form (2.1). The method is basically a generalization of the idea that
if some ”measure of the energy” associated with a system is decreasing, then the system will tend
to its equilibrium.

Definition 2.2.1 A function α(·) : IR+ → IR+ belongs to class K (denote α(·) ∈ K), if it is
continuous, strictly increasing, and α(0) = 0.

Definition 2.2.2 A continuous function v(·, ·) : IR+ × IRn → IR+ is called a locally positive
definite function if, for some h > 0, and some α(·) ∈ K

v(t, 0) = 0 and v(t, x) ≥ α(|x|) ∀x ∈ Bh, t ≥ 0

Definition 2.2.3 A continuous function v(·, ·) : IR+ × IRn → IR+ is called a positive definite
function if, for some α(·) ∈ K

v(t, 0) = 0 and v(t, x) ≥ α(|x|) ∀x ∈ IRn, t ≥ 0

and the function α(p)→∞ as p→∞.

Definition 2.2.4 The function v(·, ·) is called decrescent, if there exists a function β(·) ∈ K,
such that

v(t, x) ≤ β(||x||) ∀x ∈ Bh, t ≥ 0
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Theorem 2.2.5 When v(·, ·) is a locally positive definite continuously differential function, and

locally
dv

dt
(t, x) ≤ 0, then x = 0 is a stable equilibrium point, where the derivative of v is taken

along trajectories of (2.1), i.e.

dv

dt
(t, x) =

∂v(t, x)
∂t

+
∂v(t, x)

∂x
f(t, x)

Theorem 2.2.6 When v(·, ·) is a decrescent locally positive definite continuously differential
function, and locally dv

dt (t, x) ≤ 0, then x = 0 is a uniformly stable equilibrium point, where
the derivative of v is taken along trajectories of (2.1).

Theorem 2.2.7 When v(·, ·) is a locally positive definite continuously differential function, and
dv
dt (t, x) is a locally positive definite function, then x = 0 is an asymptotically stable equilibrium
point, where the derivative of v is taken along trajectories of (2.1).

Theorem 2.2.8 When v(·, ·) is a decrescent locally positive definite continuously differential
function, and dv

dt (t, x) is a locally positive definite function, then x = 0 is a uniformly asymp-
totically stable equilibrium point, where the derivative of v is taken along trajectories of (2.1).

Theorem 2.2.9 When v(·, ·) is a decrescent positive definite continuously differential function,
and dv

dt (t, x) is a positive definite function, then x = 0 is a globally uniformly asymptotically stable
equilibrium point, where the derivative of v is taken along trajectories of (2.1).

In case v(·, ·) is a decrescent positive definite continuously differential function, and dv
dt (t, x) is a

positive semidefinite function there are two theorems that can be of great help.
In case of an autonomous system

ẋ = f(x) f(0) = 0 (2.3)

La Salle’s theorem is often used.

Theorem 2.2.10 La Salle’s Theorem Consider the autonomous system (2.3). If there exists
a radially unbounded positive definite differentiable function V (x) such that

dV

dt
(x) =

∂V (x)
∂t

+
∂V (x)

∂x
f(x) ≤ 0

Then every trajectory of (2.3) converges to the largest invariant subset of (2.3) in

Ω = {x ∈ IRn|V̇ (x) = 0}.

For non-autonomous systems, a useful result is Barbalat’s Lemma:

Theorem 2.2.11 Barbalat’s Lemma If f(t) is a uniformly continuous function, such that

lim
t→∞

∫ t

0
f(ζ)dζ exists and is finite, then f(t)→ 0 as t→∞.

2.3 Rigid robot systems

In this thesis we will study the dynamics of a serial n-link rigid robot manipulator, that can be
descibed by [1]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.4)

where q is the n×1 vector of joint displacements, τ is the n×1 vector of applied joint torques, M(q)
is the n × n symmetric positive definite manipulator inertia matrix, C(q, q̇)q̇ is the n × 1 vector
of centripetal and Coriolis torques, and g(q) is the n× 1 vector of gravitational torques obtained
as the gradient of the robot potential energy U(q). We assume that the links are connected with
revolute joints.
This system has many properties, which can be found in [1] and [6]. Amongst others, we mention
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Property 2.3.1 The time derivative of the inertia matrix, and the centripetal and Coriolis matrix
satisfy:

xT
[
1
2
Ṁ(q)− C(q, q̇)

]
x = 0 ∀x ∈ IRn

Property 2.3.2 The matrices M(q), C(q, q̇) and g(q) are bounded with respect to q:

0 < Mm ≤ ||M(q)|| ≤MM for all q ∈ IRn

||C(q, x)|| ≤ CM ||x|| for all q, x ∈ IRn

||g(q)|| ≤ gM for all q ∈ IRn

Property 2.3.3 The Coriolis matrix satisfies C(x, y)z = C(x, z)y.

Property 2.3.4 There exists a constant kG such that the gravitational torque vector g(q) satisfies:

||g(x)− g(y)|| ≤ kG||x− y||

Property 2.3.5 There exists a reparametrization of all unknown parameters into a parameter
vector θ ∈ IRp that enters linearly in the system dynamics (2.4). Therefore the following holds

M(u, θ)x + C(u, v, θ)w + g(q, θ) ≡M0(u)x + C0(u, v)w + g0(q) + Y (u, v, w, x)θ

where M0(·), C0(·), g0(·) represent the known part of the system dynamics, and Y (u, v, w, x) is a
n× p regressor matrix that contains nonlinear but known functions.

2.4 Other results

This section contains two results, that are also important for this thesis.

2.4.1 The class F
Let F denote the class of non-decreasing continuous differentiable functions f : IR→ IR satisfying
f(0) = 0, f ′(0) > 0 and maxx∈IR |f(x)| ≤ 1.
Some examples of functions f(x) ∈ F are f(x) = tanh(x), f(x) = 2

π arctan(x) and

f(x) =

 −1 for x ≤ −1
x for |x| ≤ 1
1 for x ≥ 1

Furthermore if f, g ∈ F we have for all α, β, λ, µ > 0, 0 < α + β ≤ 1:

αf(λx) + βg(µx) ∈ F

Some other properties of f ∈ F are:

f(0) = 0
xf(x) > 0 ∀x 6= 0
F (0) = 0
F (x) > 0 ∀x 6= 0

where F (x) =
∫ x

0 f(ζ)dζ denotes the primitive of f(x).
This class is a subset of the class of saturating functions proposed by Sontag [5].
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2.4.2 An adaptive controller

Consider the system

ẍ +
m∑
i=1

ϑifi(x, ẋ, t) +
n∑

i=m+1

θifi(x, ẋ, t) = u (2.5)

with fi(x, ẋ, t) i = 1, . . . , n denoting some known functions, ϑi i = 1, . . . ,m are known constants,
and θi i = m + 1, . . . , n are unknown constants.
We consider the problem of controlling this system towards any desired trajectory xd ∈ C2.
The control law

u = ẍd −Kdė−Kpe +
m∑
i=1

ϑifi(x, ẋ, t) +
n∑

i=m+1

θ̂ifi(x, ẋ, t) (2.6)

where e ≡ x − xd denotes the tracking error, Kp > 0 and Kd > 0 are some constants and θ̂i
estimates for θi given by the adaption law:

˙̂
θm+1

...
˙̂
θn

 = −Γ

 fm+1(x, ẋ, t)
...

fn(x, ẋ, t)

 (ė + λe) (2.7)

where Γ is a n−m×n−m positive definite symmetric matrix and 0 < λ < Kd a constant, results
in the closed-loop system

ë + Kdė + Kpe +
n∑

i=m+1

θ̃ifi(x, ẋ, t) = 0


˙̃
θm+1

...
˙̃θn

 = −Γ

 fm+1(x, ẋ, t)
...

fn(x, ẋ, t)

 (ė + λe)

(2.8)

where θ̃i ≡ θi − θ̂i denotes the estimation error.

Proposition 2.4.1 Consider the system (2.5) with the controller (2.6) and parameter estimation
update law (2.7). Then the closed-loop system (2.8) is globally asymptotically stable with respect
to e i.e.

lim
t→∞

e(t) = 0

In case all fi are bounded, we also obtain:

lim
t→∞

ė(t) = 0

Proof For simplicity we define

Θ̃ =

 θ̃m+1
...

θ̃n


Consider the radially unbounded Lyapunov function candidate

V (e, ė, Θ̃) =
1
2
(ė + λe)2 +

1
2
[λ(Kd − λ) + Kp]e2 +

1
2
Θ̃TΓ−1Θ̃

which is positive definite. Differentiating along solutions of (2.8) results in

V̇ (e, ė, Θ̃) = −(Kd − λ)ė2 −Kpλe2
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which is negative semidefinite in the error state (e, ė, Θ̃). To prove that lim
t→∞

e(t) = 0 we may not

use LaSalle’s theorem, since the closed-loop system (2.8) is time-varying. We can use Barbalat’s
Lemma instead. Since V (t) is bounded we have that both e(t) and ė(t) are bounded, and therefore
e(t) is uniformly continuous. Furthermore for all t ≥ 0:

0 ≤
∫ t

0
e2(ζ)dζ ≤

∫ t

0
e2(ζ)+

Kd − λ

Kpλ
ė2(ζ)dζ = −

∫ t

0

1
Kpλ

V̇ (ζ)dζ =
1

Kpλ
(V (0)−V (t)) ≤ 1

Kpλ
V (0)

Using Barbalat’s Lemma, if follows that lim
t→∞

e(t) = 0.

In case all fi are bounded, we obtain, using (2.8), ë(t) is bounded, and therefore ė(t) is uniformly
continuous. Using

0 ≤
∫ t

0
ė2(ζ)dζ ≤ 1

Kd − λ
V (0)

and Barbalat’s Lemma, we obtain lim
t→∞

ė(t) = 0.



Chapter 3

Duffing’s equation

In this chapter we study the controlled version of the forced Duffing equation (1.2):

ẍ + pẋ + p1x + x3 = u + q cos(ωt), (3.1)

where p > 0, p1, q, and ω are constant system-parameters and u(·) is a control function or input.
In [10], Nijmeijer and Berghuis studied the control of (3.1), and the results include a stabilizing
observer-controller combination as well as a practically stabilizing system-parameter independent
output feedback controller. In this chapter we want to extend those results dealing with input
limitations, where we restrict ourselves to the case p > 0.

|u(t)| ≤ umax t ≥ 0 (3.2)

In order to achieve globally stabilizing results dealing with input limitations we introduce the
concept of a composite feedback control. Furthermore, adaptive controllers will be introduced
in case one or more system-parameters (except ω) are unknown, and compared to the robust
controllers of Nijmeijer and Berghuis.

3.1 On Lyapunov control of the Duffing equation (I)

This section contains the results presented in [10].

Proposition 3.1.1 Consider the system (3.1) together with the control law

u = ẍd + pẋd + p1xd + x3
d − q cos(ωt)−Kdė−Kpe + 3xxde (3.3)

where e ≡ x − xd denotes the tracking error, Kd > −p and Kp > −p1. Then the resulting
closed-loop system is asymptotically stable.

Proposition 3.1.2 Consider the system (3.1) together with the control law

u = ẍd + pẋd + p1xd + x3
d − q cos(ωt)−Kd

˙̂e−Kpê + 3xxde (3.4)

where ê is generated from the auxiliary system

˙̂e = w + 2Kd(e− ê)− pe
ẇ = 2Kp(e− ê)− p1e− e3 (3.5)

Then the resulting closed-loop system is asymptotically stable under the condition that Kp = λKd

and 0 < λ < max{Kd, p + Kd}.

15
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Proposition 3.1.3 Consider the system (3.1) under robust PD-feedback

u = −Kdė−Kpe (3.6)

Then the resulting closed-loop dynamics are locally uniformly ultimately bounded for Kd sufficiently
large.

Proposition 3.1.4 Consider the system (3.1) under robust PD-feedback

u = −Kd
˙̂e−Kpê (3.7)

where ê is generated from the auxiliary system

˙̂e = w + 2Kd(e− ê)
ẇ = 2Kp(e− ê)

(3.8)

Then the resulting closed-loop dynamics are locally uniformly ultimately bounded for Kd sufficiently
large.

3.2 On Lyapunov control of the Duffing equation (II)

Although Nijmeijer and Berghuis already considered the problem of controlling Duffing’s equation
to any desired trajectory xd(t) ∈ C2, even in case p ≤ 0, we propose a slightly different control
law, with a view to the extension of considering input limitations. Furthermore, their second order
observer can be simplified to a first order auxiliary system.
Consider the control law

u = ẍd + pẋd + p1x + x3
d + 3xxde−Kpf1(e)−Kdf2(ė)− q cos(ωt) (3.9)

where e ≡ x − xd denotes the tracking error, Kp ≥ 0 and Kd ≥ 0 are constants and f1, f2 ∈ F .
This controller results in the closed-loop system

ë + pė + e3 + Kpf1(e) + Kdf2(ė) = 0 (3.10)

Proposition 3.2.1 Consider the system (3.1) together with the control law (3.9). Then the closed-
loop system (3.10) is globally asymptotically stable.

