
Department of Mechanical Engineering

Dynamics and Control Section

Online Learning for Interaction-Aware
Motion Planning with Gaussian Process

Model Predictive Control

Master’s Thesis

By

ing. Tren Martinus Johannes Theodor Baltussen

Program: Systems and Control
Report Number: DC 2024.014
Academic Credits: 45 ECTS
Student ID: 1632345

Committee Members:
dr. ir. A.A.J. Lefeber
dr. ir. A. Katriniok
prof. dr. ir. W.P.M.H. Heemels
dr. ir. R. Tóth

Eindhoven, February 7, 2024

The research described in this MSc thesis was done in accordance with the TU/e Code of
Scientific Conduct.

To Lian

Acknowledgements

This MSc thesis presents my research on online learning for interaction-aware motion plan-
ning for autonomous vehicles. This thesis is the result of a challenging, interesting, and very
fun final stage of my master’s studies. Firstly, I would like to thank the committee members,
dr. ir. Roland Tóth and prof. dr. ir. Maurice Heemels, for their feedback and for participat-
ing in my MSc thesis defense. In particular, I would like to thank dr. ir. Roland Tóth for
his valuable discussions on Gaussian processes. I also want to say thanks to my dear friends
and fellow students who have supported me during my time at TU/e. Finally, I would also
like to express my gratitude toward dr. ir. Erjen Lefeber and dr. ir. Alexander Katriniok.
Through your guidance and support, I have developed myself in a lot of ways, both techni-
cally and personally, and I feel more than ready for what is coming next.

Thank you.

iii

Abstract

Autonomous vehicles have the potential to increase the safety, efficiency, and availability
of transportation systems. To reach this potential, significant developments in the fields of
vehicle design and control are essential. Safe navigation in complex traffic scenarios requires
awareness and careful consideration of interactions between different road users. However,
coping with uncertain or unseen behavior in a traffic environment poses a considerable
challenge that requires further research. To this end, Gaussian processes have been devel-
oped as strong function regressors that can be used to jointly predict the motion of other
vehicles while considering interactions as well as uncertainty. Furthermore, learning-based
model predictive control has had recent success in the motion planning of systems subject to
uncertainty. This MSc thesis aims to extend the methods and capabilities of online learning-
based interaction-aware model predictive control using Gaussian process prediction models
for uncertain traffic scenarios. Simulation results show that online learning-based Gaussian
process model predictive control is able to passively, and actively, learn the interactions
between road vehicles without the need for pre-training, demonstrating its generalizability
outside of training sets. The passive and active learning-based Gaussian process model pre-
dictive controllers are compared against a baseline controller in a series of simulation studies.
Our interaction-aware motion planner shows improved prediction quality and demonstrates
the potential of Gaussian process model predictive control and opens new doors for motion
planning in uncertain and unseen traffic scenarios.

v

Contents

Acknowledgements iii

Abstract v

Contents vii

1 Introduction 1
1.1 Interaction-Aware Motion Planning . 1
1.2 Learning-based Model Predictive Control 4
1.3 Interactive Planning with Gaussian Processes 5
1.4 Related Work . 7
1.5 Contributions . 9

2 The Motion Planning Problem 11
2.1 Lane Merging Scenario . 11
2.2 Vehicle Modeling . 12
2.3 Optimal Control Problem . 23

3 Gaussian Process Prediction Model 31
3.1 Preliminaries . 31
3.2 Learned Dynamics . 36
3.3 Uncertainty Propagation . 39
3.4 Gaussian Process MPC . 44

4 Learning-based GP-MPC 45
4.1 MPC with a Constant Velocity Model . 45
4.2 Passive Learning with GP-MPC . 47
4.3 Active Learning with GP-MPC . 50
4.4 Numerical Optimization . 56

5 Results 59
5.1 Experiment Design . 59
5.2 Baseline MPC . 62

vii

Contents

5.3 Passive Learning with GP-MPC . 65
5.4 Active Learning with GP-MPC . 73
5.5 Generalizability . 85
5.6 Discussion . 93
5.7 Reflection . 95

6 Conclusions and Recommendations 97
6.1 Conclusions . 97
6.2 Recommendations . 99

References 103

A Collision Avoidance Ellipse 109

B Results 111
B.1 Results of Constant Velocity MPC . 112
B.2 Results of Passive Learning SPGP-MPC . 113
B.3 Results of Active Learning SPGP-MPC . 115
B.4 Results on Various Initial Conditions . 117
B.5 Results on Altruistic Driving Behavior . 118
B.6 Results on Adjust Slack Penalty Weights . 119

viii

Chapter 1

Introduction

Intelligent and autonomous vehicles have the potential to increase the safety, efficiency, and
availability of transportation systems and transform transportation into a utility that is
available to anyone, at any time. To realize this potential, advancements in many function-
alities of vehicle autonomy are required, ranging from environment perception to coordina-
tion, motion planning, control, and human interaction. Autonomous vehicles (AVs) operate
in complex dynamic environments and are faced with uncertain situations or situations that
have not been encountered before. Hence, AVs require methods that generalize well to such
situations before we can reach (beyond) human-level reliability and safe operation, even in
complex situations [1]. In order to cope with uncertain or even unseen behavior of other
road users, the research presented in this thesis aims to extend the generalizability of motion
planners through online learning Gaussian process model predictive control.

In the next section, we provide an overview of the state of the art in autonomous
driving methods, with a focus on decision-making and motion planning. Subsequently, in
section 1.2 and section 1.3, we explore promising methods to advance motion planning
for complex environments with uncertain and unseen behavior. In section 1.4, we discuss
related works and identify a research gap. Finally, section 1.5 states the research objectives
of this thesis and a list of contributions that address this research gap and concludes with
an outline of the thesis.

1.1 Interaction-Aware Motion Planning

1.1.1 Autonomous Driving Architecture

Autonomous vehicles rely on the aforementioned functionalities, such as decision-making
and planning. These functionalities are decomposed in a control architecture which receives
sensory input about the AV’s environment and determines control outputs that control
the AV to its desired behavior. Such an architecture is also known as an autonomy stack.
Schwarting et al. [1] distinguish three types of control architectures, detailed in Figure 1.1.

Traditional architectures (top of Figure 1.1) employ a sequential approach that has

1

Chapter 1. Introduction

End-to-end planning

Perception Feedback
control

Interactive behavior-
aware planning

Perception Behavioral
layer

Motion
planning

Feedback
control

Control
output

Sensor
input

Figure 1.1: Typical control architectures for autonomous vehicles, adopted from [1].

clear interfaces between separate modules. However, traffic scenarios are characterized by
complex interactions and require more advanced and integrated methods [1]. Conversely,
end-to-end planning (bottom of Figure 1.1) integrates perception, planning as well as control
[1]. End-to-end planning primarily relies on deep-learning methods to map sensor inputs
directly to outputs that control the AV. While end-to-end planning is promising, the lack
of hard-coded safety measures and interpretability are its biggest shortcomings [2]. As both
traditional architectures and end-to-end planning have some inherent challenges, we focus on
interactive behavior-aware planning (middle of Figure 1.1) which integrates decision-making
and planning. The perception module provides a world model of the AV’s environment,
while the interactive behavior-aware planning module determines a suitable trajectory for
low-level vehicle control. As such, behavior-aware motion planning considers behavioral
aspects of other traffic participants while planning its motion and accounts for complex
interactions that naturally occur in real-life traffic scenarios [1]. Interactive behavior-aware
motion planning has the potential to consider complex interactions for challenging traffic
scenarios with better interpretability than that of end-to-end planning. Therefore, we look
into these types of motion planning methods in more detail in the next sections.

1.1.2 Interaction-Aware Motion Planning

Motion planning is a task concerned with determining an appropriate trajectory for the AV
through space and time, which achieves some objective, e.g., changing lanes, or crossing an
intersection, while minimizing the risk of collision and the violation of traffic rules. Socially
compliant driving relies on cooperation and interactivity between vehicles and is vital for
safe motion planning in cluttered, dynamic, and uncertain environments [1]. When an AV
knowingly and willingly improves the combined performance of all traffic participants, we
call this behavior cooperative [3]. Interactivity can be described as the interdependence of
an agent’s actions on other agents’ actions. Cooperative and interactive decision-making is
essential to achieve human-like driving behavior in AVs. It is essential that AVs are able to
deduce the intentions of other road users without the need for inter-vehicle communication
to successfully integrate them in traffic [1].

A survey on motion prediction and risk assessment for intelligent vehicles [4] classi-
fies traffic motion prediction into three categories: physics-based, maneuver-based, and
interaction-aware. Note that interaction- and behavior-aware planning are interchangeably

2

1.1. Interaction-Aware Motion Planning

used in the literature. Physics-based motion models only rely on low-level physical behav-
ior of the AV and are therefore only suitable for short-term motion prediction (less than
one second). Maneuver-based models assume that a vehicle’s motion consists of a series
of maneuvers that are independent from those of other road users, and are either based
on prototype trajectories or on maneuver intention estimation. Interaction-aware models,
although more complex, consider the interdependence between vehicles and provide a more
reliable evaluation of the risk associated with a certain motion plan [4]. As interaction-aware
planning remains an open challenge [1] and an active field of research, this thesis focuses
on advancing methods for interactive planning and we confine ourselves to the interactive
behavior-aware planning module (Figure 1.1).

1.1.3 Iterative Planners

In motion planning, we can typically distinguish two styles of planners: sampling-based
planners and iterative planners. On the one hand, sampling-based planners take a large
set of candidate solutions and test their performance. Moreover, unlike iterative planners,
the evaluation of sampling-based planners can be parallelized. An iterative planner, on the
other hand, iteratively refines the motion plan, for example, using a gradient, or Bayesian
optimization. While iterative planners yield more refined trajectories. They typically need
to evaluate the motion plan significantly more times than sampling-based methods [5].

A standard approach to handle interactions is to generate predictions of the other traffic
participants and plan the motion of the AV in a reactive manner without explicitly consider-
ing their interactions. Conversely, game-theoretic models can be used to account for different
driving styles and/or intentions [6], and are a popular formulation for interactive planning
[5]. However, their computational complexity and integration with data-driven methods
remain a challenge [5]. Alternatively, modern deep learning prediction models can capture
interactions by conditioning the predicted motion of other vehicles on the planned motion of
the controlled vehicle. Deep-learned interactive prediction models limit the use of iterative
planners due to the complexity of these predictors [5]. However, Chen et al. [5] present
an iterative planner that is compatible with deep-learned prediction models. This method
outperforms a baseline without joint optimization, as well as their baseline sampling-based
planner in terms of performance and computational complexity [5], demonstrating the po-
tential of interaction-aware and iterative planners. Such conditional formulations on the
interactivity between vehicles are essential for integrated decision-making and planning [1].
While deep learning-based planners are promising, the lack of hard-coded safety measures
and generalization issues are some of the challenges that still need to be addressed [2].

1.1.4 Aim of the Thesis

We aim to extend the adaptability and generalizability of interaction-aware motion planning
methods to enable AVs to safely navigate in uncertain and dynamic traffic scenarios. In the
following sections, we investigate existing methods for interaction-aware motion planning
and we identify a gap that limits the AV’s adaptability to uncertain and unseen behavior.

3

Chapter 1. Introduction

1.2 Learning-based Model Predictive Control

Receding horizon control, or model predictive control (MPC), lends itself well to handling
state and input constraints of complex systems with multiple inputs and outputs [7] and has
been established as the prime methodology for constrained control [8]. Model predictive
control relies on a dynamic model to forecast the behavior of the system and iteratively
optimize this forecast to determine the best decision [7], for example, what trajectory the AV
should follow to progress towards its goal, while respecting specific constraints that follow
from traffic laws, other traffic participants and social factors. Due to recent advancements
in solvers for nonlinear constrained optimization, MPC is capable of motion planning [1].
Recent works, such as [5, 9–11], utilize MPC for interaction-aware motion planning for AVs.
Next, we provide a brief introduction to stochastic MPC and how it can leveraged to adapt
to uncertain and unseen behavior.

1.2.1 Stochastic Model Predictive Control

Deterministic MPC is unable to proactively cope with system changes, which can increase
uncertainty even more, leading to control performance degradation and potential constraint
violation. Thus, online learning of system uncertainty and regular adaptation of uncertainty
descriptions, via system re-identification or Bayesian inference, is crucial for maintaining
the MPC performance for uncertain systems. Although MPC has seen a lot of attention in
the literature for the control of deterministic as well as stochastic systems, the presence of
uncertainty is still a major challenge that is receiving considerable attention [7].

By explicitly incorporating a probabilistic description of model uncertainty into an opti-
mal control problem, stochastic model predictive control (SMPC) aims to guarantee robust
stability and performance of the closed-loop system in a probabilistic sense. Constraint sat-
isfaction for all possible realizations of the disturbance can lead to unnecessary conservatism
and, indeed, is impossible if the probability distribution has infinite support. However, such
a probabilistic formulation enables SMPC to handle chance constraints which require con-
straints to be satisfied with a user-defined probability [12].

1.2.2 Dual Control

In particular, with the recent successes in the field of machine learning, and the availability
of increased sensing and computational capabilities, there is an increasing interest in learn-
ing and data-driven control methods [8]. Passive learning methods use data from online
observations to improve the model of the system. However, in passive learning the control
policy does not consider the informativity of this data when selecting the control inputs.

In active learning or dual control, a controller aims to improve overall control perfor-
mance by reducing the system uncertainty in a control-oriented manner, which is known
as the exploration-exploitation trade-off, or optimal simultaneous identification and con-
trol [8]. The dual control paradigm can be used to control the inputs to an uncertain
dynamic system. These inputs have a probing effect for active uncertainty learning, as well

4

1.3. Interactive Planning with Gaussian Processes

as a directing effect for controlling the dynamic system. Stochastic MPC strategies with
dual control effect can hold promise for applications in which, possibly abrupt, unknown
changes in the system dynamics can compromise the performance, reliability, and safety of
the controlled system [12], such as AVs operating in uncertain and dynamic environments.

1.2.3 Active Learning-Based MPC

The selection of the dual control inputs can be categorized into two classes: implicit and
explicit dual control. Implicit dual control relies on approximate dynamic programming, and
hence, it is computationally expensive and limited to a specific class of problems, whereas
explicit dual control artificially probes the system through a reformulation of the MPC
problem. Designing the probing effect of inputs to learn specifically about the control-
relevant uncertainty of the system, rather than the general system uncertainty, remains
largely an open area of research. Another important challenge in explicit dual control arises
from the natural conflict between the objectives of learning and control, which makes tuning
these controllers challenging [12, 13]. To this end, Soloperto et al. [13] propose a novel active
learning MPC framework to overcome these shortcomings.

Learning-based MPC uses learning techniques to adapt the online MPC optimization
problem at each time step. Hewing et al. [8] provide an overview of recent developments in
the field of learning-based MPC. Most interactive learning-based MPC methods implement
passive learning. Furthermore, learning-based MPC and dual control in constraint systems
remain an open question [8]. To bridge this gap, we aim to develop active learning-based
MPC methods that can exploit interaction-aware motion planning for autonomous vehicles.

1.3 Interactive Planning with Gaussian Processes

Integrated decision-making and motion planning are essential for the safe and reliable op-
eration of autonomous vehicles in interaction-driven traffic scenarios. Furthermore, online
identification, i.e., learning, is crucial to adapt to unseen situations or behavior [1], and
active learning could improve the control performance of the motion planner by safely ex-
ploring the state space. In addition, active learning can be utilized to perturb other traffic
participants, something that is very natural for human drivers. For example, the AV could
safely nudge toward the lane center to indicate that it wants to merge into the adjacent
lane. Examples of such interaction-driven traffic scenarios include a lane merging scenario,
a left turn at an intersection, or entering and exiting a roundabout or traffic circle.

1.3.1 Lane Merging Scenario

In this thesis, we focus on a lane merging scenario, where the AV aims to merge on a target
lane on which two other vehicles are driving. In this scenario, the AV has to decide not only
when to merge, it also has to decide where to merge. For example, ahead of both vehicles,
in between the vehicles, or behind both vehicles. Consequently, this problem requires both
decision-making (where to merge) and planning (when to merge). Furthermore, the vehicles

5

Chapter 1. Introduction

have to interact on a social level and the AV has to consider who is going to yield or not.
Such a scenario could lend itself well as a first step to actively learning interaction dynamics,
for it can be characterized by strong interactions and relatively long observation times.

1.3.2 Gaussian Processes Modeling

While MPC is a promising paradigm that enables interpretable control, it relies on a suf-
ficiently descriptive system model for the prediction of future states to optimize control
performance and satisfy constraints. Hence, system modeling is a critical element for the
success of such control systems. For interaction-aware motion planning, we need to properly
model the other traffic agents’ reactive behavior before we can exploit it for planning [5].

Model descriptions can be subject to great uncertainty, originating, e.g., from insuffi-
cient data, restrictive model classes, parametric uncertainties, or the presence of unmodeled
disturbances [8]. In the class of probabilistic models, a distinction is made between para-
metric and nonparametric uncertainty. Classical system identification focuses on parametric
models where the underlying process is assumed to lie in a pre-defined model class and the
task is to infer the appropriate parameter values. However, especially for complex systems,
nonparametric techniques appear to be more promising [14].

Nonparametric probabilistic learning models are typically based on Gaussian process
(GP) regression as these models are both flexible and computationally tractable. Within
the past two decades, GPs have been developed as powerful function regressors [15] and GP
regression is the most commonly employed technique in learning-based control [8]. One can
think of a Gaussian process as a Gaussian random variable that is generalized to functions.
A Gaussian process is a mathematical object that describes a distribution over functions,
as such, it is characterized by an expected function and a covariance function. This notion
of covariance can be used to directly assess the uncertainty of the prediction model [8]. A
strong advantage of GPs is that it is possible to approximate the probability of collision
when the future states of a vehicle can be represented by such a probability distribution
[4]. Through the joint conditioning of the motion of road users, GPs can learn complex
interactions between vehicles [10]. As such, Gaussian processes are a strong candidate to
learn uncertain and unknown interactions with between the AV and other vehicles online.

1.3.3 Online Learning

Gaussian processes have been successfully used to learn complex dynamics in automotive
applications that require fast sampling times and high-fidelity control [16, 17]. Hewing et al.
[16] pre-compute the covariance of the GP based on the solution of the previous time-step,
such that this covariance remains fixed during optimization. Although this enables real-
time computations on embedded hardware, such an approach will limit interaction-aware
planning. In particular for active learning, where we need to optimize the covariance to
exploit the uncertainty of the prediction model, and determine exploratory control inputs
that affect the uncertainty. As an AV shares its environment with other traffic participants
which the AV cannot control, the reactive behavior of these other agents needs to be taken

6

1.4. Related Work

into account in motion planning [5]. Accordingly, interactions can be modeled by indirect
control over another vehicle [1], which, in the case of GP-MPC, leads to joint optimization
via GPs [10]. Moreover, GP models can be adopted in MPC to actively learn the system
dynamics [13, 18]. For example, [19] actively learns various single-agent control systems
using GPs. However, as far as we know, interactive GP-based MPC has not yet been
leveraged for active, nor passive, online learning for interaction-aware motion planning.

1.4 Related Work

This work relates several research fields, namely, interaction-aware motion planning, learning-
based model predictive control, and Gaussian process modeling. We leverage GP-based
prediction models in a learning-based MPC scheme to learn uncertain or unseen behavior
of other road users in a lane merging scenario. In this section, we provide an overview of the
related works and identify a gap in the current literature. In section 1.4.1 we provide briefly
discuss alternative methods to interaction-aware motion planning. Subsequently, we discuss
the current state of the art in GP-MPC for interaction-aware motion planning, and active
learning methods in a lane merging scenario, in section 1.4.2 and section 1.4.3, respectively.
Finally, we identify a research gap that this thesis aims to bridge to advance interaction-
aware motion planning for uncertain and unseen traffic scenarios, in section 1.4.4.

1.4.1 Game-Theoretic and Deep Learning Methods

In addition to GP-based MPC, alternative methods have been used to solve interaction-
aware motion planning. As mentioned before, game-theoretic approaches are a popular
method to formulate interactions [5]. As such, Evens et al. propose a penalty method for
interaction-aware planning using generalized potential games [20]. Furthermore, Liu et al.
[6] use a leader-follower game controller to model the interactions in an MPC-based motion
planner for forced lane merging. In order to optimize the interactive behavior, they use
imitation learning to approximate the leader-follower game controller by a neural network
[6]. However, [6] optimizes over a space of sample trajectories rather than purely optimizing
the control inputs. While these methods are promising, computational complexity remains
a challenge [5]. Conversely, Chen et al. [5] propose a novel iterative method that uses
homotopy candidates to solve multiple quadratic program MPCs. Their framework utilizes
deep-learned prediction models that capture the interactions between vehicles [5]. As game
theoretic and deep learning-based approaches are limited by their complexity [5] and gener-
alizability [2], respectively, we attempt to advance GP-MPC methods for interaction-aware
motion planning in the hope that they can resolve these challenges.

1.4.2 Gaussian Process Predictions

Gaussian processes have been used to directly predict the future motion of other vehicles
[9–11]. As such, Bethge et al. [11] present a multi-modal GP-MPC to predict the fu-
ture motion of other vehicles on intersections. Gaussian processes have also been used to

7

Chapter 1. Introduction

learn interactions between vehicles in an overtaking maneuver in autonomous racing [9,
10]. Brüdigam et al. [9] sample from a GP-based prediction model to construct tightened
half-space constraints for a linear SMPC. However, [9] limits the behavior of the target
vehicle such that it cannot weave and can only move in one lateral direction. Moreover, [9,
11] sample from a GP based on the current state and do not jointly optimize the control
actions and predictions, making their predictions reactive, rather than interactive. Zhu et
al. [10] present an interactive motion planner that jointly optimizes the control inputs and
predictions of the target vehicle. Furthermore, [10] does not pose any limitations on the
behavior of the target vehicle. While [9] uses online training, [9] does not actively incen-
tivize exploration, and their method is limited to passive learning. Furthermore, the work
of [10, 11] only uses past observations from a fixed training set. The use of GPs to directly
predict the driving behavior of other road users in a lane merging scenario is not found in
the literature.

1.4.3 Actively Learning Interactions

Model predictive path integral control has been used to actively learn interactions in a lane
merging scenario, outperforming passive learning counterparts [21]. Here, Knaup et al. [21]
utilize a Merge-Reactive Intelligent Driver Model [22] in a particle filter to predict the future
motion of other vehicles. However, they make use of a sampling-based planner, which yields
less refined trajectories, as discussed in section 1.1.

1.4.4 Research Gap

While several works have made an attempt to advance interaction-aware motion planning
using Gaussian process-based model predictive control, there is undiscovered potential in
online and active learning for uncertain and unseen traffic scenarios. Although Brüdigam et
al. [9] use online observations to train a GP-based prediction model, they consider limited
interaction dynamics of the target vehicle and do not jointly optimize the predicted motion
of the interacting vehicles. Furthermore, [9] lacks an explicit learning incentive in their
MPC formulation, i.e., learning of the unknown dynamics is done passively. Whereas [10]
jointly optimizes the motion of the interacting vehicles, they only consider offline training
data for learning. The literature shows potential for active learning methods [6, 13, 19, 21,
23]. However, active learning-based MPC methods for interaction-driven traffic scenarios
remain an open field of research whose relevance and potential are promising.

In conclusion, passive and active online learning has been shown to exploit interactions
between vehicles and improve performance in lane merging scenarios. Furthermore, Gaus-
sian processes are successful in predicting complex dynamics using past observations, and
have been used for autonomous overtaking. However, GPs have not been exploited in lane
merging scenarios. Moreover, neither active nor passive online learning with interactive
GP-MPC has yet been used for interaction-aware motion planning.

8

1.5. Contributions

1.5 Contributions

In summary, autonomous vehicles need to leverage interaction-aware motion planning in
order to cope with uncertain and unseen behavior of other road users. Complex interaction-
driven traffic scenarios, such as lane merging, could benefit from interaction-aware motion
planning that can cope with uncertain and unseen behavior to extend the generalizability
of the motion planner. Furthermore, dual control can be utilized to actively perturb other
vehicles and explore the state space to improve the AV’s understanding of its environment.

To this end, Gaussian process-based MPC lends itself well to online learning in addition
to its offline capabilities [23]. Since other works have demonstrated the interactive prediction
capabilities with offline learning [10], this study focuses on online learning-based GP-MPC
to predict the behavior of other agents. While Gaussian process regression and model
predictive control have been shown successful in identifying interactions between vehicles,
they have not yet been used to learn these interactions in complex traffic scenarios online,
neither passively nor actively. As providing theoretical guarantees for stochastic MPC
is a major challenge [24], we confine ourselves to a proof of concept through extensive
simulation studies. We perform simulation studies in a lane merging scenario to investigate
the potential of online and active learning-based GP-MPC and present a qualitative and
quantitative analysis of the GP-MPC as an interactive motion planner.

1.5.1 Research Objective

With the aim of this thesis to develop an interaction-aware motion planner that can cope
with uncertain as well as unseen behavior of other vehicles, set the following research ob-
jectives are set:

• Extend the capabilities of Gaussian process model predictive control for passive, and
active, online learning-based interaction-aware motion planning.

• Verify the performance and safety of the online learning Gaussian process model pre-
dictive controller against a baseline controller in a simulated, interactive lane merging
scenario.

1.5.2 Statement of Contributions

The aim of this thesis is to develop an interaction-aware motion planner that can cope with
uncertain as well as unseen behavior of other vehicles. We attain the aforementioned objec-
tive of extending the methods for passive and active online learning-based model predictive
control for interaction-aware motion planning for autonomous vehicles and bridge the previ-
ously identified research gap through the following contributions. (i) This thesis presents an
interaction-aware motion planner that utilizes GP-MPC to learn the interactions between
vehicles online and jointly optimize their motions. To the author’s best knowledge, this is
the first work that learns these interactions online, without any pre-training. This demon-
strates the potential of GP-MPC and its ability to adapt to truly unseen behavior. (ii) The

9

Chapter 1. Introduction

active learning framework for MPC by Soloperto et al. [13] is employed to actively explore
the state space and perturb other road users with the GP-MPC motion planner. (iii) In
addition, this thesis presents a novel MPC-based algorithm that enables the active learning
framework from [13] with sparse GP-based [25] predictions. (iv) Lastly, a novel extension
of the Intelligent Driver Model [26] is introduced to model the interactive driving policy of
another vehicle. This Interactive Intelligent Driver Model smoothly switches between driv-
ing modes through an activation function which can be dependent on the state of one or
more vehicles. This interactive driver model enables the modeling of complex interactions
in simulation studies.

1.5.3 Outline of the Thesis

Firstly, Chapter 2 formulates the problem that is studied in this work, namely, lane merg-
ing. Here, we model the lane merging scenario and define policies for the other traffic
participants, including a novel extension of the Intelligent Driver Model [26]. Chapter 2
concludes by formalizing the motion planning problem into a finite horizon optimal control
problem. Secondly, in Chapter 3 we present the GP-based prediction models that are used
to model and indirectly control the future motion of the target vehicle. Chapter 3 provides a
brief introduction to GPs and how they can be utilized as prediction models. Subsequently,
Chapter 4 details three MPC methods that are studied in this work. Firstly, a baseline
MPC that uses a constant-velocity prediction model to predict the future motion of the
target vehicle. Secondly, we extend this MPC by including the GP-based prediction model
from Chapter 3 in an attempt to improve the predictions and, hence, the performance of
the MPC. Thirdly, we use the GP-based prediction model to actively learn the interactions
between the AV under control, and the target vehicle. The results of the baseline CV-MPC,
and the passive and active online learning GP-MPCs for various test cases are presented in
Chapter 5. We investigate the effects of various parameters and aim to provide new insights
into the working mechanisms of these methods. Finally, Chapter 6 concludes this thesis
and discusses the findings of the research, and provides an outlook for future research.

10

Chapter 2

The Motion Planning Problem

In Chapter 1, we identify Gaussian process-based MPC as a strong candidate for interaction-
aware motion planning in uncertain traffic scenarios, like that of a lane merging scenario.
As discussed in section 1.1, motion planning is a task concerned with computing a safe
trajectory for the AV to follow. In this chapter, we construct a mathematical optimization
problem of the lane merging scenario in order to synthesize a such a trajectory using MPC.

Firstly, we define the lane merging scenario that is considered in this study. Secondly, we
discuss the simulation models for the vehicles. Furthermore, in order to devise an interactive
driving policy for the Following vehicle, we propose a novel extension of the Intelligent Driver
Model (IDM). We conclude this chapter by formulating the motion planning problem as an
optimal control problem. Subsequently, Chapter 3 proposes three prediction models that
are used to anticipate the behavior of the target vehicles. The MPC algorithms, detailed
in Chapter 4, exploit these prediction models to solve the motion planning problem.

2.1 Lane Merging Scenario

This study utilizes a lane merging scenario to investigate the potential of online learning
GP-MPC for motion planning. The AV under control, which is referred to as the Ego
vehicle, is forced to merge into a target lane since its current lane is closing. The target
lane is occupied by other road users. In this scenario, three vehicles compose the scene:
two target vehicles, a Follower and a Leader, that are driving in the target lane, and the
Ego vehicle that is driving in the merge lane. The Ego and Follower start at the same
longitudinal position, next to one another. They are approaching the Leader with a higher
speed than that of the Leader, which is assumed to drive at a constant velocity. The Ego
vehicle is forced to merge onto the target lane before the end of the merge lane. While doing
so, it has to decide if it will merge in between or behind the target vehicles. To this end, the
Ego vehicle needs to consider the current and future positions of the target vehicles to plan
its motion that will complete the merge effectively. Furthermore, we assume to have access
to a map of the road layout, and that the states of the target vehicles at the current time
can be measured without noise. A schematic overview of the scenario is found in Figure 2.1.

11

Chapter 2. The Motion Planning Problem

Figure 2.1: Snapshot of the lane merging scenario near the merge point.

2.2 Vehicle Modeling

Now that we have defined the lane merging scenario, we have to construct a simulation
model that describes how the different vehicles behave. Firstly, section 2.2.1 describes
the vehicle model that is used to simulate the Ego, Follower and Leader. The Follower
and Leader are modeled as a closed-loop system, while the inputs for the Ego result from
the MPC, detailed in Chapter 4. As mentioned before, the Leader maintains a constant
velocity. To simulate interactive driving behavior, the Follower’s driving policy is modeled
by an Intelligent Driver Model [26]. To this end, section 2.2.2 introduces these models and
proposes a novel extension to existing Intelligent Driver Models. In section 2.2.3, we explore
various discretization methods of the dynamics to incorporate them in an MPC algorithm.
Finally, we discuss some considerations for the sample time of the discretized model.

