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Abstract

In this paper we address the problem of designing bounded global tracking controllers
for rigid robot manipulators. A solution to the problem is obtained by using composite
controllers. In the first part, the system is steered ’close’ to the desired trajectory, after which
a local tracking controller is applied. Both controllers are bounded and yield boundedness of
the composite controller. The use of bounded composite controllers is shown to be effective
for state feedback controllers, output (position) feedback controllers and adaptive controllers.
Simulations illustrate the developed controllers.

1 Introduction

In recent years there has been a strong interest in the development of controllers for the regulation
or tracking of rigid robot manipulators. Starting with the computed torque controller several
controllers have been designed, which exploit the physical nature of the robot system. Furthermore,
several other aspects have been incorporated in modern robot controllers, as for instance, the
construction of adaptive controllers in case parameter uncertainties are present in the manipulator
model, or the development of controller-observer combinations when velocity measurements are
not available for control, see e.g. [2, 4, 14] as well as references therein.
In the last few years some interest has arisen in the from a practical perspective important question
of designing tracking controllers which respect actuator constraints. In particular, for position
control a bounded controller was developed in [7], see also [5] for an alternative bounded PD-like
controller.
Sofar the tracking problem under input constraints has only partially been solved in that a semi-
global tracking controller or controller-observer has been derived, see [13].
The main purpose of the present is to develop a globally bounded tracking controller for rigid
robot systems or, if desired, slightly more general Euler-Lagrange systems, see [11]. Our control
scheme essentially combines a bounded regulation controller with a local asymptotically stable
tracking controller, and in essence contains the earlier mentioned results on bounded regulation.
The idea of using a combination of two controllers can be exploited in various cases including the
situation where only position measurements are available or when an adaptation mechanism is
required. In fact, although we will not pursue that here further, we believe the idea to be useful
in a far more general context than only for rigid robot manipulators. For instance, in [10] we
have shown that also in controlling the periodically forced Duffing equation the same idea can be
successfully exploited.
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As mentioned our rigid robot controllers are composite and it is worth mentioning that the classes
of controllers we use is much broader than those from the literature [1, 3, 5, 6, 7, 12, 13, 15, 17].
The differences in this regard might be of great importance in practical situations.
The organisation of this paper is as follows. Section 2 contains the problem formulation, prelimi-
naries and notation. In section 3 the key idea for the construction of a globally bounded controller
is explained. In sections 4, 5 and 6 respectively the controller design with full state measurements,
controller design with only position measurements and an adaptive controller design are considered
in detail, and allustrated by means of a simulation example. Section 7 contains our concluding
remarks.

2 Problem formulation, preliminaries and notation

2.1 Dynamics of rigid robot systems

The dynamics of an n-link rigid robot manipulator without friction or other disturbances can be
written as (see e.g. [14, 18])

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where q is the n × 1 vector of joint displacements, τ is the n × 1 vector of applied torques, M(q)
is the n×n symmetric positive definite manipulator inertia matrix, C(q, q̇)q̇ is the n× 1 vector of
centripetal and Coriolis torques, and G(q) is the n× 1 vector of gravitational torques obtained as
the gradient of the robot potential energy P (q), i.e. G(q) = ∂P

∂q (q). The robots potential energy
P (q) is, without loss of generality, assumed to have a global minimum at q = 0.
Note that, although the vector C(q, q̇)q̇ is uniquely defined, several choices for the matrix C(q, q̇)
are possible. Henceforth we assume that C(q, q̇) is defined using the Christoffel symbols. The
system (1) possesses some important properties (see e.g. [2, 14, 18]):

Property 2.1 The matrix Ṁ(q) − 2C(q, q̇) is skew-symmetric, that is

xT (Ṁ(q) − 2C(q, q̇))x = 0 ∀x ∈ IRn.

Property 2.2 The matrices M(q), C(q, q̇) and G(q) are bounded with respect to q, i.e. there
exist positive constants Mm, MM , CM and GM such that

0 < Mm ≤ ‖M(q)‖ ≤ MM ∀q ∈ IRn

‖C(q, x)‖ ≤ CM‖x‖ ∀q, x ∈ IRn

‖G(q)‖ ≤ GM ∀q ∈ IRn.

Property 2.3 There exists a reparametrization of all unknown parameters into a parameter vec-
tor θ ∈ IRp that enters linearly in the system dynamics (1). Therefore, the following holds:

M(q, θ)q̈ + C(q, q̇, θ)q̇ + G(q, θ) = M0(q)q̈ + C0(q, q̇)q̇ + G0(q) + Y (q, q̇, q̇, q̈)θ.

2.2 Problem formulation

Consider the robotic system (1) where the actuator torques τ are constrained, i.e.

‖τ(t)‖ ≤ τmax ∀t ≥ 0. (2)

Here ‖ · ‖ denotes some suitable norm, e.g. ‖ · ‖∞. Suppose that measurements of the joint
positions q(t) and velocities q̇(t) are available, or in case of the output feedback problem that only
measurements of the joint positions q(t) are available. Let qd(t), t ≥ 0 be a desired trajectory for
the manipulator, and assume that qd(t) is at least two times continuously differentiable in t and
satisfies

‖qd(t)‖ ≤ B0, ‖q̇d(t)‖ ≤ B1, ‖q̈d(t)‖ ≤ B2 ∀t ≥ 0. (3)
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for given positive constants B0, B1, B2. Then the tracking control problem under actuator con-
straints consists of designing, if possible, a state feedback law respectively an output feedback law
for the actuator torques τ(t) such that the joint positions q(t) and velocities q̇(t) asymptotically
tend towards the desired positions qd(t) and velocities q̇d(t) while keeping the applied torques
within the in advance specified bounds (2). In other words: design a controller for τ(t) such that

lim
t→∞ q(t) = qd(t) and lim

t→∞ q̇(t) = q̇d(t)

while satisfying (2).

2.3 Mathematical preliminaries and notation

Let Ck denote the set of (at least) n times continuously differentiable functions.
A continuous function f : IR+ → IR+ is said to be of class K if (see [8])

• f(x) is strictly increasing,

• f(0) = 0.

Throughout we denote for any f : IRn → IR: Df(x) ∆= ∂f
∂x (x).

Definition 2.4 Let Fn denote the class of continuous functions f : IRn → IRn for which there
exists a radially unbounded positive definite F : IRn → IR such that

f(x) = f(x1, . . . , xn) =




∂F
∂x1

(x1, . . . , xn)
...

∂F
∂xn

(x1, . . . , xn)


 (4)

and for which xT f(x) is a positive definite function.

Definition 2.5 Let Bn denote the class of f ∈ Fn that are bounded, i.e the class of f ∈ Fn for
which there exists a constant fM ∈ IR such that ‖f(x)‖ ≤ fM for all x ∈ IRn.

