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Abstract

Cooperative Adaptive Cruise Control (CACC) shows great promise in reducing human
intervention in longitudinal driving, by incorporating both intervehicular communication
and measurements obtained with on-board sensors into the control system. Despite its
great potential, CACC is prone to communication impairment; and global measurements
provided by the on-board dead reckoning systems (e.g. accelerometer, wheel encoder) are
subject to cumulative errors and measurement noise, especially in strong weather con-
ditions. In this thesis, an observer-based a-CACC framework is proposed to tackle the
latter issue for a nonlinear vehicle model with the inclusion of counteracting forces such
as friction and air drag. This is achieved by developing an observer for the global velocity
and applied force measurements, which are then used to indirectly estimate global accel-
eration. Then, the conditions on whether the observer provides accurate estimation are
assessed with a cascaded system approach. Finally, the state estimations are incorporated
into CACC controller, which comprises of a PD action and a feed forward. The simulation
results and mathematical work indicate that stable tracking dynamics can be achieved for
a sufficiently large pool of initial estimations, provided that the vehicle is limited to either
forward or backward motion. String stability is also achieved by appropriately increasing
the desired time headway. Future work can be done on string stability, by automating the
necessary time headway in response to initial intervehicular distance. The observability
of the system during switching between ”Drive” and ”Reverse” gear of the vehicle is also
open to further research.
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Chapter 1

Introduction

1.1 Cooperative Adaptive Cruise Control (CACC)

History of vehicle control dates back to 1788, when James Watt and Matthew Boulton used
a centrifugal governor in their steam engines to adjust the throttle depending on different
loads received [1]. Similarly, in 1908, a governor was used in automobiles to maintain
the speed of an engine [2]. In 1948, Ralph Teetor invented a feature ”Speedostat” that
automatically regulated the speed of the vehicle; now labeled as Cruise Control (CC) in
modern language [3].

Even though this invention has been important in making the first step into the domain
of autonomous driving, CC was vulnerable to hazardous weather conditions [4]. Car acci-
dents due to reckless human driving was (and still is) an ongoing issue. Hence, Adaptive
Cruise Control (ACC) was proposed in which the vehicle control is based on a intervehicu-
lar spacing policy using relative position and velocity information obtained by on-board
sensors such as radar or LiDAR [5].

ACC has later been extended into Cooperative Adaptive Cruise Control (CACC) [6]. In
addition to on-board sensor data, information on the preceding vehicle’s acceleration and
certain mechanical properties is also communicated. The communication of acceleration
information allows for the controller to achieve string stability; that is, the disturbances
in traffic flow of a vehicle platoon does not amplify downstream. As string stability is
quantified by acceleration information (which is not communicated in regular ACC), the
intervehicular distance needed to be kept relatively large in order to account for sudden
brakes of the predecessor vehicle.

1.2 Previous work on CACC

Most commonly in literature, CACC is studied with the assumption that the desired ac-
celeration is communicated between the vehicles, which is labeled by u-CACC [6]. In

Caner Yılmaz 1



1.3. PROBLEM FORMULATION

u-CACC, variables depending on dynamical behavior of the predecessor vehicle also needs
to be known. These variables may depend on manufacturing information, which may be
classified; or it may not be in a universal format for other vehicles to process in their control
algorithms.

As a solution to the drawbacks of u-CACC, a-CACC is proposed, in which measured ac-
celeration is shared with the follower vehicle, instead of the desired acceleration [7]. Hence,
the control algorithm can be applied without requiring knowledge on the dynamical beha-
vior of the preceding vehicle.

Both u-CACC and a-CACC are prone to communication impairments and measurement
noise. As such, degraded CACC is proposed for u-CACC (combined into name u-dCACC)
[8], in which predecessor acceleration is estimated by a Singer model; a probability-based
linear acceleration model used for tracking targets. Similarly, a Singer model is used in
degraded a-CACC (a-dCACC) to estimate predecessor’s acceleration measurement [9]. In
addition, a-dCACC has a linear observer for unknown global acceleration. Several other
solutions are proposed to combat temporary packet loss or disturbances [10].

String stability is usually defined with the ratio of L2 or L∞ norms of consecutive
vehicles’ acceleration [11]. Although string stability is typically tested numerically, an
analytical criterion to determine string stability, for a numerically evaluated minimum
time headway is proposed in [9]; though, a linear vehicle model is employed. A controller
achieving string stability is also designed for a nonlinear vehicle model in [12, 13], though
it is assumed all measurements are available.

1.3 Problem formulation

After going through the previous work on tackling the challenges of CACC, we found that
the permanent and simultaneous loss of both velocity and acceleration measurements was
not studied, let alone for a nonlinear model with counteracting forces included. Hence, the
research objective of this study is defined as

Design an observer-based CACC framework for a vehicle in 1-D platooning, whose ve-
locity and acceleration measurements are unavailable, while also including the ”nonlinear”
effects caused by rolling resistance, damping and drag forces.

The research objective has been achieved through the following tasks:

• Design a preliminary global observer for the velocity without considering driveline
dynamics, by treating the applied force as an input, instead of an unknown variable;

2 Caner Yılmaz



1.4. OUTLINE

• Extend the preliminary observer into full-state by including the driveline dynamics
and check for conditions on the observability of the full-state; and

• Create an observer-based CACC framework and test input-to-state stability (ISS)
and string stability of the system.

One of the major difficulties of the research objective is the fact that feedback linear-
ization cannot be applied to the motion model, because of the fact that global velocity
measurements are not available.

1.4 Outline

In Chapter 2, preliminary knowledge on control theory and observer design is presented.
In Chapter 3, a global observer is designed in order to compensate for absence of velocity
measurement, without including driveline dynamics. In Chapter 4, the observer is extended
to full state and conditions on the observability are presented. In Chapter 5, an observer-
based control framework is proposed; along with simulation-based testing of input-to-state
stability (ISS) and string stability. Finally, conclusion and recommendations to improve
the CACC framework are given in Chapter 6.

Caner Yılmaz 3





Chapter 2

Preliminaries

In this chapter, the motion model of the vehicle is introduced and background information
relevant to the thesis is given based on the existing literature.

2.1 Mathematical Model

The vehicle motion model is derived from the force equilibrium

mv̇i = Fi − (c0 + c1vi + c2v
2
i ), (2.1)

where vi and Fi are velocity and thrust force of the vehicle i, respectively. The counteracting
forces are composed of rolling resistance, damping and air drag. Each term of the second
degree polynomial (c0 + c1vi + c2v

2
i ) models these forces in respective order; where the

known coefficients c0, c1, c2 are constant. It also holds that c0 and c2 are nonnegative.
The thrust force is driven by the following linear model, which we call ”driveline dy-

namics” [14]:

Ḟi = −1

τ
Fi +

1

τ
ūi. (2.2)

In addition, position qi measured from the rear bumper of the vehicle can be expressed
by

q̇i = vi. (2.3)

By combining (2.1), (2.2) and (2.3), the motion model for agent i in 1-D platoon can
be formulated as

q̇i = vi

v̇i =
1

m
[Fi − (c0 + c1vi + c2v

2
i )]

Ḟi = −1

τ
Fi +

1

τ
ūi.

(2.4)
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2.2. OBSERVER DESIGN

The mathematical model is formulated under the assumption that the vehicle platoon
is 1-D; that is, curvature and slope of the road are not taken into account. It is also
assumed that the position measurement can be obtained with radar or GNSS. Otherwise,
the system becomes unobservable. Therefore, the output of the system is taken as

yi = qi. (2.5)

In some other literature, the vehicle model is transformed by a change of coordinates
such that the acceleration ai is part of the state vector x = [qi vi ai]. However, designing
an observer using the structure (2.4) is easier in the way that after estimating vi and Fi,
the acceleration estimate can be derived.

2.2 Observer design

2.2.1 Local observability

Consider the following system [15]:

ẋ = f(x) + Σm
i=1gi(x)ui

y = h(x)
(2.6)

where x, y, u are the state, output and input of the system, respectively. Also, let W be
the observability matrix defined as

W =
∂

∂x

⎡
⎢⎢⎢⎣

y
ẏ
...

dky
dtk

⎤
⎥⎥⎥⎦ (2.7)

where k ≥ n− 1, with n denoting the relative degree of the system, which is the order of
time derivative of output y when the input first explicitly appears. Then, the system is
locally observable if rank(W ) = n and all inputs are equal to zero. If W is full rank and
k = n−1, then local observability holds for any input u, i.e., without assuming zero input.

2.2.2 Global observability with linearized error dynamics

In order to design a global observer for nonlinear systems, several strategies are proposed in
literature. The most common method employed is to find a suitable change of coordinates
for input and state such that we obtain a canonical form:

ż = Azz + α(uz, η)

η = Czz
(2.8)

where z, uz, η are the new coordinates for state, input and output, respectively. The
input uz is a function of available measurements and state estimate ẑ only. The term
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2.3. CASCADED SYSTEM

α(.) can be any function dependent on input and output only. Meanwhile, Az and Cz are
constant state and measurement matrices, respectively. Hence, a global observer can be
designed such that the error dynamics is linear in z-coordinate errors.

In [16], a set of conditions is proposed to check whether global observer with linearized
error dynamics exists for a class of nonlinear systems. First, the dynamical system is
transformed into the form:

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇n = f̄(ξ1, ..., ξn−1, uξ)

η = ξ1

(2.9)

In order to design a global observer for a second-order system (i.e. n = 2), it is sufficient
that f̄ = ξ̇2 can be expressed in the form:

ξ̇2 = a(ξ1, uξ) + b(ξ1)ξ2 + c(ξ1)
ξ22
2
. (2.10)

For third order system (n = 3), there are two conditions that must be satisfied. The
first one is that f̄ = ξ̇3 should be expressed in the form:

ξ̇3 = a(ξ1, uξ) + b(ξ1)ξ2 + c(ξ1)
ξ22
2

+ d(ξ1)
ξ32
3

+ [ρ(ξ1) + σ(ξ1)ξ2]ξ3. (2.11)

Given the form (2.11), the following partial differential equations (PDE) must be sat-
isfied:

dσ

dξ1
=

3

2
d+

2

3
σ2,

dρ

dξ1
= c+ ρσ.

(2.12)

If both conditions hold, then there exists a coordinate transformation for the third-order
system, which leads to linearized error dynamics.

2.3 Cascaded system

Definition 2. A continuous function f(x) : [0,∞) → [0,∞) is a class K function if it
is strictly increasing and f(0) = 0.

Definition 3. A function f(x) is radially unbounded if |x| → ∞ implies f(x) → ∞.

Caner Yılmaz 7



2.3. CASCADED SYSTEM

Definition 4. A function f(x) is Lipschitz continuous if f(x) is continuous and for
any x1, x2, it holds that |f(x1)− f(x2)| ≤ M |x1 − x2| for some constant M ∈ [0,∞).

Consider a cascaded system in the form [17, 18]:

ẋ = f1(x, t) + g(x, y, t)y

ẏ = f2(y, t)
(2.13)

where f1(x, t) is continuously differentiable and f2(y, t), g(x, y, t) are Lipschitz continuous.
This system could be treated as the state

Σ1 : ẋ = f1(x, t),

perturbed by the output

Σ2 : ẏ = f2(y, t).

The cascaded system is GUAS if the following assumptions are satisfied:

Assumption on Σ1: The system Σ1 is GUAS and there exists a Lyapunov function
V (x, t) such that the following inequalities are satisfied:

W (x) ≤ V (x, t) (2.14)

∂V

∂t
+

∂V

∂x
f1(x, t) ≤ 0 (2.15)∣∣∣∣∂V∂x

∣∣∣∣ |x| ≤ cV (x, t) (2.16)

with W (x) some positive-definite and radially unbounded function and c a positive con-
stant.

Assumption on Σ2: The system Σ2 is GUAS and the integral inequality below holds:Z ∞

t0

|y(t, t0, y(t0)|dt ≤ κ(|y(t0)|) (2.17)

∀t0 ≤ 0 and for some class K function κ(.).