2.2.1 Kinematic Bicycle Model

All vehicles in the scenario are modeled using a kinematic bicycle model for the evolution
of their state. Furthermore, for collision avoidance, they are geometrically modeled as a
rectangle with a length L and a width W . The parameters of these vehicles are adopted
from a Ford Escape/Kuga and are seen in Table 2.1. For the sake of simplicity, the physical
dimensions of all road users are assumed to be the same. The Ego vehicle is being controlled
by various proposed MPC algorithms presented Chapter 4. Furthermore, the inputs of the
Follower are modeled by a novel interactive variant of the Intelligent Driver Model. Finally,
the Leader is assumed to maintain its initial speed throughout the scenario.

Table 2.1: Vehicle and Road Parameters.

Parameter Value [m]

Length (L) 4.6
Width (W) 2.2
Wheelbase (l) 2.7
Distance to front axle (lf) 1.35
Distance to front axle rear (lr) 1.355
Track width (tw) 1.6
Lane width (Wl) 3.5

12

2.2. Vehicle Modeling

System Dynamics The vehicles are modeled by a kinematic bicycle model. This model
is a simple kinematic representation of the vehicle dynamics that respects the nonholonomic
constraints of a vehicle with sufficient accuracy for motion planning. The kinematic bicycle
model lumps two tires of an axle into one. These lumped tires are assumed to roll without
any slip. Consequently, the vehicle rotates around an instantaneous center of rotation (IC)
which is fully determined by the geometry of the vehicle and the steering angle. Specifically,
in this work, the inputs to the kinematic bicycle model are the forward acceleration and
steering angle rate. Let us define the state vector x as:

x(t) =

⎡
⎢⎢⎢⎢⎣
X(t)
Y (t)
v(t)
ψ(t)
δ(t)

⎤
⎥⎥⎥⎥⎦ , (2.1)

where X and Y are the longitudinal and lateral positions of the rear axle in the world frame,
respectively. The longitudinal velocity of the rear axle is denoted by v, ψ is the heading
angle of the vehicle with respect to the world’s longitudinal axis, and δ is the steering angle
of the front wheel with respect to the vehicle’s longitudinal axis. The global continuous
time is denoted by t. The input vector is defined as:

u(t) =

[
a(t)
r(t)

]
, (2.2)

where a is the longitudinal acceleration of the rear axle, and r is the steering angle rate. A
schematic overview of the kinematic bicycle model is provided in Figure 2.2, below.

IC

Figure 2.2: Schematic view of the kinematic bicycle Model used for dynamical modeling
of the Ego and target vehicles.

13

Chapter 2. The Motion Planning Problem

The continuous-time dynamics of the kinematic bicycle model, with the rear axle as its
point of reference, is defined as follows:

ẋ(t) = fc (x(t),u (t)) , (2.3a)

where:

Ẋ(t) = v(t) cos (ψ (t)) , (2.3b)

Ẏ (t) = v(t) sin (ψ (t)) , (2.3c)

v̇(t) = a(t), (2.3d)

ψ̇(t) =
v(t)

l
tan (δ (t)) , (2.3e)

δ̇(t) = r(t). (2.3f)

Note that the position of the vehicle is defined with respect to the vehicle’s rear axle,
which simplifies the dynamics and the involved trigonometry significantly. In contrast to
using the vehicle’s center of gravity as a point of reference, the body side slip angle (β),
that is the angle between the velocity of the center of gravity (or centroid) and the vehicle’s
longitudinal axis, is not part of the dynamics. Therefore, we can reduce the state of the
system which improves online optimization. As we omit dynamics, we assume that the
center of gravity coincides the the centroid. The velocity at the center of gravity can be
computed afterward as:

vCG(t) =
v(t)

cos (β (t))
, (2.4)

and the body side slip angle as:

β(t) = arctan

(
lr
l
tan (δ (t))

)
, (2.5)

where l denotes the vehicle’s wheelbase, and lr is the distance from the center of gravity
to the rear axle. Henceforth, we use an index j to refer to a specific agent in the scenario.
The Ego, Follower, and Leader are denoted by j = 1, 2, 3, respectively.

2.2.2 Intelligent Driver Model

In this section, we first introduce the Intelligent Driver Model (IDM). Secondly, we discuss
an extension that considers lateral interactions, namely the Merge-Reactive IDM (MR-
IDM). Subsequently, we present a novel extension of the IDM to include interactions with
approaching traffic agents, the Interactive IDM. Finally, we apply this extension to the
MR-IDM to construct an Interactive Merge-Reactive IDM (I-MR-IDM) that considers ap-
proaching traffic agents as well as lateral interactions.

The Intelligent Driver Model [26] is a widely used car-following that has been extended
several times. These models use the positions, velocities and accelerations of a reference

14

2.2. Vehicle Modeling

vehicle to formulate a policy for the acceleration of the following vehicle. These models
primarily focus on the preceding vehicle in the same lane. Although [27] proposes a variant of
the IDM which additionally considers succeeding vehicles, they do not consider approaching
vehicles in adjacent lanes. The Merge-Reactive IDM by [22] considers merging vehicles
in adjacent lanes, however, this model assumes that the merging vehicle has passed the
Follower. These variants do not consider approaching traffic that influences the driving
behavior of the Following vehicle. Moreover, most driver models aim to mimic normal
driving behavior, while challenging driving scenarios i.e., edge cases, can help distinguish
good planning algorithms from great ones. In order to generate such interactive driving
behavior of the Following vehicle, a new variant of the IDM is proposed.

The Intelligent Driver Model with Constant Acceleration Heuristic Specifically,
in this study, we extend the IDM with Constant Acceleration Heuristic (IDM-CAH) by
[28] which uses a heuristic to reduce unrealistic decelerations of the original IDM [26]. The
driving policy of the Follower is characterized by a total of twelve parameters. Eight of
these parameters are fixed and are listed in Table 2.2, below.

Table 2.2: Parameters of the Intelligent Driver Model of the Follower.

IDM Parameter Value

Free acceleration exponent (δIDM) 4 [-]
Jam distance (s0) 2 [m]
Maximum acceleration (amax) 4 [m/s2]
Desired deceleration (bmax) 3 [m/s2]
Coolness factor (c) 0.99 [-]
Look back time Tlookback 0.4 [s]
Smoothing factor β 2 [-]
Lateral reactivity ζ 2.5 [-]

The original IDM acceleration function reads:

aIDM(sj , v1,Δvj) =
dv1

dt
= amax

[
1−

(
v1

vref

)δIDM

−
(
s∗(v1,Δvj)

sj

)2
]
, (2.6)

where Δvj = v1 − vj , and sj := Xj −X1 − L is the gap between the reference vehicle and
the Follower. Since both the Ego vehicle and the Leader could serve as the IDM model’s
reference vehicle, depending on the current state, j denotes the index of the reference
vehicle i.e., the current leader. The maximum acceleration parameter amax is the maximum
acceleration that is employed by the IDM. The free acceleration exponent δIDM denotes how
the acceleration scales with the velocity. In the nominal IDM, the reference velocity vref is
equal to the nominal desired velocity:

vref := vnom. (2.7)

15

Chapter 2. The Motion Planning Problem

The effective desired safety gap s∗ is defined as:

s∗(v1,Δvj) = s0 + v1Tref +
v1Δvj

2
√
amaxbmax

. (2.8)

Here, the headway time Tref is equal to the nominal desired headway time:

Tref := Tnom. (2.9)

The nominal desired velocity and headway time are defined in Chapter 5, and are specific
for each specific test case. The desired deceleration parameter bmax is the comfortable
deceleration that is employed by the IDM. Note that the actual maximum deceleration
output from the IDM can exceed this value in case it has to prevent a collision. Note that
bmax is typically set to 2 [m/s2], however, we increase it to generate more adversarial driving
behavior, similar to [6].

The Constant Acceleration Heuristic (CAH) determines, for given values of the gap sj

between the reference vehicle and Follower, the Follower’s velocity v1, the reference vehicle’s
velocity vj , and its acceleration aj , the maximum acceleration aCAH leading to no crashes
and is given by:

aCAH

(
sj , v1, vj , aj

)
=

⎧⎪⎨
⎪⎩

(v1)
2
ãj

(vj)2−2sãj
if vj

(
v1 − vj

) ≤ −2sj ãj ,

ãj − (v1−vj)
2
Θ(v1−vj)

2s2
otherwise,

(2.10)

where ãj = min
(
aj , amax

)
, and Θ is the Heaviside step function. The IDM-CAH limits the

decelerations of the original IDM as follows:

aIDM-CAH

(
sj , v1, vj ,Δvj , aj

)
=

{
aIDM aIDM ≥ aCAH,

(1− c)aIDM + c
[
aCAH + bmax tanh

(
aIDM−aCAH

bmax

)]
otherwise.

(2.11)

For more details and motivations for this construction, please refer to [28].

The Merge-Reactive Intelligent Driver Model When a merging vehicle is cutting
in front of the Follower, the original IDM is prone to extreme decelerations that are not
acceptable (nor possible) in real-world applications [28]. Although the IDM-CAH reduces
the unreasonable decelerations during changes of the reference vehicle of the IDM, it still fails
to acknowledge the merging vehicle until it becomes its leader [22], as the IDM and IDM-
CAH do not feature any lateral awareness or reactivity. Conversely, the Merge-Reactive
IDM (MR-IDM) [22] is a novel extension of the IDM-CAH [28] that considers merging
agents into the Following vehicle’s lane. The MR-IDM uses the visual angle between the
Follower and the vehicle that is trying to merge. Firstly, we compute the absolute distances
from the Follower to both rear corners of the reference vehicle:

dj1, d
j
2 =

√
(sj)2 + (ζΔY j ±W/2)2, (2.12)

16

2.2. Vehicle Modeling

where ΔY j = Y1 − Yj , and ζ is a tuning factor to adjust the lateral reactivity. Recall that
W is the width of the reference vehicle. Using this absolute distance, the MR-IDM maps
the relative longitudinal and lateral position to an effective longitudinal position for the
IDM-CAH:

sje =
W

2

√√√√√√
(
dj1 + dj2

)2 −W 2

W 2 −
(
dj1 − dj2

)2 . (2.13)

Subsequently, this effective gap is used as an input for the IDM-CAH:

sj := sje. (2.14)

The MR-IDM computes the acceleration of the IDM-CAH with both the Ego vehicle and the
leader as reference vehicles using the effective distance from (2.13). The reference vehicle
that induces the largest deceleration determines the output of the MR-IDM:

aMR-IDM

(
x1,x0,u0,x2,u2

)
= min

(
aIDM-CAH

(
sje, v

1, vj ,Δvj , aj
)
for j = 0, 2

)
(2.15)

Consequently, as the Ego vehicle merges into the target lane, the MR-IDM will gradually
transition its reference vehicle to the Ego vehicle.

The Interactive Intelligent Driver Model Next, we propose the Interactive Intelligent
Driver Model (I-IDM), a general extension to an IDM that is used to characterize the driving
policy of the Follower which is interacting with the preceding Leader, as well as with the
approaching Ego vehicle in the adjacent lane.

The Follower could change its behavior as the Ego vehicle approaches. The Follower
could show social behavior, for example, by increasing the gap allowing the Ego vehicle
to merge in-between the Follower and Leader. Conversely, it could close the gap between
the Follower and Leader further, thereby showing more adversarial behavior. However,
regardless of its behavior, we assume that it will keep the properties of an IDM, namely
a collision-free, smooth, and interpretable policy [28]. Whether it opens or closes a gap,
it will try to keep some distance from the Leader. This idea is exploited by making the
parameters of the IDM state-dependent.

Intuitively, the I-IDM is composed of multiple IDMs that represent different driving
styles. For the sake of simplicity, we consider the case where the Follower starts with
nominal parameters and switches to adversarial parameters as the Ego vehicle approaches.
Without loss of generality, we use a logistic function to activate the parameter change when
the Ego approaches the Follower:

α =
1

1 + exp (−1/β (Tlookbackv1 + s0 + L))
, (2.16)

where β is a smoothing factor, and Tlookback is the time factor that the Follower looks
behind him such that the activation function is at a factor of α = 0.5 when the approaching

17

Chapter 2. The Motion Planning Problem

vehicle is sj + L = Tlookbackv
1[m] behind the Follower. In turn, the value of the activation

function is used to compute a convex combination of the parameters of the two driving
styles. Accordingly, we adjust the reference headway time and reference velocity of the
IDM as follows:

Tref := (1− α)Tnom + αTact, (2.17a)

vref := (1− α) vnom + αvact, (2.17b)

where Tact and vact are the active headway time and the velocity of the Interactive IDM, e.g.,
that attempt to close the gap, respectively. The nominal and interactive reference velocity
and headway time are defined in Chapter 5, and are specific for each specific test case. The
interaction between the different vehicles is governed by an activation function that changes
the parameters of the IDM such that the behavior of the Follower smoothly transitions from
one driving style to another. As such, one can extend an IDM to an interactive IDM by
computing the IDM parameters according to (2.16) and (2.17). Subsequently, we discuss
some properties, extensions, and limitations of this novel Interactive IDM.

Continuity of Interactive Intelligent Driver Model The I-IDM’s acceleration is a
continuous function, provided that the underlying IDM version is continuous. Note that
the IDM-(CAH) is a continuous function that maps the relative positions, velocities, and
accelerations of the Follower and its reference vehicle to an acceleration of the Follower
[28]. Firstly, the I-IDM can be regarded as a time-varying convex combination of IDMs.
The preservation of smoothness is ensured by the convex combination of these IDMs, as
the convex combination of two smooth functions results in a smooth function. Further-
more, the I-IDM incorporates a smooth, state-dependent activation function that adjusts
the parameters of the IDM. In conclusion, given that the composition of functions main-
tains smoothness, it can be deduced that the resultant I-IDM also produces a continuous
acceleration.

Extension to Interactive Merge-Reactive IDM The MR-IDM is extended by in-
cluding state-dependent parameters that are governed by an activation function (2.16) to
model the interactions between different agents in the scene, as described above. In the
remainder of this study, we model the Follower by a novel Interactive Merge Reactive In-
telligent Driver Model (I-MR-IDM). This I-MR-IDM transitions between two parameter
settings for the MR-IDM as per (2.17). The resulting model has both the lateral reactivity
of the MR-IDM, as well as the state-dependent parameters of the I-IDM. However, the
Interactive-IDM can employ different variants of the IDM.

Limitations of the MR-IDM As mentioned before, the MR-IDM only considers merg-
ing vehicles that have passed the Follower. The MR-IDM only acknowledges the Ego vehicle
as a reference vehicle when it is beside the Follower. Consequently, a jump in the dynamics
may occur when the Follower suddenly starts reacting to the merging agent. To circumvent

18

2.2. Vehicle Modeling

this behavior, the MR-IDM needs to be properly tuned such that it is not reacting to a
passing vehicle, but only to a merging vehicle. Recall that the MR-IDM uses the visual
angle with the merging agent to project the position of the merging agent to an effective
longitudinal distance for the underlying IDM. To have a smooth transition of the refer-
ence vehicle from the leader to the merging agent, the effective distance should transition
smoothly. Nevertheless, potentially strong decelerations are mitigated by the constant ac-
celeration heuristic of the IDM-CAH. The focus of this work is on motion planning and
the I-MR-IDM is developed to generate relevant and sufficiently realistic driving behavior.
Since the I-MR-IDM works sufficiently well, further analysis of this model is outside the
scope of this work. In future work, the I-MR-IDM could be analyzed in more detail.

2.2.3 Discretization

As the motion planning problem is continuous by nature, we initially want to solve a
continuous-time optimal control problem (OCP). However, analytical solutions to these
problems are limited to special classes of problems. Alternatively, indirect methods typically
result in the formulation of a boundary-value problem. Conversely, direct methods convert
the infinite-dimensional continuous-time OCP to a finite-dimensional OCP. By discretizing
the problem first, we reduce the problem to an initial-value problem, which, in turn, can be
optimized numerically [7].

Direct Methods Direct methods are very successful and most widely used in MPC [7].
These methods are supported by sophisticated and dedicated solvers, like IPOPT [29].
Therefore, we employ a direct method for the MPC algorithms which are discussed in
Chapter 4. For these direct methods, we describe the behavior of the Ego vehicle being
controlled by a discrete-time dynamical system model with a constant sampling time Ts.
To this end, we can define a sampled discrete-time state vector xk, which denotes the state
vector at time tk = kTs:

xk := x (tk) . (2.18)

Analytical Solution The solution of an MPC is typically a piecewise-constant trajectory
with segments of Ts seconds composed of a sequence of control inputs. The analytical
solution to the differential equation in (2.3), for a constant input uk over an integration step
of Ts seconds, is computed using the symbolic computation library of Wolfram Mathematica
[30]. The analytical solution of the continuous-time dynamical system for piecewise-constant

19

Chapter 2. The Motion Planning Problem

inputs reads:

Xk+1 = Xk+

2l cos

(
ψk +

(
akT

2
s + 2vkTs

)
tan (δk)

4l

)
cot (δk) sin

((
akT

2
s + 2vkTs

)
tan (δk)

4l

)
,

(2.19a)

Yk+1 = Yk + 2l cos (ψk) cot (δk) sin
2

((
akT

2
s + 2vkTs

)
tan (δk)

4l

)
+

l cot (δk) sin (ψk) sin

((
akT

2
s + 2vkTs

)
tan (δk)

4l

)
, (2.19b)

vk+1 = vk + Tsak, (2.19c)

ψk+1 = ψk +

(
akT

2
s + 2vkTs

)
tan (δk)

2l
, (2.19d)

δk+1 = δk + Tsrk. (2.19e)

Although there exists an analytical solution to the continuous-time dynamical system for
piecewise-constant inputs, this solution is rather complicated. Since the system is used
in an optimization scheme, we need to compute derivatives of this solution. To this end,
numerical integration can be used to approximate the solution to the continuous-time system
with sufficient accuracy, while simplifying the expressions of the solution and its derivative
significantly. Two discretization methods for numerical integration are considered, namely
the Forward Euler and Runge-Kutta 4 methods. These methods are validated by the
analytical solutions to the continuous-time dynamical system for piecewise-constant inputs.

Forward Euler Method The numerical integration of the continuous-time dynamical
system in (2.3) can be approximated by the Forward Euler method, which can be obtained
through a first-order Taylor Expansion of a (vector) function x around t:

x(t+ Ts) = x(t) + Ts ẋ(t) +O (
T 2
s

)
. (2.20)

Recall the continuous-time dynamical system (2.3):

ẋ(t) = fc (x (t),u (t))) , (2.21)

By substituting (2.3) for the first derivative of x(t) and by omitting second-order terms, we
obtain the Forward Euler approximation:

x (t+ Ts) ≈ x(t) + Ts fc (x (t) ,u (t)) . (2.22)

Let us introduce a discrete-time variable k ∈ N:

x ((k + 1)Ts) ≈ x(kTs) + Ts fc (x (t) ,u (t)) . (2.23)

20

2.2. Vehicle Modeling

Employing the short-handed notation that we introduced earlier, we have:

xk+1 ≈ xk + Ts fc (xk,uk) . (2.24)

This yields the following discrete-time dynamical system:

Xk+1 = Xk + Tsvk cos (ψk) , (2.25a)

Yk+1 = Yk + Tsvk sin (ψk) , (2.25b)

vk+1 = vk + Tsak, (2.25c)

ψk+1 = ψk + Ts
vk
l
tan (δk) , (2.25d)

δk+1 = δk + Tsrk. (2.25e)

Runge-Kutta Method Alternatively, the solution to the nonlinear differential equations
from (2.3) can be approximated with the classical fourth-order Runge-Kutta (RK4) method
[7]. For a constant input of uk over one sample time Ts, the system is discretized as follows:

xk+1 ≈ f (xk) := xk +
Ts
6

(h1 + 2h2 + 2h3 + h4) +O (Ts)
5 (2.26a)

(2.26b)

for k = 0, 1, 2, 3, . . ., using:

h1 = fc (x (tk) ,u (tk)) , (2.26c)

h2 = fc

(
x (tk) + Ts

h1
2
,u (tk)

)
, (2.26d)

h3 = fc

(
x (tk) + Ts

h2
2
,u (tk)

)
, (2.26e)

h4 = fc (x (tk) + Tsk3,u (tk)) . (2.26f)

Note that the discrete-time system uses four evaluations of the continuous-time dynamical
system fc in (2.3) to approximate the integration of the dynamics.

Validation of Discretization Methods The Forward Euler and Runge-Kutta dis-
cretization methods are validated using the analytical solution to the system’s differential
equation in (2.3). We integrate the system with a constant acceleration of a = 5 [m/s2]
and constant steering angle of ψ = 5 [deg.] for 10 seconds using the different integration
methods. Table 2.3 shows the local truncation errors of the Forward Euler and Runge-
Kutta 4 methods with respect to the analytical solution for three different sampling times.
Note that the approximations of the linear subequations are exact for all methods and all
sampling times.

The Forward Euler method is a computationally cheap discretization method. However,
it requires a very small sample time Ts to have acceptable accuracy. as the local truncation

21

Chapter 2. The Motion Planning Problem

Table 2.3: Local Truncation Error of Integration of Continuous-Time Dynamics

Step Size [s] State Forward Euler - RMS Error RK4 - RMS Error

1e0

X [m] 2.0e1 9.9e-3
Y [m] 1.3e1 1.5e-2
ψ [rad.] 4.8e-2 9.7e-16

1e-1

X [m] 2.1e0 9.4e-7
Y [m] 1.2e0 1.4e-6
ψ [rad.] 4.7e-3 4.9e-16

1e-2

X [m] 2.1e-1 9.4e-11
Y [m] 1.2e-1 1.4e-10
ψ [rad.] 4.7e-4 7.0e-17

error is O (
T 2
s

)
. The classic fourth-order Runge-Kutta method (RK4) provides a good

trade-off between computational complexity and accuracy, with a local truncation error in
O (

T 5
s

)
[31]. Henceforth, the system dynamics in (2.3) are discretized using RK4, and the

system (2.26) will be used to simulate all vehicles as well as the Ego’s prediction model.

Discrete-Time Intelligent Driver Model Although the IDMs, discussed in section 2.2.2,
are policies that map continuous-time variables to an acceleration, they are to be discretized
in a digital simulation environment. To this end, the trajectories of the states and inputs
are composed of piecewise-constant signals. The inputs to the IDM are piecewise-constant
and therefore, also the resulting acceleration from the IDM is a piecewise constant signal.

2.2.4 Sample Time

The system’s sample time has to be carefully designed such that discretization errors are
within acceptable limits while limiting the computational burden. Moreover, MPC using
direct methods typically provides point-wise constraint satisfaction. Hence, a sufficiently
high sampling frequency is required to have proper inter-sample constraint satisfaction.
Due to the small integration error of the RK4 method, the sample time is primarily limited
by the collision avoidance constraints. As this study focuses on a proof of concept, we do
not consider real-time implementation. However, real-time implementation imposes strict
constraints on the sample time, in addition to the considerations discussed next.

Computational Complexity In Chapter 4 some novel MPC algorithms will be intro-
duced that are relatively complex, compared to nominal MPC. This should be considered
when selecting the sample time to keep them consistent throughout the different methods,
while maintaining computational tractability for the most complex algorithms. At a smaller
sample time, we need to extend the prediction horizon N to have the same horizon time in
the continuous time. This leads to increased complexity of the OCP. Moreover, sampling
at a too high frequency can lead to poor convergence and numerical errors with the GP.

22

2.3. Optimal Control Problem

Inter-Sample Constraint Satisfaction Next to a lower bound, we also have an upper
bound on the sample time. In case we have a too low sampling frequency, the Ego vehicle
can be behind a target vehicle at time k, then it could pass this vehicle and be in front of
the same target vehicle at time k + 1 while satisfying all collision avoidance constraints at
the sample times. However, the continuous-time system would have collided with the target
vehicle. This is a critical consideration when selecting the appropriate sample time.

Although no attempt is made to guarantee inter-sample constraint satisfaction, we can
approximate the minimally required sample frequency to prevent an inter-sample collision.
If we only consider the longitudinal distance, then the sample time must be sufficiently
small such that a target vehicle cannot be passed provided a maximum allowed velocity
and the minimal length of the vehicles in the scene.

Approximation of Required Sample Time When we consider an operational design
domain with a maximum velocity difference of 15 [m/s], then a sampling frequency of
fs = 4 [Hz] is able to account for vehicles with a length of L ≥ 3.75 [m]. Considering the
vehicles in our scenario are of length L = 4.62 [m], this is sufficient to guarantee inter-
sample constraint satisfaction when the concerned vehicles have the same heading angle
(ψ) and lateral position (Y). Moreover, we have some margin to accommodate slight offsets
in heading angle and lateral position. A sampling frequency of fs = 4 [Hz] shows adequate
constraint satisfaction with and without a relative heading between the vehicles, and is
henceforth employed in the remainder of this study.

Horizon Time Furthermore, we have to consider a desired prediction horizon time in
continuous time, e.g., 3 seconds into the future. A too small horizon time can compromise
both performance as well as safety. While a too long prediction horizon can also lead to poor
control policy if those predictions are inaccurate. As mentioned before, extending horizon
length leads to increased computational complexity and solve times. Motion prediction
models typically use a prediction horizon in the order of several seconds [32]. In our case,
to obtain a prediction time of 3 seconds with a sampling frequency of 4 Hz, we would need
a prediction horizon of length N = 12 which is found to be acceptable considering the
complexity of the problem.

2.3 Optimal Control Problem

In the previous section, we constructed the models for the Ego vehicle as well as the target
vehicles. The solution to the motion planning problem is a trajectory i.e., a sequence of
states through space and time, that the Ego vehicle is to follow to safely navigate in the
traffic while it interacts with the other vehicles. We proceed by formulating the motion
planning problem as a finite horizon optimal control problem (OCP). To this end, we
consider a multi-layer autonomy architecture where we focus on high-level planning. It is
assumed that we have perfect knowledge of the Ego vehicle and its environment, and that
the computed trajectory can be perfectly tracked by a lower-level control layer. The aim of

23

Chapter 2. The Motion Planning Problem

the MPC algorithm, detailed in Chapter 4, is to determine the appropriate input sequence
that navigates the Ego vehicle through the traffic while minimizing some objective function
and satisfying a number of constraints that aim to provide a degree of safety and comfort.

In this section, we first define the objective function that we use to tune the output
of the motion planner. Secondly, we construct a set of constraints that aim to enforce
collision avoidance, road boundaries, and traffic laws. Conclusively, these ingredients are
combined to construct the OCP that is parsed to the MPC algorithm. As we assume perfect
knowledge of the Ego, we can plan its motion perfectly. Furthermore, we assume that the
Leader maintains a constant velocity. As for the motion prediction of the Follower, we
propose a novel Gaussian process-based prediction model in Chapter 3.

2.3.1 Control Objective

We aim to develop an interaction-aware GP-MPC motion planner that can adapt to uncer-
tain and unseen behavior. The focus of this work is to analyze the potential shortcomings
of a constant velocity prediction model, and the potential advantages of a Gaussian process
prediction model, for the predictions of other road users. In an attempt to compare these
models in an objective and fair manner, the objective function is designed to be agnostic
and unbiased toward any of the prediction models.

Causality Dilemma One could argue that a reference trajectory is the product of the
motion planning problem. Therefore, providing any bias toward decision-making through
the construction of the objective function could be considered invalid in the sense that this
construction contains part of the solution. As such, in this work, we adopt an objective
function that is unbiased and the incentive to merge into the target lane follows from the
current state of the scenario, not from the objective function. This automatically implies
that neither of the prediction models is utilized to its full potential as it can be expected
that the objective function that provides the best performance — regardless of its definition
— is dependent on the prediction model that is used. However, it does provide a true
comparison of the different prediction models and their strengths and weaknesses.

Objective Function In an attempt to limit such any bias from the objective function
bias, this objective function simply incentivizes the Ego vehicle to maintain its initial veloc-
ity and stay in its lane, until the merge lane closes and the MPC decides we should merge.
Firstly, deviations from Ego’s initial velocity are penalized. Secondly, the objective function
aims to limit the heading angle and steering angle. Thirdly, the objective function limits
the control inputs and their rate of change. Accordingly, the reference xr (k) is defined as:

xr (k) =
[
0 0 v0 (0) 0 0

]�
. (2.27)

We do not steer the Ego to a particular lateral position, rather, we devise a non-convex
objective function to allow driving in the merge lane as well as the target lane, such that
the merge point is defined by the solution of the problem. Accordingly, we define the

24

2.3. Optimal Control Problem

function m (X) : R → R that describes the lane center of the merge lane as a function of
the longitudinal position and coincides with the center of the target lane after the merge
lane has fully closed:

m (X) =
Wl

1 + e−0.3(X−300)
, (2.28)

here, the merge point is set at 300 m, and the factor 0.3 is used to control the gradient of the
lane center as a function of the longitudinal positionX. As such, we prevent any bias toward
one of the two lanes through the construction of the objective function. Furthermore, we
define the world coordinate frame to have its origin at (X,Y) = (0, 0) and the longitudinal
X-axis to be along the lane center of the merge lane (before it starts closing). This coordinate
frame is depicted in Figure 2.1. The resulting primary objective function reads:

J (x(k),u(k − 1),Uk) =
∥∥xN |k − xr

k

∥∥2
P
+
(
YN |k −Wl

)2
PY

(
YN |k −m

(
XN |k

))2
+

N−1∑
i=0

∥∥xi|k − xr
k

∥∥2
Q
+
(
Yi|k −Wl

)2
QY

(
Yi|k −m

(
Xi|k

))2
+
∥∥ui|k

∥∥2
R
+
∥∥Δui|k

∥∥2
S
,

(2.29)

where P,Q, S � 0 are positive (semi-) definite weighting matrices, R 	 0 is a positive
definite weighting matrix, and PY , QY ≥ 0 are non-negative weighting coefficients. The
prediction of the state x at time step k + i at the current time tk is denoted by xi|k, and

Uk =
(
u0|k, . . . ,uN−1|k

)
(2.30)

is the sequence of control inputs over the horizon length of N ∈ N+ at time tk.

2.3.2 Constraints

To derive a trajectory for the Ego vehicle that is reasonably safe, comfortable, and socially
acceptable for both its occupants and other road users, a set of state and input constraints
is introduced with the intention of delimiting the solution.

