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abstract—Behavior planning for autonomous vehicles is
subject to the challenges of uncertainty and non-convexity.
Mixed-Integer Quadratic Programming (MIQP) has been
proposed as a suitable approach capable of efficiently pro-
ducing optimal solutions to such non-convex problems.
However, the existing formulations assume the availabil-
ity of perfect predictions of the behavior of environment
vehicles. As perfect prediction methods do not exist for
mixed traffic scenarios, the application of the MIQP meth-
ods in practice can still lead to unsafe behavior. In this
paper, we propose an extension to the MIQP framework
that employs legal reachable set prediction-based emer-
gency maneuvers to guarantee safety under uncertainty.
Our algorithm guarantees collision avoidance in scenar-
ios with law-abiding road users, independent of predic-
tion quality. The approach is tested on a large volume of
randomly generated merging scenarios containing unpre-
dictable environment vehicle trajectories and it is shown
that our algorithm successfully resolves the safety issues of
previous work.

I INTRODUCTION

A. Background
In a report by the American National Highway Traffic Safety

Administration [1], the critical reason (i.e., the immediate rea-
son that made the crash imminent) for 95% of the investigated

motor vehicle crashes between July 2005 and December 2007

in the United States could be attributed to driver error. Al-

though the report emphasises that the critical reason is not

always the same as the cause of the crash, it nonetheless demon-

strates that automating the driving task can play an important

role in preventing crashes and improving driver safety in gen-

eral. Additionally, by automating the driving task, the driver
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of the vehicle could save time by spending the time ordinarily

spent driving on other productive tasks. Furthermore, entrust-

ing full control of the autonomous vehicle (AV) to its control

systems allows future implementations to optimize all aspects

of transportation, such as road throughput, sustainability, ride

comfort and travel time.

In realizing these benefits, the vehicles should ideally have

reached at least the fourth level of driving autonomy, as defined

by the SAE Definitions for Terms Related to Driving Automa-

tion Systems for On-Road Motor Vehicles [2]. This means the

vehicle (i) actively monitors its environment in real-time, and

(ii) is able to coordinate its actions safely and efficiently with-

out requiring human monitoring. To ensure the coordination

of actions results in safe and efficient behavior in practice, an

advanced decision making, i.e., control process is crucial. Fig.
1 shows an overview of how the AV control process (in orange)

[3] interacts with other components of the proposed AV archi-

tecture. Within this controller module architecture, the routing
module provides high-level goals (e.g., “merge onto the high-
way” or “take the next exit”) for which the behavior planner
generates an efficient trajectory that achieves the high-level

goal while avoiding collisions with other traffic. This trajec-

tory is followed through the low-level tracking controller’s high
frequency feedback actuation of the physical AV (plant).

As the behavior planner module is responsible for safety

and efficiency of the trajectory, which often passes through a

non-convex free space with uncertain future predictions, its

development is not only complex [4], but also central to the

AV control task. Additionally challenging is that the behavior

plannermust ensure that the trajectory it generates is followable

by the tracking controller, as the tracking controller cannot

realize every continuous curve imaginable as it is constrained

by the properties of the physical vehicle.

B. Related literature
Common approaches for the design of the behavior planner in

literature focus on finding ways around, e.g., the non-convexity
of the problem by exploiting properties of a specific scenario

[5]. In order to design a provably safe behavior planner for a
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Figure 1: Proposed AV architecture. Sensor data is processed by
two sensor fusion modules (yellow), a fast module for high-frequent
low-level feedback and a more extensive, or ‘detailed’, module sup-
plying the semantic environment information required for the predic-
tions modules. The ‘Most likely’ sub-component of the predictions
module (blue) produces a most likely scenario prediction of future
environment vehicle occupancies. The legal reachable-set (LRS) sub-
component conversely predicts the set of all possible locations each
environment vehicle could reach while satisfying the laws of physics
and the law of the road. The sub-components of the controller module
(orange) subsequently use this data, together with publicly available
traffic information, to actuate the ego vehicle (plant) safely and effi-
ciently.

highway take over scenario, the controller by Naumann et al.
[6] makes use of the explicit definition of a (highway-specific)

longitudinal safety gap. Additionally, their overtaking trajec-
tory is heuristically constrained to the sequence: constant ac-

celeration, constant velocity, constant acceleration. Similarly,

the provably robust highway merge controller by Cao et al.
[7] employs a method that finds the best ego vehicle trajectory

curve through parameter tuning of a certain parametric curve,

which has to be designed for each scenario specifically. Other

examples of scenario dependency in existing methods are the

pre-, peri- and post-regions in [8], the follower/predecessor-

and same-lane-or-not classification of neighboring vehicles re-

quired for the methods in [9] and [10], the overtaking win-

dow and critical-zone in [11], and the lane-dependent vehicle

avoidance triangles described in [12], all of which, due to these

scenario-specific solutions, are exclusively applicable to high-

way overtaking scenarios.

