
Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://seweb.se.wtb.tue.nl/

SE-Report: Nr. 2006-01

Modeling and Analysis of
Manufacturing Systems

E. Lefeber and J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2006-01
Eindhoven, March 2006

SE Reports are available via http://seweb.se.wtb.tue.nl/sereports



2



Chapter 1

Modeling and Analysis of
Manufacturing Systems

1.1 Introduction
The dynamics of manufacturing systems has been a subject of study for several decades
(Forrester 1961; Hopp and Spearman 2000). Over the last years, manufacturing systems have
become more and more complex. A good understanding of the dynamics of manufacturing
systems has therefore become even more important.
The goal of this chapter is to introduce a large variety of models that have been used for
modeling manufacturing systems. By means of examples it is illustrated how certain modeling
techniques can be used to derive models that can be used for analysis and/or control. Also,
references are provided that can be used as a starting point for getting more details.
Furthermore, recent developments in the modeling, analysis and control of manufacturing
systems are presented.
Since no familiarity with manufacturing systems is assumed, in Section 1.2 some terminology
and basic properties of manufacturing systems are introduced. Section 1.3 provides some
analytical modeling techniques and methods for analyzing steady state behavior of
manufacturing systems. Section 1.4 is concerned with deriving discrete event models of
manufacturing systems, which yield a more detailed insight in the dynamics of a manufacturing
system. In order to reduce the complexity of discrete event models, effective proces times
(EPT’s) are introduced in Section 1.5, which results in modeling a manufacturing system as a
large queueing network. This way of modeling a manufacturing system is a first step in a larger
control framework which is introduced in Section 1.6. This control framework makes it possible
to study problems on controlling the dynamics of manufacturing systems by means of the
available inputs. An important role in this control framework is played by approximation
models. The most commonly used approximation models are presented in Section 1.7. Recently
a new class of approximation models has been proposed which is presented in Section 1.8.
Section 1.9 concludes this chapter.

1.2 Preliminaries
First a few basic quantities are introduced as well as the main principles for manufacturing
system analysis. The items produced by a manufacturing system are calledlots. Also the words
product and job are commonly used. Other important notions are throughput, flow time, wip and
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Figure 1.1: Basic quantities for manufacturing systems

utilization. These notions are illustrated in Figure 1.1 at factory and machine level.

Raw process timet0 denotes the net time a lot needs processing on a machine. This process
time excludes additions such as setup time, breakdown, or other sources that may increase
the time a lot is on the machine. The raw process time is typically measured in hours or
minutes.

Throughput δ denotes the number of lots per time-unit that leaves the manufacturing system.
At machine level, this denotes the number of lots that leave a machine per time-unit. At
factory level it denotes the number of lots that leave the factory per time-unit. The unit of
throughput is typically lots/hour.

Flow time ϕ denotes the time a lot is in the manufacturing system. At factory level this is the
time from release of the lot in the factory until the finished lot leaves the factory. At
machine level this is the time from entering the machine (or the buffer in front of the
machine) until leaving the machine. Flow time is typically measured in days, hours, or
minutes. Instead of flow time the words cycle time and throughput time are also
commonly used.

Work in process (wip) w denotes the total number of lots in the manufacturing system, i.e. in
the factory or in the machine. Wip is measured in lots.

Utilization u denotes the fraction a machine is not idle. A machine is considered idle if it could
start processing a new lot. Thus process time as well as downtime, setup-time and
preventive maintenance time all contribute to the utilization. Utilization has no dimension.
Utilization can never exceed 1.0.

Ideally, a manufacturing system should both have a high throughput and a low flow time or low
wip. Unfortunately, these goals can not both be met simultaneously. These two goals are
conflicting, as can be seen from Figure 1.2. On the one hand, if a high throughput is required,
machines should always be busy. As from time to time disturbances like machine failures
happen, buffers between two consecutive machines are required to make sure that the second
machine can still continue if the first machine fails (or vice versa). Therefore, for a high
throughput many lots are needed in the manufacturing system, i.e. wip needs to be high. As a
result, if a new lot starts in the system it has a large flow time, since all lots that are currently in
the system need to be completed first.
On the other hand, the least possible flow time can be achieved if a lot arrives at a completely
empty system and never has to wait before processing at any machine takes place. As a result,
for that system the wip level is small, but also most of the time machines are not processing,
yielding a small throughput.
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Figure 1.2: Basic relations between basic quantities for manufacturing systems
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Figure 1.3: A characteristic time-behavior of wip at a workstation

When trying to control manufacturing systems, a trade-off needs to be made between throughput
and flow time, so the nonlinear (steady state) relations depicted in Figure 1.2 need to be
incorporated in any reasonable model of manufacturing systems.
A final observation of relevance for modeling manufacturing systems is the nature of the system
signals. In Figure 1.3 a characteristic graph of the wip at a workstation as a function of time is
shown. Wip always takes integer values with arbitrary (non-negative real) duration. One could
consider a manufacturing system to be a system that takes values from a finite set of states and
jumps from one state to the other as time evolves. This jump from one state to the other is called
event. As we have a countable (discrete) number of states, it is clear that discrete event models
are often used in modeling manufacturing systems. Discrete event models for manufacturing
systems are considered in Section 1.4. But first some analytical models for analyzing steady
state behavior of manufacturing systems are presented in the next section.

1.3 Analytical models for steady state analysis
In order to get some insights in the steady state performance of a given manufacturing system
simple relations can be used. In this section we deal with mass conservation for determining the
mean utilization of workstations and the number of machines required for meeting a required
throughput. Furthermore, relations from queueing theory are used to obtain estimates for the
mean wip and mean flow time.

