

Cooperative Adaptive Cruise Control of Heterogeneous Vehicle Platoons

Erjen Lefeber¹, Jeroen Ploeg^{1,2}, Henk Nijmeijer¹

¹ Dynamics and Control Group, Eindhoven University of Technology, ² Cooperative Driving Group, 2getthere

Department of Mechanical Engineering

Contributions

- We present a one-vehicle look-ahead controller for CACC which allows for vehicle platoons that are heterogeneous with respect to the vehicle driveline
- No knowledge about the driveline dynamics of the preceding vehicle is required
- The controller generalizes a widely adopted controller for homogeneous strings
- The new controller performs at least as good as the original one, in terms of minimum string-stable time gap, settling time, and maximum jerk

Cooperative Adaptive Cruise Control

- Using wireless communication
- Short inter-vehicle distances without compromising string stability
- Increased road throughput, fuel efficiency

Problem in practice

- Difference in driveline characteristics
- Require knowledge of driveline dynamics of predecessor (may not be available)

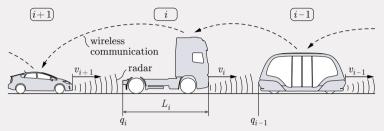
Existing literature

- Robustness approach / worst-case scenario (Shaw and Hedrick 2007; Gao et al., 2016; Al-Jhayyish and Schmidt, 2018)
- Adaptive control (Tao et al., 2019; Harfouch et al., 2018), Zhu et al., 2019)

This paper

• No knowledge of driveline dynamics of predecessor required

Problem setting



Dynamics: $\dot{q}_i = v_i$ Desired distance: $d_{r,i} = r_i + h_i v_i$ $\dot{v}_i = a_i$ $\dot{a}_i = -\frac{1}{\tau_i} a_i + \frac{1}{\tau_i} u_i$ Spacing error: $e_i = (q_{i-1} - q_i - L_i) - (r_i + h_i v_i)$

TU/e

Standard approach (Ploeg et al., 2011)

Dynamic input-output linearization for output e_i . Defining $\varepsilon_i = \begin{bmatrix} e_i & \dot{e}_i & \ddot{e}_i \end{bmatrix}^T$ results in

$$\dot{\varepsilon}_{i} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{\tau_{i}} \end{bmatrix} \varepsilon_{i} + \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{\tau_{i}} \end{bmatrix} \underbrace{\left[h_{i} \dot{u}_{i} + u_{i} - \left(1 - \frac{\tau_{i}}{\tau_{i-1}} \right) a_{i-1} - \frac{\tau_{i}}{\tau_{i-1}} u_{i-1} \right]}_{\zeta_{i}}_{\zeta_{i}}$$

Taking $\zeta_i = \begin{bmatrix} k_p & k_d & k_{dd} \end{bmatrix} \varepsilon_i$, with $k_p > 0$, $k_d > 0$, $k_{dd} > -1$, results in dynamic controller $\dot{u}_i = -\frac{1}{h_i}u_i + \frac{1}{h_i}\begin{bmatrix} k_p & k_d & k_{dd} \end{bmatrix} \varepsilon_i + \frac{\tau_{i-1} - \tau_i}{h_i \tau_{i-1}}a_{i-1} + \frac{\tau_i}{h_i \tau_{i-1}}u_{i-1}$

which for homogeneous setting ($au_i = au_{i-1}$) reduces to

$$\dot{u}_i = -rac{1}{h_i}u_i + rac{1}{h_i}\begin{bmatrix}k_\mathsf{p} & k_\mathsf{d} & k_\mathsf{dd}\end{bmatrix}arepsilon_i + rac{1}{h_i}u_{i-1}$$

New approach (this paper)

Static input-output linearization for output e_i (with stable internal dynamics). Defining $\epsilon_i = \begin{bmatrix} e_i & \dot{e}_i \end{bmatrix}^T$ and the internal dynamics state $z = v_{i-1} - v_i$, results in

$$\dot{\epsilon}_{i} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \epsilon_{i} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \underbrace{\begin{bmatrix} \frac{h_{i}}{\tau_{i}} u_{i} + \left(1 - \frac{h_{i}}{\tau_{i}}\right) a_{i} - a_{i-1} \end{bmatrix}}_{\xi_{i}}$$
$$\dot{z} = -\frac{1}{h_{i}} z + \frac{1}{h_{i}} \epsilon_{i,2} + a_{i-1}$$

Taking $\xi_i = \begin{bmatrix} k_p & k_d \end{bmatrix} \epsilon_i$, with $k_p > 0$, $k_d > 0$, results in controller

$$u_{i} = \frac{\tau_{i}}{h_{i}} \begin{bmatrix} k_{p} & k_{d} \end{bmatrix} \epsilon_{i} + \left(1 - \frac{\tau_{i}}{h_{i}}\right) a_{i} + \frac{\tau_{i}}{h_{i}} a_{i-1}$$