In general it is not always easy to verify whether a given f : IRn → IRn can be written as the
gradient of a radially unbounded F : IRn → IR. However, a necessary condition for continuously
differentiable f is that its Jacobian ∂f

∂x is symmetric.
It is easy to see that all functions of the form

f(x) = Λ




f1(x1)
...

fn(xn)




or
f(x) = Kx

are elements of Fn, where Λ is an n × n diagonal positive definite matrix, K = KT is an n × n
(not necessarily diagonal) positive definite matrix, and fi are continuous nondecreasing functions
satisfying fi(0) = 0 and f ′

i(0) > 0 (i = 1, . . . , n).
By choosing fi(x) = tanh(λix), fi(x) = sat(λix) or fi(x) = x

λi+|x| (λi > 0) we obtain elements
of B, whereas f(x) = Kx, K = KT > 0, is an element of Fn however not of B. Throughout we
denote for f ∈ Fn by F (x) the via (4) associated function of which f is the gradient.
Two important, easy to verify, properties for any f ∈ Fn are the following:

Property 2.6 Let f ∈ Fn. Then f(x) = 0 if and only if x = 0.

Property 2.7 Let f ∈ Fn. Then (∀ε > 0)(∃δ > 0)(‖x‖ > ε ⇒ ‖f(x)‖ > δ).
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Definition 2.8 Let ∆ > 0 be a positive constant. Then s∆(x) : IR → IR denotes a nondecreasing
continuous function that equals 0 for x ≤ 0 and equals 1 for x ≥ ∆.

Examples of such s∆(x) ∈ C∞ are

s∆(x) =




0 x ≤ 0

1
2exp

(
a

x(x − b)
− a

1
2∆(1

2∆ − b)

)
0 < x ≤ 1

2∆

1 − 1
2exp

(
a

(x − ∆)(x − ∆ + b)
− a

1
2∆(1

2∆ − b)

)
1
2∆ < x < ∆

1 ∆ ≤ x

(5)

where a > 0, b ≥ ∆ > 0. In Figure 1 such a function s∆(x) is shown where a = 3, b = 3
2 and

∆ = 1.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Figure 1: An example of s∆(x) like in (5) where a = 3, b = 3
2 and ∆ = 1.

An important tool needed in the stability analysis of the next sections is given by the following
theorem due to Matrosov, see [16].

Theorem 2.9 Consider the system ẋ = f(t, x) with f(t, 0) = 0 for all t ≥ 0. Assume there exist
two C1 functions V (t, x), W (t, x) from [0,∞)×Ω into IR, with Ω an open connected region in IRn

containing the origin, a C0 function V ∗ : Ω → IR; three functions a, b, c of class K such that, for
every (x, t) ∈ Ω × [0,∞)

M1. a(‖x‖) ≤ V (t, x) ≤ b(‖x‖),
M2. V̇ (t, x) ≤ V ∗(x) ≤ 0,

M3. |W (t, x)| is bounded,

M4. max(d(x, E), |Ẇ (t, x)|) ≥ c(‖x‖), where E ≡ {x ∈ Ω|V ∗(x) = 0},
M5. ‖f(t, x)‖ is bounded.

Then:

1. For all x0 ∈ {x ∈ Ω|V (t, x) ≤ a(r)}, with r > 0 such that the closed ball Br ⊂ Ω, x(t) tends
to zero uniformly in t0 and x0 as t tends to infinity.

2. The origin is uniformly asymptotically stable.
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Remark 2.10 Since M2 is a relaxation of the condition known from standard Lyapunov theory,
we have to establish that no trajectory can stay identically at a point where V ∗(x) = 0, except
at the origin. That is what the conditions M3 and M4 are for. A second auxiliary function W
is defined that according to M3 has to be bounded. Suppose the trajectory stays close to points
x for which V ∗(x) = 0, different from the origin. Then M4 implies that the rate of change of W
is of constant sign, which contradicts the fact that W is bounded. Therefore trajectories have to
converge to the origin.

Lemma 2.11 (see [15]) Condition M4 of Theorem 2.9 is satisfied if the following conditions are
satisfied:

M4’a. Ẇ (x, t) is continuous in both arguments and depends on time in the following way: Ẇ (x, t) =
g(x, β(t)) where g is continuous in both of its arguments, β is also continuous and its image
lies in a bounded set K1.

M4’b. There exists a class K function, k, such that |Ẇ (x, t)| ≥ k(‖x‖) for all x ∈ E and t ≥ 0.

Remark 2.12 Following the nomenclature used in [15], we say that Ẇ (x, t) depends on time
continuously through a bounded function.

3 Composite controllers

Suppose there exists a controller that steers the system towards the origin, provided one starts
within some (possibly small) region of attraction. In case we want to extend this controller to
a global one, there are two ways to establish this. The first way is to modify the controller in
such a way that global asymptotic stability of the error-dynamics is achieved. A second way is
trying to find a global controller that steers the system into the region of attraction of the (locally)
stabilizing controller. As soon as we are in its region of attraction, we can switch controllers and
the resulting composite controller is a globally stabilizing controller. This second approach results
in an easier problem, since we only have to find a controller that steers the system into some
prescribed region, instead of to the origin. So we seek a globally ultimately uniformly bounded or
practically stable controller, whereas in the first approach we have to find a globally asymptotically
stable controller.
If we want to find a globally stabilizing controller we can use this idea and therefore seperate
the problem into two problems that both may be easier to solve. In case we are able to find
both a locally stabilizing controller with some region of attraction and a second controller that
globally steers the system into that region of attraction, the composite controller will be a globally
stabilizing one. Here the composition of both controllers consists of using the global controller
until the system is inside the region of attraction of the stabilizing controller and then switch to
this stabilizing controller.
In case we want to find bounded globally stabilizing controllers, the concept of composite controllers
may become more important. Not only can we separate the problem into the two easier problems of
finding both a locally stabilizing controller with some region of attraction and a bounded controller
that globally steers the system into that region of attraction, also the stabilizing controller does not
neccessarily have to be a priori bounded. From the stability analysis of the stabilizing controller
we usually know that all signals will remain bounded. The only problem is that those bounds
depend on the initial conditions. Since we only switch to the stabilizing controller in case we are
in a prescribed region, we can determine in advance from this stability analysis an upperbound on
the control input of the stabilizing controller. Therefore only the controller that steers the system
into that region has to be a priori bounded.
Throughout we use this idea to derive bounded globally asymptotically stable tracking controllers
in the following way: first we derive a (semi)globally asymptotically stable tracking controller
(not a priori bounded). Then we derive a bounded globally regulating controller that steers the
system to a fixed point. Since qd(t) and its derivatives are within the bounds (3), a regulating
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controller will bring the tracking error within a priori known bounds. Since we only switch to
the (semi)globally tracking controller as soon as we are within those bounds, we can derive an
upperbound on the control input of the (semi)globally tracking controller. Therefore, the overall
controller is bounded and yields global tracking.