Proof Consider the radially unbounded Lyapunov function candidate

V (e, ė) =
1
2
ė2 +

1
4
e4 + KpF1(e) (3.11)

where
F1(e) =

∫ e

0
f1(ζ)dζ

which is positive definite. Along solutions of (3.10) the time-derivative of (3.11) is:

V̇ (e, ė) = ė[−pė− e3 −Kpf1(e)−Kdf2(ė)] + e3ė + Kpf1(e)ė = −pė2 −Kdėf2(ė)

which is negative semidefinite in the error state (e, ė).
To demonstrate global asymptotic stability, we use LaSalle’s theorem (Theorem 2.2.10). To this
end, let us define the set Ω as

Ω = {(e, ė) ∈ IR2|V̇ (e, ė) = 0} = {(e, ė) ∈ IR2|ė = 0}

We now have to determine the largest invariant set in Ω with respect to (3.10). For (e, ė) ∈ Ω we
obtain for (3.10):

e3 + Kpf1(e) = 0
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from which it follows that the only solution is e = 0. Therefore, the origin is the largest invariant
set in Ω with respect to (3.10) and from LaSalle’s theorem it follows that the origin is globally
asymptotically stable.

In case we are unable to measure the velocity ẋ we have to develop an auxiliary system, to correct
for the lack of velocity measurement. In the light of the previous proposition we consider the
control law

ẍd + pẋd + p1x + x3
d + 3xxde−Kpf1(e)−Kdf2(w)− q cos(ωt) (3.12)

where Kp ≥ 0 and Kd > 0 are constants, f1, f2 ∈ F and w generated from the auxiliary system

ẇ = ė− Lpw (3.13)

where Lp > 0 is a constant. This control law results in the closed-loop system

ë + pė + e3 + Kpf1(e) + Kdf2(w) = 0
ẇ = ė− Lpw

(3.14)

Lemma 3.2.2 Consider the system (3.1) together with the control law (3.12) and auxiliary system
(3.13). Then the closed-loop system (3.14) is globally asymptotically stable.

Proof Consider the radially unbounded Lyapunov function candidate

V (e, ė, w) =
1
2
ė2 +

1
4
e4 + KpF1(e) + KdF2(w) (3.15)

where
F1(e) =

∫ e

0
f1(ζ)dζ and F2(w) =

∫ w

0
f2(ζ)dζ

which is positive definite. Along solutions of (3.14) its time-derivative is:

V̇ (e, ė, w) = −pė2 −KdLpwf2(w)

which is negative semidefinite in the state (e, ė, w).
To demonstrate global asymptotic stability, we again use LaSalle’s theorem. To this end, let us
define the set Ω as

Ω = {(e, ė, w) ∈ IR2|V̇ (e, ė, w) = 0} = {(e, ė, w) ∈ IR2|ė = 0}
We now have to determine the largest invariant set in Ω with respect to (3.14). For (e, ė, w) ∈ Ω
we obtain for (3.14):

e3 + Kpf1(e) = 0
from which it follows that the only solution is e = 0. Therefore, the origin is the largest invariant
set in Ω with respect to (3.14) and from LaSalle’s theorem it follows that the origin is globally
asymptotically stable.

We developed the control law (3.12) with auxiliary system (3.13) in order to control the system
(3.1) without using measurements of ẋ but the auxiliary system (3.13) contains ė instead. How to
overcome this problem?
Define the signal z via w = e− Lpz, where z is generated from an auxiliary system. From (3.13)
we deduce:

ż = e− Lpz

Therefore

Proposition 3.2.3 Consider the system (3.1) together with the control law

ẍd + pẋd + p1x + x3
d + 3xxde−Kpf1(e)−Kdf2(e− Lpz)− q cos(ωt) (3.16)

where Kp ≥ 0, Kd > 0 and Lp > 0 are constants, f1, f2 ∈ F and z generated from the auxiliary
system

ż = e− Lpz (3.17)
Then the resulting closed-loop system is globally asymptotically stable.
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3.3 Composite control

As already mentioned in the introduction, the first results on controlling chaos appeared in 1990,
presented by Ott, Grebogi and Yorke [12]. They introduced a method to convert a chaotic attractor
to any one of a large number of possible attracting time-periodic motions by making only small
time-dependent perturbations of an available system parameter. This is now often referred to as
the OGY-method.
Consider the system

ẋ(t) = F (x(t), p)

where p is a system parameter available for external adjustment within a small range about some
nominal value p0, say p0 − p∗ < p < p0 + p∗.
By introducing a transversal surface of section for system trajectories we describe the system by
the map

ξn+1 = P (ξn, p)

Assume that ξF = P (ξF , p0) is an unstable fixed point of the map P to which we want to stabilize
the system. A first order approximation of P near ξF and p0 is given by

ξ′n+1 = png + (λueufu + λsesfs)(ξ′n − png)

where g = ∂ξF (p)/∂p|p=p0 , λs and λu denote the stable and unstable eigenvalues of the surface
of section map at the chosen fixed point, es and eu denote its eigenvectors and fs and fu are its
contravariant basisvectors defined by fs · es = fu · eu = 1, fs · eu = fu · es = 0. Since ξ′n+1 should
fall on the stable manifold of ξF , we choose pn such that fuξ

′
n+1 = 0, i.e.

pn =
λuξ
′
nfu

(λu − 1)gfu

only when this results in an allowable pn. Otherwise we choose pn = p0.
In other words, we wait until the chaotic system approaches the desired orbit. Since the system
is chaotic, it will eventually come as close to the desired orbit as desired, and that is when we
change one of the accessible parameters for one period of the chosen orbit, to achieve that the
system settles onto the desired orbit. However, when we do not apply the parameter change, the
system will stray from the desired orbit, and we have to wait, until is comes close enough again.
Although this method has been applied in many practical systems as laser systems, electrical
circuits, chemical reactions, etc. it does have some drawbacks.
For instance, the time at which the parameter change is applied is very crucial. Being a second
late can lead to the opposite result: instead of coming closer to the desired orbit one could move
away from it.
Secondly, the assumption is made that a certain parameter can be changed within a small range:
p0 − p∗ < p < p0 + p∗. In most systems parameters can not be changed that easily, since they
represent material specific properties like masses, spring constants, capacities, resistances, etc.
This does not imply the idea is not useful, since a way to achieve a certain ’mass-change’ is to
apply a force proportional to the current acceleration. But dealing with input limitations on the
maximum force implies that the range in which one is able to ’change the mass’ is dependent on
the current acceleration (time-dependent).
A third drawback is that one has to wait until the chaotic system approaches the desired orbit.
The chaotic behaviour of the system guarantees that the system eventually will come close enough
but one has no idea when. It is for instance not guaranteed that the system will come closer and
closer as time evolves. Furthermore, as soon as the system is close enough, we have to act quickly,
since before we know, the system has strayed from the desired orbit.
A way to overcome these problems is using a composite feedback controller. During the waiting
phase one applies a feedback control law in order to ensure the system will come closer and closer
to a specific orbit. This orbit is not neccessarily the desired trajectory to track but at least close



3.4. BOUNDED CONTROLLERS, USING STATE MEASUREMENTS 19

to it. Once the system is close to this orbit, i.e. close enough to the desired trajectory to track,
one switches to a second control law, that ensures the system will follow the desired trajectory.
To track a desired trajectory, feedforward control is needed. Since we consider the problem of
following a desired trajectory using a bounded control in this thesis, it is reasonable to assume
that the desired trajectory satisfies:

|xd(t)| ≤ B0, |ẋd(t)| ≤ B1, |ẍd(t)| ≤ B2 t ≥ 0 (3.18)

with B0, B1, and B2 denoting some known bounds.
As mentioned before we will develop two control laws. The first controller, which is used in the
waiting phase, has to make sure that the state comes close enough to a specific orbit, which is
close enough to the desired trajectory to track. The freedom in choosing the specific orbit, close
to the desired orbit, to which the first phase controller converges, is enormous. In this thesis we
choose for that specific orbit mostly the origin, since it minimizes the tracking error e = x− xd in
case we only know (3.18)
The second controller, which is used in the tracking phase, should ensure the system converges to
the desired trajectory.
Looking at the control laws of the previous section, for example at (3.9), we see from the proof
of convergence, in order to verify whether u(t) satisfies a prescribed bound, it suffices we have a
beforehand known bound on x and e, whereas only one suffices, since e ≡ x− xd and we already
have a bound on xd. From the Lyapunov function (3.11), using the knowledge that it is a decreasing
function, we are able to deduce bounds on e(t) (and therefore x(t)). The only disadvantage is
that those bounds depend on the values of e and ė at the moment the controller is initiated.
However, if we are able to construct a globally ultimately uniformly bounded (GUUB) controller
that satisfies the input limitations, we can use it as a first phase controller. This waiting phase
controller ensures the system finally reaches a state in which both e and ė are within prescibed
bounds. As soon as we have reached that situation, we can switch to the second controller. We
can now use our tracking controller to establish asymptotically tracking.
This is the key idea on which most results in this thesis have been based. The specific orbit to
which the first phase controller steers the system will in most cases be the origin (a fixed point),
because then it is easy to deduce the tracking errors.

3.4 Bounded controllers, using state measurements

In this section we consider the problem of tracking a desired trajectory xd(t) ∈ C2 under input
limitations

|u(t)| ≤ umax t ≥ 0

presuming we are able to measure the full state (x, ẋ).
Since tracking any desired trajectory will be accomplished by (partially) feeding forward the
behaviour of the desired trajectory we have to assume that

|xd(t)| ≤ B0, |ẋd(t)| ≤ B1, |ẍd(t)| ≤ B2 t ≥ 0 (3.19)

3.4.1 Trajectory tracking

In order to achieve global error-convergence under input limitations, we use a composite controller.
In the waiting phase we control the state towards the origin. As the state is close enough to the
origin, we switch to the tracking phase, using a second controller to achieve tracking.

Lemma 3.4.1 Consider the system (3.1), together with the control law

u = −q cosωt−Kpf1(x) −Kdf2(ẋ) (3.20)

where Kp > 0, Kd ≥ 0 and f1, f2 ∈ F .
Then for all C0 > γ and C1 > 0 there exists a time ts ≥ 0 such that |x(t)| ≤ C0 and |ẋ(t)| ≤ C1
for all t ≥ ts where γ = 0 for p1 ≥ 0 and γ =

√−p1 otherwise.
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Proof The control law (3.20) results in the closed-loop system

ẍ + pẋ + p1x + x3 + Kpf1(x) + Kdf2(ẋ) = 0 (3.21)

Consider the radially unbounded Lyapunov-like function

V (x, ẋ) =
1
2
ẋ2 +

1
4
(x2 + p1)2 + KpF1(x)

where
F1(x) =

∫ x

0
f1(ζ)dζ

Differentiating along solutions of (3.21) yields

V̇ (x, ẋ) = −pẋ2 −Kdẋf2(ẋ)

which is negative semi-definite in the state (x, ẋ). Next, we have to determine the largest invariant
set in {(x, ẋ) ∈ IR2|V̇ (x, ẋ) = 0}, which is {(x, ẋ) ∈ IR2|p1x + x3 + Kpf1(x) = 0}. Application of
Theorem 2.2.10 completes the proof.

Corollary 3.4.2 Consider the system (3.1). If

umax > |q|

then there exist Kp and Kd such that the control law (3.20) satisfies the constraint (3.2).

Proposition 3.4.3 Consider the system (3.1). For all C0 > γ and C1 > 0 there exists a switching
time ts ≥ 0 such that the composite control law

u =
{

−Kp,1f1(x) −Kd,1f2(ẋ)− q cos(ωt) t < ts
ẍd + pẋd + p1x + x3

d + 3xxde−Kp,2f3(e)−Kd,2f4(ė)− q cos(ωt) t ≥ ts
(3.22)

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise, Kp,1 ≥ 0, Kd,1 ≥ 0, Kp,2 ≥ 0, and Kd,2 ≥ 0 are

constants, and f1, f2, f3, f4 ∈ F results in a globally asymptotically stable closed-loop system

Proof Let ts be a moment that both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. Lemma 3.4.1 showed the
existence of ts. In Proposition 3.2.1 we already showed that the tracking phase controller results
in a globally asymptotically closed-loop system.

Corollary 3.4.4 For all C0 > γ and C1 > 0 there exists a β > 0 such that the composite controller
(3.22) satisfies

|u(t)| ≤ β t ≥ 0

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise.

Proof Proposition 3.4.3 gives us a switching time ts ≥ 0 such that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1.
Using (3.19), we obtain |e(ts)| ≤ B0+C0 and |ė(ts)| ≤ B1+C1. From the proof of Proposition 3.2.1
we know that the Lyapunov function (3.11) is a decreasing function for t ≥ ts, i.e.

1
2
ė(t)2 +

1
4
e(t)4 + Kp,2F3(e(t)) ≤

1
2
ė(ts)2 +

1
4
e(ts)4 + Kp,2F3(e(ts)) ∀t ≥ ts

which implies that for all t ≥ ts:

|e(t)| ≤ 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2KpF1(B0 + C0)

|ė(t)| ≤
√

(B1 + C1)2 +
1
2
(B0 + C0)4 + KpF1(B0 + C0)
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Therefore
|u(t)| ≤ φ(p, p1, q, B0, B1, B2, C0, C1,Kp,2,Kd,2) ∀t ≥ ts

where

φ(·) = B2 + pB1 + |p1|
(

B0 + 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
+

B3
0 + 3

(
B0 + 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
B0 ·

·
(

4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
+ Kp,2 + Kd,2 + |q|

When we consider the first phase controller, we obtain

|u(t)| ≤ Kp,1 + Kd,1 + |q| ∀t < ts

from which it is obvious that

β = max{Kp,1 + Kd,1 + |q|, φ(p, p1, q, B0, B1, B2, C0, C1,Kp,2,Kd,2)}

suffices.