5 Analytical models for steady state analysis



B
1

t
0

[hrs]
l

machine

M
1

M
2

M
3

M
4

2.0

6.0

1.8

1.6

0.9

0.1

0.2

0.8

d

M
1

B
2

M
2

M
3

M
4

B
3

Figure 1.4: Manufacturing system with rework and bypassing

1.3.1 Mass conservation (throughput)
Using mass conservation the mean utilization of workstations can be easily determined. This is
illustrated by means of an example.

Example 1.3.1.Consider the manufacturing system with rework and bypassing in Figure 1.4.
The manufacturing system consists of three buffers and four machines. Lots are released at a
rate ofλ lots/hour. The numbers near the arrows indicate the fraction of the lots that follow that
route. For instance, of the lots leaving bufferB1 90% goes to machineM1 and 10% goes to
bufferB3. The process time of each machine is listed in the table in Figure 1.4.
Let δMi andδBi denote the throughput of respectively machineMi (i = 1,2,3,4) and bufferBi
(i = 1,2,3). Using mass conservation we obtain

δM1 = 0.9δB1 δB1 = λ

δM2 = 0.2δB2 δB2 = δM1 +δM2

δM3 = 0.8δB2 δB3 = δM3 +0.1δB1

δM4 = δB3 δ = δM4.

Solving these linear relations results in:

δM1 = 0.9λ δB1 = λ

δM2 = 0.225λ δB2 = 1.125λ

δM3 = 0.9λ δB3 = λ

δM4 = λ δ = λ .

Using the process times of the table in Figure 1.4, we obtain for the utilizations:

uM1 = 0.9λ ·2.0/1 = 1.8λ uM3 = 0.9λ ·1.8/1 = 1.62λ

uM2 = 0.225λ ·6.0/1 = 1.35λ uM4 = λ ·1.6/1 = 1.6λ .

Clearly, machineM1 is the bottleneck and the maximal throughput for this line is
λ = 1/1.8 = 0.56 jobs per hour.

Using mass conservation, utilizations of workstations can be determined straightforwardly. This
also provides a way for determining the number of machines required for meeting a given
throughput. By modifying the given percentages the effect of rework or a change in product mix
can also be studied.

1.3.2 Queueing relations (wip, flow time)
Using mass conservation the mean utilization of a workstation can be determined. For
determining a rough estimate of the corresponding mean flow time and mean wip, basic
relations from queueing theory can be used.
Consider a single machine workstation that consists of infinite bufferB∞ and machineM, see
Figure 1.5. Lots arrive at the buffer with a stochastic inter arrival time. The inter arrival time
distribution has meanta and coefficient of variationca. The coefficient of variationc of a
distribution is defined as the quotient of its standard deviationσ and its meanµ: c = σ/µ. The
machine has stochastic process times, with mean process timet0 and coefficient of variationc0.
Finished lots leave the machine with a stochastic inter departure time, with meantd and
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Figure 1.6: Three workstation flow line

coefficient of variationcd. Assuming independent inter arrival times and independent process
times, the mean waiting timeϕB in bufferB can be approximated for a stable system by means
of Kingman’s equation (Kingman 1961):

ϕB =
c2

a +c2
0

2
· u
1−u

· t0 (1.1)

with the utilizationu defined by:

u =
t0
ta

.

Equation 1.1 is exact for anM/G/1 system, i.e. a single machine workstation with exponentially
distributed inter arrival times and any distribution for the process time. For other single machine
workstations it is an approximation.
For a stable system, we havetd = ta. We can approximate the coefficient of variationcd by
Kuehn’s linking equation (Kuehn 1979):

c2
d = (1−u2) ·c2

a +u2 ·c2
0. (1.2)

This result is exact for anM/M/1 system. For other single machine workstations it is an
approximation. Having characterized the departure process of a workstation, the arrival process
at the next workstation has been characterized as well. As a result, a line of workstations can
also be dealt with.

Example 1.3.2 (Three workstations in line).Consider the three workstation flow line from
Figure 1.6. For the inter arrival time at workstation 0 we haveta = 4.0 hours andc2

a = 1. The
three workstations are identical with respect to the process times:t0,i = 3.0 hours fori = 0,1,2
andc2

0,i = 0.5 for i = 0,1,2. Determine the mean total flow time per lot.
Sinceta > t0,i for i = 0,1,2, we have a stable system andta,i = td,i = 4.0 hours fori = 0,1,2.
Subsequently, the utilization for each workstation isui = 3.0/4.0 = 0.75 for i = 0,1,2.
We calculate the mean flow time for workstation 0, using Equation 1.1.

ϕ0 = ϕB + t0 =
c2

a +c2
0

2
· u
1−u

· t0 + t0 =
1+0.5

2
· 0.75
1−0.75

·3.0+3.0 = 9.75 hours.

Next, we determine the coefficient of variation on the inter arrival timeca,1 for workstationW1
using Equation 1.2.

c2
a,1 = c2

d,0 = (1−u2) ·c2
a +u2 ·c2

0 = (1−0.752) ·1+0.752 ·0.5 = 0.719.

We calculate the mean flow time for workstation 1.

ϕ1 =
0.719+0.5

2
· 0.75
1−0.75

·3.0+3.0 = 8.49 hours.

7 Analytical models for steady state analysis



In a similar way, we determine thatc2
a,2 = 0.596,ϕ2 = 7.93 hours. We then calculate the mean

total flow time.
ϕtot = ϕ0 +ϕ1 +ϕ2 = 26.2 hours.

Note that the minimal flow time without variability (c2
a = c2

0,i = 0) equals 9.0 hours.