To overcome this problem of limited generalizability, the

methods in [13] and [14] use the direct encoding of all obsta-

cles (and future obstacle-scenario samples) into the environ-

ment. Dealing with the resulting non-convexity of the feasible

space is subsequently done by removing feasible space from

the scope until the remaining space forms a convex set (i.e.,
to solve the problem merely within a convex local part of the

complete non-convex space). In [13], this is achieved by fit-

ting obstacle-touching squares around the predicted future ego

vehicle positions and using these as the feasible space around

the respective ego vehicle position at each time step. In [14],

it is done by defining a tangential half-plane constraint, per-

pendicular w.r.t. the respective predicted ego-location, for each

obstacle (Monte Carlo) scenario sample. This causes all pre-

dicted scenario samples to lie within the resulting infeasible

region, while using only linear (convex) constraints. The main

downside of such approaches is that the optimization problem

only becomes convex because it is being constrained to find a

solution locally. This has the potential to increase the speed

of convergence, but does not eliminate non-convexity from

the main problem, merely from the one presented to the solver,

thus resulting in local minima. Additionally, due to the planned

locations of the ego vehicle affecting the construction of the

constraints, and the constraints affecting these planned loca-

tions in return, the algorithm must be ran sequentially, losing

some of the speed the linear constraints were able to gain.

An alternative approach to handling the non-convexity of the

feasible region generated by a direct encoding of all obstacles

into the optimization problem is described in [15] and [16].

These formulations explicitly encode the non-convex feasible

spaces into an optimization solver that is able to handle non-

convex (in these cases also non-linear) problems. Formulating

the optimization problem with a non-convex feasible space in

this direct way has the same downside as the aforementioned

convex reduction of the non-convex space, namely that a solver

generally cannot guarantee its solution to be a global optimum.

In solving the local-optima limitation, the only optimal con-

trol method that has been able to describe the environment as

directly (without the necessity for scenario-specific elements)

without losing global optimality guarantees is the “generic
mixed integer quadratic programming (MIQP) model predic-
tive control (MPC)” method described by Esterle et al. in
[17]. The method encodes the non-convex feasible space as

the union of a finite set of convex spaces, which together cover

the original feasible space without introducing conservatism.

Solving the planning problem for each permutation of the con-

vex feasible regions and returning the best one, the solver is

guaranteed to return the globally optimal solution. This would

result in an NP-hard problem, if not for the fact that the struc-

ture of the problem enables industrial solvers to leave sets of

permutations unsolved if they can be shown to either (i) have

properties which prevent them from achieving better outcomes

than ones already found or (ii) are infeasible w.r.t. the other

constraints.

The main remaining downside of the method in [17], is

that it assumes the availability of perfect predictions. This

would make the application of this method unsafe in practice,

as provably correct prediction methods do not exist yet [18]

(and can be conjectured to be impossible for mixed-traffic).

C. Contribution
To address this safety issue, we propose a new safe convex

behavior planning (SCBP) method that is able to plan safely

despite the inevitable imperfections of the most likely scenario

predictions module. Instead of computing probability distri-

butions and avoiding regions with a probability of occupancy

above a certain threshold [14, 15] (or ignoring the uncertainty

altogether [17]), the SCBP method uses legal reachable set
predictions of other road users [19, 20] to monitor the safety of
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the optimal path [21, 22] generated by the MIQP-MPC method

w.r.t. the most likely scenario prediction. The legal reachable

set of another road user is defined here as (an overestimation

of) the set of all points that this vehicle could occupy within a

future window of time, given that the vehicle (i) abides to the

law of the road and (ii) the laws of physics. While the proba-

bility distribution methods as in, e.g., [14, 15], merely limit the
chance of collision, this alternative approach can provide safety

guarantees. Indeed provided the initial state of the ego vehicle

does not make collision unavoidable, the technique achieves

recusive feasibility (and thereby, safety) through the planning

of an emergency intervention in case unexpected environment

vehicle maneuvers occur. In order to reduce the amount of

safety intervention events caused by poor-quality predictions

(or simply hard to predict environments), the SCBP method

offers the additional functionality of being able to incorpo-

rate information from the legal reachable set into the original

optimal path problem.

We show how the proposed method executes merging and

overtaking maneuvers autonomously while preserving suffi-

ciently large distance from environment vehicles, all without

explicit instruction. Additionally, we show that the new SCBP

method is able to maneuver collision free through traffic-law-

respecting environments by means of Monte Carlo simulation

of unpredictable environment vehicle trajectories. Lastly, we

demonstrate that the inclusion of legal reachability set infor-

mation into the optimal path problem can improve SCBP per-

formance.