State and Input Constraints Firstly, let us define a set of constant state constraints.
These partially govern the road boundaries and limit the heading angle and steering angle of
the Ego vehicle to 0.2618 [rad.] ≈ 15 [deg.]. Furthermore, a set of box input constraints limit
the steering acceleration and steering angle rate to 5 [m/s2] and 0.0873 [rad./s] ≈ 5 [deg./s],
respectively:

umin ≤ ui|k ≤ umax, for i = 0, . . . , N − 1 (2.31a)

xmin ≤ xi|k ≤ xmax, for i = 0, . . . , N, (2.31b)

25

Chapter 2. The Motion Planning Problem

where

umin =

[−5
−0.0873

]
, umax =

[
5

0.0873

]
, (2.32a)

xmin =

⎡
⎢⎢⎢⎢⎣

−∞
−∞
0

−0.2618
−0.2618

⎤
⎥⎥⎥⎥⎦ , xmax =

⎡
⎢⎢⎢⎢⎣

∞
Wl +

Wl−W
2

37.5
0.2618
0.2618

⎤
⎥⎥⎥⎥⎦ . (2.32b)

Note that the lower bound on the lateral position is varying and is, therefore, governed by
a function that we introduce next.

Closing Merge Lane Secondly, as the right lane boundary is dependent on the longitu-
dinal position, this constraint is enforced through a separate constraint function:

hr
(
xi|k

)
= m(Xi|k)− Yi|k +

W −Wl

2
,

hr
(
xi|k

) ≤ 0, for i = 0, . . . , N,
(2.33)

where the right road boundary is parallel to the lane center of the merge lane, defined in
(2.28), W and Wl denote the vehicle width and the lane width, as defined in Table 2.1,
respectively. Figure 2.1 shows a schematic overview of the scenario.

Collision Avoidance Collision avoidance is governed by a safety ellipse that constrains
the centroid of the target vehicles to be outside an ellipse surrounding the Ego vehicle. This
ellipse is defined by the following constraint function:

hc

(
x0
i ,x

j
i

)
= −

(
c1x,i − c0x,i

)2

E2
c,A

−
(
c1y,i − c0y,i

)2

E2
c,B

+ 1

hc

(
x0
i ,x

j
i

)
≤ 0, for i = 0, . . . , N,

(2.34)

where cjx,i and c
j
y,i denote the longitudinal and lateral component of the geometric center

of the jth vehicle at prediction step i, respectively. The major and minor semi-axis of the
ellipse are denoted by Ec,A and Ec,B, respectively. This ellipse accounts for the size of the
Ego vehicle and the target vehicle. Furthermore, the relative heading angle between the
vehicles can be accounted for by enlarging the ellipse such that under a maximum allowed
heading angle, no collision shall occur provided that our prediction model is correct.

Firstly, the minor semi-axis of the ellipse is fixed such that the vehicles can safely pass
one another in adjacent lanes without unnecessary interference. The minor semi-axis length
is determined by the vehicle width W , with some additional margin:

Ec,B =W + 0.82 = 3 [m]. (2.35)

26

2.3. Optimal Control Problem

Secondly, the major semi-axis of the ellipse is determined by a maximum assumed relative
angle between the concerned vehicles. Considering the state constraints limiting the Ego
vehicle to a heading angle of | ψmax |= 0.2618 [rad.] ≈ 15 [deg.], assuming the target vehicles
drive in a straight line and that the target has a zero heading angle. Subsequently, one can
determine the minimal major semi-axis length of the ellipse as:

Ec,A = 10.47 [m]. (2.36)

The major semi-axis length of the ellipse is calculated using a heuristic, for details on this
heuristic refer to Appendix A. For further reference, the eccentricity of the ellipse and its
effect on the control performance is researched in detail in [33].

Note that this ellipse does not consider any social driving behavior. This is accounted
for by a softly constrained social ellipse. This ellipse is typically larger than the nominal
safety ellipse. To promote social driving whenever possible, let us define the social collision
avoidance constraint as:

hs

(
x0
i ,x

j
i

)
= −

(
c1x,i − c0x,i

)2

E2
s,A

−
(
c1y,i − c0y,i

)2

E2
s,B

+ 1

hs

(
x0
i ,x

j
i

)
≤ 0, for i = 0, . . . , N,

(2.37)

where the minor semi-axis is kept the same to allow vehicles to pass one another:

Es,B = Ec,B = 3 [m]. (2.38)

The major semi-axis of the social ellipse is extended to promote the Ego vehicle to keep a
social distance whenever possible:

Es,A = 20 [m]. (2.39)

Expanded Collision Avoidance Ellipse As mentioned before, Chapter 3 expands on
the prediction models that provide a predicted trajectory of the Following vehicle. These
predictions can be used to anticipate the future positions of the Follower and account for this
to prevent a collision in the future. However, the collision avoidance constraints in (2.34)
are deterministic and therefore assume perfect knowledge of the future states of the target
vehicles. Still, these constraints can be extended to account for a degree of uncertainty in
these predictions of the other vehicles.

Similar to [10], a minimum covering ellipse is used to represent the target vehicle. Con-
sidering that the predictions of the Follower over the horizon are random variables, collision
avoidance is governed in a probabilistic sense, such that we have constraint satisfaction with
a user-defined probability px:

Pr
(
hc

(
x0
i ,x

j
i

)
≤ 0

)
≥ px, for i = 0, . . . , N. (2.40)

Such probabilistic constraints, or chance constraints, can be transformed into deterministic
constraints by means of constraint tightening. Linear constraints allow for the separation

27

Chapter 2. The Motion Planning Problem

of the stochastic and deterministic components of a chance constraint, as such, they can be
adopted in a deterministic optimal control problem, as seen in [34]. Generally, nonlinear
constraints cannot be decomposed into deterministic and stochastic components and need
some form of approximation to be cast into a tractable optimal control problem.

To account for the uncertainty in the predicted position of the target vehicle over the
horizon, the semi-axes of these ellipses can be scaled to account for the variance in the lon-
gitudinal and lateral positions. Zhu et al. [10] consider longitudinal and lateral uncertainty
while performing an overtaking maneuver on a race track. However, in the case of a lane
merging scenario, the road users have to abide by written and unwritten traffic laws. Hence,
we can safely assume that the target vehicle in the target lane will remain in its lane and
therefore assume no uncertainty in the lateral motion of the target vehicle. By expanding
the major axis of the ellipse to account for longitudinal uncertainty, we obtain a determin-
istic constraint that approximates constraint satisfaction with a user-defined probability,
with the assumption that the calculated probability distribution is correct:

he

(
x0
i ,x

1
i ,Σ

X1

i , σ
)
= −

(
c1x,i − c0x,i

)2

(
Ec,A + σ

√
ΣX1

i

)2 −
(
c1y,i − c0y,i

)2

E2
c,B

+ 1

he

(
x0
i ,x

1
i ,Σ

X1

i , σ
)
≤ 0, for i = 0, . . . , N,

(2.41)

where ΣX1

i denotes the covariance of the longitudinal position of the Follower X1 at predic-
tion step i. The probability of stochastic constraint satisfaction can be tuned with σ ≥ 0,
such that the approximate probabilistic constraints are enforced with a probability of:

Pr
(
hc

(
x0
i ,x

j
i

)
≤ 0

)
≥ erf

(
σ√
2

)
, (2.42)

where

erf (z) =
z√
2

∫ z

0
e−t2dt (2.43)

and σ is the number of standard deviations which are accounted for.
A relatively large uncertainty in the longitudinal direction will result in a very eccentric

ellipse, this would lead to additional conservatism either in the longitudinal or in the lateral
direction. Although this could be a potential drawback of such an expanded ellipse in
lane merging scenarios, it is found that the expanded ellipses work sufficiently well. The
implementation of the expanded collision avoidance constraints is discussed in Chapter 4.

2.3.3 Prediction Models

In order to find a solution to the OCP that considers the future states of the target vehicles,
we need some predictions that provide a belief of the states of the Ego as well as the target

28

2.3. Optimal Control Problem

vehicles. Firstly, we assume to have perfect knowledge of the Ego’s dynamics and therefore
its predictions:

x0
i|k+1 = f0

(
x0
i|k,ui|k

)
= f

(
x0
i|k,ui|k

)
, (2.44)

where f0 denotes the nominal prediction model for the Ego vehicle, f is the sampled dy-
namical system defined in (2.26) — recall that the f is the sampled approximation of fc
from (2.3). Here, x0

i|k, denotes the prediction of state x0 at future time t = (k + i)Ts, at
current time t = kTs.

As stated in section 2.1, we assume that the Leader maintains its initial velocity, zero
heading, and steering angle, hence, and remains in its lane. Accordingly, its predictions are
also true:

x2
i|k+1 = f2

(
x0
i|k,0

)
= f

(
x0
i|k,0

)
, (2.45)

As a baseline, we consider a constant velocity prediction model for both the Leader as
well as the Following vehicle:

v̄1i+1|k = v̄1(k), for i = 0, . . . , N − 1, (2.46)

where v10|k = v1(k). Hence, the predictions of the longitudinal position read as follows:

X̄1
i+1|k = X̄1

i|k + Tsv
1
0|k, for i = 0, . . . , N − 1. (2.47)

Conclusively, the nominal prediction model of the target vehicles is:

xj
i+1|k = f j

(
xj
i|k
)
= Axj

i|k, for i = 0, . . . , N − 1, and j = 1, 2, (2.48)

where the system matrix A is defined as:⎡
⎢⎢⎢⎢⎣
1 0 Ts 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (2.49)

where x̄1
0|k = x1(k).

Recall that the Follower does not maintain a constant velocity, rather, it is controlled by
the novel Interactive Merge-Reactive Intelligent Driver Model, presented in section 2.2.2.
One can imagine that in this case, a constant velocity (CV) prediction model cannot capture
these dynamics. To this end, Chapter 3 introduces a Gaussian process-based prediction
model that exploits Bayesian inference to improve its predictions of the Follower.

29

Chapter 2. The Motion Planning Problem

2.3.4 Model Predictive Control

By combining the ingredients defined in the section above, the motion planning problem
can formulated as a finite horizon optimal control problem (OCP):

min
Uk,εk

J
(
x0 (k) ,u (k − 1) ,Uk

)
(2.50a)

s.t. x0
i+1|k = f0

(
x0
i|k,ui|k

)
, i = 0, . . . , N − 1 (2.50b)

x1
i+1|k = f1

(
x1
i|k
)
, i = 0, . . . , N − 1 (2.50c)

x2
i+1|k = f2

(
x2
i|k
)
, i = 0, . . . , N − 1 (2.50d)

x0
min ≤ x0

i|k ≤ x0
max, i = 0, . . . , N (2.50e)

umin ≤ ui|k ≤ umax, i = 0, . . . , N − 1 (2.50f)

hc

(
x0
i|k,x

1
i|k
)
≤ εi|k,1, i = 0, . . . , N (2.50g)

hc

(
x0
i|k,x

2
i|k
)
≤ εi|k,2, i = 0, . . . , N (2.50h)

hs

(
x0
i|k,x

1
i|k
)
≤ εi|k,3, i = 0, . . . , N (2.50i)

hs

(
x0
i|k,x

2
i|k
)
≤ εi|k,4, i = 0, . . . , N (2.50j)

hr

(
x0
i|k
)
≤ 0, i = 0, . . . , N (2.50k)

xj
0|k = xj (k) , j = 1, 2, 3. (2.50l)

The motion planning problem is solved using nonlinear model predictive control. As such,
the OCP (2.50) is solved in a receding horizon fashion: at each discrete time step denoted
as k, the OCP is solved using numerical optimization. The solution to this OCP yields a
piecewise-constant input sequence over the control horizon, the first input of this sequence
is applied to the system and is held constant by means of a zero-order hold function.
Subsequently, the states of all vehicles in the scenario evolve for one sample time according
to the discretized system dynamics (2.26). Then, the OCP is reformulated and solved for
the subsequent time step k+1. With this problem formulation in place, we proceed to devise
a Gaussian process-based prediction model for the Follower in Chapter 3. Subsequently, we
exploit this prediction model in several GP-based MPC algorithms, detailed in Chapter 4.

30

Chapter 3

Gaussian Process Prediction Model

Chapter 2 formalizes the motion planning problem and concludes with a finite horizon
optimal control problem that is solved using model predictive control. As a baseline, we
predict the future states of the Follower with a constant velocity model. However, such
a prediction model does not always suffice, as seen in Chapter 5. Furthermore, active
learning requires an interaction-aware prediction model. In order to better anticipate the
Follower’s behavior in the motion planning problem, we want to capture any deviations
from this velocity, which we refer to as residual dynamics. These residual dynamics are
approximated by a Gaussian process model that is updated online to learn the interactive
behavior of the Follower.

Chapter 1 discusses the potential of Gaussian processes (GP) and their relevance in
learning-based MPC. This chapter proposes a GP-based prediction model for the trajectory
of the Follower. Firstly, a brief introduction to GPs is provided in section 3.1. Secondly,
we derive an expression for the expected value of GP-based prediction model. Finally,
we extend this model to a stochastic model that considers uncertainty in its predictions
through the covariance of the predictions. The GP-based MPC exploits this covariance,
which is detailed in Chapter 4. Throughout this chapter, we consider two variants of
Gaussian process regression. Firstly, we consider the full Gaussian process in its classical
form. Secondly, we consider a Sparse Pseudo-Input GP (SPGP), which aims to reduce the
complexity of the Gaussian process regression.

3.1 Preliminaries

As just mentioned, we provide a brief introduction to the relevant preliminaries and nomen-
clature of Gaussian process regression that is used in this work. For a comprehensive ex-
planation and more details on Gaussian processes, please refer to [35].

31

Chapter 3. Gaussian Process Prediction Model

3.1.1 Stochastic Processes

A stochastic process is a mathematical object d (z) that consists of an experiment with a
probability measure Pr (d (z)) defined on a sample space S and a function that assigns a
sample function d̂ (z, s) to each sample of s ∈ S. These sample functions are a function of
z ∈ Z, the input to the stochastic process, where Z denotes the input space of the stochastic
process. The input to the process z can be, but is not necessarily, time. To this end, we
can take a sample s from the stochastic process d (z) and we obtain a probability on this

sample function Pr
(
d̂ (z, s)

)
. Loosely speaking, we can think of a stochastic process as a

generalization of a probability distribution of variables.

Gaussian Processes Gaussian processes are a specific class of stochastic processes. Just
like Gaussian variables, whether scalar or vector-valued, are characterized by a value for
its mean and covariance, Gaussian processes are characterized by a mean function and a
covariance function. As a result, we have a Gaussian distribution over functions:

d (z) ∼ GP (
d̄ (z) , k

(
z, z′

))
, (3.1)

where the mean function d̄ (z) and the covariance function k(z, z′) of d(z) are defined as:

d̄ (z) = E [d (z)] (3.2a)

k
(
z, z′

)
= E

[(
d (z)− d̄ (z)

) (
d
(
z′
)− d̄

(
z′
))�]

, (3.2b)

where (z, z′) is an input pair at which we evaluate the covariance function. In this study,
we limit ourselves to a scalar output of a real Gaussian process, such that d (z) : Rnz → R.

Prior Assumptions Let us consider an input vector z ∈ R
nz and a mapping d (z) to an

output y ∈ R. Assuming we are agnostic to the process d (z), we assume a mean function of
zero. We can draw random sample functions from this ‘zero mean’ prior distribution, i.e.,
in the absence of data or experience. To this end, we assume a Gaussian prior distribution
based on our expert knowledge of the process d (z):

d (z) ∼ N (
0, k

(
z, z′

))
. (3.3)

As we will see later, this does not limit the prediction capabilities of the GP. Moreover, using
a deterministic mean function d̄ (z) is trivial: we apply a zero mean GP to the difference
between the observations and the fixed mean function d̄ (z).

Bayesian Inference During training, we observeM pairs of inputs and outputs from the
GP (Zj ,yj) and store them in a training set D = {(Zj ,yj) | j = 1, . . . ,M}. Given a new
input z and this training set, or experience, we can improve our predictions of the output y.
For example, when the input z is similar to previous observations, we may expect that the
output is similar to the output of the associated observations. On the other hand, when the

32

3.1. Preliminaries

input z is very different from previous observations, we can still make a prediction, however,
the covariance of this prediction is likely to be larger. Bayes’ theorem is at the heart of this
inference:

Pr (d | D) =
Pr (D | d) Pr (d)

Pr (D)
, (3.4)

and states that our prediction of d given the observations D can be computed by multiplying
the likelihood of the process d given observations D by our prior assumption on d and
dividing it by the probability of our observations D. Here, the likelihood of d given D which
is designed by the user based on data or expert knowledge, is:

L (d | D) = Pr (D | d) (3.5)

Gaussian processes are particularly attractive as the computations required for this
inference and learning become relatively easy [35]. Given a prior distribution Pr (d) and
a training set with data of previous observations Pr (D), we can compute a closed-form
expression of the posterior distribution Pr (d | D), which is also a Gaussian process. This
simply means that with a Gaussian prior assumption of the functions we expect, and some
understanding of the process in the form of data, what probability distribution do we expect
for the output function? Again, this posterior distribution is also a Gaussian process, and,
therefore, it is fully characterized by a mean function μd (z) and a covariance function Σd (z).
The properties of this posterior distribution are determined by the likelihood Pr (D | d) and
can be designed through the kernel function of the prior distribution.

Kernel Functions In Gaussian processes, the similarity between inputs is measured by
the covariance function. The covariance function can be lifted into a feature space by a
kernel function k (z, z′) : Rnz × R

nz → R. Again, these kernel functions play a key role in
the inference for the posterior distribution. The covariance function can be used to impose
properties on the posterior distribution, such as stationarity and non-degenerateness, and
it can be used to tune its variance and characteristic length-scale. For example, increasing
the signal variance σd of the prior covariance function leads to a larger amplitude of the
posterior mean, but also a greater posterior covariance. The length-scale Ls is a measure
of the smoothness, or frequency content, of the posterior distribution.

Frequently used covariance functions, particularly in learning-based MPC, are the squared
exponential kernel functions [8, 9, 16, 36], which is also known as a radial basis function:

kzz′ = k
(
z, z′

)
= σd exp

(
−1

2

(
z− z′

)�
L−2
s

(
z− z′

))
, (3.6)

where σd is the signal variance and Ls denotes the length-scale matrix, which is typically
chosen to be diagonal, as we do here. The squared exponential kernel is non-degenerate,
meaning it has infinite rank. Furthermore, this kernel function is very powerful for nonlinear
function regression [36], and it is universal, meaning it can approximate continuous functions
in compact spaces with arbitrary accuracy [37, 38]. Despite some experiments with other
kernel functions, we limit ourselves to the squared exponential kernel functions. For a
detailed discussion on kernel functions and their properties, refer to [35].

33

Chapter 3. Gaussian Process Prediction Model

3.1.2 Full Gaussian Process

In the previous section, we introduced GPs and briefly discussed how they can be used for
inference. In this section, we formalize GP regression. We consider a prior distribution of
the GP with a zero mean function and a kernel function as defined in (3.6):

d (z) ∼ N (0, kzz′) . (3.7)

By definition, a GP consists of a collection of random variables, any finite number of which
have a joint Gaussian distribution. We assume that the training outputs y ∈ R

M , and the
prior distribution d (z) are jointly Gaussian distributed:[

y
d (z)

]
∼ N

(
0,

[
KZZ kZz

kzZ kzz

])
, (3.8)

whereKZZ ∈ R
M×M is a Grammmatrix with kernel evaluations, with [KZZ′]jj′ = k

(
Zj ,Z

′
j′

)
.

Furthermore, the vector kZz ∈ R
M×1 is the concatenation of kernel functions evaluated at

the test point z and the training set Z =
[
Z1, . . . ,ZM

] ∈ R
nz×M , where [kZz]j = k (Zj , z)

and k�
Zz = kzZ. Given a set of training data D = {(Zj ,yj) | j = 1, . . . ,M}, we condi-

tion the jointly Gaussian prior distribution on the observations y and obtain the posterior
distribution:

Pr (d | z,Z,y) = N
(
μd (z) ,Σd

(
z, z′

))
, (3.9)

where the posterior mean and covariance function for a new test point z read [35]:

μd (z) = kzZK
−1
ZZy, (3.10a)

Σd (z) = kzz − kzZK
−1
ZZkZz. (3.10b)

Now we have a formal expression for the posterior distribution of the process d (z), based
on some assumed prior (3.7) and training data in the form of D = {Z,y}.

3.1.3 Sparse Pseudo-Input Gaussian Processes

Sparse Pseudo-Input Gaussian processes (SPGP) [25], also known as the Fully Independent
Training Conditional approximation, can be used to approximate full GPs using a set of M̃
inducing points, or pseudo-inputs and pseudo-targetsDind = {(Zind,j ,yind,j) | j = 1, . . . , M̃}.
By exploiting the properties of the GP, the SPGP reduces its computational complexity,
with the number of pseudo-inputs being much smaller than the actual training points [25].

Marginalization of the Likelihood Firstly, the likelihood of the target data Z and the
pseudo-set is modeled as a particular Gaussian process [25]:

Pr (d | Z,Zind,yind,) = N
(
KZZind

K−1
ZindZind

yind,Λ
)
, (3.11)

34

3.1. Preliminaries

where:
Λ = diag (λ) , (3.12)

[λ]j = kZjZj − kZjZind
K−1

ZindZind
kZindZj , for j = 1, . . . ,M. (3.13)

Learning with this model involves finding a suitable set of pseudo-inputs Zind and pseudo-
targets yind. However, rather than maximizing the likelihood, the pseudo-targets yind can
be integrated out by exploiting the marginalization property of Gaussian processes [25]. To
this end, one can place a Gaussian prior on the pseudo-set:

Pr (yind | Zind) = N (0,KZind
) , (3.14)

and find the posterior distribution over pseudo-targets yind using Bayes theorem (3.4) on
the likelihood (3.11) and the prior (3.14):

Pr (yind | D,Zind) = N
(
KZindZind

Q−1
Zind

KZindZΛ
−1y,KZindZind

Q−1
Zind

KZindZind

)
, (3.15)

where:
QZind

= KZindZind
+KZindZΛ

−1KZZind
. (3.16)

Given a new input z, we obtain the posterior distribution of d by marginalization, through
the integration of the likelihood of (3.11) with the posterior of (3.15) [25]:

Pr (d | z,D,Zind) =

∫
dyind Pr (d | z,Zind,yind) Pr (yind | D,Zind)

= N
(
μ̃d (z) , Σ̃d (z)

)
,

(3.17)

The expression for the posterior mean function and covariance function for a new test point
z of the SPGP read [25]:

μ̃d(z) = kzZind
Q−1

Zind
KZindZΛ

−1y (3.18a)

Σ̃d(z) = kzz − kzZind

(
K−1

ZindZind
−Q−1

zind

)
kZindz. (3.18b)

Henceforth, we use a tilde
(
μ̃d, Σ̃d

)
to refer to the SPGP rather than the full GP. Through

the marginalization of the GP on the pseudo-input set, the computational complexity is

significantly reduced from O (
M3

)
to O

(
MM̃2

)
for training, and from O (

M2
)
to O

(
M̃2

)
per test point for inference [25]. For a detailed derivation, refer to [25].

Selecting the Inducing Points Selecting the inducing points can be done based on
some information criterion. On the other hand, transductive methods exploit the location
of the test point z, rather than only relying on the training set [35], which is of interest
for fast methods like MPC for motion planning, in particular in absence of training data.
Hewing et. al [16] propose a method to dynamically select this set of inducing points as

35

Chapter 3. Gaussian Process Prediction Model

the previous predicted state-input sequence of the MPC, as predictive control lends itself
well to transductive approximations. Through the inducing points, the approximation can
be adjusted based on the test points, i.e., the (future) evaluation locations. In MPC, an
approximate trajectory through the state-input space is typically available which provides
us with an estimate of these test points. As such, we select the inducing points heuristically
along the approximate state and input trajectory which is computed at the previous MPC
step [16].

3.2 Learned Dynamics

In this section, we exploit Gaussian processes to construct a data-driven prediction model
for the Follower’s future states over the prediction horizon. Although, GPs can account for
Gaussian measurement noise on the observations, as mentioned in section 2.1, we assume
that any measurements, and hence the training data, is free of any noise. The Follower
is controlled by the Interactive Merge-Reactive IDM model, detailed in section 2.2.2. The
resulting closed-loop dynamics are composed of nominal dynamics f1 which are assumed
to be known, and of residual dynamics g1 which are assumed to be unknown:

x1
k+1 = f1

(
x1
k

)
+ g1

(
x0
k,x

1
k,u

0
k,x

2
k,u

1
k,u

2
k

)
. (3.19)

However, when the Ego vehicle has not observed any data, the Ego initially only has access
to the Follower’s current state. Accordingly, we have to make a prediction of the Follower’s
state using only its current state. To this end, the nominal dynamics f1 : Rn → R

n are
a constant velocity model which is a homogeneous and non-autonomous system, as the
current velocity is updated at every time step. Furthermore, it is independent of the states
of the other vehicles. Conversely, the residual dynamics g1 : Rn → R

n may describe a policy
that depends on the states as well as the inputs from the other agents. For example, the
IDM uses the current acceleration of the reference vehicle as an input for its policy. The
initial prediction, based on f1, is that the Follower maintains its current velocity at time
step k over the entire prediction horizon.

The residual dynamics g1 are approximated using GP regression, which is introduced in
section 3.1. More specifically, we use a GP to model the learned dynamics d1 : Rnz → R:

x1
i+1|k = f1

(
x1
i|k
)
+Bd1

(
x0
i|k,x

1
i|k,x

2
i|k,u

0
i|k
)
, (3.20a)

d1 ∼ N
(
μd

1
,Σd1

)
. (3.20b)

The learned dynamics are assumed to lie in the subspace spanned by a vector B, which we
define later in (3.30). This prediction model is assumed to have access only to the current
states of all vehicles and the Ego’s input. Note that the learned dynamics are dependent
on x0, x1, x2 and u, making the Follower’s prediction model interaction-aware, as a control
input u of the Ego vehicle will influence the state x1, and the resulting state x1 may in turn
influence the selection of control input u. This coupling enables us to jointly optimize the

36

3.2. Learned Dynamics

motion of the Ego and the Follower. Subsequently, we will define the nominal dynamics f1

and learned dynamics d1 formally.

3.2.1 Deterministic Prediction Model

Our initial assumption is that the Follower maintains a constant velocity over the prediction
horizon. As such, the GP prediction model employs a constant velocity as a deterministic
mean function:

v̄1i|k = v1(k), for i = 0, . . . , N. (3.21)

Due to the kinematics of the kinematic bicycle model, we have:

X̄1
i+1|k = X̄1

i|k + Tsv
1 (k) , for i = 0, . . . , N − 1, (3.22)

where X̄1
0|k = X1(k). Hence, the deterministic mean function of the prediction model is

equal to the nominal dynamics in (2.48):

x̄1
i+1 = f1

(
x̄1
i

)
= Ax̄1

i =

⎡
⎢⎢⎢⎢⎣
1 0 Ts 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ x̄1

i , for i = 0, . . . , N − 1, (3.23)

where x̄1
0|k = x1(k). The differences from this deterministic mean, i.e. the residual dynam-

ics, are approximated by the learned dynamics d1 which is a Gaussian process. We employ
a zero mean Gaussian process and learn the difference with respect to the constant velocity
assumption. When we do not have any training data the Gaussian process has a zero mean
function, and the prediction model assumes a constant velocity over the prediction hori-
zon. Note that we do get an associated covariance which is equal to the covariance of the
assumed prior distribution. Now, we use previous observations to predict deviations from
this velocity. We confine ourselves to predicting the residual velocity.

Residual Dynamics Let us recall the state of the Follower:

x1
k =

⎡
⎢⎢⎢⎢⎣
X1

k

Y 1
k

v1k
ψ1
k

δ1k

⎤
⎥⎥⎥⎥⎦ . (3.24)

We infer these predictions using the velocities of the different vehicles, as well as their
relative positions:

z =
[
v0 v1 v2

(
X1 −X0

) (
X1 −X2

) (
Y 1 − Y 0

)]�
, (3.25)

37

Chapter 3. Gaussian Process Prediction Model

here we omit the relative lateral position between the Follower and Leader for we assume
this to be zero. To this end, GP regression is used to predict the velocity of the Follower at
the next time step k + 1. The output that we observe and aim to predict is the difference
between the Follower’s actual velocity and the deterministic constant velocity prediction:

yk = v1k+1 − v1k = Δv1k. (3.26)

As such, we can store previous observations in a row vector y = [y1,y2, . . . ,yM]� and use
them for learning using GP regression. The deviation from the deterministic mean, or the
velocity increment, is approximated by the posterior distribution of the Gaussian process:

Δv1i|k = v1i+1|k − v1i|k ≈ d1
(
zi|k

) | D,Zind, (3.27)

where the posterior GP reads:

d1 (z) ∼ GP
(
μd

1 (
zi|k

)
,Σd1

(
zi|k, z′i|k

))
, (3.28)

with the posterior mean and covariance functions as defined in (3.10) and (3.18), for the
full GP and the SPGP, respectively. The predicted velocity of the Follower equals:

v1i+1|k = v1i|k +Δv1i|k, (3.29)

with v0|k = v(k). The residual dynamics d1 are assumed to only affect the velocity of the
Follower, as the relationship between the longitudinal position and velocity is kinematic.
The input matrix B is used to project the learned dynamics d1 onto the state x1:

B =
[
0 0 1 0 0

]�
. (3.30)

Hence, we obtain the following posterior of the prediction for the Follower:

x1
i+1|k = Ax1

i|k +Bd1
(
zi|k

)
, for i = 0, . . . , N − 1. (3.31)

It should be noted, however, that d and the predicted test points zi|k are random variables.
In order to make multi-step predictions over the horizon, we will formulate a tractable
deterministic approximation for the MPC in the subsequent sections.

Posterior Mean Function Multi-step predictions can be made by consecutively evalu-
ating the GP at the posterior mean of the preceding prediction:

μx
1

i+1|k = Aμx
1

i|k +Bμd
1
(
μzi|k

)
, for i = 0, . . . , N − 1. (3.32)

The posterior mean of the Gaussian process μd(z) is a function of the test point z and is
evaluated at the mean of the test point μz:

μzi|k =
[
v0i|k μv

1

i|k v2i|k
(
μX

1

i|k −X0
i|k
) (

μX
1

i|k −X2
i|k
) (

μY
1

i|k − Y 0
i|k
)]�

, (3.33)

38

3.3. Uncertainty Propagation

where μx
1

0|k = x1(k). The posterior mean function μd
1
(zi|k) of the GP reads as follows:

μd
1 (

zi|k
)
= kzi|kZK

−1
ZZy, (3.34)

for the full GP, as defined in (3.10). In case of the SPGP, the posterior mean function μ̃d
1

is defined in (3.18) and reads:

μ̃d
1
(z) = kzZind

Q−1
Zind

KZindZΛ
−1y. (3.35)

In the next section, we derive an expression for the covariance of the state Σx1
.

