
Eindhoven University of Technology

Phase I Report

Adaptive a-CACC Controller for platoons with
uncertain dynamics

Mechanical Engineering

Dynamics and Control

DC 2022:080

Author:
Kashish Singh Pilyal, 1485830

Supervisor:
Dr. Ir. Erjen Lefeber

September 19, 2022



Master’s thesis

Acknowledgements

I would like to express my gratitude and thank the faculty of Eindhoven University of Technology without whom
I would not have been able to complete my Thesis.

My deepest thanks to my supervisor dr.ir. Erjen Lefeber under whom I completed one of my courses. Your
guidance and feedback improved my research and writing skills to a great extent. I would also like to thank all
the knowledge that you shared with me during my thesis. I respect the patience you showed while dealing with
me when I went off-track or performed poorly.

I would also like to thank my AT Academic advisor Ann de Veirman and mentor dr. A.Y. Pogromsky who were
available readily through email and helped me during my entire course of study.

As the entire thesis was spent working from home, I would like to thank my parents for being there all the time
for me and my cousin Ramneek, who is more like an actual brother to me for being there at my hardest times.

Eindhoven University of Technology i



Table of contents
1 Introduction 1

1.1 Defining CACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 System dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 Error dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 u-CACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 a-CACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 String Stability definition [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Literature Research 8
3.1 Mass adaptation law and continuous sliding mode control . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Combining constant time headway and predecessor following communication topology . . . . . . 8
3.3 Using predecessor-following topology to make data-driven optimal CACC . . . . . . . . . . . . . 9
3.4 Using the dwell time switching approach and adaptation laws . . . . . . . . . . . . . . . . . . . . 10
3.5 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Stability of a system with unknown parameters 11
4.1 Incorrect assumption of the unknown parameters by a-CACC controller . . . . . . . . . . . . . . 12

4.1.1 When the rolling resistance is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 When the mass is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 When the aerodynamic drag is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Adaptive controller using update laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 When the rolling resistance is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 When the aerodynamic drag is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 When only the mass is unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Simulations 17
5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Unknown aerodynamic drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Comparison between estimated a-CACC and adaptive a-CACC . . . . . . . . . . . . . . . . . . . 18
5.4 Use of the Integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Conclusions and Future work 20
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References 21

A Longitudinal dynamics 23

B Norms 24

C Tuning of the gain parameter Γ for the adaptive controller 25

D Tuning of the gain for the integral action for the estimated a-CACC controller 29

E Tuning of the gain of integral action for the adaptive a-CACC controller 32

ii



Master’s thesis

Nomenclature

Abbreviations
ISO: International Standards Organization
ADAS: Advanced Driver Assist Systems
CACC: Cooperative Adaptive Cruise Control
ACC: Adaptive Cruise Control
V2V: Vehicle to Vehicle
ISS: Input to State Stable
ODE: Ordinary Differential Equation

Symbols
R: Set of all real numbers
qi: Position of the ith vehicle
vi: Velocity of the ith vehicle
ai: Acceleration of the ith vehicle
ȧi: Jerk of the ith vehicle
hi: Constant time headway of the ith vehicle
τi: Time constant of the ith vehicle
Fi: Driving force of the ith vehicle
ηi: Desired input force of the ith vehicle
mi: Mass of the ith vehicle
ρa: Density of air
cd: Coefficient of aerodynamic drag
Af : Frontal area of the vehicle
ci1: Aerodynamic drag parameter of the ith vehicle
μ: Friction coefficient between road and the vehicle
g: Acceleration due to gravity
θ: Slope of the road
ci2: Rolling resistance parameter of the ith vehicle
ui: New input of the ith vehicle
ĉi1: Input value of aerodynamic drag for the ith vehicle
ĉi2: Input value of rolling friction for the ith vehicle
m̂i: Input value of mass for the ith vehicle
ėi,1 = x2: Error of the ith vehicle
ėi,2 = x3: Derivative of the error of the ith vehicle
qi−1: Position of the i− 1 vehicle
vi−1: Velocity of the i− 1 vehicle
ai−1: Acceleration of the i− 1 vehicle
ui−1: New input of the i− 1 vehicle
kp: Proportional gain of the PID or PD or PDD controller
kd: Derivative gain of the PID or PD or PDD controller
ki: Integral gain of the PID controller
kdd: Double derivative gain of the PDD controller
ε = x4: Difference in velocities of i− 1th and ith vehicle
esmi: Distance error between ith and i− 1th vehicle
si: Sliding surface of the ith vehicle
ζ: Positive design constant for sliding surface
w: Weighing factor for sliding mode control
pmi: Mechanical drag of the ith vehicle
adi: Desired acceleration of the vehicle
dr,i: Desired spacing between the vehicles
D: Desired safety inter-vehicle distance at standstill
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Ti: Time gap of the ith vehicle
Z: Upper-bound on acceleration
Γ: Update law gain
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1 Introduction

1.1 Defining CACC
There has been a part in our lives when we have been stuck in a traffic jam. The reasons for this problem are
numerous and we think there is nothing we can do to mitigate the problem. According to [1], if the leader of the
platoon of the vehicles travelling in a line brakes and reduces the speed by 10 %, the tenth vehicle in platoon
will reduce its speed by at least 20 %. This cumulative affect is one of the main causes for the congestion. While
we may think that the jams are only irritating, it has also been found that they lead to an increase in carbon
dioxide emissions and increase in exposure time to pollution for the passengers [2].

There have been efforts to subside the traffic congestion problem by improving infrastructure and enforcing laws
but these methods do not reduce human error. The Advanced Driver Assist Systems (ADAS) can eliminate
the human error and enhance the road travel by a great extent [3]. A type of ADAS, referred to as Adaptive
Cruise Control (ACC) works by maintaining a proper following distance [4]. When Vehicle to Vehicle (V2V)
communication is added to ACC, it takes the name of Cooperative Adaptive Cruise Control (CACC) which
allows the cars to communicate with each other thereby resulting in better safety and cooperative movement of
the vehicle platoon [4].

The CACC controllers follow a set of dynamics to function. We start by defining a system and the vehicle
dynamics being applied to that system. The next step is to introduce an input to the system through the
controller in order to make the system marginally stable. The next section gives an example of the dynamics
used and how we decide on a controller input.

1.2 System dynamics
Consider a platoon of vehicles following each other along a straight line. We assume that the vehicles do not
overtake each other and strictly follow each other. According to the ISO sign convention for vehicle dynamics [5],
the direction of movement of the vehicles in our case is termed as longitudinal. The direction perpendicular to
the longitudinal and parallel to the road is called lateral. Based on the assumption that the vehicles only travel
in one dimension, we can deduce that the lateral dynamics of the vehicles can be neglected so that our problem
can be simplified. We assume that there is no wind to simplify the aerodynamic drag parameter. We consider
dry weather for the simplification of choosing the rolling resistance parameter which make our simulations in
Chapter 5 easier.

The equations representing the longitudinal dynamics are:

q̇i = vi, (1.1a)

miv̇i = Fi − ci1v
2
i − ci2 (1.1b)

Ḟi = − 1

τi
Fi +

1

τi
ηi, (1.1c)

where qi, vi, τi, and Fi represents position, velocity, time constant showing the first order drive-line dynamics,
and the driving force of the ith vehicle. The constants mi, ci1 and ci2 show the values of mass, aerodynamic
drag parameters and the rolling resistance of ith vehicle of the platoon. The desired input force ηi as seen in
the equations also influences the driving force.

We define a controller input transformation to cancel out the dynamics assuming we know the dynamics of the
vehicle (which can be referred to in Appendix A) and to perform an input-output linearization:

ηi = ci1v
2
i + ci2 + 2ci1viaiτi +miui. (1.2)

The longitudinal dynamics when we know the dynamics can be rewritten as:

q̇i = vi, (1.3a)
v̇i = ai, (1.3b)

ȧi = − 1

τi
ai +

1

τi
ui. (1.3c)

Eindhoven University of Technology 1
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The parameter ui is referred to as the new input.