Corollary 3.4.5 Consider the system (3.1). If

umax > B2 + pB1 + |p1|
(

B0 + 4

√
2B2

1 + (B0 + γ)4

)
+ B3

0 + 3
(

B0 + 4

√
2B2

1 + (B0 + γ)4

)
·

·B0

(
4
√

2B2
1 + (B0 + γ)4

)
+ |q|

where γ = 0 if p1 ≥ 0 and γ =
√−p1 otherwise, then there exists a composite control law of the

form (3.22) that satisfies the constraint (3.2).

Remark 3.4.6 In Corollary 3.4.4 we use a rather weak estimate in determining the value of β.
Therefore, this estimate can be much more weakend in many cases. For example in case p1 ≥ 0
and the desired trajectory xd is an uncontrolled trajectory (stable, or unstable!)

ẍd + pẋd + p1xd + x3
d = q cos(ωt)

it is easy to see we are able to design a composite feedback controller that satisfies |u(t)| ≤ umax
for all umax > max{p1B1, |q|}.
In practice β will only have to be a little greater than |q| plus the effort needed to feedforward the
desired trajectory, since, by choosing C0, C1, Kp and Kd,2 as small as possible, the contribution
of −p1e + 3xxde−Kpf2(e)−Kd,2f3(ė) to the control effort reduces to about zero.

3.4.2 Adaptive trajectory tracking

In case ω is known, we know from Proposition 2.4.1 the control law

u = ẍd −Kdė−Kpe + x3 + p̂ẋ + p̂1x + q̂ cos(ωt) (3.23)

where Kd > 0, Kp > 0 are constants and p̂, p̂1 and q̂ estimates for p, p1 and −q given by: ˙̂p
˙̂p1
˙̂q

 = −Γ

 ẋ
x

cos(ωt)

 (ė + λe)
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where 0 < λ < Kd is a constant and Γ is a 3× 3 positive definite symmetric matrix, results in a
globally asymptotically stable closed-loop system.
Therefore, this control law is a good candidate for the tracking phase controller of a composite
control law in case some of the parameters are unknown. We only have to find a suitable waiting
phase controller. Furthermore, in order to assure the controller satisfies the constraint (3.2) we
have to assume that we have bounds on the initial estimate errors of the unknown variables, i.e.

p̂(0)− p ≤ Ep
p̂1(0)− p1 ≤ Ep1

q̂(0)− (−q) ≤ Eq

with Ep, Ep1 , and Eq some bounds.
Notice the control law (3.20) is independent of p and p1. In case only p and p1 are unknown this
is a suitable waiting phase controller.

Proposition 3.4.7 Consider the system (3.1). For all C0 > γ and C1 > 0 there exists a switching
time ts ≥ 0 such that the composite adaptive control law

u =
{

−Kp,1f1(x) −Kd,1f2(ẋ)− q cos(ωt) t < ts
ẍd −Kp,2e−Kd,2ė + x3 + p̂ẋ + p̂1x− q cos(ωt) t ≥ ts

(3.24)

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise, Kp,1 ≥ 0, Kd,1 ≥ 0, Kp,2 > 0, and Kd,2 > 0 are

constants, f ∈ F , and p̂ and p̂1 estimates for p and p1 given by:( ˙̂p
˙̂p1

)
= −Γ

(
ẋ
x

)
(ė + λe)

where 0 < λ < Kd,2 is a constant and Γ a 2×2 positive definite symmetric matrix with eigenvalues
λmin ≤ λmax, results in a globally asymptotically stable closed-loop system with respect to e and
ė, i.e.

lim
t→∞

e(t) = lim
t→∞

ė(t) = 0

Proof Let ts be a moment that both |x(ts)| ≤ C0 and |ẋ(t)| ≤ C1. Lemma 3.4.1 showed the
existence of ts. In Proposition 2.4.1 we already showed that the tracking phase controller results
in a globally asymptotically closed-loop system.

Corollary 3.4.8 For all C0 > γ and C1 > 0 there exists a β > 0 such that the composite controller
(3.24) satisfies

|u(t)| ≤ β t ≥ 0

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise.

Proof Proposition 3.4.7 gives us a switching time ts ≥ 0 such that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1.
Using (3.19), we obtain |e(ts)| ≤ B0+C0 and |ė(ts)| ≤ B1+C1. From the proof of Proposition 2.4.1
we know

1
2
(ė(t) + λe(t))2 +

1
2
[Kp + λ(Kd − λ)]e(t)2 +

1
2

(
p̃(t)
p̃1(t)

)T
Γ−1

(
p̃(t)
p̃1(t)

)
is a non-increasing function for t ≥ ts. When we initiate our adaptive second phase controller with
p̃(ts) ≤ Ep and p̃1(ts) ≤ Ep1 we are able to determine a bound on the tracking phase controller.
Using

(ė + λe)2 + αe2 = ė2 + 2λėe + (λ2 + α)e2 = (
λ√

λ2 + α
ė +

√
λ2 + α e)2 +

α

λ2 + α
ė2
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we obtain for all t ≥ ts:

|e(t)| ≤
√

1
α

[(B1 + C1) + λ(B0 + C0)]2 + (B0 + C0)2 +
λmax

α
(E2

p + E2
p1

)

|ė(t)| ≤
√

1
α

[λ(B1 + C1) + (λ2 + α)(B0 + C0)]2 + (B1 + C1)2 +
λmax(λ2 + α)

α
(E2

p + E2
p1

)

|p̃(t)| ≤
√

1
λmin

[(B1 + C1) + λ(B0 + C0)]2 +
α

λmin
(B0 + C0)2 +

λmax
λmin

(E2
p + E2

p1
)

|p̃1(t)| ≤
√

1
λmin

[(B1 + C1) + λ(B0 + C0)]2 +
α

λmin
(B0 + C0)2 +

λmax
λmin

(E2
p + E2

p1
)

where α = Kp,2 + λ(Kd,2 − λ). Notice, the tracking phase controller satisfies

|u(t)| ≤ B2 + Kd,2 + Kp,2 + (Ep + |p̃(t)|)(B1 + |ė(t)|) + (Ep1 + |p̃1(t)|)(B0 + |e(t)|) + |q|

So |u(t)| ≤ φ(q,B0, B1, B2, C0, C1,Kp,2,Kd,2, Ep1 , Ep) where

φ(·) = B2 + Kd,2 + Kp,2 +

(
Ep+

+
√

1
λmin

[(B1 + C1) + λ(B0 + C0)]2 +
α

λmin
(B0 + C0)2 +

λmax
λmin

(E2
p + E2

p1
)

)(
B1+

+

√
[λ(B1 + C1) + (λ2 + α)(B0 + C0)]2 + α(B1 + C1)2 + λmax(λ2 + α)(E2

p + E2
p1

)
α

)
+

+

(
Ep1 +

√
1

λmin
[(B1 + C1) + λ(B0 + C0)]2 +

α

λmin
(B0 + C0)2 +

λmax
λmin

(E2
p + E2

p1
)

)
·

·
(

B0 +

√
1
α

[(B1 + C1) + λ(B0 + C0)]2 + (B0 + C0)2 +
λmax

α
(E2

p + E2
p1

)

)
+ |q|

where α = Kp,2 + λ(Kd,2 − λ).
When we consider the waiting phase controller we obtain

|u(t)| ≤ Kp,1 + Kd,1 + |q| t < ts

from which it is obvious that

β = max{Kp,1 + Kd,1 + |q|, φ(q,B0, B1, B2, C0, C1,Kp,2,Kd,2, Ep1 , Ep)}

suffices.

In case q is also unknown, the controller (3.23) will still be a suitable tracking phase controller.
We only need a proper first phase controller, i.e. one that assures there exists a time ts ≥ 0 such
that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1 for any C0 and C1. Unfortunately we have not been able to
derive a suitable first phase control law that results in a globally uniformly ultimately bounded
closed-loop system.

3.5 Bounded controllers, using a velocity observer

In this section we also consider the problem of tracking a desired trajectory xd(t) ∈ C2 under input
limitations

|u(t)| ≤ umax t ≥ 0
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All controllers in the previous section require knowledge of the velocity ẋ. In case we are only
able to measure x we still want to establish global asymptotical stability of the closed-loop system.
Therefore, in this section we assume that we only know x and not ẋ. We develop auxiliary systems,
to compensate the lack of knowledge of the velocity and use that auxiliary system in our control
laws.
To deal with input limitations, we again develop composite controllers.

3.5.1 Trajectory tracking

In anology to Lemma 3.4.1 we first want to develop a waiting phase controller to control the state
towards the origin. As the state is close enough, we switch to the tracking phase, using a second
controller to achieve tracking.
Consider the control law

u = −q cosωt−Kpf1(x) −Kdf2(w) (3.25)

where Kp ≥ 0, Kd > 0, f1, f2 ∈ F and w generated from the auxiliary system

ẇ = ẋ− Lpw (3.26)

where Lp > 0 is a constant. This controller results in the closed-loop system

ẍ + pẋ + p1x + x3 + Kpf1(x) + Kdf2(w) = 0
ẇ = ẋ− Lpw

(3.27)

Lemma 3.5.1 Consider the system (3.1), together with the control law (3.25) and auxiliary sys-
tem (3.26).
Then for all C0 > γ and C1 > 0 there exists a time ts ≥ 0 such that |x(t)| ≤ C0 and |ẋ(t)| ≤ C1
for all t ≥ ts where γ = 0 for p1 ≥ 0 and γ =

√−p1 otherwise.

Proof Consider the radially unbounded Lyapunov-like function

V (x, ẋ, w) =
1
2
ẋ2 +

1
4
(x2 + p1)2 + KpF1(x) + KdF2(w)

where
F1(x) =

∫ x

0
f1(ζ)dζ and F2(w) =

∫ w

0
f2(ζ)dζ

Differentiating along solutions of (3.27) yields

V̇ (x, ẋ, w) = −pẋ2 −KdLpwf2(w)

which is negative semi-definite in the state (x, ẋ, w). We next have have to determine the largest
invariant set in {(x, ẋ, w) ∈ IR3|V̇ (x, ẋ, w) = 0}, which is {(x, ẋ, w) ∈ IR3|p1x+x3 +Kpf1(x) = 0}.
Application of Theorem 2.2.10 completes the proof.

We developed the control law (3.25) with auxiliary system (3.26) in order to control the system
(3.1) without using measurements of ẋ but as before the auxiliary system (3.26) contains ė instead.
We can overcome this problem analogously.
We can again write the signal w = e− Lpz, where z is generated from an auxiliary system. From
(3.26) we deduce:

ż = e− Lpz

Therefore

Lemma 3.5.2 Consider the system (3.1), together with the control law

u = −q cosωt−Kpf1(x)−Kdf2(e− Lpz) (3.28)

where Kp ≥ 0, Kd > 0, Lp > 0, f1, f2 ∈ F and z generated from the auxiliary system

ż = x− Lpz (3.29)

Then the resulting closed-loop system is globally asymptotically stable



3.5. BOUNDED CONTROLLERS, USING A VELOCITY OBSERVER 25

Corollary 3.5.3 Consider the system (3.1). If

umax > |q|

then there exist Kp and Kd such that the control law (3.28) satisfies the constraint (3.2).

Proposition 3.5.4 Consider the system (3.1). For all C0 > γ and C1 > 0 there exists a switching
time ts ≥ 0 such that the composite control law

u =
{

−Kp,1f1(x)−Kd,1f2(x− Lp,1z1)− q cos(ωt) t < ts
ẍd + pẋd + p1x + x3

d + 3xxde−Kp,2f3(e)−Kd,2f4(e− Lp,2z2)− q cos(ωt) t ≥ ts
(3.30)

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise, Kp,1 ≥ 0, Kd,1 > 0, Kp,2 ≥ 0,Kd,2 > 0,

Lp,1 > 0, and Lp,2 > 0 are constants, f1, f2, f3, f4 ∈ F , and z1 and z2 generated from the auxiliary
systems

ż1 = x− Lp,1z1 t < ts
ż2 = e− Lp,2z2 t ≥ ts

(3.31)

results in a globally asymptotically stable closed-loop system.

Proof Let ts be a moment that both |x(ts)| ≤ C0 and |ẋ(t)| ≤ C1. Lemma 3.5.2 showed the
existence of ts. In Proposition 3.2.3 we already showed that the tracking phase controller results
in a globally asymptotically closed-loop system.

Corollary 3.5.5 For all C0 > γ and C1 > 0 there exists a β > 0 such that the composite controller
(3.30) satisfies

|u(t)| ≤ β t ≥ 0

where γ = 0 for p1 ≥ 0 and γ =
√−p1 otherwise.