3.3 Uncertainty Propagation

Since the predictions of the GP are random variables that are Gaussian distributed, the
predicted state trajectories are characterized by a mean trajectory as well as a covariance
at each prediction step. This covariance provides an approximate but qualitative measure
of uncertainty that can be used in stochastic MPC to provide a degree of probabilistic con-
straint satisfaction. Consecutive GP evaluations result in a distribution over distributions
which is generally intractable. In this section, we derive a tractable approximation of the
distribution that enables uncertainty propagation over consecutive prediction steps. We
employ a first-order Taylor approximation of the GP and propagate the uncertainty over
the prediction horizon through a linear filter. We derive these notions for the full GP, as
well as the extensions for the Sparse Pseudo-Input GP, in parallel.

3.3.1 Independence Assumption

Closed-form solutions for prediction models are typically limited to one-step-ahead predic-
tions in the case of Gaussian distributions [15, 39]. When using GPs for a sequence of
predictions, the output of the GP is an input for the inference at the next prediction step.
As mentioned before, consecutive evaluations are generally intractable. Therefore, predict-
ing the state distributions of a dynamical system over a horizon of length N using GPs,
typically requires numerical approximation. While successive evaluations of the true sys-
tem are highly correlated [39], established methods use successive approximate evaluations
which are assumed to be independent at each time step k and neglect the fact that GPs
describe a distribution over functions. The inferred posterior distribution on the trajectory
given data D = {(Zj ,yj) | j = 1, . . . ,M} can be expressed as:

⎡
⎢⎣
d11
...
d1N

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣
μd

1
(z1)
...

μd
1
(zN)

⎤
⎥⎦ ,

⎡
⎢⎣

Σd1 (z1, z1) . . . Σd1 (z1, zN)
...

. . .
...

Σd1 (zN , z1) . . . Σd (zN , zN)

⎤
⎥⎦
⎞
⎟⎠ . (3.36)

The common independence assumption can be understood as approximating the distribution
of the predicted state trajectory over N time steps as [39]:

39

Chapter 3. Gaussian Process Prediction Model

⎡
⎢⎣
d11
...
d1N

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣
μd

1
(z1)
...

μd
1
(zN)

⎤
⎥⎦ ,

⎡
⎢⎣

Σd1 (z1, z1) . . . 0
...

. . .
...

0 . . . Σd1 (zN , zN)

⎤
⎥⎦
⎞
⎟⎠ . (3.37)

3.3.2 Approximation of Covariance

In order to derive an expression for the covariance of the predicted state Σx1

i , we make some
assumptions. Firstly, the predicted Follower’s state x1

i and the posterior of the GP d1 of
the prediction model are approximated as jointly Gaussian distributed at every time step:

[
x1
i

d1i

]
∼ N (μi,Σi) = N

([
μx

1

i

μd
1

i

]
,

[
Σx1

i Σx1d1
i

Σd1x1

i Σd1
i

])
, (3.38)

such that the covariance can be approximated and propagated over the prediction horizon.
Secondly, we assume that Σx0

= 0, Σx2
= 0 and Σu = 0. Finally, for the uncertainty

propagation of the Gaussian process, we need to find an approximation of μdi ,Σ
d
i ,Σ

x1d1
i . To

this end, we make a first-order Taylor approximation of the Gaussian process. For details
of this derivation please refer to [40]. This method provides a good trade-off between
approximation accuracy and computational complexity [16]:

μd
1

i = μd
1
(μzi) (3.39a)[

Σx1d1
i

Σd1
i

]
=

⎡
⎢⎣ Σx1

i

(
∇x1μd

1
(μzi)

)�

Σd1 (μzi) +∇x1μd
1
(μzi) Σ

x1

i

(
∇x1μd

1
(μzi)

)�

⎤
⎥⎦ , (3.39b)

where the posterior mean function μd
1
(z) and covariance Σd1 (z) function of the GP are

defined per (3.10) and (3.18) for the full and sparse GP, respectively. For the first-order
Taylor approximation of the Gaussian process, we need an expression of the gradient of the
posterior mean, with respect to the state x1. This expression is specific to our prediction
model and is derived in the next section.

3.3.3 Gradient of Posterior Mean

Full Gaussian Process Firstly, we derive an expression for the gradient of the posterior
mean of the full Gaussian process with respect to the Follower’s state:

∇x1μd
1
(z) = ∇x1μd

1 (
x0,x1,x2

) ∈ R
1×nx

(3.10)
= ∇x1

(
kzZK

−1
ZZy

)
=
[

∂
∂x1

1
kzZK

−1
ZZy

∂
∂x1

2
kzZK

−1
ZZy . . . ∂

∂x1
nx

kzZK
−1
ZZy

]
.

(3.40)

40

3.3. Uncertainty Propagation

Since the Gramm matrix with kernel evaluations KZZ ∈ R
M×M and the vector of observed

targets y ∈ R
M×1 are not a function of x1, we separate them as follows:

∇x1μd
1
(z) = y� (

K−1
ZZ

)� ∂

∂x1
k�
zZ = y�K−1

ZZ

∂

∂x1
kZz. (3.41)

We compute the gradient of the squared exponential kernel function evaluated at one train-
ing point Zj :

∂

∂x1
k(Zj , z) =

∂

∂x1
exp

(
−1

2
(Zj − z)� L−2

s (Zj − z)

)

= k(Zj , z)
∂

∂x1

(
−1

2
(Zj − z)� L−2

s (Zj − z)

)

= k(Zj , z)
[
Zj,4−X1+X0

L2
s,4

+
Zj,5−X1+X2

L2
s,5

Zj,6−Y 1+Y 0

L2
s,6

Zj,2−v1

L2
s,2

0 0
]

= k(Zj , z)
[
Zj,4−z4
L2
s,4

+
Zj,5−z5
L2
s,5

Zj,6−z6
L2
s,6

Zj,2−z2
L2
s,2

0 0
]
,

(3.42)

where Zj,i is the ith element of data point Zj , and Ls is a positive, diagonal length-scale
matrix and Ls,i is the i

th diagonal element of Ls. This can simply be extended to compute
the gradient of the vector of the kernel evaluated at the set of training points:

∂

∂x1
kZz =

[
∂

∂x1
1
kZz

∂
∂x1

2
kZz . . . ∂

∂x1
nx

kZz

]

=

⎡
⎢⎢⎢⎢⎣

∂
∂x1

1
k(Z1, z)

∂
∂x1

2
k(Z1, z) . . . ∂

∂x1
nx
k(Z1, z)

∂
∂x1

1
k(Z2, z)

∂
∂x1

2
k(Z2, z) . . . ∂

∂x1
nx
k(Z2, z)

...
. . .

...
∂

∂x1
1
k(ZM , z)

∂
∂x1

2
k(ZM , z) . . . ∂

∂x1
nx
k(ZM , z)

⎤
⎥⎥⎥⎥⎦ ∈ R

M×nx

= kZz

[
1 . . . 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

Z1,4−z4
L2
s,4

+
Z1,5−z5
L2
s,5

Z1,6−z6
L2
s,6

Z1,2−z2
L2
s,2

0 0

Z2,4−z4
L2
s,4

+
Z2,5−z5
L2
s,5

Z2,6−z6
L2
s,6

Z2,2−z2
L2
s,2

0 0

...
...

...
...

...
ZM,4−z4

L2
s,4

+
ZM,5−z5

L2
s,5

ZM,6−z6
L2
s,6

ZM,2−z2
L2
s,2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(3.43)

which is equal to the vertical concatenation of the gradient of the kernel function evaluated
at the individual training points in (3.42). Note that ∂

∂x1
i
denotes the partial derivative

with respect to the i-th element of the state x1 and should not be confused with the i-th
prediction, and nx = 5 is the size of the state vector. Finally, we obtain an expression for

41

Chapter 3. Gaussian Process Prediction Model

the gradient of the posterior mean:

∇x1μd
1
(z) = y�K−1

ZZkZz

[
1 . . . 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

Z1,4−z4
L2
s,4

+
Z1,5−z5
L2
s,5

Z1,6−z6
L2
s,6

Z1,2−z2
L2
s,2

0 0

Z2,4−z4
L2
s,4

+
Z2,5−z5
L2
s,5

Z2,6−z6
L2
s,6

Z2,2−z2
L2
s,2

0 0

...
...

...
...

...
ZM,4−z4

L2
s,4

+
ZM,5−z5

L2
s,5

ZM,6−z6
L2
s,6

ZM,2−z2
L2
s,2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(3.44)

Sparse Pseudo-Input Gaussian Process Note that the gradient of the posterior mean
with respect to the Follower’s state x1 of the SPGP, is similar to that of the full GP as
kzZind

is the only function that is dependent on x1. Adaptations to the expression of the
posterior mean and covariance functions (3.10) are independent of x1 and, hence, do not
affect the gradient:

∇x1 μ̃d
1
(z) = ∇x1 μ̃d

1 (
x0,x1,x2

)
(3.18)
= ∇x1

(
kzZind

Q−1
Zind

KZindZΛ
−1y

)
= y�

(
Q−1

Zind
KZindZΛ

−1
)� ∂

∂x1
kZindz

= y�Λ−1KZZind

(
Q−1

Zind

)� ∂

∂x1
kZindz.

(3.45)

We merely have to change the argument for the vector of kernel functions kZindz as well as
its dimensions from M to M̃ :

∂

∂x1
kZindz = kZindz

[
1 . . . 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

Zind1,4−z4
L2
s,4

+
Zind1,5−z5

L2
s,5

Zind1,6−z6
L2
s,6

Zind1,2−z2
L2
s,2

0 0

Zind2,4−z4
L2
s,4

+
Zind2,5−z5

L2
s,5

Zind2,6−z6
L2
s,6

Zind2,2−z2
L2
s,2

0 0

...
...

...
...

...
ZindM̃,4−z4

L2
s,4

+
ZindM̃,5−z5

L2
s,5

ZindM̃,6−z6

L2
s,6

ZindM̃,2−z2

L2
s,2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(3.46)
Now that we have an expression for the gradient of the posterior mean, we can compute
the covariance of the joint distribution of the state x1 and the learned dynamics d1:

Σi =

[
Σx1

i Σx1d1
i

Σd1x1

i Σd1
i

]
. (3.47)

This allows us to make multi-step predictions with a tractable approximation of the GP that
allows for the propagation of the uncertainty over the prediction horizon. Subsequently,
we formalize the uncertainty propagation with multi-step predictions and construct the
stochastic GP-based prediction model.

42

3.3. Uncertainty Propagation

3.3.4 Stochastic Prediction Model

Full Gaussian Process The full GP is used to formulate a stochastic prediction model
for the Follower, which is characterized by the expected value of the Follower’s state μx

1

i|k and

the covariance of its state Σx1

i|k at time step k+ i. Similar to Kalman filtering, we propagate

the uncertainty through the prediction model (3.31), including the nominal dynamics:

μx
1

i+1|k = Aμx
1

i|k +Bμd
1

i|k, (3.48a)

Σx
i+1|k =

[
A B

]
Σi|k

[
A B

]�
, for i = 0, . . . , N − 1, (3.48b)

where the initial prediction equal the current state μx
1

0|k = x1 (k) with full certainty Σx1
= 0.

Furthermore, the covariance matrix Σi propagates through the variance of the predicted
state of the following vehicle Σx1

i at prediction step i over a horizon of i = 0, . . . , N . The
consecutive prediction steps are assumed to be independent and are evaluated according to
(3.37). Hence, we have a tractable approximation of the stochastic prediction model (3.31)
of the Follower that can be used in the MPC problem.

Sparse Pseudo-Input Gaussian Process The SPGP prediction model is similar to
that of (3.48), where the expressions for the posterior mean and covariance function are
replaced by those in (3.18):

μ̃x
1

i+1 = Aμ̃x
1

i +Bμ̃d
1

i (3.49a)

Σ̃x
i+1 =

[
A B

]
Σ̃i

[
A B

]�
, for i = 0, . . . , N − 1. (3.49b)

Chance Constraints As mentioned before, one of the main advantages of GPs is their
measure of uncertainty that is quantified by the covariance. Recall that the collision avoid-
ance constraints, defined in (2.41), can be expanded to account for this uncertainty:

he

(
x0
i|k,x

1
i|k,Σ

X1

i|k , σ
)
= −

(
c1x,i|k − c0x,i|k

)2

(
Ec,A + σ

√
ΣX1

i|k
)2 −

(
c1y,i|k − c0y,i|k

)2

E2
c,B

+ 1

he

(
x0
i|k,x

1
i|k,Σ

X1

i|k , σ
)
≤ 0, for i = 0, . . . , N,

(3.50)

where the posterior covariance from the GP Σd
i|k can be propagated to the covariance of

the longitudinal position of the Follower ΣX1

i|k . The covariance of the longitudinal position

is the first element of the covariance matrix of the joint distribution in (3.38):

ΣX1
= [Σx1

]1,1 = [Σ]1,1. (3.51)

Hence, we can explicitly incorporate the predicted uncertainty from the GP-based prediction
model in the collision avoidance constraints of the MPC. By tuning the parameter σ ≥ 0

43

Chapter 3. Gaussian Process Prediction Model

in (2.41) we can adjust the number of standard deviations that we account for in our
probabilistic constraints (2.40). Although this covariance is approximate, for the prediction
model is merely an approximation, we can still exploit it as a tunable degree of conservatism.

3.3.5 Validation of the Sparse Pseudo-Input Gaussian Process

The Sparse-Pseudo Input GP was initially designed as an approximation of the full GP
[25]. Hence, one could argue that the SPGP should be compared against the full GP to
validate if the SPGP is capable of approximating the full GP with sufficient accuracy for
its intended application. However, one does not simply validate the SPGP by comparing it
with the full GP.

Firstly, it is difficult to validate the sparse GP simply by comparing the SPGP with
the full GP, as the full GP is only an approximation of the Follower’s policy. Secondly,
its computational complexity limits the full GP-based prediction model in its prediction
horizon and the size of the training set. This limits its capabilities to learn from new data
and improve its predictions, and hence, the relevance of the full GP model. For this reason,
most works on GP-MPC employ sparse GPs. Similarly, our SPGP prediction model is
designed with the intention of constructing a GP-based prediction model that lends itself
to a larger-scale implementation. In conclusion, in this study, we consider both methods as
a means to approximate the residual dynamics of the Following vehicle.

3.4 Gaussian Process MPC

In this chapter, two Gaussian process-based prediction models are presented to predict
the future states of the Follower. On the one hand, we have a full GP-based prediction
model that is purely conditioned on the training data D. On the other hand, we have a
Sparse Pseudo-Input GP-based prediction model that is additionally conditioned on a set
of pseudo-inputs, which can be determined using the previous state-input trajectory from
the MPC [16]. The SPGP reduces the complexity of the prediction model, making it more
tractable for implementation in an online MPC algorithm.

With these GP-based prediction models, we have expressions for the mean and covari-
ance of the state of the Follower over the prediction horizon which can be employed in our
interaction-aware learning MPC problem. Firstly, by expanding the chance constraints of
(2.41). Secondly, by exploiting the covariance for active learning. Chapter 4 will expand on
the baseline MPC, as well as different MPC algorithms that employ the GP-based prediction
models, presented in this chapter, including an MPC-based active learning algorithm.

44

Chapter 4

Learning-based GP-MPC

In this study, we consider three MPC methods to plan the motion of the Ego vehicle in a lane
merging scenario. Chapter 2 casts this motion planning problem into an optimal control
problem. In this problem, the Ego vehicle has to consider the Leading target vehicle, as well
as the Following target vehicle. The Leader maintains a constant velocity throughout the
scenario. The Follower interacts with the Leader as well as the Ego vehicle according to a
novel interactive, merge-reactive IDM, which is introduced in Chapter 2. As a baseline, we
first use a constant velocity MPC (CV-MPC) which assumes that the Follower maintains
its current velocity, presented in section 4.1. Secondly, section 4.2 proposes a Gaussian
process-based MPC (GP-MPC) algorithm that uses the interactive GP-based prediction
model, detailed in Chapter 3, to predict the velocity of the Follower. Finally, we expand
this GP-MPC algorithm by employing an active learning framework by [13], in section 4.3.

4.1 MPC with a Constant Velocity Model

Firstly, we discuss the baseline MPC that assumes a constant velocity over the prediction
horizon for the Leader and the Follower. We employ the objective function defined in (2.29):

J (x(k),u(k − 1),Uk) =
∥∥xN |k − xr

k

∥∥2
P
+
(
YN |k −Wl

)2
PY

(
YN |k −m

(
XN |k

))2
+

N−1∑
i=0

∥∥xi|k − xr
k

∥∥2
Q
+
(
Yi|k −Wl

)2
QY

(
Yi|k −m

(
Xi|k

))2
+
∥∥ui|k

∥∥2
R
+
∥∥Δui|k

∥∥2
S
,

(4.1)

where xr denotes the reference of the state (2.27), Wl is the lane width, and m(X) is a
function that describes the center of the merge lane, defined in (2.28). Moreover, we employ
a set of constraints to delimit the solution of the MPC to an attainable and safe trajectory.
The construction of the objective function and constraints are detailed in section 2.3. The
weights of the objective function are selected as follows: Q = diag (0, 0, 10, 200, 100), QY =
100, R = diag (10, 500), S = diag (100, 10000), P = Q, PY = QY . Note that the angles
have large costs for they are relatively small quantities.

45

Chapter 4. Learning-based GP-MPC

Considering the complexity of the problem, the recursive feasibility of the MPC is not
considered in this thesis. The collision avoidance constraints (4.2g)-(4.2j) are softly con-
strained such that active constraints can be relaxed to restore the feasibility of the MPC
problem, in the case of infeasibility. To this end, we use an l1 penalty function [41], which
is a non-smooth regularization method. Each of the constraints (4.2g)-(4.2j) can be relaxed
by their individual non-negative slack variable εk,j ∈ R

N+1
≥0 for j = 1, . . . 4 with a linear

penalty. Subsequently, we formulate the constant velocity MPC (CV-MPC) problem as
follows:

min
Uk,εk

J
(
x0 (k) ,u (k − 1) ,Uk

)
+ 1�εkρ (4.2a)

s.t. x0
i+1|k = f0

(
x0
i|k,ui|k

)
, i = 0, . . . , N − 1 (4.2b)

x1
i+1|k = Ax1

i|k, i = 0, . . . , N − 1 (4.2c)

x2
i+1|k = Ax2

i|k, i = 0, . . . , N − 1 (4.2d)

x0
min ≤ x0

i|k ≤ x0
max, i = 0, . . . , N (4.2e)

umin ≤ ui|k ≤ umax, i = 0, . . . , N − 1 (4.2f)

hc

(
x0
i|k,x

1
i|k
)
≤ εi|k,1, i = 0, . . . , N (4.2g)

hc

(
x0
i|k,x

2
i|k
)
≤ εi|k,2, i = 0, . . . , N (4.2h)

hs

(
x0
i|k,x

1
i|k
)
≤ εi|k,3, i = 0, . . . , N (4.2i)

hs

(
x0
i|k,x

2
i|k
)
≤ εi|k,4, i = 0, . . . , N (4.2j)

hr

(
x0
i|k
)
≤ 0, i = 0, . . . , N (4.2k)

εi|k ≥ 0, i = 0, . . . , N (4.2l)

xj
0|k = xj (k) , j = 1, 2, 3. (4.2m)

where εk ∈ R
(N+1)×4
≥0 denotes the concatenation the slack variable. To limit the complexity

of the MPC, each of the collision avoidance constraints can be relaxed by a slack variable
over the entire prediction horizon. The safety collision avoidance constraints (4.2g) and
(4.2h) should only be relaxed if the problem is infeasible. Conversely, the social constraints
(4.2i) and (4.2j) ideally would be satisfied, but are not critical for safety. The l1 penalty
method is exact, provided that the penalty weights are sufficiently large. However, the
problem can become ill-conditioned for too large values of ρ [41].

The performance of the MPC strongly depends on the penalty of these slack variables.
Selecting a too low penalty can negatively affect the solution by allowing the solver to
converge to a relaxed local optimum. Selecting a too high penalty can lead to an ill-
conditioned problem that has poor convergence. Hence, to have a fair comparison of all
methods, we select the penalty of the slack variables that retains feasibility in all methods,
such that all methods can be evaluated with the same parameterization. In addition, in

46

4.2. Passive Learning with GP-MPC

section 5.5, we perform some alternative studies to assess the effect of the penalty of the
slack variables. The penalty weights of the slack variables are tuned ad hoc. To this end,
the nominal penalty weights are selected as follows:

ρ =
[
105 105 103 103

]�
. (4.3)

Constant Velocity MPC We apply the first element of the resulting locally optimal
control sequence to (4.2) to the system (2.26), provided that the problem is feasible. Subse-
quently, we compute the state transition of all agents for one time step. In case the problem
is infeasible, the shifted last feasible solution is employed. We assume that the problem is
feasible at time step k = 0. This process is summarized in Algorithm 1 and serves as a
baseline for the succeeding, more advanced MPC algorithms.

Algorithm 1 Constant Velocity MPC

1: for each time step k = 0, 1, 2, . . . , do
2: Solve CV-MPC problem (4.2) for Uk

3: if Problem (4.2) is feasible then
4: Apply u (k) ← u0|k of the solution to (4.2) to the system
5: else
6: Apply shifted input u (k) ← u1|k−1 of the last feasible solution to (4.2) to the

system
7: end if
8: end for

4.2 Passive Learning with GP-MPC

We extend the prediction model for the Following vehicle to improve its predictions using
online and offline training. To this end, we can use observations from previous similar
driving scenarios to train a GP-based prediction model, detailed in Chapter 3. As motivated
in Chapter 3, we confine ourselves to Sparse Pseudo-Input GPs. In this section, we limit
ourselves to passive learning, i.e., we do not change the objective function. Subsequently, we
explore active learning methods that relax the primary performance objective and actively
look for control inputs that explore the state space and seek to improve the MPC its
prediction model.

4.2.1 Gaussian Process MPC

The GP-MPC algorithms employ the GP-based prediction model, presented in Chapter 3,
to learn the residual dynamics of the Follower in order to better anticipate the behavior of
the Follower. The expected values of the consecutive state predictions of the Follower are
determined by the mean function of the posterior of the GP. Furthermore, the covariance of
the GP-based prediction model is exploited in the collision avoidance constraints. To this

47

Chapter 4. Learning-based GP-MPC

end, we evaluate the collision avoidance constraints at the expected value of the state of
the Follower. Additionally, we expand the collision avoidance ellipses with the covariance
of the longitudinal position of the Follower.

In order to exploit the GP-based prediction model, we change the constraint that governs
the system dynamics (4.2c). Here, we add the posterior mean of the learned dynamics d1

to the nominal prediction model. As mentioned before, we confine ourselves to the SPGP
prediction model. The posterior mean of the SPGP prediction model reads (3.18):

μ̃d
1 (

zi|k
)
= kzi|kZind

Q−1
Zind

KZindZΛ
−1y. (4.4)

Furthermore, we can exploit the covariance of the predicted state of the Follower Σ̃x1

i|k to

expand the collision avoidance constraint for the Follower (2.41). The joint covariance of
the state of the Follower and the Gaussian process is propagated as follows:

Σ̃x1

i+1|k =
[
A B

]
Σ̃i|k

[
A B

]�
, for i = 0, . . . , N − 1, (4.5)

where the joint covariance matrix of the state of the Follower and the Gaussian process is:

Σ̃i =

[
Σ̃x1

i Σ̃x1d1
i

Σ̃d1x1

i Σ̃d1
i

]
. (4.6)

For a detailed derivation, please refer to Chapter 3.

Stochastic GP-MPC Although the prediction model and its associated probability dis-
tribution are approximate, the stochastic GP-MPC can exploit the uncertainty of the pre-
diction model by expanding the ellipse of collision avoidance constraint formulated in (2.41).
The major axis of the collision avoidance ellipse is expanded by σ standard deviations of
the longitudinal position of the Follower:

Ec,A + σ
√

Σ̃X1 , (4.7)

where the longitudinal covariance is equal to the first element of the covariance matrix of
the state:

Σ̃X1
= [Σ̃x1

]1,1 = [Σ̃]1,1. (4.8)

In order to limit excessive conservatism, the softly constrained social ellipse (4.9j), (4.9k)
is not expanded. As argued in section 2.3.2, the expanded safety ellipse already introduces
extra conservatism due to the eccentricity of the ellipse, hence, accounting for uncertainty
in the social ellipse would introduce even more conservatism. Moreover, one could argue
that human drivers simply keep a social distance to account for uncertainty. Recent trends
in cooperative driving show potential to drive with minimal headway, actually, as a result
of reduced uncertainty. Perhaps, such stochastic formulations replace the need for explicit
social driving as it could follow implicitly from the problem formulation.

48

4.2. Passive Learning with GP-MPC

Apart from these adaptations, we solve the same finite horizon OCP as with the CV-
MPC (4.2), employing the same l1 relaxation. The adaptations of the prediction model
yield the Gaussian process MPC (GP-MPC) problem:

min
Uk,εk

J
(
x0 (k) ,u (k − 1) ,Uk

)
+ 1�εkρ (4.9a)

s.t. x0
i+1|k = f0

(
x0
i|k,ui|k

)
, i = 0, . . . , N − 1 (4.9b)

μ̃x
1

i+1|k = Aμ̃x
1

i|k +Bμ̃d
1
(
μ̃zi|k

)
, i = 0, . . . , N − 1 (4.9c)

Σ̃x
i+1|k =

[
A B

]
Σ̃i|k

[
A B

]�
, i = 0, . . . , N − 1 (4.9d)

x2
i+1|k = Ax2

i|k, i = 0, . . . , N − 1 (4.9e)

x0
min ≤ x0

i|k ≤ x0
max, i = 0, . . . , N (4.9f)

umin ≤ ui|k ≤ umax, i = 0, . . . , N − 1 (4.9g)

he

(
x0
i|k, μ

x1

i|k, Σ̃
X1

i|k , σ
)
≤ εi|k,1, i = 0, . . . , N (4.9h)

hc

(
x0
i|k,x

2
i|k
)
≤ εi|k,2, i = 0, . . . , N (4.9i)

hs

(
x0
i|k, μ̃

x1

i|k
)
≤ εi|k,3, i = 0, . . . , N (4.9j)

hs

(
x0
i|k,x

2
i|k
)
≤ εi|k,4, i = 0, . . . , N (4.9k)

hr

(
x0
i|k
)
≤ 0, i = 0, . . . , N (4.9l)

εi|k ≥ 0, i = 0, . . . , N (4.9m)

xj
0|k = xj (k) , j = 1, 2, 3, (4.9n)

Σ̃x1

0|k = 0. (4.9o)

We employ the same parameterization of the l1 penalty function for the slack variables

εk ∈ R
(N+1)×4
≥0 as in (4.2):

ρ =
[
105 105 103 103

]�
. (4.10)

The stochastic collision avoidance constraints (4.9h) are enforced with σ = 2 standard
deviations of the approximative predicted covariance of the position of the Follower. Again,
the objective function is defined in (2.29). The weights of the objective function are selected
as follows: Q = diag (0, 0, 10, 200, 100), QY = 100, R = diag (10, 500), S = diag (100, 10000),
P = Q, PY = QY . Like the constant velocity MPC, this problem is solved in a receding
horizon fashion. Subsequently, we construct an algorithm for the SPGP-MPC problem (4.9)
to accommodate passive online learning.

4.2.2 Passive Learning-based GP-MPC

The prediction quality and the covariance can be improved online as the training set can
be extended online with current observations. As mentioned before, the GP can exploit

49

Chapter 4. Learning-based GP-MPC

Algorithm 2 Passive Learning GP-based MPC

1: for each time step k = 0, 1, 2, . . . , do
2: Solve MPC problem (4.9) for Uk

3: if Problem (4.9) is feasible then
4: Apply u (k) ← u0|k of the solution to (4.9) to the system
5: else
6: Apply shifted input u (k) ← u1|k−1 of the last feasible solution to (4.9) to the

system
7: end if
8: Compute training point zk and training target yk

9: Update training set Dk+1 ← Dk ∪ (zk,y)
10: if Sparse Pseudo-Input GP prediction model is used then
11: Update the set of inducing points to M̃ uniformly sampled points from the state

trajectory of the solution to (4.9)
12: end if
13: end for

observations from previous scenarios through an initial training set D0. Moreover, the GP
can exploit observations from the previous time step k− 1 by extending the training set to
Dk. As such, we use these observations to improve our predictions and learn online. The
predictions are updated through the mean function, but also by adapting the covariance.

Firstly, the primary MPC problem (4.9) is solved using the sparse pseudo-input GP-
based prediction model, detailed in (3.49). The hyperparameters of the GP are tuned ad
hoc, as the commonly employed log-likelihood optimization [35] was unsuccessful. To this
end, the length-scale matrix is selected as Ls = diag(10, 10, 10, 10, 10, 5) and the variance of
the prior of the GP is selected as σd = 0.3. Again, we apply the first element of the resulting
locally optimal control sequence to the system, provided that the problem is feasible. We
assume also here that the problem is feasible at the first time step. Then, we compute the
state transition of all agents for one time step. Subsequently, this state transition is used
to calculate the residual of the prediction model:

yk = v1k+1 − v1k. (4.11)

The inputs to the GP are simply a combination of the states:

zk =
[
v0k v1k v2k

(
X1

k −X0
k

) (
X1

k −X2
k

) (
Y 1
k − Y 0

k

)]�
. (4.12)

These inputs and the residual are added to the training set D as a new training pair (zk,yk).
Conclusively, the passive learning GP-based MPC algorithm is detailed in Algorithm 2.

4.3 Active Learning with GP-MPC

The dual control paradigm actively seeks control inputs that improve our understanding
of the system and, as a result, improve the overall performance. Rather than focusing on

50

4.3. Active Learning with GP-MPC

maximizing the control performance with a nominal (prediction) model of the system, we
allow a sacrifice in performance to improve the nominal (prediction) model that allows us
to improve the overall performance [12]. Furthermore, the dual control paradigm enables
exploration of the state space that could improve safety and feasibility. To this end, we
integrate our GP-MPC in an active learning framework for MPC proposed by [13].