Equations 1.1 and 1.2 are particular instances for a workstation consisting of a single machine.
For workstations consisting ofm identical machines in parallel the following approximations
can be used:

ϕB =
c2

a +c2
0

2
· u
√

2(m+1)−1

m(1−u)
· t0 (1.3)

c2
d = (1−u2) ·c2

a +u2 ·
c2

0 +
√

m−1√
m

. (1.4)

Notice that in casem= 1 these equations reduce to Equation 1.1 and Equation 1.2.
Once the mean flow time has been determined, a third basic relation from queueing theory,
Little’s law (Little 1961), can be used for determining the mean wip level. Little’s law states that
the mean wip level (number of lots in a manufacturing system)w is equal to the product of the
mean throughputδ and the mean flow timeϕ, provided the system is in steady state.

w = δ ·ϕ. (1.5)

An example illustrates how Kingman’s equation and Little’s law can be used.

Example 1.3.3.Consider the system of Example 1.3.2 as depicted in Figure 1.6. From
Example 1.3.2 we know that the flow times for the three workstations are respectively

ϕ0 = 9.75 hours, ϕ1 = 8.49 hours, ϕ2 = 7.93 hours.

Since the steady state throughput was assumed to beδ = 1/ta = 1/4.0 = 0.25 lots/hour, we
obtain via Little’s law

w0 = 0.25·9.75= 2.44 lots,

w1 = 0.25·8.49= 2.12 lots,

w2 = 0.25·7.93= 1.98 lots.

The above mentioned relations are simple approximations that can be used for getting a rough
idea about the possible performance of a manufacturing system. These approximations are fairly
accurate for high degrees of utilization but less accurate for lower degrees of utilization. A basic
assumption when using these approximations is independence of the inter arrival times, which in
general is not the case, e.g. for merging streams of jobs. Furthermore, using these equations only
steady state behavior can be analyzed. For studying things like ramp-up behavior or for
incorporating more details like operator-behavior, more sophisticated models are needed, as
described in the next section.

1.4 Discrete event models
In the previous section simple methods have been introduced for analyzing steady state behavior
of manufacturing systems. For analyzing the dynamics of manufacturing systems, more
sophisticated models are required. In Figure 1.3 in Section 1.2 it was illustrated that typical
models of manufacturing systems are so-called discrete event models. In this section we
illustrate by means of an example how to build a discrete event model of a manufacturing
system using the specification languageχ, which is explained in more detail in Chapter XXX of
this Handbook.
The way to build a discrete event model is to consider the manufacturing system as a network of
concurrent processes through which jobs and other types of information flows. For example, a
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basic machine can be modeled as a process which repeatedly tries to receive a lot, delays for the
period of time (the process time), and tries to send a lot. Usingχ, we can write

proc M(chan a?,b! : lot, disc te : real) = |[ disc x : lot :: ∗(a?x; ∆te; b!x) ]|.
The machine is able to receive lots via external channela, is able to send lots via external
channelb and the process time of the machine is given by parameterte. Repeatedly the machine
tries to receive a lot over external channela and store this lot in discrete variablex. Next, the
machine delays forte, after which the machine tries to sendx via external channelb.
A buffer can be modeled as a process that as long as it can store something it is willing to
receive new lots and as long as it has something stored is willing to send lots. Usingχ a finite
FIFO (first in, first out) buffer with buffer sizen can be modeled as

proc B(chan a?,b! : lot, disc n : nat) =
|[ disc xs: [lot] = [ ], x : lot
::∗( len(xs) < n→ a?x; xs:= xs++[x]

8 len(xs) > 0→ b!hd(xs); xs:= tl(xs)
)

]|.
This process can receive lots via external channela, send lots via external channelb and has its
maximal buffer sizen as a parameter. Repeatedly two alternatives can be executed.

• On the one hand receiving a lot via channela (only if the length of the list is less thann)
into discrete variablex and consecutively adding it in the proper way to listxsof lots
(using a concatenation of lists).

• On the other hand trying to send the head of the list (its first element) via channelb (only
if the list is not empty) and consecutively reducing listxsto its tail (everything but the first
element).

Next, these two processes can be used to model a workstation which consists of a 3-place buffer
and a machine with process timete by simply putting the two previously specified processes in
parallel:

procW(chan a?,b! : lot,disc te : real) = |[ chan c : lot :: B(a,c,3) ‖M(c,b, te) ]|.
Assume that lots arrive to this workstation according to a Poisson arrival process with mean
arrival rate ofλ jobs per unit time. This can be modeled by means of the following generator
process

proc G(chan a! : lot,disc λ : real) =
|[ disc u : → real = exponential(1/λ ) :: ∗(a!τ; ∆σu; b!x) ]|,

where we assumed that the type lot consists of a real number which contains the time this lot
entered the system. GeneratorG is able to send lots via external channela and has a mean
departure rate which is given by parameterλ . The discrete variableu contains an exponential
distribution with mean 1/λ . Repeatedly the generator tries to send a lot over external channela,
where the lot contains upon departure the current timeτ. Next, the generator delays for a period
which is given by a sample from the distributionu.
To complete this specification, assume that lots leave to exit processE after being served at
workstationW. This exit process can be modelled as

proc E(chan a? : lot) = |[ disc x : lot :: ∗(a?x) ]|.
This process repeatedly tries to receive a lot via external channela.
If we assume an arrival rate ofλ = 0.5 and a process time ofte = 1.5 the specification of the
discrete event model can be completed by specifying

model GWE() = |[ chan a,b : lot :: G(a,0.5) ‖W(a,b,1.5) ‖ E(b) ]|.
In this way a manufacturing system can be modeled as a network of concurrent processes
through which jobs and other types of information flows. The presented model is rather simple,
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but clearly many more ingredients can be added. For example, an operator might be required
during processing of a machine. To include this, we can modify the procesM into

proc M̄(chan a?,b! : lot, c?,d! : operator, disc te : real) =
|[ disc x : lot, y : operator ::∗(c?y; a?x; ∆te; b!x; d!y) ]|.