4 Using state measurements

In this section we consider the bounded tracking problem as formulated in section 2.2, assuming
that the full state (q, q̇) is available for measurement. We tackle the problem using the idea pre-
sented in the previous section. We split the problem of finding a bounded globally asymptotically
controller into two subproblems, namely that of finding a (semi)globally asymptotically stable
tracking controller and that of finding a globally bounded regulating controller which steers the
system towards a fixed point. Section 4.1 contains the derivation of the bounded globally asymp-
totically stable tracking controller. Section 4.2 shows the performance of the controllers derived
in some simulations.

4.1 Derivation of the composite controller

As mentioned before we first need both a (semi)globally asymptotically tracking controller and a
bounded globally asymptotically regulating controller. We present a large class of globally tracking
controllers which contains the results presented in [15]. In case we restrict the reference trajactory
qd(t) to be a fixed point we can easily derive a class of globally bounded asymptotically regulating
controllers. Clearly, our results includes and generalizes those of [5, 7, 17].
To solve the problem of tracking a desired reference trajectory qd(t) ∈ C2 we propose the control
law:

τ = M(q)q̈d + C(q, q̇)q̇d + G(q) − f1(ė) − f2(e) (6)

where e ≡ q − qd denotes the tracking error and f1, f2 ∈ Fn. This control law results in the
closed-loop system

M(q)ë + C(q, q̇)ė + f1(ė) + f2(e) = 0. (7)

Proposition 4.1 Consider the system (1) together with the control law (6). If f1 ∈ C2, f2 ∈ C1

and Df1(0) > 0 then the resulting closed-loop system (7) is globally asymptotically stable.

Proof This proof is a straightforward extension of the proof of Paden and Panja [15], where
this proposition is proved in case f1(ė) = Kdė and f2(e) = Kpe with Kp = KT

p and Kd = KT
d

n × n diagonal positive definite matrices. To prove the proposition we use Matrosov’s Theorem
(Theorem 2.9).
Consider the function

V (t, e, ė) =
1
2
ėT M(q)ė + F2(e) (8)

which satisfies condition M1 of Theorem 2.9. Calculating the time-derivative of (8) along solutions
of (7) results in

V̇ (e, ė) = −ėT f1(ė) (9)

where we used Property 2.1. Therefore, with

V ∗(e, ė) = −ėT f1(ė)

condition M2 has also been fulfilled.
Since V (t, e, ė) is a decreasing function of time, we conclude that e and ė are bounded and then
from (3), also q and q̇ are bounded. Since

ë = −M(q)−1[C(q, q̇)ė + f1(ė) + f2(e)] (10)

is a continuous function of e, ė, q and q̇, we know that ë is bounded and thus using (3) also q̈ is
bounded.
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In anology with [15] we define W (t, e, ė) = V̈ (t, e, ė):

W (t, e, ė) = −ëT f1(ė) − ėT Df1(ė)ë (11)

where ë is given by (10). Obviously condition M3 is satisfied. Let g(ė) denote Df1(ė)ė = Df1(ė)T ė.
Then we can rewrite (11) as:

W (t, e, ė) = −ëT f1(ė) − ëT g(ė). (12)

To verify condition M4 we use Lemma 2.11. Differentiating (12) with respect to time results in

Ẇ (t, e, ė) = −(
d

dt
ë)T f1(ė) − ëT Df1(ė)ë − (

d

dt
ë)T g(ė) − ëT Dg(ė)ë.

Since f1 ∈ C2 we know that all arguments, except d
dt ë, are continuous in the tracking error

and depend continuously on time through a bounded function (cf. Remark 2.12). That d
dt ë is

continuous with respect to the tracking error and continuous with respect to time through a
bounded function follows from differentiating (10) with respect to time and noticing that since
f1, f2 ∈ C1, the functions d

dtf1(ė), d
dtf2(e) and both d

dtM(q) and d
dtC(q, q̇) are continuous with with

respect to the tracking error and continuous with respect to time through a bounded function.
Furthermore for (e, ė) ∈ {(e, ė)|V ∗(e, ė) = 0} = {(e, ė)|ė = 0} it follows that

Ẇ (t, e, ė) = −ëT Df1(0)ë − ëT Dg(0)ë = −2ëT Df1(0)ë.

Since Df1(0) > 0 it follows from Lemma 2.11 that also the condition M4 has been fulfilled.
Since all signals remain bounded and the closed-loop system (7) is a continuous function of those
signals, the fifth and last condition of Theorem 2.9 has also been satisfied.
So we can conclude from Matrosov’s Theorem that the origin is globally asymptotically stable.

Corollary 4.2 Assume that qd(t) is a fixed point and consider the system (1) in closed-loop with
the control law

τ = G(q) − f1(ė) − f2(e) (13)

where e ≡ q − qd and f1, f2 ∈ Fn. Then the equilibrium point e = 0, ė = 0 for the resulting
closed-loop system (7) is globally asymptotically stable.

Proof Use the Lyapunov function candidate (8), whose derivative along the closed-loop dynamics
(7) becomes (9). LaSalle’s invariance principle completes the proof.

Remark 4.3 Note that we did not need the facts that f1 ∈ C2, f2 ∈ C1 and Df1(0) > 0 anymore.
By choosing f1, f2 ∈ B, this corollary contains the results presented in [5, 7, 17].

From Proposition 4.1 we know that the controller

τ = M(q)q̈d + C(q, q̇)q̇d + G(q) − f1(ė) − f2(e) (14)

results in a globally asymptotically stable closed-loop system, but can we use this control law when
we have to deal with input constraints? From Property 2.2 and (3) we know that by choosing
f1, f2 ∈ B we almost have a bounded control law. Every term of (14) is bounded, except for
C(q, q̇)q̇d, since q̇ is not a priori bounded. However, from the proof of Proposition 4.1 we know
that for all t ≥ 0:

1
2
Mm‖ė(t)‖2 ≤ 1

2
ė(t)T M(q)ė(t) ≤ V (t, e(t), ė(t)) ≤ V (0, e(0), ė(0))

and therefore

‖q̇(t)‖ ≤ ‖q̇d(t)‖ + ‖ė(t)‖ ≤ B1 +
√

2
Mm

V (0, e(0), ė(0)), ∀t ≥ 0 (15)
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which gives us a bound on (14), provided we know the initial conditions. However, the control
effort increases as ‖q̇(0)‖ increases, and therefore (14), although it is a globally asymptotically
stable controller, it is not a globally bounded tracking controller.
How to obtain a globally bounded tracking controller? Following section 3 we now proceed to
construct a bounded composite controller. That is, we seek for a globally bounded controller that
steers the system into a region in which e and ė are within given bounds. As soon as we are
in that region, we can switch to (14). Since we switch at a time ts at which e(ts) and ė(ts) are
within bounds that we know in advance, we also have a bound on V (ts, e(ts), ė(ts)) in advance,
from which an in advance known bound on (14) follows using (15). By using a globally bounded
controller to steer the system into the region in which e and ė are within prescribed known bounds,
the resulting composite controller is a globally bounded controller.
Along the lines of section 3 we can take for this first phase controller the regulating controller (13)
where we choose qd(t) ≡ 0 and f1, f2 ∈ B so that it is a bounded globally asymptotically stable
regulating controller. Therefore, for all ε > 0 there exists a time ts ≥ 0 such that ‖q(t)‖ ≤
ε, ‖q̇(t)‖ ≤ ε for any t ≥ ts, and then also ‖e(t)‖ ≤ B0 + ε and ‖ė(t)‖ ≤ B1 + ε for any t ≥ ts,
resulting into:

Proposition 4.4 Consider the system (1). Then there exists a switching time ts ≥ 0 such that
given any t̃s ≥ ts the composite controller

τ =




G(q) − f1(q̇) − f2(q) t < t̃s

M(q)q̈d + C(q, q̇)q̇d + G(q) − f3(ė) − f4(e) t ≥ t̃s

(16)

where e ≡ q − qd and f1, f2, f3, f4 ∈ Fn, f3 ∈ C2, f4 ∈ C1, Df3(0) > 0, results in a globally
asymptotically stable closed-loop system. Furthermore, if f1, f2 ∈ B we can determine a τmax such
that the controller (16) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.

Proof From Proposition 4.1 we know that for all ε > 0 there exists a time ts ≥ 0 such that for
any t̃s ≥ ts: ‖e(t̃s)‖ ≤ B0 + ε and ‖ė(t̃s)‖ ≤ B1 + ε. Furthermore we know that the first phase
controller is global and if f1, f2 ∈ B we can also determine in advance a bound τmax,1 within which
this first phase controller will remain.
For the second phase, we know from Proposition 4.1 that the resulting closed-loop system is
asymptotically stable. Since ‖e(t̃s)‖ ≤ B0 + ε and ‖ė(t̃s)‖ ≤ B1 + ε, we know from the foregoing
lines that we can determine a bound τmax,2 on τ(t) for the second phase.
So it is obvious that τmax = max{τmax,1, τmax,2} suffices.

Although we have found a controller that globally steers the system towards any desired trajectory,
there still exists one drawback, in that we discontinuously change the controller at t = t̃s. We
can overcome this problem by using a convex combination of the both controllers that varies over
time. First, we use the first phase controller to reduce the tracking error within prescribed bounds.
Then we smoothly change to the second phase controller using a convex combination of both the
first and second phase controllers. For the smooth change of controllers, we take a period of ∆ > 0
seconds, guaranteeing that the tracking errors are still within a priori known bounds. After that
period of ∆ seconds we use the second phase controller completely, yielding asymptotic stability:

Proposition 4.5 Consider the system (1). Then there exists a switching time ts ≥ 0 and a ∆ > 0
such that for any t̃s ≥ ts the control law

τ = G(q) − [1 − s∆(t − t̃s)][f1(q̇) + f2(q)] + s∆(t − t̃s)[M(q)q̈d + C(q, q̇)q̇d − f3(ė) − f4(e)] (17)

where e ≡ q − qd and f1, f2, f3, f4 ∈ Fn, f3 ∈ C2, f4 ∈ C1, Df3(0) > 0, results in a globally
asymptotically stable closed-loop system. Furthermore, if f1, f2 ∈ B we can determine a τmax such
that the controller (17) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.
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Proof From Proposition 4.1 we know that for all t̃s ≥ ts: ‖q(t̃s)‖ ≤ ε1 and ‖q̇(t̃s)‖ ≤ ε2. Suppose
weaker bounds ε3 > ε1 and ε4 > ε2 be given. We now determine ∆ such that after using the
convex combination of the two controllers for that period of time, it is guaranteed that q and q̇
will be within those weaker bounds, i.e. ‖q(t̃s + ∆)‖ ≤ ε3 and ‖q̇(t̃s + ∆)‖ ≤ ε4.
Observe that (17) is always a convex combination of the controllers (13) and (14). Let τM denote
the maximum possible value of (17) in the region where ‖q(t)‖ ≤ ε3 and ‖q̇(t)‖ ≤ ε4. If we choose

∆ = min
{

ε3 − ε1
ε4

,
MM (ε4 − ε2)

τM + CM ε24 + GM

}

we claim that ‖q(t̃s + ∆)‖ ≤ ε3 and ‖q̇(t̃s + ∆)‖ ≤ ε4. Let T ≥ 0 be the first moment that either
‖q(t̃s + T )‖ > ε3 or ‖q̇(t̃s + T )‖ > ε4. To prove our claim we only have to show that T ≥ ∆.
Assume that T < ∆. From (1) and Property 2.2 we have that for all t ≤ T :

‖q̈(t)‖ ≤ τM + CM ε24 + GM

MM

Therefore

‖q̇(t̃s + T )‖ ≤ ε2 +
τM + CM ε24 + GM

MM
T < ε2 +

τM + CM ε24 + GM

MM
∆ ≤ ε4.

But if ‖q̇(t)‖ < ε4 for all t ∈ [t̃s, t̃s + T ], we also have that

‖q(t̃s + ∆)‖ < ε1 + ε4T < ε1 + ε4∆ ≤ ε3.

Therefore T ≥ ∆, which is a contradiaction. So both ‖q(t̃s + ∆)‖ ≤ ε3 and ‖q̇(t̃s + ∆)‖ ≤ ε4.
This implies that e(t̃s + ∆) and ė(t̃s + ∆) are within in advance known bounds. Similar to
Proposition 4.4 the proof can be completed.

4.2 Simulations

To support our findings, we consider the two link robot manipulator of [2], which in case of no
payload can be described by

M(q) =
[

8.77 + 1.02 cos q2 0.76 + 0.51 cos q2

0.76 + 0.51 cos q2 0.62

]

C(q, q̇) = 0.51 sin q2

[ −q̇2 −(q̇1 + q̇2)
q̇1 0

]

G(q) = 9.81
[

7.6 sin q1 + 0.63 sin(q1 + q2)
0.63 sin(q1 + q2)

]

We consider the problem of tracking the desired trajectory

qd(t) =
[

sin t
sin t

]
(18)

under the input constraints
|τ1| ≤ 120 |τ2| ≤ 10. (19)

We start our simulations from the initial conditions

q(0) =
[ −1

−1

]
q̇(0) =

[
10
10

]
.

