
Eindhoven University of Technology

Report of the Graduation Project

Project phase

Implementation of a controller for an
autonomously flying quad-copter using Optitrack.

Master:
Department:
Research group:

Student:
ID number:
Thesis supervisor:
Date:
Report number:

Automotive Technology
Mechenical Engineering
Dynamics and Control

B.J.F. te Boekhorst
0950789
E. Lefeber
May 11, 2023
DC 2023.011



Contents

1 Background and Problem definition 4
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem definition and research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dynamics and reference trajectory 6
2.1 Drone dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Chosen reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Reference dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Controller 12
3.1 Position control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Attitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Combined control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Controller implementation in simulations 16
4.1 Reference 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Translational dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Attitude dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Reference 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Translational dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Attitude dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Reference 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Translational dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Attitude dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Combined controller check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Lab setup 30
5.1 Lab layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Drone information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Simulink 32
6.1 Description of the Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Implementing a custom controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Connecting with the drone 35
7.1 Connection in Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Connection to Optitrack 36
8.1 Workings ROS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Optitrack to Matlab in Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.2.1 ROS toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2.2 NatNet SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.3 Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.2 Installation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.3 Live location tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Report of the Graduation Project Phase 1



9 Conclusions and recommendations 41
9.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 43

A Detailed derivation reference trajectory 44

B Connection to the drone Figures 49

C Detailed derivation of desired angular velocity 57

Report of the Graduation Project Phase 2



Nomenclature

The next list describes several symbols that are used within the body of the document

ν Linear velocity with respect to body-fixed frame

ω Angular velocity with respect to body-fixed frame

φ Roll angle of a body

ψ Yaw angle of a body

ρ Position vector

τ Torque generated by the rotors

θ Pitch angle of a body

ei Unit vector i of a frame of reference

f Total force generated by the motors

g gravitational acceleration constant

In Identity matrix of size n times n

J Inertia of a body

m Mass of a body

R Rotation matrix of a body

S Function providing skew symmetric matrix of its vector argument

Report of the Graduation Project Phase 3



1 Background and Problem definition

1.1 Background
Drones, also called UAVs (Unmanned Aerial Vehicle) are being used for decades now. They are seen in many
different areas and professions. Starting in the military in the early stages of development, UAVs were mainly
used to perform attacks without needing a pilot. Nowadays drones have a more widespread use case, though
they are still used in the military for missions where an operator might be at risk or for reconnaissance. Fur-
thermore, drones are used in the movie industry, farming and even recreational use for civilians [1].

Within the category of UAVs, there are a lot of different types of drones. There exist airplane-like drones,
quadrotor drones and even drones with more than four rotors. An advantage of a multi-rotor drone is that
vertical take off and landings are possible. Another advantage is that hovering in a specific location in 3D space
can be done, which is something that is not possible for airplane-like drones. Within the multi-rotor types
of drone, the quadrotor is the most common, mostly because of production costs. Since a quadrotor has four
propellers, not all 6 degrees of freedom (DOF) can be controlled directly. For example, first a rotation around
one of the horizontal axes has to be made before a movement in the direction of the other horizontal axis can
be achieved.

Currently drones are usually controlled with a remote controller. One of the main challenges in this field is to
have the drone operate autonomously. At Eindhoven University of Technology, research is done by a dedicated
part of the Dynamics and Control research group on a relatively cheap drone to make it fly autonomously. So
far, experiments have been done with the Parrot AR.Drone 2.0 and the Parrot Mambo fly drones [2], [3]. Since
the Parrot AR.Drone 2.0 is no longer in production, further research is done on the Parrot Mambo Fly. A
detailed comparison between the two drones can be found in [3].

The Parrot Mambo fly uses an optical flow sensor in combination with a gyroscope and an accelerometer to
determine its position. This works fine in most cases, however when flying autonomously it can be the cause
of problems. The way the optical flow sensor works can give the wrong location output to the controller of the
drone, resulting in a deviation from the desired path. One way to solve this sensor issue is to use a different
method of localizing the drone.

One method is to use markers on the floor for the drone to recognise and determine its location based on the
markers [4]. According to [4], this method is cheaper to implement than using a motion capture system, is
more robust to the environment of the experiments but needs intensive image processing. Fortunately a motion
capture system is available in the robotics lab at the Technical University of Eindhoven. This motion capture
system is accurate up to 1mm, which is beneficial for the performance of controllers implemented on the UAV.
Another solution is to use a radar system to localize the drone [5]. It is shown in [5] that radar can be used to
localize a drone in 3D space with an accuracy of circa 9cm. With the Parrot Mambo drone being only 18cm in
size itself, this is a substantial error and thus motion capture is a better alternative to locate the drone.

The drone can also be localized using a camera system [6]. It is shown in [6] that a camera system to localize the
drone works better than the internal sensors of the drone itself, a Parrot AR Drone 2.0. This is the same drone
used by Brekelmans in his comparison to the Parrot Mambo fly [3]. The camera system used in [6] is similar to
the Optitrack system present at Eindhoven University of Technology [7]. Most commonly the markers designed
and made by Optitrack are used to locate specific objects. These markers can be attached to the Mambo drone
and the camera system is then able to localize the markers.

The Parrot Mambo fly drone is also used in [9] and [10]. The Mambo fly drone is used in [9] to implement the
controller designed in [11]. It is concluded in [9] that the optical flow estimator drifts continuously for horizon-
tal velocity and most of the drift is caused by the accelerometer. The controller is implemented successfully in
simulations but not in the final implementation, due to the drift mentioned before. A better implementation
result could be realized by using a better state estimation.
The Mambo fly drone is used in [10] with a focus on collision avoidance of multiple UAVs. One of the observa-
tions in [10] is that, since the algorithm considers the drones as point masses and no drone exists as point mass,
collisions in practice could still occur. This could be avoided by using a very precise localization method.

Report of the Graduation Project Phase 4



One of the main advantages of using the Parrot Mambo is that a Simulink add-on package can be used. This
package focuses specifically on Parrot drones and uses the aerospace toolbox as a basis. The Parrot package is a
very useful starting point to communicate and control the drone. It is used successfully by [2], [3], [9] and [10],
confirming that it can potentially be very useful to complete the challenge set in this thesis.

1.2 Problem definition and research question
This thesis focuses mainly on the implementation of a controller on the Parrot Mambo fly drone, using an
Optitrack camera system to localize the drone. Future research as well as applications described in section 1.1
will benefit from very accurate localization of the drone. The controller that is implemented is the one described
in [11]. This goal can be achieved by completing multiple smaller goals, consisting of

• Describing the behaviour of the Parrot Mambo fly drone.

• Determine a reference trajectory for the drone to follow in detail.

• Implement the controller in simulations.

• Achieving a connection between the Parrot Mambo fly drone and the computer used for this research.

• Achieve a connection with the Optitrack camera system to localize the drone.

• Implement the location output data within the Matlab environment to use as input for the controller.

• Achieve flight using the Simulink support package.

The outline of this thesis is as follows. Firstly in Chapter 2 a model is presented to describe the dynamics of a
drone and the reference trajectory. Three different trajectories are chosen from which the rest of the reference
dynamics are derived. Chapter 3 then describes the controller that is considered in this thesis. This controller
is then tested in simulations in chapter 4, together with the reference trajectories determined in chapter 2.
Chapter 5 explains more about the context of the environment the tests are done and gives a visualization of
the camera system setup. Chapter 6 explains the main functionalities of the different system blocks within
the Simulink support package for parrot mini drones. Chapter 7 focuses on the Parrot mini drone used in this
research, specifically how a connection is made to the drone. Chapter 8 describes how the output of the camera
system can be imported to Matlab in Windows and how a connection can be made in Ubuntu. Chapter 9 then
concludes the thesis and gives recommendations for future research. The structure of this thesis is such that
the individual chapters can be used independently of one another and still be relevant. Such that if a different
drone is used, the chapters about the reference, controller and camera system still apply.

Report of the Graduation Project Phase 5



2 Dynamics and reference trajectory

The first step towards achieving the goals discussed before is to describe the behaviour of the quad-copter drone.
The general dynamic representation of a drone is used as a base for this model. This chapter focuses on the
dynamics of a drone, what flat output signals are used and how the reference dynamics are derived from these
flat output signals. The reference trajectory is described in enough detail that it can be copied for simulations
without the need for further calculations. After the reference trajectory is determined, a controller can be
designed and then tested in simulations to see if the reference is followed.

2.1 Drone dynamics
The dynamics of the drone can be described as

ρ̇ = Rν,

ν̇ = −S(ω)ν + gRT e3 − f

m
e3,

Ṙ = RS(ω),

Jω̇ = S(Jω)ω + τ,

(2.1)

where ρ is the position vector, ν is the linear velocity, R is the rotation matrix, ω is the angular velocity, g is the
gravitational constant, f is the total thrust magnitude, m is the mass of the drone, S is a function providing a
screw symmetric matrix, J is the inertia matrix and τ is the total moment vector in the body fixed frame. In
this case, f and τ are considered as inputs.

These equations are the base of the reference trajectory, making the reference feasible to be followed by the
drone. The dynamics have six degrees of freedom, of which four can be chosen independently as a function of
time, these four are the flat output signals. The remaining two degrees of freedom are a function of the flat
output signals. The detailed relation between these signals is described in a later chapter. To specify a reference
trajectory, it is sufficient to only choose the flat output signals as

⎡
⎣ γ1(t)
γ2(t)
γ3(t)

⎤
⎦ =

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ = ρ(t)

γ4(t) = ψ(t).

(2.2)

The reference trajectory has to adhere to the same dynamics, to make the path feasible to follow. Giving the
following expression for these signals

⎡
⎣ γr1(t)
γr2(t)
γr3(t)

⎤
⎦ =

⎡
⎣ xr(t)
yr(t)
zr(t)

⎤
⎦ = ρr(t)

γr4(t) = ψr(t).

(2.3)

Once the components of γr(t) have been chosen, the rest of the reference dynamics follow from these flat output
signals.

2.2 Chosen reference
To determine the full reference dynamics, the reference trajectory needs to be chosen. These trajectories and
how they are derived is discussed in this section. The reference trajectories become increasingly challenging.
Starting at simply hovering, advancing to a back and forth movement and ending with a manoeuvre done by
Lefeber et al. [11]. For the reference trajectory, the different components of γr(t) have to be chosen. Namely
xr(t), yr(t), zr(t) and ψr(t). The fourth time derivative of the chosen values of γr(t) are needed, except for
ψ(t)r, where only the first and second derivative are required. The rest of the reference dynamics can be derived
from these four components of γr(t). In this section, the third and fourth derivative are indicated in the form
of x(i)r . Where x(i)r is the i-th order time derivative of xr.

Report of the Graduation Project Phase 6



The simplest reference chosen is a hovering reference. The corresponding values chosen for γr(t) are

xr(t) = 0, yr(t) = 0, zr(t) = −1, ψr(t) = 0. (2.4)

Here the z coordinate is negative, because of the chosen orientation of the coordinate system (NED). For this
reference all the derivatives do not need to be calculated, since they are all equal to zero.

The more challenging reference, the back and forth movement, the values for γ(t) are chosen as

xr(t) = ax sin(bxt), yr(t) = ay sin(byt), zr(t) = az sin(bzt)− 1, ψr(t) = aψ sin(bψt), (2.5)

where a and b can be chosen to vary the amplitude and frequency of the reference sine wave. The derivatives
for xr(t), yr(t), zr(t) and ψr(t) are given below.

ẋr(t) = axbx cos(bxt), ẍr(t) = −axb2x sin(bxt), x(3)r (t) = −axb3x cos(bxt), x(4)r (t) = axb
4
x sin(bxt),

ẏr(t) = ayby cos(byt), ÿr(t) = −ayb2y sin(byt), y(3)r (t) = −ayb3y cos(byt), y(4)r (t) = ayb
4
y sin(byt),

żr(t) = azbz cos(bzt), z̈r(t) = −azb2z sin(bzt), z(3)r (t) = −azb3z cos(bzt), z(4)r (t) = azb
4
z sin(bzt),

ψ̇r(t) = aψbψ cos(bψt), ψ̈r(t) = −aψb2ψ sin(bψt),

(2.6)

where a and b signify amplitude and frequency respectively. Both a and b are assumed to be constants. The
values for these variables in this research are

ax = 0.7, ay = 0.5, az = 0, aψ = 0,

bx = 0.5, by = 1.0, bz = 0, bψ = 0.
(2.7)

Because this reference is harder to visualize than the hover reference, it is shown in Figure 2.1.

Reference trajectory in 3D

-1
-0.5

0
0.5

1

x [m]-1

-0.5

0

0.5

1

y [m]

0

0.5

1

1.5

2

z 
[m

]

Figure 2.1: Reference trajectory in 3D for the back and forth movement.

The final and most challenging reference trajectory is based on the research done by Lefeber et al [11]. The
different components that correspond to this trajectory are

xr(t) = (6 + 2 cos(ωνt)) cos(ωut), yr(t) = (6 + 2 cos(ωνt)) sin(ωut), zr(t) = −2 sin(ωνt), ψr(t) = ωut+ π,
(2.8)

Report of the Graduation Project Phase 7



where ων and ωu are related to the amplitude and frequency. In this case they are chosen to be ων = 1.2π
(rad/s) and ωu = 0.2π (rad/s) respectively. The corresponding derivatives are described below.