4.3.1 Active Learning Framework

Soloperto et al. [13] present a general method to augment existing MPC algorithms with
active learning through a generic user-defined learning objective function. This framework
uses a generic learning objective function H (·) while the primary objective function J (·),
defined in (4.1) appears in additional constraints:

min
Uk,ΔJk

H
(
x0 (k) ,x1 (k) ,x2 (k) ,Uk

)
(4.13a)

s.t. J
(
x0 (k) ,u (k − 1) ,Uk

)
= JB

k +ΔJ
k , (4.13b)

ΔJ
k ≤ β̄max{J+

k , 0}+ γ̄ + Γk−1, (4.13c)

ΔJ
k ≤ βmaxmax{J+

k , 0}+ γmax, (4.13d)

x0
i|k ∈ X

0
i|k, i = 0, . . . , N, (4.13e)

ui|k ∈ Ui|k, i = 0, . . . , N − 1, (4.13f)

xj
0|k = xj(k), j = 1, 2, 3. (4.13g)

For the sake of simplicity, the nominal state and input constraints are written in a short-
hand notation, where X and U denote the subspace of feasible states and inputs, respectively.
The components of the active learning framework [13] are detailed, below.

Learning Objective With GP-MPC, the active learning framework [13] can be used to
seek state-input trajectories which maximize uncertainty/covariance [13]. To this end, we
take the learning objective as the negative sum of the covariance function of the GP:

H
(
x0 (k) ,x1 (k) ,x2 (k) ,Uk

)
= −

N∑
i=0

Σ̃d1 (μ̃zi) . (4.14)

This quantity is closely related to the covariance of the state of the Follower Σ̃x1
, however,

it is more tractable as an objective function than the covariance of the state.

Relaxation of Primary Cost The primary objective function is composed of the desired
primary objective JB

k and the relaxation variable ΔJk, which is an additional optimization
variable:

J
(
x0 (k) ,u (k − 1) ,Uk

)
= JB

k +ΔJ
k . (4.15)

This relaxation variable represents how much the primary objective function J (·) is allowed
to deviate from its desired value JB

k . The desired value JB
k is the solution to the primary

51

Chapter 4. Learning-based GP-MPC

MPC problem (4.9). This relaxation can be bounded by two constraints. Firstly, by an
average constraint that uses a storage Γk, using notions from economic MPC [13]:

ΔJ
k ≤ β̄max{J+

k , 0}+ γ̄ + Γk−1. (4.16)

The variable J+
k is defined as follows:

J+
k := Ĵk−1 − JB

k , (4.17)

where Ĵk−1 is the primary cost of the solution of the previous MPC. The max operation is
used to ensure that performance relaxation is allowed only if it is possible to guarantee a
potential decrease of the primary objective function, i.e., J+

k ≥ 0. The storage Γk is defined
as follows:

Γk := Γk−1 + β̄max{J+
k , 0}+ γ̄ −ΔJ

k , (4.18)

with Γ0 ≥ 0. The parameter γ̄ ≥ 0 represents the average absolute relaxation of the primary
objective, whereas β̄ ∈ [0, 1) represents the relative average relaxation of the primary objec-
tive that we allow for learning or exploration. In addition, the relaxation can be bounded
by a hard (non-averaged) bound:

ΔJ
k ≤ βmaxmax{J+

k , 0}+ γmax, (4.19)

where βmax ≥ 0 and γmax ≥ 0 have an analogous meaning to β̄ and γ̄, respectively [13].

Feasibility and Performance The construction of our primary objective function poses
some limitations. The value of the MPC its objective function is very low until the Ego has
to deviate from its reference, that is, as the Ego vehicle approaches the merge point. As
such, it is very difficult to enforce an average, let alone absolute, decrease of the objective
function over the horizon. It is important to note that even though the primary problem
(4.9) remains feasible, the learning problem that is to be solved subsequently is infeasible
as it cannot satisfy the (average) cost reduction.

Furthermore, [13] provides performance bounds based on the assumption that the pri-
mary MPC problem is recursively feasible and has a suitable performance bound. However,
as the focus of this study is on the comparison between the constant velocity prediction
model and the GP-based prediction model, no attempt is made to satisfy this performance
bound. Hence, the performance bounds and recursive feasibility from [13] do not transfer
and we do not exploit this active learning framework to its maximum capabilities. Yet, by
only relying on γmax or γ̄ we can still explore the state space, an initial attempt is made
to investigate the potential of GP-based active learning using this framework. Then it is
trivial that (4.20) is feasible with ΔJ∗

k = 0, provided that (4.9) is feasible.

4.3.2 Active Learning with GP-MPC

The proposed active learning GP-MPC will allow for a fixed amount of performance degra-
dation/relaxation of J(·) to minimize the learning objective H(·). Casting the primary

52

4.3. Active Learning with GP-MPC

MPC problem (4.9) into this framework yields the active learning MPC problem:

min
Uk,εk,ΔJk

H
(
x0 (k) ,x1 (k) ,x2 (k) ,Uk

)
+ 1�εkρ (4.20a)

s.t. J
(
x0 (k) ,u (k − 1) ,Uk

)
= JB

k +ΔJ
k , (4.20b)

ΔJ
k ≤ β̄max{J+

k , 0}+ γ̄ + Γk−1, (4.20c)

ΔJ
k ≤ βmaxmax{J+

k , 0}+ γmax, (4.20d)

x0
i+1|k = f0

(
x0
i|k,ui|k

)
, i = 0, . . . , N − 1 (4.20e)

μx
1

i+1|k = Aμx
1

i|k +Bμd
1
(
μzi|k

)
, i = 0, . . . , N − 1 (4.20f)

x2
i+1|k = Ax2

i|k, i = 0, . . . , N − 1 (4.20g)

x0
min ≤ x0

i|k ≤ x0
max, i = 0, . . . , N, (4.20h)

umin ≤ ui|k ≤ umax, i = 0, . . . , N − 1, (4.20i)

he

(
x0
i|k, μ

x1

i|k,Σ
x1

i|k, σ
)
≤ εi|k,1, i = 0, . . . , N, (4.20j)

hc

(
x0
i|k,x

2
i|k
)
≤ εi|k,2, i = 0, . . . , N, (4.20k)

hs

(
x0
i|k, μ

x1

i|k
)
≤ εi|k,3, i = 0, . . . , N, (4.20l)

hs

(
x0
i|k,x

2
i|k
)
≤ εi|k,4, i = 0, . . . , N, (4.20m)

hr

(
x0
i|k
)
≤ 0, i = 0, . . . , N, (4.20n)

εi|k ≥ 0, i = 0, . . . , N, (4.20o)

xj
0|k = xj (k) , j = 1, 2, 3, (4.20p)

Σx1

0|k = 0, (4.20q)

where H(·) is the learning cost function as defined in (4.14), and J(·) is the primary cost,
defined in (4.1). The weights of the primary objective function are selected as follows:
Q = diag (0, 0, 10, 200, 100), QY = 100, R = diag (10, 500), S = diag (100, 10000), P = Q,
PY = QY . Also here, we employ the same l1 penalty function on the slack variables as in
(4.2). As the learning objective is much smaller than the primary objective, we scale the
weight of the slack variables ρ of the l1 penalty function accordingly:

ρ =
[
10 10 0.1 0.1

]�
. (4.21)

Active Learning Parameterization The hyperparameters β̄, βmax, γ̄ and γmax of the
active learning framework can be used to adjust its behavior. The active learning framework
[13] can be used to enforce the (average) decrease of the objective function over time. As
such, by tuning β̄ and βmax we can enforce a certain (average) cost reduction over time,
through (4.16) and (4.19), respectively.

53

Chapter 4. Learning-based GP-MPC

During simulation studies, we find that the learning problem becomes infeasible when
we such an (average) cost reduction over time. As mentioned before, we cannot satisfy these
learning constraints using β̄ or βmax, as it is very difficult to enforce an absolute or average
decrease of the objective function over the horizon due to the current problem formulation.
Note that the primary problem remains feasible, however, the learning problem that is to
be solved subsequently becomes infeasible as it cannot satisfy the (average) cost reduction.
In conclusion, due to the current construction of the MPC’s objective function, the active
learning framework by [13] could not be exploited to its full potential.

We can still exploit the framework to actively perturb the Follower and explore the
state space. However, this exploration is parameterized by the fixed relaxation γmax, and
the exploration is not guaranteed to improve the performance. The hyperparameters β̄,
βmax, γ̄ and γmax of the active learning framework are tuned ad hoc and are selected as
follows: β̄ = 0, βmax = 0, γ̄ = ∞ and γmax = 100.

The Active Learning GP-MPC Algorithm Note that the active learning GP-MPC
relies on a desired primary cost JB

k . Soloperto et. al [13] propose three expressions for
JB
k that satisfy these assumptions. The desired performance bound can be defined by

additionally solving the primary MPC scheme [13], formulated in (4.9). However, this
requires solving two MPC problems. Considering we do not satisfy their assumptions, this
option is the simplest and sufficient for a proof of concept. We assume that both problems
are feasible at the first time step. The active learning GP-MPC is formalized in Algorithm 3.

4.3.3 Active Learning with SPGP-MPC

Oscillatory Input Behavior During the simulation studies, discussed in section 5.4,
we find that the active learning MPC from Algorithm 3 with the SPGP prediction model
causes an oscillatory input trajectory. In an online learning scheme with a receding horizon,
new training data is obtained at every time step. We expect that this constant updating
of the training data caused these oscillations, however, updating the training set every K
steps does not rectify this oscillatory behavior.

Although these oscillations could be reduced by penalizing changes in the input, this
merely limits the exploration but does not resolve the underlying problem. It is important
to note that the inducing points of the SPGP are updated every time step. Consequently,
the posterior distribution will be conditioned on the previous state trajectory. Furthermore,
the active learning GP-MPC will tend toward a state trajectory with maximum covariance,
namely one that deviates from the previous state trajectory. As a result, the active learning
GP-MPC keeps switching between input sequences, and, due to the receding horizon of the
MPC, leads to this oscillatory input behavior. Such inputs are very undesired in a human-
interfacing application, like that of autonomous driving. Moreover, the MPC is unable to
adequately explore the state space as it lacks a form of dedication.

Buisson-Fenet et al. [19] propose an alternative method for active learning GP-dynamics
to MPC, namely a plan-and-apply algorithm, where an input sequence to an N -step finite

54

4.3. Active Learning with GP-MPC

Algorithm 3 Active Learning with GP-MPC

1: for Each time step k = 0, 1, 2, . . . , do
2: Solve MPC problem (4.9) for Uk

3: if Problem (4.9) is feasible then
4: Update the desired primary cost JB

k ← J (Uk) from the solution to (4.9)
5: else
6: Update the desired primary cost JB

k ← J (Uk−1) from the last feasible solution to
(4.9)

7: end if
8: Solve active learning MPC problem (4.20) for Uk

9: if Problem (4.20) is feasible then
10: Apply u (k) ← u0|k of the solution to (4.20) to the system
11: else
12: Apply shifted input u (k) ← u1|k−1 of the last feasible solution to (4.20) to the

system
13: end if
14: Compute training point zk and training target yk

15: Update training set Dk+1 ← Dk ∪ (zk,yk)
16: if Sparse Pseudo-Input GP prediction model is used then
17: Update the set of inducing points to M̃ uniformly sampled points from the state

trajectory of the solution to (4.9)
18: end if
19: end for

OCP is computed and rolled out for N time steps. This generally leads to better coverage
of the state space than a greedy version where N = 1 [19]. However, a drawback of this
method is that one loses the receding horizon properties. This could affect performance and
safety, in particular, in multi-agent systems with large uncertainty and varying conditions.
Subsequently, we propose an alternative algorithm to rectify the oscillatory input behavior
that arises in active learning with Sparse Pseudo-Input GP-based MPC.

Learning Period We propose an alternative active learning algorithm that mitigates the
switching behavior of the Active Learning with GP-MPC (Algorithm 3) while maintaining
the powerful receding horizon from MPC, which allows it to cope with changing conditions.
In addition to a prediction horizon of length N , we propose a learning period of length K.

The Active Learning with SPGP-MPC algorithm, detailed in Algorithm 4, solves the
OCP with a prediction horizon of N with a receding horizon, however, it only updates the
pseudo-inputs every K time steps. This leads to less frequent switching of input sequences
and rectifies the oscillations in the input trajectories. Consequently, the MPC has more
dedication and sticks to one learning input sequence. When this becomes too costly, it is
controlled to another area of the state space.

55

Chapter 4. Learning-based GP-MPC

Algorithm 4 Active Learning with SPGP

1: for Each time step k = 0, 1, 2, . . . , do
2: Solve MPC problem (4.9) for Uk

3: if Problem (4.9) is feasible then
4: Update the desired primary cost JB

k ← J (Uk) from the solution to (4.9)
5: else
6: Update the desired primary cost JB

k ← J (Uk−1) from the last feasible solution to
(4.9)

7: end if
8: Solve active learning MPC problem (4.20) for Uk

9: if Problem (4.20) is feasible then
10: Apply u (k) ← u0|k of the solution to (4.20) to the system
11: else
12: Apply shifted input u (k) ← u1|k−1 of the last feasible solution to (4.20) to the

system
13: end if
14: Compute training point Zk and training target yk

15: Update training set Dk+1 ← Dk ∪ (zk,yk)
16: if k mod K = 0 then
17: Update the set of inducing points to M̃ uniformly sampled points from the state

trajectory of the solution to (4.9)
18: end if
19: end for

The MPC problems discussed so far, are posed as non-convex nonlinear programs that
can be computationally hard to solve. The next section expands on symbolic and numerical
methods and considerations that are used to solve these nonlinear programming problems.

4.4 Numerical Optimization

The MPC algorithms are solved numerically using the automatic differentiation toolbox
CasADi [42] in Matlab. This toolbox offers a lot flexibility in the formulation of the
problem, e.g. with the GP-based prediction model. Furthermore, it supports state-of-the-
art solvers used for nonlinear optimization, such as the Sequential Quadratic Programming
method and Interior Point Optimization (IPOPT) [29]. Specifically, CasADi’s [42] Opti
stack is used to formulate and solve the nonlinear program with the solver IPOPT [29].
The internal line search of IPOPT is performed by the linear solver MA57 by HSL [43].

4.4.1 Parametrization Method

The motion planning problem is solved through a direct optimal control parametrization,
as discussed in section 2.2.3. Direct single-shooting and multiple-shooting are investigated.

56

4.4. Numerical Optimization

These problems are equivalent as they rely on the same integration method [7], namely
Runge-Kutta 4 (2.26). The multiple-shooting method is found to be considerably faster, in
particular when the optimization is warmstarted with the shift initialization.

Shift Initialization After the first iteration, at time step k = 1, the nonlinear program is
warmstarted using a shifted predicted state and input trajectory to initialize the nonlinear
program. Firstly, the input sequence is shifted to correct for the advancement of time, the
last input is held constant such that:

uN−1|kinit = u∗
N−1|k−1, (4.22)

and the input sequence is initialized as:

Ukinit =
(
u∗
1|k−1,u

∗
2|k−1, ...,u

∗
N−1|k−1,u

∗
N−1|k−1

)
, (4.23)

where u∗
i|k denotes the locally optimal input at prediction step i at time step k. Furthermore,

the shifted predicted state trajectory can be computed as:

X0
kinit

=
(
x0∗
0 ,x

0∗
2|k−1, ...,x

0∗
N |k−1,f

0
(
x0∗
N |k−1,u

∗
N−1|k−1

))
, (4.24)

where x∗
i|k denotes the locally optimal state of the Ego at prediction step i when the current

time step is k. Note that the initial condition x0(k) is known and the final predicted state
is computed using the prediction model (2.26) and the final input defined in (4.22). The
predicted state of the Follower is also initialized using the shift initialization, however, since
the inputs are unknown, we simply rely on the nominal prediction model (2.26) with zero
input. As the Leader is assumed to drive at a constant velocity, its predicted states are no
optimization variables and, therefore, can be computed exactly. The slack εk is initialized
with zero vectors to promote solutions that are feasible to the unrelaxed MPC problem.

4.4.2 Implementation of Gaussian Process Dynamics

As mentioned before, CasADi provides great flexibility in the construction of the problem.
We exploit its symbolic framework to construct the GP-based prediction models as well as
the multiple-shooting constraints in which they are embedded. The closed-form expressions
of (3.10) and (3.18) are modeled as CasADi functions. Consequently, CasADi can use these
expressions to compute their gradients symbolically for optimization using IPOPT.

Downsampling of Training Data In order to reduce the computational burden, the
initial training data D0 is uniformly downsampled with a factor 2. For example, during an
episode of T = 20 seconds at fs = 4Hz, we obtain 80 samples, of which only |D0| = 40 are
used for inference during the next episode. Moreover, considering the nominal length-scale
of the kernel function is set to l = 10 we do not see major improvements in the quality
of the predictions when using a finer sampling grid. However, for shorter length-scales the

57

Chapter 4. Learning-based GP-MPC

correlation with the training points will reduce and finer sampling of the state space could
further improve predictions. With online learning, we do use every observation for inference
to maximize information collection and the adaptability of the prediction model.

4.4.3 Simulation

The IDM model, detailed in section 2.2.2, uses the acceleration signal of the reference vehicle
to determine the acceleration output of the IDM. To overcome this, the MPC algorithm
computes the current control input for the Ego based on the current states of all vehicles.
Subsequently, this input is fed to the IDM model which computes the current control input
for the Follower. Finally, the state transitions can be computed for all vehicles after which
the simulation proceeds to the next iteration.

4.4.4 Hardware

The simulations are performed on an HP ZBook Studio G5, with an Intel i7-9750H CPU
with a base speed of 2.6 [GHz] and 32 GB of RAM. As Matlab has limited GPU support,
we currently do not utilize the GPU. GPU utilization is considered part of future work.

4.4.5 Concluding Remarks

Conclusively, in this chapter, three MPC methods are proposed to solve the interactive
motion planning problem. Firstly, an MPC which predicts the state of the Follower using a
constant velocity model. Secondly, we present an interactive Gaussian process-based MPC
which utilizes Gaussian process regression to predict the velocity of the Follower based on
training data. This model uses online observations to passively learn the unknown residual
dynamics of the Follower. Thirdly, we extend this passive GP-MPC by composing it into
an active learning MPC framework from [13]. The implementation of the active learning
framework using Sparse Pseudo-Input GP-MPC leads to switching input sequences and,
hence, oscillatory input trajectories. A fourth algorithm is proposed that mitigates this
effect by introducing a learning period of length K. At the end of this period, we update
the inducing points of the GP to increase the dedication of the learning plan. Finally, we
conclude the chapter with the numerical optimization methods to solve these problems.

58

Chapter 5

Results

This chapter presents the results of the three MPCmethods, proposed in Chapter 4, with the
aim to highlight the capabilities of online learning GP-MPC. As motivated in section 1.5, we
confine ourselves to simulation studies. In section 5.1, we motivate and define the primary
test case of this study. To this end, we focus on a challenging scenario where the Following
vehicle attempts to close the gap with its Leader, and tries to prevent the Ego vehicle from
merging in between. Furthermore, we provide some preliminary remarks on the simulation
study and the assessment of the results. As a baseline, section 5.2 studies the behavior of the
deterministic constant-velocity MPC. Subsequently, we show in section 5.3 that Gaussian
process-based MPC (GP-MPC) is capable of successfully learning the behavior of other road
users online. Furthermore, section 5.4 details the results of the active learning-based GP-
MPC. We also consider the generalizability of the proposed motion planners by studying
various initial conditions, other driving behaviors through different parameter settings of
the IDM, as well as the parameterization of the slack penalty weights, in section 5.5.

5.1 Experiment Design

It should be noted that a simple prediction model would suffice in many scenarios, and
provides safe and satisfactory results. However, safety is about the tail of the distribution,
and considering the practically infinite operational domain of vehicles, it is essential to have
a prediction model that can cope with challenging scenarios, and uncertain and unseen
behavior. To investigate the learning and prediction capabilities of the various prediction
models, the primary test case is designed to show strong interactions between the vehicles.

5.1.1 The Primary Test Case

The primary test case of this study is a lane merging scenario where the Ego and Follower
are initialized at the same longitudinal position, i.e., side by side. The initial conditions
are detailed in Table 5.1. Note that all vehicles start with zero heading angle (ψ) and zero
steering angle (δ). It is important to note that the parameterization, including the slack
variables, is identical for all simulation studies, apart from the horizon length N .

59

Chapter 5. Results

Table 5.1: Initial conditions of the primary test case.

State Symbol Value

Longitudinal pos. Ego X0 -75 [m]
Longitudinal pos. Follower X1 -75 [m]
Longitudinal pos. Leader X2 0 [m]
Lateral pos. Ego Y 0 0 [m]
Lateral pos. Follower Y 1 3.5 [m]
Lateral pos. Leader Y 2 3.5 [m]
Velocity Ego v0 110 [km/h]
Velocity Follower v1 110 [km/h]
Velocity Leader v2 90 [km/h]

The Ego and Follower approach the Leader at a higher velocity than the Leader. Mean-
while, due to the parameterization of the novel Interactive MR-IDM (I-MR-IDM), detailed
in section 2.2.2, the egoistic Follower does not yield to the Ego and tries to close the gap
with its Leader. The nominal parameters of the I-MR-IDM are listed in Table 2.2. The
reference velocities and headway time parameters for this test case are listed in Table 5.2.

Table 5.2: Parameters of the Interactive MR-IDM of the adversarial Follower.

IDM Parameter Symbol Value

Nominal reference velocity vnom 110 [km/h]
Nominal headway time Tnom 1 [s]
Interactive reference velocity vact 140 [km/h]
Interactive headway time Tact 0.25 [s]

As mentioned in Chapter 1, we perform a quantitative and qualitative analysis of the
methods to get a better understanding of their capabilities and shortcomings. We study the
effects of the horizon length, the learning period, and the effects of both passive and active
online learning. Before we discuss these results, some preliminary remarks are in order.

5.1.2 Sparse Pseudo-Input Gaussian Process

As discussed in section 3.3.5, the computational complexity limits the capabilities of the full
GP and its relevance for real-time control. During simulation studies, it was found that the
full GP is very memory intensive and prohibited extensive simulations. Although we have
considered both a full and a sparse GP model, we focus on the SPGP-MPC implementation.

5.1.3 Problem Formulation

Simplifications For the sake of simplicity, the study is limited to a scenario with only
three traffic agents. While traffic is rather sparse, this allows for a better qualitative anal-
ysis of the prediction methods, and provides more insight into the behavior of the control
algorithms. As such, this work should be considered as a proof of concept. Coping with
more dense traffic and scalability are considerations for future research. Also, we do not
consider any uncertainty or noise, apart from the uncertainty in the Follower’s policy.

60

5.1. Experiment Design

Objective Function When traffic is kept sparse for the sake of analysis, as we do here,
incentivizing the Ego to merge would bias the solution to merge as quickly as possible. In
section 2.3.1, we discussed this paradoxical challenge of motion planning. To this end, the
problem formulation should not contain the solution, rather, the motion plan should follow
from the problem. If traffic would be more dense, we could incentivize the Ego to merge to
the target lane by adding a penalty in the objective function for driving in the merge lane,
without introducing significant bias. In an attempt to present an unprejudiced analysis
and fair comparison between the presented methods, we design the objective function to be
unbiased toward any prediction model. As such, we set the objective to maintain its initial
velocity and let the closing of the merge ramp be an incentive to merge.

5.1.4 Performance Evaluation

Quantitative Evaluation With motion planning, quantitative key performance indi-
cators (KPIs) can be difficult to select. While we focus on a qualitative analysis of the
motion planner, we consider some quantitative key performance indicators (KPIs). We pri-
marily focus on four KPIs: (i) the maximum instantaneous slack variable on the collision
avoidance constraints — excluding the social constraints — for both the Follower and the
Leader over the entire simulation, denoted by εmax, (ii) the highest and lowest instantaneous
speed amongst all vehicles, denoted by vmax and vmin, respectively, provides a measure of
the traffic flow and the intervention caused by the merging Ego vehicle, (iii) the minimal
instantaneous gap, that is, the smallest distance from any bumper to another bumper, be-
tween all the vehicles, denoted by smin, and (iv) the maximum instantaneous acceleration
(amax) and deceleration (amin) that is attained during a scenario. However, these metrics do
not provide a complete qualitative assessment of the prediction models. To this end, video
footage of the simulations can be requested from the author and can support the reader in
the interpretation and qualitative assessment of the results. An overview of all results can
be found in Appendix B.

Qualitative Evaluation As mentioned before, refer to Appendix B for video footage on
these simulations. Throughout this chapter, we use time-lapses and figures to visualize the
qualitative results. The details of these figures are discussed next. For example, Figure 5.1
in section 5.2 shows a time-lapse of a birds-eye view of the merging maneuver. Here, the
instantaneous position of the vehicles is indicated by a solid rectangle. The crosses and
circles are used to indicate the predicted location of the rear axle of the Ego and the
Follower, respectively. The predictions of the Leader are omitted for the sake of clarity.
Furthermore, the Leader maintains a constant velocity and is assumed to be known. The
predicted final position of all vehicles is indicated by a transparent rectangle. Figure 5.2
in section 5.2 shows the velocity and acceleration trajectories of all vehicles. Moreover, the
predictions of the MPC at t = 11.75 [s] are projected onto these trajectories. In addition,
Figure 5.2 also includes the function value of the activation function of the I-MR-IDM, note
that this function value is unitless, as opposed to the acceleration trajectories and the input
constraints.

61

Chapter 5. Results

5.2 Baseline MPC

As a baseline, we first consider the constant velocity MPC (CV-MPC) algorithm, presented
in section 4.1. The constant velocity model is agnostic to the interaction between the Fol-
lower, the Ego, and the Leader, it does not anticipate any (state-dependent) acceleration
or braking and merely relies on current measurements of the velocity of the Follower. Con-
sequently, the CV-MPC predicts the future motion of the Follower by assuming that it
maintains its current velocity. In this study, we investigate the quality of the predictions
and study the effect of the horizon length on the performance and safety of the motion plan.

5.2.1 Constant Velocity MPC

Experiments In this section, we study the CV-MPC, detailed in Algorithm 1, in the
primary test case defined in section 5.1. The initial conditions for this study are defined in
Table 5.1, and the I-MR-IDM is parameterized according to Table 2.2 and Table 5.2.

Simulation Results Firstly, let us consider the case of N = 12 in more detail. As the Ego
approaches the merge point, it identifies a gap and slows down to merge between the Leader
and the Follower at t = 9.75 [s] as seen in Figure 5.1 and Figure 5.2. The CV-MPC assumes
that the Follower maintains its current speed, which in this test case is overconservative as
the Follower is slowing down. It maintains a high velocity to account for the small gap, at
t = 11.25 [s] (Figure 5.1). The CV-MPC decelerates during the merge to maintain a safe
distance from the Leader, seen at t = 12.25 [s] and t = 13 [s] in Figure 5.1. The predictions
of the Follower are agnostic to any interactions, and although the response of the Follower
is uncertain, its predictions remain unchanged, as seen in Figure 5.2.

The simulation results of CV-MPC in the primary test case are summarized in Table 5.3.
Note that the metrics provided in Table 5.3 are described in section 5.1.4. For more detailed
results, refer to Table B.2 in Appendix B. The motion plan of the CV-MPC is generally safe
and either successfully merges between the Follower and Leader, or behind the two target
vehicles (Table 5.3). For short horizons (N = 6, . . . 12), the CV-MPC is able to identify a gap
between the Follower and Leader and merges into the target lane while keeping distance to
both vehicles. It is important to note that in this test case, the constant velocity prediction
is always conservative with respect to the Follower that is slowing down. Consequently, the
Ego vehicle will try to stay in front of this conservative prediction. For long predictions
horizon (N = 14, . . . 24), the CV-MPC cannot identify this gap as it does not anticipate the
Follower braking. It merely relies on its constant velocity predictions.

Computation Time For the CV-MPC, excluding the first cold-started iteration, the
average solve time over all simulations is 0.020 [s]. The maximum warm-started solve time,
using the shifted MPC solution of the previous iteration, of all simulations is 0.099 [s]. The
CV-MPC is well capable to run in real-time. Refer to Table B.2 for detailed solve times.

62

5.2. Baseline MPC

Figure 5.1: Time-lapse of CV-MPC on the primary lane merging test case with a pre-
diction horizon of N = 12.

Figure 5.2: Velocity and acceleration trajectories with the predictions of the CV-MPC
at t = 11.75 [s] on the primary lane merging test case with a prediction horizon of
N = 12.

63

Chapter 5. Results

Table 5.3: Results of Constant Velocity MPC

N Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

6
Merged in
Between 0.26 115 86 1.5 4.2 4.4 -

8
Merged in
Between 0.29 115 86 1.5 4.8 4.2 -

10
Merged in
Between 0.46 115 78 2.6 3.3 3.1 -

12
Merged in
Between 0.47 115 78 2.4 4.0 3.0 -

14
Merged
Behind 0.04 115 72 1.6 4.0 5.6 -

16
Merged
Behind 0 115 75 1.5 3.8 6.7 -

18
Merged
Behind 0 115 71 1.5 3.3 8.4 -

20
Merged
Behind 0 115 72 1.5 3.3 9.8 -

22
Merged
Behind 0 115 72 1.5 2.6 9.4 -

24
Merged
Behind 0 115 73 1.5 2.3 10.2 -

Conclusion In many cases, a simple prediction model suffices. This also applies here, the
CV-MPC is able to identify a gap safely merge in between, despite the inferior prediction
quality of the constant velocity model. From the figures and video footage, it can be
concluded that the CV predictions are unable to capture the relevant dynamics. In this
test case, the Follower slows down so as not to collide with its Leader. Consequently,
the constant velocity predictions are always conservative. As such, if it is initially able
to identify a gap, this gap will only grow and the Ego can safely merge. Currently, the
CV-MPC relies on the softly constrained collision avoidance constraints to identify this
gap. When the penalty weights of the slack variables are increased, i.e. the constraints are
hardened, the motion planner will become more dependent on the quality of the prediction
model. This dependency is further studied in section 5.5.3.

It should be noted that the solution of the CV-MPC strongly depends on the param-
eterization of the problem. The CV prediction model does not anticipate the braking of
the Following vehicles. However, due to the parametrization, the CV-MPC uses the slack
variables to violate the constraints in order to make it easier to merge. However, these slack
variables are only intended to recover from potential infeasibility. During the study, it was
found that the penalty on the slack variables was set too low to achieve this. In section 5.7,
we reflect on the simulation studies and their results in detail.