Assumption on interconnection: The affine term |g(x, t, u)| is upper-bounded by a con-
tinuous function linear in |x|:

|g(x, t, u)| ≤ θ1(|y|) + θ2(|y|)|x|. (2.18)

8 Caner Yılmaz



Chapter 3

Observer design without driveline
dynamics

In this chapter, a preliminary observer design will be made for the following subsystem:

q̇i = vi

v̇i =
1

m
[Fi − (c0 − c1vi − c2v

2
i )],

(3.1)

where the applied force Fi is treated as an input to the subsystem. The objective is to design
a global observer with linearized error dynamics. This is done by an appropriate coordinate
transformation such that the subsystem is linear in new state and input coordinates. For
visual simplicity, the subscript i is dropped in this chapter.

3.1 Observability of the system

In order to design a global observer, the system must be locally observable first for all
values of x = [q v F ]T . The observability matrix W is computed as

W =
∂

∂x

[
y
ẏ

]
=

∂

∂x

[
q
v

]
=

[
1 0
0 1

]
. (3.2)

Since W is full rank, the subsystem (3.1) is locally observable everywhere.

Now, we define ξ1 = q and ξ2 = v. Then, the subsystem takes the form of (2.10):

ξ̇1 = ξ2

ξ̇2 =
1

m
[F − (c0 + c1ξ2 + c2ξ

2
2)]

=
F − c0
m| {z }

a(ξ1),F

+
−c1
m|{z}
b(ξ1)

ξ2 +
−2c2
m| {z }
c(ξ1)

ξ22
2

(3.3)

Caner Yılmaz 9



3.2. COORDINATE TRANSFORMATION

Hence, by [16], a suitable change of coordinates can be found such that a global observer
can be designed with linearized error dynamics.

3.2 Coordinate transformation

The system (3.4) can be rewritten as

q̇ = v

v̇ =
1

m

"
F − c0 +

c21
4c2

−
(√

c2v +
c1

2
√
c2

)2
#
.

(3.4)

Then, we apply the following transformation:

u = F − c0 +
c21
4c2

v̄ =
√
c2v +

c1
2
√
c2
.

(3.5)

The transformation in (3.5) leads to the following auxiliary system:

q̇ =
1√
c2
v̄ − c1

2c2

˙̄v =

√
c2
m

[
u− v̄2

]
.

(3.6)

We apply a second transformation; this time, on state and output as follows:

z1 = exp
(c2
m
q
)

z2 = v̄ exp
(c2
m
q
)

η = exp
(c2
m
q
)
= z1.

(3.7)

The time derivatives of new state coordinates are computed as

10 Caner Yılmaz



3.3. OBSERVER DESIGN

ż1 =

(√
c2
m

v̄ − c1
2m

)
exp

(c2
m
q
)

= − c1
2m

z1 +

√
c2
m

z2

ż2 =

(
˙̄v +

√
c2
m

v̄2 − c1
2m

v̄

)
exp

(c2
m
q
)

=

(√
c2
m

u−
√
c2
m

v̄2 +

√
c2
m

v̄2 − c1
2m

v̄

)
exp

(c2
m
q
)

=

(√
c2
m

u− c1
2m

v̄

)
exp

(c2
m
q
)

= − c1
2m

z2 +

√
c2
m

uη.

(3.8)

This results in the following transformed dynamics (z = [z1 z2]
T ):

ż =

[
− c1

2m

√
c2
m

0 − c1
2m

]
| {z }

A

z +

[
0√
c2
m

η

]
u| {z }

α(η,u)

η =
[
1 0

]| {z }
C

z

(3.9)

which is in the canonical form (2.8).

3.3 Observer design

An observer for the system in (3.9) can be formulated as follows (with negative feedback):

˙̂z =

[
− c1

2m

√
c2
m

0 − c1
2m

]
| {z }

A

ẑ +

[
0√
c2
m

η

]
u| {z }

α(η,u)

+

[
l1
l2

]
|{z}
L

(η − η̂)

η̂ =
[
1 0

]| {z }
C

ẑ

(3.10)

where the observer estimation is denoted by superscript ˆ. Defining the observer error as
z̃ = z − ẑ, linearized error dynamics is obtained as

˙̃z = (A− LC)z̃. (3.11)

If all eigenvalues of A − LC are in left-half plane (LHP), the error is guaranteed to
converge to zero as time goes to infinity. Hence, the estimated state should converge to
the true value as well. The characteristic polynomial of A− LC is calculated as

Caner Yılmaz 11



3.3. OBSERVER DESIGN

(λ+
c1
2m

+ l1)(λ+
c1
2m

) +

√
c2
m

l2 = 0

1|{z}
a

λ2 +
(c1
m

+ l1

)
| {z }

b

λ+

(
c1
2m

l1 +

√
c2
m

l2 +
c21
4m2

)
| {z }

c

= 0
(3.12)

According to Routh-Hurwitz stability criterion [15], the eigenvalues are strictly in LHP
if and only if

b

a
> 0

c

a
> 0.

(3.13)

This implies the error dynamics is asymptotically stable if and only if

l1 > −c1
m

l2 >
−c21 − 2c1ml1

4
√
c2m

.
(3.14)

It can be realized from (3.14) that a sufficient lower bound for l2 would be

−c21 − 2c1m inf(l1)

4
√
c2m

=
c21

4
√
c2m

. (3.15)

After obtaining the state estimation, an inverse transformation can be made to the
original coordinates as follows:

q̂ =
m

c2
log(ẑ1)

v̂ =
1√
c2

ẑ2
ẑ1

− c1
2c2

ŷ = q̂.

(3.16)

By taking the time derivative of the inverse transformation in (3.16), the observer in
original coordinates can be derived. For position,

˙̂q =
m

c2

˙̂z1
ẑ1

=
m

c2

c2
m
v̂e

c2
m

q̂ + l1

(
e

c2
m

q − e
c2
m

q̂
)

e
c2
m

q̂

= v̂ +
m

c2
l1

(
e

c2
m

(q−q̂) − 1
)
.

(3.17)

For velocity,

12 Caner Yılmaz



3.4. VERIFICATION WITH LYAPUNOV PROOF

˙̂v =
1√
c2

˙̂z2ẑ1 − ˙̂z1ẑ2

ẑ1
2 =

1√
c2

˙̂z2 − ˙̂z1 ˆ̄v

ẑ1

=
1√
c2
l2

(
e

c2
m

(q−q̂) − 1
)
− ˆ̄v√

c2
l1

(
e

c2
m

(q−q̂) − 1
)
− ˆ̄v2

m
+

u

m
e

c2
m

(q−q̂)

=
1√
c2
(l2 − ˆ̄vl1)

(
e

c2
m

(q−q̂) − 1
)
+

1

m

(
ue

c2
m

(q−q̂) − ˆ̄v2
)
,

(3.18)

with

ˆ̄v =
√
c2v̂ +

c1
2
√
c2
,

u = F − c0 +
c21
4c2

.

3.4 Verification with Lyapunov proof

In this section, results obtained on the stability of observer error dynamics in previous
section are verified by means of Lyapunov methods. This verification serves as a basis for
Chapter 4, where the observer is extended into full-state.

In order to verify whether the observer in Section 3.3 works fine without a control input
(u = 0), let’s take the following Lyapunov function candidate:

V = z̃TP z̃, (3.19)

where P is a square matrix to be determined. Taking the time derivative of V along
solutions of (3.11) yields the following:

V̇ = z̃T [(A− LC)TP + P (A− LC)]z̃. (3.20)

We declare an arbitrary positive definite matrix Q such that

V̇ = −z̃TQz̃. (3.21)

This implies that

(A− LC)TP + P (A− LC) = −Q. (3.22)

Given a choice of Q, if (A − LC) is Hurwitz, then P is a unique and positive definite
matrix satisfying (3.22) [15].

We choose an arbitrary positive definite matrix Q first, say Q = I. This would auto-
matically satisfy the conditions V̇ ≤ 0 ∀z̃; and V̇ = 0 ⇐⇒ z̃ = 0. Since A − LC is also
known in terms of l1 and l2, the goal is to compute P and find the range of values for l1 and
l2 such that P remains positive definite. The P matrix can be symbolically represented by

Caner Yılmaz 13



3.4. VERIFICATION WITH LYAPUNOV PROOF

P =

[
p11 p12
p21 p22

]
(3.23)

with unknown scalars p11, p12, p21 and p22. We also have

A− LC =

[
− c1

2m
− l1

√
c2
m−l2 − c1
2m

]
. (3.24)

Substituting (3.23) and (3.24) into (3.22) yields:

[− c1
2m

− l1 −l2√
c2
m

− c1
2m

] [
p11 p12
p21 p22

]
+

[
p11 p12
p21 p22

] [
− c1

2m
− l1

√
c2
m−l2 − c1
2m

]
= −

[
1 0
0 1

]
(3.25)

The P matrix is computed by

P = P0

[
c21 + 2l22m

2 + l1c1m+ 2l2
√
c2m c1

√
c2 − l2c1m− 2l1l2m

2

c1
√
c2 − l2c1m− 2l1l2m

2 2c2 + c21 + 2c21m
2 + 3l1c1m+ 2l2

√
c2m

]
(3.26)

with P0 equal to

P0 =
m

(c1 + l1m)(c21 + 2l1c1m+ 4l2
√
c2m)

. (3.27)

Substituting the result into (3.19) yields,

V = P0[z̃
2
1(c

2
1 + 2l22m

2 + l1c1m+ 2l2
√
c2m)

+ z̃22(2c2 + c21 + 2l21m
2 + 3l1c1m+ 2l2

√
c2m)

+ 2z̃1z̃2(c1
√
c2 − l2c1m− 2l1l2m

2)]

(3.28)

It can be seen that having z̃1 = z̃2 = 0 leads to V = 0. Now, assuming this does not
hold, we find the range of observer gain values such that V > 0; and see if (3.14) still holds.

In order to do that, we will check the positive-definiteness of P . In order for P to be
positive-definite, it should be symmetric and the following should be satisfied:

p11 > 0

det(P ) = p11p22 − p212 > 0
(3.29)

Since P is symmetric, it suffices to find the range of values of l1 and l2 such that,

m
c1(c1 + l1m) + 2ml2(ml2 +

√
c2)

(c1 + l1m)(c21 + 2l1c1m+ 4l2
√
c2m)

> 0

m2 (c1 + l1m)2 + (
√
c2 + l2m)2

(c1 + l1m)2(c21 + 2l1c1m+ 4l2
√
c2m)

> 0

(3.30)

From the second inequality, we need to have (c21 + 2l1c1m + 4l2
√
c2m) > 0. In other

words,
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3.5. SUMMARY

l2 >
−c21 − 2c1ml1

4
√
c2m

. (3.31)

After applying this necessary condition into the first inequality of (3.30) (and rearrang-
ing the terms), we obtain

m

c21
2
+

c21
8c2

(c1 + 2ml1)
2

(c1 + l1m)(c21 + 2l1c1m+ 4l2
√
c2m)

> 0 (3.32)

We had already established that (c21 + 2l1c1m + 4l2
√
c2m) > 0 must hold. Since the

numerator is positive, it is necessary to have (c1 + l1m) > 0. That is,

l1 > −c1
m
. (3.33)

The inequalities (3.31) and (3.33) validate what we had found in (3.14).

Remark: The range of l2 is (−∞, +∞). However, only values in the subset (
c21

4
√
c2m

, +∞)

lead to stability in error dynamics for all values of l1 > − c1
m
.

3.5 Summary

In this chapter, a global observer for the subsystem without the driveline dynamics is
proposed. This is done by an appropriate state and input transformation, which results in
the observer error dynamics being linear in transformed coordinates. Then, the stability
of the error dynamics is verified by means of Lyapunov. This work forms the basis in
extending the observer to full-state in the next chapter.
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Chapter 4

Full-state observer design

Recall the nonlinear dynamics below:

q̇i = vi

v̇i =
1

mi

[Fi − (c0 + c1vi + c2v
2
i )]

Ḟi = − 1

τi
Fi +

1

τi
ūi,

(4.1)

where τi > 0 is a positive time constant representing driveline dynamics of the agent; and
ūi, the control input yet to be determined. The constants c0, c1, c2 are assumed to be
known; and the velocity vi ≥ 0 in Drive gear. The goal is to design a global observer for
velocity vi and thrust force Fi. Once again, we assume that the position can be measured:

yi = qi. (4.2)

For simplicity, the subscript i is dropped in this chapter, also.