1.3 Problem Formulation
In order to cancel out the dynamics of the vehicle, the controller has to assume some value for the unknown
dynamics which may or may not match the actual value. The mass, aerodynamic drag, and the rolling resistance
of a vehicle varies according to the situations it is put into use. For example, take the situations of a person
driving to work and the person going on vacation with the family. We can see that the mass of the vehicle
changes drastically in both cases. The same can be said for other unknown parameters. So, will the system
be unstable when subject to different scenarios given we assume the wrong values for the dynamics? If the
estimated values of the dynamics from the controller which can be written as ĉ1, m̂i, and ĉ2 (for aerodynamic
drag, mass, and rolling resistance respectively) vary with time, can we find out update laws that could ensure
stability or marginal stability for our system? Either way, in both of our cases, the desired input force in (1.2)
is rewritten as:

ηi = ĉi1v
2
i + ĉi2 + 2ĉi1viaiτi + m̂iui, (1.4)

which means that the dynamics is not linear for our vehicles.

1.4 Research Outline
The thesis is outlined as follows: Chapter 2 gives some insights about some definitions and lemmas to be used
later in the thesis. The work done to tackle the problem as similar as ours is shown in Chapter 3. It also
mentions the research gap which we need to cover. We have our system definition and mathematical proofs
for our problem in Chapter 4. Then we present some simulations to cover some gaps which our proofs would
not answer in Chapter 5. Finally, Chapter 6 gives us the conclusions and future work to be done regarding our
research.

Eindhoven University of Technology 2
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2 Preliminaries

Before we delve into the literature research to have a look at the methods taken to solve the problem in Section
1.3, we would need to familiarize ourselves with some aspects to deal with the work ahead.

2.1 Error dynamics
One approach to tackle the problem of platooning is by defining a new set of dynamics of the system called the
error dynamics. Using this dynamics we can select a suitable controller input ui so that the errors tend to zero
or remain bounded. There are two types of controllers that use this method as of now.

2.1.1 u-CACC

This method was defined in [6]. It starts by defining the error equations:

ei,1 = qi−1 − qi − hivi, (2.1a)
ei,2 = ėi,1 = vi−1 − vi − hiai, (2.1b)

ei,3 = ėi,2 = ai−1 −
(
1− hi

τi

)
ai − hi

τi
ui, (2.1c)

where hi is the constant time headway of the ith vehicle. The new input ui is defined in [6] as:

u̇i = − 1

hi
ui +

1

hi

[
kp kd kdd

]⎡⎢⎢⎣
ei,1

ei,2

ei,3

⎤
⎥⎥⎦+

1

hi
ui−1. (2.2)

The control law makes the closed loop platoon dynamics Input to State Stable (ISS) for the input to the closed
loop ui if kp > 0, kdd > −1, and kd >

kpτi
1+kdd

which can be referred from [6].

2.1.2 a-CACC

It can be seen in (2.2), that the control law of a vehicle depends upon the control law of the predecessor. While
this may not be a problem in a homogeneous platoon where all vehicles have same values for the parameters
τi and hi which the control law ui requires from the predecessor vehicle as well, it does pose a problem in a
heterogeneous platoon where the values for τi and hi are different for every vehicle and some vehicle manufac-
turers are reluctant to share this confidential data. So, a new approach was required. As the acceleration of the
predecessor can be measured from the on-board sensors, the new approach called a-CACC proposes a controller
which only needs the acceleration of the preceding vehicle as input [8]. We started from the error equations
again in [7]:

ei,1 = qi−1 − qi − hivi, (2.3a)
ei,2 = ėi,1 = vi−1 − vi − hiai, (2.3b)
εi = vi−1 − vi. (2.3c)

The control law is chosen as:

ui =
τi
hi

[
kp kd

] [ei,1
ei,2

]
+

(
1− τi

hi

)
ai +

τi
hi

ai−1. (2.4)

The control law here only requires the acceleration of the predecessor ai−1, which can be measured by the
on-board sensors. As mentioned in [7], this controller performs well with the heterogeneous platoons.

Eindhoven University of Technology 3
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2.2 Lemmas

Lemma 2.1 (Gronwall’s Lemma [22]). Let φ : [0, T ] → R+ be a non- negative differential function for which
there exists a constant α such that:

0 ≤ φ′(t) ≤ αφ(t), for all t ∈ [0, T ] (2.5)

then
φ(t) ≤ φ(0)eαt. (2.6)

Lemma 2.2 (Lyapunov stability for Time Invariant systems [18] [19]). Let x=0 be an equilibrium point for
ẋ = f(x) and D ⊂ Rn be the domain for f(x), where R represents all real numbers. Let V be a continuously
differentiable function defined as V : D → R such that V (0) = 0 and V (x) > 0 for x ∈ D \ {0}. The derivative
of V (x) along the trajectories of ẋ = f(x) is given by:

V̇ (x) =
∂V

∂x
f(x). (2.7)

If V̇ (x) < 0, in D \ {0}, then the solution x=0 is asymptotically stable.

Lemma 2.3 (Quadratic Lyapunov Candidate for Time Invariant systems [18] [19]). Consider a continuous
time with ẋ = f(x) = Ax. Using a Lyapunov candidate, of the form V (x) = xTPx with a positive definite
matrix P which satisfies the condition P = PT > 0 such that V (x) ≥ 0 and eigen values of P > 0. P must
also satisfy the condition ATP + PA = −Q, such that V̇ (x) = −xTQx and QT = Q > 0. Then if real part of
eigs(A) < 0, then it is possible to find a value of P for any given value of Q for which the system ẋ = Ax is
globally asymptotically stable.

2.3 String Stability definition [8]
For a Linear time invariant system, if there is a disturbance in the beginning of the platoon of our defined
system, it must be made sure that the disturbance does not propagate downstream. In other words, the defined
system should be string stable. So the String Stability Complementary Sensitivity of a vehicle is defined as:

Γi(s) =
Ai(s)

Ai−1(s)
, (2.8)

where Ai(s) and Ai−1(s) are the Laplace transforms of the accelerations ai and ai−1 respectively. The condition
for the disturbances to not be amplified downstream is:

||Γi(jω)||H∞ ≤ 1, (2.9)

where ||Γi(jω)||H∞ is the H-infinity norm of the SSCS. For further definition of the norms refer to Appendix B.

2.4 Propositions

Proposition 2.1. Consider a system ẋ = f(x). For a quadratic Lyapunov function of the form V (x) = xTPx

as mentioned in Lemma 2.3 which satisfies the condition V̇ (x) ≤ −xT x
2 + C for the given system, where C is a

constant term. The system dynamics x has a upper bound.

Proof. The condition on the quadratic Lyapunov function can be represented as:

λmin(P )||x||2 ≤ V (x) ≤ λmax(P )||x||2, (2.10)

where λmin is the lowest eigen value of the matrix P . Multiplying the inequality by a minus and changing sign:

− λmin(P )||x||2 ≥ −V (x) ≥ −λmax(P )||x||2. (2.11)

Eindhoven University of Technology 4
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Now using the relation:

− λmax(P )||x||2 ≤ −V (x),

− λmax(P )
||x||2
2

≤ −V (x)

2
,

− λmax(P )
||x||2
2

+ λmax(P )C ≤ −V (x)

2
+ λmax(P )C,

λmax(P )V̇ (x) ≤ −V (x)

2
+ λmax(P )C,

V̇ (x) ≤ − V (x)

2λmax(P )
+ C,

V̇ (x) ≤ −αV (x) + γ,

(2.12)

where α = 1
2λmax(P ) and γ = C. Defining a function W such that:

W = V (x)− γ

α
, (2.13)

and after differentiating with respect to time on both sides:

Ẇ = V̇ (x),

Ẇ ≤ −αV (x) + γ,

Ẇ ≤ −α
(
W +

γ

α

)
+ γ,

Ẇ ≤ −αW.

