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Abstract

We develop a model based on stochastic discrete-time controlled dynamical systems in order to derive optimal policies

for controlling the material flow in supply networks. Each node in the network is described as a transducer such that the

dynamics of the material and information flows within the entire network can be expressed by a system of first-order

difference equations, where some inputs to the system act as external disturbances. We apply methods from constrained

robust optimal control to compute the explicit control law as a function of the current state. For the numerical examples

considered, these control laws correspond to certain classes of optimal ordering policies from inventory management while

avoiding, however, any a priori assumptions about the general form of the policy.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A supply network is a set of facilities, connected by transportation links, whose function comprises the
procurement of (raw-) materials, transformation of these materials into intermediate and finished products
and distribution of the finished products to consumers. Generalizing the original concept of a supply chain,
where mainly linear or tree-structured arrangements of facilities and corresponding material flows were
considered, the term ‘supply network’ explicitly acknowledges the possibility of more complex structures,
where in principle any of the involved components can supply each other. Clearly, this is a more realistic
model in today’s networked economy.

An important task in managing supply networks is to organize the flow of goods and information between
the different components. This includes both the design of the network structure (building and configuring the
links) as well as the control of the material flow through the network over time. A major challenge in this
respect is the handling of uncertainty, such as in the customer demand, availability of materials, variability of
production and transportation times.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Considerable research effort has been invested into deriving optimization models for either network
structure or control policies [1], with increasing focus on incorporating randomness [2]. A related aspect of
investigation is the stability of the supply network with respect to uncertain inputs. Existing studies typically
assume a given (parameterized) control strategy and analyze how the dynamics depends on the parameters
[3–8] or, additionally, on the structure of the network [9].

The focus of this study is on finding optimal control strategies for material flows in demand-driven supply
networks. More precisely, the individual nodes are controlling their inflows by placing orders to their
immediate suppliers. These orders represent the information flow, which might be instantaneous (so that the
supplier’s outflow can directly be controlled by its customer) or involve a time delay. Thus, we have a local
control, resulting in a local coordination of the supplier–customer pairs, which nevertheless might be
conceived with complete information of the whole network’s (global) state.

Our approach is to view supply networks as controlled dynamical systems. The goal is to derive an explicit
state-feedback control, i.e., control laws as functions of the current state of the system. The major difference
from previous approaches is that we do not assume a certain family of strategies a priori. In principle, we
allow for any possible mapping of the system’s state into the range of possible values for the control inputs.
The specific form of this mapping will emerge as the result.

Our assumptions are that the system works in discrete time and that we have fixed time delays for both
material and information flows between the nodes in the network. The demand (orders) of the end customers
(sinks in the network) is regarded as an external disturbance. We assume that the range of these disturbances is
bounded, but no further assumptions about the distribution are needed. The control law to be derived should
be robust in the sense that the system remains in a pre-specified state region for a pre-specified range of
disturbances and optimal with respect to the worst case realization of the uncertain external demand.

2. Supply networks as controlled dynamical systems

We consider supply networks as discrete-time controlled dynamical systems with uncertainty

xðtþ 1Þ ¼ f ðxðtÞ; uðtÞ; dðtÞÞ, (1)

where xðtÞ 2 Rn denotes the state of the system, uðtÞ 2 Rnu the control input and dðtÞ 2 Rnd the (uncertain)
disturbances, at time t. The map f : Rnþnuþnd�!Rn depends on the structure of the network.

As the basic network structure for the material flow we assume a directed connected graph G ¼ ðV ;SÞ
whose vertex set V :¼fv1; . . . ; vnV

g contains the facilities (nodes) of the supply network and arcs fs1; . . . ; snS
g ¼

: S � V � V represent the material flows (see Fig. 1, top). On the same vertex set V , a further relation
fr1; . . . ; rnR

g:¼R � V � V is given as the communication channels carrying the information flow. The
information flow is intended to carry the orders, i.e., the desired (future) material flow on the corresponding
arc from R. We require any control of the material flow to be employed via the information flow channels,
Fig. 1. Example of a basic network (top), where the arcs are annotated by their time delays t, and the corresponding extended

synchronous network (bottom).
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hence the information flow ‘coordinates’ the material flow in the network. Let therefore R:¼fðv;wÞ 2 V � V :
ðw; vÞ 2 Sg such that each material flow arc from w to v has a corresponding information flow arc, where v can
place its orders from w.