D. Structure of the paper
In Sec. II, we present the intended use cases, define the prop-

erties of the environment, and formulate the behavior planner

problem. Next, the proposed solution — the safe convex be-

havior planner — is first outlined and then elaborated upon

in detail in Sec. III. In Sec. IV, the results of simulation ex-

periments comparing the proposed SCBP to the original MIQP

formulation performance are presented. Finally, the conclusion

and recommendations for future work are provided in Sec. V.

II PROBLEM FORMULATION

The safe behavior planning trajectory generation problem re-

volves around two fundamental goals.

• Safety: ensure that the ego vehicle does not risk collid-
ing with obstacles or road boundaries, irrespective of the

(unpredicatable) decisions made by other road users.

• Efficiency: whenever there is more than one way exe-
cute a maneuver, ensure the one that yields the best cost

realization is selected.

In order to outline the problem formulation, firstly the use

cases, the properties of and requirements for the environment

and the properties of the ego vehicle are discussed.

A. Use cases
Themethod developed in this paper is designed to be applicable

to a wide range of road scenarios. The properties the scenarios

are required to posses to enable the application of the SCBP

method are listed below. For any scenario to be suitable for

application of the SCBP in its current form, it is required that

R1: the maximum turning radius of the ego vehicle (cf.
Sec. II-B1) is known,

R2: a lanelet-map (cf. Sec. II-B2) of the environment is avail-
able,

R3: the initial states and dimensions of all environment vehi-
cles (cf. Sec. II-B3) are known,

R4: the scenario does not contain any traffic lights,

R5: an upper-bound on the acceleration of all environment

vehicles is known and

R6: the speed limit holding on each road section is known.

It is further assumed that in these scenarios, only the ego

vehicle is controlled by the SCBP, while the environment ve-

hicles are controlled by either human drivers or unidentified

control algorithms.

Two scenarios that satisfy these requirements are selected

to illustrate and test the proposed behavior planner approach,

cf. Fig. 2: (i) a curved merging scenario and (ii) a straight

merging scenario, both subject to mixed traffic. The curved

merging scenario is used as an example on which to illustrate

the qualitative aspects of the algorithm. The straight merg-

ing use case is used for Monte Carlo experiments that aim to

quantify (i) performance under uncertainty and (ii) the effect of

legal reachable set information incorporation into the original

planning problem.

The curved merging scenario, cf. Fig. 2A, consists of three

parallel lanes, the left lane of the main road (L-lane), right

lane of the main road (R-lane), and merging lane (M-lane)

connected to the right border of the right lane of the main

road. The R-lane center line is a curve with a radius of 200

(m). Two environment vehicles indicated by i ∈ {1, 2} with
respective velocities vi(t) ∈ R

2 defined w.r.t. the global iner-

tial (x1, x2)-frame drive on the R-lane with constant velocity
(‖v1(t)‖2, ‖v2(t)‖2) = (40, 44) (km/h) for all t ∈ R≥0. The

scenario starts with the ego vehicle on the M-lane, 60 (m)

before it ends, directly next to environment vehicle 1. Envi-

ronment vehicle 2 starts 40 (m) ahead of environment vehicle

1. The ego vehicle is instructed to track the center line of the

R-lane with a velocity of 80 (km/h). The scenario is simulated

for 8 (s).

The straight merging scenario, illustrated in Fig. 2B, also

consists of the L-, R- and M-lanes but with a non-curved road.

The ego vehicle is initialized on the M-lane, 75 (m) from its

end with velocity v(t0) =
[
80 0

]�
(km/h). Three environ-

ment vehicles i ∈ {1, 2, 3} are randomly placed, each xi
2(t0)-

coordinate on the center line of either the R-lane or L-lane with
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probability

Pr(xi
2 = xR-lane2 ) = 0.5 = PrC(xi

2 = xL-lane2 ).

Their xi
1-coordinate is randomly sampled from a uniform dis-

tribution between 0 and 100 (m) (as indicated as a grey area

in Fig. 2B) for all i ∈ {1, 2, 3} with the constraint that the
next vehicle on the same lane must have at least 33 (m) dis-

tance from the previously placed environment vehicle. Each

time an xi
1 sample does not satisfy this condition, a new xi

1

and xi
2 sample is generated until the new position does sat-

isfy this constraint. The environment vehicles generally travel

with a constant vi1 velocity that is randomly sampled from the
uniformly distributed range of [56, 80] (km/h). The sampled
vi1 values are constrained to be increasing when sorted on the
basis of increasing xi

1 coordinate to prevent rear-ending. In

this scenario, all environment vehicles initialized on the R-

lane reduce their velocity by 20% for two consecutive time

steps, starting at a time timerge sampled uniformly from [0, tscen],
where the scenario simulation lasts tscen = 8 (s). After this
brake maneuver, the vehicles are controlled back to their origi-
nal velocity. Further, the velocity in the lateral direction, vi2(t)
is subject to a normally distributed random force disturbance

that is rejected by a proportional lateral acceleration controller

penalizing error ε = xi
2 − xR-lane2 .