Proof Proposition 3.5.4 gives us a switching time ts ≥ 0 such that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1.
Using (3.19), we obtain |e(ts)| ≤ B0+C0 and |ė(ts)| ≤ B1+C1. From the proof of Proposition 3.2.3
we know that the Lyapunov function (3.15) is a decreasing function for t ≥ ts. Therefore, ∀t ≥ ts:

1
2
ė(t)2 +

1
4
e(t)4 +Kp,2F3(e(t))+Kd,2F4(ż(t)) ≤ 1

2
ė(ts)2 +

1
4
e(ts)4 +Kp,2F3(e(ts))+Kd,2F4(ż(ts))

In case we initialize our second auxiliary system as z(ts) = 0, this implies that for all t ≥ ts:

|e(t)| ≤ 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

|ė(t)| ≤
√

(B1 + C1)2 +
1
2
(B0 + C0)4 + Kp,2F3(B0 + C0)

resulting in
|u(t)| ≤ φ(p, p1, q, B0, B1, B2, C0, C1,Kp,2,Kd,2) ∀t ≥ ts

where

φ(·) = B2 + pB1 + |p1|
(

B0 + 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
+

B3
0 + 3

(
B0 + 4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
B0 ·

·
(

4

√
2(B1 + C1)2 + (B0 + C0)4 + 2Kp,2F3(B0 + C0)

)
+ Kp,2 + Kd,2 + |q|

When we consider the first phase controller, we obtain

|u(t)| ≤ Kp,1 + Kd,1 + |q| ∀t < ts
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from which it is obvious that

β = max{Kp,1 + Kd,1 + |q|, φ(p, p1, q, B0, B1, B2, C0, C1,Kp,Kd,2)}

suffices.

Corollary 3.5.6 Consider the system (3.1). If

umax > B2 + pB1 + |p1|
(

B0 + 4
√

2B2
1 + (B0 + γ)4

)
+ B3

0 + 3
(

B0 + 4
√

2B2
1 + (B0 + γ)4

)
·

·B0

(
4

√
2B2

1 + (B0 + γ)4

)
+ |q|

where γ = 0 if p1 ≥ 0 and γ =
√−p1 otherwise, then there exists a composite control law of the

form (3.30) that satisfies the constraint (3.2).

Remark 3.5.7 Notice the upperbounds in Corollaries 3.5.5 and 3.5.6 are the same as the ones
found in Corollaries 3.4.4 and 3.4.5. Therefore, the lack of velocity measurements does not require
a larger control effort.

Remark 3.5.8 Notice we switch controllers at a moment |ẋ(t)| ≤ C1. But we are not able to
observe ẋ! How do we know when to switch?
Recall for the first phase controller when we have |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1 for certain time
ts, then |x(t)| ≤ C0 and |ẋ(t)| ≤ C1 for all t ≥ ts. Therefore it does not matter if we switch from
the first controller to the second one later than suggested. Since we have x(t) available, we can
use numerical differentiation techniques to approximate ẋ(t). Although it is not preferable to use
those estimates in the controllers of the previous section we can nevertheless use those estimates
to determine whether |ẋ(t)| ≤ C1 or not. We only know for sure that |ẋ(ts)| ≤ C1 a little later.

3.6 Simulations

To support our results, we simulated with SIMNONTM the controlled Duffing’s equation. In
our first simulation we compare the bounded composite controller (3.22) to (3.3) of Nijmeijer and
Berghuis. In our second simulation we compare the analogous controller-observer/auxiliary-system
combinations. Our last simulation compares the Nijmeijer-Berghuis robust controller (3.6) to our
adaptive controller (3.23).
In all simulations we use the same parameters: p = 0.4, p1 = −1.1, q = 2.1, and ω = 1.8, in which
case the uncontrolled forced Duffing equation displays chaotic behaviour. We define the reference
motion as

xd(t) = sin(t) t ≥ 0

In order to demonstrate the suggested controllers deal with input limitations, we choose the initial
state (x(0), ẋ(0)) = (−2, 3).
For the Nijmeijer-Berghuis controllers, the gains were choosen as in [10], i.e. Kd = 12.5 and
Kp = 50. The resulting performance for (3.3) is depicted in figure 3.1.
Figure 3.1(a) shows the time-trajectories of e(t) and ė(t), 3.1(b) shows the control u(t) needed,
3.1(c) shows the error trajectory (e, ė) and finally 3.1(d) is the same as 3.1(b), only using an other
scale.
We see the control effort at the beginning of this simulation is more than 70, then rapidly decreases
to about −20 and in about a second the errors are small enough such that the control-effort reduces
to the needed feedforward control.
For the bounded composite controller (3.22) we chose all gains to be 1, chose C0 = 1.1 and C1 = 0.1
and used f1(x) = f2(x) = tanh(x). The resulting performance for (3.22) is depicted in figure 3.2.
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Figure 3.1: The performance of Nijmeijer-Berghuis controller (3.3).

Analogously figure 3.2(a) shows the time-trajectories of e(t) and ė(t), 3.2(b) shows the control
u(t) needed, 3.2(c) shows the error trajectory (e, ė) and finally 3.2(d) is the same as 3.2(b), only
using an other scale.
We see the control-efforts remain small: we have |u(t)| ≤ 2 for the waiting phase controller,
whereas for the tracking controller we still have |u(t)| ≤ 4. This is in clear contrast to the
Nijmeijer-Berghuis controller. The only price we have to pay is the time needed to reduce the
errors, although the maximum magnitude of the errors is less. From 3.2(d) we see the first phase
controller is needed until t = 1.76. For t ≥ 1.76 the tracking phase controller is used.
In order to compare both controllers, we define some performance measures. Since the bounded
composite controller needs a smaller control effort in exchange for a worse error-convergence, we
define the overall tracking error and control effort as

Tracking error =
∫ tf

0

(
e(ζ)2 + ė(ζ)2) dζ

Control effort =
∫ tf

0
u(ζ)2dζ

where tf is a final time, which in case of the tracking error might be chosen to equal infinity but
in case of the control effort can not, since we always need a feedforward control in order to follow
the desired trajectory.
When we choose our final time tf = 10 seconds, we obtain:

Controller Tracking error Control effort
Nijmeijer-Berghuis 8.627 245.232
Bounded composite 6.001 31.260

From which it is obvious the bounded composite controller (3.22) performs much better.

In our first simulation both controllers used state measurements. In our secound simulation, we
consider the Nijmeijer-Berghuis controller-observer combination (3.4,3.5) where the gains are again
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Figure 3.2: The performance of the bounded composite controller (3.22).

as in [10] Kd = 12.5 and Kp = 50 and we initialized the observer at the origin (ê(0), w(0)) = (0, 0).
The resulting performance for (3.4, 3.5) is depicted in figure 3.3.
Figure 3.3(a) again shows the time-trajectories of e(t) and ė(t), 3.3(b) shows the control u(t)
needed, 3.3(c) shows the error trajectory (e, ė) and finally 3.3(d) is the same as 3.3(b), only using
an other scale.
We see the control efforts in this simulation are much larger. The initial control effort is more
than 700, then rapidly decreases to about −200 and in about a second the errors again are small
enough such that the control effort reduces to the needed feedforward control.
For the bounded composite controller (3.30) with auxiliary system (3.31) we again chose all gains
to be 1 , C0 = 1.1, C1 = 0.1 and f1(x) = f2(x) = tanh(x). We initialized both auxiliary systems
at the origin i.e. z1(0) = 0 and z2(ts) = 0. The resulting performance for (3.30,3.31) is depicted
in figure 3.4.
Again figure 3.4(a) shows the time-trajectories of e(t) and ė(t), 3.4(b) shows the control u(t)
needed, 3.4(c) shows the error trajectory (e, ė) and finally 3.4(d) is the same as 3.4(b), only using
an other scale.
We again see the control-efforts remain much smalller: |u(t)| ≤ 2 for the waiting phase con-
troller and |u(t)| ≤ 4 for the tracking phase controller, in clear contrast to the Nijmeijer-Berghuis
controller-observer. Also the time needed to reduce the errors is again larger, and the maximum
magnitude of the errors is less. From 3.4(d) we see the first phase controller is needed until
t = 1.40. For t ≥ 1.40 the tracking phase controller is used.
In order to compare both controllers, we again choose tf = 10 seconds, resulting in:

Controller Tracking error Control effort
Nijmeijer-Berghuis 41.458 9301.65
Bounded composite 9.643 28.23

From which it is obvious the bounded composite controller (3.30) with auxiliary system (3.31)
performs much better.

In our third, and last, simulation we compare the robust parameter-independent controller (3.6)
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Figure 3.3: The performance of Nijmeijer-Berghuis controller-observer (3.4,3.5).

of Nijmeijer and Berghuis to our adaptive controller (3.23). The results are depicted in the figures
3.5, which contains the results of (3.6), and 3.6, which contains the results of (3.23).
In both figures figure (a) shows the time-trajectories of e(t) and ė(t), figure (b) shows the control
effort needed, figure (c) shows the state error trajectory (e, ė), just as figure (d), whereas in figure
(d) an other scale has been used.
For both controllers we chose the gains Kd = 12.5 and Kp = 50. In the adaptive controller (3.23)
we used λ = 5, Γ = I3, the identity-matrix, and initial estimate (p̂(0), p̂1(0), q̂(0)) = (0, 0, 0). At
first eye, both state-error-trajectories seem to behave the same. However, when we zoom in to the
origin, we see the robust Nijmeijer-Berghuis controller, also suitable in case w and q are unknown,
is ultimately uniformly bounded (practically stable), whereas the adaptive controller converges
towards the origin.

3.7 Summary

In this chapter we considered the problem of controlling the forced Duffing equation to any desired
trajectory using bounded controllers.
In order to solve this problem, the concept of composite controllers has been introduced.
Suitable first phase controllers have been developed, that established global convergence to an area
around the origin. The first phase controllers consist of a controller using velocity measurements,
one using an auxiliary system in case of no velocity measurements, which both could also be used
in case p and/or p1 are unknown.
Using the concept of composite controllers, these first phase controllers have been combined with
tracking controllers. Those tracking phase controllers also consist of a controller using velocity
measurements, one using an auxiliary system in case of no velocity measurements and a adaptive
controller.
The results have been supported with some simulations, and are in clear contrast with the con-
trollers of Nijmeijer and Berghuis in [10].
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Figure 3.4: The performance of the bounded composite controller (3.30) with auxiliary system
(3.31).
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Figure 3.5: The performance of the robust Nijmeijer-Berghuis controller (3.6).
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Figure 3.6: The performance of the adaptive controller (3.22).
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Chapter 4

Van der Pol’s equation

In this chapter we study the controlled version of the forced Van der Pol equation (1.3):

ẍ− µ(1− x2)ẋ + x = u + q cosωt (4.1)

where µ > 0, q, and ω are (un)known constants and u(·) is the, physically realisable, control input.
We consider the problem of controlling this system to any desired trajectory xd(t) ∈ C2, satisfying

|xd(t)| ≤ B0, |ẋd(t)| ≤ B1, |ẍd(t)| ≤ B2 t ≥ 0 (4.2)

under input limitations:
|u(t)| ≤ umax t ≥ 0 (4.3)

In order to achieve globally stabilizing results dealing with input limitations we again use the
concept of a composite feedback control. Furthermore, adaptive controllers will be introduced
in case one or more system-parameters (except ω) are unknown, and these will be compared to
earlier developed robust controllers.

4.1 Some useful results

In a related project Stuckings [15] did part of his MSc in Twente. His thesis contains three
interesting propositions anologous to the work of Nijmeijer and Berghuis in [10] but for Van der
Pols’ equation instead of Duffing’s equation (Propositions 4.1.1, 4.1.2 and 4.1.3). A last useful
result is shown in Proposition 4.1.4.

Proposition 4.1.1 Consider the system (4.1) together with the control law

u = ẍd − µẋd + xd − q cos(ωt)−Kd
˙̂e−Kpê + µx2ẋd (4.4)

where e ≡ x−xd denotes the tracking error, λKd = Kp > 0 and Kd > µ+λ+
9
2
µB2

0 are constants
and ê is generated from the observer

˙̂e = w + 2Kd(e− ê) + µe− 1
3
µe3 − µxde

2

ẇ = 2Kp(e− ê)− e + µẋde
2

(4.5)

Then the resulting closed-loop system is globally asymptotically stable.

Proposition 4.1.2 Consider the system (4.1) under robust PD-feedback

u = −Kdė−Kpe (4.6)

Then the resulting closed-loop dynamics are locally uniformly ultimately bounded for Kd sufficiently
large

33
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Proposition 4.1.3 Consider the system (4.1) under the robust output-feedback control

u = −Kd
˙̂e−Kpê (4.7)

where ê is generated by the observer

˙̂e = w + 2Kd(e− ê)
ẇ = 2Kp(e− ê)

(4.8)

Then the resulting closed-loop dynamics are locally uniformly ultimately bounded for Kd sufficiently
large.

Notice the controller of Proposition 4.1.1 is a suitable candidate to be used as a tracking phase
controller in case we have no state measurements at our disposal.

A last useful result is a suitable candidate to be used as a tracking phase controller in case we are
able to measure the entire state (x, ẋ). Consider the control law

u = ẍd − µ(1− x2)ẋ + x−Kdf1(ė)−Kpf2(e)− q cos(ωt) (4.9)

where Kp > 0 and Kd > 0 are constant and f1, f2 ∈ F . This control law results in the closed-loop
system

ë + Kdf1(ė) + Kpf2(e) = 0 (4.10)

Proposition 4.1.4 Consider the system (4.1) together with the control law (4.9). Then the closed-
loop system (4.10) is globally asymptotically stable.

Proof Consider the radially unbounded Lyapunov function

V (e, ė) =
1
2
ė2 + KpF1(e) (4.11)

where
F1(e) =

∫ e

0
f1(ζ)dζ

which is positive definite. Differentiating along solutions of (4.10) results in

V̇ (e, ė) = −Kdėf2(ė)

which is negative semidefinite in the error state (e, ė). Using LaSalle shows global asymptotic
stability of the origin.