ẋr(t) =− 2ων sin (ωνt) cos (ωut)− ωu (6 + 2 cos (ωνt)) sin (ωut) (2.9a)

ẍr(t) =− 2ω2
ν cos (ωνt) cos (ωut)− ω2

u (6 + 2 cos (ωνt)) cos (ωut) + 4ωνωu sin (ωνt) sin (ωut) (2.9b)

x(3)r (t) =2ω3
ν sin (ωνt) cos (ωut) + ω3

u (6 + 2 cos (ωνt)) sin (ωut) + 6ω2
νωu cos (ωνt) sin (ωut)

+ 6ω2
uων sin (ωνt) cos (ωut)

(2.9c)

x(4)r (t) =2ω4
ν cos (ωνt) cos (ωut) + ω4

u (6 + 2 cos (ωνt)) cos (ωut)− 8ω3
νωu sin (ωνt) sin (ωut)

− 8ω3
uων sin (ωνt) sin (ωut) + 12ω2

νω
2
u cos (ωνt) cos (ωut)

(2.9d)

ẏr(t) =− 2ων sin (ωνt) sin (ωut) + ωu (6 + 2 cos (ωνt)) cos (ωut) (2.10a)

ÿr(t) =− 2ω2
ν cos (ωνt) sin (ωut)− ω2

u (6 + 2 cos (ωνt)) sin (ωut)− 4ωνωu sin (ωνt) cos (ωut) (2.10b)

y(3)r (t) =2ω3
ν sin (ωνt) sin (ωut)− ω3

u (6 + 2 cos (ωνt)) cos (ωut)− 6ω2
νωu cos (ωνt) cos (ωut)

+ 6ω2
uων sin (ωνt) sin (ωut)

(2.10c)

y(4)r (t) =2ω4
ν cos (ωνt) sin (ωut) + ω4

u (6 + 2 cos (ωνt)) sin (ωut) + 8ω3
νωu sin (ωνt) cos (ωut)

+ 8ω3
uων sin (ωνt) cos (ωut) + 12ω2

νω
2
u cos (ωνt) sin (ωut)

(2.10d)

żr(t) = 2ων cos(ωνt), z̈r(t) = −2ω2
ν sin(ωνt), z(3)r (t) = −2ω3

ν cos(ωνt), z(4)r (t) = 2ω4
ν sin(ωνt) (2.11)

ψ̇r(t) = ωu, ψ̈r(t) = 0. (2.12)

To visualize this reference trajectory it is shown in Figure 2.2.

Figure 2.2: Reference trajectory in 3D for the reference from [11].

The components of γr have now been defined and chosen. All of the reference dynamics follow from the reference
trajectory. Thus the next step is to derive the full reference dynamics.

Report of the Graduation Project Phase 8



2.3 Reference dynamics
This section shows how the full reference dynamics are derived from the dynamics of the drone and follow from
the flat output signals γr(t). Firstly the derivations and how the different expressions follow from one another
are explained. After which the derivation is shown. The notation within this derivation is kept without the
expressions in their complete length, for the sake of simplicity. A detailed derivation is included in appendix A.

The reference dynamics are similar to the actual dynamics and can be described as

ρ̇r = Rrνr,

ν̇r = −S(ωr)νr + gRTr e3 −
fr
m
e3,

Ṙr = RrS(ωr),

Jω̇r = S(Jωr)ωr + τr.

(2.13)

The value of ρr is already known, since it was defined in section 2.2. The reference force of the rotors fr is
obtained from the second time derivative of the position vector ρr. The second derivative of the position vector
is also used to determine the third column of the rotation matrix Rr. The rotation matrix Rr can be obtained
by multiplying the rotations for roll pitch and yaw as Rr = RZ(ψr)RY (θr)RX(φr).
This combined with the third column derived before, gives the expressions for φr and θr expressed in terms of
ψr. With both ρr and Rr known, the reference velocity can be derived from equation (2.13).
The next step is to derive an expression for ωr, which can be obtained from S(ωr). To do this, the derivative
of the rotation matrix Rr is required.
This derivative is calculated using the expression for the rotation matrix derived before.
To get the expression for τr, the derivative of ωr needs to be calculated, which requires the second derivative of
Rr. With all these expressions derived, an expression for τr is made.
This would then complete the whole reference trajectory and a controller can be designed to follow this reference.

The thrust of the reference fr can be obtained from the second time derivative of ρr as follows,

ρ̈r = Ṙrνr +Rrν̇r = ge3 − (fr/m)Rre3. (2.14)

Therefore,

fr = m ‖ge3 − ρ̈r‖ = m

√
ẍ2r + ÿ2r + (g − z̈r)

2
. (2.15)

The first and second derivative of the thrust can then be written as

ḟr = −m (ge3 − ρ̈r)
T
ρ
(3)
r

‖ge3 − ρ̈r‖

f̈r = m

(
ρ
(3)
r

)T
ρ
(3)
r

‖ge3 − ρ̈r‖ −m
(ge3 − ρ̈r)

T
ρ
(4)
r

‖ge3 − ρ̈r‖ − ḟ2r
‖ge3 − ρ̈r‖ ,

(2.16)

where ρ(i)r is the i-th order time derivative of ρr.

The last column of Rr can be derived from (2.15) using the second derivative of ρr as follows

Rre3 =
m

fr
(ge3 − ρ̈r) =

1√
ẍ2r + ÿ2r + (g − z̈r)

2

⎡
⎣ −ẍr

−ÿr
g − z̈r

⎤
⎦ :=

⎡
⎣ r1
r2
r3

⎤
⎦ =

⎡
⎣ Rr(1,3)
Rr(2,3)
Rr(3,3)

⎤
⎦ , (2.17)

provided that ẍ2r + ÿ2r + (g − z̈r)
2 �= 0.

Report of the Graduation Project Phase 9



The rotation matrix is determined as,

Rr = RZ(ψr)RY (θr)RX(φr) =

⎡
⎣ cosψr − sinψr 0

sinψr cosψr 0
0 0 1

⎤
⎦
⎡
⎣ cos θr 0 sin θr

0 1 0
− sin θr 0 cos θr

⎤
⎦
⎡
⎣ 1 0 0

0 cosφr − sinφr
0 sinφr cosφr

⎤
⎦ ,

(2.18)
which results in

Rr =

⎡
⎣cosψr cos θr cosψr sinφr sin θr − cosφr sinψr sinφr sinψr + cosφr cosψr sin θr
cos θr sinψr cosφr cosψr + sinφr sinψr sin θr cosφr sinψr sin θr − cosψr sinφr
− sin θr cos θr sinφr cosφr cos θr

⎤
⎦ . (2.19)

Using (2.17) and (2.19), the values of φr and θr can be expressed in terms of ψr:

sinφr = r1 sinψr − r2 cosψr,

cosφr =

√
1− (r1 sinψr − r2 cosψr)

2
,

cos θr =
r3√

1− (r1 sinψr − r2 cosψr)
2
,

sin θr =
r1 cosψr + r2 sinψr√

1− (r1 sinψr − r2 cosψr)
2
.

(2.20)

These new expressions can be substituted into the rotation matrix, but for the sake of simplicity, this substitu-
tion is not done in detail here. The detailed derivation can be found in Appendix A.

Next, the position vector and the rotation matrix are used to construct the reference velocity as

νr = RTr ρ̇r. (2.21)

The derivative of the rotation matrix is calculated and is written as

Ṙr =

⎡
⎣ Ṙr(1,1) Ṙr(1,2) Ṙr(1,3)
Ṙr(2,1) Ṙr(2,2) Ṙr(2,3)
Ṙr(3,1) Ṙr(3,2) Ṙr(3,3)

⎤
⎦ , (2.22)

for which the full expression is included in Appendix A.
The angular velocity is determined using

S (ωr) = RTr Ṙr, (2.23)

which can be rewritten to

S(ωr) =

⎡
⎣ 0 −ωr3 ωr2

ωr3 0 −ωr1
−ωr2 ωr1 0

⎤
⎦ , (2.24)

where

S32 = RTr31Ṙr12 +RTr32Ṙr22 +RTr33Ṙr32 = ωr1 (2.25a)

S13 = R�
r11Ṙr13 +R�

r12Ṙr23 +R�
r13Ṙr33 = ωr2 (2.25b)

S21 = R�
r21Ṙr11 +R�

r22Ṙr21 +R�
r23Ṙr31 = ωr3 (2.25c)

Report of the Graduation Project Phase 10



Thus ωr becomes

ωr =
[
ωr1 ωr2 ωr3

]�
. (2.26)

The second derivative of the rotation matrix Rr is written in a similar way as the first derivative, again to keep
the expression easy to follow. This is done as

R̈r =

⎡
⎣ R̈r(1,1) R̈r(1,2) R̈r(1,3)
R̈r(2,1) R̈r(2,2) R̈r(2,3)
R̈r(3,1) R̈r(3,2) R̈r(3,3)

⎤
⎦ . (2.27)

To then derive the derivative of the angular velocity ωr, (2.25) is used to get

ω̇r =
[
ω̇r1 ω̇r2 ω̇r3

]�
, (2.28)

with

ω̇r1 = Ṙr(1,3)Ṙr(1,2) +Rr(1,3)R̈r(1,2) + Ṙr(2,3)Ṙr(2,2) +Rr(2,3)R̈r(2,2) + Ṙr(3,3)Ṙr(3,2) +Rr(3,3)R̈r(3,2) (2.29a)

ω̇r2 = Ṙr(1,1)Ṙr(1,3) +Rr(1,1)R̈r(1,3) + Ṙr(2,1)Ṙr(2,3) +Rr(2,1)R̈r(2,3) + Ṙr(3,1)Ṙr(3,3) +Rr(3,1)R̈r(3,3) (2.29b)

ω̇r3 = Ṙr(1,2)Ṙr(1,1) +Rr(1,2)R̈r(1,1) + Ṙr(2,2)Ṙr(2,1) +Rr(2,2)R̈r(2,1) + Ṙr(3,2)Ṙr(3,1) +Rr(3,2)R̈r(3,1) (2.29c)

The torque can then be determined as

τr = Jω̇r − S (Jωr)ωr. (2.30)

This completes the derivation of the reference trajectory.

2.4 Concluding remarks
This chapter has described the general dynamics of a quad-copter drone. These general dynamics have been
used to derive a reference trajectory. The majority of the reference trajectory follows from the initial expression
for the flat outputs γr(t) and its derivatives. The way the reference trajectory follows from the flat output
signals has been described in detail. The descriptions given in this chapter can be copied to run a simulation
and need no further calculations. Three different representations of these flat output signals were chosen and
described, namely a hover manoeuvre, a back and forth movement in x and y, and a reference used in research
done by Lefeber et al [11]. The reference trajectory derived in this chapter follows the same dynamics as the
real quad-copter, ensuring that the reference is feasible for the drone to follow. With the reference known,
a controller can be designed and tested. The next chapter goes into more detail about the specifics of the
controller used in this thesis.

Report of the Graduation Project Phase 11



3 Controller

The reference trajectory is determined in the previous chapter. For the drone to follow this reference a controller
is required. This chapter dives into what controller is used in this thesis. The controller that is used, is the
one designed by Lefeber et al. [11]. Since the description of the controller in [11] is not detailed enough to
implement in simulations immediately, this chapter describes the controller in more detail. This way it can be
copied to implemented in simulations. The position and attitude controller are presented in sections 3.1 and
3.2 respectively. These two are then combined to make the final controller. Once this is finished, the controller
can be tested. The testing is done in detail in chapter 4.

3.1 Position control
In this section a position tracking controller is considered. Under the assumption that body-fixed linear accel-
erations can be used as (virtual) input. The tracking error in the body-fixed frame of the reference is defined
as

[
ρe
νe

]
=

[
RTr (ρr − ρ)
νr −RTr Rν

]
. (3.1)

With this definition, the error dynamics are defined as

ρ̇e = −S (ωr) ρe + νe

ν̇e = −S (ωr) νe +
f

m
RTr Re3 −

fr
m
e3.

(3.2)

To stabilize these error dynamics, a virtual input u is defined as

u =
f

m
RTr Re3 −

fr
m
e3, (3.3)

which can be controlled by using the thrust magnitude f and the attitude. Rearranging this virtual input gives
the expression for the thrust magnitude

mu+ fre3 = fRTr Re3

f = ‖mu+ fre3‖ .
(3.4)

This gives the dynamics

ρ̇e = −S (ωr) ρe + νe

ν̇e = −S (ωr) νe + u,
(3.5)

in closed loop with the dynamic output feedback

u = −σ (kρρ̂e + kν ν̂e)

˙̂ρe = −S (ωr) ρ̂e + νe + L1z

˙̂νe = −S (ωr) ν̂e + u+ L2z

ż = −S (ωr) z − (L1 + L3) z + (L1 + L3) ρ̃e

(3.6)

with kρ > 0, kν > 0 (both feedback gains), L1 > 0, L2 > 0, L3 > 2L2/L1 (all three are filter parameters).
This system is UGAS and ULES as proven in [11]. To avoid reaching the maximum motor ratio, the saturation
function σ(x) is defined as

σ(x) = γ tanh (‖x‖2/γ) ‖x‖−1
2 x. (3.7)

In this saturation function, when x approaches zero, the Taylor series expansion is used.
This concludes the position controller, the next section goes into detail about the attitude controller.

Report of the Graduation Project Phase 12



3.2 Attitude control
In this section the attitude controller is considered. The following dynamics and reference dynamics are used

Ṙ = RS(ω) Ṙr = RrS(ωr)

Jω̇ = S(Jω)ω + τ Jω̇r = S(Jωr)ωr + τr.
(3.8)

The errors are defined as Re = RrR
�, R̃ = R̂R�, ωe = ωr − ω, ω̃ = ω̂ − ω and ω̂e = ωr − ω̂.

The input then becomes

τ = τr + S (Jω̂e)ωr +Kωω̂e +

n∑
i=1

kiS
(
R�
r vi

)
R̂�vi (3.9)

˙̂
R = R̂S(ω + δR)

J ˙̂ω = S(Jω)ω + τ + δω
(3.10)

where the innovation terms δR and δω are given by

δR = −cR
n∑
i=1

kiS
(
R̂�vi

) (
R�
r vi +R�vi

)

δω = −cωJS (ωr)ωe − cωKωωe − Cωω̃

(3.11)

This input with the requirements Kω = K�
ω > 0, Cω = C�

ω > 0, cR > 0, cω > 0 and ki > 0 such that
M =

∑n
i=1 kiviv

�
i has distinct eigenvalues results in the equilibrium point (Re, R̃, ωe, ω̃) = (I, I, 0, 0) being

UaGAS and ULES.

This concludes the attitude controller. In the next section both the position and attitude controller are combined
into the final controller.