64

5.3. Passive Learning with GP-MPC

5.3 Passive Learning with GP-MPC

In the primary test case, the Ego vehicle must merge into the merge lane, while the ad-
versarial Follower tries to close the gap between the Follower and the Leader. In order to
anticipate the future motion of the Follower in the lane merging scenario, we use previous
observations to improve the predictions of the Follower. To this end, the GP-MPC uses a
Sparse Pseudo-Input GP-based prediction model, detailed in Chapter 3.

Firstly, in section 5.3.1, we focus on the case of solely online learning, in which the
predictions of the GP are only based on data observed during the current episode. Secondly,
in section 5.3.2, we consider iterative learning in which we pre-train the GP using data from
previous episodes of the same scenario. As seen in the previous section on the CV-MPC, the
prediction horizon length N is an important hyperparameter in these predictive methods, as
the accuracy of the predictions strongly depends on the prediction horizon length. Hence,
we study the effect of the horizon length on the overall performance of the motion planner.

5.3.1 Online Passive Learning

Experiments In this section, we focus on online passive learning for the aforementioned
primary test case defined in section 5.1. The initial conditions for this study are defined in
Table 5.1, and the I-MR-IDM is parameterized according to Table 2.2 and Table 5.2. The
passive learning SPGP-MPC is detailed in Algorithm 2 (section 4.2). In this section, we
focus on purely online learning, such that the GP starts without any training data (D0 = ∅).

Simulation Results Again, we first discuss the results of SPGP-MPC for a prediction
horizon of N = 12 in more detail, to compare its performance with the CV-MPC. In
this case, the Ego approaches at approximately the same speed as the CV-MPC, as seen
at t = 9.75 [s] in Figure 5.3. Note that the SPGP-MPC considers the uncertainty of
the predictions for collision avoidance and the 2σ-bounds on the final predicted position
of the Follower are resembled by the two transparent blue rectangles. As such, low and
high covariance are resembled by overlapping or separated rectangles, respectively. While
both the CV-MPC and SPGP-MPC slow down to merge between the two vehicles, the
SPGP-MPC slows down further as it anticipates the Follower braking, which can be seen at
t = 11.25 [s] and t = 12.25 [s] in Figure 5.3. In Figure 5.4, we can observe the predictions of
the velocity profile of the Follower. Based on online observations, the SPGP-MPC expects
the Follower to initially slow down. However, the interactive predictions are uncertain
about how the Follower might respond to the Ego changing its speed, and the SPGP-MPC
accounts for this uncertainty through the covariance, indicated by the approximated 2σ-
bounds on the predicted velocity. Consequently, the SPGP-MPC takes extra caution with
the moderate input sequence at t = 11.75 [s], seen in Figure 5.4. However, as the GP gathers
more data and learns about the Follower’s behavior, it better predicts the velocity and can
therefore increase its braking effort (Figure 5.4), to maintain sufficient distance from both
the Follower as well as the Leader, as seen in Figure 5.3 at t = 13 [s] and Table 5.4.

65

Chapter 5. Results

Figure 5.3: Time-lapse of passive learning SPGP-MPC without pre-training on the pri-
mary lane merging test case with a prediction horizon of N = 12.

Figure 5.4: Velocity and acceleration trajectories with the predictions of passive learn-
ing SPGP-MPC without pre-training at t = 11.75 [s] on the primary lane merging test
case with a prediction horizon of N = 12.

66

5.3. Passive Learning with GP-MPC

Table 5.4: Results of passive learning SPGP-MPC without pre-training

N Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

6
Merged in
Between 0.25 115 85 1.5 4.3 4.4 -

8
Merged in
Between 0.41 115 78 2.7 5.0 3.2 -

10
Merged in
Between 0.48 115 77 2.4 5.3 2.9 -

12
Merged in
Between 0.52 115 74 3.1 5.2 2.6 -

14
Merged
Behind 0 115 71 1.5 4.4 5.7 -

16
Merged
Behind 0 115 68 2.0 3.9 8.1 -

18
Merged
Behind 0 115 66 2.4 3.7 10.5 -

20
Merged
Behind 0 115 65 2.6 3.3 14.6 -

22
Merged
Behind 0 115 68 2.2 3.2 15.2 -

24
Merged
Behind 0 115 71 1.7 2.9 15.5 -

The simulation results of passive learning with the SPGP-MPC without pre-training
in the primary test case are summarized in Table 5.4. For more detailed results, refer
to Table B.3 in Appendix B. For shorter prediction horizons (N = 6, . . . , 12), the pas-
sive SPGP-MPC can safely merge in between the two target vehicles by leveraging the
online observations to predict the motion of the Follower. For longer prediction horizons
(N = 14, . . . , 24), the predictions of the GP have too much uncertainty to identify a safe
gap, causing the Ego to merge behind the Follower. Although the Ego cannot merge in
between, learned predictions can still be leveraged in the motion plan. The SPGP-MPC
takes caution when the Follower starts braking after it did not yield, and maintains a safe
distance when merging behind the Follower.

As mentioned in section 5.2, the predictions of the CV-MPC are overconservative with
respect to the Follower that is slowing down. Consequently, the performance of the cautious
SPGP-MPC is similar to that of the ‘conservative’ CV-MPC. Although quantitatively the
performance of the CV-MPC and the passive learning SPGP-MPC are comparable, the
prediction quality of the SPGP-MPC is qualitatively superior. The SPGP-MPC shows
potential to leverage these predictions, however, the performance of the motion plan is very
sensitive to parameterization, as discussed in section 5.5.3 and section 5.7.

The SPGP-MPC successfully utilizes online observations to learn the interactive motion
of the Follower, identifies a gap, and safely merges between the two vehicles. Not only could
the predictions be leveraged to improve the performance of the motion plan, for example, by
successfully merging between the two target vehicles, they also account for the uncertainty
associated with the interactive predictions that inherently provide extra caution when we
are uncertain of the predictions, which should improve the overall safety of the motion plan.

67

Chapter 5. Results

Computation Time Again, excluding the first cold-started iteration, the average solve
time of SPGP-MPC without pre-training over all simulations is 0.323 [s]. The maximum
warm-started solve time of all simulations is 3.574 [s]. For N ≤ 16 the average and maximal
solve time are below 0.273 [s] and 0.455 [s], respectively, showing the potential to run this
algorithm in real-time. Refer to Table B.2 for details on each simulation.

Conclusion In the case of purely online, passive learning, the SPGP-MPC starts com-
pletely agnostic to the Follower and assumes it will maintain a constant velocity. However,
as data is gathered, the predictions of the Follower improve, allowing the MPC to lever-
age these predictions in planning the motion of the Ego vehicle. Whilst the Ego starts off
without any knowledge of the behavior of the Follower, the GP-based prediction model can
accurately predict the behavior of the Follower after several seconds of observing. Although
the interaction-aware motion planner accounts for the covariance provided by the GP by
keeping more distance from the Follower, for longer prediction horizons, the predictions
have too much uncertainty to safely merge in between the target vehicles, and the Ego
safely merges behind the two target vehicles. Similar to the CV-MPC, the SPGP-MPC
has a clear cross-over point in its decision-making: merge in between for short horizons,
and merge behind for longer horizons. As opposed to CV-MPC, this is not due to poor
predictions, but due to the anticipated uncertainty of the predictions. In conclusion, the
SPGP-MPC can successfully learn the previously unseen behavior of the Follower, relying
only on online observations. Although the SPGP-MPC shows potential for interaction-
aware motion planning, further validation of the motion planner is required to determine if
it is outperform the CV-MPC in terms of safety and performance.

5.3.2 Iterative Passive Learning

Experiments In this section, rather than starting without any training data, the GP
is pre-trained with the observations D0 from the same scenario with identical parameter-
ization, including the prediction horizon length N . For example, the first iteration uses
training data from the online passive SPGP-MPC, studied in the previous section. The sec-
ond iteration extends this data with the observations of the first iteration, etc. We employ
the SPGP-MPC algorithm, detailed in Algorithm 2 for iterative learning. We confine our-
selves to prediction horizons of length N = 12, 14, 16, for these horizons just succeed or fail
to merge in between the target vehicles and iterative learning could change this outcome.

Simulation Results The results of passive learning with the SPGP-MPC using with pre-
training in the primary test case are summarized in Table 5.5. For more detailed results,
refer to Table B.4. Figure 5.5 shows the time-lapse for the passive learning SPGP-MPC that
is pre-trained using the observations from the simulation in section 5.3.1 with N = 12. The
motion plan of the pre-trained SPGP-MPC is almost identical to that of the SPGP-MPC
untrained, up to t = 11.25 [s]. The predictions of the pre-trained SPGP-MPC and the
untrained SPGP-MPC at t = 11.75 [s] are comparable up to t = 13 [s], as seen in Figure 5.4

68

5.3. Passive Learning with GP-MPC

and Figure 5.6. The pre-trained SPGP-MPC predicts that the Follower is going to slow
down based on its training data, whereas the predictions of the untrained SPGP-MPC tend
to a constant velocity with large uncertainty. While the GP does not capture all the high
frequent dynamics, the low frequent dynamics are accurately predicted and enables the
SPGP-MPC to improve its performance. As such, the pre-trained SPGP-MPC slows down
during the merge, as seen at t = 12.25 [s] and t = 13 [s] in Figure 5.5. Consequently, the Ego
does not need to decelerate like in the previous case, and it smoothly merges in between the
target vehicles while adjusting its speed to that of the Leader, as seen in Figure 5.5. The
Follower briefly brakes accordingly and both vehicles maintain a higher velocity, thereby
improving traffic flow. In addition, the Ego vehicle can maintain a greater gap with the
other vehicles with the pre-trained SPGP-MPC, as seen in Table 5.5.

In turn, we leverage the observations from the first iteration to pre-train the second
iteration. Again, the motion of both the Ego and the Follower is comparable up to t = 12.25
(Figure 5.7). At t = 11.75 [s] the SPGP-MPC plans to smoothly brake into the merge as in
the previous scenario, however, at t = 12.25 the Ego accelerates (Figure 5.8). Considering
the fact that we are solving a complex receding horizon nonlinear optimization problem with
varying conditions, it is possible that this brief acceleration is a different local minimum to
the optimization problem, and the SPGP-MPC briefly deviates from its intended course.
This acceleration is followed by a strong deceleration of the Ego, and consequently, a strong
deceleration of the Follower. Moreover, the low simulation frequency could have delayed the
braking effort of the Follower which could have contributed to the high deceleration value.

The untrained SPGP-MPC with N = 14 was unable to merge in between. However,
using the observations of this scenario, the pre-trained SPGP-MPC is able to identify a gap
and merge in between the target vehicles. As this training data contains data of merging
behind, the predictions have larger covariance when the SPGP-MPC decides to merge in
between, for this behavior is not resembled in the training data, yet, the motion planner
accounts for this uncertainty and safely merges in between the vehicles. However, this does
result in smaller gaps and induces larger decelerations by the Follower. During the second
iteration, the previous lane merge is resembled in the training data, and the SPGP-MPC
can leverage these improved predictions. Consequently, the Ego merges in between the
vehicles with increased distance to the other vehicles and lower induced decelerations. The
third iteration extends this trend, leading to an even minimal gap and lower decelerations.

For a longer prediction horizon of N = 16, pre-training the SPGP-MPC does not help it
to merge in between the target vehicles. However, the improved predictions enable the Ego
to merge at a higher velocity and with a smaller gap than with the untrained SPGP-MPC
with N = 16. Also here, we can observe improved performance during the second iteration,
with an even higher minimum velocity and a smaller (but safe) gap to the Follower. An
attempt to reduce the conservatism by setting σ = 1 resulted in a collision, demonstrating
that long predictions with little experience require adequate caution. By pre-training the
SPGP-MPC with a horizon of N = 16 on a successful merge (using data from N = 12), the
SPGP-MPC is able to identify a gap and merge between the two target vehicles.

69

Chapter 5. Results

Figure 5.5: Time-lapse of passive learning SPGP-MPC with one iteration of pre-
training on the primary lane merging test case with a prediction horizon of N = 12.

Figure 5.6: Velocity and acceleration trajectories with the predictions of passive learn-
ing SPGP-MPC with one iteration of pre-training at t = 11.75 [s] on the primary lane
merging test case with a prediction horizon of N = 12.

70

5.3. Passive Learning with GP-MPC

Figure 5.7: Time-lapse of passive learning SPGP-MPC with two iterations of pre-
training on the primary lane merging test case with a prediction horizon of N = 12.

Figure 5.8: Velocity and acceleration trajectories with the predictions of passive learn-
ing SPGP-MPC with two iterations of pre-training at t = 11.75 [s] on the primary lane
merging test case with a prediction horizon of N = 12.

71

Chapter 5. Results

Table 5.5: Results of passive learning SPGP-MPC with pre-training

N
Training
Iteration Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

12 1
Merged in
Between 0.33 115 86 1.5 5.0 3.7 -

12 2
Merged in
Between 0.30 115 84 1.5 6.5 3.5

Harsh brake
Follower

14 1
Merged in
Between 0.52 115 72 3.7 6.4 2.6

Harsh brake
Follower

14 2
Merged in
Between 0.34 115 86 1.5 5.4 3.5

Moderate
brake Follower

14 3
Merged in
Between 0.32 115 80 1.6 4.0 3.7 -

16 1
Merged
Behind 0 115 74 1.5 3.8 6.7 -

16 2
Merged
Behind 0 115 75 1.5 3.8 6.6 -

16 2
Collision
with Follower 0.97 115 90 5.0 5.0 0.0

Higher risk:
σ = 1

16
1 with
N = 12

Merged
Behind 0.40 115 86 1.5 5.9 3.3

Moderate
brake Follower

Computation Time The average solve time of the warm-started SPGP-MPC with pre-
training over all simulations is 0.323 [s], which is close to the sampling time of 0.25 [s]. The
maximal solve time of all simulations is 1.595 [s]. Future research has to determine how
this scales with large amounts of pre-training, however, these solve times demonstrate the
real-time potential of this algorithm. Refer to Table B.4 for details on each simulation.

Conclusion Rather than merely relying on data that is gathered online, the GP-based
prediction model can also exploit offline training data that is obtained from past scenarios.
Using these past observations on a similar scenario, enables the SPGP-MPC to better
anticipate the motion of the Follower, with reduced variance. Consequently, the motion
planner is able to identify a gap to safely merge in between the vehicles more in advance
than without pre-training. With little pre-training this can lead to close encounters with
the Follower, however, as we obtain more data, the performance increases significantly. For
longer horizons, the MPC decides to safely merge behind as the predictions are still subject
to too much uncertainty to safely merge in between. However, iterative learning can still
improve the performance in such cases, as it enables the Ego to merge more smoothly behind
the traffic than in the untrained case. This uncertainty is vital for safety, as reducing the
conservatism compromises the safety of the motion plan. Moreover, training the GP on
merging in between, also enables longer horizons to merge in between. In conclusion, pre-
training can improve the performance of the SPGP-MPC, provided that the motion planner
considers the uncertainty of its predictions based on the training data.

72

5.4. Active Learning with GP-MPC

5.4 Active Learning with GP-MPC

In section 5.3, we considered the SPGP-MPC motion planner with passive learning. In
this section, we investigate SPGP-MPC using active learning. To this end, we use our
SPGP-MPC with the active learning MPC framework of Soloperto et al. [13]. By using
active learning, we aim to further advance the performance of the motion planner through
incentivized data gathering and exploration of the state space. As with the CV-MPC and
the passive learning SPGP-MPC, we study the primary test case, which is introduced in
section 5.1, to provide a comparison between the three motion planners.

Firstly, in section 5.4.1, we focus on the case of solely online learning, in which the
predictions of the GP are only based on data observed during the current scenario. In
section 5.4.2, we study the behavior that emerges when using a pre-trained sparse GP model
with the active learning-based MPC. Finally, in section 5.4.3, we consider iterative learning
in which we pre-train the GP using data from previous episodes of the same scenario.

5.4.1 Online Active Learning

Experiments In this section, we focus on purely online active learning for the primary test
case defined in section 5.1, whose initial conditions are defined in Table 5.1. The I-MR-IDM
is parameterized according to Table 2.2 and Table 5.2. The hyperparameters of the active
learning framework are defined in section 4.3.2. Due to the emergent behavior discussed in
section 5.4.2, there are significant shortcomings with Algorithm 3. Hence, in this section,
we use our novel active learning SPGP-MPC, Algorithm 4, with a nominal learning period
of K = 5, to ensure that the results are comparable with those of iterative active learning
and follow from the same algorithm. In this section, the motion planner starts without any
training data D0 = ∅. Also here, we investigate the effect of the prediction horizon length
N on the overall performance and safety of the active learning-based motion planner.

Simulation Results As with the other studies so far, we first discuss the active learning
SPGP-MPC for N = 12 in detail. While the CV-MPC and passive learning SPGP-MPC
maintain a constant velocity until they see the closing of the merge lane, the active learning
SPGP-MPC actively explores the state space, as seen in Figure 5.9. So far, the I-MR-IDM
has always been active since the Ego and Follower were very close to one another. In
Figure 5.9 we see a clear demonstration of the Interactive MR-IDM. When the Ego vehicle
falls behind, the value of the activation function drops, the Follower smoothly changes to
its nominal driving behavior and increases the gap to its Leader. As the Ego accelerates
again, the activation function rises and the Follower continues to close the gap.

Figure 5.10 shows the solution to the primary MPC problem which tries to minimize
the primary objective function, as well as the solution to the learning MPC problem which
actively explores the state space by maximizing the covariance of the GP. Due to its explo-
ration, the Ego approaches the merge point at a much higher speed than the other MPCs,
at t = 9.75 [s] in Figure 5.11. As a result, it is in a better position to merge in between.
Ego decreases its speed while considering the uncertainty of the predictions (t = 11.25 [s]).

73

Chapter 5. Results

Figure 5.9: Velocity and acceleration trajectories of active learning SPGP-MPC without
pre-training on the primary test case with a prediction horizon of N = 12.

Figure 5.10: Velocity and acceleration trajectories with the predictions of primary (dia-
monds) and learning (crosses) MPC without pre-training at t = 10 [s] on the primary lane
merging test case with a prediction horizon of N = 12.

74

5.4. Active Learning with GP-MPC

Figure 5.11: Time-lapse of active learning SPGP-MPC without pre-training on the pri-
mary lane merging test case with a prediction horizon of N = 12.

Figure 5.12: Velocity and acceleration trajectories with the predictions of active learn-
ing SPGP-MPC without pre-training at t = 11.75 [s] on the primary lane merging test
case with a prediction horizon of N = 12.

75

Chapter 5. Results

Table 5.6: Results of active learning SPGP-MPC without pre-training

N Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

6
Collision
with Leader 0.87 128 66 4.8 5.0 0.0 -

8
Merged in
Between 0.15 124 78 3.7 7.1 4.3

Harsh brake
Follower

10
Merged in
Between 0.10 121 85 2.2 5.0 4.6 -

12
Merged in
Between 0.11 120 85 2.0 5.0 4.7 -

14
Merged in
Between 0.11 123 84 2.3 5.0 4.5 -

16
Merged in
Between 0.04 126 84 3.8 5.0 4.3 -

18
Merged in
Between 0.06 128 81 5.0 5.0 3.8 -

20
Merged
Behind 0 116 67 3.6 5.0 17.7 -

22
Merged
Behind 0 116 66 3.6 4.5 19.3 -

24
Merged
Behind 0 115 70 2.9 3.8 21.2 -

Although the predictions of the velocity of the Follower are comparable to that of passive
learning SPGP-MPC, seen in Figure 5.12, the Ego’s state is more advantageous to complete
the merging maneuver. The Ego approaches at a much higher velocity and has to brake
strongly. However, as the Ego keeps an adequate distance from the Follower, the induced
deceleration of the Follower is lower than for the untrained passive learning SPGP-MPC.
At t = 13 [s], both the Ego and the Follower have almost attained their final speed and do
not need to reduce their momentum, as opposed to the untrained passive learning SPGP-
MPC. Furthermore, both the Ego and Follower can maintain a significantly higher minimal
velocity, as seen in Table 5.6, which indicates that traffic flow is improved.

The results of active learning with the SPGP-MPC without pre-training in the primary
test case for various horizon lengths N are summarized in Table 5.6. For more detailed
results, refer to Table B.5 in Appendix B. For short horizons, the active learning SPGP-
MPC still explores the state space, however, due to its short horizon it lacks sufficient
anticipation to safely merge. This leads to a collision with the Leader (N = 6) or a harsh
brake by the Follower (N = 8). However, for the horizons N = 10, . . . , 18 the active
learning SPGP-MPC can leverage these explorations to safely merge as seen for N = 12,
above. Furthermore, the minimum velocity of all vehicles vmin in the scenario is on average
much higher than for the untrained passive learning SPGP-MPC (Table 5.6). In addition,
the active learning SPGP-MPC is able to maintain a greater gap from the other vehicles,
and the maximum instantaneous slack is significantly lower, compared to the CV-MPC and
passive learning SPGP-MPC. For long horizons (N = 20, 22, 24), active learning does not
contribute to any increase in performance compared to their passive learning counterpart.

76

5.4. Active Learning with GP-MPC

Computation Time The average solve time of the warm-started, untrained active learn-
ing SPGP-MPC over all simulations is 1.361 [s] and the maximal solve time of all simulations
is 8.014 [s]. While there is potential to run this algorithm real-time, further improvement
of the algorithm is required to realize this. Refer to Table B.5 for detailed solve times.

Conclusion The active learning framework from Soloperto et al. [13] is exploited by the
active SPGP-MPC to actively learn the interaction dynamics and explore the state space.
To this end, the SPGP-MPC actively seeks states that are associated with large uncertainty.
Consequently, the Ego vehicle deviates from its nominal solution, starts to vary its speed
in order to perturb the Follower and moves to a position that enables it to improve its
performance. As a result, the overall traffic flow is improved on average and the Ego
maintains greater distance from the Follower, when compared with the untrained passive
SPGP-MPC. In conclusion, the active learning framework Soloperto et al. [13] enables
constrained exploration and can improve the performance of the untrained SPGP-MPC.

5.4.2 Oscillatory Behavior

Experiments In this section, we investigate emergent behavior that arises when the active
learning SPGP-MPC is pre-trained. Initially, Algorithm 3 has been designed to use the
SPGP-MPC in an active learning framework with its nominal receding horizon. Typically,
the training data as well as the pseudo-inputs are updated every time step. Without pre-
training Algorithm 3 does not provide any issues, however, it is found that updating the
pseudo-inputs of the SPGP at every time step leads to oscillatory behavior when the SPGP
is pre-trained with previous observations. To mitigate this oscillatory behavior, we propose
a novel active learning SPGP-MPC algorithm that uses a learning period of length K. This
algorithm, detailed in Algorithm 4, updates the pseudo-inputs every K time steps, while
maintaining the receding horizon of the MPC and expanding the training set every single
time step. Note that Algorithm 4 with K = 1 is equivalent to Algorithm 3.

Subsequently, we study the effect of the learning period length K on the overall per-
formance and the oscillatory behavior of the pre-trained SPGP-MPC using active learning.
The hyperparameters of the active learning framework are selected in section 4.3.2. We
confine ourselves to a single prediction horizon N = 12 as we only seek to identify and
rectify this oscillatory behavior, which is independent of the prediction horizon length. The
active learning SPGP-MPC is pre-trained with the observations from one scenario.

Simulation Results In Figure 5.13, we can observe the oscillatory behavior that occurs
due to the phenomenon described above. The switching input sequence prohibits the pre-
trained active learning SPGP-MPC from active exploration. In Figure 5.14 the oscillatory
behavior is rectified by using our novel active learning SPGP-MPC algorithm with a learning
period of K = 3, which has sufficient dedication to explore the state space and successfully
merge between the two vehicles. By increasing the learning period to K = 5 and K = 10 the
explorations become more low frequent, as seen in Figure 5.15 and Figure 5.16, respectively.

77

Chapter 5. Results

Figure 5.13: Oscillatory velocity and acceleration trajectories of the pre-trained active
learning SPGP-MPC on the primary lane merging test case with a prediction horizon of
N = 12 and a learning period of length K = 1.

Figure 5.14: Oscillatory velocity and acceleration trajectories of the pre-trained active
learning SPGP-MPC on the primary lane merging test case with a prediction horizon of
N = 12 and a learning period of length K = 3.

78

5.4. Active Learning with GP-MPC

Figure 5.15: Oscillatory velocity and acceleration trajectories of the pre-trained active
learning SPGP-MPC on the primary lane merging test case with a prediction horizon of
N = 12 and a learning period of length K = 5.

Figure 5.16: Oscillatory velocity and acceleration trajectories of the pre-trained active
learning SPGP-MPC on the primary lane merging test case with a prediction horizon of
N = 12 and a learning period of length K = 10.

79

Chapter 5. Results

Table 5.7: Pre-trained active learning SPGP-MPC for various learning period lengths

N K Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

12 1
Merged
Behind 0 115 71 3.4 5.0 5.8

Oscillatory
Behavior

12 3
Merged in
Between 0.34 115 84 5.0 6.6 3.8

Moderate brake
Follower

12 5
Merged in
Between 0.46 115 78 5.0 6.4 3.4

Moderate brake
Follower

12 10
Merged in
Between 0.29 121 82 5.0 5.0 4.2 -

Table 5.7 summarizes the results of the active learning SPGP-MPC for various learning
periods. For more detailed results, refer to Table B.6. The standard implementation of
the pre-trained SPGP-MPC (K = 1) causes oscillatory behavior that prevents the motion
planner from active exploration. In addition, the oscillatory input causes the Ego to merge
behind the vehicles, where the other algorithms where successful in merging in between.
The novel active learning SPGP-MPC algorithm enables active exploration and manages to
successfully merge in between the vehicles. The longest learning period (K = 10) leads to
the smoothest merge and the least intervention from the Follower, as seen in Figure 5.16.

Computation Time The average solve time of the warm-started, pre-trained active
learning SPGP-MPC over all simulations is 0.604 [s]. The maximal solve time over all
simulations is 1.030 [s]. The build time and the solve time is not affected by the learning
period length K. Refer to Table B.6 for details on each simulation.

Conclusion In section 5.3.2, it has been shown that iterative learning can improve the
performance of the motion planner by using offline training data to pre-train the GP model.
However, the active learning SPGP-MPC with the standard SPGP implementation causes
oscillatory behavior of the motion planner when it is pre-trained on offline data. The set
of pseudo-inputs is used to condition the prediction on the previous MPC predictions in an
attempt to reduce the complexity associated with full GPs, discussed in section 3.3.4. As
the pseudo-inputs change every MPC step, so does the distribution of the GP. Consequently,
when the active SPGP-MPC tries to maximize the covariance, it switches to another input
sequence, whenever the pseudo-inputs change. The resulting oscillatory behavior of the
active learning SPGP-MPC can be rectified by updating the pseudo-inputs every K time
steps and enables active learning with a pre-trained SPGP. In the next subsection, we study
iterative learning using this novel active learning-based SPGP-MPC algorithm.

5.4.3 Iterative Active Learning

Experiments As with passive learning, we can use observations from past scenarios to
pre-train the GP. Subsequently, we study how this pre-training affects the overall perfor-
mance of the motion planner. Also here, we consider the same primary test case that is

80

5.4. Active Learning with GP-MPC

detailed in Table 5.1, with the I-MR-IDM according to Table 2.2 and Table 5.2. The hy-
perparameters of the active learning framework are selected in section 4.3.2. Similar to
section 5.3.2, we consider iterative learning, such that the GP model is pre-trained with
the observations D0 from the same scenario with identical parameterization, including the
prediction horizon length N and learning period length K. We confine ourselves to a single
prediction horizon of length N = 12, 14, 16.

Simulation Results Firstly, we discuss the pre-trained active learning SPGP-MPC for
a prediction horizon length of N = 12. This scenario was briefly discussed in section 5.4.2,
however, there the focus is on the oscillatory behavior. In this section, we compare it against
the other MPCs. The SPGP-MPC actively explores, as seen in Figure 5.15. In comparison
to the untrained active learning SPGP-MPC, the pre-trained SPGP-MPC approaches at a
lower velocity, as seen in Figure 5.17 and Figure 5.18 at t = 9.75 [s]. Consequently, the
solution to the learning MPC problem decides to decelerate and subsequently accelerate,
whereas the primary MPC plans to gradually reduce the Ego’s speed (Figure 5.17). Due
to its lower approaching speed, Ego has to accelerate during the merge. Note that the
predictions are less accurate (Figure 5.19) than for the passive learning counterpart, found
in Figure 5.6. Subsequently, the Ego decelerates strongly after the merge (t = 13 [s],
Figure 5.18) and induces a strong deceleration on the Follower, as seen in Figure 5.12.

Figure 5.17: Velocity and acceleration trajectories with the predictions of primary (dia-
monds) and learning (crosses) MPC with one iteration of pre-training at t = 10 [s] on the
primary lane merging test case with a prediction horizon of N = 12.

81

Chapter 5. Results

Figure 5.18: Time-lapse of active learning SPGP-MPC with one iteration of pre-
training on the primary lane merging test case with a prediction horizon of N = 12.

Figure 5.19: Velocity and acceleration trajectories with the predictions of active learn-
ing SPGP-MPC with one iteration of pre-training at t = 11.75 [s] on the primary lane
merging test case with a prediction horizon of N = 12.

82

5.4. Active Learning with GP-MPC

Table 5.8: Results of active learning SPGP-MPC with pre-training

N
Training
Iteration Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

12 1
Merged in
Between 0.46 115 78 5.0 6.4 3.4

Moderate
brake Follower

12 2
Merged in
Between 0.44 115 78 2.6 5.0 3.0 -

14 1
Merged
Behind 0 115 70 4.0 4.6 10.7 -

14 2
Merged in
Between 0.35 118 85 5.0 5.3 3.7 -

16 1
Merged
Behind 0 115 66 4.8 4.3 6.4 -

16 2
Merged
Behind 0 115 77 3.2 4.3 8.1 -

The results of active learning with the SPGP-MPC with pre-training in the primary test
case are summarized in Table 5.8. For more detailed results, refer to Table B.7. Whereas
pre-training with the passive learning SPGP-MPC resulted in a significant overall perfor-
mance increase, the effect of pre-training the active learning SPGP-MPC is inconclusive.
For N = 12, the pre-trained active exploration does not result in significant improvements
in comparison to the pre-trained passive learning SPGP-MPC. During the first iteration
with N = 14, the pre-trained active learning SPGP-MPC had to merge behind as the ex-
ploration put the Ego at a disadvantage and caused him to merge behind the two vehicles.
However, during the second iteration, the reduced covariance enables Ego to merge behind.
For N = 16 the active exploration does not lead to any increase in performance. Overall,
the pre-trained active learning SPGP-MPC explores less than the untrained SPGP-MPC.