4.1 Observability of the system

In order to check whether a global observer for a system can be designed, the system must
be locally observable for all values of x = [q v F ]T . Computing the matrix (2.7) yields

W =
∂

∂x

⎡
⎣yẏ
ÿ

⎤
⎦

=
∂

∂xi

⎡
⎣ q

v
1
m
[F − (c0 + c1v + c2v

2)]

⎤
⎦

=

⎡
⎣1 0 0
0 1 0
0 1

m
(c1 + 2c2v)

1
m

⎤
⎦ .

(4.3)
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4.2. FULL-STATE OBSERVER DESIGN

Indeed, the observability matrix W is full rank. Hence, the system is locally observ-
able everywhere. Now, we would like to find a change of state (z), input (u) and output
(y) such that we obtain linearized dynamics:

ż = f(z) + g(z)u

h = h(z)
(4.4)

where f(z) is linear. In order to check whether such a form exists, we shall first transform
the model (4.1) by ξ1 = q, ξ2 = v, ξ3 = v̇ = 1

m
[F − (c0 + c1v + c2v

2)]. Then,

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 =
Ḟ

m
− c1

m
ξ3 − 2c2

m
ξ2ξ3.

(4.5)

Combining the fact that F = ξ3m+ c0 + c1ξ2 + c2ξ
2
2 ; with (4.1) and (4.5), we obtain

ξ̇3 =
ū− c0
mτ| {z }
a(ξ1)

+
(
− c1
mτ

)
| {z }

b(ξ1)

ξ2+

(
−2c2
mτ

)
| {z }

c(ξ1)

ξ22
2
+ 0|{z}

d(ξ1)

ξ32
3
+

⎛
⎜⎜⎜⎝
(
−c1
m

− 1

τ

)
| {z }

ρ(ξ1)

+

(
−2c2

m

)
| {z }

σ(ξ1)

ξ2

⎞
⎟⎟⎟⎠ ξ3 (4.6)

which is of the form (2.11). The following PDEs must also be satisfied:

dσ

dξ1
=

3

2
d+

2

3
σ2 =

8c22
3m2

,

dρ

dξ1
= c+ ρσ =

2c1c2
m2

.

(4.7)

However, dσ
dξ1

= dρ
dξ1

= 0. Hence, the PDEs are only satisfied for c2 = 0, which implies
a linear model by default anyway. Hence, an observer with linearized dynamics does not
exist. However, we can still design a nonlinear observer directly.

4.2 Full-state observer design

When the driveline dynamics was not included (i.e., the force F was treated as an input),
the expressions for position and velocity estimates were derived as follows:

˙̂qno,DL = v̂ +
m

c2
l1

(
e

c2
m

(q−q̂) − 1
)

(4.8a)

˙̂vno,DL =
1√
c2
(l2 − ˆ̄vl1)

(
e

c2
m

(q−q̂) − 1
)
+

1

m

(
ue

c2
m

(q−q̂) − ˆ̄v2
)

(4.8b)
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4.2. FULL-STATE OBSERVER DESIGN

with

u = F − c0 +
c21
4c2

v̄ =
√
c2v +

c1
2
√
c2

l1 > −c1
m

l2 >
c1

4
√
c2m

.

Since the force is now also an unknown output, the term u needs to be replaced by û.
Hence, the full-state observer shall be formulated as follows:

˙̂q = v̂ +
m

c2
l1

(
e

c2
m

(q−q̂) − 1
)
= ˙̂qnoDL

˙̂v =
1√
c2
(l2 − ˆ̄vl1)

(
e

c2
m

(q−q̂) − 1
)
+

1

m

(
ûe

c2
m

(q−q̂) − ˆ̄v2
)

= ˙̂vnoDL +
1

m
(u− û)e

c2
m

(q−q̂)

˙̂
F = f3(q, q̂, v̂, F̂ , ū).

(4.9)

It is desired to keep the structure of position and velocity observers the same, while
designing the observer function f3(q, q̂, v̂, F̂ , ū). One could design an observer for F , by
simply replacing the true values of F with its estimate F̂ :

˙̂
F = −1

τ
(F̂ − ū). (4.10)

Then, by defining the observer error for force as ũ = u− û = F − F̂ , one could realize
that we have the following stable error dynamics:

˙̃u = −1

τ
ũ, (4.11)

with analytical solution

ũ(t) = ũ(0)e−
t
τ . (4.12)

Hence, regardless of the controller we use, it is guaranteed that the force error is
bounded and converges to zero. Since (4.12) is continuously differentiable everywhere,
the force error dynamics is globally (uniformly) asymptotically stable (U-GAS). What is
left to check is whether the error in velocity still converges to zero; and if not, find the
conditions where the error dynamics remain uniformly asymptotically stable (UAS).
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4.3. STABILITY OF OBSERVER ERROR DYNAMICS

4.3 Stability of observer error dynamics

The full-state observer leads to the following error dynamics in matrix form as follows:

˙̃z = (A− LC)z̃ +

[
0√

c2
m

e
c2
m

q

]
ũ

˙̃u = −1

τ
ũ.

(4.13)

It should be noted that the affine term
√
c2
m

e
c2
m

q is unbounded if q̇ > 0. Hence, the
stability of the error dynamics shall be analysed under three cases depending on the time
derivative of q(t).

Case (i): q̇(t) ≥ 0

We retry putting the error dynamics into cascaded form by using the following error
state instead:

w̃ = e−
c2
m

qz̃. (4.14)

Taking the time derivative of new error coordinate transformation, we obtain the fol-
lowing result:

˙̃w = e−
c2
m

q ˙̃z − c2
m
q̇e−

c2
m

qz̃

= (A− LC − c2
m
q̇)e−

c2
m

qz̃ +

[
0√
c2
m

]
ũ

= (A− LC − c2
m
q̇)w̃ +

[
0√
c2
m

]
ũ.

(4.15)

The dynamics for force error is kept the same. Hence, we obtain the following cascaded
system:

˙̃w =
(
A− LC − c2

m
q̇(t)

)
w̃| {z }

f1(w̃,t)

+

[
0√
c2
m

]
| {z }
g(w̃,t)

ũ

˙̃u = −1

τ
ũ = f2(ũ).

(4.16)

Assuming first that Σ1,w : ˙̃w = f1(w̃, t), let V (t, w̃) = w̃TPw̃ be a Lyapunov candidate
function with P a square scalar matrix to be determined. The time derivative along Σ1,w

of the candidate function is computed as
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4.3. STABILITY OF OBSERVER ERROR DYNAMICS

V̇ (t, w̃) = ˙̃wTPw̃ + w̃TP ˙̃w

= w̃T
h(

A− LC − c2
m
q̇(t)

)
P + P

(
A− LC − c2

m
q̇(t)

)i
w̃

= w̃T

[
(A− LC)T P + P (A− LC)− 2c2

m
q̇(t)P

]
w̃

= −w̃TQ(t)w̃.

(4.17)

For Q(t) = QT (t) > 0, which guarantees V̇ (t, w̃) is negative semi-definite, the matrix
P is a solution to the following Lyapunov equation derived from (4.17):[

(A− LC)T P + P (A− LC)− 2c2
m

q̇(t)P

]
= −Q. (4.18)

By choosing Q(t) = 2c2
m
q̇(t)P + I, (4.18) simplifies into

(A− LC)T P + P (A− LC) = −I (4.19)

which has a unique and positive-definite solution for P equal to the matrix obtained in
(3.26-3.27), the case without driveline dynamics. This leads to the same Lyapunov function
in (3.28), which is positive-definite. Since the Lyapunov function is also radially unboun-
ded, the last step would be to check the condition that makes Q(t) positive definite:

2c2
m

q̇(t)P + I > 0 =⇒ q̇(t) > − m

2c2
P−1. (4.20)

Since P−1 is positive definite, q̇(t) ≥ 0 is a sufficient condition for Q(t) to be positive
definite. In addition, f1(w̃, t) is linear in w̃; thus, the assumption on Σ1,w is satisfied.

The assumption on Σ2 : f2(ũ) is also satisfied, since the time integral (2.17) for any
time t0 ≥ 0 is bounded by a function κ(.), which is of class K w.r.t. |ũ(t0)|:Z ∞

t0

||ũ(t)||dt =
Z ∞

t0

|ũ(t0)|e− t
τ dt

=
|ũ(t0)|

τ
e−

t0
τ

≤ |ũ(t0)|
τ

= κ(|ũ(t0)|).

(4.21)

Finally, the remaining step is to show that g(w̃, t) has an upper bound as follows:

g(w̃, t) =

[
0√
c2
m

]

≤
∣∣∣∣
[

0√
c2
m

]∣∣∣∣| {z }
θ1

+

∣∣∣∣
[
0 0
0 0

]∣∣∣∣| {z }
θ2

|w̃| . (4.22)

Caner Yılmaz 21



4.3. STABILITY OF OBSERVER ERROR DYNAMICS

Therefore, by [17], the cascaded system is UAS for all q̇(t) = v(t) ≥ 0.

From a practical perspective, this proof is sufficient, since a vehicle in a platoon cannot
achieve negative velocity in Drive gear. However, for controlled system with controller
composed of estimates from the observer, it is possible to achieve negative velocity (e.g.
when the initial values of velocity and force are set to zero). Hence, the stability of the
cascaded system is also tested for q̇(t) < 0.

Case (ii): q̇(t) < 0

Recall the pre-transformed cascaded system in (4.13). In Section 3.4, it is already
shown that Σ1 : ˙̃z = f1(z̃, t) is U-GAS. Since f1(z̃, t) is linear in z̃, the assumption on Σ1

is satisfied. The assumption on Σ2 also holds, as already proven in (4.21). The remaining
step is to show upper bound on |g(w̃, t)|, when q̇(t) < 0. If q is monotonically decreasing,
the upper bound can be trivially found as

g(w̃, t) =

[
0√

c2
m

e
c2
m

q

]

≤
∣∣∣∣
[

0√
c2
m

e
c2
m

q0

]∣∣∣∣| {z }
θ1

+

∣∣∣∣
[
0 0
0 0

]∣∣∣∣| {z }
θ2

|w̃| (4.23)

with finite q0 = q(0).

Case (iii): Mix of q̇(t) < 0 and q̇(t) ≥ 0

Now, suppose that decrease or increase in q is not monotonic, i.e. ∃t1 < t such that
q̇(t1) = 0 and sign(q̇(t−1 )) = −sign(q̇(t+1 )) �= 0. Since q is continuously differentiable, a
local extremum is created at time t1, which is bounded. If there are similar instances at
time T = t1, t2, ..., tn ∈ [0, t), multiple local extrema are created accordingly. If T is a finite
set and q̇(t) < 0 for t > tn, the upper bound of |g(w̃, t)| can be expressed as

g(w̃, t) =

[
0√

c2
m

e
c2
m

q

]

≤
∣∣∣∣
[

0√
c2
m

e
c2
m

qmax

]∣∣∣∣| {z }
θ1

+

∣∣∣∣
[
0 0
0 0

]∣∣∣∣| {z }
θ2

|w̃| (4.24)

where qmax is a finite value expressed by

qmax = max

 
q0,

n[
ti∈T

q(ti)

!
. (4.25)
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However, if either T is not finite or q̇(t) > 0 for all t > tn, we do not have a mathem-
atical proof on whether the observer error dynamics still tend to zero. The case of having
q̇(t) = v(t) in both positive and negative regions is further explored through simulations
in Sections 4.3 and 5.3.

4.4 Simulation test

The simulation test is conducted in MATLAB, with the set values given in Table 4.1.

Table 4.1: Initial state and state estimation values

m True value Estimate #1 Estimate #2 Estimate #3

q0 [m] 0 0 0 0
v0 [m/s] 20 10 -5 25
F0 [N] 4000 2500 4500 6000

The vehicle parameters are computed/assigned mostly based on Toyota Prius [19]; and
the motivation behind the choice of the numerical values of these parameters can be found
in Appendix A. Along with observer gains, the constant parameters are given in Table 4.2.