Summary

Standard controller: $\dot{u}_i = -\frac{1}{h_i}u_i + \frac{1}{h_i}\zeta_i + \frac{\tau_{i-1} - \tau_i}{h_i\tau_{i-1}}a_{i-1} + \frac{\tau_i}{h_i\tau_{i-1}}u_{i-1}$

New controller: $u_i = \frac{\tau_i}{h_i} \xi_i + \left(1 - \frac{\tau_i}{h_i}\right) a_i + \frac{\tau_i}{h_i} a_{i-1}$

where ζ_i respectively ξ_i can be chosen freely to stabilize the ε respectively ϵ dynamics.

- Standard controller needs τ_{i-1} , a_{i-1} , and u_{i-1} .
- New controller needs only a_{i-1} .

Observation

Standard controller can be obtained with new controller by using $\dot{\xi}_i = -\frac{1}{\pi}\xi_i + \frac{1}{\pi}\zeta_i$

- In hindsight: standard controller can be implemented using only a_{i-1}
- New controller is more general class of controllers.

Parameters as in Ploeg et al., 2011: $\tau_i = 0.1[s], h_i = 0.5[s], k_p = 0.2, k_d = 0.7, k_{dd} = 0.$ Latency: $\theta_i = 0.02[s]$.

String stability complementary sensitivity $\Gamma_i(s)$ from v_{i-1} to v_i (or from a_{i-1} to a_i):

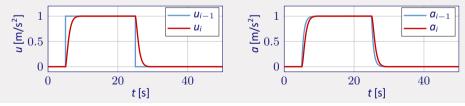
$$\Gamma_{i}(s) = \frac{1}{h_{i}s + 1} \frac{e^{-\theta_{i}s}s^{2}(\tau_{i-1}s + 1) + k_{dd}s^{2} + k_{d}s + k_{p}}{s^{2}(\tau_{i}s + 1) + k_{dd}s^{2} + k_{d}s + k_{p}}$$

For string stability: $\|\Gamma_i(\mathbf{s})\|_{\mathcal{H}_\infty} \leq 1$

By increasing τ_{i-1} : $\|\Gamma_i(s)\|_{\mathcal{H}_{\infty}}$ arbitrarily large. For $\tau_{i-1} = 0.6$: $\|\Gamma_i(s)\|_{\mathcal{H}_{\infty}} = 1.8 > 1$

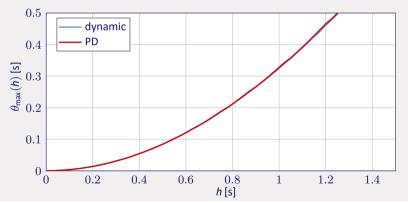
Standard controller ($\tau_i = 0.1, \tau_{i-1} = 0.6$) $a [m/s^2] 0.5$ a_{i-1} 1 [m/s] 0.5 م u_{i-1} **U**i a 0 0 2040 2040 0 0 t [s] t [s]

Equivalent implementation using new controller (again: $\tau_i = 0.1$, $\tau_{i-1} = 0.6$)

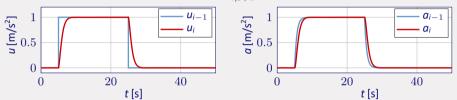


TU/e

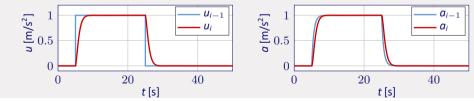
Controller $C(s) = (k_p + k_d s + k_{dd} s^2) \cdot \frac{1}{\tau_i s + 1}$: Settling time 1.81 s, max. jerk 1.35 m/s³ Padé-approximant $C(s) = k_p + (k_d - k_p \tau_i)s$: Settling time 1.82 s, max. jerk 1.35 m/s³



Dynamic controller $C(s) = (k_{p} + k_{d}s + k_{dd}s^{2}) \cdot \frac{1}{\tau_{i}s+1}$ ($\tau_{i} = 0.1, \tau_{i-1} = 0.6$)



PD controller $C(s) = k_{p} + (k_{d} - k_{p}\tau_{i})s$ ($\tau_{i} = 0.1, \tau_{i-1} = 0.6$)



Conclusions

- We presented a one-vehicle look-ahead controller for CACC which allows for vehicle platoons that are heterogeneous with respect to the vehicle driveline
- No knowledge about the driveline dynamics of the preceding vehicle is required
- The controller generalizes a widely adopted controller for homogeneous strings
- The new controller performs at least as good as the original one, in terms of minimum string-stable time gap, settling time, and maximum jerk