Highly detailed models of manufacturing systems can be made in this way, even before the
system has been build. The influence of certain parameters can be analyzed by running several
experiments with the discrete event model using different parameter settings. This is common
practice when designing a several billion wafer fab for instance. Since in practice manufacturing
systems are changing continuously, it is very hard to keep these detailed discrete event models
up-to-date.
Fortunately, for a manufacturing system in operation it is possible to arrive at more simple/less
detailed discrete event models by using the concept of effective process times (EPT’s) as
introduced in the next section.

1.5 Effective process times (EPT’s)
As mentioned in the previous section, for the processing of a lot at a machine, many steps may
be required. It could be that an operator needs to get the lot from a storage device, setup a
specific tool that is required for processing the lot, put the lot on an available machine, start a
specific program for processing the lot, wait until this processing has finished (meanwhile doing
something else), inspect the lot to determine if all went well, possibly perform some additional
processing (e.g. rework), remove the lot from the machine and put it on another storage device
and transport it to the next machine. At all of these steps something might go wrong: the
operator might not be available, after setting up the machine the operator finds out that the
required recipe can not be run on this machine, the machine might fail during processing, no
storage device is available anymore so the machine can not be unloaded and is blocked, etc.
It is impossible to measure all sources of variability that might occur in a manufacturing system.
One could incorporate some of these sources in a discrete event model. The number of operators
and tools can be modeled explicitly and it is common practice to collect data on mean times to
failure and mean times to repair of machines. Also schedules for (preventive) maintenance can
be incorporated explicitly in a discrete event model. Nevertheless, still not all sources of
variability are included. This is clearly illustrated in Figure 1.7, obtained from (Jacobs, Etman,
Campen, and Rooda 2003). The left graph contains actual realizations of flow times of lots
leaving a real manufacturing system, whereas the right graph contains the results of a detailed
deterministic simulation model and the graph in the middle contains the results of a similar
model including stochasticity. It turns out that in reality flow times are much higher and much
more irregular than simulation predicts. So, even if one tries hard to capture all variability
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Figure 1.8: Gantt chart of 5 lots at a single machine workstation

present in a manufacturing system, still the outcome predicted by the model is far from reality.
In (Hopp and Spearman 2000) the termeffective process time(EPT) has been introduced as the
time seen by lots from a logistical point of view. In order to determine this effective process
time, Hopp and Spearman assume that the contribution of the individual sources of variability is
known.
A similar description is given in (Sattler 1996) where the effective process time has been defined
as all flow time except waiting for another lot. It includes waiting for machine down time and
operator availability and a variety of other activities. In (Sattler 1996) it was also noticed that
this definition of effective process time is difficult to measure.
Instead of taking the bottom-up view of Hopp and Spearman, a top-down approach can also be
taken, as shown by Jacobs et al. (Jacobs, Etman, Campen, and Rooda 2003), where algorithms
have been introduced that enable determination of effective process time realizations from a list
of events. For these algorithms, the basic idea of the effective process time to include time losses
was used as a starting point.
Consider a single machine workstation (cf. Figure 1.5) and assume that the Gantt chart of
Figure 1.8 describes what has happened at this workstation during a given period. Att = 0 the
first lot arrives at the workstation. After a setup, the processing of the lot starts att = 2 and is
completed att = 6. At t = 4 the second lot arrives at the workstation. Att = 6 this lot could
have been started, but apparently there was no operator available, so only att = 7 the setup for
this lot starts. Eventually, att = 8 the processing of the lot starts and is completed att = 12. The
fifth lot arrives at the workstation att = 22, processing starts att = 24, but att = 26 the machine
breaks down. It takes untilt = 28 before the machine has been repaired and the processing of
the fifth lot continues. The processing of the fifth lot is completed att = 30.
If we take the point of view of a lot, what does a lot see from a logistical point of view? The first
lot arrives at an empty system att = 0 and departs from this system att = 6. From the point of
view of this lot, its processing took 6 time-units. The second lot arrives at a non-empty system at
t = 4. Clearly, this lot needs to wait. However, att = 6, if we would forget about the second lot,
the system becomes empty again. So fromt = 6 on there is no need for the second lot to wait.
At t = 12 the second lot leaves the system, so from the point of view of this lot, its processing
took fromt = 6 till t = 12; the lot does not know whether waiting for an operator and a setup is
part of its processing. Similarly, the third lot sees no need for waiting aftert = 12 and leaves the
system att = 17, so it assumes to have been processed fromt = 12 till t = 17. Following this
reasoning, the resulting effective process times for lots are as depicted in Figure 1.9. Notice that
only arrival and departure events of lots to a workstation are needed for determining the effective
process times. Furthermore, none of the contributing disturbances needs to be measured. In
highly automated manufacturing systems, arrival and departure events of lots are being
registered, so for these manufacturing systems, effective process time realizations can be
determined rather easily. Next, these EPT realizations can be used in a relatively simple discrete
event model of the manufacturing system. This discrete event model only contains the
architecture of the manufacturing system, buffers and machines. The process times of these
machines are samples from their EPT-distribution as measured from real manufacturing data.
There is no need for incorporating machine failures, operators, etc., as this is all included in the
EPT-distributions. Furthermore, the algorithms as provided in (Jacobs, Etman, Campen, and
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Figure 1.9: EPT realizations of 5 lots at a workstation