To solve the globally tracking problem, we consider the controller (6), where we use

f1(ė) =
[

20 tanh(2.5ė1)
1.7 tanh(3ė2)

]
f2(e) =

[
19 tanh(4e1)
1.5 tanh(4e2)

]
(20)
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Figure 2: The tracking controller (6) using (20)

Note that this controller is not a priori bounded. The resulting tracking errors of the two joints
are depicted in Figure 2, as well as the control input needed.
From this figure we can see that due to the initial velocities, the error in the first seconds increases
a lot, but after a while both position errors tend to zero. Due to the saturated position feedback
the convergence is slow. Nevertheless, we can also see that both τ1 and τ2 violate the input
constraints (19). This is caused by the large values for q̇.
In order to be able to satisfy the input constraints (19) we replace the controller with the composite
controller as proposed in Proposition 4.4, i.e.

τ =




G(q) −
[

20 tanh(2.5q̇1)
1.7 tanh(3q̇2)

]
−

[
19 tanh(4q1)
1.5 tanh(4q2)

]
t < ts

M(q)q̈d + C(q, q̇)q̇d + G(q) −
[

20 tanh(2.5ė1)
1.7 tanh(3ė2)

]
−

[
19 tanh(4e1)
1.5 tanh(4e2)

]
t ≥ ts

(21)

The only question remaining is how to determine ts such that we meet the input constraints (19).
If we define

Br
∆=

{
(e, ė) ∈ IR2×2

∣∣∣∀t ∈ IR+ : V (t, e, ė) ≤ r
}

where V (t, e, ė) is given by (8), that is

Br
∆=

{
(e, ė) ∈ IR2×2

∣∣∣∀t ∈ IR+ :
1
2
ėT M(e+ qd(t))ė+

19
4

ln(cosh(4e1))+
3
8

ln cosh(4e2)) ≤ r
}

(22)

10



we know that for all r ∈ IR Br is a positively invariant set, i.e.

x(ts) ∈ Br ⇒ x(t) ∈ Br, ∀t ≥ ts.

If we define

r1
∆= lim inf

t∈IR+

[
1
2
q̇d(t)T M(0)q̇d(t) +

19
4

ln(cosh(4qd,1(t))) +
3
8

ln cosh(4qd,2(t)))
]

we are guaranteed to enter the region Br1+ε for any ε > 0, Therefore, we can define ts as the first
moment we enter Br1+ε, resulting in a globally asymptotically stable closedloop system. However,
we are not allowed to choose arbitrary ε > 0, since we also have to satisfy the input constraints
(19). We know that Br is a positive invariant set and therefore can define r2 to be the largest
value of r such that (21) satisfies (19) for all t ≥ ts and (e, ė) ∈ Br. If r1 < r2 we can define ts
to be the first moment we enter the region Br where r1 < r ≤ r2. Then the existance of ts is
guaranteed, as well as the satisfaction of (19).
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Figure 3: The composite controller (21)

For our simulations, it turned out that r = 17 suffices. The resulting performance is depicted in
Figure 3. From this figure we can see that again the large initial velocities result in a growth of
the position error in the beginning. Since we use a composite controller with in the first stage a
controller that is a priori bounded, we do not violate the input constraints (19) in our attempts to
reduce the errors. At t = 14.1 the errors in both position and velocity have become small enough,
i.e. V (t, e(t), ė(t)) ≤ 17, so we then switch to the second controller, as becomes clear from the
discontinuous change of the control input applied.
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So, although the use of a composite controller results in a satisfaction of the input constraints,
we now have a discontinuous switch in the input, which also is undesired. We can overcome the
latter by using the smoothened controller as proposed in Proposition 4.5. This controller is a
convex combination of the two controllers presented in (21). The combination is determined by
the function s∆(·), which has to be chosen. Let r be given such that r1 < r < r2. We determine
the largest possible ∆M such that for all initial conditions (e(ts), ė(ts)) ∈ Br and all initial times
ts after applying the controller (17) we have that (e(ts + ∆M ), ė(ts + ∆M )) ∈ Br2 . It suffices to
choose ∆ ≤ ∆M .
For our third simulation we use the controller (17), with the same f1, f2, f3, f4 as in our second
simulation and the same definition of ts. This controller is a convex combination of the two
controllers presented in (21). The combination is determined by the function s∆(·) which is
chosen as depicted in Figure 1, i.e. a function given by (5) where a = 3, b = 3

2 and ∆ = 1. The
resulting performance of this smoothened composite controller is depicted in Figure 4.
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Figure 4: The smoothened composite controller (17)

We see a similar performance as in the previous simulations. However, this time we not only meet
the input constraints (19), but also use a smooth controller to achieve tracking.

5 Using only position measurements

In this section we consider the bounded tracking problem as formulated in section 2.2 with the
extra restriction that we now assume that the joint velocities q̇ are not available for measurement.
As in the previous section we first derive a composite controller and the show a simulation.
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5.1 Derivation of the composite controller

For solving the bounded tracking problem under output feedback, we use similar to the previous
section the idea of a composite controller as presented in section 3 by combining the semiglobal
tracking output feedback controller presented in [13] with a globally bounded regulating output
feedback controller.
In [13] Loŕıa and Nijmeijer presented the controller

τ = M(q)q̈d + C(q, q̇d)q̇d + G(q) − Kdf(z) − Kpf(e) (23)

where Kp and Kd are n × n diagonal positive definite matrices, z is generated from the filter

z = w + Be
ẇ = −Af(w + Be) (24)

where A and B are n×n diagonal positive definite matrices and f(x) = [tanh(x1), . . . , tanh(xn)]T =
Tanh(x). The following was shown in [13]:

Proposition 5.1 Consider the system (1) together with the control law (23) and filter (24). Then
the resulting closed-loop system is semi-globally stable, i.e. the resulting closed-loop system is locally
asymptotically stable but its region of attraction can be arbitrarily enlarged by suitably selecting the
observer gains A and B.

Remark 5.2 The only properties of the function f(x) = Tanh(x) being used in the proof given
in [13] are that f ∈ B ∩ C1 and there exist contants Γ > 0, ∆ > 0 such that ∀x ∈ IR:

• F (x)
f(x)T f(x)

≥ Γ,

• 0 < Df(x) ≤ ∆.

and furthermore the fact that for all n × n diagonal positive definite matrices Λ also Λf ∈ Fn.
Therefore several choices for f ∈ B ∩ C1 other than f(x) = Tanh(x) are also possible.