4.2 Bounded control, using state measurements

In this section we consider the problem of tracking a desired trajectory xd(t) ∈ C2 under input
limitations

|u(t)| ≤ umax t ≥ 0

assuming we are able to measure the full state (x, ẋ). In order to deal with input limitations, we
again propose composite controllers.

4.2.1 Controlling towards a fixed point

In anology to the previous chapter, we want to develop waiting phase controllers that control the
system towards the origin. Afterwards we consider controllers that control the state towards a
fixed point xf . We distinguish two cases, that is |xf | > 2 and |xf | ≤ 2.



4.2. BOUNDED CONTROL, USING STATE MEASUREMENTS 35

The case |xf | > 2

Consider the control law
u = xf − q cos(ωt)−Kpf(e) (4.12)

where e ≡ x−xf denotes the error, Kp ≥ 0 is a constant and f ∈ F . This results in the closed-loop
system

ë− µ(1− x2)ė + e + Kpf(e) = 0 (4.13)

Proposition 4.2.1 Consider for |xf | > 2 the system (4.1) together with control law (4.12). Then,
the closed-loop system (4.13) is globally asymptotically stable.

Proof Consider the radially unbounded candidate Lyapunov function

V (e, ė) =
1
2
(ė + p(e))2 +

1
2
e2 + KpF (e) where p(e) = µ[

1
3
e3 + xfe

2 + (x2
f − 1)e]

It is easy to see that this Lyapunov function candidate is positive definite. Along the closed-loop
error dynamics (4.13), the time derivative of V (e, ė) becomes:

V̇ (e, ė) = [ė + p(e)][µ(1− x2)ė− e−Kpf(e) + µ(e2ė + 2xfeė + x2
f ė− ė)] + eė + Kpf(e)ė

= −p(e)[e + Kpf(e)]

−µ[e2 + Kpef(e)][
1
3
e2 + xfe + x2

f − 1]

This is negative semidefinite in the error state (e, ė), since ∀e: 1
3e2 +xfe+x2

f −1 > 0, which easily
follows from the observation that ∀x: ax2 + bx + c > 0 iff a > 0 and b2 − 4ac < 0:

x2
f −

4
3
(x2
f − 1) = −1

3
x2
f +

4
3

< 0.

To demonstrate global asymptotic stability, we can use LaSalle. Define the set Ω as:

Ω = {e ∈ IR, ė ∈ IR|V̇ (e, ė) = 0} = {e = 0, ė ∈ IR}

The largest invariant set in Ω can only be the origin, since e ≡ 0 implies that ė = 0, thus from
LaSalle’s theorem we conclude that the origin is globally asymptotically stable.

Corollary 4.2.2 Consider the system (4.1). If

umax ≥ |q|+ |xf |

then there exists a Kp such that the control law (4.12) satisfies the constraint (3.2).

The case |xf | ≤ 2

We use a composite control strategy to solve this problem. We firstly control the state towards
an x̃f for which |x̃f | > 2 using (4.12). This assures x(ts) and ẋ(ts) are within prescribed bounds.
Secondly we apply a second controller, to achieve convergence of the state towards xf .

Proposition 4.2.3 Consider for |xf | ≤ 2 the system (4.1). Then for all C0 > 2 and C1 > 0 there
exists a switching time ts ≥ 0 and a constant x̃f such that the composite control law

u =
{

x̃f − q cos(ωt)−Kp,1f1(x− x̃f ) t < ts
xf − q cos(ωt)−Kp,2f2(e)−Kdf3(ė)− µė t ≥ ts

(4.14)

where Kp,1 ≥ 0, Kp,2 ≥ 0 and Kd > 0 are constants and f1, f2, f3 ∈ F , results in a globally
asymptotically stable closed-loop system.
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Proof Let ts be a moment for which both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. We can choose x̃f
such that 2 < |x̃f | < C0. Then Proposition 4.2.1 gives the existence of ts. For t ≥ ts we have as
closed-loop system:

ë + µx2ė + e + Kp,2f2(e) + Kdf3(ė) = ë + µ(e + xf )2ė + e + Kp,2f2(e) + Kdf3(ė) = 0 (4.15)

Using the radially unbounded candidate Lyapunov function

V (e, ė) =
1
2
ė2 +

1
2
e2 + Kp,2F2(e) (4.16)

where
F2(e) =

∫ e

0
f2(z)dz

which obviously is positive definite, we get differentiating along solutions of (4.15)

V̇ (e, ė) = −µx2ė2 −Kdf3(ė)ė = −µ(e + xf )2ė2 −Kdf3(ė)ė

which is negative semidefinite in the error state (e, ė). To demonstrate global asymptotic stability
we can again use LaSalle. To this end, define the set Ω as

Ω = {e ∈ IR, ė ∈ IR|V̇ (e, ė) = 0} = {e ∈ IR, ė = 0}
The largest invariant set in Ω with respect to (4.15) is the origin, thus from LaSalle’s theorem we
conclude that the origin is globally asymptotically stable.

Corollary 4.2.4 For all C0 > 2 and C1 > 0 there exists a β > 0 such that the composite controller
(4.14) satisfies

|u(t)| ≤ β t ≥ 0

Proof Proposition 4.2.3 gives us e(ts) ≤ C0 − |xf | and ė(ts) ≤ C1. From the proof of Propo-
sition 4.2.3 we know that the Lyapunov function (4.16) is a non-increasing function for t ≥ ts,
i.e.

1
2
ė(t)2 +

1
2
e(t)2 + Kp,2F2(e(t)) ≤

1
2
ė(ts)2 +

1
2
e(ts)2 + Kp,2F2(e(ts)) ∀t ≥ ts

This implies that for all t ≥ ts:

|e(t)| ≤
√

(C0 − |xf |)2 + C2
1 + 2Kp,2F2(C0 − |xf |)

|ė(t)| ≤
√

(C0 − |xf |)2 + C2
1 + 2Kp,2F2(C0 − |xf |)

resulting in
|u(t)| ≤ φ(xf , µ, q, C0, C1,Kp,2,Kd)

where

φ(xf , µ, q, C0, C1,Kp,2,Kd) = |xf |+ |q|+ Kp,2 + Kdµ
√

(C0 − |xf |)2 + C2
1 + 2Kp,2F2(C0 − |xf |)

When we consider the first phase controller, we obtain

|u(t)| ≤ C1 + Kp,1 + |q|
from which it is obvious that

β = max{C1 + Kp,1 + |q|, φ(xf , µ, q, C0, C1,Kp,2)}
suffices.

Corollary 4.2.5 Consider the system (4.1). If

umax > |q|+ max{2, |xf |+ µ(2− |xf |)}
then there exists a composite control law of the form (4.14) that satisfies the constraint (4.3).
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4.2.2 Trajectory tracking

In the previous subsection we have developed two suitable first phase controllers, that both guaran-
tee global convergence of the closed-loop system to any desired point, satisfying input limitations.
In this section we combine those results with the ones in section 4.1, in anology to the previous
chapter, resulting in global trajectory tracking under input limitations.

Proposition 4.2.6 Consider the system (4.1). For all C0 > 2 and C1 > 0 there exists a switching
time ts ≥ 0 and a constant x̃f such that the composite control law

u =
{

x̃f − q cos(ωt)−Kp,1f1(x− x̃f ) t < ts
ẍd − µ(1− x2)ẋ + x−Kdf2(ė)−Kp,2f3(e)− q cos(ωt) t ≥ ts

(4.17)

where Kd ≥ 0, Kp,1 ≥ 0, and Kp,2 > 0 are constants, and f1, f2, f3 ∈ F , results in a globally
asymptotically stable closed-loop system.

Proof Let ts be a moment for which both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. We can choose x̃f such
that 2 < |x̃f | < C0. Then Proposition 4.2.1 gives the existence of ts. In Proposition 4.1.4 we
already proved that the tracking phase controller results in a globally asymptotically closed-loop
system.

Corollary 4.2.7 For all C0 > 2 and C1 > 0 there exists a time ts ≥ 0 and a β > 0 such that the
composite controller (4.17) satisfies

|u(t)| ≤ β t ≥ 0

Proof Proposition 4.2.3 gives us e(ts) ≤ C0 − |xf | and ė(ts) ≤ C1. From the proof of Propo-
sition 4.1.4 we know that the Lyapunov function (4.11) is a non-increasing function for t ≥ ts,
i.e.

1
2
ė(t)2 + Kp,2F3(e(t)) ≤

1
2
ė(ts)2 + Kp,2F3(e(ts)) ∀t ≥ ts

This implies that for all t ≥ ts:

|e(t)| ≤ 1
Kp,2

F−1
3 (

1
2
[B1 + C1]2 + Kp,2F3[B0 + C0])

|ė(t)| ≤
√

(B1 + C1)2 + 2Kp,2F3(B0 + C0)

Therefore
|u(t)| ≤ φ(µ, q,B0, B1, B2, C0, C1,Kd,Kp,2) ∀t ≥ ts

φ(·) = B2 + µ

(
[

1
Kp,2

F−1
3 (

1
2
[B1 + C1]2 + Kp,2F3[B0 + C0])]2 − 1

)
·

·(B1 +
√

(B1 + C1)2 + 2Kp,2F3(B0 + C0)) +

+
1

Kp,2
F−1

3 (
1
2
[B1 + C1]2 + Kp,2F3[B0 + C0]) + B0 + Kd + Kp,2 + |q|

When we consider the first phase controller, we obtain

|u(t)| ≤ |x̃f |+ |q|+ |Kp,1| ∀t < ts

from which it is obvious

β = max{|x̃f |+ |q|+ |Kp,1|, φ(µ, q,B0, B1, B2, C0, C1,Kd,Kp,2)}
suffices.

We can also use (4.14) as first phase controller instead of (4.12). This enables us to have a smaller
position-error at the moment we switch from waiting phase to tracking phase, resulting in a lower
upperbound.
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Proposition 4.2.8 Consider the system (4.1). For all C̃0 > 2, C̃1 > 0, C0 > 0 and C1 > 0 there
exist switching times ts,1 ≥ 0 and ts,2 ≥ ts,1 and a constand x̃f such that the composite control
law

u =

 x̃f − q cos(ωt)−Kp,1f1(x− x̃f ) t < ts,1
−q cos(ωt)−Kp,2f2(x) −Kd,1f3(ẋ)− µẋ ts,1 ≤ t < ts,2

ẍd − µ(1− x2)ẋ + x−Kd,2f4(ė)−Kp,3f5(e)− q cos(ωt) t ≥ ts,2

(4.18)

where f1, f2, f3, f4, f5 ∈ F , and Kp,1 ≥ 0, Kd,1 > 0, Kp,2 ≥ 0, Kd,2 ≥ 0, and Kp,3 > 0 are
constants, results in a globally asymptotically stable closed-loop system.

Proof Let ts,1 be a moment for which both |x(ts,1)| ≤ C̃0 and |ẋ(ts,1)| ≤ C̃1 and let ts,2 be a
moment for which both |x(ts,1)| ≤ C0 and |ẋ(ts,2)| ≤ C1. By choosing x̃f such that 2 < |x̃f | < C1
Proposition 4.2.3 gives us the existence of both ts,1 and ts,2. In Proposition 4.1.4 we already
proved that the tracking phase controller results in a globally asymptotically closed-loop system.

Corollary 4.2.9 For all C̃0 > 2, C̃1 > 0, C0 > 0 and C1 > 0 there exists a β > 0 such that the
composite controller (4.18) satisfies

|u(t)| ≤ β t ≥ 0

Proof From the proof of Corollaries 4.3.2 and 4.2.7 it is obvious that

β = max{|x̃f |+ |q|+ |Kp,1|, φ1(xf , µ, q, C̃0, C̃1,Kp,2,Kd,1), φ2(µ, q,B0, B1, B2, C0, C1,Kd,2,Kp,3)}

suffices, where

φ1(·) = |xf |+ |q|+ Kp,2 + Kd,1µ

√
(C̃0 − |xf |)2 + C̃2

1 + 2Kp,2F2(C̃0 − |xf |)

φ2(·) = B2 + µ

(
[

1
Kp,3

F−1
5 (

1
2
[B1 + C1]2 + Kp,3F5[B0 + C0])]2 − 1

)
·

·(B1 +
√

(B1 + C1)2 + 2Kp,3F5(B0 + C0)) +

+
1

Kp,3
F−1

5 (
1
2
[B1 + C1]2 + Kp,3F5[B0 + C0]) + B0 + Kd + Kp,2 + |q|

4.2.3 Adaptive trajectory tracking

In case ω is known, we know from Proposition 2.4.1 the control law

u = ẍd −Kdė−Kpe + µ̂(x2 − 1)ẋ + q̂ cos(ωt) (4.19)

where Kp > 0, Kd > 0 are constants and µ̂ and q̂ estimates for µ and −q given by:( ˙̂µ
˙̂q

)
= −Γ

(
(x2 − 1)ẋ
cos(ωt)

)
(ė + λe)

where 0 < λ < Kd is a constant and Γ a 2 × 2 positive definite symmetric matrix, results in a
globally asymptotically stable closed-loop system.
Therefore, this control law is a good candidate for the tracking phase controller of a composite
control law, in case some parameters are unknown. We only have to find a suitable waiting phase
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controller. Furthermore, in order to assure the controller satisfies the constraint (4.3) we have to
assume that we have bounds on the initial estimate errors of the unknown variables, i.e.

µ̂(0) ≤ Eµ

q̂(0) ≤ Eq

with Eµ and Eq some bounds.
Notice the control law (4.12) is independent of µ. In case only µ is unknown this is a suitable first
phase controller.