Rooda 2003) are utilization independent. That is, data collected at a certain throughput rate is
also valid for different throughput rates. Also, machines with the same EPT-distribution can be
added to a workstation. This makes it possible to study how the manufacturing system responds
in case a new machine is added, or all kinds of other what-if-scenario’s. Finally, since
EPT-realizations characterize operational time variability, they can be used for performance
measuring. For more on this issue, the interested reader is referred to (Jacobs, Etman, Campen,
and Rooda 2003; Jacobs, Bakel, Etman, and Rooda 2005). What is most important is that EPT’s
can be determined from real manufacturing data and yield relatively simple discrete event
models of the manufacturing system under consideration. These relatively simple discrete event
models can serve as a starting point for controlling manufacturing systems dynamically.

1.6 Control of manufacturing systems: a framework
In the previous section, the concept of effective process times has been introduced as a means to
arrive at relatively simple discrete event models for manufacturing systems, using measurements
from the real manufacturing system under consideration. The resulting discrete event models are
large queueing networks which capture the dynamics reasonably well. These relatively simple
discrete event models are not only a starting point for analyzing the dynamics of a
manufacturing system, but can also be used as a starting point for controller design. If one is
able to control the dynamics of the discrete event model of the manufacturing system, the
resulting controller can also be used for controlling the real manufacturing system.
Even though control theory exists for controlling discrete event systems, unfortunately none of it
is appropriate for controlling discrete event models of real-life manufacturing systems. This is
mainly due to the large number of states a manufacturing system can be in. Therefore, a
different approach is needed.
If we concentrate on mass production, the distinction between lots is not really necessary and
lots can be viewed in a more continuous way. Therefore, instead of the discrete event model we
consider an approximation model. Some of these approximation models are presented in the
next two sections.
Once we have an approximation model, we can use standard control theory for deriving a
controller for the approximation model, cf. Figure 1.10.
When the derived controller behaves as desired, i.e. when the closed-loop system of
approximation model and controller behaves as desired, the derived controller can be connected
to the discrete event model. This can not be done straightforwardly, since the derived controller
is not a discrete event controller. The control actions still need to be transformed into events. It
might very well be that the optimal control action would be to produce 2.75 lots during the next
shift. One still needs to decide how many jobs to really start (2 or 3), and also when to start
them. This is the left conversion block in Figure 1.11. From this figure, it can also be seen that a
conversion is needed from discrete event model to controller. A simple conversion would be to
sample the discrete event model once every shift. But also other strategies might be followed.
For example, if at the beginning of a shift a machine breaks down it might not be such a good
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idea to wait until the end of the shift before setting new production targets. Therefore, the next
step would be to designing proper conversion blocks.
Once the two conversion blocks have been properly designed a suitable discrete event controller
for the discrete event model is obtained, as illustrated in Figure 1.11 (dashed).
Eventually, as a final step, the designed controller can be disconnected from the discrete event
model, and attached to the real manufacturing system.
In the presented control framework two crucial steps can be distinguished. First, the discrete
event model should be a good enough approximation of the real manufacturing system. For that
reason, once a discrete event model of a manufacturing system has been made, the model needs
to be validated. If results as shown in Figure 1.7 are obtained the model needs further
improvement. Second, the approximation model should be a good enough approximation of the
discrete event model, or actually: of the discrete event model and conversion block(s), since that
is the system that needs to be controlled by the continuous controller. Depending on the
variables of interest, a valid approximation model needs to be used. An overview of common
used approximation models, assuming mass production, is provided in the next two sections. In
section 1.7 approximation models are presented that mainly focus on throughput. In section 1.8
approximation models are presented that incorporate both throughput and flow time, taking into
account the nonlinear relations as depicted in Figure 1.2.

1.7 Standard fluid model and extensions
A disadvantage of the analytical approximations models as presented in Section 1.3 is that they
are only concerned with steady state. No dynamics is included. This disadvantage is overcome
by discrete event models as introduced in Section 1.4, but the price to be paid is the long
simulation times that are required for obtaining satisfactory results. This is due to the fact that
each job is modeled separately. As explained in the previous section we can overcome these
long simulation times by using an approximation model. In this section some of the possible
approximation models are presented. The main idea is to view the amount of jobs in a
continuous way. This results in so called fluid models.
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Figure 1.12: A simple manufacturing system

1.7.1 A common fluid model
The current standard way of deriving fluid models is most easily explained by means of an
example. Therefore, consider a simple manufacturing system consisting of two machines in
series, as displayed in Figure 1.12. Letu0(t) denote the rate at which jobs arrive to the system at
time t, let ui(t) denote the rate at which machineMi produces lots at timet, let yi(t) denote the
number of lots in bufferBi at timet (i ∈ {1,2}) and lety3(t) denote the number of lots produced
by the manufacturing system at timet. Assume that machinesM1 andM2 have a maximum
capacity of respectivelyµ1 andµ2 lots per time unit. This provides us with all information for
deriving a fluid model.
Clearly the rate of change of the buffer contents is given by the difference between the rates at
which lots enter and leave the buffer. Under the assumption that the number of lots can be
considered continuous, this observation leads to the following fluid model:

ẏ1(t) = u0(t)−u1(t),
ẏ2(t) = u1(t)−u2(t),
ẏ3(t) = u2(t),

(1.6)

which can also be expressed as follows:

ẋ(t) =

0 0 0
0 0 0
0 0 0

x(t)+

1 −1 0
0 1 −1
0 0 1

u(t), (1.7a)

y(t) =

1 0 0
0 1 0
0 0 1

x(t)+

0 0 0
0 0 0
0 0 0

u(t), (1.7b)

whereu = [u0,u1,u2]> andy = [y1,y2,y3]>. We also have capacity constraints on the input, as
well as the constraint that the buffer contents should remain positive. These constraints can be
expressed by means of the following equations:

0≤ u1(t)≤ µ1,0≤ u2(t)≤ µ2 and y1(t)≥ 0,y2(t)≥ 0,y3(t)≥ 0. (1.8)

The system as described by Equation 1.7 is a controllable linear system of the form
ẋ = Ax+Bu,y = Cx+Du as extensively studied in control theory.
Note that instead of a description in continuous time, a description in discrete time can also be
used:

ẋ(k+1) =

1 0 0
0 1 0
0 0 1

x(k)+

1 −1 0
0 1 −1
0 0 1

u(k), (1.9a)

y(k) =

1 0 0
0 1 0
0 0 1

x(k)+

0 0 0
0 0 0
0 0 0

u(k). (1.9b)

Also, the description of Equation 1.7 is not the only possible input/output/state model which
yields the input/output behavior Equation 1.6. To illustrate this, consider the change of
coordinates

x(t) =

1 −1 0
0 1 −1
0 0 1

 x̄(t), (1.10)
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Figure 1.13: Output of the manufacturing system using model Equation 1.6
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Figure 1.14: A simple manufacturing system revisited

which results in the following input/output/state model:

˙̄x(t) =

0 0 0
0 0 0
0 0 0

 x̄(t)+

1 0 0
0 1 0
0 0 1

u(t), (1.11a)

y(t) =

1 −1 0
0 1 −1
0 0 1

 x̄(t)+

0 0 0
0 0 0
0 0 0

u(t). (1.11b)

Note that in this description, the state ¯x denotes the cumulative production at each workstation.
We would like to study the response of the output of the system Equation 1.7, or equivalently
Equation 1.11. Assume that initially we start with an empty production line (i.e.x(0) = 0), that
both machines have a capacity of 1 lot per unit time (i.e.µ1 = µ2 = 1) and that we feed the line
at a rate of 1 lot per time unit (i.e.u0 = 1). Furthermore, assume that machines produce at full
capacity, but only in case something is in the buffer in front of it, i.e.

ui(t) =

{
µi if yi(t) > 0
0 otherwise

i ∈ {1,2}. (1.12)

Under these assumptions, the resulting contents of bufferB3 are as displayed in Figure 1.13.
Notice that immediately lots start coming out of the system. Clearly this is not what happens in
practice. Since both machinesM1 andM2 need to process the first lot, it should take the system
at least 1

µ1
+ 1

µ2
time units before lots can come out. This illustrates that for the fluid model as

given by Equation 1.7 or Equation 1.11 does not incorporate flow times.

1.7.2 An extended fluid model
In the previous subsection we noticed that in the standard fluid model lots immediately come out
of the system, once we start producing. A way to overcome this problem is to explicitly take into
account the required delay. Whenever we decide to change the production rate of machineM1,
bufferB2 notices this 1/µ1 time units later. As a result the rate at which lots arrive to bufferB2
at timet is equal to the rate at which machineM1 was processing at timet−1/µ1. This
observation results in the following model (see also Figure 1.14):
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Figure 1.15: Output of the manufacturing system using model Equation 1.13

ẏ1(t) = u0(t)−u1(t),

ẏ2(t) = u1

(
t− 1

µ1

)
−u2(t),

ẏ3(t) = u2

(
t− 1

µ2

)
.

(1.13)

Clearly the constraints of Equation 1.8 also apply to the model given by Equation 1.13.
We expect that this model shows a response which is closer to reality. Assume that for the
system described by Equation 1.13 we also haveµ1 = µ2 = 1 lot per time unit, and that we
perform the same experiments as in the previous subsection, i.e. start fromx(0) = 0, apply
u0 = 1 and Equation 1.12. The resulting response of bufferB3 is displayed in Figure 1.15. If we
compare the results from Figure 1.15 to that of Figure 1.13 we see that no products enter buffer
B3 during the first 2.0 time units in case we use the extended fluid model. Clearly the extended
fluid model produces more realistic results than the standard fluid model.

1.7.3 An approximation to the extended fluid model
In the previous subsection we proposed an extended version of the standard fluid model.
Although the model of Equation 1.13 still is a linear model, standard linear control theory is not
able to deal with this model, due to the time delay. For controlling the model of Equation 1.13
we have to rely on control theory of infinite-dimensional linear systems. For a good introduction
to infinite-dimensional linear systems, see e.g. (Curtain and Zwart 1995).
Instead of using infinite-dimensional linear systems theory, another possibility would be to
approximate the time delays by means of a Padé approximation (Baker 1965). When we use
second-order Padé approximations, the model of Equation 1.13 can be approximated as:

ẋ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 4 6 −3 0 0
0 0 0 4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 6 −3
0 0 0 0 0 4 0


x+



1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0


u, (1.14a)

y =

1 −1 0 0 0 0 0
0 1 −3 0 −1 0 0
0 0 0 0 1 −3 0

x+

0 0 0
0 0 0
0 0 0

u. (1.14b)

Notice the structure in Equation 1.14. In bold face we can easily recognize the dynamics of
Equation 1.11. The additional dynamics results from approximating the time delays by means of
a second order Padé approximation.
If we initiate the system of Equation 1.14 fromx(0) = 0 and feed it at a rateu0 = 1 while using
Equation 1.12, we obtain the system response as depicted in Figure 1.16. It is clear that we do
not get the same response as in Figure 1.15, but the result is rather acceptable from a practical
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Figure 1.16: Output of the manufacturing system using model Equation 1.14
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Figure 1.17: Output of the manufacturing system

point of view. At least it is closer to reality than the response as displayed in Figure 1.13.