Table 4.2: Vehicle parameters and observer gains

Vehicle parameters

m 1400 [kg]
τ 0.1
c0 144.207 [N]
c1 4 [Ns/m]
c2 0.3803 [Ns2/m]

Observer gains

l1 10
l2 1000

The simulation (the code which is given in Appendix B) is done for 300 seconds, with
timestep Δt = 0.01s, i.e., position measurements are assumed to be obtained at 100 Hz.
The true and estimated state trajectories plotted in Figure 4.1, indicate that the observer
error converges to zero for all states. The convergence rate of velocity estimation (to
true trajectory) is slower, compared to position and force. This is likely because velocity
observer is subject to tuning of both l1 and l2. It is also worth noting that the observer is
working fine even when the velocity became negative, giving us more confidence that the
observer may be working globally.
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Figure 4.1: State trajectories and estimation errors pertaining to Tables 4.1 and 4.2

4.5 Summary

First, the local and global observability of the full system is assessed. Then, it is found
out that the system does not have a coordinate transformation, which leads to linearized
error dynamics. Hence, the full-state observer is designed directly by substitution of true
force value F , with its estimated version F̂ . The stability check according to [17] shows
that the full-state observer works globally, if the vehicle is restricted to forward or back-
ward movement only. Finally, the mathematical conclusion is verified by a simulation in
MATLAB.

In the next chapter, an observer-based degraded CACC framework is proposed.
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Chapter 5

Observer-based CACC and
simulations

This chapter is dedicated to design of the controller for the vehicle subject to absence
of global velocity and acceleration measurements, the latter of which depends on both
velocity and force terms. In CACC, a spacing error function is constructed. This function
denotes the error in the desired intervehicular distance the vehicle tries to achieve with the
predecessor. In CACC, there are two main objectives that must be achieved:

• The system achieves stable tracking dynamics; global velocity, acceleration and con-
trol input remains bounded when incoming signal on predecessor information is
bounded. Additionally, the tracking error dynamics is 0-GAS i.e., ai−1 = 0 implies
the spacing error globally asymptotically converges to zero.

• String stability is achieved; the energy of the disturbances in traffic flow does not
grow in the direction of platoon upstream. Mathematically, this is equivalent to
||ai||L2 ≤ ||ai−1||L2 for any follower vehicle i [11].

The design of CACC will follow a similar format as a-CACC; except now we have a
nonlinear vehicle model. In [9], it is observed that u-CACC and observer-based a-CACC
has similar performance in achieving the two objectives above. a-CACC also removes the
necessity to require information on τi−1 and ui−1.

5.1 CACC with perfect measurements

We start by defining the spacing error es by [7]:

es = qi−1 − qi − (Li + hivi) (5.1)

where subscript (i − 1) denotes predecessor vehicle, while (Li + hivi) is the desired in-
tervehicular distance. The length of the vehicle is denoted by Li, while hi ∈ R+ is the
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desired time headway of the vehicle. It is assumed that the vehicle i processes predecessor
information with the following model below:

q̇i−1 = vi−1

v̇i−1 = ai−1.
(5.2)

The first and second time derivatives of spacing error are computed as follows:

ės = vi−1 − vi − hiv̇i

= vi−1 −
(
1− hic1

mi

)
vi +

hic2
mi

v2i −
hi

mi

(Fi − c0)
(5.3)

ës = ai−1 − hi

mi

Ḟi −
(
1− c1hi

mi

− 2hic2
mi

vi

)
v̇i

= ai−1 +
hi

miτi
(Fi − ūi)−

(
1− c1hi

mi

− 2hic2
mi

vi

)
v̇i.

(5.4)

As the spacing error to converge to zero, the relative velocity ev = vi−1− vi should also
converge to zero (otherwise, the platoon may not remain in equilibrium post-convergence).
Hence, we shall add ev as another error coordinate. Its time derivative is as follows:

ėv = ai−1 − v̇i = ai−1 − 1

mi

(
Fi − c0 − c1vi − c2v

2
i

)
. (5.5)

The tracking error state vector is denoted by ec = [es1 es2 ev]
T , where

es1 = es

es2 = ės = ės1.
(5.6)

Combining (5.3), (5.5) and (5.6); v̇i can be rewritten as

v̇i =
ev − es2

hi

. (5.7)

The controller employed is a combination of a PD-controller and a feed forward as
follows:

ūi =
miτi
hi

[
Kpes1 +Kdes2 −

(
1− c1hi

mi

− 2hic2
mi

vi

)
v̇i + ai−1

]
+ Fi (5.8)

where Kp and Kd are constant proportional and derivative gains of the controller, respec-
tively. The goal behind the design of (5.8) is to obtain a linear form for the tracking error
dynamics. Note that we will need to replace vi with the observer estimate v̂i, when com-
bining the tracking and observer error dynamics. However, for this step, the goal is to first
ensure stability when measurements are available.

After implementing the controller (5.8), the tracking error dynamics is obtained as
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⎡
⎣ ˙es1

˙es2
ėv

⎤
⎦ =

⎡
⎣ 0 1 0
−Kp −Kd 0
0 1

hi
− 1

hi

⎤
⎦

| {z }
Ac

⎡
⎣es1es2
ev

⎤
⎦+

⎡
⎣00
1

⎤
⎦ ai−1 (5.9)

Here, ai−1 can be treated as an input to the tracking error dynamics. Hence, in order
to achieve asymptotic stability, the eigenvalues of Ac must be in LHP. The eigenvalues are
computed as follows:

(
− 1

hi

,
−Kd ±

p
K2

d − 4Kp

2

)
. (5.10)

For asymptotic stability, it is sufficient to have Kp > 0 and Kd > 0.

In order to show ISS with respect to ai−1, first assume that ai−1 = 0. We will take the
Lyapunov candidate function:

V1 = eTc Pec (5.11)

where P is a square matrix to be determined; and ec = [es1 es2 ev]
2 is the tracking error

state vector. Taking the time derivative of V yields the following:

V̇1 = eTc [A
T
c P + PAc]ec = −eTc Qec (5.12)

for some matrix Q. This implies that

AT
c P + PAc = −Q. (5.13)

We shall choose an arbitrary positive definite matrix Q first, say Q = I. This would
automatically satisfy the conditions V̇1 ≤ 0 ∀ec; and V̇1 = 0 ⇐⇒ ec = 0. Then, the goal is
to verify the range of values for Kp and Kd such that V1 remains positive definite. Solving
(5.11) and (5.13) simultaneously yields the Lyapunov function:

V1 = [KdKp(es2 + ev)
2 +KdK

2
phi(es1 − hiev)

2 +K2
dKph

2
i e

2
v

+ (Kph
2
i +Kdhi + 1)(Kdes1 + es2)

2 + (2Kp +K2
ph

2
i )e

2
s2

+ (K3
ph

2
i +K2

ph
2
i + 2K2

p +Kp +KdKphi +KdK
2
phi)e

2
s1]

/ [2KpKd(Kph
2
i +Kdhi + 1)]

(5.14)

which purely consists of quadratic terms. Hence, in order for V1 to be positive definite
for all values of ec, the leading coefficient of each quadratic term must be positive. The
leading coefficients of first and fourth quadratic term are positive iff
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(Kph
2
i +Kdhi + 1)−1 > 0

Kphi(Kph
2
i +Kdhi + 1)−1 > 0

Kdh
2
i (Kph

2
i +Kdhi + 1)−1 > 0

(KpKd)
−1 > 0.

(5.15)

The inequalities in (5.15) are satisfied iff Kp, Kd, hi > 0. Under this condition, it is clear
that the remaining quadratic terms have positive leading coefficients. Consequently, V1 is
positive definite ∀ec; and is equal to zero iff ec = 0. Hence, the tracking error dynamics is
0-GAS for Kp, Kd, hi > 0. The system (5.9) is also in LTI form; therefore, by [20], it can
is concluded that the tracking error dynamics is ISS with respect to ai−1. In other words,
bounded predecessor acceleration measurement leads to bounded tracking error state ec.

5.2 Degradation of CACC

Since global velocity and force measurements are not available, these variables are gener-
ated by their estimates. Then, the controller (5.8) becomes:

ˆ̄ui =
miτi
hi

[
Kpês1 +Kdês2 −

(
1− c1hi

mi

− 2hic2
mi

v̂i

)
˙̂vi + ai−1

]
+ F̂i (5.16)

where ˙̂vi = âi is the acceleration estimate obtained from the full-state observer. Mean-
while, estimates of tracking errors are generated by

ês1 = qi−1 − q̂i − Li − hiv̂i

ês2 = vi−1 − ˙̂qi − hi
˙̂vi = ˙̂es1

êv = vi−1 − ˙̂qi.

(5.17)

The controller can be rewritten as

ˆ̄ui =
miτi
hi

[Kpês1 +Kdês2 + ai−1]−
(
miτi
hi

− c1τi − 2c2τiv̂i

)
˙̂vi + F̂i

= ūi + (F̂i − Fi)− miτi
hi

[Kp(es1 − ês1) +Kd(es2 − ês2)]

+

(
miτi
hi

− c1τi

)
(v̇i − ˙̂vi)− 2c2τi(viv̇i − v̂i ˙̂vi)

= ūi + γ(.).

(5.18)

Under the assumption vi ≥ 0, we had established the observer error decays to zero
uniform asymptotically. Hence, the function γ(.) composed of additional terms due to
degradation of CACC, also decays to zero as time t → ∞. Since γ(.) is continuous, it
remains bounded for bounded predecessor information. Summation of two bounded and
continuous functions is bounded, the new input ˆ̄ui remains bounded. Whether this new
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input leads to asymptotic convergence of spacing error to zero, is tested with MATLAB in
the next section.

5.3 Simulation tests

5.3.1 Observability of the system in a mix of forward and back-
ward motion

This subsection provides a counterexample to the observability of the system (2.4) per-
taining to Case (iii) of Section 4.3. For this counterexample, it is assumed the predecessor
vehicle i− 1 has the same mathematical model (2.4) as the follower vehicle i; and has the
following input:

ūi−1 =

⎧⎪⎨
⎪⎩
2000 t ∈ [10, 30)

−2000 t ∈ [50, 70)

0 otherwise

[N ]. (5.19)

Without counteracting forces, this input translates into acceleration and deceleration
of about ai−1 ≈ 1.4 m/s2, which is a reasonable value. It is assumed that vehicles are
initially in steady state; that is, they travel at same initial velocity of 20 m/s. The state
estimate of vehicle i can be an arbitrary real column vector. In this regard, the simulation
is conducted with these initial conditions (with same SI units as in Table 4.1):

xi−1(0) = [70 20 0]T xi(0) = [0 20 0]T x̂i(0) = [0 30 50]T

In order to have a starting point, desired time headway for the follower vehicle is taken
as h = 1.75 s, in accordance with the string stability analysis of [9]. The observer gains
l1 = l2 = 10 are assigned based on the lower bounds in (3.14). The values of the remaining
constants can be found in Appendix A. The simulation (the code which is given in Ap-
pendix C.1) is conducted for 300 seconds, with sampling time Δt = 0.01s. For consistency,
the true value is also computed with the same Δt (instead of using ode45, which has vary-
ing timestep).

In Figure 5.1, it can be seen that the observer struggles to drive the velocity estimate
to its true value. In its corresponding error plot, we see that the offset between estimate
and true value starts increasing at around t = 70s, where the vehicle has zero velocity. For
acceleration, it is less obvious. Within the first 100 seconds, the acceleration estimation
seems to be following the true value quite nicely; and the acceleration seems to converge
to zero by then. However, extension of the simulation to 300 seconds shows that the accel-
eration error does not stay at zero. This is supported by the visible offset in acceleration
curves starting from t = 200 s.
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Figure 5.1: Counterexample to observability of Case (iii)

In regards to Section 4.4, we had confidence that the observer could work globally.
However, this simulation gave us unexpected results. Along the mathematical proof in
Section 4.3, it is guaranteed that the observer error converges to zero asymptotically if and
only if the vehicle is restricted to moving forward or backward.