During simulations, as the most likely scenario prediction

method, a heuristic method that assumes lane-keeping and con-

stant acceleration is employed. This enables the simulation of

events where the most likely scenario predictor fails to antici-

pate on the brake maneuver of an environment vehicle, which

can happen in practice. This way, the ability of the emergency

maneuver method to neutralize this safety hazard is put to the

test.

B. Definitions
The environment in which the SCBP operates consists of a

road populated with environment vehicles and the ego vehicle

itself. Before articulating the problem formulation, these terms

are more clearly defined below.

1) Ego Vehicle
The state of the ego vehicle at time t is fully defined w.r.t. a
global inertial Cartesian (x1, x2) ∈ R

2-coordinate system by

its location s(t) ∈ R
2, velocity v(t) ∈ R

2 and orientation

θ(t) ∈ (−π, π], see Fig. 3. The dimensions of the ego vehicle
2w× (dr + lr + lf + df ) represent, respectively, its width 2w
and length dr + lr + lf + df composed of the distance from
rear axle to rear bumper dr, distance from rear axle to center
of mass lr, distance from center of mass to front axle lf and
distance from front axle to front bumper df . At time t, the area
occupied by the ego vehicle body is denoted by O(t) ⊂ R

2.

The ego vehicle in practice is a passenger car subject to

complex vehicle dynamics governing its velocity and heading

angle response to (accelerator- e(t) ∈ R and steering angle

A. curved merge scenario

B. straight merge scenario

ego vehicle

env. vehicle 2

env. vehicle 1

‖v0‖2 = 80 (km/h)

‖v1(t)‖2 = 40 (km/h) ∀t
‖v2(t)‖2 = 44 (km/h) ∀t

‖s20 − s10‖2 = 40 (m)

reference

trajectory

environment vehicle placement region

v0 = 80, vi(t) ∈ [56, 80] (km/h) ∀t, i ∈ N[1,3]

x1

x2

x1

x2

Figure 2: The use cases designed for experimenting and demonstrat-
ing the algorithm.

δ(t) ∈ R) inputs. Given that its state at time t is defined by

z(t) =
[
s(t)� v(t)� θ(t)

]�
, the vehicle dynamics can be

described as

ż(t) = fego(z(t), e(t), δ(t)),

for an appropriate function fego.
The main goal of this paper is to propose an SCBP frame-

work that is able to compute safe, comfortable, optimal and

followable trajectories. The minimum level of model com-

plexity required to demonstrate the ability of the algorithm to

respect vehicle (non-holonomic) dynamics constraints is the

kinematic bicycle model [23]. This is not to say that taking

into account more intricate properties of complex dynamical

(tyre slip-)vehicle models can not be beneficial to the imple-

mentation of a behavior planner in practice, merely that the

consideration of these properties is outside the scope of this

work.

The kinematic bicycle model [24] simplifies the kinematics

of a four-wheel front-steered vehicle by lumping its front- and

rear wheels into a single front-, respectively rear wheel. As the

vehicle still rotates around its instantaneous center of rotation

due to the kinematic non-slip assumption, the model output

does not deviate from a four-wheel kinematic model. The non-

slip assumption — the key difference between kinematic- and

dynamic models — serves to greatly reduce the degrees of

freedom, but does not significantly affect the behaviour results

in the linear range [23].
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dr lr lf df

w

CoM

s(t)

x1

x2

θ(t)

Figure 3: The ego vehicle geometry: the distance of its rear-end to
the rear-axle dr , the axle-distances from the CoM, lr , lf , and the
distance between its front-end and front-axle df . Additionally, the
CoM location s(t), width 2w and rotation θ(t) and the cartesian
global inertial frame (x1, x2) are illustrated.