Proposition 5.1 is a semi-global result. In case we want to extend this to a bounded global result
we only have to find a bounded globally regulating controller the steers the system to a fixed point
(qd, 0).
For this we propose the control law

τ = G(q) − f1(z) − f2(e) (25)

where e = q − qd, f1, f2 ∈ Fn and z is generated from the filter

z = e − w
ẇ = e − w

(26)

which results in the time-invariant closed-loop system

M(q)ë + C(q, q̇)ė + f1(z) + f2(e) = 0
ż = ė − z

(27)

Then we claim:

Proposition 5.3 Assume that qd(t) is a fixed point and consider the system (1) in closed-loop
with the control law (25) and the filter (26). Then the resulting closed-loop system (27) is globally
asymptotically stable.
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Proof Consider the Lyapunov function candidate

V (e, q̇, z) = q̇T M(q)q̇ + F1(z) + F2(e) (28)

which is positive definite and radially unbounded. Along solutions of (27) its time-derivative
becomes

V̇ (e, q̇, z) = −zT f1(z)

which is negative semidefinite in the state (e, q̇, z). Application of LaSalle’s Theorem completes
the proof.

Remark 5.4 The filter (26) can be seen as a simple representative of a whole class of possible
filters.
For instance if f1 ∈ Fn satisfies the property that for any fixed n × n diagonal positive definite
matrix Λ also Λf1 ∈ Fn, then it can be seen that instead of (26) also the filter

z = Λ1e − Λ2w
ẇ = Λ3(Λ2e − Λ2w) (29)

where Λ1, Λ2, and Λ3 are arbitrary n × n diagonal positive definite matrices, can be used. The
filter (29) is similar to the ones presented in [3, 9]. Also the more general class of linear filters
presented in [1, 6, 12] can similarly be viewed as a special case of (26).
Also a wide variety of nonlinear filters can be rewritten as (26). Here one can for instance think
of the filter

z = e − w
ẇ = f(e − w) (30)

with f ∈ Fn. Using the same assumption used to derive (29) and the change of coordinates from
w to −w, one obtains the filter (24).
In general one can say that the filter (26) is a representative of a whole class of filters that takes
its simple form due to well chosen coordinates.
To obtain other possible filters, just apply a suitable change of coordinates in z and w (suitable in
the sense that V̇ remains negative definite, V based on (28)). Note that possibly the term f1(z)
in (25) will change, and correspondingly the term F1(z) in the Lyapunov function candidate (28),
as was the case in deriving (29).

When we choose f1, f2 ∈ B we have that (25) together with the filter (26) yields a globally bounded
control law that steers the system towards the origin. Therefore:

Proposition 5.5 Consider the system (1). Then there exists a switching time ts ≥ 0 such that
given any t̃s ≥ ts the composite control law

τ =




G(q) − f1(z1) − f2(q) t < t̃s

M(q)q̈d + C(q, q̇d)q̇d + G(q) − Kdf(z2) − Kpf(e) t ≥ t̃s

(31)

where f ∈ Fn satisfies the conditions mentioned in Remark 5.2 and z1 and z2 are given by

z1 = q − w1

z2 = w2 + Be
(32)

and w1 and w2 are generated from the filters

ẇ1 = q − w1 t < t̃s
ẇ2 = −Af(w2 + Be) t ≥ t̃s

(33)

results in a globally asymptotically stable closed-loop system. Furthermore, if f1, f2 ∈ B we can
determine a τmax such that the controller (31) together with the filter (32, 33) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.
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Proof Similarly to that of Proposition 4.4.

Remark 5.6 Notice that although the existence of ts has been guaranteed by Proposition 5.5,
it is in practice not easy or even impossible to determine when to switch, since usually one has
to switch if ė is within certain a priori determined bounds. In case one is unable to measure ė
one can not determine when ė is within these bounds, so then it is impossible to determine when
to switch. Therefore, the result of Proposition 5.5 is more a theoretical result than a practically
useful result.

As in the previous section Proposition 5.5 can be modified to overcome the problem of a discon-
tinuous change of the control input:

Proposition 5.7 Consider the system (1). Then there exists a switching time ts ≥ 0 and a ∆ > 0
such that for any t̃s ≥ ts the control law

τ = G(q)−[1−s∆(t− t̃s)][f1(z1)+f2(q)]+s∆(t− t̃s)[M(q)q̈d+C(q, q̇d)q̇d−Kdf(z2)−Kpf(e)] (34)

where f ∈ Fn satisfies the conditions mentioned in Remark 5.2 and z1 and z2 are given by

z1 = q − w1

z2 = w2 + Be
(35)

and w1 and w2 are generated from the filters

ẇ1 = q − w1 t < t̃s + ∆
ẇ2 = −Af(w2 + Be) t ≥ t̃s

(36)

results in a globally asymptotically stable closed-loop system. Furthermore, if f1, f2 ∈ B we can
determine a τmax such that the controller (34) together with the filter (35, 36) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.

Proof Similarly to that of Proposition 4.5.

5.2 Simulations

In this section we consider again the system described in section 4.2 under the same input con-
straints and using the same initial conditions. In order to track the reference trajectory

qd(t) =
[

sin t
sin t

]

we use the output feedback controller

τ = [1 − s∆(t − ts)][G(q) − Kd tanh(Λdz1) − Kp tanh(Λpq)]+

+s∆(t − ts)[G(q) + M(q)q̈d + C(q, q̇d)q̇d − Kd tanh(Λdz2) − Kp tanh(Λpe)]

where Kp = diag(19, 1.5), Kd = diag(20, 1.7), Λp = diag(4, 4), Λd = diag(2.5, 3), z1 = q − w1,
z2 = w2 + Be and

ẇ1 = q − w1 t < ts + ∆
ẇ2 = −Af(w2 + Be) t ≥ ts

where A = B = diag(1000, 1000). For s∆(·) we again use a function given by (5) where a = 3,
b = 3

2 and ∆ = 1.
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As already pointed out in Remark 5.6 the remaining problem is to determine when to start the
switching , i.e. how to determine ts such that we are guaranteed to remain within our input
constraints. In anology with section 4.2 we define

Br
∆=

{
(e, ė, z2) ∈ IR2×2

∣∣∣∀t ∈ IR+ : V (t, e, ė, z2) ≤ r
}

(37)

where V (t, e, ė, z2) is the Lyapunov-function used in [13], and switch as soon as we are in a certain
Br. The only problem is that (37) contains ė, which we can not measure! If we would be able
to give an estimate of ė within a known accuracy, we could mimic the approach as sketched in
section 4.2.
If we take a closer look at what we actually are doing when applying the composite controller
as proposed, is that we initially try to steer the system towards the origin before we really start
tracking. The moment ts is the moment we are close enough to the origin to be guaranteed to
meet the input constraint for all later time. Therefore, what we in our simulation do, is wait until
we are close enough to the origin. In our eyes (based on measurements of q) this is the case at
t = 25, so at that time we decide to switch. The resulting performance is depicted in Figure 5.
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Figure 5: The composite output feedback-controller (34,35,36).