Let tsi
2 N0 be the time delay (transportation time) of an arc si 2 S. As we want to derive a first-order

difference equation model for the dynamics of the system, additional nodes are needed in our network model
such that the transport over each arc takes exactly one time unit. The basic network is thus transformed into
an extended network by replacing each arc si 2 S by a path (chain) of tsi

þ 1 arcs Si:¼fsi1; . . . ; sitsi
g through tsi

additionally defined auxiliary nodes V i ¼ fsi1; . . . ; sitsi
g. For any arc si ¼ ðv;wÞ 2 S, the resulting path is

fðv;si1Þ, ðsi1;si2Þ; . . ., ðsitsi
�1;sitsi

Þ, ðsitsi
;wÞg. Let V S:¼V 1 [ � � � [ V nS

. Analogously, sets Ri ¼ fri1; . . . ; ritri
g,

V 0i ¼ fri1; . . . ;ritri
g and VR ¼ V 01 [ � � � [ V 0nR

are defined for the information flows. Let ~V :¼V [ V S [ V R,
~S:¼S1 [ � � � [ SnS

and ~R:¼R1 [ � � � [ RnR
. Then the graph ~GS:¼ð ~V ; ~SÞ represents the resulting synchronous

material flow network and the graph ~GR:¼ð ~V ; ~RÞ the synchronous information flow network. The pairs of
corresponding information and material flow arcs have thus been extended to pairs of information and
material flow paths between the nodes of the original basic network G (see Fig. 1, bottom). For all v 2 ~V
define

�S
ðvÞ
:¼fðw; vÞ 2 ~Sg; �d

ðvÞ
:¼j �S

ðvÞ
j for incoming material flow arcs,

Ŝ
ðvÞ
:¼fðv;wÞ 2 ~Sg; d̂

ðvÞ
:¼jŜ

ðvÞ
j for outgoing material flow arcs,

�R
ðvÞ
:¼fðw; vÞ 2 ~Rg; �d0

ðvÞ
:¼j �R

ðvÞ
j for incoming information flow arcs,

R̂
ðvÞ
:¼fðv;wÞ 2 ~Rg; d̂0

ðvÞ
:¼jR̂

ðvÞ
j for outgoing information flow arcs,

whose elements are indexed as �sðvÞi , ŝ
ðvÞ
i , �rðvÞi and r̂

ðvÞ
i , respectively, where i 2 N. Each vertex v 2 ~V can now be

considered as a transducer whose internal state xðvÞðtÞ 2 R corresponds to its inventory of goods at time t. Its

input uðvÞðtÞ ¼ ½u
ðvÞ
S ðtÞ; u

ðvÞ
R ðtÞ�

T 2 R
�d
ðvÞ
þ �d0
ðvÞ

corresponds to the flow on the incoming arcs and the output yðvÞðtÞ ¼

½y
ðvÞ
S ðtÞ; y

ðvÞ
R ðtÞ�

T 2 Rd̂
ðvÞ
þd̂0
ðvÞ

to the flow on the outgoing arcs at time t. The resulting dynamics of a node v 2 V is

given by the map

xðvÞðtþ 1Þ ¼ xðvÞðtÞ þ e
�d
ðvÞ

� u
ðvÞ
S ðtÞ � ed̂

ðvÞ

� z
ðvÞ
S ðtÞ,

y
ðvÞ
R ðtÞ ¼ z

ðvÞ
R ðtÞ,

y
ðvÞ
S ðtÞ ¼ z

ðvÞ
S ðtÞ, (2)

where ek 2 Rk denotes a row vector with all components equal to one. The values z
ðvÞ
S ðtÞ 2 Rd̂

ðvÞ

represent the

goods that node v decides to ship towards each of its customers along arcs Ŝ
ðvÞ
, and z

ðvÞ
R ðtÞ 2 Rd̂0

ðvÞ

represent the

orders that node v decides to place to each of its suppliers via the arcs R̂
ðvÞ

. These are additional control inputs
to the nodes that determine the nodes’ transfer behavior. They will remain the only variables that we can
manipulate on the system level and hence become our control inputs to the system as a whole.