3.3 Combined control
In this section the position and attitude controllers from section 3.1 and 3.2 are combined into a final controller
by introducing desired reference dynamics for the attitude.
To find the desired thrust direction, it is required that fR�

r Re3 converges to mu + fre3. To achieve this, the
desired thrust direction is defined as

fd =

⎡
⎣ fd1
fd2
fd3

⎤
⎦ =

fre3 +mu

‖fre3 +mu‖ =
fre3 +mu

f
. (3.12)

The matrix

Rd =

⎡
⎢⎣

1− f2
d1

1+fd3
− fd1fd2

1+fd3
fd1

− fd1fd2
1+fd3

1− f2
d2

1+fd3
fd2

−fd1 −fd2 fd3

⎤
⎥⎦ ∈ SO(3), (3.13)

and its derivative

Ṙd = RdS(ωd), (3.14)

then denote the desired rotation matrix and also gives the desired angular rate

ωd =

⎡
⎢⎢⎣

−ḟd2 + fd2ḟd3
1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎦ , (3.15)

Report of the Graduation Project Phase 13



and its derivative

ω̇d =

⎡
⎢⎢⎢⎣

−f̈d2 + (ḟd2ḟd3+fd2f̈d3)(1+fd3)−fd2ḟ2
d3

(1+fd3)
2

f̈d1 − (ḟd1ḟd3+fd1fd3)−fd1ḟ2
d3

(1+fd3)
2

(fd2f̈d1−fd1f̈d2)(1+fd3)−(ḟd1fd2−fd1ḟd2)ḟd3
(1+fd3)

2

⎤
⎥⎥⎥⎦ (3.16)

The expressions for ḟd and f̈d are

ḟd =
mu̇− ḟfd

f
, (3.17)

f̈d =
1

f

(
−f̈fd − 2ḟ ḟd +mü

)
, (3.18)

using

ḟ =
(fre3 +mu)�

f
mu̇ (3.19)

and

f̈ =
1

f
(−ḟ2 +m2u̇�u̇+ (fre3 +mu)�mü) (3.20)

The expressions for ḟd and f̈d require the first and second derivative of the virtual input signal u defined in
(3.6). These derivatives are shown in (3.22) and (3.23) respectively. The expressions for a, b, c, d, e and the
derivatives are shown in (3.24). When the expression for x approaches zero, the Taylor series expansion is used.

u = −σ(x) = γ tanh tanh(
|x‖2
γ

)‖x‖−1
2 x. (3.21)

u̇ = −dσ(x)

dt
= −(γx�ẋ(sech2(

||x||2
γ

)
1

||x||22
− tanh(

||x‖2
γ

)
1

||x||32
)x+ γ tanh(

||x‖2
γ

)
1

||x||2 ẋ) (3.22)

ü = −((ȧ(bc− de) + a((ḃc+ bċ)− (ḋe+ dė)))x+ γ tanh(
||x‖2
γ

)
1

||x||2 ẍ) (3.23)

a = γx�ẋ (3.24a)

ȧ = γ(ẋ�ẋ+ x�ẍ) (3.24b)

b = sech2(
||x||2
γ

) (3.24c)

ḃ = −2 tanh(
||x‖2
γ

) sech2(
||x||2
γ

)
x�ẋ
||x||2 (3.24d)

c =
1

||x||22
(3.24e)

ċ = − 2ẋ

||x||32
(3.24f)

d = tanh(
||x‖2
γ

) (3.24g)

ḋ = sech2(
||x||2
γ

)
x�ẋ
||x||2 (3.24h)

e = −3x�ẋ
||x||52

(3.24i)

Report of the Graduation Project Phase 14



ė =
1

||x||32
(3.24j)

Within these equations the expression for x = kρρ̂e + kν ν̂e is used. The first and second derivative of this
expression are

ẋ = −S (ωr)x+ kρν̂e + kνu+ (kρL1 + kνL2) z, (3.25)

and

ẍ = −S (ω̇r)x− S (ωr) ẋ+ kρ ˙̂νe + kν
dσ(x)

dt
+ (kρL1 + kνL2) ż. (3.26)

With these desired dynamics known, the reference dynamics can be updated. Making the new reference variables

Rrd = RrRd, (3.27a)

ωrd = R�
d ωr + ωd. (3.27b)

Using these new variables, the reference dynamics then become

Ṙrd = RrdS(ωrd) (3.28a)

Jω̇rd = S(Jωrd)ωrd + τrd, (3.28b)

where τrd can be derived using equations (3.27b) and (3.28b) to be

τrd = J(Ṙ�
d ωr +R�

d ω̇r + ω̇d)− S(Jωrd)ωrd. (3.29)

This then changes the closed loop input τ to

τ = τrd + S (Jω̂e)ωrd +Kωω̂e +
n∑
i=1

kiS
(
R�
rdvi

)
R̂�vi (3.30)

The errors from the attitude controller of the previous section are changed to include these new reference
dynamics. The errors are changed to Re = RrRdR

� and ωe = R�
d ωr + ωd − ω.

This completes the controller, which can now be tested in simulations to see if it can follow the references
defined in chapter 2.

3.4 Concluding remarks
In this chapter the controller used in this research was described. This controller is the one designed by Lefeber
et al [11]. The controller was described in more detail in this chapter than in [11], this way it is possible to
copy and implement the controller from this chapter in simulations. The position and attitude control were
described, after which both were combined into the final controller. With both the reference trajectory known
and a controller designed, the controller can now be implemented in simulations.

Report of the Graduation Project Phase 15



4 Controller implementation in simulations

Previous chapters have discussed the reference trajectories and the controller that is used. This chapter focuses
on testing the controller in simulations with the different references. These simulations give an indication of the
behaviour of the drone and the controller when different reference trajectories are given.

Three different reference trajectories are used to test the controller. These tests are described in the subsections
of this chapter. The simulations are done in Matlab using the solver ode15s. This solver is used instead of
ode45 because the simulation ran significantly slower when using ode45. When looking for alternatives, ode15s
resulted in a faster simulation while still giving the same numerical result. The dynamics that are simulated
have been described in detail in previous chapters, but are repeated below in short.

ρ̇ = Rν,

ν̇ = −S(ω)ν + gRT e3 − f

m
e3,

Ṙ = RS(ω),

Jω̇ = S(Jω)ω + τ.

(4.1)

The state variables used in this simulation are ρ, ν,R, ω, ρ̂e, ν̂e, z, R̂ and ω̂. The controller used in the simulations
is the one described in section 3.3, where the closed loop input τ was determined to be

τ = τrd + S (Jω̂e)ωrd +Kωω̂e +
n∑
i=1

kiS
(
R�
rdvi

)
R̂�vi. (4.2)

The initial conditions of the state variables and the controller gains and parameters are depicted in Table 4.1
and Table 4.2 respectively. The mass and inertia tensor are obtained from the system identification done by
Brekelmans [3], the rest of the gains and parameters, with the exception of Kω and γ which have been slightly
tuned, are obtained from Lefeber et al [11], The values shown in these two tables are used in the simulations
for all three different reference trajectories.

State variable Initial value
ρ

[
0 0 0

]�
ν

[
0 0 0

]�
ω

[
0 0 0

]�
ρ̂e

[
0 0 0

]�
ν̂e

[
0 0 0

]�
z

[
0 0 0

]�
ω̂

[
0 0 0

]�

R

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

R̂

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

Table 4.1: Initial conditions used in simulations

Report of the Graduation Project Phase 16



Parameter Value Description
m 0.068 Mass of the drone (kg)
g 9.81 Gravitational acceleration (m/s2)
γ 4 Saturation bound (||u(t)||2 ≤ γ)

(kρ, kν) (2,2) Translational control gains
(L1, L2, L3) (4,4,4) Translational filter gains

(k1, k2, k3, Kω) (10,20,30,0.5I) Attitude control gains
(cR, cω, Cω) (1,10,15I) Attitude filter gains

v1
[
0 0 −1

]� Direction (gravity)
v2

[
0.98 0.17 0

]� Direction (Magnetic field)
v3 v1 × v2 Virtual measurement direction

J 1
1000

⎡
⎣0.069 0 0

0 0.0775 0
0 0 0.150

⎤
⎦ Inertia tensor (kg/m2)

Table 4.2: Parameters used in simulations

4.1 Reference 1
This section focuses on the first reference described in section 2.2. Note that only part of the signals is shown
in (4.3). For the simulation, the first and second derivative of ψr(t) are required, as well as the first up to the
fourth derivatives of xr(t), yr(t) and zr(t). In this specific case all the derivatives are zero, because of the simple
hover reference. This reference trajectory is simulated with the initial conditioned mentioned before.

xr(t) = 0, yr(t) = 0, zr(t) = −1, ψr(t) = 0. (4.3)

The position (x, y, z), velocity (ẋ, ẏ, ż) and attitude rate (roll, pitch, yaw) are shown in Figure 4.1.

As can be seen from this figure, all three variables end up following the reference given. The x, y and z position
and velocity follow the reference after a short period. What stands out from this plot is the behaviour of the
attitude rate. Since this is a simple hover reference, it was expected that no rotation would be present. The
peak in the attitude rate is in the range of e−3, making it relative enough that it can not be assumed to be
noise.
To find out what causes this behaviour in the attitude rate, two different versions of the simulations are made.
One where only the translational dynamics are considered (with u as a virtual input), and one where only the
attitude dynamics are considered. These two simulations are discussed in further detail in subsection 4.1.1 and
4.1.2 respectively.

Report of the Graduation Project Phase 17



0 5 10 15 20 25 30
time [s]

0

0.5

1
P

os
iti

on
 [m

]

Position

0 5 10 15 20 25 30
time [s]

0

0.5

1

V
el

oc
ity

 [m
/s

]

Velocity

0 5 10 15 20 25 30
time [s]

-5

0

5

10

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

10-4 Attutide rate

Figure 4.1: Plot of ρ, ν and ω against time for a hover reference

4.1.1 Translational dynamics

In this section a separate simulation is made only considering the translational dynamics

ρ̇ = Rν,

ν̇ = −S(ω)ν + gRT e3 − f

m
e3,

(4.4)

and uses the controller described in section 3.1, using u as a virtual input. The issue with these expressions, is
that R and ω are not considered in this case. Thus an alternative way of expressing these dynamics is required,
where these two variables are not present. This is done by taking the second derivative of the position ρ, which
can be described as

ρ̈ = Ṙν +Rν̇ = RS(ω)ν +R(−S(ω)ν + gRT e3 − f

m
e3), (4.5)

which reduces to

ρ̈ = ge3 −R(
f

m
)e3. (4.6)

In this expression for ρ̈ only R remains. It is possible to use the expression for u used in (3.3) to help rewriting
this. The expression for u can be rewritten to

R(
f

m
)e3 = Rr(u+

fr
m
e3), (4.7)

which can then be substituted into (4.6) to obtain the expression for the second derivative of the position

ρ̈ = ge3 −Rr(u+
fr
m
e3). (4.8)

Report of the Graduation Project Phase 18



This expression does not depend on R or ω anymore, and can thus be simulated. The resulting behaviour of
the position and velocity is shown in Figure 4.2. This plot shows that the controller is capable of following the
hover reference. The behaviour in this simulation is very similar to the one shown before.

0 5 10 15 20 25 30

time [s]

0

0.5

1

1.5
P

os
iti

on
 [m

]
Position

0 5 10 15 20 25 30

time [s]

-0.5

0

0.5

1

1.5

V
el

oc
ity

 [m
/s

]

Velocity

Figure 4.2: Position and velocity over time

4.1.2 Attitude dynamics

This section only considers the attitude dynamics

Ṙ = RS(ω),

Jω̇ = S(Jω)ω + τ,
(4.9)

and uses the controller described in section 3.2. Thus the dynamics for R̂ and ω̂ are also simulated. The
behaviour of ω is shown in Figure 4.3. As expected there is no rotation with this specific reference, since it is
just a hover reference. This indicates that, at least judging only by this simple reference, that both parts of the
controller work separately, and the unexpected behaviour of Figure 4.1 is caused by something in the combining
of these two controller parts. A more detailed look into this expectation is taken in section 4.4.

Report of the Graduation Project Phase 19



0 5 10 15 20 25 30

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.3: Angular velocity over time

4.2 Reference 2
This section focuses on the second reference described in section 2.2.
The signals for xr(t), yr(t), zr(t) and ψr(t) for this reference are

xr(t) = ax sin(bxt), yr(t) = ay sin(byt), zr(t) = az sin(bzt)− 1, ψr(t) = aψ sin(bψt), (4.10)

with ax = 0.7, bx = 0.5, ay = 0.5, by = 1.0, az = 0 and aψ = 0.
The derivatives of the signals have not been repeated here, these derivatives, together with a visualization of
the reference, can be found in section 2.2, equation 2.6.

The same initial conditions as before are used in this simulation. The resulting behaviour is shown in Figure 4.4.
This plot shows that all variables follow the reference after circa 4-5 seconds. This confirms that the controller
is able to control the drone, even with a more challenging reference trajectory than hovering.

What stands out from this figure is the behaviour of the attitude rate. Both the first and second component
of ω seem to move away from the reference at first. Interestingly, the peaks are at the same point in time as
they were with the hover reference, showing that it is worth investigating the source. Despite this behaviour,
the controller does manage to follow the reference trajectory.

Looking back at the hover reference, the attitude rate shows similar behaviour, where it seems to have a peak
before converging to it. Since this simulation shows similar behaviour as with the previous reference, the same
checks are done with this reference trajectory, separating the translational and attitude dynamics.
Since the details on how these separate simulations are done has been discussed before, it is not repeated here.

Report of the Graduation Project Phase 20



0 5 10 15 20 25 30
time [s]

-0.5

0

0.5

1
P

os
iti

on
 [m

]
Position

0 5 10 15 20 25 30
time [s]

-0.5

0

0.5

1

V
el

oc
ity

 [m
/s

]

Velocity

0 5 10 15 20 25 30
time [s]

-0.2

0

0.2

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.4: Plot of ρ, ν and ω against time for a wave movement in x and y reference

4.2.1 Translational dynamics

The details on how this simulation is constructed has been described in section 4.1.1 and is not repeated here.
Simulating only the translational dynamics for the second reference trajectory gives the behaviour shown in
Figure 4.5. This shows that the behaviour in the x and y direction is very similar to what is shown in Figure
4.4. Both the position and velocity converge to the reference within 4-5 seconds.