We see a similar performance as in section 4.2. Within about 20 seconds the first phase controller
is able to control our system towards the origin. Although we have no measurements of q̇ available
we are almost sure at t = 25 that we are close enough to the drigin as to meet the input constraints
(19).
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6 Adaptive Controller

In this section we consider the bounded tracking problem as formulated in section 2.2 under the
assumption that some of the parameters that describe the robot dynamics are unknown. We
assume that the full state (q, q̇) is available for measurement. For solving the problem we use
similar to the previous sections the idea of a composite controller as presented in section 3 by
combining a global adaptive controller (however not bounded) with a globally bounded non-
adaptive controller that regulates the system towards the origin. We conclude the section with a
simulation.

6.1 The derivation of the composite controller

Using Property 2.3 we know that the system

M(q, θ)q̈ + C(q, q̇, θ)q̇ + G(q, θ) = τ

can also be described as

M0(q)q̈ + C0(q, q̇)q̇ + G0(q) + Y (q, q̇, q̇, q̈)θ = τ

The global adaptive controller we present is an extension of the one presented in [2] and takes the
following form:

τ = M0(q)q̈r + C0(q, q̇)q̇r + G0(q) + Y (q, q̇, q̇r, q̈r)θ̂ − f1(e) − f2(s) (38)

where q̇r = q̇d − f3(e), e = q − qd, s = q̇ − q̇r = ė + f3(e), f1, f2 ∈ Fn, θ̂ is an estimation for the
vector of unknown (but constant) system parameters, and f3 is such that f3(x)T f1(x) is a positive
definite function (e.g. f3(x) = f1(x) or f3(x) = Λx with Λ an n × n positive definite matrix).
This controller reduces to the one presented in [2] in case f1(e) = Kd,1, f2(s) = Kd,2s, f3(e) = Λe
with Kd,1, Kd,2 and Λ n × n diagonal positive definite matrices.
The controller (38) results in the closed-loop system

M(q, θ)ṡ + C(q, q̇, θ)s + f1(e) + f2(s) = Y (q, q̇, q̇r, q̈r)θ̃ (39)

where θ̃ ≡ θ̂ − θ. When we use the parameter update law

˙̂
θ = −ΓY T (q, q̇, q̇r, q̈r)s (40)

where Γ is a positive definite symmetric matrix, we obtain

Proposition 6.1 Consider the system (1) together with the controller (38) and the parameter
update law (40). Then the equilibrium point e = 0, ė = 0 for the resulting closed-loop system (39)
is globally asymptotically stable

Proof This proof is a straightforward extension of the proof of Berghuis [2].
Consider the candidate Lyapunov function

V (t, s, e, θ̃) =
1
2
sT M(q, θ)s + F1(e) +

1
2
θ̃T Γ−1θ̃ (41)

which is positive definite and radially unbounded. Along solutions of (39,40) its time-derivative
becomes

V̇ (s, e, θ̃) = −f3(e)T f1(e) − sT f2(s)

which is negative semi-definite in the error-state (s, e, θ̃). Hence, we can conclude that (41) is
a nonincreasing function, resulting in s, e, and θ̃ are bounded and therefore ė is bounded and
from (39) together with (3) and Property 2.2 also ë is bounded. Furthermore we know that∫ t

0
f3(e)T f1(e)dt and

∫ t

0
sT f2(s)dt remain bounded for all t ≥ 0 and therefore that e and s are

17



uniformly continuous. Barbǎlat’s Lemma gives us that e and s and therefore also ė converge to
zero asymptotically.

Although the controller (38) is a globally asymptotically stable controller, it is not a globally
bounded tracking controller. We can again construct a globally bounded tracking controller along
the lines of section 3. We have to construct a globally bounded controller that steers the system (1)
to the origin. Therefore we propose first a non-adaptive controller that steers the system towards
a fixed point in case we know all the parameters that describe the manipulator-dynamics (i.e. θ
is known). This controller is an extention of the one presented in [19].
Assume that qd(t) is fixed and consider the regulating control law

τ = G(qd) − f1(ė) − αf2(e) (42)

where e ≡ q − qd, f1, f2 ∈ Fn, α > 0 and f2 and α such that αf2 satisfies for all q 6= qd:

‖αf2(q − qd)‖ > ‖G(q) − G(qd)‖. (43)

This controller yields the time-invariant closed-loop dynamics

M(q)ë + C(q, q̇)ė + G(q) − G(qd) + f1(q̇) + αf2(e) = 0 (44)

Then we claim:

Proposition 6.2 Assume that qd(t) is fixed and consider the system (1) in closed-loop with the
regulating control law (42). Then the equilibrium e = 0, ė = 0 of the resulting closed-loop system
(44) is globally asymptotically stable, provided α is chosen large enough such that (43) is satisfied.

Before proving this Proposition we first need the following Lemma:

Lemma 6.3 Let f ∈ Fn. Then a sufficient condition for f that there exists a sufficiently large
α > 0 such that

‖αf(q − qd)‖ > ‖G(q) − G(qd)‖.
is fulfilled for all e 6= 0, is that there exists an ε > 0 and a sufficiently large β > 0 such that

‖βf(e)‖ > ‖G(q) − G(qd)‖ ∀‖e‖ ≤ ε, e 6= 0.

Therefore, for f ∈ Fn ∩ C1 a sufficient condition for the existence of a sufficiently large α > 0 for
(43) to be fulfilled for all e is that Df(0) > 0.

Proof Suppose there exist a sufficiently large β such that

‖βf(e)‖ > ‖G(q) − G(qd)‖ ∀‖e‖ ≤ ε, e 6= 0.

From Property 2.2 we know that ‖G(q)‖ is bounded, so ‖G(q) − G(qd)‖ also. From Property 2.7
we know that for ‖e‖ > ε: ‖f(e)‖ > δ for certain δ. Therefore, we have to multiply f with a
sufficiently large constant α ≥ β such that αδ is larger than the bound on ‖G(q) − G(qd)‖.
Proof (of Proposition 6.2) From (43) it follows that the closed-loop system (44) has a unique
equilibrium.
Consider the Lyapunov function candidate

V (e, ė) =
1
2
ėT M(q)ė + αF2(e) − G(qd)T (e) + P (q) − P (qd)

which is radially unbounded and positive definite, provided α is chosen large enough such that
(43) is satisfied. Along solutions of (44) its time-derivative becomes

V̇ (e, ė) = −ėT f1(ė)

which is only negative semi-definite in the error state (e, ė). Using LaSalle’s invariance principle
completes the proof.
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Remark 6.4 We can prove in a similar way that the controller

τ = G(qd) − f1(z) − αf2(e)

where f1, f2 ∈ Fn and z is generated from the filter (26) results in a globally asymptotically stable
closed-loop system, provided that f2 is such that there exists an α large enough such that (43) is
satisfied.