The dynamics for the auxiliary nodes w 2 VS and w0 2 VR simply reduces, as desired, to that of first-order
delay elements

xðwÞðtþ 1Þ ¼ u
ðwÞ
S ðtÞ; xðw

0Þðtþ 1Þ ¼ u
ðw0Þ
R ðtÞ,

y
ðwÞ
S ðtÞ ¼ xðwÞðtÞ; y

ðw0Þ
R ðtÞ ¼ xðw

0ÞðtÞ. (3)

There are certain nodes vC 2 V that act as sinks as they do not have any outgoing material flow arcs. These
nodes are called ‘consumers’ and simply generate an uncertain demand dðvC Þ. Their dynamics reduces to

y
ðvC Þ

R ðtÞ ¼ d ðvC ÞðtÞ (4)
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for all vC 2 VC :¼fv 2 V : d̂
ðvC Þ
¼ �d0

ðvC Þ

¼ 0g. Similarly, some vM 2 V that have no incoming material flows act
as sources of infinite supply capacity. They simply transform incoming orders (information flow) into
outgoing goods (material flow), hence their dynamics is

y
ðvM Þ

S ðtÞ ¼ u
ðvM Þ

R ðtÞ (5)

for all vM 2 V M :¼fv 2 V : �d
ðvM Þ
¼ d̂0

ðvM Þ

¼ 0g. Source and sink nodes have no internal state variables.
The dynamics of the whole system can now easily be derived by connecting the corresponding inputs uðvÞ

and outputs yðvÞ of all v 2 ~V , thus eliminating all these variables. Let the nodes vi 2 Vz:¼ ~VnðV C [ VM Þ,
wj 2 V x:¼VnðVC [ V MÞ and w0k 2 V C be indexed such that 1pipjV zj, 1pjpjVxj and 1pkpjV Cj. Defining

xðtÞ:¼½xðw1ÞðtÞ � � � xðwjVx jÞðtÞ�T as the state vector, uðtÞ:¼½z1ðtÞ � � � zjVzjðtÞ�
T with ziðtÞ:¼½½z

ðviÞ

S ðtÞ�
T½z
ðviÞ

R ðtÞ�
T� as the

input vector, and dðtÞ:¼½½dðw
0
1
Þ
ðtÞ�T � � � ½d

ðw0
jVC j
Þ
ðtÞ�T�T as the disturbance vector gives a first-order difference

equation of the form (1) with n ¼ j ~VnðVC [ V MÞj state variables, nu ¼
P

v2V ðd̂
ðvÞ
þ d̂0

ðvÞ
Þ control variables and

nd ¼
P

v2VC
d̂0
ðvÞ

external disturbances. As the equations for the node dynamics (2–5) are all linear, the

dynamics of the entire system can be written as

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ þ EdðtÞ, (6)

with matrices A 2 Rn�n, B 2 Rn�nu , and E 2 Rn�nd .

2.1. Constrained robust optimal control

We consider the problem of finding optimal control inputs uðtÞ to the system (6) with respect to costs on
state and control variables, given by kQxðtÞk1 and kRuðtÞk1, Q 2 Rn�n, R 2 Rnu�nu , and constraints

FxðtÞ þ GuðtÞpg; F 2 Rng�n; G 2 Rng�nu ; F 2 Rng ; ng 2 N0.

Typically, the costs represent inventory holding costs on x and ordering costs on u. The constraints are used to
specify upper and lower bounds on the state variables (e.g., to enforce non-negative inventories or limited
storage capacity) and on the control variables (no negative orders, maximum allowed order per time unit,
limits on transportation capacity). The constraints can also be used to make allowed control inputs state-
dependent, e.g. to ensure that a node cannot send more material than it has available.