Report of the Graduation Project Phase 21



0 5 10 15 20 25 30

time [s]

-1

-0.5

0

0.5

1

P
os

iti
on

 [m
]

Position

0 5 10 15 20 25 30

time [s]

-0.5

0

0.5

1

1.5

V
el

oc
ity

 [m
/s

]

Velocity

Figure 4.5: Position and velocity over time

4.2.2 Attitude dynamics

The details on how this simulation is constructed has been described in section 4.1.2 and is not repeated here.
Simulating the attitude dynamics for the second reference trajectory gives the behaviour shown in Figure 4.6.
Which shows that the controller is not able to fully match the reference, though the difference is relatively small
(error of circa 2.5e−3). Interestingly, the x and y component are going in the same direction as the reference
from the start. This is very different from the results shown before in Figure 4.4. This indicates that both
parts of the controller work separately, even with a more challenging reference than hovering. These results
further supports the expectation that the unexpected behaviour from Figure 4.1 is caused by something in the
combining of the controller parts.

Report of the Graduation Project Phase 22



0 5 10 15 20 25 30

time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.6: Angular velocity over time

4.3 Reference 3
This section focuses on the third reference described in section 2.2. Namely

xr(t) = (6 + 2 cos(ωνt)) cos(ωut), yr(t) = (6 + 2 cos(ωνt)) sin(ωut), zr(t) = 2 sin(ωνt), ψr(t) = ωut+ π,
(4.11)

where ων = 1.2π (rad/s) and ωu = 0.2π (rad/s). The derivatives required for the simulation are left out in this
section, they have been described in detail in section 2.2, a visualization of the reference trajectory is also found
in that section.

The same initial conditions as before are used in this simulation. The behaviour resulting from this simulation is
shown in Figure 4.7. Since the attitude rate is difficult to see because of the initial peak, a zoomed in version is
shown in Figure 4.8. This plot shows that the controller manages to follow the complicated reference trajectory.
However, comparing this result to that of the previous two references, it does not seem to reduce the error
completely to zero. This error is shown in Figure 4.9.

What stands out here is the peak of the attitude rate. After this peak it seems to approach the reference
relatively quickly. Unlike the previous references, the peak in attitude rate is at a different moment in time.
The velocity and position both do not have a similar peak, but take considerably longer to converge to the
reference than with the simpler reference trajectories. This is presumably because the reference is complicated.

The peak in the attitude rate could be caused by the same thing that caused the unexpected behaviour in the
previous simulations. If there is a deviation during a hover reference, it might not influence the overall behaviour
as much, but with a complicated reference like the one in this section, relatively small deviations could result
in a much bigger impact on the behaviour.
To see if the controller parts work separately, this reference is also split up into translational and attitude
dynamics only to investigate the behaviour.

Report of the Graduation Project Phase 23



0 5 10 15 20 25 30
time [s]

-10

0

10

P
os

iti
on

 [m
]

Position

0 5 10 15 20 25 30
time [s]

-5

0

5

10

V
el

oc
ity

 [m
/s

]

Velocity

0 5 10 15 20 25 30
time [s]

0

20

40

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.7: Plot of ρ, ν and ω against time for the reference from Lefeber et al. [11]

0 5 10 15 20 25 30

time [s]

-4

-2

0

2

4

6

8

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.8: Zoomed in version of the attitude rate.

Report of the Graduation Project Phase 24



0 5 10 15 20 25 30
time [s]

-10

0

10

P
os

iti
on

 [m
]

Position error

0 5 10 15 20 25 30
time [s]

-10

-5

0

5

V
el

oc
ity

 [m
/s

]

Velocity error

0 5 10 15 20 25 30
time [s]

0

20

40

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate error

Figure 4.9: Error plot of the position, velocity and attitude rate.

4.3.1 Translational dynamics

Simulating only the translational dynamics for the second reference trajectory gives the behaviour shown in
Figure 4.10. This shows that the controller is able to track the position reference. Interestingly, the z component
seems to deviate from the reference significantly at the start, but converges back to the reference after circa 10
seconds.
The velocity, however, is not following the reference at all. Since Figure 4.7 shows that the combined controller
does manage to follow the reference eventually, it might be that the simulation used for the translational
dynamics only is too simplified for this reference. Another option is that the position or velocity estimators
might not behave as expected. However, Figure 4.11 shows that the estimator errors go to zero and these thus
work as intended. It could also be that the combination of the two controller parts is required for complicated
reference trajectories, such as the one from this section.

Report of the Graduation Project Phase 25



0 5 10 15 20 25 30

time [s]

-10

0

10

20

P
os

iti
on

 [m
]

Position

0 5 10 15 20 25 30

time [s]

-10

0

10

20

V
el

oc
ity

 [m
/s

]

Velocity

Figure 4.10: Position and velocity over time

0 5 10 15 20 25 30

time [s]

-20

-10

0

10

20

P
os

iti
on

 e
st

im
at

or
 e

rr
or

[m
] Position estimator error

0 5 10 15 20 25 30

time [s]

-5

0

5

V
el

oc
ity

 e
st

im
at

or
 e

rr
or

[m
] Velocity estimator error

Figure 4.11: Position and velocity estimator error over time

Report of the Graduation Project Phase 26



4.3.2 Attitude dynamics

Simulating the attitude dynamics for the third reference trajectory separately, gives the behaviour depicted in
Figure 4.12. This shows that the attitude controller part is not able to follow the reference. A similar pattern
is achieved, but it does not seem to converge to the reference. It could be that the combination of the two
controller parts is required for complicated reference trajectories, such as the one from this section.

0 5 10 15 20 25 30

time [s]

-15

-10

-5

0

5

10

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.12: Angular velocity over time

Report of the Graduation Project Phase 27



4.4 Combined controller check
This section looks deeper into the cause of the unexpected behaviour in the controller tested in this chapter. As
was clear from the previous sections, especially with the first two reference trajectories, the unexpected behaviour
starts after the translational and attitude controller are combined. In other words, after the expressions for fd,
Rd and ωd have been introduced. A possible explanation for the behaviour is that these expressions are not
defined correctly. To test this, it is assumed that fd and Rd are derived correctly, and ωd is constructed from
them.
To differentiate the result from this derivation from the previously used ωd, the new variable is defined as ωdis
This derivation is done in a similar way as how ωr was derived in the reference dynamics. Using the expression

S (ωdis) = RTd Ṙd, (4.12)

ωdis then becomes
[
ωdis1 ωdis2 ωdis3

]� with

ωdis1 = RTd31Ṙd12 +RTd32Ṙd22 +RTd33Ṙd32, (4.13a)

ωdis2 = R�
d11Ṙd13 +R�

d12Ṙd23 +R�
d13Ṙd33, (4.13b)

ωdis3 = R�
d21Ṙd11 +R�

d22Ṙd21 +R�
d23Ṙd31. (4.13c)

To be able to use this newly derived ωdis for simulations, the derivative is also required. This derivative is used
to construct the expression of τrd as shown in section 3.3. As done before, for ease of understanding, the full
written out derivation for ωdis and expression of its derivative is included in Appendix C.

The expression for ωdis is included in the simulation and the hover reference simulation is done again. The
resulting behaviour is shown in Figure 4.13. This figure indicates that the newly derived ωdis had a slight impact
on the behaviour of the drone. The peak in the attitude rate has been removed in comparison to Figure 4.1.
This shows that the expression for ωdis gives behaviour closer to what was expected than the expression for ωd.
To check if the behaviour is improved in the other reference trajectories as well, the second reference is shown
in Figure 4.14 with the expression for ωdis implemented. This shows that, similar to the hover reference, the
peak in the attitude rate is removed, however there is still an oscillation present in the attitude rate. This shows
that the expression for ωdis did not completely solve the issue. This could be because of the assumption taken
before, that fd and Rd are derived correctly. It would be good for further research to check the derivations of
fd, Rd and ωd in more detail.

0 5 10 15 20 25 30
time [s]

0

0.5

1

P
os

iti
on

 [m
]

Position

0 5 10 15 20 25 30
time [s]

0

0.5

1

V
el

oc
ity

 [m
/s

]

Velocity

0 5 10 15 20 25 30
time [s]

-1

0

1

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.13: Plot of ρ, ν and ω against time for a hover reference

Report of the Graduation Project Phase 28



0 5 10 15 20 25 30
time [s]

-0.5

0

0.5

1

P
os

iti
on

 [m
]

Position

0 5 10 15 20 25 30
time [s]

-0.5

0

0.5

1
V

el
oc

ity
 [m

/s
]

Velocity

0 5 10 15 20 25 30
time [s]

-0.1

0

0.1

A
tti

tu
de

 r
at

e 
[r

ad
/s

]

Attutide rate

Figure 4.14: Plot of ρ, ν and ω against time for a back and forth movement reference

4.5 Concluding remarks
This chapter has tested the controller described in previous chapters. Three different references were given to
be followed. In all three cases, the controller managed to converge to the reference. During the tests some unex-
pected behaviour was discovered and separate simulations were done to investigate the source of the unexpected
behaviour. These tests were done by separating the translational and attitude dynamics. Because of these tests,
the conclusion was drawn that the unexpected behaviour is caused by the combining of the controller parts,
i.e. by introducing the variables for fd, Rd and ωd. The value for ωd was derived again with the assumption
that fd and Rd were correct. This resulted in the variable ωdis, which was implemented in the simulations and
showed different behaviour than ωd, but did not solve the issue completely. Indicating that the assumption was
not correct and the expressions for fd, Rd and ωd have to be checked again.

This chapter showed the implementation of the controller. The controller can converge the real position to the
reference trajectory with simple but also complicated references. The next step is to implement the controller
on the hardware itself.

Report of the Graduation Project Phase 29



5 Lab setup

In the previous chapters, the main focus was theoretical. The reference trajectory and the controller have been
discussed. These two were then tested in simulations. This chapter serves as a stepping stone to move from
software to hardware and give a visualization of the context of the hardware. The layout of the lab is shown
and described, after which the Parrot Mambo fly drone is shown and information about the specific drone is
given.

5.1 Lab layout
This section shows the layout of the lab. The Optitrack camera system is present in this lab. Figure 5.1 shows
in red where the cameras are located in the space. This picture also shows the on/off switch of the system in
yellow. Once the system is turned on, it is advised to wait for circa 30 minutes for the cameras to warm up,
this improves the accuracy of the localization. The computer shown in yellow in Figure 5.2 is used to run the
Motive software. This software is used as an interface to interact with the Optitrack cameras. After the warm
up period, the calibration can be done using Motive.

Figure 5.1: Optitrack cameras in the lab

Figure 5.2: PC on which Motive runs in the lab

Report of the Graduation Project Phase 30



5.2 Drone information
The drone that is used in this thesis is the Parrot Mambo fly mini drone, shown in Figure 5.3. Within Matlab
there exists a toolbox that can be used with this drone. This toolbox uses a simulink template to upload flight
code to the drone. This flight code is where all the control logic happens. This simulink template is discussed
in more detail in chapter 6. The mass and inertia tensor are determined by .

The values for these are m = 0.068 kg and J =

⎡
⎣0.069 0 0

0 0.0775 0
0 0 0.150

⎤
⎦.

Figure 5.3: Parrot Mambo fly drone

5.3 Concluding remarks
In this chapter the lab environment and the Parrot Mambo fly drone have been discussed. This gives a
visualization of the context of the hardware, and thus provides a stepping stone to move from software to
hardware.

Report of the Graduation Project Phase 31



6 Simulink

This chapter focuses on the simulink model template provided in the Simulink Support Package for Parrot mini
drones. This template can be used to load controller logic on the hardware. The simulink model is described
and it is explained what the different system blocks are responsible for within the template. After the workings
of the model has been explained, a description is given how a custom controller could be implemented and a
theoretical example case is shown using the controller described in the previous chapters of this thesis.

6.1 Description of the Simulink model
This section gives a detailed description of the simulink model provided. To open the project, the matlab
command "asbQuadcopterStart" is used. This opens the simulink file on the page shown in Figure 6.1.

The Airframe block is used to simulate the behaviour of the quadcopter. Two versions of this airframe can be
selected, Linear and Non-linear. Linear can be used for PID controller tuning and Non-linear can be used to
simulate the model in a more realistic way. In a way, this block can be seen as the "model", which is similar
to the model described in this thesis. This block, together with the Environment block and the Sensors block,
simulate the behaviour of the quadcopter in real life and what outputs the sensors give to the controller.
The Environment block is used to simulate the environmental factors that influence the quadcopter. It defines
the variables gravity, air density, speed of sound, atmospheric pressure and the air temperature. Two modes
can be selected within this block. One sets the environmental factors as a constant, the other sets the factors
as variables that change with position.
The Sensors block simulates the sensors on the drone. The outputs it gives are in a similar form as the real
sensors on the hardware would give to the controller. Two different modes can be selected, one where the signals
are noisy, and one where they are not.
The Visualization block is used to show the results of the simulation. This can be set to four different modes:
Scopes, Workspace, Flightgear, or Simulink 3D. This block is not necessary for the simulation, but gives a way
to monitor different parameters during the simulation.
The Command block is used to construct the reference signal. This can be edited within the block to define
a reference trajectory as desired. It is important to keep the same structure for the output values of this block,
since it is used in this structure by the other blocks in the model.
The FCS (Flight Control System) block (highlighted in red) is responsible for the control logic in the system.
If the simulink template is used to run the hardware, only the FCS block is loaded on the drone as flight code.
The rest of this section dives deeper in the specifics of this block.

Figure 6.1: Main Model

Report of the Graduation Project Phase 32



Figure 6.2: Flight Control system block

Opening the FCS block gives the screen shown in Figure 6.2. Input 3 gives the information needed for the
optical flow sensor of the drone. Since this optical flow sensor is not used in this case, the input can be removed.