(2.14)

As, W is a non-negative differentiable function which has a starting point of 0 seconds to a finite amount of
time T , by Lemma 2.1, we get the following:

W (x) ≤ W◦ · e−αt, (2.15)

where W◦ is the value of W at t = 0. Now substituting values:

V (x)− γ

α
≤ (V◦ − γ

α
)e−αt,

V (x) ≤ (V◦ − γ

α
)e−αt +

γ

α
,

V (x) ≤ V◦e−αt +
γ

α
(1− e−αt),

As the maximum value of 1− e−αt and e−αt for time [0,T ] is 1, we can write:

V (x) ≤ V◦ +
γ

α
.

(2.16)

Using (2.10), we get:

λmin(P )||x||2 ≤ V◦ +
γ

α

||x||2 ≤ V◦
λmin(P )

+
γ

αλmin(P )

(2.17)

This proves that the system dynamics x have an upper-bound.

Proposition 2.2. Consider a system ẋ = f(x). For a quadratic Lyapunov function of the form V (x) = xTPx

as mentioned in Lemma 2.3 which satisfies the condition V̇ (x) ≤ −xT x
2 +K, where K varies according to time.

If limt→∞ K(t) = 0, then limt→∞ V (t) = 0

Proof. The condition leads us to conclude that for every number ε > 0, we have a value of time t∗ > 0 such
that K < ε whenever t > t∗. For a positive constant ε̄, let us assume:

ε =
ε̄α

2
.

Eindhoven University of Technology 5
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Using the bound on Lyapunov function from Proposition 2.1, starting from V̇ (x) ≤ −xT x
2 + K, we reach the

condition similar to (2.12). The condition for this case can be written as:

V̇ (x) ≤ −αV (x) +K, (2.18)

For a time instant of t > t∗, we have K < ε, which gives us:

V̇ (x) ≤ −αV (x) + ε,

V̇ (x) ≤ −αV (x) +
ε̄α

2
,

V̇ (x) ≤ −αV (x) +
ε̄α

2
.

(2.19)

Comparing (2.19) with (2.12), we get an equivalent result of (2.16) which can be written as:

V (x) ≤ V◦e−αt +
ε̄

2
. (2.20)

For a value of t, such that we have an upper bound on the term V◦e−αt :

V◦e−αt ≤ 1

2
ε,

2V◦
ε

≤ eαt,

αt ≥ ln
2V◦
ε

,

t ≥ 1

α
ln

2V◦
ε

.

(2.21)

Using the solution of (2.21) in (2.20), we get:

V (x) ≤ V◦ · e−αt +
1

2
ε̄,

V (x) ≤ 1

2
ε̄+

1

2
ε̄,

V (x) ≤ ε̄.

(2.22)

So, this proves that for time t > t∗, V (x) < ε̄.

Proposition 2.3. Consider a system ẋ = f(x). For a quadratic Lyapunov function of the form V (x) = xTPx

as mentioned in Lemma 2.3 which satisfies the condition V̇ (x) ≤ −xT x
2 +K + C, where K is a variable that is

dependent on time and C is a constant. If limt→∞ K(t) = 0, then limt→∞ V (t) = 0.

Proof. We have the condition that for every number ε > 0, we have a value of time t∗ > 0 such that K < ε
whenever t > t∗. We have a condition on the Lyapunov as:

V̇ (x) ≤ −xTx

2
+K + C, (2.23)

as mentioned in the proposition. Considering an upper-bound for K, we can write the equation as:

V̇ (x) ≤ −xTx

2
+ ε+ C. (2.24)

Using the same steps in the proof for Proposition 2.2, we get the condition:

V (x) ≤ ε̄+ C, (2.25)

for the ε̄ defined in the proof of the Proposition 2.2. As C is a constant, we can introduce a new constant
ε̂ = ε̄+ C:

V (x) ≤ ε̂. (2.26)

So, for time t > t∗, we have V (x) ≤ ε̂.

Eindhoven University of Technology 6
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Proposition 2.4. Given a system (ẋ,
˙̃
θ) = f(x, θ̃). For a quadratic Lyapunov function of the form V (x, θ̃ =

xTPx+ θ̃TΓ−1θ̃, where PT = P > 0 and Γ is a positive constant which satisfies the condition V̇a(x) = V̇ (x, θ̃) ≤
−xT x

2 + C where C is a constant and Va = −xT x
2 . The dynamics of x and θ̃ have an upper-bound.

Proof. The Lyapunov in the proposition can be split into two different Lyapunov functions:

Va(x) = xTPx, (2.27a)

Vb(θ̃) = θ̃TΓ−1θ̃. (2.27b)

The conditions on the both the functions can be written as:

λmin(P )||x||2 ≤ Va(x) ≤ λmax(P )||x||2 (2.28a)

λ(Γ−1)||θ̃||2 = Vb(θ̃), (2.28b)

Using Proposition 2.1,we get that:

||x||2 ≤ Va◦
λmin(P )

+
γ

αλmin(P )
, (2.29)

which clarifies that the dynamics of x are upper-bounded. From the statement of Proposition 2.4, we can deduce
that:

V̇b = 0, (2.30)

which means that the dynamics of θ̃ are marginally stable. This means for the Lyapunov function in the
statement of Proposition 2.4, the dynamics of x and θ̃ have an upper-bound.

Proposition 2.5. Given a system (ẋ,
˙̃
θ) = f(x, θ̃). For a quadratic Lyapunov function of the form V (x, θ̃ =

xTPx+ θ̃TΓ−1θ̃, where PT = P > 0 and Γ is a positive constant which satisfies the condition V̇a(x) = V̇ (x, θ̃) ≤
−xT x

2 +K where K varies with time and Va = −xT x
2 . If limt→∞ K(t) = 0, then limt→∞ V (t) = 0.

Proof. In a similar fashion to Proposition 2.4, we split the Lyapunov into two parts as shown in (2.27a) and
(2.27b). Using Proposition 2.2, we get:

Va(x) ≤ ε̄, (2.31)

for a time t > t∗. From Proposition 2.4, we get that Vb(θ̃ is a constant so let us assume that at time t > t∗, we
have Vb(θ̃) = ε1. So we can show that:

Va(x) + Vb(θ̃) ≤ ε̄+ ε1

V (x, θ̃) ≤ ε2,
(2.32)

where ε2 = ε̄+ ε1. This proves that if limt→∞ K(t) = 0, then limt→∞ V (t) = 0

2.5 Summary
We have gone through lemmas, propositions, and some definitions in this chapter. These preliminaries are used
later in the thesis.
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3 Literature Research

The use of string stability and u-CACC which were defined in Chapter 2 is seen in almost all the researches
whose problem definition somewhat aligns with our own. Although not mentioned here, these methods make
use of Lemma 2.2 to prove stability. Upon taking a look at the steps taken by others, we discuss in Section 3.5
about the gap in the previous research.