The goal in robust constrained optimal control is to find control inputs that guarantee satisfaction of the
constraints for all possible disturbance realizations and that are favorable with respect to the resulting cost
distribution due to the disturbances. The main approach, which we also follow here, is to optimize the worst-
case cost via a min-max approach (minimum over u and maximum over d).

We assume that the disturbances dðtÞ 2 D � Rnd are bounded such that D ¼ fd : Ldplg;
L 2 Rnl�nd ; l 2 Rnl ; nl 2 N0. Given that the system (6) is in state xðt0Þ at time t0 ¼ 0 and a horizon K 2 N,
we are looking for an optimal control input sequence ðuðkÞÞK�1k¼0 such that

J�ðkÞðxðkÞÞ ¼ min
uðkÞ

J ðkÞðxðkÞ; uðkÞÞ

s.t.
FxðkÞ þ GuðkÞpg

AxðkÞ þ BuðkÞ 2 XðkÞ

( )
8dðkÞ 2 D,

JðkÞðxðkÞ; uðkÞÞ ¼ max
dðkÞ2D

kQxðkÞk1 þ kRuðkÞk1 þ J�ðkþ1ÞðAxðkÞ þ BuðkÞ þ Ed ðkÞÞ (7)

for k ¼ K � 1; . . . ; 0, where xðkÞ is the state vector at time t0 þ k given the system started in xðt0Þ ¼ xð0Þ and was
exposed to input sequence ðuðjÞÞkj¼0 and disturbance sequence ðd ðjÞÞkj¼0, and where the set of feasible states is

XðkÞ ¼ fx 2 Rn : 8d 2 D 9u 2 Rnu with Fxþ Gupg and Axþ Buþ Ev 2 Xðkþ1Þg.

As boundary conditions we choose J�K ðxðKÞÞ ¼ 0 and XðKÞ ¼ fx 2 Rn : Fxpgg. The finite time K-step optimal
control u� : Rn�!Rnu is given by the first component uð0Þ of the above problem for a fixed horizon K , and the
infinite-time optimal control law is its limit for K !1.
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We can compute the optimal control law u� by dynamic programming over k. It was shown in Ref. [10] that
u� is a piecewise affine and continuous function of the current state xðt0Þ and that each dynamic programming
step, i.e., the solution of (7), can be obtained by solving a multi-parametric linear program.

3. Examples

3.1. First example: beergame, single node

We give some numerical examples to illustrate the proposed model and solution procedure to arrive at a
robust optimal control strategy. The examples are inspired by (and variations of) the Beer Distribution Game,
which is a supply chain simulation for investigating dynamic behavior and potential sources of instability with
respect to the formation of control rules applied by the individual actors in the chain [11]. In particular, the
family of rules that were empirically derived from the behavioral experiment were shown to cause various
kinds of chaotic and hyperchaotic behavior of the system [3–5].

The basic network structure of the game is given in Fig. 2. We assume in the following that dðtÞ 2 ½0; 8�, i.e.,
that the end customers can order any quantity between zero and eight. Throughout the examples the inventory
holding costs in all four stages B;W ;D, and F are 0:5 per unit per time step. Furthermore, the infinite-time
optimal control problem has been considered, which guarantees asymptotic stability of the derived controller.

As a first example, we consider only one stage of the game, the retailer branch B, which supplies its
customers as shown in the Fig. 2. B receives its supply from W with a shipping delay of ts1 ¼ 2 and ordering
delay of tðr1Þ ¼ 1, where s1 ¼ ðW ;BÞ and r1 ¼ ðB;W Þ. W acts as a source with infinite inventory and dynamics
given by (5). The four necessary state variables are x ¼ ½xðBÞ;xðs12Þ;xðs11Þ; xðr11Þ�. A constraint is set to enforce
xðBÞðtÞX0, and z

ðBÞ
S ðtÞ will be set equal to u

ðBÞ
R ðtÞ ¼ dðtÞ so that B is required to always deliver what is ordered.