1.7.4 A hybrid model
In the previous subsections, we provided some extensions to the standard fluid model by taking
into account the time delay lots encounter due to the processing of machines. We also mentioned
the constraints of Equation 1.8 that have to be obeyed. These are constraints that we have to take
into account when designing a controller for our manufacturing system. The way we dealt with
these constraints in the previous subsections was by requiring the machines to produce only in
case the buffer contents in front of that machine were positive, cf. Equation 1.12.
A way to extend the standard fluid model Equation 1.7 is to think of these constraints in a
different way. As illustrated in subsection 1.7.1, when we turn on both machines, immediately
lots start coming out of the system. This is an undesirable feature that we would like to avoid. In
practice, the second machine can only start producing when the first machine has finished a lot.
Keeping this in mind, why do we allow machineM2 to start producing as soon as the buffer
contents of the buffer in front of it are positive? Actually, machineM2 should only start
producing as soon as a whole product has been finished by the machineM1. In words: machine
M2 should only start producing as soon as the buffer contents of the buffer in front of it becomes
1. Therefore, we should not allow for a positiveu2 as soon asy2 > 0, but only in casey2 ≥ 1.
When we consider the initially empty system Equation 1.7, i.e.x(0) = 0, and assume

ui(t) =

{
µi if yi(t)≥ 1
0 otherwise

i ∈ {1,2}, (1.15)

the resulting system response to an input ofu0 = 1 is shown in Figure 1.17. Notice that we
obtain exactly the same response as in Figure 1.15.
Unfortunately, this is not all. The change in the constraints as proposed is not sufficient. It is in
case we ramp up our manufacturing systems, but in case we ramp down it is not. Suppose that
after a while we do not feed the manufacturing line any more, i.e. after a while we haveu0 = 0.
In that case machineM1 builds off the contents of the bufferB1, until exactly one product
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remains. As soon asy1 = 1, the machine is not allowed to produce any more due to the
constraint we imposed. This is not what we would like to have. Therefore, in caseu1 = 0,
machineM1 should be allowed to produce untily1 = 0.
Under these conditions, we could also think of our model operating in different modes. For the
manufacturing system under consideration we can distinguish the following modes:

mode 1: 0≤ y1 ≤ 1, 0≤ y2 ≤ 1, u0 = 0, u1 ≥ 0, u2 = 0.
mode 2: 0≤ y1 ≤ 1, 0≤ y2 ≤ 1, u0 ≥ 0, u1 = 0, u2 ≥ 0.
mode 3: 1≤ y1, 0≤ y2 ≤ 1, u1 = 0, u2 ≥ 0.
mode 4: 1≤ y1, 0≤ y2 ≤ 1, u1 ≥ 0, u2 = 0.
mode 5: 0≤ y1 ≤ 1, 1≤ y2, u0 = 0, u1 ≥ 0.
mode 6: 0≤ y1 ≤ 1, 1≤ y2, u0 ≥ 0, u1 = 0.
mode 7: 1≤ y1, 1≤ y2.

In all of these modes, the system dynamics is described by Equation 1.7.
In fact, what we just presented is a hybrid systems model of the manufacturing system under
consideration. The description as just presented is also known as that of piecewise affine (PWA)
systems (Sontag 1981). Other well-known descriptions are linear complementarity (LC) systems
(Heemels, Schumacher, and Weiland 2000; Schaft and Schumacher 1998) and mixed logical
dynamical (MLD) systems (Bemporad and Morari 1999). In (Bemporad, Ferrari-Trecate, and
Morari 2000; Heemels, Schutter, and Bemporad 2001) it was shown that (under certain
assumptions like well-posedness) these three descriptions are equivalent. This knowledge is
useful, as each modeling class has its own advantages. Stability criteria for PWA systems were
proposed in (DeCarlo, Branicky, Petterson, and Lennartson 2000; Johansson and Rantzer 1998),
and control and state-estimation techniques for MLD hybrid models have been presented in
(Bemporad, Borrelli, and Morari 2000; Bemporad, Mignone, and Morari 1999; Bemporad and
Morari 1999). These results can now be applied for controlling the hybrid systems model of our
manufacturing system.

1.8 Flow models
In the previous section we introduced the fluid model described by Equation 1.6. A shortcoming
of this model was that once we start producing, immediately lots come out of the system.
Therefore, extensions of the standard fluid model have been presented to overcome this problem.
Although the proposed models do not suffer from the problem that lots come out of the system
as soon as we start producing, flow times are not truly present in these models. It is not possible
to determine the time it takes lots to leave once they have entered the system.
Therefore, the models presented in the previous section are (still) not satisfactory. Furthermore,
according to these models any feasible throughput can be achieved by means of zero inventory.
Whereas in Section 1.2 we already noticed that the nonlinear (steady state) relations depicted in
Figure 1.2 should be incorporated in any reasonable model of manufacturing systems.
In this section we present approximation models that do incorporate both throughput and flow
time. These dynamic models are inspired by the continuum theory of highway traffic. Therefore,
before presenting this dynamic model we first present some results from traffic theory.