Opening the Flight Control System block then gives the overview shown in Figure 6.3. In this overview, there
are again a number of subsystems present.
The Landing logic block is responsible for the drone landing smoothly after a test has been completed.
The Sensor data group block is for signal processing purposes to make sure the data from the sensors can be
used by the other blocks in this system.
The Estimator block is responsible for the state estimation during the simulation.
The Logging block makes sure the data from the tests is saved for post processing if applicable.
The Crash predictor block makes sure to terminate the system when a possible crash is expected.
The Controller block (highlighted in red) is where all the control logic is defined. This thesis only focuses on
this controller block, since that is the most relevant.

Figure 6.3: Flight control system

Report of the Graduation Project Phase 33



Figure 6.4: Controller block

When opening the controller block, the system shown in Figure 6.4 is opened. Within this block the controller
actions are determined. The model splits the dynamics in the drone so that multiple P(I)D controllers can work
separately to control the whole system. This is the block where changes can be made to implement a specially
designed controller. It is important to note that the blocks in green are supposed to stay in place, as well as
the inputs the whole controller system block has.

6.2 Implementing a custom controller
This section focuses on how a custom controller could theoretically be implemented in the simulink model. The
most important thing is that the FCS block from the main model overview (Figure 6.1) is the only block that
is set on the drone. This means that all the important logic necessary in the drone programming should be
within this block. Most importantly the control logic and the reference trajectory.
To implement the reference trajectory inside the FCS block, the Landing logic block from Figure 6.3 can be
altered. Here it is important to keep the structure of the outputs that is already present, since the other blocks
in the model rely on this structure.
The majority of changes are made within the controller block shown in Figure 6.4. Once again it is important
to keep the existing input and output structure of the main block intact and only modify the blocks within.
In the template model, the control logic is modelled by using simulink operations. In theory this could all be
changed to a Matlab function. This way the controller described in a previous chapter can be implemented in
simulink as well.
This function would then use the inputs Rr, ωr, ω̇r, fr, R̂, ω̂, ρ̂e, ν̂e, z, ρ and ω. In this case, ρ and ω are
obtained from the sensor measurements and the rest of the inputs are generated by a separate block. The
outputs of the function would be τ and f , which are then guided to the green blocks in Figure 6.4.
Future research could go deeper into what the best way is to implement a custom controller in simulink. Whether
using the Matlab function is indeed easier or if using simulink blocks is a better approach.

6.3 Concluding remarks
This chapter has described the simulink template model from the support package for Parrot mini drones. All
the different system blocks have been explained and the location of the control logic within the template is
shown. An example is given of how a custom controller could theoretically be implemented. With control logic
implemented in this simulink template model, the FCS block can be loaded on the hardware to test the drone
in the real world.

Report of the Graduation Project Phase 34



7 Connecting with the drone

With the reference dynamics and the controller tested in simulations, the next step is applying it to the hardware.
The first step in doing so is connecting to the drone, this chapter goes into detail on how this connection should
be achieved in Windows.

7.1 Connection in Windows
To connect with the drone the Matlab documentation can be followed [8]. In practice these steps are similar
but not exactly the same. This is due to the different layout of different operating system versions. When the
drone is connected for the first time, a special setup has to be done in Matlab. To do this the "Simulink support
package for parrot mini drones" add-on has a setup program.

This setup program starts with connecting the drone via a micro USB cable. The wired connection is required
for the computer to identify the drone initially. If the drone is connected correctly the program can detect the
drone and the next step can be taken. This step updates the firmware on the drone. To do this the drone
has to be disconnected, it starts updating automatically. After this step the drone should be ready to connect
via Bluetooth. The next screen in the setup program references the menu "My Bluetooth Devices" within the
windows explorer, however on this specific computer the references menu is empty and no buttons are able to be
pressed. To add the device, the menu "Devices and Printers" has to be used. When "add a device" is pressed,
the drone can be selected to be connected to. One of the two drones used gave an error message in this step,
the other drone gave two different options to connect to, where one worked and the other option did not work.
There was no clear reason why there was a difference between the two drones. The option that works is also
the "joystick" referred to in the setup program. After the correct version of the drone is added to the devices
and printers menu, the "connect using" button can be used to connect to the drone via Bluetooth. The setup
program then gives a test screen where the connection can be tested, this is the final step in the initial setup of
the drone. The specific screens and error messages are included in Appendix B.

At this moment, it is unclear why one drone works and the other does not. Multiple different drones were
tried, but only one of them was able to make a connection with Bluetooth. Using Linux did not improve
the connection, and the same problems were encountered. Another attempt was made by using a Bluetooth
"dongel" to try to have a better signal from the computer. However, since one of the drones worked without
this extension, it should not be necessary for the connection to work. A possible explanation is that one of the
drones may have been altered by previous students to make the connection work, since the drone that connects
correctly has been used before. Willem de Jonge was contacted about this issue, and he recognized it but did
not remember how he solved it. It is also possible that the working drone is an older hardware model and thus
has different hardware causing problems. Additionally, connecting to the drone using different computers was
attempted, but they could not connect in the right way either.
There were also some issues with the drone that did connect correctly. When trying to run templates supplied
by the support package, the data of the flights could not be logged. Since no data can be logged, further tests
on the hardware would not give usable results.

7.2 Concluding remarks
It is unclear why the two drones give different results when trying to connect to them. A possible reason is that
a previous student changed something in the code of the drone which made the connection possible. It would
be useful for future research to dive deeper into why there is a difference between the drones at all. Another
issue arose when testing with the drone that did connect, where the data from test flights could not be logged
correctly. This makes running tests not useful since the results can not be analyzed.

Report of the Graduation Project Phase 35



8 Connection to Optitrack

To be able to use the Optitrack camera system as the localization method for the Parrot mini drone, a con-
nection has to be established with the camera system. This can be done in different ways, depending on the
application. For application within Matlab, a direct connection can be made using either the ROS toolbox from
Matlab or using the NatNet SDK. For applications outside of Matlab, different steps are required. This chapter
goes into detail how the Optitrack camera output data can be imported to Matlab.

This chapter is divided in three main sections, firstly a short overview is given of how a ROS system works
in general. The next section focuses on a direct connection to Matlab in Windows, whereas the last section
uses Ubuntu to connect to the Optitrack system. In the second and third section, the required software is
shown and an explanation given on how to install it correctly. The section focusing on the direct connection
to Matlab shows the modifications that are made to provided files to extract location data from the camera
system and import it into Matlab. The section focusing on Ubuntu shows how to read live location data after
the installation guide.

8.1 Workings ROS system
ROS can be used to have different components in a system communicate with each other. For example letting
a drone communicate with a computer. Both the drone and the computer would be called "Nodes" within the
ROS system. Different nodes can communicate with each other using a "Topic". A "Publisher" node can send
messages to a topic, whereas a "Subscriber" node can receive these messages if it is subscribed to the specific
topic. This concept is shown in Figure 8.1.

Figure 8.1: Illustration of the ROS communication concept from [14]

8.2 Optitrack to Matlab in Windows
This section focuses on connecting to the Optitrack camera system and importing location data from there into
Matlab. Two ways are explored, using the ROS toolbox and using the NatNet SDK. Within these sections a
guide is given on how to install the required software.

8.2.1 ROS toolbox

The ROS Matlab toolbox is required to be installed within Matlab. To make sure the toolbox can be used in
the specific Matlab version, the right Python software needs to be installed. For the application in this thesis
Matlab R2021a is used. A detailed overview of which version of Python is required for each version of Matlab
can be found in the Matlab documentation under the section "ROS Toolbox System Requirements". For Matlab

Report of the Graduation Project Phase 36



version R2021a, the desired Python version is 2.7. To check the current version of Python on a system, use the
command ”pyenv” in the Matlab Command Window. This gives the result shown in Figure 8.2 if the python
version is installed correctly.

Figure 8.2: Current version of Python on the system

If the command ”pyenv” does not give this response, but instead shows either a different version or no version
at all, the version can be modified using the command ”pyenv(V ersion = ”2.7”)”. The specific version used in
this thesis is 2.7.18.
The specified version of Python has to be included in the path as well. This is done by one of two ways,
either during the installation process of Python (Some versions give the option to add it to the path), or
setting the path manually. To set the path manually, open the run dialog box (Windows key + r) and run the
command sysdm.cpl. This opens the System properties menu. Navigate to "Advanced" and then "Environment
Variables". This menu now shows the current user variables. A "Path" variable needs to be present here,
showing the path to the Python version. If this variable is not present, it needs to be created. To do this,
press "New...". For the variable Name, enter "Path". For the variable Value, enter the system path to the
Python version installed on the system, and the path to the folder "scripts", separated by a ”; ”, for example
C:\Python27; C:\Python27\Scripts.

After these steps Matlab should be able to set the version of Python as the current one and the ROS toolbox
can be used. To check this, the command ”rosinit” can be used in the Matlab command window. This launches
the ROS core, if the system does this without errors, the software is installed correctly. Use ”rosshutdown” to
shut down the ROS core.

During testing the approach of the ROS toolbox in Matlab was unsuccessful. The different nodes that are
present in the system could not be found when using the toolbox. Because of this, another option to get the
location data from the camera system is required. This other option is described in the next section.

8.2.2 NatNet SDK

To import the location data from the Optitrack camera system in Matlab, two different ways are possible. Using
the ROS toolbox provided by Matlab, or using the NatNet SDK. This section shows how a connection is made
using the latter. The ROS toolbox is not utilized in this thesis. The NatNet software can be downloaded from
the Optitrack website [7].
Within the downloaded folder, different Matlab files are found within the \NatNetSDK\Samples\Matlab folder.
The file "NatNetPollingSample.m" is used to get data from the Optitrack system. This function has to be modi-
fied to work with the specific camera setup used in this research. Within the code the following has to be changed:

natnetclient.HostIP = ’IP address of camera system’
natnetclient.ClientIP = ’IP address of laptop running Matlab’

The code prints the location of the rigid bodies that the cameras can see. However, this data cannot be used in
calculations if the function is run this way, thus more modifications are necessary. The part of the function that
is responsible for connecting to the system can be taken outside of the function. Taking this part out of the

Report of the Graduation Project Phase 37



function, a connection can be made before running the function. This is useful because the function does not
try to connect every time it is run, speeding up the process of receiving the location data. An example layout
of the function is given in Figure 8.3.

Figure 8.3: Matlab function to get data from Optitrack

In this example the variables "natnetclient" and "model" come from the code that connects to the camera
system. I.e. natnetclient = natnet and model = natnetclient.getModelDescription.
With these modifications to the code, the function can be called whenever the location data is required. This
can then also be implemented in the controller logic simulation.

8.3 Ubuntu
The previous section has shown how to connect to the system for applications within Matlab. This section
focuses on how a connection to the Optitrack camera system can be achieved for applications in Ubuntu.

Firstly some general information about the software used is given. Afterwards a guide is given on how to install
the necessary software. This guide is in the form of terminal commands, all the responses given by the system
have been left out for ease of reading. When everything is installed, a short guide is then shown to view the
location streamed by the Optitrack system.

8.3.1 Software

The research in this report is done with the following versions of the software used.

• Ubuntu 20.04

• ROS Noetic Ninjemys, Released May, 2020

• Information on the network/streaming settings of the camera system can be found on the corresponding
gitlab page made by Ö. Arslan [15].

8.3.2 Installation process

To make sure the right versions of all the packages and software is installed, follow the command list shown
below.

1 Tests i f i n s t a l l e d c o r r e c t :
2
3 bruno@S153072−Ubuntu :~ $ ro s co r e
4 bruno@S153072−Ubuntu :~ $ ged i t . bashrc

When the installation is not done correctly the following response is shown:
1 bruno@S153072−Ubuntu :~ $ ro s co r e
2
3 Command ’ r o s co r e ’ not found , but can be i n s t a l l e d with :
4
5 sudo apt i n s t a l l python3−ros launch
6
7 bruno@S153072−Ubuntu :~ $ ged i t . bashrc
8
9 ( ged i t : 5721) : Gtk−WARNING ∗∗: 1 5 : 2 0 : 1 0 . 9 0 8 : GTK+ module / usr / l i b /x86_64−linux−gnu/gtk −2.0/modules/ l i b g a i l . so cannot be

loaded .
10 GTK+ 2. x symbols detected . Using GTK+ 2. x and GTK+ 3 in the same proce s s i s not supported .
11 Gtk−Message : 1 5 : 2 0 : 1 0 . 9 0 8 : Not load ing module "atk−br idge " : The f u n c t i o n a l i t y i s provided by GTK nat i v e l y . Please try

to not load i t .
12

Report of the Graduation Project Phase 38



13 ( ged i t : 5721) : Gtk−WARNING ∗∗: 1 5 : 2 0 : 1 1 . 0 4 3 : GTK+ module / usr / l i b /x86_64−linux−gnu/gtk −2.0/modules/ l ibcanber ra −gtk−
module . so cannot be loaded .