During the second iteration, the Ego approaches at the same speed as in the first iteration
(t = 9.75 [s] in Figure 5.20). However, in this case, the GP’s predictions have improved
and the GP accurately captures the interaction dynamics, as shown in Figure 5.21, and Ego
gradually reduces its speed before and during the merge (t = 11.25 [s] and t = 12.25 [s],
Figure 5.20). Consequently, the induced deceleration of the Follower is much lower than
during the first iteration. Also, in this case, the pre-trained active learning SPGP-MPC
explores less than the untrained counterpart

A possible explanation for the reduced exploration when using a pre-trained GP, is
that without any data, the covariance is more defined by the prior distribution, whereas
the covariance of the pre-trained GP is more defined by the training data rather than the
(bounded) prior, such that it requires a lot of relaxation to maximize the uncertainty. As
the exploration of the active SPGP-MPC is bounded by a hyperparameter, the SPGP-
MPC does not explore as it would with the untrained active SPGP-MPC. Furthermore,
since we are solving a non-convex optimization problem, it is likely that we only find a
locally optimal solution to the active learning problem. Consequently, it is possible that
due to the pre-training, the solution converges to a local minimum that is close to the
training data.

83

Chapter 5. Results

Figure 5.20: Time-lapse of active learning SPGP-MPC with two iterations of pre-
training on the primary lane merging test case with a prediction horizon of N = 12.

Figure 5.21: Velocity and acceleration trajectories with the predictions of active learn-
ing SPGP-MPC with two iterations at t = 11.75 [s] of pre-training on the primary lane
merging test case with a prediction horizon of N = 12.

84

5.5. Generalizability

Computation Time The average solve time of active learning SPGP-MPC with pre-
training over all simulations, excluding every first iteration, is 0.740 [s]. The maximal solve
time of all simulations is 3.327 [s]. Future research has to determine how the solve time of
the active learning SPGP-MPC scales with large amounts of pre-training, still these solve
times demonstrate the potential to run this algorithm in real-time. Refer to Table B.7 for
details on each simulation.

Conclusion In section 5.4.1, we found that the active SPGP-MPC without pre-training
can promote the exploration of the state space and is able to improve the performance of
the motion planner. It was found that pre-training confines the active learning solution
much more to the primary solution, which potentially results from the convergence of the
non-convex optimization problem to a local minimum. The SPGP-MPC still explores the
uncertainty around these predictions, but to a lesser extent than without pre-training.

Pre-training the active SPGP-MPC with such actively learned data was not found to
improve the performance of the motion planner, as the trajectories are less exploratory than
without pre-training. Furthermore, iterative learning does not lead to the same consistent
performance increase as seen with passive learning. In conclusion, active learning SPGP-
MPC can be used to explore the state space, and has shown increased performance in some
cases. However, merely maximizing uncertainty does not provide the required data nor
steers the Ego to the appropriate state to consistently outperform online passive learning in
this case study. We expect that active learning needs to be done in a truly control-oriented
manner to consistently outperform passive learning.

5.5 Generalizability

In section 5.2 to section 5.4, we have focused on the primary test case, which is defined
in section 5.1, to provide a detailed comparative study of the various motion planners.
Conversely, this section considers different test cases to study the generalizability of the
motion planners to provide a sense of their robustness. As the working mechanisms of the
various algorithms are similar to those discussed in the previous section, we focus in this
section on the high-level performance. Firstly, section 5.5.1 studies the performance of the
CV-MPC, as well as the passive and active SPGP-MPC for two different initial conditions.
Secondly, we study the performance of the various motion planners in two test cases that
concern a more altruistic Follower that yields to the Ego vehicle, in section 5.5.2. Finally,
we study the effect of the slack penalty weight on the primary use case, in section 5.5.3.

5.5.1 Different Initial Conditions

In this alternative use, we study a lane merging scenario with two different initial conditions
to test the robustness of the motion planners. It is important to note that the parameteri-
zation of the objective function has not been modified from the primary test case. The Ego
vehicle tries to maintain its initial velocity, while the closing merge lane incentivizes the Ego

85

Chapter 5. Results

Table 5.9: Parameters of the Interactive MR-IDM of the adversarial Follower.

IDM Parameter Symbol Value

Nominal reference velocity vnom 110 [km/h]
Nominal headway time Tnom 1 [s]
Interactive reference velocity vact 140 [km/h]
Interactive headway time Tact 0.25 [s]

to safely merge. The lateral positions are equal to those in Table 5.1. Again, note that all
vehicles start with zero heading angle (ψ) and zero steering angle (δ). The I-MR-IDM of the
Follower has the same parameterization as in the primary test case that we have seen thus
far, and is listed in Table 2.2 and Table 5.9. We confine ourselves to a prediction horizon
of length N = 12 and a learning period of length K = 5, in the case of active learning.

Test Case 1 Firstly, we consider a test case where the vehicles are initialized closer to
the end of the merge lane, detailed in Table 5.10. Table 5.11 summarizes the results of the
CV-MPC, and the passive and active learning SPGP-MPC in the second alternative test
case. For more detailed results, refer to Table B.8. While in the previous test case the
CV-MPC was able to safely merge in between, in this case, the CV-MPC does not find a
gap and safely merges behind. The passive learning SPGP-MPC can learn the behavior but
is unable to find a gap to safely merge in between and, hence, also safely merges behind the
two vehicles. Conversely, the active learning SPGP-MPC safely merges in between the two
vehicles as a result of its active exploration. Note that for active learning the upper bound
on the relaxation is reduced to γmax = 100, as the nominal value of γmax = 250 resulted in
Ego overtaking both vehicles with high velocity. Further improvements in the adaptability
of the active learning framework are considerations for future work.

Table 5.10: Initial conditions of alternative test case 1.

State Symbol Value

Longitudinal pos. Ego X0 75 [m]
Longitudinal pos. Follower X1 75 [m]
Longitudinal pos. Leader X2 130 [m]
Velocity Ego v0 115 [km/h]
Velocity Follower v1 115 [km/h]
Velocity Leader v2 90 [km/h]

Table 5.11: Results of the alternative test case 1 for N = 12.

Algorithm Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

CV-MPC
Merged
Behind 0.04 111 74 1.9 4.5 6.1 -

Passive
SPGP-MPC

Merged
Behind 0.18 111 75 1.7 4.6 6.0 -

Active
SPGP-MPC

Merged in
Between 0.00 116 87 1.4 3.7 5.3 γmax = 100

86

5.5. Generalizability

Test Case 2 Secondly, we consider a test case where the Ego approaches the Follower
and the Leader who are both driving at a lower speed, detailed in Table 5.12. Similarly,
the results of the CV-MPC, and the passive and active learning SPGP-MPC in the second
alternative test case are summarized in Table 5.13. For more detailed results, refer to
Table B.9. Similar to the previous test case, the CV-MPC is too optimistic and tries to
merge in between, causing a collision with the Follower. In this case, the passive learning
SPGP-MPC successfully learns the behavior of the Follower and safely merges in between
the two target vehicles. Moreover, the active learning SPGP-MPC safely merges in between
the two vehicles as a result of its active exploration. However, this active exploration leads
to increased intervention by the Follower.

Table 5.12: Initial conditions of alternative test case 2.

State Symbol Value

Longitudinal pos. Ego X0 -100 [m]
Longitudinal pos. Follower X1 -50 [m]
Longitudinal pos. Leader X2 0 [m]
Velocity Ego v0 115 [km/h]
Velocity Follower v1 90 [km/h]
Velocity Leader v2 90 [km/h]

Table 5.13: Results of the alternative test case 2 for N = 12.

Algorithm Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

CV-MPC
Merged
Behind 0.04 115 75 2.3 5.0 5.0 -

Passive
SPGP-MPC

Merged in
Between 0 115 87 1.8 3.4 5.7 -

Active
SPGP-MPC

Merged in
Between 0.24 122 83 5.0 5.0 4.2 γmax = 100

Conclusion In addition to the initial condition that is studied in detail in the previous
sections, we study two additional initial conditions to assess the generalizability of the
CV-MPC, and the SPGP-MPC with both passive as well as active learning. The SPGP-
MPC was able to successfully learn the behavior of the Follower and identify a gap that
the CV-MPC could not. Consequently, the SPGP-MPC was able to merge in between the
vehicles, whereas the CV-MPC had to merge behind. In some cases, the active SPGP-MPC
causes less intervention of the Follower than the passive SPGP-MPC, however, this strongly
depends on the initial condition. In conclusion, the performance of the SPGP-MPC in these
various initial conditions demonstrates the generalizability of the motion planner and shows
its potential and robustness. However, the adaptability of the active learning SPGP-MPC
requires further research to adapt its degree of learning.

87

Chapter 5. Results

5.5.2 Altruistic Driving Behavior

Experiments Subsequently, we consider an altruistic Follower that is more likely to yield
to the Ego vehicle that is trying to merge. However, this behavior should still be sufficiently
challenging. As such, the Follower still tries to close the gap with the Leader. However, the
Follower is more altruistic and will yield to the Ego if he tries to overtake. Similarly to test
cases 2 and 3, we adjust the active learning parameter to γmax = 100 to limit the exploration
to prevent the Ego from overtaking both vehicles. The desired speeds and headway times
of the Interactive MR-IDM are listed in Table 5.14. To this end, we consider two different
initial conditions in this study.

Table 5.14: Parameters of the Interactive MR-IDM of the altruistic Follower.

IDM Parameter Value

Nominal speed (vnom) 115 [km/h]
Nominal headway time (Tnom) 0.25 [s]
Interactive speed (vact) 115 [km/h]
Interactive headway time (Tact) 1 [s]

Test Case 3 Firstly, we consider a test case where the Ego approaches the Follower and
the Leader who are both driving at a lower speed, detailed in Table 5.15. The results of
the CV-MPC, and the passive and active learning SPGP-MPC in the fourth alternative
test case are summarized in Table 5.16. For more detailed results, refer to Table B.10 in
Appendix B. Again, the CV-MPC is able to safely merge in between. Table 5.16 shows that
the minimal velocity is similar for all three algorithms. Although the KPIs are similar, the
SPGP-MPC has a much smoother trajectory as it anticipates the behavior of the Follower.

Table 5.15: Initial conditions of alternative test case 3 with an altruistic driver.

State Symbol Value

Longitudinal pos. Ego X0 -100 [m]
Longitudinal pos. Follower X1 -50 [m]
Longitudinal pos. Leader X2 0 [m]
Velocity Ego v0 115 [km/h]
Velocity Follower v1 90 [km/h]
Velocity Leader v2 90 [km/h]

Table 5.16: Results of the alternative test case 3 with an altruistic driver for N = 12.

Algorithm Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

CV-MPC
Merged in
Between 0 115 83 2.4 2.6 8.8 -

Passive
SPGP-MPC

Merged in
Between 0 115 83 2.4 2.2 7.2 -

Active
SPGP-MPC

Merged in
Between 0.02 123 82 2.4 4.4 5.7 γmax = 100

88

5.5. Generalizability

Test Case 4 Secondly, we consider the case where the Follower is approaching the Leader
at a higher velocity, while the Ego is approaching both the Follower and the Leader at an
even higher velocity, seen in Table 5.17. The results of the CV-MPC, and the passive and
active learning SPGP-MPC in the final alternative test case are summarized in Table 5.18.
For detailed results, refer to Table B.11. The active learning SPGP-MPC approaches the
merge at a higher velocity, and consequently, it has to brake more during the merge. This
results in a larger induced deceleration of the Follower than the CV-MPC and the passive
SPGP-MPC. Although the minimal gap attained with the passive and active learning SPGP-
MPC is larger than for the CV-MPC, the performance of all three algorithms is similar.

Table 5.17: Initial conditions of alternative test case 4 with an altruistic driver.

State Symbol Value

Longitudinal pos. Ego X0 0 [m]
Longitudinal pos. Follower X1 50 [m]
Longitudinal pos. Leader X2 100 [m]
Velocity Ego v0 125 [km/h]
Velocity Follower v1 110 [km/h]
Velocity Leader v2 90 [km/h]

Table 5.18: Results of the alternative test case 4 with an altruistic driver for N = 12.

Algorithm Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

CV-MPC
Merged in
Between 0 125 83 0.6 2.4 7.8 -

Passive
SPGP-MPC

Merged in
Between 0 125 83 0.2 2.4 6.9 -

Active
SPGP-MPC

Merged in
Between 0.01 132 83 0.8 3.0 5.9 γmax = 100

Conclusion In addition to adversarial drivers, the SPGP-MPC is capable of anticipating
the behavior of more altruistic drivers. Although the CV-MPC yields satisfactory results
when faced with an altruistic driver that yields to the Ego, the SPGP-MPC can predict
this behavior accurately and improve the smoothness of the control inputs, compared to
CV-MPC. In the studied scenarios, active exploration does not provide a strong advantage
over passive learning SPGP-MPC. However, it can be concluded that the SPGP-MPC also
can improve performance in less challenging scenarios, like that of a yielding driver.

5.5.3 Adjusted Slack Penalty Weights

Experiments In this section, we identify an edge case in which the CV prediction model
falls short, while the SPGP-MPC can successfully identify a gap. We study the CV-MPC
and the online passive and active learning SPGP-MPC for the primary test case defined in
section 5.1. The initial conditions for this study are defined in Table 5.1, and the I-MR-IDM
is parameterized according to Table 2.2 and Table 5.2. For the SPGP-MPC, we focus on
passive online learning, such that the GP starts without any training data (D0 = ∅).

89

Chapter 5. Results

We increase the penalty of the slack variables with a factor of 2.5 to create this edge case:

ρ = 2.5
[
105 105 103 103

]�
. (5.1)

Results The results of the CV-MPC, and the passive and active learning SPGP-MPC are
summarized in Table 5.19. For more detailed results, refer to Table B.12 in Appendix B.
As a consequence of the increased penalty on the slack variable, the CV-MPC is unable to
identify the gap, whereas the SPGP-MPC learns the behavior online and can successfully
identify a gap and merge in between the vehicles. Furthermore, the active learning MPC
leverages its exploration and induces a lower deceleration on the Follower. Also, note that
the instantaneous slack is lower for active learning than for passive learning.

We compare the CV-MPC and passive learning SPGP-MPC in more detail. The CV-
MPC is unable to identify a gap and brakes very lightly, assuming that the Follower will
maintain its current velocity, as seen in Figure 5.23. As the CV-MPC does not anticipate the
Follower braking, it maintains its speed as seen at t = 9.75 [s] in Figure 5.22. Consequently,
it has to brake hard in order to prevent a collision with the Follower (t = 11.25 [s] and
t = 12.25 [s]), and subsequently, it merges behind the Follower with a close distance to the
Follower, as seen at t = 13 [s] in Figure 5.22. The SPGP-MPC, on the other hand, predicts
that the Follower will brake. It is able to identify a gap in which the Ego can merge, while
accounting for uncertainty in its predictions, as seen at t = 9.25 [s] in Figure 5.24, and
t = 9.75 [s] in Figure 5.25. Just before starting the merge, the Ego briefly accelerates to
maintain sufficient distance from the Follower (t = 11.25 [s], Figure 5.25). Subsequently,
the Ego has to reduce its speed, inducing a moderately hard brake on the Follower.

Conclusion The parametrization of the problem plays a crucial role in the performance
of the motion plan. As the weights on the slack variable limit the relaxation of collision
avoidance constraints, the prediction models must rely on accurate predictions to identify
a gap. Note that the instantaneous slack of the SPGP-MPC reduced from εmax = 0.52 (Ta-
ble 5.4) to εmax = 0.23 (Table 5.19) after increasing the slack penalty. The SPGP-MPC can
successfully learn the behavior of the Follower and leverage these predictions to complete
a lane merge, while the CV-MPC cannot identify a gap and merges behind the Follower.
In conclusion, the SPGP-MPC outperforms the CV-MPC in these tightly constrained sce-
narios. Although this test case shows promise for SPGP-MPC as an interactive motion
planner, further research has to determine the true potential of GP-MPC motion planners.

Table 5.19: Results of the primary test case with increased slack penalties for N = 12.

Algorithm Result

εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m] Note

CV-MPC
Merged
Behind 0 115 68 1.7 5.0 6.8 -

Passive
SPGP-MPC

Merged in
Between 0.23 115 85 1.5 6.3 4.3

Moderate
brake Follower

Active
SPGP-MPC

Merged in
Between 0.09 120 84 2.8 5.1 4.7 γmax = 250

90

5.5. Generalizability

Figure 5.22: Time-lapse of CV-MPC on the primary lane merging test case with in-
creased slack penalty weight and a prediction horizon of N = 12.

Figure 5.23: Velocity and acceleration trajectories with the predictions of the CV-MPC
at t = 9.25 [s] on the primary lane merging test case with increased slack penalty weight
and a prediction horizon of N = 12.

91

Chapter 5. Results

Figure 5.24: Time-lapse of passive learning SPGP-MPC on the primary lane merging
test case with increased slack penalty weight and a prediction horizon of N = 12.

Figure 5.25: Velocity and acceleration trajectories with the predictions of the passive
learning SPGP-MPC at t = 9.25 [s] on the primary lane merging test case with increased
slack penalty weight and a prediction horizon of N = 12.

92

5.6. Discussion

5.6 Discussion

In section 5.2 to section 5.5, the results of the CV-MPC and the passive as well as active
learning SPGP-MPC are presented and discussed. In this section, we conclude on these
results and discuss the findings of the simulation studies on the lane merging test cases.

5.6.1 Constant-Velocity MPC

The CV-MPC uses a deterministic constant-velocity prediction model to predict the motion
of the Following vehicle. While in many cases such a prediction model will suffice, it limits
the possibilities to learn and adapt to uncertain and unseen behavior. In our primary
test case, the CV-MPC was able to safely merge between the vehicles with short horizons.
This behavior results from the overconservative predictions that assume that the Follower is
driving at a constant velocity, while actually it is braking. For longer horizons, the CV-MPC
was unable to identify a gap. Due to the current parameterization, the CV-MPC was able to
safely merge. However, preliminary results show that its constant velocity predictions can
fall short. The qualitative predictions are often inaccurate and do not capture the dynamics
of the interactive agents, limiting the adaptability to interact with them. Furthermore, an
interaction-aware model is essential to enable active learning.

5.6.2 Passive Learning with SPGP-MPC

The SPGP-MPC can anticipate the behavior of the Following vehicle by leveraging past ob-
servations, and adapt to the current situation. The simulation studies show that the perfor-
mance of the passive learning SPGP-MPC is robust to different horizon lengths. Moreover,
the SPGP-MPC can successfully learn the interactions and safely plan the Ego’s motion
in a variety of cases, showing a degree of robustness of the method. The SPGP can adapt
its predictions and the associated covariance based on the training data. As a result, the
GP-based prediction model, on the one hand, takes more caution when the scenario is
unknown or has great uncertainty. As such, long prediction horizons feature greater covari-
ance, accounting for the uncertainty associated with those predictions and taking caution
when necessary. However, it can be more assertive if the scenario is familiar and the GP
is confident in its predictions. In conclusion, the SPGP-MPC has strong potential to learn
the interactive behavior of other vehicles both with and without pre-training.

5.6.3 Active Learning with SPGP-MPC

Soloperto et al. [13] provide a simple and intuitive, yet powerful framework to extend a MPC
with active learning. In this study, we exploit this framework using the GP-based MPC.
The active learning framework enables active and tunable exploration of the state space.
Although this exploration can improve the performance of the motion plan, the relaxation of
the primary MPC problem is constant (through γmax) in our current formulation. Ideally,
the active learning framework should allow more relaxation (through β̄ and βmax) if it

93

Chapter 5. Results

expects to improve the primary objective in the long run. We expect that due to our
problem formulation, we cannot exploit the active learning framework to its full potential.

The active learning framework uses notions from economic MPC to enforce an abso-
lute or average decrease of the objective function over time. As such, the active learning
framework relies on an MPC problem whose objective function is — at least on average —
decreasing, for example as is typically found in tracking problems. As mentioned before, for
the sake of analysis we do not incentivize the AV to merge, firstly, as to prevent any bias of
the solution, and secondly, to identify the shortcomings and potential of the various motion
planners. Due to our current problem formulation, the MPC’s objective function is very
low until we have to deviate from our reference, that is, as the Ego vehicle approaches the
merge point. Consequently, it is very difficult to enforce the absolute or average decrease of
the objective function over the horizon over time. It is important to note that the primary
problem remains feasible, however, the learning problem that is to be solved subsequently
becomes infeasible as it cannot satisfy the cost decrease. Hypothetically, in a dense traffic
scenario, we can incentivize the AV to merge into the target lane. The objective function is
initially high, due to the cost of not merging, and by exploring the state space it perturbs
the target vehicles which may or may not yield to the AV that is trying to merge. Dur-
ing this exploration, the GP-MPC could leverage the observations on these interactions to
merge in between. Conclusively, due to the current construction of the MPC its objective
function, the active learning framework by [13] could not be exploited to its full potential.

5.6.4 Deterministic vs. Stochastic Predictions

In this thesis, the CV-MPC that serves as a baseline for the passive and active learning
SPGP-MPC uses a deterministic prediction model, whereas the SPGP-MPC relies on a
stochastic prediction model. One could argue that a stochastic CV prediction model could
account for the inaccuracy and uncertainty of its predictions and, hence, improve the gener-
alizability and safety of the CV-MPC. However, we would argue that the primary limitation
is not the uncertainty of a potential stochastic CV prediction model. Merely adding some
bounded uncertainty to the CV predictions is equivalent to a reformulation of the CV-MPC
problem, in which the collision avoidance constraints perhaps become tighter over the pre-
diction horizon. As seen in section 5.5.3, the CV-MPC is unable to identify a gap in tight
constraints and consequently has to merge behind. Moreover, the approximate distribu-
tion of the uncertainty will strongly dictate the behavior of the CV-MPC and it cannot be
adapted to unseen behavior. We believe that the primary limitation of the CV model is the
lack of adaptability. Although a stochastic CV-MPC could improve safety as the resulting
distribution captures more potential trajectories, this can also be a significant limitation in
cases that require an interactive and assertive motion plan, rather than a conservative mo-
tion plan. Conversely, the SPGP-MPC can predict the Follower’s motion through Bayesian
inference using current observations, and adapts its predictions accordingly. As such, the
covariance or ‘confidence’ of the predictions is governed by the GP and therefore is variable.
Consequently, the SPGP-MPC has the potential to identify a gap for merging. This adapt-
ability shows the potential of SPGP-MPC as a safer and better motion planner, as seen in

94

5.7. Reflection

the case study. In conclusion, as opposed to the reactive motion plan of the CV-MPC, the
SPGP-MPC provides an interactive and assertive motion plan that anticipates the motion
of another vehicle while considering the uncertainty of its predictions.

5.7 Reflection

The results of this study ask for some reflection. In addition to a proof of concept for the
learning and prediction capabilities of Gaussian process-based MPC, this thesis also aimed
to demonstrate how it can outperform a baseline MPC, a constant velocity MPC. As men-
tioned before, the performance of the MPC is strongly dependent on the parameterization
of the MPC problem. An important aspect of this is the use of slack variables on the softly
constrained collision avoidance constraints. As such, the primary and alternative test cases
were selected to demonstrate an edge case in which the CV-MPC fails, and the SPGP-MPC
is able to leverage its predictions to complete the merging maneuver. Unfortunately, due
to a coding error, the simulations of the baseline CV-MPC were flawed. Consequently,
these simulations had to be redone after the error was corrected. Tuning the parameters to
demonstrate this edge case, and performing all simulation studies again, was not feasible
in the remaining time of the project. As seen in this chapter, with the current problem
formulation and the corrected results, the quantitative performance of the CV-MPC is com-
parable to that of the SPGP-MPC. Nevertheless, some alternative test cases demonstrate
where the CV-MPC is lacking, as seen in section 5.5. Furthermore, the qualitative results
of the online learning SPGP-MPC show great potential that asks for further research.

In addition, we simulated the primary test case with increased slack penalty weights
and demonstrated its potential, in section 5.5.3, to provide a glimpse of the capabilities of
SPGP-MPC in such an edge case. During the study, it was found that the penalty weight of
the slack variables is a crucial parameter for the solution of the motion planner. The SPGP-
MPC outperforms the CV-MPC in its prediction quality, for the CV-MPC merely relies on
a constant velocity prediction. As such, the CV-MPC requires more slack to identify a gap
as compared to the SPGP-MPC. This can be seen, for example, in the alternative case
study in which we increase the slack penalty weights. The CV-MPC is unable to identify
a gap without violating the soft constraints and accordingly, has to merge behind the two
target vehicles. The SPGP-MPC is able to identify a gap with that same parameterization.
Considering the complexity of the problem, it still uses the slack variables. However, with its
superior predictions, the SPGP-MPC improves its decision-making and planning capabilities
and relies less on soft constraints. Consequently, it can successfully merge between the target
vehicles. This is a strong example of how online Gaussian process MPC can outperform a
constant velocity MPC. Unfortunately, we can only discuss this phenomenon briefly. Still,
the ability to learn these predictions online without the need for pre-training demonstrates
the potential of GP-MPC for interaction-aware motion planning. Its prediction capabilities
can be leveraged to reduce conservatism and open the door for passive and active learning-
based MPC in interaction-driven traffic scenarios. Future research has to validate the true
capabilities and impact of GP-MPC on the safety and performance of motion planning.

95

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Autonomous vehicles operate in complex dynamic environments that are characterized by
strong interactions between vehicles and are faced with uncertain and unseen behavior.
When navigating in complex traffic scenarios, the AV needs to account for these interactions
and their associated uncertainty when planning its motion. In this thesis, interaction-aware
motion planning methods using learning-based model predictive control have been presented
that enable autonomous vehicles to learn uncertain and unseen behavior of other vehicles
in a simulated lane merging scenario. We leveraged MPC to jointly optimize the motion
of the AV and the predictions of a target vehicle through an interactive Gaussian process
prediction model. Based on quantitative and qualitative analysis, it can be concluded that
GP-MPC can passively and actively learn the interactions between two vehicles. The GP-
MPC accurately predicts and leverages these interactions to complete a lane merge without
the need for pre-training. Simulation results demonstrate its generalizability to various
scenarios. In conclusion, GP-MPC shows strong potential as an interaction-aware motion
planner for uncertain and unseen traffic scenarios that extend beyond the training data set.

Gaussian process-based MPC has become a popular approach for learning-based control
as it provides a direct assessment of the uncertainty of the predictions. As such, GP-based
predictions have been used in a stochastic MPC for autonomous overtaking in racing, how-
ever, this method does not jointly optimize the motion of the AV and the predictions of the
target vehicle. Although, more recently, interaction-aware GP-MPC has been used jointly
to optimize the motion of the AV and the predictions of a target vehicle in autonomous
racing, they rely on offline training data from observations of similar scenarios. Online
learning could improve the generalizability and performance of interaction-aware planning
in uncertain and unseen scenarios. We extended this line of research by utilizing both pas-
sive and active learning with GP-MPC. By learning the interactions between vehicles online,
our motion planner can anticipate uncertain and even unseen behavior. The adaptability
of GP-MPC could contribute to the robustness and practical generalizability of motion
planning to challenging traffic scenarios that are outside the planner’s training data.

97

Chapter 6. Conclusions and Recommendations

This thesis makes the following contributions to the field of interaction-aware motion
planning. Firstly, we presented a novel online learning-based Gaussian process model pre-
dictive controller that jointly optimizes the motion of the AV and the interacting vehicle.
Secondly, we integrated our GP-MPC in the active learning MPC framework from Soloperto
et al. [13]. Furthermore, a novel GP-MPC motion planning algorithm was presented that
enables the use of Sparse GP-based prediction models in the active learning framework [13].
Finally, we proposed an extension to the (Merge-Reactive) Intelligent Driver Model which
models interactions through state-dependent parameters of the IDM. This Interactive IDM
enables the simulation of complex traffic scenarios characterized by strong interactions.

The performance and potential of our proposed methods were evaluated through sim-
ulation studies, and a qualitative and quantitative analysis of the baseline MPC and the
learning-based GP-MPCs were conducted. In this study, the Ego vehicle tried to merge into
a lane with a Following and a Leading target vehicle. We considered three prediction meth-
ods to predict the motion of the Follower, while the Leader maintained a constant velocity.
Our baseline CV-MPC uses a deterministic constant velocity model to predict the future
velocity of the Follower. Our online learning SPGP-MPC uses a sparse pseudo-input GP
to learn the interactions from past and online observations. Through Bayesian inference,
SPGP-MPC jointly plans the motion of the Ego and predicts the motion of the Follower
while directly assessing the covariance associated with these predictions. The SPGP-MPC
can accurately predict the motion of another vehicle while accounting for its joint uncer-
tainty. In addition, the SPGP-MPC can successfully leverage the active learning framework
from [13] to explore the state space and improve the performance of the motion plan. The
passive and active learning SPGP-MPC are compared with the baseline CV-MPC. It was
found that the performance of the CV-MPC is strongly dependent on the problem formula-
tion. Its inferior predictions can pose limitations in tightly constrained problems. Although
in many cases, the performance and safety of CV-MPC are adequate, simulations show that
in specific edge cases, the constant velocity predictions are lacking. As safety is about the
tail of the distribution, it is in these edge cases where we find the shortcomings and strengths
of the different methods. In these edge cases, the SPGP-MPC can leverage its predictions
to identify a gap in which the Ego vehicle can safely merge. Moreover, preliminary results
on active learning showed that SPGP-MPC is promising, yet, further research is required
to use the active learning framework [13] with SPGP-MPC to its full potential.

In conclusion, this thesis shows the capabilities of interaction-aware motion planning
for a lane merging scenario and demonstrates how online learning SPGP-MPC can learn
uncertain and unseen driving behavior without the need for pre-training, thereby extending
the potential generalizability of these motion planning methods. However, this thesis merely
serves as a proof of concept, and while simulation results demonstrate the potential of SPGP-
MPC, additional studies have to determine the capabilities of SPGP-MPC motion planners.
While the results of the study hold promise for interaction-aware motion planning with
online learning Gaussian process MPC, we identify several directions for future research, in
particular for active learning methods as well as theoretical safety guarantees. In the next
section, recommendations and an outlook for future work are provided.