1.8.1 Introduction to traffic flow theory: the LWR model
In the mid 1950s (Lighthill and Whitham 1955) and (Richards 1956) proposed a first-order fluid
approximation of traffic flow dynamics. This model nowadays is known in traffic flow theory as
the LWR model.
Traffic behavior for a single one-way road can be described using three variables that vary in
time t and spacex: flow u(x, t), densityρ(x, t) and speedv(x, t). The first observation is that
flow is the product of speed and density:

u(x, t) = ρ(x, t)v(x, t) ∀x, t. (1.16)

Second, for a highway without entrances or exits, the number of cars between any two locations
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x1 andx2 (x1 < x2) needs to be conserved at any timet, i.e. the change in the number of cars
betweenx1 andx2 is equal to the flow entering viax1 minus the flow leaving viax2:

∂

∂ t

∫ x2

x1

ρ(x, t)dx= u(x1, t)−u(x2, t), (1.17a)

or in differential form:
∂ρ

∂ t
(x, t)+

∂u
∂x

(x, t) = 0. (1.17b)

The two relations Equation 1.16 and Equation 1.17 are basic relations that any model must
satisfy. As we have three variables of interest, a third relation is needed. For this third relation,
several choices can be made. The LWR model assumes in addition to the relations Equation 1.16
and Equation 1.17 that the relation between flow and density observed under steady-state
conditions also holds when flow and density vary withx and/ort; i.e. for a homogeneous
highway:

u(x, t) = S(ρ(x, t)). (1.18)

The model given by equations 1.16, 1.17, and 1.18 can predict some things encountered in
traffic rather well. In order to overcome some of the deficiencies of the LWR model, in the early
1970s higher-order theories have been proposed where Equation 1.18 has been replaced by
another partial differential equation, containing diffusion or viscosity terms. Unfortunately,
these extended models experience some undesirable properties, as made clear in (Daganzo
1995). The most annoying of these properties is the fact that in these second-order models cars
can travel backwards. Second-order models that do not suffer from this deficiency have been
presented in (Jiang, Wu, and Zhu 2002; Zhang 2002).

1.8.2 A traffic flow model for manufacturing flow
In the previous subsection we introduced the LWR model from traffic flow theory. This model
describes the dynamic behavior of cars along the highway at a macroscopic level and contains
information both about the number of cars passing a certain point and about the time it takes cars
to go from one point to the other. This model can not only be used for describing the flow of cars
along the highway, but also for describing the flow of products through a manufacturing line.
Consider, instead of a homogeneous highway, a homogeneous manufacturing line, i.e. a
manufacturing line that consists of a lot of identical machines. Lett denote the time and letx
denote the position in the manufacturing line. The behavior of lots flowing through the
manufacturing line can also be described by three variables that vary with time and position:
flow u(x, t) measured in unit lots per unit time, densityρ(x, t) measured in unit lots per unit
machine and speedv(x, t) measured in unit machines per unit time. Now we can relate these
three variables by means of equations 1.16, 1.17 and 1.18, where in Equation 1.18 the functionS
describes the relation between flow and density observed under steady-state conditions.
To make this last statement more explicit, consider a manufacturing line consisting ofm
machines with exponentially distributed process times and an average capacity ofµ lots per unit
time. Furthermore, consider a Poisson arrival process where lots arrive to the first machine with
a rate ofλ lots per unit time (λ < µ), and assume that buffers have infinite capacity. Then we
know from queueing theory (Kleinrock 1975) that the average number of lots in each
workstation (consisting of a buffer and a machine) in steady state is given by

N =
λ

µ

1− λ

µ

=
λ

µ −λ
. (1.19)

In words: in steady state we haveρ(x, t) is constant and

1
m

ρ(x, t) =
u(x, t)

µ −u(x, t)
, (1.20)

from which we can conclude that in steady state:

u(x, t) =
µρ(x, t)

m+ρ(x, t)
. (1.21)
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For this example, this is the mentioned functionS(ρ).
With this information we can conclude that the dynamics of this manufacturing line might be
described by means of the partial differential equation

∂ρ

∂ t
+ µ

∂

∂x

(
ρ

1+ρ

)
= 0. (1.22a)

Together with the relations

u =
µρ

1+ρ
andv =

u
ρ

or v =
µ

1+ρ
(1.22b)

this completes our model.
Notice that contrary to the fluid models presented in the previous section, the dynamic model of
Equation 1.22 is able to incorporate the stochasticity as experienced in manufacturing lines. If
the manufacturing line would be in steady state, the throughput and flow time as predicted by the
model of Equation 1.22 is exactly the same as those predicted by queueing theory. However,
contrary to queueing theory, the model of Equation 1.22 is not a steady-state model, but also
incorporates dynamics. Therefore, the model Equation 1.22 is a dynamic model that
incorporates both throughput and flow time. Furthermore, given the experience in the field of
fluid dynamics, the model is computationally feasible as well.

1.9 Conclusions
In this chapter we presented some of the models used in the modeling, analysis and control of
manufacturing systems. In Section 1.3 some analytical modeling techniques and methods for
analyzing steady state behavior of manufacturing systems have been introduced. To get a more
detailed insight in the dynamics of a manufacturing system discrete event models, as introduced
in Section 1.4 can be used. A disadvantage of discrete event models is their complexity. To
reduce the complexity of discrete event models, effective proces times (EPT’s) have been
introduced in Section 1.5. This enables the modeling of a manufacturing system as a large
queueing network.
Once the dynamics of manufacturing systems can be well described by a relatively simple
discrete event model, the problem of controlling the dynamics of manufacturing systems
becomes of interest. In Section 1.6 a control framework has been presented. A crucial role in
this framework is played by approximation models of manufacturing systems. In Section 1.7 the
most common approximation models, fluid models, have been introduced, together with some
extensions of these models. These fluid models mainly focus on throughput and do not contain
information on flow times. Finally, in Section 1.8, flow models have been presented that do
incorporate both throughput and flow time information.
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