3.1 Mass adaptation law and continuous sliding mode control
The method mentioned in [9] uses some adaptation laws to estimate mass and combines it with sliding mode
control method. This approach does give some promising results. It is started off as giving the expression for
error for distance error between two vehicles which is expressed as:

esmi = (qi−1 − qi)− qdi , (for i = 1, . . . , n.) (3.1)

where qdi is the desired inter-vehicle distance. Following the error expression, the proposed sliding surface as
cited in [9] is can be derived and is written as:

si = ėsmi + ζesmi, (3.2)

where ζ is a positive design constant. The equation (3.2) however does not guarantee string stability, so a new
sliding surface which requires information from both preceding and following vehicles is designed in [9] as:

Si =

{
wssmi − ssmi+1, (i = 1, ...., n− 1)

wssmi, (i = n)
(3.3)

where the parameter w > 0 is a weighting factor. To guarantee string stability of the platoon, a control law is
used in [9] is expressed as:

ui = ĉi1q̇i
2 + ĉi2 + D̂i sgn(Si) +

m̂i

w + 1
Ti +

k

w + 1
Si +

k̄

w + 1
sgn(Si), (3.4)

where k̄ and k are positive constants, ĉi1, ĉi2, m̂i are estimates of vehicle’s unknown parameters ci1 (aerodynamic
drag), ci2 (rolling resistance), mi (mass of vehicle) and Ti = wq̈i−1 + q̈i+1 + ζ(wėsmi − ėsmi+1). The term Di

is bounded by the condition |miδi| ≤ Di whose estimate is defined as D̂i. In the control law, the unknown
parameters are estimated with adaptation laws and are mentioned in [9] as follows:

˙̂ci1 = γci1
i (w + 1)Siq̇

2
i , (3.5)

˙̂ci2 = γci2
i (w + 1)Si, (3.6)

˙̂
Di = γD

i (w + 1)|Si|, (3.7)
˙̂mi = γm

i TiSi, (3.8)

where γci1
i , γci2

i , γD
i and γm

i are positive adaptation gains for i = 1, . . . , n. Using this method we get that
limt→∞ esmi = 0.

3.2 Combining constant time headway and predecessor following communication
topology

The approach of combining constant time headway strategy and predecessor following communication topology
to model a robust time-delay feedback control is discussed in [11]. By using some linear matrix inequalities
conditions, the platoon formation and its stability is guaranteed. If we refer the position, velocity, and acceler-
ation of the ith vehicle is given by symbols qi, vi, and ai, then the longitudinal dynamics of the vehicles in [11]
is given by:

q̇i(t) = vi(t), (3.9)
v̇i(t) = ai(t), (3.10)
ȧi(t) = fi(vi(t), ai(t)) + gi(vi(t)νi(t)), (3.11)
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where νi(t) is the engine input of the ith vehicle at time t ≥ 0. The functions fi and gi are given as:

fi(vi, ai) = − 1

τi

(
ai +

ρaAfcd
2mi

v2i +
pmi

mi

)
− ρaAfcdviai

2mi
, (3.12)

gi(vi) =
1

τimi
, (3.13)

where τi is the internal actuator dynamics of the vehicle in tracking any desired acceleration command, ρa is
the air density, and Af , cd, pmi and mi are the cross sectional area, drag coefficient, mechanical drag and mass
of the ith vehicle respectively. The value of the term νi used to linearize the equation in (3.11) is:

νi = adimi +
1

2
ρaAfcdv

2
i + pmi + τiρaAfcdviai, (3.14)

where adi is the desired acceleration of the vehicle. Upon substituting (3.14) in (3.11):

q̇i(t) = v̇i(t), (3.15a)
v̇i(t) = ȧi(t), (3.15b)

ȧi(t) = − 1

τi
ai +

1

τi
adi. (3.15c)

The safe spacing policy is given as:
dr,i(t) = Dr,i + Tivi(t), (3.16)

where dr,i is the desired spacing between vehicles, Dr,i is the desired safety inter-vehicle distance at standstill,
vi is the velocity and Ti is the time gap of the ith vehicle. The car following error in [11] is defined as
efi = di−dr,1 = qi−1−qi−Li−dr,1. The error state vector of the ith vehicle is selected as yi = [efi Δvi ai]

T ,
where Δvi is the relative velocity between the ith-pair adjacent vehicles. The dynamics of the error variables
for vehicle in [11] can be represented as:

ẏi(t) = (Gi +ΔGi(t))yi(t) + (Ei +ΔEi(t))adi(t) +Hiyi−1(t), (3.17)

where matrices

Gi =

⎡
⎢⎢⎣
0 1 −Ti

0 0 −1

0 0 − 1
τi

⎤
⎥⎥⎦ , Ei =

⎡
⎢⎢⎣
0

0
1
τi

⎤
⎥⎥⎦ , Hi =

⎡
⎢⎢⎣
0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎦ , (3.18)

for i = 1, ...., N and uncertainties ΔGi and ΔEi are unknown parameter perturbations of the model. The
perturbations are caused by uncertain internal dynamics of vehicles and uncertain conditions. The uncertainties
are described by a set of unknown matrix functions. This method guarantees that the system is robust string
stable for the given unknown parameter perturbations ΔGi and ΔEi.

3.3 Using predecessor-following topology to make data-driven optimal CACC
The approach taken in section 3.2 is used to some extent to get the dynamics equations (3.9), (3.10) and (3.15c).
The state representation of the vehicle in [12] however is given as:

ẋi(t) = Gixi(t) + Eiadi(t) +Hiai−1(t), (3.19)

with matrices

Gi =

⎡
⎢⎢⎣
0 1 −hi

0 0 −1 + hi

τi

0 0 − 1
τi

⎤
⎥⎥⎦ , Ei =

⎡
⎢⎢⎣

0

−hi

τi
1
τi

⎤
⎥⎥⎦ , Hi =

⎡
⎢⎢⎣
0

1

0

⎤
⎥⎥⎦ , (3.20)

where hi is the constant time headway and τi is the time constant of the ith vehicle. The CACC controller input
is defined as ui = −kixi with the gain ki = [ki1, ki2, ki3]. The gains ki, i = 1, ...., n are computed so that the
system is stable for unknown dynamical parameters. Also, instead of using matrix inequalities, this approach
in [12] deviates and uses a Riccati equation to minimize a cost function which is defined as:

Ji(xi(t)) =

∫ ∞

t

[xT
i (s)Qixi(s) + a2di(s)]ds, (3.21)
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where xi(t) is the state of the system at time t ≥ 0 and weighted matrix Qi = QT
i > 0. The Riccati equation

which is given as:
GT

i Pi + PiG
T
i +Qi − PiBiB

T
i Pi = 0, (3.22)

and the solution Pi is used to obtain the optimal feedback gain k∗i = ET
i P

∗
i . Since (3.22) is nonlinear some

methods are used to get the value of Pi. The optimal controller input used is then used in the input as
ui = −k∗i xi. If k0,i ∈ R1x3 is the stabilizing controller gain and Pl,i ∈ R3x3 is the positive symmetric definite
solution to the Lyapunov equation:

(Gi − Eikk,i)
TPl,i + Pl,i(Gi − Eikl,i) +Qi + kTl,ikl,i = 0, (3.23)

where l is the iteration number and feedback gain:

kl,i = ET
i Pl−1,i, l = 1, 2, ... (3.24)

Then the conditions (Gi − Bikl,i) is Hurwitz and P ∗
i ≤ Pl+1,i ≤ Pl.i hold for any iteration of l ≥ 1. Moreover,

kl.i = k∗i and Pl,i = P ∗
i when l → ∞. The optimal solutions show that the system is stable to the origin

according to [13] although [13] has no mention of a cost function or the stability but instead uses an estimated
Kalman filter.

3.4 Using the dwell time switching approach and adaptation laws
We came across a dwell time switching approach in [14]. The procedure uses two different controllers, one for
CACC and one for ACC. It switches to ACC when there is communication loss. The uncertainty is introduced
in the drive-line dynamics or the time constant which we refer to as τi. The time constant of ith vehicle is given
as:

τi = τ◦ +Δτi, (3.25)

where τ◦ is the time constant of the leader and the term Δτi is the unknown uncertainty in the drive-line
dynamics which can not be determined. The system used draws inspiration from [6]. The research shows
asymptotic stability around the equilibrium point using the method.

3.5 Research gap
The sliding mode control shows a lot of promise on paper but it is not viable practically. In theory, we make
our system follow a defined path called the sliding surface regardless of the starting point but in practical the
system is prone to chattering effect.