5.3.2 Stability of tracking dynamics

In previous subsection, it was found that a mix of forward an backward motion lead to
instability in observer error dynamics, which subsequently led to spacing error to also grow.
Therefore, the input of the leader vehicle should be revised such that in steady state, the
thrust force dominates the rolling resistance and counteracting drag forces. The new input
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(5.20) for the leader below is designed to test the performance of the follower vehicle’s
controller against sudden thrust or braking of the leader, while still keeping the vehicle
platoon in forward motion. This input is

ūi−1 =

⎧⎪⎨
⎪⎩
4000 t ∈ (10, 30]

−2000 t ∈ (50, 70]

1000 otherwise

[N ]. (5.20)

The simulation is conducted with the same initial true state values as Section 5.3.1:

xi−1(0) = [70 20 0]T xi(0) = [0 20 0]T .

Instead of assigning a single initial value for follower state estimate, we create vectors
for initial estimates of velocity and force as follows:

v̂i(0) = −50, . . . ,−1, 0, 1, . . . , 50 [m/s]

F̂i(0) = −5000, . . . ,−100, 0, 100, . . . 5000 [N ]

Since measurement on global position is available, it is assumed qi(0) = q̂i(0) = 0. In
order to reduce simulation time, the timestep is increased to Δt = 0.1 s. The time headway
and observer gains are kept the same (i.e. hi = 1.75 s and l1 = l2 = 10). The vehicle
parameters and control values can be found in Appendix A, while the simulation code can
be found in Appendix C.2.

Mesh surfaces in Figures 5.2 and 5.3 denote the spacing error es1 and its rate es2, as a
function of initial velocity and force estimates. It is observed that for any initial estimate,
the spacing error and its rate converge to zero as time goes to infinity. In other words,
when the spacing error converges to zero, it stay zero. Even at time instances of 50 and 100
seconds (i.e., soon after predecessor’s gas and braking signals, respectively), a considerable
amount of reduction in spacing error occurs. Based on the simulations, we may conclude
that the observer-based controller leads to stable tracking dynamics for a sufficiently large
pool of initial state estimation.

5.3.3 String stability

For string stability analysis, the robustness of CACC controller is tested with a harmonic
signal for predecessor acceleration along the linear system (5.2):

ai−1 = cos (ωt) (5.21)

where ai−1 varies with the frequency of the signal, ω. In order to avoid an observability
issue similar to the one in Section 5.3.1, a cosine wave is preferred over more commonly
used sine wave. The driveline dynamics present in follower vehicle’s model (2.4) acts as a
low-pass filter; hence, it is found to be sufficient that the frequency of (5.21) is kept at low
values, say ω ∈ [0, 0.2] Hz. Initially, the vehicles start at steady state; they have constant
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t = 0 s
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Figure 5.2: Spacing error at times t = 0, 50, 100, 500 s

initial velocity of 20 m/s at time t0 = 0.

Recall that for string stability, it is required that ||ai||L2 ≤ ||ai−1||L2 for any follower
vehicle i. We go with a numerical approach and define the ratio of the accelerations as

|Γ(jω)|L2 =
||ai(jω)||L2

||ai−1(jω)||L2

=

rP
k

∣∣∣a(k)i (jω)
∣∣∣2rP

k

∣∣∣a(k)i−1(jω)
∣∣∣2 (5.22)

where superscript (k) stands for k-th output in discrete-time. In MATLAB, L2 norm can
be computed with the command norm(X,2); with X replaced by the vector of all values
of acceleration output. For string stability, it is aimed that

|Γ(jω)|L∞ = maxω∈[0,∞)|Γ(jω)|L2 ≤ 1. (5.23)

The simulations are conducted in two steps: Observer tuning and determining minimum
time headway. Due to CACC controller (5.16) being composed of observer estimations,
it is hypothesized that the choice of observer gains have a significant effect on the string
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t = 0 s
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Figure 5.3: Spacing error rate at times t = 0, 50, 100, 500 s

stability. Then, with an appropriate choice of observer gains, a minimum required time
headway can be computed numerically. The MATLAB simulation codes for both steps can
be found in Appendix D.1 and D.2, in respective order.

Step 1: Observer tuning

In this step, the effects of observer tuning on the string stability is studied. This is tested
by assigning a sufficiently large pool of values for observer gains l1 and l2. The range of
values used are

l1 = 1, 2, . . . , 20

l2 = 1, 201, . . . , 4001.

The simulation is tested with the following initial conditions:

xi−1(0) = [70 20 0]T xi(0) = [0 20 0]T x̂i(0) = [0 10 500]T .

The sampling time is set to Δt = 0.01 s and the simulation is run for 100 seconds with
the leader acceleration (5.21) fixed at a low frequency of ω = 0.01 Hz, since it is expected
|Γ|L2 in (5.23) will be larger at lower frequencies. The simulation is done with two distinct
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time headway values.

Figure 5.4 illustrates the effect of tuning the observer gains, on the value of |Γ|L2 . For
low time-headway (h = 1.75 s), the minimum acceleration ratio seems to be located at
around (l1, l2) = (20, 600). However, the gradient in |Γ|L2 is significant around that point,
which may imply that the location of absolute minimum was mostly determined by the
specific numerical values of initial conditions. For both time headway instances, choosing
high l1 with low l2 seems to be undesirable due to large |Γ|L2 value. Since it is aimed
to achieve string stability by gradually increasing time headway, it is preferred that the
gradient of |Γ|L2 around the chosen observer gain coordinates is low (i.e. the mesh surface
remains relatively flat at both time headway instances). In this regard, it is best to have
l1 in mid-range value, while l2 is within high-end range. However, no definitive correlation
that is invariant of initial conditions could be made between observer gains and string
stability.

Figure 5.4: |Γ|L2 for a large pool of observer gains at two time headway instances

Step 2: Determining minimum time headway

In this step, the minimum time headway required to respond to the harmonic signal (5.21)
is numerically computed. In light of conclusions made in Step 1, the observer gains are
now fixed at

l1 = 10, l2 = 3000.

Similar to Step 1, |Γ|L2 is computed through MATLAB simulation. This time, though,
we consider all frequencies ω ∈ [0, 0.2] Hz. The simulation is run repeatedly by manually
increasing the time headway with small increments. It is found that string stability is
achieved for h ≥ 2.44 s. The left plot of Figure 5.5 shows that the acceleration norm curve
of the leader is always above the follower, implying that the two-vehicle platoon is string
stable. The right plot indicates that maximum value of |Γ|L2 is achieved at about 0.015
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Hz. The mean value of each period of the curve also decreases with increased frequency,
which validates our hypothesis that the platoon is more likely to stay string stable to higher
frequency harmonic signals.
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Figure 5.5: Acceleration norms and norm ratio of two vehicles at h = 2.44 s
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Chapter 6

Conclusion and future work

6.1 Conclusion

In [9], an observer-based a-CACC framework is proposed for a vehicle (with linear model)
subject to loss of global and predecessor acceleration measurements. In this thesis, we
provide an extension to the existing a-dCACC by including the effects of counteracting
forces such as rolling resistance, damping and drag forces; thus leading to a nonlinear
vehicle model. In addition to global acceleration measurement, the vehicle is also subject
to loss of global velocity measurement, due to inherent measurement noise of wheel encoder
or LiDAR’s inefficiency in heavy weather conditions.

It is found that if the applied force of the vehicle is controlled directly, by considering
force as a controllable input, a global observer can be designed with an appropriate change
of coordinates to input and state. However, the incorporation of linear driveline dynamics
into the model makes it quite difficult to design a global observer, since a suitable change
of coordinates to obtain linearized error dynamics does not exist for the full-order model.
This brings speculation as to whether the full-order model is globally observable because
the existing criteria [21, 22] on global observability of the polynomial systems lead to in-
conclusive result, due to everlasting increase in power of the velocity term with each order
of Lie derivative of output (i.e., position q). Even so, we managed to successfully design
an observer for strictly forward and backward motion of the vehicle, by mathematically
proving stability with a cascaded system approach.

Finally, an a-CACC framework is proposed, in which the controller uses the velocity
and force estimates obtained from the observer. Although a complete mathematical proof
has not been provided, the stability of tracking dynamics is shown through repeated sim-
ulations. It is found that even for large initial estimation errors, the spacing error decays
to zero, giving confidence that a mathematical proof can be made if we assume true ve-
locity to be bounded. The stability analysis was also conducted numerically. In the end,
string stability could be achieved by gradually increasing the time headway, a value which
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depends on the initial spacing error. On the other hand, no definitive correlation could be
made between tuning the observer and achieving string stability.

6.2 Future Work

The main improvement we recommend is about the vehicle model. Currently, it takes
rolling resistance and friction to be constant. In addition, the rolling resistance and drag
forces always act in same direction, regardless of the direction vehicle is moving. This may
be the root of the global observability problem. A solution might be to treat c0, c1, c2 as
dependent variables and include them in the space vector. A simpler, though may not be
the most accurate, option could be to modify the model (2.4) such that

q̇i = vi

v̇i =
1

mi

[Fi − (c0sign(vi) + c1vi + c2vi|vi|)]

Ḟi = − 1

τi
Fi +

1

τi
ūi.

(6.1)

This small change would lead to counteracting forces always acting in opposite direct
of vehicle’s movement. In this way, there is a higher likelihood that the system becomes
globally observable even in the case, where the vehicle switches between forward and back-
ward motion.

Although we know that the string stability is dependent on the time headway, the time
headway is not automatically adjusted to accommodate for string stability. Hence, the
automation of observer tuning and time headway adjustment in a nonlinear system can be
one of the future topics. In addition, the effects of communication delay and predecessor
signal noise can be investigated.
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Appendix A

Vehicle parameters

The specs of Toyota Prius [19] are taken as reference for assigning the vehicle paramters
c0, c1 and c2. The rolling resistance c0 can be computed by,

c0 = CrrN = Crrmg (A.1)

where N = mg is the normal force acting on the vehicle, with vehicle mass m = 1400 kg
and gravitational acceleration g = 9.81 m/s2. Toyota Prius uses low rolling resistance
tires, so the average rolling resistance coefficient is taken from the catalogue [23]:

Crr = 0.0105. (A.2)

Substituting the numerical values, we obtain

c0 = 144.207 N. (A.3)

The damping coefficient was not available explicitly in the vehicle specs. Hence, an
acceptable value for damping coefficient is assigned as,

c1 = 4 Nm/s. (A.4)

The drag force D (with back pressure neglected) is computed by

D =
1

2
ρSCDv

2 = c2v
2 (A.5)

with air density ρ = 1.225 kg/m3 at sea level and drag coefficient CD = 0.24. Maximum
velocity of Toyota Prius is 180 km/h (or 50 m/s), which is approximately 0.15 times the
speed of sound (Mach) at sea level. Below Mach 0.3, the change in air flow density is less
than 5%; thus, the air flow can be assumed to be incompressible (i.e. air density ρ can be
assumed constant). The drag coefficient is solely dependent on vehicle geometry, so it is
also constant.

The surface area S is taken to be the front cross-sectional area of the vehicle. That is,

S = (car width)× (car height) = 1.760m× 1.470m (A.6)
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Substitution of the numerical values leads to

D = 0.3803v2 ⇒ c2 = 0.3803 Ns2/m2. (A.7)

The remaining constants are set to the following values:

τ = 0.1

L = 4 m

Kp = 0.2

Kd = 0.7.

(A.8)

Unless stated otherwise, the platoon is assumed to be homogeneous with same c0, c1, c2
coefficients.

44 Caner Yılmaz



Appendix B

Observer test

This appendix contains the MATLAB code for testing the observer in Section 4.4.