14 GTK+ 2. x symbols detected . Using GTK+ 2. x and GTK+ 3 in the same proce s s i s not supported .
15 Gtk−Message : 1 5 : 2 0 : 1 1 . 0 4 3 : Fa i l ed to load module " canberra−gtk−module"
16
17 ( ged i t : 5721) : Gtk−WARNING ∗∗: 1 5 : 2 0 : 1 1 . 0 4 4 : GTK+ module / usr / l i b /x86_64−linux−gnu/gtk −2.0/modules/ l ibcanber ra −gtk−

module . so cannot be loaded .
18 GTK+ 2. x symbols detected . Using GTK+ 2. x and GTK+ 3 in the same proce s s i s not supported .
19 Gtk−Message : 1 5 : 2 0 : 1 1 . 0 4 4 : Fa i l ed to load module " canberra−gtk−module"

If the installation was done correctly the given response is:
1 \ t ex tb f {bruno@S153072−Ubuntu :~ $ ro s co r e
2 . . . l ogg ing to /home/bruno / . ros / log / f1b64bd0−4bc4−11ed−8286−6 f f f b e 0 f 5 f c 5 / roslaunch−S153072−Ubuntu−23235. log
3 Checking log d i r e c t o r y f o r d i sk usage . This may take a whi le .
4 Press Ctrl−C to in t e r rup t
5 Done checking log f i l e d i sk usage . Usage i s <1GB.
6
7 s t a r t ed ros launch s e rv e r http :// S153072−Ubuntu :44101/
8 ros_comm ver s i on 1 . 15 . 14
9

10
11 SUMMARY
12 ========
13
14 PARAMETERS
15 ∗ / r o s d i s t r o : noe t i c
16 ∗ / r o sv e r s i on : 1 . 15 . 14
17
18 NODES
19
20 auto−s t a r t i n g new master
21 proce s s [ master ] : s t a r t ed with pid [ 23245 ]
22 ROS_MASTER_URI=http :// S153072−Ubuntu :11311/
23
24 s e t t i n g /run_id to f1b64bd0−4bc4−11ed−8286−6 f f f b e 0 f 5 f c 5
25 proce s s [ rosout −1] : s t a r t ed with pid [ 23255 ]
26 s t a r t ed core s e r v i c e [ / rosout ]
27 ^C[ rosout −1] k i l l i n g on ex i t
28 [ master ] k i l l i n g on ex i t
29 shutt ing down proce s s i ng monitor . . .
30 . . . shut t ing down proce s s ing monitor complete
31 done

To continue the correct installation process follow:
1
2 I n s t a l l a t i o n :
3 (From http :// wiki . ros . org / noe t i c / I n s t a l l a t i o n /Ubuntu ) :
4
5 bruno@S153072−Ubuntu :~ $ sudo sh −c ’ echo "deb http :// packages . ros . org / ros /ubuntu $ ( l sb_re l ea s e −sc ) main" > / etc /apt/

source s . l i s t . d/ ros−l a t e s t . l i s t ’
6 bruno@S153072−Ubuntu :~ $ sudo apt i n s t a l l cu r l
7 bruno@S153072−Ubuntu :~ $ cu r l −s https :// raw . g i thubusercontent . com/ ros / r o s d i s t r o /master / ros . asc | sudo apt−key add −
8 bruno@S153072−Ubuntu :~ $ sudo apt update
9 bruno@S153072−Ubuntu :~ $ sudo apt i n s t a l l ros−noet ic−desktop−f u l l

10 bruno@S153072−Ubuntu :~ $ source /opt/ ros / noe t i c / setup . bash
11 bruno@S153072−Ubuntu :~ $ echo " source /opt/ ros / noe t i c / setup . bash" >> ~/. bashrc
12 bruno@S153072−Ubuntu :~ $ sudo apt i n s t a l l python3−rosdep python3−r o s i n s t a l l python3−r o s i n s t a l l −generator python3−wstool

bui ld−e s s e n t i a l
13 bruno@S153072−Ubuntu :~ $ sudo apt i n s t a l l python3−rosdep
14 bruno@S153072−Ubuntu :~ $ sudo rosdep i n i t
15 bruno@S153072−Ubuntu :~ $ rosdep update
16
17
18 ( Another tes t , now i n s t a l l e d c o r r e c t l y ) :
19 bruno@S153072−Ubuntu :~ $ ro s co r e
20 bruno@S153072−Ubuntu :~ $ sudo apt i n s t a l l ros−noet ic−vrpn−c l i e n t −ros
21 bruno@S153072−Ubuntu :~ $ mkdir catkin_make
22 bruno@S153072−Ubuntu :~ $ cd catkin_make/
23 bruno@S153072−Ubuntu :~/ catkin_make$ mkdir s r c
24 bruno@S153072−Ubuntu :~/ catkin_make$ cd s r c /
25 bruno@S153072−Ubuntu :~/ catkin_make$ sudo apt i n s t a l l ros−noet ic−vrpn−c l i e n t −ros
26 bruno@S153072−Ubuntu :~/ catkin_make$ catkin_make
27 bruno@S153072−Ubuntu :~/ catkin_make$ source deve l / setup . bash
28
29 (Get launch f i l e from https :// github . com/ ros−d r i v e r s / vrpn_cl ient_ros /blob / k ine t i c −deve l / launch/sample . launch )
30
31 ( Connect with the Motion Capture Wifi )
32
33 bruno@S153072−Ubuntu :~/ catkin_make$ ros launch mocap mocap . launch

This list of commands is shortened for ease of understanding and so that people can easily copy it in their own
terminal commands.

8.3.3 Live location tracking

Opening a new command terminal and using the commands below should then give the live location of the
object, in this example, the name of the object is "turtlebot3".

1
2 bruno@S153072−Ubuntu :~ $ r o s t op i c l i s t
3
4 / rosout
5 / rosout_agg
6 / t f
7 /vrpn_client_node/ tu r t l ebo t 3 /pose
8
9 bruno@S153072−Ubuntu :~ $ r o s t op i c echo /vrpn_client_node/ tu r t l ebo t 3 /pose

10
11 header :
12 seq : 0
13 stamp :

Report of the Graduation Project Phase 39



14 s e c s : 1665755653
15 nsecs : 287479433
16 frame_id : "world"
17 pose :
18 po s i t i on :
19 x : 0.46207594871520996
20 y : 0.045421015471220016
21 z : 0.3110859990119934
22 o r i e n t a t i on :
23 x : −0.0013987818965688348
24 y : 0.0022063779179006815
25 z : −0.8867406249046326
26 w: −0.4622599482536316
27 −−−
28 header :
29 seq : 1

8.4 Concluding remarks
This chapter has shown how to use the NatNet SDK to get location data from the Optitrack camera system in
Matlab. It is shown how to set up the connection and what needs to be modified in the provided Matlab files
to make the connection possible. An example is given of how the location data can be obtained in a variable,
which can then be used in the Matlab workspace.

This chapter has also shown how to receive the live location of a rigid body using the Optitrack camera system
in Ubuntu. The used software is described and a short explanation is given of how a ROS system works con-
ceptually. A detailed guide is then given on how the correct software is installed and how the live location can
be received.

The next step would be to implement this location data into the control logic. Replacing the localization method
of the Parrot mini drone, from its standard method of using internal sensors, to the Optitrack camera system
providing the location data.

Report of the Graduation Project Phase 40



9 Conclusions and recommendations

This chapter concludes the thesis and gives recommendations for future research. Firstly a summary is given
of what has been done in all the chapters, after which conclusions are drawn. Based on these conclusions some
recommendations are given for future research.

9.1 Summary and conclusions
This thesis focuses mainly on the implementation of a controller on the Parrot Mambo fly drone, using Optitrack
to localize the drone. In the first chapter, background information is given and the problem is defined. Multiple
goals are set to be achieved in the thesis. These goals were to describe the behaviour of a quad copter drone,
determine a reference trajectory, implement a controller in simulations, connect to both the drone hardware
and the camera system and achieving flight with the drone.

Chapter 2 showed the behaviour of a drone and dove deep into constructing a reference trajectory based on
the dynamics of a drone. This chapter has shown that most of the reference trajectory follows from four flat
output signals, these signals need to be chosen. Three different flat output signals were discussed in detail and
a reference trajectory was derived. The reference trajectory dynamics were shown in enough detail that they
can be copied for simulations without the need for further calculations. The reference trajectories determined
in this chapter are later used for simulations.

Chapter 3 focused on the controller that was used in this thesis, the one designed by Lefeber et at. [11]. The
position and attitude controller parts were described in detail, after which they were combined to give the final
expression for the controller. Similar to the reference trajectory, the expressions given in this chapter are in
enough detail, that they can be used in simulations without the need for further calculations. This controller is
used later for simulations.

The reference trajectories and the controller are both used in simulations in chapter 4. This chapter shows the
initial conditions used and the gains that were chosen for the simulations. The controller is then used to follow
the three different reference trajectories. During these simulations interesting behaviour was discovered. The
controller was able to follow the hover reference, where a peak in the attitude rate was discovered. Since this
movement was not expected, a more detailed look was taken to see what caused this movement. This was done
by splitting the controller into the translational part and the attitude part, which are then discussed in detail.
This detailed analysis showed that both parts work separately.
The second reference, the back and forth movement, showed similar behaviour, where the controller was able
to follow the reference but the attitude rate seemed to move in the opposite direction of the reference at the
start of the simulation, with a peak present at the same moment in time as with the hover reference. The same
analysis was done as with the hover reference, splitting up the controller. This showed the attitude controller
not being able to reduce the error to zero, but following the reference relatively close.
The third reference trajectory, the one used in [11], showed that the controller is able to follow a complicated
trajectory. However it is not able to reduce the error to zero with the parameters used. The attitude rate
showed a big peak at the start of the simulation, which is suspected to be a consequence of the same thing that
caused the peak in the hover reference and the opposite movement in the second reference.
A possible cause for these results was investigated by re-calculating the value of ωd, it was assumed that fd
and Rd were correct and ωdis was derived from them. This resulted in a different expression than ωd. ωdis was
then implemented in the simulations and the hover reference was used again to see the difference when using
ωdis instead of ωd. The peak in the attitude rate for the hover reference was removed, as well as the peak with
the back and forth reference. The movement in the opposite direction of the reference in this second reference
was not removed. It was concluded that the assumption of fd and Rd being correct was wrong. Indicating that
these need to be derived again to make sure the expressions are correct. This is taken as a recommendation for
future research.

Chapter 5 showed an overview of the camera system setup and gave a description of the context surrounding
the hardware used in this thesis.

Report of the Graduation Project Phase 41



Chapter 6 described the simulink support package template in detail. This template can be used to load flight
code on the hardware drone to implement controllers. This chapter described all the different components of
the template and showed which parts are the most relevant. After this a theoretical approach is given on how
a custom controller could be implemented within this template.

Chapter 7 focused on connecting to the Parrot Mambo fly drone. A detailed description was given on how the
connection should be achieved. Multiple problems arose in this section, one of which was that a connection to
the drone was not possible. Different versions of the same drone were tried and only one was able to connect.
It was not discovered why the different versions of the drone gave different results when connecting to them.
A possible explanation is that a previous student changed something in the firmware to make it possible to
connect, but this was not confirmed. The drone that was able to connect had a different issue, namely that
flight data was not able to be logged. Because of this, tests on the hardware would not give useful results. This
is determined as another recommendation to investigate further in future research.

Chapter 8 focused on connecting to the Optitrack camera system. Three different ways of connecting were
explored, the first two in Windows and the third one in Ubuntu. Firstly the ROS toolbox in Matlab was tried, a
detailed description was given of how to install the right software, but a connection using this method could not
be achieved. Because of this a second option was required, using the NatNet SDK. A guide was given to install
the necessary software and how to modify files to make the connection. This method was used successfully
and a connection was made. The location data was successfully imported into Matlab and could be used in
calculations. The third method of connecting was done in Ubuntu. A detailed guide consisting of terminal
commands was given on how to install the correct software and how to read the live location data from the
Optitrack system. This method was also completed successfully.

Looking back at the goals set at the start of this thesis, most of them were completed. The reference trajectory
was determined from flat output signals, the controller was described in detail. Both the reference and con-
troller were implemented in simulations successfully. A connection to the camera system was achieved in more
than one way, but the drone hardware caused issues. Because the flight data could not be logged and multiple
drones could not establish a connection. This made it so that tests would not yield usable results and thus the
controller was not implemented on the hardware.

The structure of the report is built in such a way that the individual chapters can be used separate from each
other. This would enable future research to use parts of this thesis without the need for the same specific
hardware. For example a different drone could be used, where the reference and controller description is still
relevant, just as the connection guide for the camera system.

9.2 Recommendations
This section gives examples that could be interesting to investigate in future research.
As touched on before, there were considerable issues with the hardware used in this thesis. Therefore it is
recommended to either investigate the source of the issues described in this thesis, or use a different drone as
the base to implement the controller on. If a different drone is used, the remaining chapters of this thesis can
still be used, as they are written in general form. The implementation in Matlab needs to be modified slightly
in this case, namely the mass of the drone and the inertia matrix.

Another point of interest are the expressions for fd, Rd and ωd. As described in chapter 4, these expressions
might cause unwanted behaviour in the attitude rate. It is therefore recommended to check these expressions
and make sure they are correct.

Since this thesis did not fully implement the controller in simulink and on the hardware, it is recommended to
further investigate how this implementation is done. The theoretical implementation given in chapter 6 can be
used as a base for this, although it is not tested. With this it could be interesting to see if there is a way of
getting the live location data directly in simulink, so the step of implementing it in Matlab first can be skipped.
A thing to note here is that it is recommended to investigate how the flight code communicates with the camera
system after implementation. For example, is the drone receiving the data directly from the camera system or
is the laptop that is connected to the drone forwarding this information.

Report of the Graduation Project Phase 42



References

[1] J. Alkobi, The Evolution of Drones: From Military to Hobby & Commercial. Article written on January 15,
2019. Online: https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/

[2] S.J.A.M. van den, Eijnden, Cascade Based Tracking Control of Quadrotors, DC 2017.012, Eindhoven Uni-
versity of Technology, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven,
The Netherlands, MSc Thesis, 2017.

[3] G.H, Brekelmans, Extended Quadrotor Dynamics: from Simulations to Experiments, DC2019.090, Eindhoven
University of Technology, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven,
The Netherlands, MSc Thesis, 2019.

[4] M. SungTae, C. DongHyun, H. Sanghyuck, R. DongYoung, and S. Eun-Sup, Development of Multiple
AR.Drone Control System for Indoor Aerial Choreography*, Aerospace Convergence Technology Team, Ko-
rea Aerospace Research Institute, Daejeon, Korea, January 24th, 2014.

[5] P. Zhaoy, C. Xiaoxuan Lux, B. Wangy, N. Trigoniy, and A. Markhamy, 3-D Motion Capture of an Unmodified
Drone with Single-chip Millimeter Wave Radar, Department of Computer Science, University of Oxford,
United Kingdom, xSchool of Informatics, University of Edinburgh, United Kingdom, 13 Nov 2020.

[6] S. Al Habsi, M. Shehada, M. Abdoon, A. Mashood, H. Noura, Integration of a Vicon Camera System for
Indoor Flight of a Parrot AR Drone, Department of Electrical Engineering, Research paper, UAE University
Al Ain, Abu Dhabi, UAE, 07 January 2016.