The remaining control variable is uðtÞ ¼ z
ðBÞ
R ðtÞ, the order rate of B, which we require to be bounded as

0puðtÞp8. The dynamics according to (6) is

xðtþ 1Þ ¼

1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

2
6664

3
7775xðtÞ þ

0

0

0

1

2
6664
3
7775uðtÞ

�1

0

0

0

2
6664

3
7775dðtÞ.

By solving the corresponding optimization problem, it follows that the feasible region is given by xiX0 for all
1pip4 and

x1 þ x2X8,

x1 þ x2 þ x3X16,

x1 þ x2 þ x3 þ x4X24 (8)
Fig. 2. Synchronous supply network of the Beer Distribution Game. The large squares denote the nodes from V which represent the

different stages: end customers ðCÞ, retailer branch ðBÞ, wholesaler ðW Þ, distributor ðDÞ, factory ðF Þ and raw materials source ðMÞ. The

solid arcs denote material flows (deliveries) ~S and the dashed arcs information flows (orders) ~R. The small squares represent the auxiliary

delay nodes, sij 2 VS and rij 2 V R.
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and the resulting optimal control law is

z
ðBÞ
R ðxÞ ¼ u�ðxÞ ¼ maxf32� x1 � x2 � x3 � x4; 0g. (9)

This essentially represents the common order-up-to policy, sometimes also called hedging point policy [12],
which is plausible in this case. The order-up-to level, or hedging point, is the maximum demand per period
multiplied with the time it takes from placing the order until the goods arrive in the inventory (lead time).
Naturally, the unfilled orders (state variables x2, x3 and x4) have to be accounted for when determining the
next order. The resulting level of work in progress (WIP) of 32 is the minimum WIP level that guarantees a
service level of 100% for any sequence of demand realizations from the given interval. Furthermore, the
resulting policy prevents a bullwhip effect in the sense that the variations in orders are not higher than
variations in consumer demand.

3.2. Second example: beergame, all four stages

Next we consider all four stages as displayed in Fig. 2. As above, xðvÞðtÞX0 is enforced and z
ðvÞ
S ðtÞ ¼ u

ðvÞ
R ðtÞ is

set for all v 2 fB;W ;D;Fg. The remaining four control variables are u ¼ ½z
ðBÞ
R z
ðW Þ
R z

ðDÞ
R z
ðF Þ
R �. By solving the

optimization problem, it follows that the feasible region in the state space is defined by inequalities (8) plus

32pxðBÞ þ xðW Þ þ
X2
i¼1

ðxðsi2Þ þ xðsi1ÞÞ; xðW Þ þ xðs22ÞXxðr11Þ,

40pxðBÞ þ xðW Þ þ
X2
i¼1

ðxðsi2Þ þ xðsi1ÞÞ þ xðr21Þ; xðDÞ þ xðs32ÞXxðr21Þ,

48pxðBÞ þ xðW Þ þ xðDÞ þ
X3
i¼1

ðxðsi2Þ þ xðsi1ÞÞ; xðF Þ þ xðs42ÞXxðr31Þ,

56pxðBÞ þ xðW Þ þ xðDÞ þ
X3
i¼1

ðxðsi2Þ þ xðsi1ÞÞ þ xðr31Þ,

64pxðBÞ þ xðW Þ þ xðDÞ þ xðF Þ þ
X4
i¼1

ðxðsi2Þ þ xðsi1ÞÞ,

and a resulting optimal control law is (9) for u�1 and

u�2ðxÞ ¼ maxf48� xðBÞ � xðW Þ �
X2
i¼1

ðxðsi2Þ þ xðsi1ÞÞ � xðr21Þ; 0g,

u�3ðxÞ ¼ maxf64� xðBÞ � xðW Þ � xðDÞ �
X3
i¼1

ðxðsi2Þ þ xðsi1ÞÞ � xðr31Þ; 0g,

u�4ðxÞ ¼ maxf72� xðBÞ � xðW Þ � xðDÞ � xðF Þ �
X4
i¼1

ðxðsi2Þ þ xðsi1ÞÞ; 0g, (10)

which is again a hedging point policy for all stages, where each stage has to make sure that downstream
inventories (including themselves) contain enough goods for any possible demand sequence. This is the
solution for the global information case, where all stages know all state variables of the entire system. In
contrast, if all stages only knew their state variables (inventory and past orders), they would have to treat
incoming orders as unknown disturbances, which would correspond to a sequence of four single stage models
as treated in the previous example. Clearly, the solution of the independent case would be a hedging point of
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32 for each stage, which would lead to higher inventories and hence higher cost than in the global
information case.