98

6.2. Recommendations

6.2 Recommendations

In this thesis, a first step has been made to online learning GP-MPC for interaction-aware
motion. Finally, we give recommendations for future further research. The next research
steps for the online learning-based GP-MPC include (i) validation through a real-life data
set or an interactive simulation environment, (ii) enabling real-time motion planning while
accommodating more vehicles and large sets of training data, (iii) advancing the method
to operate in denser and more complex traffic scenarios, and (iv) providing theoretical
guarantees on recursive feasibility and (probabilistic) safety. This section identifies several
directions for these research steps that have been identified during the study.

6.2.1 Validation

A qualitative and quantitative analysis of online learning Gaussian process MPC was con-
ducted to study the mechanisms of the GP-based prediction models and their relevance for
interaction-driven traffic scenarios. To this end, small training sets and a limited number
of initial conditions have been considered. Although section 5.5 provides a glimpse of how
the SPGP-MPC could improve driving behavior in other traffic scenarios, future research
could extend this method to various traffic scenarios.

A natural next step would be to validate these methods with a data set with real traffic
data or in a high-fidelity simulation environment. A frequently used data set in AV research
is the highD data set [44]. A more recent data set, called exiD [45], focuses on entering and
exiting scenarios on highways and contains more cut-in scenarios, and has a higher density
of interactive and challenging scenarios than highD [45]. Such data sets could be used to
validate the accuracy and relevance of the simulation scenarios in this study. In addition,
high-fidelity simulators, such as NuPlan [46] and Waymax [47], can be used to test our
methods in closed-loop simulation environments, and could provide important insights into
planning methods that need to cope with interactions. While a lot of work needs to be done
before we can safely deploy AVs, proper validation of our methods can help demonstrate
their capabilities and limitations, and provide new insights for further research.

6.2.2 Real-Time Capability

While the current implementation shows potential to run the proposed algorithms in real-
time, further development is required to achieve this real-time capability. Firstly, the com-
putation is strongly dependent on the prediction horizon length, the size of the input and
output to the GP, and the amount of training data, which is a fundamental challenge in
GP-MPC [8]. Although further research is required to determine how much and what
training data is necessary to have good performance in a large variety of scenarios, it can
be expected that the size of the training data will exceed that of this study. As the GP
has a relatively high computational complexity, using a dedicated toolbox for GPs, such as
GPyTorch [48] could accelerate computations. However, the integration of such toolboxes
in the optimization problem is considered part of future work.

99

Chapter 6. Conclusions and Recommendations

6.2.3 Problem Formulation

This thesis aimed to provide a better understanding of an online learning Gaussian process-
based MPC for motion planning. For the sake of analysis, the study focused on a simplified
test case with only two target vehicles, however, this posed some limitations.

Active Learning in Dense Traffic The simulation studies were limited to sparse traffic
scenarios to limit the complexity of the problem. Although simplified test cases enhance
the interpretability of the method and the results, it also imposes some limitations on the
capabilities. The sparse traffic prohibited an explicit incentive for the AV to merge as this
would bias the motion plan to merge as quickly as possible. However, increasing the density
of the traffic increases the complexity of the decision-making, e.g. between which vehicles to
merge, and is a natural next step to further explore the potential of our GP-MPC methods.

In denser traffic, the AV has to negotiate with the other vehicles on a social level to see
what vehicle will yield to the AV, as seen in [6, 21]. As such, with denser traffic, the AV
can be incentivized to merge into the target lane through the objective function, without
introducing significant bias to the solution. Consequently, by only allowing a certain degree
of active exploration if this exploration is expected to improve the primary objective, it is
expected that the active learning framework from [13] can be leveraged to its full potential.
For example, the motion planner could perturb other road users by letting the AV nudge
into the target lane in order to see what vehicle will yield to the AV. It has been shown
that the active learning framework from [13] can be used to actively explore the state space
using our GP-MPC motion planner, however, the simplified test case limits its relevance
and performance. In conclusion, it is expected that explicitly incentivizing the AV to
merge, through a reformulated objective function, enables the GP-MPC to better exploit
the active learning framework from [13] and leverage the framework to its full potential in
a dense traffic scenario.

Cooperative Driving Optimizing the flow of the entire traffic is a natural driving objec-
tive of many human drivers. However, this requires some understanding of the interactions
between vehicles. Interaction-aware prediction models provide a sense of indirect control
over other vehicles which can be leveraged to improve the performance of all road users and
cooperate with other drivers towards a shared objective. By imposing a social cost, e.g.
limiting the decelerations of other vehicles, or maximizing the average velocity of all road
users, the motion planner can consider such social factors while controlling the AV.

External Predictors As discussed in Chapter 1, lack of generalizability and interpretabil-
ity are major challenges for deep-learning-based planners and predictors. However, they can
be integrated with control theoretical frameworks, like MPC. For example, deep-learning-
based planners can be used to provide a reference trajectory. Subsequently, the MPC could
be used to plan the motion of the AV while considering the interactions between the AV
and the target vehicles and possibly providing guarantees on the safety of the motion plan.

100

6.2. Recommendations

6.2.4 Safety Guarantees

Recursive Feasibility Providing safety guarantees of a motion planning algorithm re-
quires the feasibility of all safety-related constraints of the MPC problem for all future time
steps. Assuming that the MPC problem is feasible at the current time, one needs to guaran-
tee that it remains feasible for all time steps. In general, establishing theoretical properties,
such as recursive feasibility and stability of the stochastic optimal control problem poses
a major challenge [24]. In the absence of uncertainty, such guarantees can be provided by
selecting the appropriate terminal ingredients for the MPC, namely an appropriate terminal
cost for the objective function as well as terminal constraints [7]. The difficulty in systems
subject to uncertainty, like in motion planning, lies in changing operating conditions and a
lack of control over another agent. Providing recursive feasibility guarantees for a system
subject to uncertainty requires a notion of a safe set. Loosely speaking, in order to guar-
antee safety we need to determine what another agent might do and account for this. One
could give robust safety guarantees, however, this may lead to overconservative behavior.

Stochastically Reachable Sets In the case of stochastic MPC, the recursive feasibility
of constraints can be guaranteed, analogous to robust MPC, using the concept of stochasti-
cally safe sets. In this study, the chance constraints were approximated. Although one can
provide guarantees on constraint satisfaction with a user-defined probability by tightening
the chance constraints, assuming one can find the necessary terminal ingredients. However,
these methods typically require some knowledge of the stochastic disturbance [49]. Such dis-
tributional information can be estimated, but it is difficult to exactly know this distribution,
in particular when trying to cope with unseen behavior. Although virtually any controller
can be enhanced with safety filters to provide rigorous guarantees, the performance of such
systems remains an open question [8].

Contingency MPC As seen in the results of this study, some scenarios require a certain
degree of risk to successfully merge in between the two vehicles. Naturally, human drivers
accept a certain degree of risk as long as they have a contingency plan that they think
is safe. For example, a human driver may attempt to merge in between two vehicles, as
long as he can also brake and safely merge behind the two vehicles. Ideally, if the safe
contingency plan tends to become infeasible, the human driver aborts its attempt to merge
in between and decides to safely merge behind. Much like human drivers, contingency
MPC [50] could serve as an effective framework to leverage our GP-MPC, which relies on
approximate distributional information to plan a performance trajectory while having a
contingency trajectory in parallel that is guaranteed to be safe. While safety guarantees
are outside the scope of this thesis, contingency MPC is a viable option for future research
to combine the approximate online learning GP-MPC with a guaranteed safe reachable
set formulation. Actual driving data is essential to determine the relevance of stochastic
distributions before one can make meaningful claims to guarantee safety. Until then, robust
reachable sets could be leveraged to guarantee the safety of such a contingency-based MPC.
Future research has to determine the extent of the imposed conservatism.

101

References

[1] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-Making for Au-
tonomous Vehicles,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 1, no. 1, pp. 187–210, May 2018.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous
Driving: Common Practices and Emerging Technologies,” IEEE Access, vol. 8, pp. 58 443–
58 469, 2020.

[3] M. During and P. Pascheka, “Cooperative decentralized decision making for conflict
resolution among autonomous agents,” in 2014 IEEE International Symposium on In-
novations in Intelligent Systems and Applications (INISTA) Proceedings, Alberobello,
Italy: IEEE, Jun. 2014, pp. 154–161.

[4] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk
assessment for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, p. 1, Dec.
2014.

[5] Y. Chen, S. Veer, P. Karkus, and M. Pavone, “Interactive Joint Planning for Au-
tonomous Vehicles,” IEEE Robotics and Automation Letters, pp. 1–8, Nov. 2023.

[6] K. Liu, N. Li, H. E. Tseng, I. Kolmanovsky, and A. Girard, “Interaction-Aware Tra-
jectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios,”
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 474–488,
Jan. 2023.

[7] D. Q. Mayne, “Model predictive control: Recent developments and future promise,”
Automatica, vol. 50, no. 12, pp. 2967–2986, Dec. 2014.

[8] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model
Predictive Control: Toward Safe Learning in Control,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 269–296, May 2020.

[9] T. Brüdigam, A. Capone, S. Hirche, D. Wollherr, and M. Leibold, “Gaussian Process-
based Stochastic Model Predictive Control for Overtaking in Autonomous Racing,”
arXiv preprint arXiv:2105.12236, May 2021.

[10] E. L. Zhu, F. L. Busch, J. Johnson, and F. Borrelli, A Gaussian Process Model for
Opponent Prediction in Autonomous Racing, arXiv:2204.12533 [cs, eess], Mar. 2023.

103

References

[11] J. Bethge, M. Pfefferkorn, A. Rose, J. Peters, and R. Findeisen, “Model Predictive
Control with Gaussian-Process-Supported Dynamical Constraints for Autonomous
Vehicles,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 507–512, 2023.

[12] A. Mesbah, “Stochastic model predictive control with active uncertainty learning: A
Survey on dual control,” Annual Reviews in Control, vol. 45, pp. 107–117, 2018.

[13] R. Soloperto, J. Kohler, and F. Allgöwer, “Augmenting MPC Schemes With Active
Learning: Intuitive Tuning and Guaranteed Performance,” IEEE Control Systems
Letters, vol. 4, no. 3, pp. 713–718, Jul. 2020.

[14] T. Beckers and S. Hirche, “Prediction With Approximated Gaussian Process Dynami-
cal Models,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6460–6473,
Dec. 2022.

[15] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia, T. A. Badg-
well, and J. A. Paulson, “Fusion of Machine Learning and MPC under Uncertainty:
What Advances Are on the Horizon?” In 2022 American Control Conference (ACC),
Atlanta, GA, USA: IEEE, Jun. 2022, pp. 342–357.

[16] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious Model Predictive Control Using
Gaussian Process Regression,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 6, pp. 2736–2743, Nov. 2020.

[17] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-Based Model Pre-
dictive Control for Autonomous Racing,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3363–3370, Oct. 2019.

[18] R. Soloperto, M. A. Muller, and F. Allgöwer, “Guaranteed Closed-Loop Learning in
Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 68, no. 2,
pp. 991–1006, Feb. 2023.

[19] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively Learning Gaussian Process
Dynamics,” 2020.

[20] B. Evens, M. Schuurmans, and P. Patrinos, “Learning MPC for Interaction-Aware
Autonomous Driving: A Game-Theoretic Approach,” in 2022 European Control Con-
ference (ECC), London, United Kingdom: IEEE, Jul. 2022, pp. 34–39.

[21] J. Knaup, J. D’sa, B. Chalaki, T. Naes, H. N. Mahjoub, E. Moradi-Pari, and P. Tsio-
tras, Active Learning with Dual Model Predictive Path-Integral Control for Interaction-
Aware Autonomous Highway On-ramp Merging, arXiv:2310.07840 [cs, math], Oct.
2023.

[22] D. Holley, J. D’sa, H. N. Mahjoub, G. Ali, B. Chalaki, and E. Moradi-Pari, MR-
IDM - Merge Reactive Intelligent Driver Model: Towards Enhancing Laterally Aware
Car-following Models, arXiv:2305.12014 [cs, eess], May 2023.

[23] Y. Liu, P. Wang, and R. Tóth, Learning For Predictive Control: A Dual Gaussian
Process Approach, arXiv:2211.03699 [cs, eess], Nov. 2022.

104

References

[24] A. Mesbah, “Stochastic Model Predictive Control: An Overview and Perspectives for
Future Research,” IEEE Control Systems, vol. 36, no. 6, pp. 30–44, Dec. 2016.

[25] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes using Pseudo-inputs,”
Advances in Neural Information Processing Systems, vol. 18, 2005.

[26] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical ob-
servations and microscopic simulations,” Physical Review E, vol. 62, no. 2, pp. 1805–
1824, Aug. 2000.

[27] F. Zong, M. Wang, M. Tang, X. Li, and M. Zeng, “An Improved Intelligent Driver
Model Considering the Information of Multiple Front and Rear Vehicles,” IEEE Ac-
cess, vol. 9, pp. 66 241–66 252, 2021.

[28] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver model to access
the impact of driving strategies on traffic capacity,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1928,
pp. 4585–4605, Oct. 2010.

[29] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming,” Mathematical Programming,
vol. 106, no. 1, pp. 25–57, Mar. 2006.

[30] I. Wolfram Research, Mathematica, Champaign, Illinois, 2023.

[31] R. A. Adams and C. Essex, Calculus: a complete course, 9th ed. Pearson, 2018.

[32] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A Survey on Trajectory-
Prediction Methods for Autonomous Driving,” IEEE Transactions on Intelligent Ve-
hicles, vol. 7, no. 3, pp. 652–674, Sep. 2022.

[33] M. Schuurmans, A. Katriniok, C. Meissen, H. E. Tseng, and P. Patrinos, “Safe,
learning-based MPC for highway driving under lane-change uncertainty: A distri-
butionally robust approach,” Artificial Intelligence, vol. 320, p. 103 920, Jul. 2023.

[34] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic Predictive Control of
Autonomous Vehicles in Uncertain Environments,” in Proceedings of the 39th Inter-
national Conference on Machine Learning, Tokyo, Japan, Sep. 2014, pp. 712–719.

[35] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning
(Adaptive computation and machine learning). Cambridge, MA, USA: MIT Press,
2006.

[36] T. Beckers and S. Hirche, “Stability of Gaussian process state space models,” in 2016
European Control Conference (ECC), Aalborg, Denmark: IEEE, Jun. 2016, pp. 2275–
2281.

[37] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal Kernels,” Journal of Machine Learn-
ing Research 7, Dec. 2006.

[38] J. Umlauft, T. Beckers, and S. Hirche, “Scenario-based Optimal Control for Gaussian
Process State Space Models,” in 2018 European Control Conference (ECC), Limassol,
Cyprus: IEEE, Jun. 2018, pp. 1386–1392.

105

References

[39] L. Hewing, E. Arcari, L. P. Frohlich, and M. N. Zeilinger, “On Simulation and Trajec-
tory Prediction with Gaussian Process Dynamics,” in Proceedings of Machine Learn-
ing Research, vol. 120:1-11, 2020.

[40] J. Kocijan, Modelling and Control of Dynamic Systems Using Gaussian Process Mod-
els (Advances in Industrial Control). Cham: Springer International Publishing, 2016.

[41] R. Fletcher, Practical Methods of Optimization. Wiley, 2000.

[42] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: A
software framework for nonlinear optimization and optimal control,” Mathematical
Programming Computation, vol. 11, no. 1, pp. 1–36, Mar. 2019.

[43] HSL, Coin-HSL, May 2023.

[44] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD Dataset: A Drone
Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of
Highly Automated Driving Systems,” in 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC), Maui, HI, USA: IEEE, Nov. 2018, pp. 2118–
2125.

[45] T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein, “The exiD
Dataset: A Real-World Trajectory Dataset of Highly Interactive Highway Scenarios
in Germany,” in 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany:
IEEE, Jun. 2022, pp. 958–964.

[46] H. Caesar et al., NuPlan: A closed-loop ML-based planning benchmark for autonomous
vehicles, arXiv:2106.11810 [cs], Feb. 2022.

[47] C. Gulino et al., Waymax: An Accelerated, Data-Driven Simulator for Large-Scale
Autonomous Driving Research, arXiv:2310.08710 [cs], Oct. 2023.

[48] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson, GPy-
Torch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration,
arXiv:1809.11165 [cs, stat], Jun. 2021.

[49] L. Hewing, K. P. Wabersich, and M. N. Zeilinger, “Recursively feasible stochastic
model predictive control using indirect feedback,” Automatica, vol. 119, p. 109 095,
Sep. 2020.

[50] J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency Model Predictive Control
for Automated Vehicles,” in 2019 American Control Conference (ACC), Philadelphia,
PA, USA: IEEE, Jul. 2019, pp. 717–722.

106

Appendix A

Collision Avoidance Ellipse

This thesis makes uses of a model predictive control (MPC) for motion planning of au-
tonomous vehicles. This MPC relies on a set of constraints that aim to avoid any collisions
of the Ego vehicle with the other target vehicles in the scenario. Collision avoidance is
governed by a safety ellipse that constrains the centroid of the target vehicles to be outside
an ellipse surrounding the Ego vehicle. Here, we provide the detailed calculations that are
used to parameterize this bounding ellipse.

As mentioned in the thesis, this ellipse is defined by the following constraint function:

hc

(
x0
i ,x

j
i

)
= −

(
c1x,i − c0x,i

)2

E2
c,A

−
(
c1y,i − c0y,i

)2

E2
c,B

+ 1

hc

(
x0
i ,x

j
i

)
≤ 0, for i = 0, . . . , N,

(A.1)

where cjx,i and c
j
y,i denote the longitudinal and lateral component of the geometric center

of the jth vehicle at prediction step i, respectively. The major and minor semi-axis of the
ellipse are denoted by Ec,A and Ec,B, respectively. This ellipse accounts for the size of the
Ego vehicle and the target vehicle. Furthermore, the relative heading angle between the
vehicles can be accounted for by enlarging the ellipse such that under a maximum allowed
heading angle, no collision shall occur provided that our prediction model is correct.

The minor axis of the ellipse is fixed such that the vehicles can safely pass one another
without unnecessary interference. The minor axis length is determined by the vehicle width
W = 2.18, with some additional margin:

Ec,B =W + 0.82 = 3 [m]. (A.2)

Subsequently, we calculate the major axis length of the ellipse using a heuristic. In order
to determine the major semi-axis length, we define the most critical location of collision
provided the minor axis length of ellipse Ec,B. Consequently, we have defined a minor
axis length and a point (Xcrit, Ycrit) that coincides with the ellipse, and we can uniquely
determine the major axis length of the ellipse.

109

Appendix A. Collision Avoidance Ellipse

Figure A.1: Parameterization of the collision avoidance ellipse with the Ego vehicle in
green, and target vehicles in blue.

We assume that the target vehicles drive in a straight line and, hence, have a heading
angle of zero. Furthermore, the Ego vehicle is constrained by the motion planner to attain
a maximum heading angle | ψmax | = 0.2618 [rad.] ≈ 15 [deg.]. The critical location of
collision is where the corners of the two rectangles representing the vehicles coincide, as
shown in Figure A.1. The longitudinal distance from the Ego’s centroid to the critical point
Xcrit is calculated as follows:

Xcrit =
L

2
+

√(
L

2

)2

+

(
W

2

)2

cos

(
ψmax + arctan

W

L

)
= 4.26 [m]. (A.3)

Similarly, the lateral distance from the Ego’s centroid to the critical point Ycrit equals:

Ycrit =
W

2
+

√(
L

2

)2

+

(
W

2

)2

sin

(
ψmax + arctan

W

L

)
= 2.74 [m], (A.4)

where L = 4.62 denotes the vehicle length and W = 2.18 denotes the vehicle width. The
critical point coincides with an ellipse that satisfies the equation:(

Xcrit

Ec,A

)2

+

(
Ycrit
Ec,B

)2

= 1. (A.5)

Now that we have defined the minor axis length Ec,B and the critical point (Xcrit, Ycrit),
we can determine the minimal major axis length of the ellipse required to enforce collision
avoidance:

Ec,A =

⎛
⎜⎝1−

(
Ycrit
Ec,B

)2

Xcrit

⎞
⎟⎠

− 1
2

= 10.47 [m]. (A.6)

110

Appendix B

Results

The MSc thesis on Online Learning for Interaction-Aware Motion Planning with Gaussian
Process Model Predictive Control is supported by simulation studies performed in Matlab.
In this appendix, the results of these simulations are tabulated in Table B.2 to Table B.12.
These tables provide a high-level description of the results with some quantitative key-
performance indicators. In addition to the figures in the thesis, the video footage of the
simulations can help the reader in the qualitative assessment of the motion planners and
can be requested from the author.

The simulation studies are labeled by a six-digit identification number, and can be used
to trace the particular simulation that is displayed in the corresponding video. The first
digit denotes the learning type. The second digit denotes the prediction model for the
Following agent. The third and fourth digit denote the prediction horizon length N . Then,
the fifth digit denotes the number of iterations used for pre-training, where 0 denotes no
pre-training. Finally, the sixth digit is used to denote different variants of a similar solution
to study the effects of other hyper parameters. The legend, seen in Table B.1, details
the composition of the identification number. Parameter settings that deviate from their
nominal value are provided in Table B.2 to Table B.12.

Table B.1: Legend of Simulation ID Numbers.

Digit No. Meaning Value

1
No Learning 0
Passive Learning 1
Active Learning 2

2
CV Model 1
Stochastic Full GP 2
Stochastic Sparse GP 3

3
Horizon Length N

4

5 Learning Iteration -

6 Variant -

111

B.1 Results of Constant Velocity MPC

Table B.2: Detailed Results of Constant Velocity MPC.

ID No. N Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

010601 6
Merged in
Between 0.26 115 86 1.5 4.2 4.4 0.015 0.030 -

010801 8
Merged in
Between 0.29 115 86 1.5 4.8 4.2 0.015 0.030 -

011001 10
Merged in
Between 0.46 115 78 2.6 3.3 3.1 0.015 0.022 -

011201 12
Merged in
Between 0.47 115 78 2.4 4.0 3.0 0.016 0.023 -

011401 14
Merged
Behind 0.04 115 72 1.6 4.0 5.6 0.031 0.099 -

011601 16
Merged
Behind 0 115 75 1.5 3.8 6.7 0.018 0.029 -

011801 18
Merged
Behind 0 115 71 1.5 3.3 8.4 0.021 0.041 -

012001 20
Merged
Behind 0 115 72 1.5 3.3 9.8 0.022 0.040 -

012201 22
Merged
Behind 0 115 72 1.5 2.7 9.4 0.022 0.035 -

012401 24
Merged
Behind 0 115 73 1.5 2.3 10.2 0.026 0.061 -

112

B.2 Results of Passive Learning SPGP-MPC

Table B.3: Detailed Results of Passive Learning SPGP-MPC without Pre-Training.

ID No. N Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

130601 6
Merged in
Between 0.25 115 85 1.5 4.3 4.4 0.041 0.067 -

130801 8
Merged in
Between 0.41 115 78 2.7 5.0 3.2 0.067 0.213 -

131001 10
Merged in
Between 0.48 115 77 2.4 5.3 2.9 0.105 0.265 -

131201 12
Merged in
Between 0.52 115 74 3.1 5.2 2.6 0.152 0.306 -

131401 14
Merged
Behind 0 115 71 1.5 4.4 5.7 0.175 0.337 -

131601 16
Merged
Behind 0 115 68 2.0 3.9 8.1 0.244 0.455 -

131801 18
Merged
Behind 0 115 66 2.4 3.7 10.5 0.368 0.841 -

132001 20
Merged
Behind 0 115 65 2.6 3.3 14.6 0.549 1.519 -

132201 22
Merged
Behind 0 115 68 2.2 3.2 15.2 0.676 1.702 -

132401 24
Merged
Behind 0 115 71 1.7 2.9 15.5 0.853 3.574 -

113

Table B.4: Detailed Results of Passive Learning SPGP-MPC with Pre-Training.

ID No. N Iteration Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

131211 12 1
Merged in
Between 0.33 115 86 1.5 5.0 3.7 0.183 0.384 -

131221 12 2
Merged in
Between 0.30 115 84 1.5 6.5 3.5 0.217 0.411

Harsh brake
Follower

131411 14 1
Merged in
Between 0.52 115 72 3.7 6.4 2.6 0.279 0.682

Harsh brake
Follower

131421 14 2
Merged in
Between 0.34 115 86 1.5 5.4 3.5 0.316 0.671

Moderate brake
Follower

131431 14 3
Merged in
Between 0.32 115 80 1.6 4.0 3.7 0.373 1.048 -

131611 16 1
Merged
Behind 0 115 74 1.5 3.8 6.7 0.372 0.994 -

131621 16 2
Merged
Behind 0 115 75 1.5 3.8 6.6 0.410 1.046 -

131622 16 2
Collision
with Follower 0.97 115 90 5.0 5.0 0.0 0.400 1.595 Higher risk: σ = 1

131612 16
1 with
N = 12

Merged
Behind 0.40 115 86 1.5 5.9 3.3 0.361 0.728

Moderate brake
Follower

114

B.3 Results of Active Learning SPGP-MPC

Table B.5: Detailed Results of Active Learning SPGP-MPC without Pre-Training.

ID No. N K Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

230601 6 5
Collision
with Leader 0.87 128 66 4.8 5.0 0.0 0.177 0.385 -

230801 8 5
Merged in
Between 0.15 124 78 3.7 7.1 4.3 0.286 0.695 Harsh brake Follower

231001 10 5
Merged in
Between 0.10 121 85 2.2 5.0 4.6 0.411 0.761 -

231201 12 5
Merged in
Between 0.11 120 85 2.0 5.0 4.7 0.539 0.913 -

231401 14 5
Merged in
Between 0.11 123 84 2.3 5.0 4.5 0.865 1.874 -

231601 16 5
Merged in
Between 0.04 126 84 3.8 5.0 4.3 0.928 1.521 -

231801 18 5
Merged in
Between 0.06 128 81 5.0 5.0 3.8 1.262 2.269 -

232001 20 5
Merged
Behind 0 116 67 3.6 5.0 17.7 1.789 4.316 -

232201 22 5
Merged
Behind 0 116 66 3.6 4.5 19.3 2.282 3.946 -

232401 24 5
Merged
Behind 0 115 70 2.9 3.8 21.2 4.282 8.014 -

115

Table B.6: Detailed Results of Pre-trained Active Learning SPGP-MPC for Various Learning Periods.

ID No. N K Iteration Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

231212 12 1 1
Merged
Behind 0 115 71 3.4 5.0 5.8 0.568 0.986 Oscillatory Behavior

231213 12 3 1
Merged in
Between 0.34 115 84 5.0 6.6 3.8 0.625 1.030

Moderate brake
Follower

231211 12 5 1
Merged in
Between 0.46 115 78 5.0 6.4 3.4 0.625 1.553

Moderate brake
Follower

231214 12 10 1
Merged in
Between 0.29 121 82 5.0 5.0 4.2 0.598 0.998 -

Table B.7: Detailed Results of Active Learning SPGP-MPC with Pre-Training.

ID No. N K Iteration Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

231211 12 5 1
Merged in
Between 0.46 115 78 5.0 6.4 3.4 0.625 1.553

Moderate brake
Follower

231221 12 5 2
Merged in
Between 0.44 115 78 2.6 5.0 3.0 0.723 1.370 -

231411 14 5 1
Merged
Behind 0 115 70 4.0 4.6 10.7 0.803 1.596 -

231421 14 5 2
Merged in
Between 0.35 118 85 5.0 5.3 3.7 1.056 1.791 -

231611 16 5 1
Merged
Behind 0 115 65 4.8 4.3 6.4 1.142 2.188 -

231621 16 5 2
Merged
Behind 0 115 77 3.2 4.3 8.1 1.326 3.327 -

116

B.4 Results on Various Initial Conditions

Table B.8: Detailed Results of Alternative Test Case 1.

ID No. N K Algorithm Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

011203 12 - CV-MPC
Merged
Behind 0.04 111 74 1.9 4.5 6.0 0.019 0.041 -

131203 12 -
Passive
SPGP-MPC

Merged
Behind 0.18 111 75 1.7 4.6 6.0 0.163 0.286 -

231203 12 5
Active
SPGP-MPC

Merged in
Between 0.00 116 87 1.4 3.7 5.3 0.575 1.106 γmax = 100

Table B.9: Detailed Results of Alternative Test Case 2.

ID No. N K Algorithm Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

011204 12 - CV-MPC
Merged
Behind 0.04 115 75 2.3 5.0 5.0 0.015 0.023 -

001204 12 -
Passive
SPGP-MPC

Merged in
Between 0 115 87 1.8 3.4 5.7 0.137 0.334 -

231204 12 5
Active
SPGP-MPC

Merged in
Between 0.24 122 83 5.0 5.0 4.2 0.406 1.033 γmax = 100

117

B.5 Results on Altruistic Driving Behavior

Table B.10: Detailed Results of Alternative Test Case 3.

ID No. N K Algorithm Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

011205 12 - CV-MPC
Merged in
Between 0 115 83 2.4 2.6 8.8 0.015 0.023 -

131205 12 -
Passive
SPGP-MPC

Merged in
Between 0 115 83 2.4 2.2 7.2 0.202 0.533 -

231205 12 5
Active
SPGP-MPC

Merged in
Between 0.02 123 82 2.4 4.4 5.7 0.601 1.392 γmax = 100

Table B.11: Detailed Results of Alternative Test Case 4.

ID No. N K Algorithm Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

011206 12 - CV-MPC
Merged in
Between 0 125 83 0.6 2.4 7.8 0.019 0.134 -

131206 12 -
Passive
SPGP-MPC

Merged in
Between 0 125 83 0.2 2.4 6.9 0.177 0.293 -

231206 12 5
Active
SPGP-MPC

Merged in
Between 0.01 132 83 0.8 3.0 5.9 0.611 1.177 γmax = 100

118

B.6 Results on Adjust Slack Penalty Weights

Table B.12: Detailed Results of Primary Test Case with Adjust Slack Penalty Weights.

ID No. N K Algorithm Result
εmax

[−]
vmax

[km/h]
vmin

[km/h]
amax

[m/s2]
amin

[m/s2]
smin

[m]
tavg
[s]

tmax

[s] Note

011207 12 - CV-MPC
Merged
Behind 0 115 79 2.4 2.6 7.1 0.015 0.023 -

131207 12 -
Passive
SPGP-MPC

Merged in
Between 0 115 83 2.4 2.2 7.2 0.202 0.533 -

231207 12 5
Active
SPGP-MPC

Merged in
Between 0.02 123 82 2.4 4.4 5.7 0.601 1.392 γmax = 250

119