The front wheel is subject to the steering angle input δ(t)
defined as the difference in heading angle of the front wheel

and of the the vehicle chassis, cf. Fig. 4. The entire vehicle

is additionally subject to the accelerator control input e(t),
governing the absolute velocity of the model. The dynamic

equations for this model can be derived as

[
v1(t)
v2(t)

]
= ν(t)

[
cos(θ(t) + β(δ(t)))
sin(θ(t) + β(δ(t)))

]
,

θ̇(t) =
ν(t)

lr
sin (β (δ(t))) , ν̇(t) = e(t)

β (δ(t)) = arctan

(
tan (δ(t))

lr
lf + lr

) (1)

where β (δ(t)) is the slip angle at the center of gravity.

v(t)

lr
lfCoM

δ(t)

β(t)

C

Figure 4: The kinematic bicycle model with (front wheel) steering
angle δ(t), sideslip angle β(t), velocity vector v(t), instantaneous
rotation center C and dimensions lr , lf .

2) Road Modeling
The environment is described by road maps that are gener-

ated offline. These maps (cf. Fig. 5) consist exclusively of

lanelet [25] elements, each denoted Lj for j ∈ {1, . . . , NL},
NL ∈ N≥0. A lanelet element L

j is a small section of road

encoded through a set of left- and right Lj = (Lj
L, L

j
R) ∈

R
2×NL × R

2×NL polyline road boundaries, defined in the

global cartesian inertial (x1, x2) ∈ R
2 coordinate frame. Each

lanelet Lj has a single associated speed limit vjmax ∈ R>0. A

road section subject to a changing speed limit, e.g., is therefore
described using at least as many atomic lanelet pieces as speed

limits, one per unique speed limit. The relative location of

the left Lj
L- and right L

j
R road boundary polylines is used to

indicate driving direction.

Using a directional graph, described by adjacency matrix

G ∈ {0, 1}NG , the legal traversals of lanelets are encoded.

Since every lanelet Lj has four potential connection sites: its

start, its end, its left- and its right border (denoted js, je, jr, and
jl respectively for j ∈ {1, . . . , NL} in Fig. 5), the adjacency
matrix G has dimension NG = (4 × NL) × (4 × NL). Note
that the adjacency matrix is inherently sparse as connections

such as, e.g., end-to-end, start-to-start, right-to-start etc. never
occur.

This yields the road environmentR fully described byR =
(L,V, G), with L = {L1, L2, . . . , LNL} and respectively V =
{v1max, v2max, . . . , vNL

max}.

2s

2e

2r

2l

1s1e1l 1r2s2e2l 2r3s3e3l 3r
G =

L1

L2

L3

v1max = 80 (kmh)
v2max = 50 (kmh)
v3max = 80 (kmh)

L1
L

L1
R

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1s
1e
1l
1r
2s
2e
2l
2r
3s
3e
3l
3r

Figure 5: A simple example of a road-map R = (L,V, G) that
is made up of three lanelets L = {L1, L2, L3} with corresponding
velocity limits V = {v1max, v2max, v3max} and adjacency matrix G, indi-
cating all legal transitions (in this case: end of L1 to start of L2,
and end of L1 to start of L3). Note that the driving direction can
be derived from the definition of the left Lj

L- and right L
j
R polylines

making up Lj .

3) Environment Vehicles
The ego vehicle shares the road with NO ∈ N≥0 other (AV

and non-AV) road users, referred to as environment vehicles.
The superscript ·i is used to indicate when a variable belongs to
environment vehicle i ∈ {1, 2, · · · , NO}. Variables describing
the ego vehicle simply omit the superscript. The state of the
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environment vehicle i at time t is described equivalently to
those of the ego vehicle through the tuple

(si(t), vi(t), θi(t), Oi(t)) ∈ R
2 × R

2 × (−π, π]× P (R2),

with P (R2) denoting the power set of R2. Requirements R2

and R5, respectively, state that this state information, in com-

bination with the dimensions 2wi× (dir+ lir+ lif +dif ), and an

upper-bounding acceleration value aimax ∈ R≥0 are available to

the algorithm for each of the environment vehicles at the time

of planning the trajectory. This value aimax is at least as high as
the highest achievable acceleration magnitude of the environ-

ment vehicle in both the lateral- and longitudinal directions,
i.e.,

aimax ≥ max(aimax,long, a
i
max,lat).

C. Problem Statement
A general discrete-time finite horizon h ∈ N≥1 constrained

optimization problem is to be formulated. Its objective is to

generate an optimal trajectory (denoted using ·∗) described by
S∗ = (s(0), s∗(1), . . . , s∗(h))with associated velocitiesV ∗ =
(v(0), v∗(1), . . . , v∗(h)) starting from the current position s0
and velocity state v0 of the ego vehicle, that achieves the lowest
cost w.r.t. finite horizon cost function Ĵ(S, V ). Here, notation
·(k) describes the value of the variable at t = t0+kτ , with τ ∈
R>0 the time step size. Since the predicted future positions S
are fully determined by the initial position s0 and all velocities
V = (v0, V[1,h]), notation Ĵ(s0, v0, V[1,h]) will be adopted
from this point on.