Proposition 4.2.10 Consider the system (3.1). For all C0 > 2 and C1 > 0 there exists a
switching time ts ≥ 0 and a constant x̃f such that the composite adaptive control law{

x̃f − q cos(ωt)−Kp,1f(x− x̃f ) t < ts
ẍd −Kdė−Kp,2e + µ̂(x2 − 1)ẋ− q cos(ωt) t ≥ ts

(4.20)

where Kd > 0, Kp,1 ≥ 0, and Kp,2 > 0 are constants, f ∈ F , and µ̂ an estimate for µ given by:

˙̂µ = −Γ(ė + λe)(1− x2)ẋ

where 0 < λ < Kd and Γ > 0 are constants, results in a globally asymptotically stable closed loop
system with respect to e and ė, i.e.

lim
t→∞

e(t) = lim
t→∞

ė(t) = 0

Proof Let ts be a moment for which both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. In Proposition 4.2.1
we showed the existence of ts and in Proposition 2.4.1 we already proved that the tracking phase
controller results in a globally asymptotically stable closed-loop system.

Corollary 4.2.11 For all C0 > 2 and C1 > 0 there exists a β > 0 such that the composite
controller (4.20) satisfies

|u(t)| ≤ β t ≥ 0

Proof Proposition 4.2.1 gives us a switching time ts ≥ 0 such that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1.
Analogously to Corollary 3.4.8 we obtain for all t ≥ ts:

|e(t)| ≤
√

1
α

[(B1 + C1) + λ(B0 + C0)]2 + (B0 + C0)2 +
λmax

α
E2
µ

|ė(t)| ≤
√

1
α

[λ(B1 + C1) + (λ2 + α)(B0 + C0)]2 + (B1 + C1)2 +
λmax(λ2 + α)

α
E2
µ

|µ̃(t)| ≤
√

1
λmin

[(B1 + C1) + λ(B0 + C0)]2 +
α

λmin
(B0 + C0)2 +

λmax
λmin

E2
µ

where α = Kp,2 + λ(Kd,2 − λ). Notice, the tracking phase controller satisfies

|u(t)| ≤ B2 + Kd|ė(t)|+ Kp,2|e(t)|+ |Eµ + µ̃(t)||(B0 + |e(t)|)2 − 1||B1 + ė(t)|+ |q|

So |u(t)| ≤ φ(q,B0, B1, B2, C0, C1,Kp,2,Kd,2) where

φ(·) = B2 + Kd

√
1
α

[λ(B1 + C1) + (λ2 + α)(B0 + C0)]2 + (B1 + C1)2 +
λmax(λ2 + α)

α
E2
µ

+Kp,2

√
1
α

[(B1 + C1) + λ(B0 + C0)]2 + (B0 + C0)2 +
λmax

α
E2
µ
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+

∣∣∣∣∣Eµ +
√

1
λmin

[(B1 + C1) + λ(B0 + C0)]2 +
α

λmin
(B0 + C0)2 +

λmax
λmin

E2
µ

∣∣∣∣∣ ·
·

∣∣∣∣∣∣
(

B0 +

√
1
α

[(B1 + C1) + λ(B0 + C0)]2 + (B0 + C0)2 +
λmax

α
E2
µ

)2

− 1

∣∣∣∣∣∣ ·
·
∣∣∣∣∣B1 +

√
1
α

[λ(B1 + C1) + (λ2 + α)(B0 + C0)]2 + (B1 + C1)2 +
λmax(λ2 + α)

α
E2
µ

∣∣∣∣∣+ |q|
where α = Kp,2 + λ(Kd,2 − λ).
When we consider the waiting phase controller we obtain

|u(t)| ≤ Kp,1 + Kd,1 + |q| t < ts

from which it is obvious that

β = max{Kp,1 + Kd,1 + |q|, φ(q,B0, B1, B2, C0, C1,Kp,2,Kd,2, Ep1 , Ep)}

suffices.

In case also q is unknown, the controller (4.19) will still be a suitable tracking phase controller.
We only need a proper first phase controller, i.e. one that assures there exists a time ts ≥ 0 such
that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1 for any C0 and C1. Unfortunately we have not been able to
derive a suitable first phase control law that results in a globally uniformly ultimately bounded
closed-loop system.

4.3 Bounded control, using a velocity observer

In this section we consider the problem of tracking a desired trajectory xd(t) ∈ C2 under input
limitations

|u(t)| ≤ umax t ≥ 0

The controllers in the previous section require knowledge of the velocity ẋ. In case we are only able
to measure x, we still want to establish global asymptotical stability of the closed-loop system.
Therefore, in this section we assume that we only know x and not ẋ. We develop observers for
the velocity and use the velocity estimates in our control laws.
In order to deal with input limitations, we again propose composite controllers.

4.3.1 Controlling towards a fixed point

In anology to the previous section, we want to develop waiting phase controllers that control the
system towards the origin. Therefore we consider controller-observer combinations that control
the state towards a fixed point xf . We again distinguish two cases, that is |xf | > 2 and |xf | ≤ 2.

The case |xf | > 2

Notice that the control law (4.12) does not use ẋ. Therefore, in case |xf | > 2 we can simply use
(4.12):

u = xf − q cos(ωt)−Kpf(e) (4.21)

where Kp > 0 is a constant and f ∈ F .
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The case |xf | ≤ 2

We again use a composite control strategy to solve this problem. We firstly control the state
towards an x̃f for which |x̃f | > 2 using (4.21). This assures x(ts) and ẋ(ts) are within prescribed
bounds. Secondly we apply a second controller, to achieve convergence of the state towards xf .

Proposition 4.3.1 Consider for |xf | ≤ 2 the system (4.1). Then for all C0 > 2 and C1 > 0 there
exists a switching time ts ≥ 0 and a constant x̃f such that the composite control law

u =
{

x̃f − q cos(ωt)−Kp,1f1(x− x̃f ) t < ts
xf − q cos(ωt)−Kp,2f2(e) + [µ + Kd][w + p(e)− (µ + Kp + Lp)(e− z)] t ≥ ts

(4.22)

where e ≡ x − x̃f denotes the error, Kp,1 ≥ 0, Kp,2 ≥ 0, Kd > 0 and Lp > 0 are constants,
f1, f2 ∈ F , and z and w generated from the observer

ż = −w − p(e) + (µ + Kd + Lp)(e− z)
ẇ = z + Kp,2f2(e)

(4.23)

and p(e) = µ[1
3e3 +xde

2 +(x2
d− 1)e], results in a globally asymptotically stable closed-loop system.

Proof Let ts be a moment for which both |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1. We can choose x̃(f)
such that 2 < |x̃f | < C0. In Proposition 4.2.1 the existence of ts has been shown. For t ≥ ts we
can write the closed-loop system as:

ë− µ(1− x2)ė + e + (µ + Kd)ż + Kp,2f2(e) = 0
z̈ − µ(1− x2)ė + z − (µ + Kd)ė + (µ + Kd)ż + Kp,2f2(e)− Lp(ė− ż) = 0 (4.24)

From (4.24) it is easy to see that

¨̃e + ẽ + (µ + Kd)ė + Lp ˙̃e = 0

where ẽ ≡ e− z denotes the estimate error.
Consider the radially unbounded candidate Lyapunov function

V (e, ė, ẽ, ˙̃e) =
1
2
ė2 +

1
2
e2 +

1
2

˙̃e
2
+

1
2
ẽ2 + Kp,2F2(e) (4.25)

where
F2(e) =

∫ e

0
f2(ζ)dζ

which is obviously positive definite. Differentiating along the closed-loop system (4.24) results in

V̇ (e, ė, ẽ, ˙̃e) = −(µx2 + Kd)ė2 − Lp ˙̃e
2

which is negative semi-definite in the state (e, ė, ẽ, ˙̃e). LaSalle’s theorem again completes the proof.

Corollary 4.3.2 For all C0 > 2 and C1 > 0 there exists a β > 0 such that the composite controller
(4.22) satisfies

|u(t)| ≤ β t ≥ 0

Proof Proposition 4.2.1 gives us a switching time ts ≥ 0 such that |x(ts)| ≤ C0 and |ẋ(ts)| ≤ C1,
so |e(ts)| ≤ B0 + C0 and |ė(ts)| ≤ B1 + C1. From the proof op Proposition 4.3.1 we know that
the Lyapunov function (4.25) is a non-increasing function for all t ≥ ts. In case we initialize our
observer as z(ts) = ż(ts) = 0, we have for all t ≥ ts:

|ė(t)| ≤
√

2(B0 + C0)2 + 2(B1 + C1)2 + Kp,2F2(B0 + C0)

| ˙̃e(t)| ≤
√

2(B0 + C0)2 + 2(B1 + C1)2 + Kp,2F2(B0 + C0)
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resulting in
|u(t)| ≤ φ(µ, q,B0, B1, C0, C1,Kd,Kp,2)

where

φ(·) = |xf |+ |q|+ Kp,2 + 2(µ + Kd)
√

2(B0 + C0)2 + 2(B1 + C1)2 + Kp,2F2(B0 + C0)

When we consider the first phase controller we obtain

|u(t)| ≤ |x̃f |+ |q|+ Kp,1 ∀t < ts

from which it is obvious that

β = max{|x̃f |+ |q|+ Kp,1, φ(µ, q,B0, B1, C0, C1,Kd,Kp,2)}

suffices.

Corollary 4.3.3 Consider the system (4.1). If

umax > |q|+ max{2, |xf |+ 2µ
√

2(B0 + 2)2 + 2B2
1}

then there exists a composite control law of the form (4.22) that satisfies the constraint (4.3).

4.3.2 Trajectory tracking

In the previous subsection we have developed two suitable first phase controllers, that both guaran-
tee global convergence of the closed-loop system to any desired point, satisfying input limitations.
In this section we combine those results with the ones in section 4.1, in anology to the previous
section, resulting in global trajectory tracking under input limitations.

Proposition 4.3.4 Consider the system (4.1). For all C0 > 2 and C1 > 0 there exists a switching
time ts ≥ 0 and a constant x̃f such that the composite control law

u =
{

x̃f − q cos(ωt)−Kp,1f(x− x̃f ) t < ts
ẍd − µẋd + xd − q cos(ωt)−Kd

˙̂e−Kp,2ê + µx2ẋd t ≥ ts
(4.26)

where Kp,1 ≥ 0, λKd = Kp,2 ≥ 0 and Kd > µ + λ + 9
2µB2

0 are constants, f ∈ F , and ê generated
by the observer

˙̂e = w + 2Kd(e− ê) + µe− 1
3
µe3 − µxde

2

ẇ = 2Kp(e− ê)− e + µẋde
2

(4.27)

results in a globally asymptotically stable closed-loop system.

Corollary 4.3.5 For all C0 > 2 and C1 > 0 there exists a β > 0 such that the composite controller
(4.26) satisfies

|u(t)| ≤ β t ≥ 0

Proof In his proof of Proposition 4.1.1 Stucking showed the Lyapunov function

V =
1
2
(ė + λe)2 +

1
2
((Kp + 1) + λ(Kd − µ)− λ2)e2 +

1
4
µλe4 +

1
2
(˙̃e + λẽ)2 +

1
2
(Kp + λKd − λ2)ẽ2
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is non-increasing along solutions of the closed-loop system (4.1,4.4,4.5), where ẽ ≡ e− ê denotes
the observer-error. In case we initialize our observer as ˙̂e = ê = 0 we obtain for t ≥ ts:

|e(ts)| ≤

√
2V (ts)

α1

|ė(ts)| ≤

√
2(λ2 + α1)V (ts)

α1

|ẽ(ts)| ≤

√
2V (ts)

α2

| ˙̃e(ts)| ≤

√
2(λ2 + α2)V (ts)

α2

where α1 = (Kp + 1) + λ(Kd − µ)− λ2, α2 = Kp + λKd − λ2 and

V (ts) =
1
2
((B1 + C1) + λ(B0 + C0))2 +

1
2
((Kp + 1) + λ(Kd − µ)− λ2)(B0 + C0)2 +

+
1
4
µλ(B0 + C0)4 +

1
2
((B1 + C1) + λ(B0 + C0))2 +

1
2
(Kp + λKd − λ2)(B0 + C0)2

where we used

(ė + λe)2 + αe2 = ė2 + 2λėe + (λ2 + α)e2 = (
λ√

λ2 + α
ė +

√
λ2 + α e)2 +

α

λ2 + α
ė2

So |u(t)| ≤ φ(µ, q,B0, B1, B2, C0, C1,Kp,Kd) where

φ(·) = B2 + µB1 + B0 + |q|+ Kd

√2(λ2 + α1)V (ts)
α1

+

√
2(λ2 + α2)V (ts)

α2


+Kp,2

√2V (ts)
α1

+

√
2V (ts)

α2

+ µB1

C0 +

√
2V (ts)

α1

2

When we consider the waiting phase controller we obtain

|u(t)| ≤ |x̃f |+ |q|+ Kp,1 t < ts

from which it is obvious

β = max{|x̃f |+ |q|+ Kp,1, φ(µ, q,B0, B1, B2, C0, C1,Kp,3,Kd,2)}

suffices.

Remark 4.3.6 We can also use (4.22) as first phase controller instead of (4.21). This enables us
to have a smaller position-error at the moment we switch from waiting phase to tracking phase,
resulting in a lower upperbound.