The optimal control strategy (9,10) is not unique though. The same cost can be achieved by

u�1ðxÞ ¼ xðW Þ þ xðs22Þ � xðr11Þ,

u�2ðxÞ ¼ xðDÞ þ xðs32Þ � xðr21Þ,

u�3ðxÞ ¼ xðF Þ þ xðs42Þ � xðr31Þ

and u�4 as above, or any linear combination of these. This ‘order’ policy simply states that all incoming goods
at W ;D and F should be shipped out as soon as they arrive. This results in a simple ‘push’ chain, where only F

makes sure that the whole amount of goods in the chain is sufficient. No inventories are kept in W ;D or F but
accumulate only at B. The existence of different optimal control strategies in this case is related to the
degeneracy of the dual of the linear programs to solve which is caused by the cost structure of this example. In
general, excess inventories would be held only at stages whose downstream successor has higher inventory
cost. This is ambiguous in our case as the inventory holding costs are all identical for the different stages.

3.3. Third example: one retailer with two suppliers

Finally, we consider the network of Fig. 1, where v2 is a retailer facing uncertain demand dðtÞ 2 ½0; 8� by its
customer v1. The retailer can choose to order u1ðtÞ 2 ½0; 6� from supplier v4 for a cost of 1 per unit or
u2ðtÞ 2 ½0; 6� from v3 for a cost of 4 per unit. Inventory holding costs are 1 per unit per time step. The dynamics
is given by

xðtþ 1Þ ¼

1 1 0 1

0 0 1 0

0 0 0 0

0 0 0 0

2
6664

3
7775xðtÞ þ

0 0

0 0

1 0

0 1

2
6664

3
7775uðtÞ þ

�1

0

0

0

2
6664

3
7775dðtÞ.

By solving the corresponding optimization problem, it follows that the resulting feasible region is given by
x1 þ x2 þ x4X8 and x1 þ x2 þ x3 þ x4X10, and the resulting robust optimal control is

u�1ðxÞ ¼ minfmaxf20� x1 � x2 � x3 � x4; 0g; 4g,

u�2ðxÞ ¼ maxf16� x1 � x2 � x3 � x4; 0g.

This is a so-called dual base-stock policy, which has been proved to be optimal for certain discrete-time
inventory models with two sources [12]. Of course, the optimal strategy depends on the different order costs
and is constrained by the maximum allowed order quantities that have been agreed upon by the retailer and
each of its suppliers.

4. Conclusions

We have presented a very general supply network model that allows to describe each component of the
network as a transducer and to state the entire dynamics of the material and information flow within the
network by a system of first-order difference equations. Various sources of uncertainty (e.g., customer
demand, transportation times, perishing of goods) can enter the model via disturbances. The model allows
recent techniques from constrained robust optimal control to be used for deriving optimal control policies.

For the examples of manufacturing supply chains considered in this study our approach led to the
traditional, optimal ordering policies without any prior assumption about the structure of the policy. As the
approach is independent of any structural assumptions about the network, it should be possible to derive
optimal control also for more complex network types, e.g., cyclic or recurrent flows. The approach also opens
the possibility to study the effects of contracts limiting the allowed order range between pairs of nodes or the
choice from a set of different suppliers, as alluded to in our last example.
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A further interesting issue is to investigate the relationship of this discrete-time approach to the continuous-
time supply network models as both appear structurally very similar. In particular, the continuous models
mainly focus on stability questions with respect to given control strategy and the question of finding optimal
strategies has not yet been followed.
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