The objective is for the resulting trajectory to be comfortable

and—most fundamentally— tomake progress along the route

defined by the routing module. Therefore, the cost function

Ĵ(s0, v0, V[1,h]) is made up of the weighted sum of these two
components as

Ĵ(s0, v0, V[1,h]) = Ĵp(s0, v0, V[1,h]) + wĴc(V[1,h]), (2)

with input variables s0, v0, optimization variables V[1,h],

weight factor w ∈ R>0, comfort Ĵc- and Ĵp progress terms.
Adding the safety (defined through a no-collision-constraint

w.r.t. environment vehiclesO(t)∩Oi(t) = ∅ and satisfaction of
road boundariesO(t) ⊆ L condition ∀t ∈ [t0, t0+hτ ]) aspect
to this problem through constraints results in the optimization

problem formulation

V ∗
[1,h] =arg min

V[1,h]

Ĵ(s0, v0, V[1,h]) (3a)

s.t. ‖v(t)‖ ≤ vjmax if O(t) ∩ Lj �= ∅ (3b)

O(t) ∩Oi(t) = ∅ (3c)

O(t) ⊆ L (3d)

ż(t) = fego(z(t), e(t), δ(t)) (3e)

e(t) ∈ [emin, emax], δ(t) ∈ [δmin, δmax] (3f)

∀i ∈ {1, . . . , NO}, ∀j ∈ {1, . . . , NL} (3g)

∀t ∈ [t0, t0 + hτ ]. (3h)

The method by which this thus far conceptually formulated

optimization problem will be made computable and solved in

receding horizon fashion to produce the behavior planner, is

subject of the next section.

Given the above described environment, the ego vehicle, the

environment vehicles and a given target location or trajectory

that can be encoded as Ĵp(s0, v0, V[1,h]), the problem of solving
(3a-3h) can be stated as:

Given ego vehicle dynamics (1), initial state x0 that does not
make collision unavoidable, a road map R and regularly up-
dated road occupation information Oi(t0) for i = 1, . . . , NO,
develop a receding horizon behavior planner that iteratively
generates a (i) followable trajectory, (ii) guarantees law-
abiding-obstacle avoidance for t ≥ t0, (iii) minimizes safety
interventions, (iv) maximizes comfort and (v) does not suffer
from sub-optimal trajectories within the planning horizon h.

III METHOD

In solving the problem formulated in Sec. II, the SCBP algo-

rithm is developed. This section provides an overview of the

high-level workings of the algorithm, after which it goes into

detail on the computational methods required.

A. Main Algorithm Overview
The most intuitive, and most researched method of behavior

planner design is to make a most likely scenario prediction
of the future occupancies of the other road users and plan

a trajectory that avoids these obstacle occupancy predictions

[7, 9, 10, 12, 17], resulting inwhat thiswork refers to as the ideal
trajectory. Provided (i) the planning horizon is sufficiently long
and (ii) the most likely scenario prediction is 100% accurate in

predicting future road user occupancies, the direct application

of such ideal trajectory through a receding horizon scheme can

form a safe behavior planner.

The significant levels of uncertainty in the most likely sce-

nario predictions [18] unfortunatelymake the direct application

of ideal trajectories prone to safety issues in practice. This, as

the predicted trajectories used to avoid obstacles can deviate

from the true paths the vehicles take. This is why the method

proposed in this work couples the globally optimal ideal tra-

jectory generation method [17] with an emergency maneuver
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technique [21]. This way, the resulting architecture is able

to guarantee collision avoidance in environments with law-

abiding road users, without requiring perfect scenario predic-

tions.

1) Ideal Trajectory
The ideal trajectory T ∗ =

[
x∗
1
� x∗

2
� · · · x∗

h
�]�, where

x∗
k is the state at t = t0 + kτ described by x∗(t) =[
s∗1(t) v∗1(t) s∗2(t) v∗2(t)

]�
, is generated at t = t0 us-

ing the mixed integer quadratic programming (MIQP) model

predictive control (MPC) method developed by Esterle et al.
[17]. The method uses a convex partitioning of the often non-

convex feasible configuration space of the ego vehicle w.r.t. en-

vironment vehicle occupancy predictions to guarantee global

optimality w.r.t. its planning horizon h ∈ N≥1. The inte-

ger variables this method introduces, enable the encoding of

non-linear constraints such as obstacle avoidance and the non-

holonomic constraints of the ego vehicle model through local

linearizations.