[7] Optitrack, Online: https://www.optitrack.com

[8] Matlab documentation for the simulink package for parrot mini drones, Online:
https://nl.mathworks.com/help/supportpkg/parrot/setup-and-configuration.html

[9] X. Zeng, Implementing Tracking Error Control for Quadrotor UAV, DC2021.044, Eindhoven University
of Technology, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven, The
Netherlands, MSc Thesis, 2021.

[10] W. de Jonge, Social behavior in a network of UAVs with collision avoidance, DC2020.093, Eindhoven
University of Technology, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven,
The Netherlands, MSc Thesis, 2020.

[11] E. Lefeber, M. Greiff, A. Robertsson, Filtered Output Feedback Tracking Control of a Quadrotor UAV, In:
Proceedings of the 21st IFAC World Congress, Berlin, Germany, 2020.

[12] E. Lefeber, M.F.A. van de Westerlo, H. Nijmeijer, Almost global decentralised formation tracking for multiple
distinct UAVs, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The
Netherlands. IFAC PapersOnLine 52-16 (2019) 186–191

[13] Khalil, Hassan K, Textbook: Nonlinear systems; 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2002.

[14] Matlab documentation for ROS, Online:
https://nl.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.
html

[15] Ö. Arslan, gitlab page, Online:
https://gitlab.tue.nl/20195150/dsd\char‘_mocap\char‘_optitrack/-/wikis/home

Report of the Graduation Project Phase 43



A Detailed derivation reference trajectory

This chapter compliments chapter 2.3 by explaining the derivations in more detail.

The expressions for φr and θr in terms of ψr are used to fill in Rr. This gives the expression:

Rr(:,1) =

⎡
⎢⎢⎢⎣

r3 cosψ√
1−(r1 sinψr−r2 cosψr)

2

r3 sinψ√
1−(r1 sinψr−r2 cosψr)

2

−(r1 cosψ+r2 sinψ)√
1−(r1 sinψr−r2 cosψr)

2

⎤
⎥⎥⎥⎦ , (A.1a)

Rr(:,2) =

⎡
⎢⎢⎢⎣
− sinψ(

√
1 + (r1 sinψr − r2 cosψr))− (cosψ(r1 cosψ+r2 sinψ))(r2 cosψr−r1 sinψ)√

1−(r1 sinψr−r2 cosψr)
2

cosψ(
√
1 + (r1 sinψr − r2 cosψr))− (sinψ(r1 cosψ+r2 sinψ))(r2 cosψr−r1 sinψ)√

1−(r1 sinψr−r2 cosψr)
2

r3(r1 sinψr−r2 cosψr)√
1−(r1 sinψr−r2 cosψr)

2

⎤
⎥⎥⎥⎦ , (A.1b)

Rr(:,3) =

⎡
⎢⎢⎢⎢⎢⎣

cosψ(r1 cosψ+r2 sinψ)
√

1+(r1 sinψr−r2 cosψr)

sinψ(r1 sinψr−r2 cosψr)+
√

1−(r1 sinψr−r2 cosψr)
2

− cosψ(r1 sinψr − r2 cosψr) +
sinψ(r1 cosψ+r2 sinψ)

√
1+(r1 sinψr−r2 cosψr)√

1−(r1 sinψr−r2 cosψr)
2

r3
√

1+(r1 sinψr−r2 cosψr)√
1−(r1 sinψr−r2 cosψr)

2

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎣r1r2
r3

⎤
⎦ . (A.1c)

To determine the derivative of the rotation matrix, the derivative of the expressions for φr and θr are required.
These derivatives are as follows

d sinφr
dψrdr1dr2dr3

= sinψr(ṙ1 + r2ψ̇r) + cosψr(r1ψ̇r − ṙ2)

d cosφr
dψrdr1dr2dr3

=
(sinφr)(

d sinφr

dψdr1dr2dr3
)

(1− (sinφr)2)
3
2

d cos θr
dψrdr1dr2dr3

=
ṙ3 cosφr − r3(

d cosφr

dψdr1dr2dr3
)

(cosφr)2

d sin θr
dψrdr1dr2dr3

=
cosφr(sinψr(ṙ2 − r1ψ̇r) + cosψr(ṙ1 + r2ψ̇r))− (r1 cosψr + r2 sinψr)(

d cosφr

dψrdr1dr2dr3
)

(cosφr)2

(A.2)

The derivative of the rotation matrix is then

dRr(:,1)

dψrdr1dr2dr3
=

⎡
⎢⎢⎣

− sinψr·r3ψ̇r√
1−(r1 sinψr−r2 cosψr)

2
+ cosψr(

d cos θr
dψrdr1dr2dr3

)

( d cos θr
dψrdr1dr2dr3

) sinψ + ( r3√
1−(r1 sinψr−r2 cosψr)

2
) cosψψ̇

−( d sin θr
dψrdr1dr2dr3

)

⎤
⎥⎥⎦ , (A.3a)

dRr(:,2)

dψrdr1dr2dr3
=

⎡
⎣Ṙr(1,2)Ṙr(2,2)
Ṙr(3,2)

⎤
⎦ , (A.3b)

dRr(:,3)

dψrdr1dr2dr3
=

⎡
⎣ṙ1ṙ2
ṙ3

⎤
⎦ . (A.3c)

Report of the Graduation Project Phase 44



where

Ṙr(1,2) = − sinψr sinφr sin θrψ̇r + cosψr(
d sinφr

dψrdr1dr2dr3
) sin θr

+cosψr sinφr(
d sin θr

dψrdr1dr2dr3
)− ((

d cosφr
dψrdr1dr2dr3

) sinψr + cosφr cosψrψ̇r),

(A.4a)

Ṙr(2,2) = (
d cosφr

dψrdr1dr2dr3
) cosψ − cosφ sinψψ̇ + (

d sinφr
dψrdr1dr2dr3

) sinψ sin θ

+sinφ cosψ sin θψ̇+sinφ sinψ(
d sin θr

dψrdr1dr2dr3
),

(A.4b)

Ṙr(3,2) = (
d cos θr

dψrdr1dr2dr3
) sinφ+ cos θ(

d sinφr
dψrdr1dr2dr3

), (A.4c)

and

ṙ1 = −x(3)r (ẍ2r + ÿ2r + (g − z̈r)
2)−

1
2 +

1

2
ẍr(ẍ

2
r + ÿ2r + (g − z̈r)

2)−
3
2 (2ẍrx

(3)
r + 2ÿry

(3)
r + (2z̈r − 2)z(3)r ), (A.5a)

ṙ2 = −y(3)r (ẍ2r + ÿ2r + (g − z̈r)
2)−

1
2 +

1

2
ÿr(ẍ

2
r + ÿ2r + (g − z̈r)

2)−
3
2 (2ẍrx

(3)
r + 2ÿry

(3)
r + (2z̈r − 2)z(3)r ), (A.5b)

ṙ3 = −z(3)r (ẍ2r + ÿ2r + (g − z̈r)
2)−

1
2 + (z̈r − g)(ẍrx

(3)
r + ÿry

(3)
r + (z̈r − g)z(3)r )(ẍ2r + ÿ2r + (g − z̈r)

2)−
3
2 . (A.5c)

This concludes the calculation of the derivative of the rotation matrix. The next step is to calculate the second
derivative of the rotation matrix. The first step is do take the derivatives of r1, r2 and r3. This is done below
by splitting up the partial derivatives and adding them up afterwards for ease of reading. Here x(i)

2

is the i-th
derivative to the power 2.

dṙ1
dxr

= −x(4)r (ẍ2r+ ÿ
2
r +(g− z̈r)2)− 1

2 +(3ẍrx
(3)2

r + ẍ2rx
(4)
r )(ẍ2r+ ÿ

2
r +(g− z̈r)2)− 3

2 −3ẍ3rx
(3)2

r (ẍ2r+ ÿ
2
r +(g− z̈r)2)− 5

2

(A.6a)
dṙ1
dyr

= (ẍr(ÿry
(4)
r + y(3)

2

r ) + x(3)r ÿry
(3)
r )(ẍ2r + ÿ2r + (g − z̈r)

2)−
3
2 − 3ẍrÿ

2
ry

(3)2

r (ẍ2r + ÿ2r + (g − z̈r)
2)−

5
2 (A.6b)

dṙ1
dzr

= (x(3)r z(3)r (z̈r−1)+ẍr(z̈rz
(4)
r +z(3)

2

r −z(4)r ))(ẍ2r+ÿ
2
r+(g−z̈r)2)− 3

2−3ẍr(z̈
2
rz

(3)2

r −2z̈rz
(3)2

r +z(3)
2

r )(ẍ2r+ÿ
2
r+(g−z̈r)2)− 5

2

(A.6c)

r̈1 =
dṙ1
dxr

+
dṙ1
dyr

+
dṙ1
dzr

(A.6d)

dṙ2
dxr

= (ÿr(ẍrx
(4)
r + x(3)

2

r ) + y(3)r ẍrx
(3)
r )(ẍ2r + ÿ2r + (g − z̈r)

2)−
3
2 − 3ÿrẍ

2
rx

(3)2

r (ẍ2r + ÿ2r + (g − z̈r)
2)−

5
2 (A.7a)

dṙ2
dyr

= −y(4)r (ẍ2r+ ÿ
2
r +(g− z̈r)2)− 1

2 +(3ÿry
(3)2

r + ÿ2ry
(4)
r )(ẍ2r+ ÿ

2
r +(g− z̈r)2)− 3

2 −3ÿ3ry
(3)2

r (ẍ2r+ ÿ
2
r +(g− z̈r)2)− 5

2

(A.7b)
dṙ2
dzr

= (y(3)r z(3)r (z̈r−1)+ÿr(z̈rz
(4)
r +z(3)

2

r −z(4)r ))(ẍ2r+ÿ
2
r+(g−z̈r)2)− 3

2−3ÿr(z̈
2
rz

(3)2

r −2z̈rz
(3)2

r +z(3)
2

r )(ẍ2r+ÿ
2
r+(g−z̈r)2)− 5

2

(A.7c)

r̈2 =
dṙ2
dxr

+
dṙ2
dyr

+
dṙ2
dzr

(A.7d)

dṙ3
dxr

= (ẍrx
(3)
r z(3)r +(z̈r−g)(ẍrx(4)r +x(3)

2

r ))(ẍ2r+ÿ
2
r+(g−z̈r)2)− 3

2 −3ẍrx
(3)
r (z̈r−g)(ẍ2r+ÿ2r+(g−z̈r)2)− 5

2 (A.8a)

Report of the Graduation Project Phase 45



dṙ3
dyr

= (ÿry
(3)
r z(3)r +(z̈r−g)(ÿry(4)r +y(3)

2

r ))(ẍ2r+ ÿ
2
r+(g− z̈r)2)− 3

2 −3ÿry
(3)
r (z̈r−g)(ẍ2r+ ÿ2r+(g− z̈r)2)− 5

2 (A.8b)

dṙ3
dzr

= −z(4)r (ẍ2r + ÿ2r + (g − z̈r)
2)−

1
2

+ (z(3)
2

r (z̈r − g) + z(3)r (ẍrx
(3)
r + ÿry

(3)
r + z(3)r (z̈r − g)) + (z(3)

2

r + z̈rz
(4)
r − gz(4))(z̈r − g))(ẍ2r + ÿ2r + (g − z̈r)

2)−
5
2

− 3z(3)r (z̈r − g)2(ẍrx
(3)
r + ÿry

(3)
r + z(3)r (z̈r − g))(ẍ2r + ÿ2r + (g − z̈r)

2)−
5
2

(A.8c)

r̈3 =
dṙ3
dxr

+
dṙ3
dyr

+
dṙ3
dzr

(A.8d)

The next step to complete the second derivative of the rotation matrix, is to find the second derivatives of the
expressions for sinφr, cosφr, cos θr and sin θr:

d( d sinφr

dψrdr1dr2dr3
)

dψrdr1dr2dr3
= (cosψr(ṙ1 + r2ψ̇r)− sinψ(r1ψ̇r − ṙ2))ψ̇r

+ (r1 cosψr + r2 sinψr)ψ̈r + r̈1 sinψr + ṙ1 cosψrψ̇r + ṙ2 sinψrψ̇r − r̈2 cosψr

(A.9)

d( d cosφr

dψrdr1dr2dr3
)

dψrdr1dr2dr3
= ((

d sinφr
dψrdr1dr2dr3

)2 + sinφr(
d( d sinφr

dψrdr1dr2dr3
)

dψrdr1dr2dr3
))(1− (sinφr)

2)−
3
2

− 3(sinφr)
2(

d sinφr
dψrdr1dr2dr3

)2(1− (sinφr)
2)−

5
2

(A.10)

d( d cos θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
=

(cosφr)
2(r̈3 cosφr − r3(

d( d cosφr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
))− 2(ṙ3 cosφr − r3(

d cosφr

dψrdr1dr2dr3
)) cosφ( d cosφr

dψrdr1dr2dr3
)

(cosφr)4

(A.11)
from equation (A.2) it is known that

d sin θr
dψrdr1dr2dr3

=
a+ b

(cosφr)2
(A.12)

where

a = cosφr(sinψr(ṙ2 − r1ψ̇r) + cosψr(ṙ1 + r2ψ̇r)) (A.13)

and

b = −(r1 cosψr + r2 sinψr)(
d cosφr

dψrdr1dr2dr3
) (A.14)

da

dψ
= (

d cosφr
dψr

)(sinψr(ṙ2 − r1ψ̇r) + cosψr(ṙ1 + r2ψ̇r))

+ cosφr(cosψr(ṙ2 − r1ψ̇r)ψ̇r − r1 sinψrψ̈r + r2 cosψrψ̈r − sinψr(ṙ1 + r2ψ̇r)ψ̇r)

(A.15)

db

dψ
= −(−r1 sinψrψ̇r + r2 cosψrψ̇r)(

d cosφr
dψrdr1dr2dr3

)− (r1 cosψr + r2 sinψr)(
d d cosφr

dψrdr1dr2dr3

dψr
) (A.16)

da

dr1
= (

d cosφr
dr1

)(sinψr(ṙ2 − r1ψ̇r) + cosψr(ṙ1 + r2ψ̇r)) + cosφr(−ṙ1 sinψrψ̇r + r̈1 cosψr) (A.17)

db

dr1
= −ṙ1 cosψr( d cosφr

dψrdr1dr2dr3
)− (r1 cosψr + r2 sinψr)(

d d cosφr

dψrdr1dr2dr3

dr1
) (A.18)

da

dr2
= (

d cosφr
dr2

)(sinψr(ṙ2 − r1ψ̇r) + cosψr(ṙ1 + r2ψ̇r)) + cosφr(r̈2 sinψr + ṙ2ψ̇r cosψr) (A.19)

db

dr2
= −ṙ2 sinψr( d cosφr

dψrdr1dr2dr3
)− (r1 cosψr + r2 sinψr)(

d d cosφr

dψrdr1dr2dr3

dr2
) (A.20)

Report of the Graduation Project Phase 46



da

dr3
= 0 (A.21)

db

dr3
= 0 (A.22)

da

dψrdr1dr2dr3
=
da

dψ
+

da

dr1
+

da

dr2
+

da

dr3
(A.23)

db

dψrdr1dr2dr3
=

db

dψr
+

db

dr1
+

db

dr2
+

db

dr3
(A.24)

d( d sin θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
=

(cosφr)
2( da
dψrdr1dr2dr3

+ db
dψrdr1dr2dr3

)− 2(a+ b) cosφ( d cosφr

dψrdr1dr2dr3
)

(cosφr)4
(A.25)

With these two derivations done, all the parts to construct the second derivative of the rotation matrix are
obtained. Below the expression of every entry of the the second derivative of the rotation matrix is shown.