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 INIT = [0 20 40 00 ] ;
4 INITH = [0 10 2500 ; 0 −5 4500 ; 0 25 6 0 00 ] ;
5 rho = 1 . 2 25 ; Cd = 0 . 2 4 ; S = 1 . 4 70∗1 . 7 60 ; nu = 0 . 7 ; g =9.81;
6 q (1 ) = INIT (1) ; v (1 ) = INIT (2) ; F(1) = INIT (3) ;
7 qh ( 1 , : ) = INITH ( : , 1 ) . ’ ; vh ( 1 , : ) = INITH ( : , 2 ) . ’ ; Fh ( 1 , : ) = INITH ( : , 3 ) . ’ ;
8 m = 1400; tau = 0 . 1 ; c0 = 0.0105∗m∗9 . 8 1 ; c1 = 4 ; c2 = .5∗ rho∗S∗Cd;
9

10 dt = 0 . 0 1 ;
11 t = 0 : dt : 3 0 0 ;
12 L1 = 10 ;
13 L2 = 1000 ;
14

15 f o r i = 1 : l ength ( t )−1
16

17 v t i l = sq r t ( c2 ) ∗v ( i ) + c1 /(2∗ s q r t ( c2 ) ) ;
18

19 qdot ( i ) = v ( i ) ;
20 vdot ( i ) = (1/m) ∗(F( i )−c0−c1∗v ( i )−c2∗v ( i ) ˆ2) ;
21 Fdot ( i ) = (1/ tau )∗(−F( i ) ) ;
22

23 f o r j = 1 :3
24 v h t i l = sq r t ( c2 ) ∗vh ( i , j ) + c1 /(2∗ s q r t ( c2 ) ) ;
25 qhdot ( i , j ) = vh ( i , j ) + (m/c2 ) ∗L1∗( exp ( c2 ∗( q ( i )−qh ( i , j ) ) /m)−1) ;
26 vhdot ( i , j ) = (1/ sq r t ( c2 ) ) ∗(L2−v h t i l ∗L1) ∗( exp ( c2 ∗( q ( i )−qh ( i , j ) ) /m)−1) . . .
27 + (1/m) ∗ ( ( exp ( c2 ∗( q ( i )−qh ( i , j ) ) /m) ∗(Fh( i , j )−c0+c1 ˆ2/(4∗ c2 ) ) ) . . .
28 −v h t i l ˆ2) ;
29 Fhdot ( i , j ) = (1/ tau )∗(−Fh( i , j ) ) ;
30

31 q ( i +1) = q( i ) + qdot ( i ) ∗dt ;
32 v ( i +1) = v( i ) + vdot ( i ) ∗dt ;
33 F( i +1) = F( i ) + Fdot ( i ) ∗dt ;
34
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35 qh ( i +1, j ) = qh ( i , j ) + qhdot ( i , j ) ∗dt ;
36 vh ( i +1, j ) = vh ( i , j ) + vhdot ( i , j ) ∗dt ;
37 Fh( i +1, j ) = Fh( i , j ) + Fhdot ( i , j ) ∗dt ;
38

39 end
40 end
41

42 eq = [ q ; q ; q]−qh . ’ ; ev = [ v ; v ; v]−vh . ’ ; eF = [F ; F ; F]−Fh . ’ ;
43 %%
44

45 f i g u r e (1 )
46

47 subp lot ( 2 , 1 , 1 )
48 p lo t ( t , qh , ’− ’ , ’ LineWidth ’ , 3 )
49 hold on
50 p lo t ( t , q , ’− ’ , ’ LineWidth ’ , 3 )
51 x l ab e l ( ’Time ( s ) ’ )
52 y l ab e l ( ’ Po s i t i on (m) ’ , ’ FontSize ’ , 12)
53 l egend ( ’ Estimate #1 ’ , ’ Estimate #2 ’ , ’ Estimate #3 ’ , ’ True value ’ )
54 s e t ( gca , ’ f o n t s i z e ’ , 14)
55 xlim ( [ 0 100 ] )
56 subp lot ( 2 , 1 , 2 )
57 p lo t ( t , eq , ’− ’ , ’ LineWidth ’ , 3 )
58 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 12)
59 y l ab e l ( ’ Po s i t i on e r r o r (m) ’ , ’ FontSize ’ , 12)
60 s e t ( gca , ’ f o n t s i z e ’ , 14)
61 xlim ( [ 0 100 ] )
62 f i g u r e (2 )
63

64 subp lot ( 2 , 1 , 1 )
65 p lo t ( t , vh , ’− ’ , ’ LineWidth ’ , 3 )
66 hold on
67 p lo t ( t , v , ’− ’ , ’ LineWidth ’ , 3 )
68 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 16)
69 y l ab e l ( ’ Ve loc i ty (m/ s ) ’ , ’ FontSize ’ , 16)
70 l egend ( ’ Estimate #1 ’ , ’ Estimate #2 ’ , ’ Estimate #3 ’ , ’ True value ’ )
71 s e t ( gca , ’ f o n t s i z e ’ , 14)
72

73 subp lot ( 2 , 1 , 2 )
74 p lo t ( t , ev , ’− ’ , ’ LineWidth ’ , 3 )
75 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 12)
76 y l ab e l ( ’ Ve l oc i ty e r r o r (m) ’ , ’ FontSize ’ , 12)
77 s e t ( gca , ’ f o n t s i z e ’ , 14)
78 f i g u r e (3 )
79

80 subp lot ( 2 , 1 , 1 )
81 p lo t ( t , Fh , ’− ’ , ’ LineWidth ’ , 3 )
82 hold on
83 p lo t ( t ,F , ’− ’ , ’ LineWidth ’ , 3 )
84 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 12)
85 y l ab e l ( ’ Thrust (N) ’ , ’ FontSize ’ , 12)
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86 l egend ( ’ Estimate #1 ’ , ’ Estimate #2 ’ , ’ Estimate #3 ’ , ’ True value ’ , ’ FontSize ’ , 13)
87 xlim ( [ 0 1 ] )
88 s e t ( gca , ’ f o n t s i z e ’ , 14)
89 subp lot ( 2 , 1 , 2 )
90 p lo t ( t , eF , ’ LineWidth ’ , 3 )
91 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 14)
92 y l ab e l ( ’ Thrust e r r o r (m) ’ , ’ FontSize ’ , 14)
93 xlim ( [ 0 1 ] )
94 s e t ( gca , ’ f o n t s i z e ’ , 14)
95

96 f i g u r e (4 )
97 subp lot ( 2 , 1 , 1 )
98 p lo t ( t ( 1 : end−1) , vhdot , ’ LineWidth ’ , 3 )
99 hold on

100 p lo t ( t ( 1 : end−1) , vdot , ’ LineWidth ’ , 3 )
101 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 12)
102 y l ab e l ( ’ Acc e l e r a t i on (m/ s ˆ2) ’ , ’ FontSize ’ , 14)
103 l egend ( ’ Estimate #1 ’ , ’ Estimate #2 ’ , ’ Estimate #3 ’ , ’ True value ’ , ’ FontSize ’ , 13)
104 xlim ( [ 0 100 ] )
105 s e t ( gca , ’ f o n t s i z e ’ , 14)
106

107 subp lot ( 2 , 1 , 2 )
108 p lo t ( t ( 1 : end−1) , [ vdot ; vdot ; vdot ] . ’ − vhdot , ’ LineWidth ’ , 3 )
109 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ , 12)
110 y l ab e l ( ’ Acc e l e r a t i on e r r o r (m/ s ˆ2) ’ , ’ FontSize ’ , 12)
111 xlim ( [ 0 100 ] )
112 s e t ( gca , ’ f o n t s i z e ’ , 14)
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Appendix C

Tracking dynamics

This appendix contains the MATLAB code which can be used for obtaining state traject-
ories and spacing error curves or surfaces for a two-vehicle platoon. In particular, the first
code is used in Section 5.3.1, while the latter is used in Section 5.3.2.

C.1 State trajectory and estimation errors

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 Crr = 0 . 0105 ;
3 rho = 1 . 2 25 ; Cd = 0 . 2 4 ; S = 1 . 4 70∗1 . 7 60 ; g =9.81;
4 m = 1400 ; tau = . 1 ; c0 = Crr∗m∗g ; c1 = 4 ; c2 = 0.5∗ rho∗Cd∗S ;
5

6 INIT = [0 20 0 ] ;
7 INITH = [0 30 5 0 ] ;
8 INITL = [70 20 0 ] ;
9

10 q (1 ) = INIT (1) ; v (1 ) = INIT (2) ; F(1 ) = INIT (3) ;
11 qh (1) = INITH(1) ; vh (1 ) = INITH(2) ; Fh(1 ) = INITH(3) ;
12 q l (1 ) = INITL (1) ; v l ( 1 ) = INITL (2) ; Fl (1 ) = INITL (3) ;
13

14 L1 = 10 ; L2 = 10 ; dt = 0 . 0 1 ;
15 t = 0 : dt : 3 0 0 ; h = 1 . 7 5 ; Kp = . 2 ; Kd = . 7 ; L = 4 ;
16

17 f o r i = 1 : l ength ( t )−1
18 %Leader S i gna l
19 i f t ( i ) > 10 & t ( i ) <= 30
20 ul ( i ) = 2000 ;
21 %ul ( i ) = 4000 ;
22 e l s e i f t ( i ) > 50 & t ( i ) <= 70
23 ul ( i ) = −2000;
24 e l s e
25 ul ( i ) = 0 ;
26 %ul ( i ) = 1000 ;
27 end
28 end
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C.1. STATE TRAJECTORY AND ESTIMATION ERRORS

29

30 v t i l = sq r t ( c2 ) ∗v ( i ) + c1 /(2∗ s q r t ( c2 ) ) ;
31 v h t i l = sq r t ( c2 ) ∗vh ( i ) + c1 /(2∗ s q r t ( c2 ) ) ;
32 v h t i l l = sq r t ( c2 ) ∗ v l ( i ) + c1 /(2∗ s q r t ( c2 ) ) ;
33

34 q ldot ( i ) = v l ( i ) ;
35 v ldot ( i ) = (1/m) ∗( Fl ( i )−c0−c1∗ v l ( i )−c2∗ v l ( i ) ˆ2) ;
36 Fldot ( i ) = (1/ tau )∗(−Fl ( i )+ul ( i ) ) ;
37

38 qdot ( i ) = v ( i ) ;
39 vdot ( i ) = (1/m) ∗(F( i )−c0−c1∗v ( i )−c2∗v ( i ) ˆ2) ;
40

41 qhdot ( i ) = vh ( i ) + (m/c2 ) ∗L1∗( exp ( c2 ∗( q ( i )−qh ( i ) ) /m)−1) ;
42 vhdot ( i ) = (1/ sq r t ( c2 ) ) ∗(L2−v h t i l ∗L1) ∗( exp ( c2 ∗( q ( i )−qh ( i ) ) /m)−1) . . .
43 + (1/m) ∗ ( ( (Fh( i )−c0+c1 ˆ2/(4∗ c2 ) ) ∗( exp ( c2 ∗( q ( i )−qh ( i ) ) /m) ) )−v h t i l ˆ2) ;
44

45 e1 ( i ) = q l ( i ) − q ( i ) − h∗v ( i ) − L ;
46 e2 ( i ) = v l ( i ) − v ( i ) − h∗vdot ( i ) ;
47

48 e1h ( i ) = q l ( i ) − qh ( i ) − h∗vh ( i ) − L ;
49 e2h ( i ) = v l ( i ) − qhdot ( i ) − h∗vhdot ( i ) ;
50

51 U( i ) = Fh( i )+(m∗ tau/h) ∗(Kp∗e1h ( i )+Kd∗e2h ( i ) − . . .
52 (1−c1∗h/m − 2∗h∗ c2∗vh ( i ) /m) ∗vhdot ( i ) + v ldot ( i ) ) ;
53

54 Fdot ( i ) = (1/ tau )∗(−F( i )+U( i ) ) ;
55 Fhdot ( i ) = (1/ tau )∗(−Fh( i )+U( i ) ) ;
56

57 q ( i +1) = q( i ) + qdot ( i ) ∗dt ;
58 v ( i +1) = v( i ) + vdot ( i ) ∗dt ;
59 F( i +1) = F( i ) + Fdot ( i ) ∗dt ;
60

61 qh ( i +1) = qh ( i ) + qhdot ( i ) ∗dt ;
62 vh ( i +1) = vh ( i ) + vhdot ( i ) ∗dt ;
63 Fh( i +1) = Fh( i ) + Fhdot ( i ) ∗dt ;
64

65 q l ( i +1) = q l ( i ) + q ldot ( i ) ∗dt ;
66 v l ( i +1) = v l ( i ) + v ldot ( i ) ∗dt ;
67 Fl ( i +1) = Fl ( i ) + Fldot ( i ) ∗dt ;
68 end
69 %%
70 f i g u r e (1 )
71