2) Emergency Maneuver
After the ideal trajectory T ∗ is computed for the current state of
the ego vehicle x(0), the emergency maneuver T ∗

E is planned

from the first predicted ideal trajectory state x∗
1 to state x

∗
E(hE)

at the emergency maneuver horizon hE ∈ N[1,h], see Fig. 6.

Thus, the emergency maneuver is a trajectory computed at the

current time t0 to be applied one time step into the future t0+τ ,
i.e., after execution of a single ideal trajectory step. Note that
at this time t = t0 + τ , the emergency maneuver is ideally not
executed at all. Instead, the first step of the next ideal trajectory

T ∗, computed at t = t0+ τ alongside a new emergency trajec-
tory T ∗

E is executed whenever the planning of both T
∗ and T ∗

E

is successful. The emergency maneuver is constrained to avoid

the legal reachable set predictions of all environment vehicles.
The legal reachable set of an environment vehicle is the set

of all states it could reach at a certain moment in the future,

which is constrained by the traffic laws and the laws of physics.

Avoiding these regions guarantees that the emergency trajec-

tory cannot cause collision without other road users breaking

the law, thereby providing a safety from legal liability.

The main purpose of this emergency trajectory T ∗
E is to

have a guaranteed safe back-up plan in case the next planning

cycle returns infeasible. When infeasibility of either of the

planning problems (T ∗ and or T ∗
E) occurs at t0, due to, e.g.,

the occurance of environment vehicle moves that were not an-

ticipated by the most likely scenario prediction, the emergency

maneuver computed at the previous planning cycle t = t0 − τ
can be executed, as it has been confirmed to be safe w.r.t. the

worst-case scenario environment vehicle trajectories (provided

they abide to the traffic laws).

Due to the necessity of the emergency maneuver to avoid

the legal reachable set of all environment vehicles, the emer-

gency trajectory is generally highly conservative and therefore

ideal path T ∗

emergency maneuver T ∗
E

environment vehicle i

MLS LRS

Figure 6: The workings of the SCBP algorithm visualized: illustrat-
ing the optimal path and the emergency maneuver (which can be seen
to originate from the optimal path’s first-planned state x∗

1). Addition-
ally, two prediction steps are visualised from the most likely scenario
(MLS)- and legal reachable set (LRS) prediction algorithms respec-
tively.

much less desirable than the ones computed as the ideal tra-

jectory. This is why the frequency of emergency maneuver

executions should be minimized to yield the most desirable

paths in practice.

B. Ideal Trajectory
Following the method in [17], a number of techniques are

introduced that enable the path planner to avoid predicted oc-

cupancies and ensure its trajectory is followable w.r.t. the ego

vehicle dynamic model (1).

1) Prerequisites
a. Coupling of States: To enable the use of s(k), v(k), and
acceleration vector a(k − 1) ∈ R

2 in the optimization formu-

lation for all k ∈ {1, . . . , h}, their relation is encoded through
equality constraints. As an appropriate model relating these

variables, the integrator model is selected for its ability to

be directly encoded into the final problem through a linear

constraint. The linear integrator model in continuous time is

described by

d

dt

[
s�
v�

]
=

[
0 1
0 0

] [
s�
v�

]
+

[
0
1

]
a�, (4)

for the two inertial frame directions 	 ∈ {1, 2}. By defining
x =

[
s1 v1 s2 v2

]�
and u =

[
a1 a2

]�
, (4) is written

for 	 ∈ {1, 2} using the block-diagonal set (Ac, Bc) as

ẋ = Acx+Bcu. (5)

As the input u is piece-wise constant, i.e., u(t) = uk for

t ∈ [t0 + kτ, t0 + (k + 1)τ), exact discretization of (5) yields
the discrete dynamic representation

xk+1 = Axk+Buk, where

{
A = eAcτ ,

B = A
∫ τ

0
e−ActdtBc.

(6)
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Indirect access to the jerks j� is enabled through j�(k) ∝ a�(k+
1)− a�(k). Note that this dynamical model lacks the ability to
accurately represent many of the unique physical properties of

the AV model (1). This loss of analogue is later made up for

through the application of a set of tailored constraints on the

curvature of the trajectory.

Although the equality constraints (6) could be provided to

the solver explicitly, we opted to substitute them into the cost

function and constraints to eliminate the explicit dependency on

statesXk =
[
x�
1 · · · x�

h

]�
from the optimization problem.

Through the equation in Uk =
[
u�
0 · · · u�

h−1

]�
,

Xk =

⎡
⎢⎢⎢⎣
A
A2

...

Ah

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Φ

x0 +

⎡
⎢⎢⎢⎣

B 0 . . . 0
AB B . . . 0
...

...
. . .

...