Remark 4.3.7 Notice we switch controllers at a moment |ẋ(t)| ≤ C1. But we are not able to
observe ẋ! How do we know when to switch? As already mentioned in Remark 3.5.8, we can use
numerical differentiation techniques to approximate ẋ(t). Although it is not preferable to use those
estimates in the controllers of the previous section we can still use those estimates to determine
whether |ẋ(t)| ≤ C1 or not. We only know for sure that |ẋ(ts)| ≤ C1 a little later.
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Remark 4.3.8 In anology to the previous chapter, we achieved rather weak estimates in deter-
mining the value of β. In case the desired trajectory xd is an uncontrolled trajectory (stable, or
unstable)

ẍd − µ
(
1− x2

d

)
ẋd + xd = q cos(ωt)

the bound on the control input can be less restrictive:

β = µ|e(t)|(x(t) + xd(t))B1 + Kd| ˙̂e(t)|+ Kp,2|ê(t)|

= µ

√
2V (ts)

α1

2B1 +

√
2V (ts)

α1

B1 + Kd

√2(λ2 + α1)V (ts)
α1

+

√
2(λ2 + α2)V (ts)

α2

+

+Kp,2

√2V (ts)
α1

+

√
2V (ts)

α2


Proposition 4.3.9 Consider the system (4.1). For all C̃0 > 2, C̃1 > 0, C0 > 0 and C1 > 0 there
exist switching times ts,1 ≥ 0 and ts,2 ≥ ts,1 such that the composite control law

u =


x̃f − q cos(ωt)−Kp,1f(x− x̃f ) t < ts,1

−q cos(ωt)−Kp,2f2(x) + [µ + Kd,1][w1 + p(x)− (µ + Kd,1 + Lp)(x− z)] ts,1 ≤ t < ts,2
ẍd − µẋd + xd − q cos(ωt)−Kd,2 ˙̂e−Kp,3ê + µx2ẋd t ≥ ts,2

(4.28)
where |x̃f | > 2, Kp,1 ≥ 0, Kp,2 ≥ 0, Kd,1 > 0 and Kd,2 ≥ 0 are constants, f ∈ F , and w1, z and
ê respectively generated by the observers

ż = −w1 − p(x) + (µ + Kd,1 + Lp)(x− z)
ẇ1 = z + Kp,2f(x) ts,1 ≤ t < ts,2

and
˙̂e = w2 + 2Kd(e− ê)− p(e) + µx2

de
ẇ2 = 2Kp(e− ê)− e + µẋde

2 t ≥ ts,2

(4.29)

and p(e) = µ[1
3e3 +xde

2 +(x2
d− 1)e], results in a globally asymptotically stable closed-loop system.

Corollary 4.3.10 For all C̃0 > 2, C̃1 > 0, C0 > 0 and C1 > 0 there exist a time ts ≥ 0, an
x̃f > 2 and a β > 0 such that the composite controller (4.28) satisfies

|u(t)| ≤ β t ≥ 0

Proof From the proof of Corollaries 4.3.2 and 4.3.5 is is obvious that

β = max{|x̃f |+|q|+Kp,1, φ1(µ, q,B0, B1, C̃0, C̃1,Kd,Kp,2), φ2(µ, q,B0, B1, B2, C0, C1,Kp,3,Kd,2)}

suffices, where

φ1(·) = |xf |+ |q|+ Kp,2 + 2(µ + Kd)
√

2(B0 + C̃0)2 + 2(B1 + C̃1)2 + Kp,2F2(B0 + C̃0)

φ2(·) = B2 + µB1 + B0 + |q|+ Kd,2

√2(λ2 + α1)V (ts)
α1

+

√
2(λ2 + α2)V (ts)

α2


+Kp,3

√2V (ts)
α1

+

√
2V (ts)

α2

+ µB1

C0 +

√
2V (ts)

α1

2

where α1 = (Kp,2 + 1) + λ(Kd,1 − µ)− λ2, α2 = Kp,3 + λKd,2 − λ2 and

V (ts) =
1
2
((B1 + C1) + λ(B0 + C0))2 +

1
2
((Kp,3 + 1) + λ(Kd,2 − µ)− λ2)(B0 + C0)2 +
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+
1
4
µλ(B0 + C0)4 +

1
2
((B1 + C1) + λ(B0 + C0))2 +

1
2
(Kp,3 + λKd,2 − λ2)(B0 + C0)2

λ =
Kp,3

Kd,2

4.4 Simulations

To support our results, we simulated with SIMNONTM the controlled van der Pol’s equation. In
our first simulation we compare the bounded composite controller (4.18) with the controller

u = ẍd − µ(1− x2)ẋ + x−Kdė−Kpe− q cos(ωt) (4.30)

of Stuckings. In our second simulation we compare the analogous controller-observer combinations.
In all simulations we use the same parameters µ = 5, q = 5, and ω = 2.463 in which case the
uncontrolled forced van der Pol equation displays chaotic behaviour [13]. We define the reference
motion as

xd(t) = sin t t ≥ 0

In order to demonstrate the suggested controllers deal with input limitations, we choose the initial
state (x(0), ẋ(0)) = (3,−2).
For both controllers mentioned in [15], i.e. (4.30) and the one of proposition 4.1.1 the gains were
chosen analogously to Stuckings thesis as Kd = 15.5 and Kp = 46.5. The resulting performance
is depicted in figure 4.1.
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Figure 4.1: The performance of Stucking’s controller (4.30)

Figure 4.1(a) shows the time-trajectories of e(t) and ė(t), 4.1(b) shows the control u(t) needed,
4.1(c) shows the error trajectory (e, ė) and finally 4.1(d) is the same as 4.1(b), only using an other
scale.
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We can see the control effort is more than 200 (in absolute value), resulting in a quick error
convergence.
For the bounded composite controller (4.18) we chose the gains Kp,1 = 9, Kp,2 = 4, Kd,2 = 1,
Kp,3 = 4, Kd,3 = 4, xf = 2.1, C0 = 2.2 C1 = 0.1, and used f1(x) = f2(x) = f3(x) = f4(x) =
f5(x) = tanh(x). The resulting performance is depicted in figure 4.2.
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Figure 4.2: The performance of the bounded composite controller (4.18)

Analogously figure 4.2(a) shows the time-trajectories of e(t) and ė(t), 4.2(b) shows the control
u(t) needed, 4.2(c) shows the error trajectory (e, ė) and finally 4.2(d) is the same as 4.2(b), only
using an other scale.
We can see the control efforts remain small: we have |u(t)| ≤ 10. Again the only price we have to
pay is the time needed to reduce the errors. In figure 4.2(d) we can also see the two moments we
switched controllers.
When we look at the overall tracking error and control effort as defined in the previous chapter,
we obtain, using tf = 20:

Controller Tracking error Control effort
Stuckings 15.391 5787.86
Bounded composite 52.930 242.05

From which we might conclude the bounded composite controller (4.18) performs better. When
we increase the gains of the composite controller, it is possible to obtain both a smaller tracking
error and control effort than for the Stuckings controller.

In our second simulation, we compare the controller-observer variants of the previously mentioned
controllers. For the Stuckings-controller-observer, we used the same gains and we initiated the
observer in (ê(0), w(0)) = (0, 0). The resulting performance is depicted in figure 4.3.
Figure 4.3(a) shows the time-trajectories of e(t) and ė(t), 4.3(b) shows the control u(t) needed,
4.3(c) shows the error trajectory (e, ė) and finally 4.3(d) is the same as 4.3(b), only using an other
scale.
Most striking are the large control efforts between −1000 and 1100 and the relatively large time
needed before the error converges to zero.
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Figure 4.3: The performance of the Stuckings controller-observer (4.4,4.5).

If we replace this controller-observer with its composite analogy, i.e. first using the same first phase
controller as in the previous simulation, and then switching to the Stukings controller-observer to
obtain tracking, results in the behaviour depicted in figure 4.4.
We can see both the errors and control effort are much less! Most remarkable at the control, is
the switching moment. Whereas in the waiting phase the control input satisfies |u(t)| ≤ 10, we
shortly need, when we switch to the Stuckings controller-observer, an effort of about 500! What
should we think of this. Is all the effort of using a bounded composite control worthless? No, when
we only use Stucking’s controller we have completely no idea of the largest control effort needed,
whearas in the composite controller, we still have a prescribed bound the input will not exceed.
The peek can be much more reduced by choosing a better first phase controller. For instance if
we use the composite controller-observer (4.22, 4.23) to steer the system towards (x, ẋ) = (1, 0)
and switch to the Stuckings controller-observer at the first moment both e and ė are very small,
the prescribed input bound at the tracking phase controller can be much more reduced.
The contrast between both controllers is demonstrated by the tracking error and control effort as
defined in the previous chapter:

Tracking error =
∫ tf

0

(
e(ζ)2 + ė(ζ)2) dζ

Control effort =
∫ tf

0
u(ζ)2dζ

where we used tf = 10:

Controller Tracking error Control effort
Stuckings 1052.68 523860
Bounded composite 47.79 5606
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Figure 4.4: The performance of the bounded composite controller-observer (4.26,4.27).

4.5 Summary

In this chapter we considered the problem of controlling the forced van der Pol equation to any
desired trajectory using bounded controllers.
We also solved this problem using the concept of composite controllers.
Suitable first phase controllers have been developed, that established global convergence to the
origin. The first phase controllers consist of one using state measurements and one using an ob-
server in case velocity measurements are missing. Both controllers established global convergence
to a fixed point |xf | > 2, and can also be used in case µ is unknown. In case we want to control
the system towards the origin, both first phase controllers can be extended to a composite version.
Those first phase controllers have all been combined with tracking phase controllers, to establish
global tracking-error-convergence using bounded composite controllers.
Furthermore, a bounded composite adaptive controller has been developed.
The results have been suported with some simulations, showing a clear contrast with existing
controllers.



Chapter 5

Rigid robot systems

In this section we will study the dynamics of a serial n-link rigid robot manipulator (2.4)

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (5.1)

where q is the n×1 vector of joint displacements, τ is the n×1 vector of applied joint torques, M(q)
is the n × n symmetric positive definite manipulator inertia matrix, C(q, q̇)q̇ is the n × 1 vector
of centripetal and Coriolis torques, and g(q) is the n× 1 vector of gravitational torques obtained
as the gradient of the robot potential energy U(q). We assume that the links are connected with
revolute joints.
Some properties of this system have been described in section 2.3.
We consider the problem of controlling this system to any desired trajectory qd(t) ∈ C2, satisfying

|qd(t)| ≤ B0, |q̇d(t)| ≤ B1, |q̈d(t)| ≤ B2 t ≥ 0 (5.2)

under input limitations:
|τ(t)| ≤ τmax t ≥ 0

In order to achieve globally stabilizing results dealing with input limitations we again use the
concept of a composite feedback controller. We develop some bounded first phase controllers and
combine those with already known controllers of Berghuis [1] and Loria and Nijmeijer [9] to obtain
bounded globally asymptotically stable tracking controllers.

5.1 Bounded first phase controllers

This section contains an overview of the developed first phase controllers to be combined with the
controllers in [1, 9]. We consider the problem of controlling the system (5.1) towards a desired
fixed point qd.

Remark 5.1.1 In this chapter we have to deal with vectors q instead of scalars x. To make the
proofs easier to read, we abuse notation to simplify the equations. These are

fi(ς) =


fi,1(ς1)
fi,2(ς2)

...
fi,n(ςn)

 and
√

Fi(ς) =



√∫ ς1

0
fi,1(ζ1)dζ1√∫ ς2

0
fi,2(ζ2)dζ2

...√∫ ςn

0
fi,n(ζn)dζn


with fi,j ∈ F .

49
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5.1.1 Using state measurements

Consider the control law
τ = −Kpf1(e)−Kdf2(ė) + g(q) (5.3)

where e ≡ q − qd denotes the position error, Kp and Kd are diagonal positive definite matrices
and fi(·) as mentioned in Remark 5.1.1.
This control law results in the closed-loop system

M(q)ë + C(q, q̇)ė + Kpf1(e) + Kdf2(ė) = 0 (5.4)

Proposition 5.1.2 Consider the system (5.1) with the control law (5.3). Then the resulting
closed-loop system (5.4) is globally asymptotically stable.

Proof Consider the radially unbounded Lyapunov function candidate

V (e, ė) =
1
2
ėTM(e + qd)ė +

√
F1(e)

T
Kp

√
F1(e) (5.5)

which is positive definite. Along solutions of (5.4) the time-derivative of (5.5) becomes, using
property 2.3.1:

V̇ (e, ė) = −ėTKdf2(ė)

which is negative semi-definite in the error state (e, ė). Using LaSalle’s Theorem, we conclude
asymptotic stability.

Remark 5.1.3 This control law is an extension of the one presented in [7].

The controller (5.3) is a suitable first phase controller. In case some parameters are unknown, we
have to use another one. A modification of (5.3) suffices.

τ = −Kpf1(e)−Kdf2(ė) + g(qd) (5.6)

where Kp > kminp I and Kd > 0 are n× n diagonal matrices.
Then we can prove in analogy with [7]:

Proposition 5.1.4 Consider the system (5.1). Then there exists a constant kminp such that the
controller (5.6) results in a globally asymptotically stable closed-loop system.