As for the approach taken in Section 3.2 and Section 3.3, the paper assumes that they have desired performance
when they cancel out the vehicle dynamics in (3.15c) and make the longitudinal dynamics linear. The question
arises about the performance if the dynamics of the vehicle is non-linear as mentioned in Section 1.3 which is
not being considered here.

The adaptation laws in Section 3.4 seem promising but it can be a problem if the leader decides not to share
the value of its time constant τ◦. For that case, the research shows that it could switch the ACC controller or
back. The dwell time switching only works effectively of the rules of switching are followed [15]. For non-linear
systems, some uniformity assumptions have to be satisfied for the method to work [16].

3.6 Summary
This chapter starts with a method which made use of sliding mode control to solve the problem. After this we
saw the use of using unknown perturbations and cost function which assumed that aerodynamic drag, rolling
resistance and the unknown mass had already been satisfied. The use of dwell time was also seen which made
use of switching between different controllers to work. As mentioned in the start of the chapter, the last three
approaches made use of u-CACC which is something we are going to avoid for our work. Finally we discussed
the research gap in Section 3.5 which we have to fill in our work.
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4 Stability of a system with unknown parameters

The previous chapter got us acquainted with some of the methods used to deal with the problem defined
in Section 1.3. Contrary to the other approaches, we do not linearize the system by cancelling out all the
dynamics. As mentioned in Section 2.1.2, we use the a-CACC controller to work out our problem due to the
inherent advantages it has over u-CACC. We use the same system as defined in Section 1.2. We also add the
integral action to our PD controller as to improve the controller from [7]. Following the same steps as a-CACC
in Section 2.1.2, we start by defining the error:

x2 = ei,1 = qi−1 − qi − hivi, (4.1)

the derivative of the error:
x3 = ėi,1 = ei,2 = vi−1 − vi − hiai, (4.2)

the integral of the error:

x1 =

∫
ei,1 = x1 = (

∫
qi−1dt− qit− Lit)− (rit+ hiqi), (4.3)

and the difference between the velocities:
x4 = ε = vi−1 − vi, (4.4)

as our error coordinates for the system. When the dynamics are not known, the equation of jerk from (A.10)
based on the input defined in (1.4) changes to:

ȧi = − 1

τi
ai +

1

τimi
[(ĉi1 − ci1)(v

2
i + 2viaiτi) + (ĉi2 − ci2) +

[
ki kp kd

]⎡⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦

+ m̂i

(
1− τi

hi

)
ai +

τi
hi

ai−1]

(4.5)

Before we try to check the stability of the system with unknown parameters, we need to make sure that the
system would be stable or marginally stable when all the dynamics are known. In (4.5) when the parameters
are known, the equation is written as:

ȧi = − 1

τi
ai +

1

τimi
[
[
ki kp kd

]⎡⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦+

(
1− τi

hi

)
ai +

1

mihi
ai−1]. (4.6)

We define the system state vector as x = [x1, x2, x3, x4]. The closed loop error dynamics can be written as:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d 0

0 0 1
hi

− 1
hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1, (4.7)

where k̄p =
hikp

τimi
and k̄d = hikd

τimi
. To check whether the system is bounded or not, we start by defining a

quadratic Lyapunov function as defined in Lemma 2.2:

V1 = xTPx, (4.8)

where P = PT is a constant matrix such that ATP +PA = −I, where I is an identity matrix and the condition
for eigs(A) < 0 holds when k̄p > 0, k̄d > 0, k̄i > 0, k̄i < k̄pk̄d and hi > 0. Now, for the next step we differentiate
the Lyapunov function:
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V̇1 =
∂V1

∂t
+

∂V1

∂x
ẋ,

= 0 +
∂xTPx

∂x
ẋ,

=
∂
∑i

n=1

∑j
n=1 Pijxixj

∂x
ẋ,

For a kth element of x we have,

=
k∑

n=1

Pijxj
∂xk

∂xk
ẋk +

k∑
n=1

Pijxi
∂xk

∂xk
ẋk,

= ẋTPx+ xTPẋ,

= ((Ax+Bai−1)
TPx+ xTP (Ax+Bai−1)),

= xT (ATP + PA)x+ ai−1B
TPx+ xTPBai−1,

= −xTx+ ai−1(B
TPx+ xTPB),

= −xTx

2
−
(

x√
2
− PBai−1√

2

)T (
x√
2
− PBai−1√

2

)
+

(PB)T (PB)(ai−1)
2

2
,

≤ −xTx

2
+

(PB)T (PB)(ai−1)
2

2
,

≤ −xTx

2
+

β(ai−1)
2

2
.

(4.9)

If the acceleration of the predecessor is 0, the derivative of the Lyapunov function is negative at all times
suggesting that the function keeps on decreasing and the system is asymptotically stable according to Lemma
2.2. If the acceleration has an upper-bound Z then the system can be written in the form V̇1(x) ≤ −xT x

2 +C1,
where C1 = βZ2

2 . According to Proposition 2.1, the error dynamics is bounded and the system is marginally
stable. Also if limt→∞ a2i−1 = 0, then the system can be written in the form V̇1(x) ≤ −xT x

2 +K1 and according
to Proposition 2.2, limt→∞ V1(x) = 0.

We first check if the system is marginally stable or bounded when we assume a wrong value for the unknown
parameter in the a-CACC controller. Then we look at the methods to correct this by using some update laws
to stabilize the system to make a adaptive controller.

4.1 Incorrect assumption of the unknown parameters by a-CACC controller
We start by assuming a value for the unknown parameters which is different than the actual value. In this case,
the values of ĉi1, ĉi2, and m̂i are constants.

4.1.1 When the rolling resistance is unknown

The closed loop error dynamics is represented as:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d 0

0 0 1
hi

− 1
hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1 +

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦

︸︷︷︸
G1

(
hici2
miτi

− hiĉi2
miτi

)
︸ ︷︷ ︸

θ̃1

. (4.10)

The value of θ̃ is a constant here as we are assuming an arbitrary value from the controller. We use the Lyapunov
function:

V2 = xTPx+
1

2
θ̃T1 Γ

−1
1 θ̃1, (4.11)

Eindhoven University of Technology 12



Master’s thesis

where PT = P > 0 and ATP + PA = −I. Differentiate both sides of the equation. Since the part 1
2 θ̃

T
1 Γ

−1
1 θ̃1 is

constant, it becomes 0. Following the same steps in (4.9) until we get:

V̇2 ≤ −xTx

2
+

β(ai−1)
2

2
+ (GT

1 Px+ xTPG1)θ̃1

≤ −xTx

2
+

β(ai−1)
2

2
−
(
x

2
− PG1θ̃1

2

)T (
x

2
− PG1θ̃1

2

)
+

(PG1)
T (PG1)θ̃

2
1

4
− xTx

4

≤ −xTx

4
+

β(ai−1)
2

2
+

(PG1)
T (PG1)θ̃

2
1

4

(4.12)

If we give the acceleration of the predecessor an upper-bound Z like before, we can upper-bound the terms
β(Z)2

2 +
(PG1)

T (PG1)θ̃
2
1

4 as a constant Fr. The system takes the form V̇2(x) ≤ −xT x
4 + Fr and according to

the Proposition 2.1, the error dynamics remain bounded. It can also be shown that if limt→∞ a2i−1 = 0, then
according to Proposition 2.3, limt→∞ V2(x) = 0.