R̈r(1,1) = −2 sinψr(
d cos θr

dψrdr1dr2dr3
)ψ̇r + cosψr(

d( d cos θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
)− cosψr cos θψ̇

2
r − sinψr cos θψ̈r (A.26)

R̈r(2,1) = − sinψr cos θψ̇
2
r + 2 cosψr(

d cos θr
dψrdr1dr2dr3

)ψ̇r + cosψr cos θψ̈r + sinψr(
d( d cos θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
) (A.27)

R̈r(3,1) = −(
d( d sin θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
) (A.28)

R̈r(1,3) = r̈1 (A.29)

R̈r(2,3) = r̈2 (A.30)

R̈r(3,3) = r̈3 (A.31)

from equation (A.4a)

Ṙr(1,2) = a+ b+ c− (d+ e) (A.32)

with
a = − sinψr sinφr sin θrψ̇r

b = cosψr(
d sinφr

dψrdr1dr2dr3
) sin θr

c = cosψr sinφr(
d sin θr

dψrdr1dr2dr3
)

d = (
d cosφr

dψrdr1dr2dr3
) sinψr

e = cosφr cosψrψ̇r

(A.33)

then the derivative becomes

R̈r(1,2) = ȧ+ ḃ+ ċ− (ḋ+ ė) (A.34)

with

Report of the Graduation Project Phase 47



ȧ = − cosψr sinφr sin θrψ̇
2
r − sinψr(

d sinφr
dψrdr1dr2dr3

) sin θrψ̇r − sinψr sinφr(
d sin θr

dψrdr1dr2dr3
)ψ̇r − sinψr sinφr sin θrψ̈r

ḃ = − sinψr(
d sinφr

dψrdr1dr2dr3
) sin θrψ̇r + cosψr(

d( d sinφr

dψrdr1dr2dr3
)

dψrdr1dr2dr3
) sin θr + cosψr(

d sinφr
dψrdr1dr2dr3

)(
d sin θr

dψrdr1dr2dr3
)

ċ = − sinψr sinφr(
d sin θr

dψrdr1dr2dr3
)ψ̇r + cosψr(

d sinφr
dψrdr1dr2dr3

)(
d sin θr

dψrdr1dr2dr3
) + cosψr sinφr(

d( d sin θr
dψrdr1dr2dr3

)

dψrdr1dr2dr3
)

ḋ = − cosψr(
d cosφr

dψrdr1dr2dr3
)ψ̇r − sinψr(

d( d cosφr

dψrdr1dr2dr3
)

dψrdr1dr2dr3
)

ė = sinψr cosφrψ̇
2
r − cosψr(

d cosφr
dψrdr1dr2dr3

)ψ̇r − cosψr cosφrψ̈r

(A.35)
from equation (A.4b)

Ṙr(2,2) = a+ b+ c+ d+ e (A.36)

with
a = (

d cosφr
dψrdr1dr2dr3

) cosψr

b = − cosφr sinψrψ̇r

c = (
d sinφr

dψrdr1dr2dr3
) sinψr sin θr

d = sinφr cosψr sin θrψ̇r

e = sinφr sinψr(
d sin θr

dψrdr1dr2dr3
)

(A.37)

then the derivative becomes

R̈r(2,2) = ȧ+ ḃ+ ċ+ ḋ+ ė (A.38)

with

ȧ = (

d cosφr

dψrdr1dr2dr3

dψrdr1dr2dr3
) cosψr − (

d cosφr
dψrdr1dr2dr3

) sinψrψ̇r

ḃ = −(
d cosφr

dψrdr1dr2dr3
) sinψrψ̇r − cosφr cosψrψ̇

2
r − cosφr sinψrψ̈r

ċ = (

d sinφr

dψrdr1dr2dr3

dψrdr1dr2dr3
) sinψr sin θr + (

d sinφr
dψrdr1dr2dr3

) cosψr sin θrψ̇r + (
d sinφr

dψrdr1dr2dr3
) sinψr(

d sin θr
dψrdr1dr2dr3

)

ḋ = (
d sinφr

dψrdr1dr2dr3
) cosψr sin θrψ̇r − sinφr sinψr sin θrψ̇

2
r + sinφr cosψr(

d sin θr
dψrdr1dr2dr3

)ψ̇r + sinφr cosψr sin θrψ̈r

ė = (
d sinφr

dψrdr1dr2dr3
) sinψr(

d sin θr
dψrdr1dr2dr3

) + sinφr cosψr(
d sin θr

dψrdr1dr2dr3
)ψ̇r + sinφr sinψr(

d sin θr
dψrdr1dr2dr3

dψrdr1dr2dr3
)

(A.39)

R̈r(3,2) = sinφr(

d cos θr
dψrdr1dr2dr3

dψrdr1dr2dr3
) + cos θ(

d sinφr

dψrdr1dr2dr3

dψrdr1dr2dr3
) + 2(

d sinφr
dψrdr1dr2dr3

)(
d cos θr

dψrdr1dr2dr3
) (A.40)

Which concludes the full derivation of the second derivative of the rotation matrix in detail.

Report of the Graduation Project Phase 48



B Connection to the drone Figures

This setup starts with the screen in Figure B.1. A connection with a wire is necessary, this allows the computer
to identify the drone, which is shown in Figure B.2. This step then writes the Matlab firmware to the drone.
For the drone to update this new firmware the drone has to be disconnected, as shown in Figure B.3. After this
update the drone should be ready to connect to the computer using Bluetooth, this is described in Figure B.4.
This screen references the menu "My Bluetooth Devices" within the windows explorer, however in this case the
references menu is empty and no buttons are able to be pressed, as shown in Figure B.5. To add the device,
the menu "Devices and Printers" has to be used as shown in Figure B.6. When selecting "Add a device", the
menu shown in Figure B.7 pops up. Here the drone can be selected and the connection made, however, for
some reason this gives an error, as shown in Figure B.8 and B.9. These errors seem to be two outcomes of the
connection process, although there is no difference in the steps taken before. There is also no option to enter a
password, making the error of Figure B.9 somewhat confusing.

When using a different drone, the same steps can be taken as before, using Figures B.1 - B.6. In this case the
menu for adding a device looks different, as shown in Figure B.10. Here there are two different devices with
the same name as the drone. One of these two is the "Joystick" referenced in Figure B.4, the other one does
not work. Figure B.11 shows that the device is added, without error. In this case the wrong icon of the two
was added, thus the other one has to be added too, as shown in Figure B.12. Figure B.13 shows that now both
devices with the same name are added, where only one of them has the added option in the menu "Connect
using", this is the correct one. This "Connect using" option gives the result that is referenced in the setup in Fig-
ure B.14. When this step is completed the drone is connected and the connection can be tested as in Figure B.15.

Figure B.1: Setup start screen

Report of the Graduation Project Phase 49



Figure B.2: Detecting drone

Figure B.3: Firmware update

Report of the Graduation Project Phase 50



Figure B.4: Bluetooth device

Figure B.5: My bluetooth devices

Report of the Graduation Project Phase 51



Figure B.6: Devices and printers

Figure B.7: Drone 1 added

Report of the Graduation Project Phase 52



Figure B.8: Error message 1

Figure B.9: Error message 2

Report of the Graduation Project Phase 53



Figure B.10: Drone 2 added

Figure B.11: Wrong option of drone added

Report of the Graduation Project Phase 54



Figure B.12: Finding correct version

Figure B.13: Correct version added

Report of the Graduation Project Phase 55



Figure B.14: Connecting via NAP step

Figure B.15: Testing connection

Report of the Graduation Project Phase 56



C Detailed derivation of desired angular velocity

This section gives a detailed description of the newly derived versions of ωdis and its derivative. The expression
for ωdis is given by

ωdis1 = RTd31Ṙd12 +RTd32Ṙd22 +RTd33Ṙd32, (C.1a)

ωdis2 = R�
d11Ṙd13 +R�

d12Ṙd23 +R�
d13Ṙd33, (C.1b)

ωdis3 = R�
d21Ṙd11 +R�

d22Ṙd21 +R�
d23Ṙd31. (C.1c)

Writing this in full gives,

ωdis1 =
a+ b+ c

d
, (C.2)

with

a = −ḟd1(fd1(fd2 + 2fd3 + fd2fd3 + 2f2d3)), (C.3a)

b = −ḟd2(f2d1 + 2f2d2 + f2d1fd3 + 2f2d2fd3), (C.3b)

c = ḟd3(f
2
d1(fd2 + fd3) + f3d2), (C.3c)

d = (1 + fd3)
2. (C.3d)

The derivative then becomes

ω̇dis1 =
d(ȧ+ ḃ+ ċ)− (a+ b+ c)ḋ

d2
, (C.4)

with

ȧ = −f̈d1(fd1(fd2 + 2fd3 + fd2fd3 + 2f2d3))− ḟd1(ḟd1(fd2 + 2fd3 + fd2fd3 + 2f2d3))

−ḟd1(fd1(ḟd2 + 2ḟd3 + ḟd2fd3 + fd2ḟd3 + 4fd3ḟd3))

ḃ = −f̈d2(f2d1 + 2f2d2 + f2d1fd3 + 2f2d2fd3)

−ḟd2(2fd1ḟd1 + 4fd2ḟd2 + 2fd1ḟd1fd3 + f2d1ḟd3 + 4fd2ḟd2fd3 + 2f2d2ḟd3)

ċ = f̈d3(f
2
d1(fd2 + fd3) + f3d2) + ḟd3(2fd1ḟd1(fd2 + fd3) + f2d1(ḟd2 + ḟd3) + 3f2d2ḟd2)

ḋ = 2ḟd3(1 + fd3)

(C.5)

ωdis2 = a+ b, (C.6)

with

a = ḟd1 − fd1ḟd3, (C.7a)

b = −fd1(fd1ḟd1 + f2d2
1 + fd3

), (C.7b)

The derivative then becomes

ω̇dis2 = ȧ+ ḃ, (C.8)

with

ȧ = f̈d1 − (ḟd1ḟd3 + fd1f̈d3)

ḃ = −ḟd1(fd1ḟd1 + f2d2
1 + fd3

)− fd1(
(1 + fd3)(ḟ

2
d2 + fd1f̈d1 + 2fd2ḟd2)− (fd1ḟd1 + f2d2)ḟd3

(1 + fd3)2
)

(C.9)

Report of the Graduation Project Phase 57



ωdis3 = a+ b+ c, (C.10)

with

a = (
fd1fd2
1 + fd3

)(
(1 + fd3)2fd1ḟd1 − f2d1ḟd3

(1 + fd3)2
), (C.11a)

b = −(1− f2d2
1 + fd3

)(
(1 + fd3)(fd1ḟd2 + ḟd1fd2)− fd1fd2ḟd3

(1 + fd3)2
), (C.11b)

c = fd1fd2 (C.11c)

The derivative then becomes

ω̇dis3 = ȧ+ ḃ+ ċ, (C.12)

with

ȧ = (
(1 + fd3)(fd1ḟd2 + ḟd1fd2)− fd1fd2ḟd3

(1 + fd3)2
)(
(1 + fd3)2fd1ḟd1 − f2d1ḟd3

(1 + fd3)2
)+

(
fd1fd2
1 + fd3

)(
(1 + fd3)

2((1 + fd3)(2ḟ
2
d1 + 2fd1f̈d1)− f2d1f̈d3)− (2ḟd3(1 + fd3)((1 + fd3)2fd1ḟd1 − f2d1ḟd3))

(1 + fd3)4
)

x = (1 + fd3)(fd1ḟd2 + ḟd1fd2)− fd1fd2ḟd3

ẋ = ḟd3(fd1ḟd2 + ḟd1fd2) + (1 + fd3)(f̈d1fd2 + 2ḟd1ḟd2 + fd1f̈d2)− (ḟd1fd2ḟd3 + fd1ḟd2ḟd3 + fd1fd2f̈d3)

ḃ = (
(1 + fd3)2fd1ḟd1 − f2d1ḟd3

(1 + fd3)2
)(
(1 + fd3)(fd1ḟd2 + ḟd1fd2)− fd1fd2ḟd3

(1 + fd3)2
)

− (1− f2d2
1 + fd3

)(
(1 + fd3)

2ẋ− 2x(1 + fd3)ḟd3
(1 + fd3)4

)

ċ = fd1ḟd2 + ḟd1fd2

(C.13)

Report of the Graduation Project Phase 58