5.1.2 Without velocity measurements

In case we have no velocity measurements at our disposal, we develop an auxiliary system to
compensate the lack of knowledge of q̇ and use that auxiliary system in our control laws.
Consider the control law

τ = −Kpf1(e)−Kdf2( ˙̂e) + g(q) (5.7)

where e ≡ q− qd denotes the position error and Kp and Kd are diagonal positive definite matrices.
ê denotes an estimate for ė, and is generated from the first order auxiliary system

˙̂e = −Lpê + Kd(e− ê) (5.8)

where Lp is an n× n diagonal matrix such that Lp + Kd is a positive definite matrix
This control law results in the closed-loop system

M(q)ë + C(q, q̇)ė + Kpf1(e) + Kdf2( ˙̂e) = 0
˙̂e = −Lpê + Kd(e− ê)

(5.9)

Proposition 5.1.5 Consider the system (5.1) with the control law (5.7) and auxiliary system
(5.8). Then the resulting closed-loop system (5.9) is globally asymptotically stable.
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Proof Consider the radially unbounded Lyapunov function candidate

V (e, ė, ê) =
1
2
ėTM(q)ė+

√
F1(e)

T
Kp

√
F1(e)+

√
F2(−Lpê + Kd(e− ê))

T√
F2(−Lpê + Kd(e− ê))

(5.10)
which is positive definite. Along solutions of (5.9) the time-derivative of (5.10) becomes, using
property 2.3.1:

V̇ (e, ė,−Lpê + Kd(e− ê)) = −(−Lpê + Kd(e− ê))T (Lp + Kd)f2(−Lpê + Kd(e− ê))

which is negative semi-definite. Using LaSalle’s Theorem, we conclude asymptotic stability.

The controller (5.7) with auxiliary system (5.8) is a suitable first phase controller, in case all
parameters are known. Otherwise, we again use the modified controller:

τ = −Kpf1(e)−Kdf2( ˙̂e) + g(qd) (5.11)

where Kp > kminp I and Kd > 0 are n × n diagonal matrices, and ê generated form the auxiliary
system

˙̂e = −Lpê + Kd(e− ê) (5.12)

resulting in:

Proposition 5.1.6 Consider the system (5.1). Then there exists a constant kminp such that the
controller (5.11) with auxiliary system (5.12) results in a globally asymptotically stable closed-loop
system.

Proof In analogy with Proposition 5.1.4

5.2 Some useful results

For developing a bounded composite feedback tracking controller, we not only need a globally
ultimately uniformly bounded first phase controller but also suitable tracking phase controllers.
Many useful results can be found in [1]. In this section we present some results that achieve
trajectory tracking to any desired trajectory qd(t).
Proposition 5.2.1 can be found in [1], as well as Proposition 5.2.3. Proposition 5.2.2 is a straight-
forward extension of [9].

Proposition 5.2.1 Consider the system (5.1) with the control law

τ = M(q)q̈d + C(q, q̇)q̇d + g(q)−Kpe−Kdė (5.13)

where Kp and Kd are n × n positive definite matrices. Then the resulting closed-loop system is
globally asymptotically stable.

Proposition 5.2.2 Consider the system (5.1) with the control law

τ = M(q)q̈d + C(q, q̇d)q̇d + g(q)−Kpf(e)−Kdf(z) (5.14)

where Kp and Kd are n× n positive definite matrices, z is generated from the observer

zi = wi + biei
ẇi = −aifi(wi + biei)

(5.15)

where this time not f ∈ F but f ∈ F̃ where

F̃ = {f ∈ F|∀x ∈ IR :
F (x)
f2(x)

≥ Γ > 0 ∧ 0 < f ′(x) ≤ ∆}
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with Γ and ∆ some constants and F (x) =
∫ x

0 f(ζ)dζ. Then the resulting closed-loop system is
semi-globally asymptotically stable, i.e the resulting closed-loop system is locally asymptotically
stable but its region of attraction can be arbitrarily enlarged by suitably selecting the observer gains
ai and bi.

Proposition 5.2.3 Consider the system (5.1) with the control law

τ = M(q, θ̂)q̈r+C(q, q̇, θ̂)q̇r+g(g, θ̂)−Kds1 = M0(q)q̈r+C0(q, q̇)q̇r+g0(q)+Y (q, q̇, q̇r, q̈r)θ̂−Kds1
(5.16)

where q̇r = q̇d −Λe, s1 = q̇− q̇r = ė + Λe, and Kp and Λ are n× n positive definite matrices, and
θ̂ generated from the parameter update-law:

˙̃
θ(t) = −Γ0Y

T (q, q̇, q̇r, q̈r)s1

where Γ0 is a positive definite diagonal matrix. Then the resulting closed-loop system is globally
asymptotically stable with respect to e and ė, i.e.

lim
t→∞

e(t) = lim
t→∞

ė(t) = 0

5.3 Composite results

In this section, the bounded first phase controllers of this chapter will be combined with the
tracking controllers of the previous section, resulting in bounded tracking phase controllers that
are capable of tracking any desired tracjectory qd(t).

Proposition 5.3.1 There exists a switching time ts ≥ 0 such that the composite tracking phase
control law

τ =
{
−Kp,1f1(e)−Kd,1f2(ė) + g(0) t < ts
M(q)q̈d + C(q, q̇)q̇d + g(q)−Kp,2e−Kd,2ė t ≥ ts

(5.17)

where Kp,1, Kd,1, Kp,2 and Kd,2 are positive definite matrices, results in a globally asymptotically
stable closed-loop system.

Proof (Sketch) Proposition 5.2.1 has been established, by showing that a certain Lyapunov
function of e and ė is non-increasing. This gives bounds on |e(t)| and |ė(t)| for t ≥ ts, assuming
|e(ts)| ≤ B0 +C0 and |ė(ts)| ≤ B1 +C1 for certain C0 > 0, C1 > 0. Those bounds yield a bound on
|u(t)| for t ≥ ts. We only need to achieve |q(ts)| ≤ C0 and |q(ts)| ≤ C1 within prescribed bounds.
From Proposition 5.1.2 we know this is possible.

Corollary 5.3.2 Consider the system (5.1). If

umax > MMB2 + gM

there exists a composite control law of the form (5.17) that satisfies the constraint (5.2).

Proposition 5.3.3 There exists a switching time ts ≥ 0 such that the composite tracking phase
control law

τ =
{
−Kp,1f1(e)−Kd,1f2( ˙̂e) + g(0) t < ts
M(q)q̈d + C(q, q̇d)q̇d + g(q)−Kp,2f(e)−Kd,2f(z) t ≥ ts

(5.18)

where Kp,1, Kd,1, Kp,2 and Kd,2 are positive definite diagonal matrices, and ê and z are generated
form the observers

˙̂e = −Lpê + Kd(e− ê)
zi = wi + biei
ẇi = −aifi(wi + biei)

(5.19)
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where Lp and Lp + Kd are positive definite diagonal matrices, and f ∈ F̃ , where

F̃ = {f ∈ F|∀x ∈ IR :
F (x)
f2(x)

≥ Γ > 0 ∧ 0 < f ′(x) ≤ ∆},

results in a globally asymptotically stable closed-loop system.

Proof (Sketch) Proposition 5.2.2 has been established, by showing that a certain Lyapunov
function is non-increasing. This gives bounds on |e(t)|, |ė(t)|, and |z(t)| for t ≥ ts, assuming
|e(ts)| ≤ B0 + C0, |ė(ts)| ≤ B1 + C1, and |z(t)| ≤ C2 for certain C0 > 0, C1 > 0, and C2. From
those bounds we obtain a bound on |u(t)| for t ≥ ts. We only need to achieve |q(ts)| ≤ C0 and
|q(ts)| ≤ C1 within prescribed bounds. From Proposition 5.1.2 we know this is possible. Since we
have |q(ts)| ≤ C0 and |q(ts)| ≤ C1 and since we can choose z(ts) such that |z(ts)| ≤ C2, we are
also able to calculate the gains ai and bi needed to achieve asymptotically tracking.

Remark 5.3.4 Notice this result is stronger than the one proved in Loria and Nijmeijer [9].
They achieved a semi-globally asymptotically stable, i.e. their resulting closed-loop system is
locally asymptotically stable but its region of attraction can be arbitrarily enlarged by suitably
selecting the observer gains ai and bi. Since our first phase controller steers the system towards
the origin, we can assure that at the switching time ts, the state is within prescribed bounds, from
which we can determine the observer gains ai and bi that guarantee asymptotic stability. Since
our first phase controller is globally asymptotically stable, we obtain a globally asymptotically
stable result.

Corollary 5.3.5 Consider the system (5.1). If

umax > MMB2 + CMB2
1 + gM

there exists a composite control law of the form (5.18) that satisfies the constraint (5.2).

Proposition 5.3.6 There exists a switching time ts ≥ 0 such that the composite tracking phase
control law

τ =
{
−Kp,1f1(e)−Kd,1f2(ė) + g(0) t < ts
M(q, θ̂)q̈r + C(q, q̇, θ̂)q̇r + g(g, θ̂)−Kd,2s1 t ≥ ts

(5.20)

where Kp,1, Kd,1, and Kd,2 are positive definite matrices, and θ̂ generated from the update-law:

˙̃
θ(t) = −Γ0Y

T (q, q̇, q̇r, q̈r)s1

results in a globally asymptotically stable closed-loop system.

Proof (Sketch) Proposition 5.2.3 has been achieved, by showing that a certain Lyapunov function
of e and ė is non-increasing. This gives bounds on |e(t)| and |ė(t)| for t ≥ ts, assuming |e(ts)| ≤
B0 + C0 and |ė(ts)| ≤ B1 + C1 for certain C0 > 0, C1 > 0, from which we can deduce a bound on
|u(t)| for t ≥ ts. We only need to achieve |q(ts)| ≤ C0 and |q(ts)| ≤ C1 within prescribed bounds.
From Proposition 5.1.4 we know this is possible.
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Chapter 6

Conclusions and future research

6.1 Conclusions

So far, the research on controlling chaos has mainly been directed to controlling the system to-
wards fixed points or periodic orbits of the system. In [10], Nijmeijer and Berghuis for the first
time considered the problem of controlling the chaotic forced Duffing system towards any desired
trajectory, using feedback control. This thesis extended their results in three ways:

1. The controllers for the Duffing system developed in this thesis, including controller-observer
combinations, deal with natural input limitations.

2. Controllers, including controller-observer combinations, for the chaotic forced van der Pol
system have been developed, also dealing with natural input limitations.

3. Furthermore adaptive controllers have been developed, to deal with parameter uncertainties
(also dealing with natural input limitations).

In order to develop bounded controllers, a new concept has been introduced: composite controllers.
The tracking control problem has been devided into the problem of finding a suitable waiting phase
controller and a tracking phase controller. The main objective of the waiting phase controller is
to reduce the tracking error to allowable proportions. Then one can switch to a second controller,
the tracking phase controller, to achieve tracking of the desired trajectory.
Since the waiting phase controller assures that the tracking errors are within previously deter-
mined bounds, one is sure the tracking phase controller remains within prescribed bounds. The
problem of finding a bounded globally asymptotically stable tracking phase controller, in case a
(not neccessarily bounded) locally asymptotically stable tracking controller is available, has been
reduced to finding a bounded globally ultimately uniformly bounded controller, whose ball in
which finally all solutions will arrive is a subset of the region of attraction of the already known
locally asymptotically stable tracking controller. In other words, instead of controlling the system
towards the desired trajectory, we define another trajectory, close to the desired trajectory, to
which we first control the system. In this thesis, we choose the origin, a fixed point, as trajectory
to which we first control the system.
The concept of composite controllers has also been applied in the tracking control problem for rigid
robots, resulting in bounded composite controllers, including controller-observer combinations and
composite adaptive controllers.

6.2 Future research

The concept of composite controllers is very powerful. Using this concept, as soon as a locally
asymptotically stable tracking controller is found, bounded controllers are available for every
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system that contains enough damping, i.e. using a bounded controller assures the system will be
globally ultimately bounded.
An illustration are the results presented in chapter 5. The development of parameter independent
bounded first phase controllers to control the rigid robot system towards a fixed point, resulted
in bounded composite tracking controllers and bounded adaptive controllers.

None of the proofs in this thesis conclude that the control laws guarantee an exponentially asymp-
totically stable closed-loop system. When we look at the simulations, especially the second phase
controllers seem to be locally exponentially stable. Such results might be established by choosing
other Lyapunov functions.
The controllers in this thesis can also be improved, e.g by choosing a better switching moment or
first phase controller. All first phase controllers developed in this thesis try to steer the system
towards the origin, since it is the best point to control the system to in case we only know the
desired trajectory satisfies

|xd(t)| ≤ B0, |ẋd(t)| ≤ B1, |ẍd(t)| ≤ B2

since it minimizes e = x−xd. In case we explicitely know the desired tracjectory, we could consider
better choices. For example, if we know that the desired trajectory is xd(t) = sin(t), we might
consider to control the system towards the fixed point (x, ẋ) = (1, 0), or to the signal 1

2 sin(t) in
the waiting phase. Using this idea, the large control effort just after switching controllers in case
of our second simulation of van der Pol’s system, as displayed in figure 4.4(c), can be reduced to
less than 10 percent of the current value!

However, most promising is the concept of a composite controller. Using this idea the problem
of finding bounded globally asymptotically stable tracking controllers has been reduced to finding
locally asymptotically stable tracking controllers (not necessarily bounded) and bounded globally
ultimately bounded controllers that control the system towards a fixed point. As shown in chapter
5, this concept opens the way to a lot of new results on bounded globally asymptotically stable
tracking controllers!
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