4.1.2 When the mass is unknown

The derivative of the ei,2 is now:

ėi,2 = k̄ix1 − k̄px2 − k̄dx3 −
(
1− m̂i

mi

)(
1

τi
− 1

hi

)
x3 +

(
1− m̂i

mi

)(
1

τi
− 1

hi

)
x4 +

(
1− 1

mi

)
ai−1 (4.13)

The closed loop error dynamics comes out to be:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d −
(
1− m̂i

mi

)(
1
τi

− 1
hi

) (
1− m̂i

mi

)(
1
τi

− 1
hi

)
0 0 1

hi
− 1

hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1, (4.14)

where hi > 0, k̄d > 0, k̄p > 0,
(
1− m̂i

mi

)(
1
τi

− 1
hi

)
> 0, k̄i > 0 and

(
k̄d
(
1 + 1

h

)
+ k̄p

)
> 0 so that the matrix A

has all eigen values in the left half plane. We define a quadratic Lyapunov function:

V3 = xTPx, (4.15)

where PT = P > 0 and ATP + PA = −I. Following the same steps in (4.9), we get the condition:

V̇3 ≤ −xTx

2
+

β(ai−1)
2

2
. (4.16)

Similar to V1, we can prove that the system is bounded if ai−1 is bounded and if limt→∞ a2i−1 = 0 then
limt→∞ V3(x) = 0 using the Proposition 2.1 and Proposition 2.2.

4.1.3 When the aerodynamic drag is unknown

Following the equation for jerk in (4.5) and assuming that all the other dynamics apart from the aerodynamic
drag are satisfied, we get:

ȧi = − 1

τi
ai +

1

τimi

⎡
⎢⎢⎣(ĉi1 − ci1)(v

2
i + 2viaiτi) +

[
ki kp kd

]⎡⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦
⎤
⎥⎥⎦

+
1

τi

(
1− τi

hi

)
ai +

1

himi
ai−1.

(4.17)
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The change in the derivative of the derivative of the error is:

ėi,2 = −k̄ix1 − k̄px2 − k̄dx3 − hi

τimi
(ĉi1 − ci1)(v

2
i + 2viaiτi). (4.18)

We can see that (4.18) has nonlinear terms which complicates things. Proving marginal stability for this case
was tough. Therefore, in Section 5.2, we use simulations to find out "if the system is marginally stable when
the aerodynamic drag parameters are incorrectly estimated?"

4.2 Adaptive controller using update laws
We have seen that the system stays bounded when we assume certain values for the unknown parameters but
the question arises can we correct them? Can we find a suitable law which can allow our system to be stable or
marginally stable? We take a look at each cases one at a time. In this section we introduce an update law gain
Γ which is different for every case of unknown dynamics.

4.2.1 When the rolling resistance is unknown

So, the dynamics with the input ηi is written as:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d 0

0 0 1
hi

− 1
hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1 +

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦

︸︷︷︸
G1

(
hici2
miτi

− hiĉi2
miτi

)
︸ ︷︷ ︸

θ̃1

. (4.19)

For the sake of simplicity, we can represent Ax + Bai−1 as f(x, t). We have already proven that the value of
f(x, t) is bounded for an upper-bound to the acceleration of the preceding vehicle. We start by again defining
a different Lyapunov function than before:

V4 = xTPx+
1

2
θ̃T1 Γ

−1
1 θ̃1, (4.20)

where Γ1 > 0 is the rolling resistance gain constant. Then we differentiate the function and it can be written
as:

V̇4 =
∂V4

∂t
+

∂V4

∂x
ẋ+

∂V4

∂θ̃1

˙̃
θ1,

= 0 +
∂(xTPx+ 1

2 θ̃
T
1 Γ

−1
1 θ̃1)

∂x
ẋ+

∂(xTPx+ 1
2 θ̃

T
1 Γ

−1
1 θ̃1)

∂θ̃1

˙̃
θ1,

=
∂xTPx

∂x
ẋ+

1

2

∂θ̃T1 Γ1θ̃1

∂θ̃1

˙̃
θ1,

= ẋTPx+ xTPẋ+
1

2
˙̃
θT1 Γ

−1
1 θ̃1 +

1

2
θ̃T1 Γ

−1
1

˙̃
θ1.

(4.21)

The value of ˙̃
θT1 Γ

−1
1 θ̃1 is a 1 by 1 matrix and Γ−1

1 is symmetric. This means that ˙̃
θT1 Γ

−1
1 θ̃1 = θ̃T1 Γ

−1
1

˙̃
θ1. Using

this it follows:

V̇4 = ẋTPx+ xTPẋ+
˙̃
θT1 Γ

−1
1 θ̃1,

= (f(x, t) +G1θ̃1)
TPx+ xTP (f(x, t) +G1θ̃1) +

˙̃
θT1 Γ

−1
1 θ̃1,

= (f(x, t))TPx+ xTP (f(x, t)) + (G1θ̃1)
TPx+

xTP (G1θ̃1) +
˙̃
θT1 Γ

−1
1 θ̃1.

(4.22)

The matrix P is a scalar (adaptive law gain) and the value of (G1θ̃1)
TPx is a 1 by 1 matrix and so (G1θ̃1)

TPx =
xTP (G1θ̃1). This leads us to:

V̇4 = −xTx+ ai−1(B
TPx+ xTPB) + 2xTP (G1θ̃1) +

˙̃
θT1 Γ

−1
1 θ̃1,

= −xTx+ ai−1(B
TPx+ xTPB) + (2xTPG1 +

˙̃
θT1 Γ

−1
1 )θ̃1.

(4.23)
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As we know that V1 is already bounded so for V4 to be bounded we need an update law that fulfills the condition
2xTPG1 +

˙̃
θT1 Γ

−1
1 = 0. So we can start by:

− 2xTPG1 =
˙̃
θT1 Γ

−1
1 ,

− 2xTPG1Γ1 =
˙̃
θT1 ,

− 2(xTPG1Γ1)
T =

˙̃
θ1,

− 2Γ1G
T
1 Px =

˙̃
θ1.

(4.24)

The (4.24) is an update law which can guarantee boundedness for the system. As, by using the update law, we
get the relation:

V̇4 = −xTx+ ai−1(B
TPx+ xTPB). (4.25)

Following the same steps as in (4.9), we get the condition:

V̇4 ≤ −xTx

2
+

β(ai−1)
2

2
. (4.26)

Using Proposition 2.4, we can prove that the errors remain bounded if the value ai−1 has an upper bound and
when limt→∞ a2i−1 = 0 then limt→∞ V4(x) = 0 using the Proposition 2.5.

4.2.2 When the aerodynamic drag is unknown

For this case, we are assuming no wind conditions and no fluctuations in temperature so that there is no change
in the aerodynamic drag parameter ca. The closed loop error dynamics are:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d 0

0 0 1
hi

− 1
hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1 +

⎡
⎢⎢⎢⎢⎣

0

0
2viaiτi+v2

i

τimi

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G2(vi,ai)

(ca − ĉa)︸ ︷︷ ︸
θ̃2

. (4.27)

Using the Lyapunov function:
V5 = xTPx+ θ̃T2 Γ

−1
2 θ̃2, (4.28)

where Γ2 > 0 is a scalar (aerodynamic drag gain constant). We are able to reach the condition in the same way
as we did when the rolling resistance was unknown. The final equation can be written as:

V̇5 = −xTx+ ai−1(B
TPx+ xTPB) + (2xTPG2(vi, ai) +

˙̃
θT2 Γ

−1
2 )θ̃2. (4.29)

The update law for this case can be obtained by:

− 2xTPG2(vi, ai) =
˙̃
θT2 Γ

−1
2 ,

− 2xTPG2(vi, ai)Γ1 =
˙̃
θT2 ,

− 2(xTPG2(vi, ai)Γ2)
T =

˙̃
θ2,

− 2Γ2G2(vi, ai)
TPx =

˙̃
θ2.