72 subp lot ( 2 , 1 , 1 )
73 p lo t ( t , q , ’ Linewidth ’ , 2 )
74 hold on
75 p lo t ( t , qh , ’ Linewidth ’ , 2 )
76 hold on
77 p lo t ( t , ql , ’ Linewidth ’ , 2 )
78 x l ab e l ( ’Time ( s ) ’ )
79 y l ab e l ( ’ Po s i t i on (m) ’ )
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C.1. STATE TRAJECTORY AND ESTIMATION ERRORS

80 l egend ( ’ True value ’ , ’ Estimate ’ , ’ Leader ’ )
81

82 subp lot ( 2 , 1 , 2 )
83 p lo t ( t , q−qh , ’ Linewidth ’ , 2 )
84 x l ab e l ( ’Time ( s ) ’ )
85 y l ab e l ( ’ Po s i t i on e r r o r (m) ’ )
86

87 f i g u r e (2 )
88

89 subp lot ( 2 , 1 , 1 )
90 p lo t ( t , v , ’ Linewidth ’ , 2 )
91 hold on
92 p lo t ( t , vh , ’ Linewidth ’ , 2 )
93 s e t ( gca , ’ Fonts i z e ’ , 14)
94 x l ab e l ( ’Time ( s ) ’ )
95 y l ab e l ( ’ Ve loc i ty (m/ s ) ’ )
96 l egend ( ’ True value ’ , ’ Estimate ’ )
97

98 subp lot ( 2 , 1 , 2 )
99 p lo t ( t , v−vh , ’ Linewidth ’ , 2 )

100 s e t ( gca , ’ Fonts i z e ’ , 14)
101 x l ab e l ( ’Time ( s ) ’ )
102 y l ab e l ( ’ Ve loc i ty e r r o r (m/ s ) ’ )
103

104 f i g u r e (3 )
105

106 subp lot ( 2 , 1 , 1 )
107 p lo t ( t ,F , ’ Linewidth ’ , 2 )
108 hold on
109 p lo t ( t , Fh , ’ Linewidth ’ , 2 )
110 s e t ( gca , ’ Fonts i z e ’ , 14)
111 x l ab e l ( ’Time ( s ) ’ )
112 y l ab e l ( ’ Thrust (N) ’ )
113 l egend ( ’ True value ’ , ’ Estimate ’ )
114

115 subp lot ( 2 , 1 , 2 )
116 p lo t ( t ,F−Fh , ’ Linewidth ’ , 2 )
117 x l ab e l ( ’Time ( s ) ’ )
118 y l ab e l ( ’ Thrust e r r o r (N) ’ )
119

120 f i g u r e (4 )
121

122 subp lot ( 2 , 1 , 1 )
123 p lo t ( t ( 1 : end−1) , vdot , ’ Linewidth ’ , 2 )
124 hold on
125 p lo t ( t ( 1 : end−1) , vhdot , ’ Linewidth ’ , 2 )
126 s e t ( gca , ’ Fonts i z e ’ , 14)
127 x l ab e l ( ’Time ( s ) ’ )
128 y l ab e l ( ’ Acc e l e r a t i on (m/ s ˆ2) ’ )
129 l egend ( ’ True value ’ , ’ Estimate ’ )
130
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C.2. SPACING ERROR FOR A POOL OF INITIAL ESTIMATES

131 subp lot ( 2 , 1 , 2 )
132 p lo t ( t ( 1 : end−1) , vdot−vhdot )
133 s e t ( gca , ’ Fonts i z e ’ , 14)
134 x l ab e l ( ’Time ( s ) ’ )
135 y l ab e l ( ’ Acc e l e r a t i on e r r o r (m/ s ˆ2) ’ )
136

137 f i g u r e (5 )
138 p lo t ( t , [ 0 u l ] , ’ Linewidth ’ , 2 )
139 hold on
140 p lo t ( t , [ 0 U] , ’ Linewidth ’ , 2 )
141 l egend ( ’ Leader ’ , ’ Fo l lower ’ )
142 x l ab e l ( ’Time ( s ) ’ )
143 y l ab e l ( ’ Control Input (N) ’ )
144

145 f i g u r e (6 )
146

147 subp lot ( 2 , 1 , 1 )
148 p lo t ( t ( 1 : end−1) , e1 , ’ Linewidth ’ , 2 )
149 x l ab e l ( ’Time ( s ) ’ )
150 y l ab e l ( ’ Spacing er ror , e { s1 } (m) ’ )
151

152 subp lot ( 2 , 1 , 2 )
153 p lo t ( t ( 1 : end−1) , e2 , ’ Linewidth ’ , 2 )
154 x l ab e l ( ’Time ( s ) ’ )
155 y l ab e l ( ’ Spacing e r r o r rate , e { s2 }(m/ s ) ’ )

C.2 Spacing error for a pool of initial estimates

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 Crr = 0 . 0105 ;
3 rho = 1 . 2 25 ; Cd = 0 . 2 4 ; S = 1 . 4 70∗1 . 7 60 ; nu = 0 . 7 ; g = 9 . 8 1 ;
4 m = 1400 ; tau = . 1 ; c0 = Crr∗m∗g ; c1 = 4 ; c2 = 0.5∗ rho∗Cd∗S ;
5

6 INIT = [0 20 0 ] ;
7 qh0 = 0 ; vh0 = −50 :1 :50 ; Fh0 = −5000:100:5000; %INITH
8 INITL = [70 20 0 ] ;
9

10 q0 = INIT (1) ; v0 = INIT (2) ; F0 = INIT (3) ;
11 q l (1 ) = INITL (1) ; v l ( 1 ) = INITL (2) ; Fl (1 ) = INITL (3) ;
12

13 L1 = 10 ; L2 = 10 ; dt = 0 . 1 ;
14 t = 0 : dt : 5 0 0 ; h = 1 . 7 5 ; Kp = . 2 ; Kd = . 7 ; L = 4 ;
15 %%
16 f o r k = 1 : l ength (Fh0)
17 f o r j = 1 : l ength ( vh0 )
18 f o r i = 1 : l ength ( t )−1
19

20 i f i == 1
21 vh ( i , j , k ) = vh0 ( j ) ; Fh( i , j , k ) = Fh0(k ) ; qh ( i , j , k ) = qh0 ;
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C.2. SPACING ERROR FOR A POOL OF INITIAL ESTIMATES

22 q ( i , j , k ) = q0 ; v ( i , j , k ) = v0 ; F( i , j , k ) = F0 ;
23 end
24

25 i f t ( i ) > 10 & t ( i ) <= 30
26 ul ( i ) = 4000 ;
27 e l s e i f t ( i ) > 50 & t ( i ) <= 70
28 ul ( i ) = −2000;
29 e l s e
30 ul ( i ) = 1000 ;
31 end
32 end
33 % ul ( i ) = 2000 ;
34 v t i l = sq r t ( c2 ) ∗v ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
35 v h t i l = sq r t ( c2 ) ∗vh ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
36 v h t i l l = sq r t ( c2 ) ∗ v l ( i ) + c1 /(2∗ s q r t ( c2 ) ) ;
37

38 q ldot ( i ) = v l ( i ) ;
39 v ldot ( i ) = (1/m) ∗( Fl ( i )−c0−c1∗ v l ( i )−c2∗ v l ( i ) ˆ2) ;
40 Fldot ( i ) = (1/ tau )∗(−Fl ( i )+ul ( i ) ) ;
41

42 qdot ( i , j , k ) = v ( i , j , k ) ;
43 vdot ( i , j , k ) = (1/m) ∗(F( i , j , k )−c0−c1∗v ( i , j , k )−c2∗v ( i , j , k ) ˆ2) ;
44

45 qhdot ( i , j , k ) = vh ( i , j , k ) + (m/c2 ) ∗L1∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m)−1) ;
46 vhdot ( i , j , k ) = (1/ sq r t ( c2 ) ) ∗(L2−v h t i l ∗L1) ∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m

)−1) . . .
47 + (1/m) ∗ ( ( (Fh( i , j , k )−c0+c1 ˆ2/(4∗ c2 ) ) ∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m)

) )−v h t i l ˆ2) ;
48

49 e1 ( i , j , k ) = q l ( i ) − q ( i , j , k ) − h∗v ( i , j , k ) − L ;
50 e2 ( i , j , k ) = v l ( i ) − v ( i , j , k ) − h∗vdot ( i , j , k ) ;
51

52 e1h ( i , j , k ) = q l ( i ) − qh ( i , j , k ) − h∗vh ( i , j , k ) − L ;
53 e2h ( i , j , k ) = v l ( i ) − qhdot ( i , j , k ) − h∗vhdot ( i , j , k ) ;
54

55 U( i , j , k ) = Fh( i , j , k )+(m∗ tau/h) ∗(Kp∗e1h ( i , j , k )+Kd∗e2h ( i , j , k ) − . . .
56 (1−c1∗h/m − 2∗h∗ c2∗vh ( i , j , k ) /m) ∗vhdot ( i , j , k ) + vldot ( i ) ) ;
57

58 Fdot ( i , j , k ) = (1/ tau )∗(−F( i , j , k )+U( i , j , k ) ) ;
59 Fhdot ( i , j , k ) = (1/ tau )∗(−Fh( i , j , k )+U( i , j , k ) ) ;
60

61 q ( i +1, j , k ) = q ( i , j , k ) + qdot ( i , j , k ) ∗dt ;
62 v ( i +1, j , k ) = v ( i , j , k ) + vdot ( i , j , k ) ∗dt ;
63 F( i +1, j , k ) = F( i , j , k ) + Fdot ( i , j , k ) ∗dt ;
64

65 qh ( i +1, j , k ) = qh ( i , j , k ) + qhdot ( i , j , k ) ∗dt ;
66 vh ( i +1, j , k ) = vh ( i , j , k ) + vhdot ( i , j , k ) ∗dt ;
67 Fh( i +1, j , k ) = Fh( i , j , k ) + Fhdot ( i , j , k ) ∗dt ;
68

69 q l ( i +1) = q l ( i ) + q ldot ( i ) ∗dt ;
70 v l ( i +1) = v l ( i ) + v ldot ( i ) ∗dt ;
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71 Fl ( i +1) = Fl ( i ) + Fldot ( i ) ∗dt ;
72 end
73 end
74 end
75

76 %%
77

78 E1 ( : , : ) = e1 ( 3 0 0 1 , : , : ) ; %F i r s t coo rd ina te o f e1 determines k−th time
79

80 f i g u r e (1 )
81

82 [ Vh0 , FFh0 ] = meshgrid ( vh0 , Fh0) ;
83 Z1 = gr iddata ( vh0 , Fh0 , E1 ,Vh0 , FFh0) ;
84 mesh (Vh0 , FFh0 , Z1 )
85 s e t ( gca , ’ FontSize ’ , 20)
86 x l ab e l ( ’ $$\hat{v } (0 ) $$ (m/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)
87 y l ab e l ( ’ $$\hat{F} (0 ) $$ (N) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)
88 z l a b e l ( ’ $$e { s1 }$$ (m) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)
89

90 E2 ( : , : ) = e2 ( end , : , : ) ; %F i r s t coo rd ina te o f e2 determines k−th time
91

92 f i g u r e (2 )
93

94 [ Vh0 , FFh0 ] = meshgrid ( vh0 , Fh0) ;
95 Z2 = gr iddata ( vh0 , Fh0 , E2 ,Vh0 , FFh0) ;
96 mesh (Vh0 , FFh0 , Z2 )
97 s e t ( gca , ’ FontSize ’ , 20)
98 x l ab e l ( ’ $$\hat{v } (0 ) $$ (m/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)
99 y l ab e l ( ’ $$\hat{F} (0 ) $$ (N) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)

100 z l a b e l ( ’ $$e { s2 }$$ (m/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 22)
101 %zl im ([ − .5 1 ] )
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Appendix D

String stability

This appendix contains the MATLAB codes used for string stability analysis in Section
5.3.3.