Proof (sketch) Use the Lyapunov function candidate

V (q − qd, q̇, z) =
1
2
q̇T M(q)q̇ + F1(z) + αF2(q − qd) − G(qd)T (q − qd) + P (q) − P (qd)

and LaSalle’s invariance principle.

Since the robot’s potential energy P (q) has a global minimum at q = 0 for all θ, it follows that
G(0, θ) = 0 for all θ. Therefore, we can use the controller (42) to steer the system towards the
origin parameter-independent and globally bounded. We only need a bound on θ, i.e. ΘM such
that ‖θ̃‖ ≤ ΘM , to be able to verify (43)

Proposition 6.5 Consider the system (1) and assume we know ΘM such that ‖θ̃‖ ≤ ΘM . Then
there exists a switching time ts ≥ 0 such that given any t̃s ≥ ts the composite control law

τ =




−f1(q̇) − αf2(q) t < t̃s

M(q, θ̂)q̈r + C(q, q̇, θ̂)q̇r + G(q, θ̂) − f3(e) − f4(s) t ≥ t̃s

(45)

where f1, f2, f3, f4 ∈ Fn and θ̂ is updated by

˙̂
θ = −ΓY T (q, q̇, q̇r, q̈r)s t ≥ t̃s, ‖θ̃(t̃s)‖ ≤ ΘM (46)

yields global asymptotic stability of the point e = 0, ė = 0, provided that α and f2 are chosen such
that (43) is satisfied. Furthermore, if f1, f2 ∈ B we can determine a τmax such that the controller
(45) together with the parameter-update-law (46) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.

Proof Since ‖θ̃(t̃s)‖ ≤ ΘM we have a bound on the Lyapunov function (41) from which we can
derive bounds on θ̃, e and ė. The proof can be completed similarly to that of Proposition 4.4.

Also this controller can be converted into a smooth globally bounded asymptotically stable control
law

Proposition 6.6 Consider the system (1) and assume we know ΘM such that ‖θ̃‖ ≤ ΘM . Then
there exists a switching time ts ≥ 0 and a ∆ > 0 such that given any t̃s ≥ ts the control law

τ = −[1−s∆(t−t̃s)][f1(q̇)+αf2(q)]+s∆(t−t̃s)[M(q, θ̂)q̈r+C(q, q̇, θ̂)q̇r+G(q, θ̂)−f3(e)−f4(s)] (47)

where θ̂ is updated by (46) results in global asymptotic stability of the point e = 0, ė = 0, provided
that αf2 satisfies (43). Furthermore, if f1, f2 ∈ B we can determine a τmax such that the controller
(47) together with the parameter-update-law (46) satisfies

‖τ(t)‖ ≤ τmax ∀t ≥ 0.

Proof Similarly to that of Proposition 4.5.
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6.2 Simulations

In this section we again consider the two link robot manipulator of [2], however, this time with an
unknown additional payload of θ = 1kg, in contrast with the previous two sections. The dynamics
with an additional payload are described by

M0(q) =
[

8.77 + 1.02 cos q2 0.76 + 0.51 cos q2

0.76 + 0.51 cos q2 0.62

]

C0(q, q̇) = 0.51 sin q2

[ −q̇2 −(q̇1 + q̇2)
q̇1 0

]

G0(q) = 9.81
[

7.6 sin q1 + 0.63 sin(q1 + q2)
0.63 sin(q1 + q2)

]

Y (w, x, y, z) =
[

2 + 2 cosw2 1 + cosw2

1 + cosw2 0.62

]
z + sin w2

[ −x2 −(x1 + x2)
x1 0

]
y +

+9.81
[

sinw1 + sin(w1 + w2)
sin(w1 + w2)

]

Due to the additional payload, we are not able to track the desired trajectory of the previous
sections, since we have to deal with the input constraints

|τ1| ≤ 120 |τ2| ≤ 10. (48)

and the control input needed to remain on the desired trajectory (18) if we are on it already
exceeds those input constraints.
Therefore, in this section we consider the problem of tracking the desired trajectory

qd(t) =
[

0.1 sin t
0.1 sin t

]

under the input constraints (48).
We start our simulation from the same initial conditions, i.e.

q(0) =
[ −1

−1

]
q̇(0) =

[
10
10

]
.

For our simulation we used the controller

τ = −[1 − s∆(t − t̃s)][
[

20 tanh(q̇1)
2 tanh(q̇2)

]
+

[
100 tanh(2q1)
8 tanh(2q2)

]
]+

+s∆(t − t̃s)[M(q, θ̂)q̈r + C(q, q̇, θ̂)q̇r + G(q, θ̂) −
[

19 tanh(4ė1)
1.5 tanh(4ė2)

]
−

[
20 tanh(2.5ṡ1)
1.7 tanh(3ṡ2)

]
]

(49)
where θ̂ is updated by (46) where Γ = 1. We choose s∆(·) to be a function given by (5) where
a = 1, b = 3

2 and ∆ = 1. We defined ts to be the first time-instant t such that

1
2
ṡ(t)T M(q(t))ṡ(t) +

19
4

ln(cosh(4e1(t))) +
3
8

ln cosh(4e2(t))) < 0.1.

Assuming the given information that ΘM = 2, i.e. ‖θ̃‖ ≤ 2, we are guaranteed from (41) to meet
the input constraints. The resulting performance is depicted in Figure 6.
We see that the first phase controller reduces the tracking errors in its attempt to steer the system
towards the origin. Due to the saturation we are guaranteed to meet the input constraints (48).
At t = 14.0 the regulating first phase controller reduced the tracking errors enough to switch to
the adaptive tracking controller.
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Figure 6: The adaptive composite controller

7 Concluding remarks

In this paper we designed bounded global tracking controllers for rigid robot manipulators using
composite controllers. We first use a bounded controller to steer our system closer to the desired
trajectory. Then we smoothly change to a local tracking controller. We showed our idea to
be succesful for deriving state feedback controllers, output (position) feedback controllers and
adaptive controllers. While deriving the composite controllers we extended results from [1, 4, 3,
5, 6, 7, 12, 13, 15, 17] to a much broader class of controllers.
The idea of composite controllers is useful in a far more general context than only for rigid robot
manipulators, as we showed in [10]. In this paper we restricted ourselves to first controlling
the system towards the origin to reduce the tracking error, before switching to a local tracking
controller. More sophisticated strategies can be followed to improve performance.
In this paper we showed that given a rigid robot system, we can derive bounds within which we
guarantee our controller to remain. In practice however, we have to deal with prescribed bounds
on our control input and wonder if global tracking is possible. Our simulations showed how to
deal with that question.
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[6] R. Kelly and V. Santibañez. A class of global regulators by using output feedback for elastic
joint robots. In Proceedings of the 13th Triennial World Congress, pages 37–42, San Francisco,
California, USA, 1996.
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