(4.30)

Using the update law in (4.30) and the steps in (4.9), we reach the condition:

V̇5 ≤ −xTx

2
+

β(ai−1)
2

2
. (4.31)

The system errors are bounded if ai−1 has an upper-bound which we can prove using Proposition 2.4 and by
Proposition 2.5 it can be proven that when limt→∞ a2i−1 = 0 then limt→∞ V5(x) = 0.
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4.2.3 When only the mass is unknown

So, the error dynamics would be:

ẋ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

−k̄i −k̄p −k̄d 0

0 0 1
hi

− 1
hi

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x+

⎡
⎢⎢⎢⎢⎣

0

0

1− 1
mi

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

ai−1 +

⎡
⎢⎢⎢⎢⎣

0

0(
hi

τi
− 1
)
ai

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G3(ai)

(
1− m̂i

mi

)
︸ ︷︷ ︸

θ̃3

. (4.32)

The Lyapunov function for this case is:

V6 = xTPx+ θ̃T3 Γ
−1
3 θ̃3, (4.33)

where Γ3 > 0 is a scalar (unknown mass gain constant). Following the same steps we can reach the condition
of the update law:

− 2Γ3G3(ai)
TPx =

˙̃
θ3. (4.34)

Using similar steps in Section 4.2.2 and the update law in (4.34), we are able to get the condition:

V̇6 ≤ −xTx

2
+

β(ai−1)
2

2
. (4.35)

If we provide an upper-bound to ai−1, then using Proposition 2.4, we can show that the errors of the system are
bounded. Moreover, using Proposition 2.5 we can prove that when limt→∞ a2i−1 = 0 then limt→∞ V5(x) = 0.

4.3 Summary
When presented with the problem presented in Section 1.3, we checked and verified that the system is still
marginally stable if we are to assume a wrong value for the unknown parameter. Then we were able to get some
update laws which when introduced to the system would make the system marginally stable. The results were
verified mathematically.
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5 Simulations

We proved the stability for most of the unknown dynamics in Chapter 4 but is the a-CACC controller stable
when aerodynamic drag is assumed incorrectly in Section 4.1.3? How do the incorrectly estimated a-CACC
controller and adaptive controller hold against each other in face of unknown dynamics? Do we need the integral
action of the error in either of our controllers

5.1 Simulation Environment
For the simulations we make use of ode45 solver in MATLAB. We simulate a homogeneous platoon of five
Toyota Prius cars. The values of mass (m = 1380 kg [23]), aerodynamic drag (cd = 0.24 [24]), frontal area
(Af = 2.22 m2 [25]), time constant(τ = 0.1 [7]), friction coefficient (μ = 0.7 [26]) , and constant time headway
(h = 0.5 [7]) is the same for every vehicle. The values of gains used are kpm =

kp

mi
= 0.2 [7], kdm = kd

mi
= 0.68 [7],

and kim = ki

mi
= 10−5. The value of kim is chosen close to 0 due to the reason we see in Section 5.4. We make

use of a rectangular pulse similar to [8] in the upcoming sections. The input for the leader is kept at 0 for 5
seconds, then an acceleration of 1 m/s2 is applied for 5 seconds and for the remaining time the acceleration of
the leader is put to 0. In all simulations, the initial velocity, position and acceleration of the followers is set to
0.

5.2 Unknown aerodynamic drag
We make use of (4.17) in the ode45 solver. We assume that the wind speed does not change and take into
account the change in temperature in the environment. We take the assumed density of air to be 1.225 kg/m3

at 15◦ Celsius and refer to the value from [21]. We take the actual temperature to be about 30◦ Celsius and
the air density to be 1.164 kg/m3. The rest of the parameters used are listed in Section 5.1. As mentioned in
Section 4.1.3, we do not know if the system is stable if we estimated the wrong value for the a-CACC controller.
Just like the cases when only the mass or the rolling resistance is wrongly estimated, we expect that the system
is stable. We subject the leader vehicle to a constant acceleration of 1 m/s2 for 50 seconds, so that it simulates
a step input for the first follower as seen in Figure 5.1. The a-CACC controller settles down to the value of 1
m/s2 when starting from an initial acceleration of 0 m/s2 in approximately 11 seconds.

0 5 10 15 20 25 30 35 40 45 50

time

0

0.2

0.4

0.6

0.8

1

1.2

a
i

i=1
i=2

Figure 5.1: a-CACC controller with estimated aerodynamic drag subject to a step input
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(a) a-CACC controller with estimated values
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(b) Adaptive controller with Γ = 1000

Figure 5.2: Response of the adaptive and the a-CACC controller to a rectangular pulse for unknown dynamics

5.3 Comparison between estimated a-CACC and adaptive a-CACC
When the dynamics are unknown, the adaptive controller must outperform the a-CACC controller which is
estimating incorrect values of the unknown dynamics. The adaptive laws as seen in Section 4.2.1, Section 4.2.2,
and Section 4.2.3 make use of Γ1, Γ2, and Γ3 which are the update law gains. We estimated that the higher
values of Γ = Γ1 = Γ2 = Γ3 would give better performance as we proposed that higher the gains, faster the
update law works to correct the uncertainty in the dynamics. We also assumed that there should be a maximum
value for the gains as there is a possibility of overshoots when the convergence to the response is faster. As
seen in Appendix C, the higher values of Γ have lesser settling times and lower overshoots. We also see that for
lower values of Γ, there are oscillations in the followers which dissipate as we increase the value of the update
law gain. We make a comparison of both the controllers when subject to a rectangular pulse mentioned in 5.1
when the dynamics are unknown. It can be seen in Figure 5.2 that the adaptive controller has lesser overshoots
and undershoots than the a-CACC controller with incorrect estimated values of the unknown dynamics.

5.4 Use of the Integral action
One question still arises that although there was no integral action in the controller used in [7], we have included
the integral action to the a-CACC controller and the adaptive controller but do we still need it? We make use
of a step input from the leader of 1 m/s2 for 50 seconds. We start by simulating the response of the a-CACC
controller when it estimates wrong values to different values of kim. As mentioned in Chapter 4, the condition
0 < kim < kdmkpm must be satisfied for stability, we get the bounds 0 < kim < 0.136 according to the values
of kdm and kpm mentioned in Section 5.1. The resulting figures as seen in Appendix D show that the integral
action for the estimated a-CACC controller is not required which is more clear when we compare the parameters
for different kim values in Table 5.1. We simulate the adaptive controller using the same step input for different
kim values. As seen in Appendix E, the graphs look the same so the Table 5.2 gives us an insight that there is
a significant change to the parameters of the graphs in Appendix E. We estimated the system to be unstable
when the bounds on kim are not respected. The Figure D.5 confirms that the system indeed becomes stable
but the Figure E.5 shows a different story. Although not preferable, the adaptive controller still stabilizes with
a higher value of kim
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kim Settling time (secs) Overshoot Undershoot Peak

0 10 48 218 2.18
0.02 10.28 59 218 2.18
0.03 19.03 65 218 2.18
0.13 26.53 113 218 2.18

Table 5.1: Characteristics of the first follower using the estimated a-CACC controller when subjected to a step
input for different values of kim

kim Settling time (secs) Overshoot Undershoot Peak

0 2.17 1.3 x 10−8 0 1
0.02 2.17 1.36 x 10−5 0 1
0.03 2.17 2.12 x 10−5 0 1
0.13 2.17 9.8 x 10−5 0 1
10 2.16 0.1108 0 1.011

Table 5.2: Characteristics of the first follower using the adaptive controller when subjected to a step input for
different values of kim

5.5 Summary
We get our answer to the question in Section 4.1.3 in Section 5.2 that the a-CACC controller is stable when
the aerodynamic drag is estimated incorrectly. We compared our a-CACC (which has incorrectly assumed
dynamics) to adaptive CACC controller in Section 5.3. We checked if the integral action is necessary in Section
5.4. The next chapter focuses on conclusions.
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6 Conclusions and Future work

We present conclusions to the simulations in the Chapter 5 in Section 6.1 and then we present some future work
that can be done regarding the research.

6.1 Conclusions
Starting off with the results in Section 5.2, we see that as expected the a-CACC controller with incorrect
estimate of the aerodynamic drag settles down to the value of the step input of 1 which shows that the a-CACC
controller for the case presented in Section 4.1.3 is stable.