D.1 Step 1: Observer tuning

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %I n i t i a l c ond i t i on s [ q0 v0 F0 ]
4 INIT = [0 20 0 ] ; %Veh ic l e i
5 INITH = [0 10 5 0 0 ] ; %Veh ic l e i e s t imate
6 INITL = [70 20 0 ] ; %Veh ic l e i−1
7

8 %Constants
9 rho = 1 . 2 25 ; Cd = 0 . 2 4 ; S = 1 . 4 70∗1 . 7 60 ; g =9.81;

10

11 m = 1400; tau = 0 . 1 ; c0 = 0.0105∗m∗g ; c1 = 4 ; c2 = .5∗ rho∗Cd∗S ;
12 L1 = l i n s p a c e (1 , 20 , 20 ) ; L2 = l i n s p a c e (1 ,4001 ,20) ; dt = 0 . 1 ;
13 t = 0 : dt : 1 0 0 ; h = 3 ; Kp = . 2 ; Kd = . 7 ; L = 4 ; w = . 0 1 ;
14

15 q ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INIT (1) ; v ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) =
INIT (2) ; F( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INIT (3) ;

16 qh ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INITH(1) ; vh ( 1 , 1 : l ength (L1) , 1 : l ength (L2) )
= INITH(2) ; Fh ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INITH(3) ;

17 q l ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INITL (1) ; v l ( 1 , 1 : l ength (L1) , 1 : l ength (L2) )
= INITL (2) ; Fl ( 1 , 1 : l ength (L1) , 1 : l ength (L2) ) = INITL (3) ;

18 %%
19 f o r k = 1 : l ength (L2)
20 f o r j = 1 : l ength (L1)
21 f o r i = 1 : l ength ( t )−1
22

23 v t i l = sq r t ( c2 ) ∗v ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
24 v h t i l = sq r t ( c2 ) ∗vh ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
25 v h t i l l = sq r t ( c2 ) ∗ v l ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
26
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27 i f v h t i l == NaN | v t i l == NaN
28 break
29 end
30

31 q ldot ( i , j , k ) = v l ( i , j , k ) ;
32 v ldot ( i , j , k ) = cos (w∗ t ( i ) ) ;
33

34 qdot ( i , j , k ) = v ( i , j , k ) ;
35 vdot ( i , j , k ) = (1/m) ∗(F( i , j , k )−c0−c1∗v ( i , j , k )−c2∗v ( i , j , k ) ˆ2) ;
36

37 qhdot ( i , j , k ) = vh ( i , j , k ) + (m/c2 ) ∗L1( j ) ∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m)
−1) ;

38 vhdot ( i , j , k ) = (1/ sq r t ( c2 ) ) ∗(L2(k )−v h t i l ∗L1( j ) ) ∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j
, k ) ) /m)−1) . . .

39 + (1/m) ∗ ( ( (Fh( i , j , k )−c0+c1 ˆ2/(4∗ c2 ) ) ∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m)
) )−v h t i l ˆ2) ;

40

41 e1 ( i , j , k ) = q l ( i , j , k ) − q ( i , j , k ) − h∗v ( i , j , k ) − L ;
42 e2 ( i , j , k ) = v l ( i , j , k ) − v ( i , j , k ) − h∗vdot ( i , j , k ) ;
43

44 e1h ( i , j , k ) = q l ( i , j , k ) − qh ( i , j , k ) − h∗vh ( i , j , k ) − L ;
45 e2h ( i , j , k ) = v l ( i , j , k ) − qhdot ( i , j , k ) − h∗vhdot ( i , j , k ) ;
46

47 U( i , j , k ) = Fh( i , j , k )+(m∗ tau/h) ∗(Kp∗e1h ( i , j , k )+Kd∗e2h ( i , j , k ) − . . .
48 (1−c1∗h/m − 2∗h∗ c2∗vh ( i , j , k ) /m) ∗vhdot ( i , j , k ) + vldot ( i , j , k ) ) ;
49

50 Fdot ( i , j , k ) = (1/ tau )∗(−F( i , j , k )+U( i , j , k ) ) ;
51 Fhdot ( i , j , k ) = (1/ tau )∗(−Fh( i , j , k )+U( i , j , k ) ) ;
52

53 q ( i +1, j , k ) = q ( i , j , k ) + qdot ( i , j , k ) ∗dt ;
54 v ( i +1, j , k ) = v ( i , j , k ) + vdot ( i , j , k ) ∗dt ;
55 F( i +1, j , k ) = F( i , j , k ) + Fdot ( i , j , k ) ∗dt ;
56

57 qh ( i +1, j , k ) = qh ( i , j , k ) + qhdot ( i , j , k ) ∗dt ;
58 vh ( i +1, j , k ) = vh ( i , j , k ) + vhdot ( i , j , k ) ∗dt ;
59 Fh( i +1, j , k ) = Fh( i , j , k ) + Fhdot ( i , j , k ) ∗dt ;
60

61 q l ( i +1, j , k ) = q l ( i , j , k ) + q ldot ( i , j , k ) ∗dt ;
62 v l ( i +1, j , k ) = v l ( i , j , k ) + v ldot ( i , j , k ) ∗dt ;
63

64 end
65 end
66 end
67

68 %%
69 f o r k = 1 : l ength (L2)
70 f o r j = 1 : l ength (L1)
71

72 l2norm ( j , k ) = norm( vdot ( : , j , k ) , 2 ) /norm( v ldot ( : , j , k ) , 2 ) ;
73

74 end
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75 end
76

77 [ LL1 , LL2 ] = meshgrid (L1 , L2) ;
78 Z = gr iddata (L1 , L2 , l2norm , LL1 , LL2) ;
79 mesh (LL1 , LL2 , Z)
80 s e t ( gca , ’ f o n t s i z e ’ , 14)
81 x l ab e l ( ’ L 1 ’ )
82 y l ab e l ( ’ L 2 ’ )
83 z l a b e l ( ’ | \Gamma | 2 ’ )
84 %ylim ( [ 0 6001 ] )
85 %zl im ( [ 0 2 ] )

D.2 Step 2: Determining minimum time headway

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %I n i t i a l c ond i t i on s [ q0 v0 F0 ]
4 INIT = [0 20 0 ] ; %Veh ic l e i
5 INITH = [0 10 5 0 0 ] ; %Veh ic l e i e s t imate
6 INITL = [70 20 0 ] ; %Veh ic l e i−1
7

8 %Constants
9 rho = 1 . 2 25 ; Cd = 0 . 2 4 ; S = 1 . 4 70∗1 . 7 60 ; g =9.81;

10

11 m = 1400; tau = 0 . 1 ; c0 = 0.0105∗m∗g ; c1 = 4 ; c2 = .5∗ rho∗Cd∗S ;
12 L1 = 10 ; L2 = 3000 ; dt = 0 . 0 1 ;
13 t = 0 : dt : 1 0 0 ; h = 2 . 4 4 ; Kp = . 2 ; Kd = . 7 ; L = 4 ;
14

15 w = 0 : 0 . 0 1 : 2 ; %frequency range
16

17 q ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INIT (1) ; . . .
18 v ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INIT (2) ; . . .
19 F(1 , 1 : l ength (h) , 1 : l ength (w) ) = INIT (3) ;
20 qh ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITH(1) ; . . .
21 vh ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITH(2) ; . . .
22 Fh( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITH(3) ;
23 q l ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITL (1) ; . . .
24 v l ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITL (2) ; . . .
25 Fl ( 1 , 1 : l ength (h) , 1 : l ength (w) ) = INITL (3) ;
26

27 f o r k = 1 : l ength (w)
28 f o r j = 1 : l ength (h)
29 f o r i = 1 : l ength ( t )−1
30

31 v t i l = sq r t ( c2 ) ∗v ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
32 v h t i l = sq r t ( c2 ) ∗vh ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
33 v h t i l l = sq r t ( c2 ) ∗ v l ( i , j , k ) + c1 /(2∗ s q r t ( c2 ) ) ;
34

35 i f v h t i l == NaN | v t i l == NaN
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36 break
37 end
38

39 q ldot ( i , k ) = v l ( i , k ) ;
40 v ldot ( i , k ) = cos (w(k ) ∗ t ( i ) ) ;
41

42 qdot ( i , j , k ) = v ( i , j , k ) ;
43 vdot ( i , j , k ) = (1/m) ∗(F( i , j , k )−c0−c1∗v ( i , j , k )−c2∗v ( i , j , k ) ˆ2) ;
44

45 qhdot ( i , j , k ) = vh ( i , j , k ) +(m/c2 ) ∗L1∗( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m)−1) ;
46 vhdot ( i , j , k ) = (1/ sq r t ( c2 ) ) ∗(L2−v h t i l ∗L1) ∗( exp ( c2 ∗( q ( i , j , k ) − . . .
47 qh ( i , j , k ) ) /m)−1)+ (1/m) ∗ ( ( (Fh( i , j , k )−c0+c1 ˆ2/(4∗ c2 ) ) ∗ . . .
48 ( exp ( c2 ∗( q ( i , j , k )−qh ( i , j , k ) ) /m) ) )−v h t i l ˆ2) ;
49

50 e1 ( i , j , k ) = q l ( i , j , k ) − q ( i , j , k ) − h( j ) ∗v ( i , j , k ) − L ;
51 e2 ( i , j , k ) = v l ( i , j , k ) − v ( i , j , k ) − h( j ) ∗vdot ( i , j , k ) ;
52

53 e1h ( i , j , k ) = q l ( i , j , k ) − qh ( i , j , k ) − h( j ) ∗vh ( i , j , k ) − L ;
54 e2h ( i , j , k ) = v l ( i , j , k ) − qhdot ( i , j , k ) − h( j ) ∗vhdot ( i , j , k ) ;
55

56 U( i , j , k ) = Fh( i , j , k )+(m∗ tau/h( j ) ) ∗(Kp∗e1h ( i , j , k )+Kd∗e2h ( i , j , k ) − . . .
57 (1−c1∗h( j ) /m − 2∗h( j ) ∗ c2∗vh ( i , j , k ) /m) ∗vhdot ( i , j , k ) + vldot ( i , k ) ) ;
58

59 Fdot ( i , j , k ) = (1/ tau )∗(−F( i , j , k )+U( i , j , k ) ) ;
60 Fhdot ( i , j , k ) = (1/ tau )∗(−Fh( i , j , k )+U( i , j , k ) ) ;
61

62 q ( i +1, j , k ) = q ( i , j , k ) + qdot ( i , j , k ) ∗dt ;
63 v ( i +1, j , k ) = v ( i , j , k ) + vdot ( i , j , k ) ∗dt ;
64 F( i +1, j , k ) = F( i , j , k ) + Fdot ( i , j , k ) ∗dt ;
65

66 qh ( i +1, j , k ) = qh ( i , j , k ) + qhdot ( i , j , k ) ∗dt ;
67 vh ( i +1, j , k ) = vh ( i , j , k ) + vhdot ( i , j , k ) ∗dt ;
68 Fh( i +1, j , k ) = Fh( i , j , k ) + Fhdot ( i , j , k ) ∗dt ;
69

70 q l ( i +1,k ) = q l ( i , k ) + q ldot ( i , k ) ∗dt ;
71 v l ( i +1,k ) = v l ( i , k ) + v ldot ( i , k ) ∗dt ;
72 %Fl ( i +1, j , k ) = Fl ( i , j , k ) + Fldot ( i , j , k ) ∗dt ;
73

74

75 end
76 end
77 end
78

79

80 f o r k = 1 : l ength (w)
81 Vlw(k ) = norm( v ldot ( : , k ) , 2 ) ;
82 f o r j = 1 : l ength (h)
83 Vw( j , k ) = norm( vdot ( : , j , k ) , 2 ) ;
84 l2norm ( j , k ) = Vw( j , k ) /Vlw(k ) ;
85

86 end
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87 end
88

89 Lmax = max( l2norm ) %|Gamma | i n f −−− must not exceed 1
90

91 %% Plot s
92 f i g u r e (1 )
93 p lo t (w( 2 : end ) , l2norm ( 2 : end ) , ’ LineWidth ’ , 2 )
94 x l ab e l ( ’ Frequency (Hz) ’ )
95 y l ab e l ( ’ | a i | 2 / | a { i −1}| 2 ’ )
96

97 f i g u r e (2 )
98 p lo t (w,Vlw , ’ LineWidth ’ , 2 )
99 hold on

100 p lo t (w,Vw( 1 , : ) , ’ LineWidth ’ , 2 )
101 x l ab e l ( ’ Frequency (Hz) ’ )
102 y l ab e l ( ’ | a | 2 (m/ s ˆ2) ’ )
103 l egend ( ’ Leader ’ , ’ Fo l lower ’ )
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