Comparing the graphs in Figure 5.2, we can conclude that the adaptive controller works better than the a-
CACC controller whose dynamics have been incorrectly estimated. The large undershoot and overshoot causes
the vehicle to experience high jerks which would cause discomfort for the passengers. Moreover, the settling
time for the a-CACC controller with unknown dynamics is quite large compared to the adaptive controller as
it can be seen in the Figure 5.2.

In Section 5.4, we simulated the a-CACC with incorrect dynamics and the adaptive controller with different
values of kim and found out that it does not contribute much to the system in both cases. Based on these
findings we concluded that the integral action for the system is not required for either of our controllers. The
case when the adaptive controller stabilizes at kim = 10 shows that the adaptive controller outperforms the
estimated a-CACC controller when parameters are unknown.

6.2 Future work
As mentioned in Section 5.3 and shown in Appendix C, the higher values of the update law gain Γ which we
assumed as Γ = Γ1 = Γ2 = Γ3 prove better performance. We saw lesser overshoots which were negligible as
we kept on increasing the gain. The value of gains required are needed to be verified experimentally as there is
bound to be an upper limit to these gains.

Although the use of integral action is shown to not be needed in both of our controllers, in an experiment the
integral action may be used to offset unwanted disturbances. The case for the aerodynamic drag can be expanded
to include wind speed into account because as mentioned in [20] the wind speed does have a large influence on
the aerodynamic drag coefficient cd. The string stability of both the controllers needs to be verified. The values
of the gains kpm and kdm were chosen from the research mentioned in [7] which were tuned experimentally for
a homogeneous platoon. In our simulations these depend on the mass of the vehicle which will vary according
to the mass and the gains would be needed to be adjusted accordingly. The effect of the change in mass would
also affect the time gap hi of every vehicle which can be explored further.
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A Longitudinal dynamics

From the longitudinal dynamics defined in Section 1.2, We assume that aerodynamic drag, rolling resistance
and the mass of the vehicle affect our vehicle. The aerodynamic drag equation is written as:

Faerodrag =
1

2
ρacdAfv

2
i , (A.1)

in which the parameters ρa, cd and Af show the values of density of air, coefficient of aerodynamic drag (varies
from vehicle to vehicle) and the frontal area of the vehicle (in m2). We have multiplied the constants from (A.1)
such that we get the term ci1v

2
i in (1.1b). The term ci2 represents the rolling resistance which can be defined

as:
ci2 = Frollingresistance = μmig cos θ +mig sin θ, (A.2)

where g, μ, and θ are defined as acceleration due to gravity, the friction coefficient between the road and the
tyres of the vehicle, and the slope of the road on which the vehicle is driving respectively. In the Netherlands,
we have a low amount of roads with any slope so we can assume here θ = 0 which leads to the rolling resistance
as μmig.

The derivative of velocity is termed as acceleration which we can represent here as ai for the ith vehicle, so in
(1.1b), we can replace v̇i with ai and rewrite the equation as:

miai = Fi − ci1v
2
i − ci2. (A.3)

Differentiating both side of the equation, we get:

miȧi = Ḟi − 2ci1viv̇i = Ḟi − 2ci1viai. (A.4)

Substitute the value of Ḟi from (1.1c):

miȧi = − 1

τi
Fi +

1

τi
ηi − 2ci1viai. (A.5)

We rearrange (A.3) for a proper value of Fi to get:

Fi = miai + ci1v
2
i + ci2. (A.6)

We substitute this value in (A.5) to achieve the result:

miȧi = − 1

τi
(miai + ci1v

2
i + ci2) +

1

τi
ηi − 2ci1viai. (A.7)

Dividing both sides of the equation by mi and simplifying the equation:

miȧi
mi

= − 1

τimi
(miai + ci1v

2
i + ci2) +

1

τimi
ηi − 2ci1viai

mi
,

ȧi = − 1

τi
ai − 1

τimi
(ci1v

2
i + ci2) +

1

τimi
ηi − 2ci1viai

mi
,

ȧi = − 1

τi
ai − 1

τimi
(ci1v

2
i + ci2 + 2ci1viaiτi − ηi).

(A.8)

The linearizing of the dynamics is done by using the controller input:

ηi = ci1v
2
i + ci2 + 2ci1viaiτi +miui. (A.9)

The linearization makes the system simpler to solve. Substitute the value in (A.8) to get the value of jerk as:

ȧi = − 1

τi
ai +

1

τi
ui. (A.10)
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B Norms

The definitions of the norms is taken from [17]

Definition B.1 (Lp signal norm [17]). Let u(t) be a time-dependent signal according to u(t)=(u1(t) u2(t) ...
un(t))T , then the signal p-norm, or Lp norm, of u(t) is defined as:

||u(t)||p :=

(∫ ∞

−∞

∑
i

|ui(t)|pdt
) 1

p

, (B.1)

where ||u(t)||p denotes the vector p-norm.

Definition B.2 (H∞ system norm [17]). Consider a transfer function G(s) of a linear system, then the H∞
norm is defined as:

||G(jω)||H∞ = sup
ω

max
û�=0

||G(jω)û(jω)||2
||û(jω)||2 , (B.2)

where û(jω) is the input signal to the system.
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C Tuning of the gain parameter Γ for the adaptive controller

The use of (4.5) is made for the adaptive controller. The parameter Γ is kept the same for all the update laws.
The use of Γ is made in Section 5.3. We use the values given in Section 5.1. We apply a constant acceleration
of 1 m/s2 to the leader for 50 seconds and calculate the characteristics as seen in Table C.1. The response to a
rectangular pulse to the system defined in Section 5.1 to different values of Γ is shown in Figures C.1, C.2, C.3,
C.4, C.5 and C.6.

Gamma Settling time (secs) Overshoot Undershoot Peak

1 2.6 11.2 0 1.11
5 2.35 1.92 0 1.01
10 2.41 0.08 0 1.0008
50 2.22 1.11 x 10−5 0 1
100 2.17 1.32 x 10−7 0 1
1000 2.17 1.3 x 10−8 0 1

Table C.1: Characteristics of the first follower using the adaptive controller when subjected to a step input
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Figure C.1: Adaptive Controller with Γ = 1
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Figure C.2: Adaptive Controller with Γ = 5
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Figure C.3: Adaptive Controller with Γ = 10
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Figure C.4: Adaptive Controller with Γ = 50
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Figure C.5: Adaptive Controller with Γ = 100
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Figure C.6: Adaptive Controller with Γ = 1000
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D Tuning of the gain for the integral action for the estimated a-CACC
controller

We make use of the input mentioned in Section 5.4, we make use of the dynamics in (4.5) to verify if the integral
action is needed for the controller. For the parameters of the signal seen in Table 5.1, it becomes clear that the
integral action seems unnecessary as seen that it has little effect on stability of the system.
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Figure D.1: Estimated a-CACC controller with kim = 0
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Figure D.2: Estimated a-CACC controller with kim = 0.02
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Figure D.3: Estimated a-CACC controller with kim = 0.03
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Figure D.4: Estimated a-CACC controller with kim = 0.13
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Figure D.5: Estimated a-CACC controller with kim = 10
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E Tuning of the gain of integral action for the adaptive a-CACC
controller

Using the step input defined in Section 5.4 and the values mentioned in Section 5.1 for the dynamics in (4.5),
we get the Figures E.1, E.2, E.3, and E.5. The step parameters mentioned in Table 5.2 show that the integral
action is not needed here.
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Figure E.1: Adaptive a-CACC controller with kim = 0
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Figure E.2: Adaptive a-CACC controller with kim = 0.02
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Figure E.3: Adaptive a-CACC controller with kim = 0.03
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Figure E.4: Adaptive a-CACC controller with kim = 0.13
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Figure E.5: Adaptive a-CACC controller with kim = 10
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