Ah−1B Ah−2B . . . B

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

Uk, (7)

the occurrences of Xk can be eliminated in favor of the

more fundamental initial position and planned accelerations

(x0, Uk). This exposes the accelerations in Uk as the true

optimization variables.

b. Indicator Constraints: The inclusion of binary variables
in the problem formulation enables the use of indicator con-

straints. Indicator constraints are constraints of the form

δ̄ = 1 ⇒ Āx̄ ≤ b̄,

which states that when binary variable δ̄ ∈ {0, 1} is set to
one δ̄ = 1, it ‘indicates’ that the n̄ optimization variables in
x̄ ∈ R

n̄ have to satisfy the m̄ linear constraints defined by

(Ā, b̄) ∈ R
m̄×n̄ × R

m̄. This indicator action ‘⇒’ can be
encoded into a mixed-integer problem by adding the binary

variable δ̄ to the optimization variables and adapting the linear
constraints Āx̄ ≤ b̄ through the big-M method [26] as

Āx̄ ≤ b̄+M(1− δ̄), (8)

where, by ensuring the elements ofM ∈ R
m̄ (indicated using

index ·r̄) satisfy
b̄r̄ +Mr̄ > max

x̄
Ār̄x̄, ∀r̄ ∈ {1, . . . , m̄},

the setting of δ̄ = 0 then effectively disables the (Ā, b̄)-
constraint on x̄ (8). Some solvers, such as the solver used for
the simulations in this work, Gurobi [27], enable the encoding

of indicator constraints explicitly, as well as through the alge-

braic big-M method. Both methods, when applied correctly,

should yield the same solutions.

c. Velocity Region Indicator Variables: The non-linear prop-
erties of the AV behavior planning problem— such as collision

avoidance requiring trigonometry and followability ensurance

requiring non-holonomy — cannot be modeled directly in an

MIQP formulation. Esterle et al. [17] therefore develop a
subdivision-and-linearization method to enable the approxi-

mate encoding of non-linear relations through a piece-wise

linear approximation.

The method creates a subdivision of the (v1, v2)-plane, cf.
Fig. 7, through a set of Nr ∈ N≥1 connected, conic regions

for all r ∈ {1, . . . , Nr} of equal proportion radiating from the
origin (v1, v2) = (0, 0) as

Vr = {(v1, v2) ∈ R
2 : αrv2 ≥ βrv1, γrv2 ≤ εrv1},

for region-defining constants (αr, βr, γr, εr) ∈ R
4. Next,

based on in which of these regions r velocity vector v(k) =[
v1(k) v2(k)

]�
at timestepk lies, a different (local) lineariza-

tion of the non-linear constraints is activated to best approxi-

mate their original non-linear form.

v1

v2

αrγr

βr

εr

(0, 0)

...

. . .

Vr

r = 1

r = NR

4

Figure 7: The regions r visualised for r = {1, . . . , NR/4} with all
velocities belonging to region r marked in grey vr . Figure adapted
from [17].

This activation is realized by firstly defining a set of binary

variables δr ∈ {0, 1} for r ∈ {1, . . . , Nr} which are linked to
their respective velocity regionVr through indicator constraints

[17] as

δr = 1 ⇒ αrv2 ≥ βrv1
γrv2 ≤ εrv1

, for r = {1, . . . , NR}, (9a)

which are constrained to satisfy

NR∑
r=1

δr = 1. (9b)

This ensures one of the regions is always activated, i.e., its
indicator variable δr set to one. Note that these constraints (9)
are defined for every k ∈ {1, . . . , h}, whereby the active region
at timestep k is found as r(k) = {r ∈ N+ : δr(k) = 1}, or
equivalently r(k) = {r ∈ N+ : v(k) ∈ Vr}.
Now, locally-linearized non-linear constraints can be en-

coded to only act in region r by simply defining indicator
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constraints

δr = 1 ⇒ ALL,rUk ≤ bLL,r, for r = {1, . . . , NR},
where ALL,r, bLL,r describe the local linear approximation of
a certain non-linear constraint, valid over region r.

d. Fitting of Linear Parameters: The process of comput-
ing these regional linear approximation constraint expressions

ALL,r, bLL,r, that enable the linear encoding of non-holonomic
and trigonometric constraints is also described in [17]. In short,

all non-linear equations f(s(k), v(k), a(k)) are linearized over
region Vr to yield the linear expression

f linr (s(k), v(k), a(k)) = p0,r +
[
p�s,r p�v,r p�a,r

] ⎡⎣s(k)v(k)
a(k)

⎤
⎦ ,

for r = {1, . . . , NR}, where the parameters p0,r ∈ R, ps,r ∈
R

2, pv,r ∈ R
2, pa,r ∈ R

2 are computed through a least-

square fit on the error between it and the original function

over a grid of Ns ∈ N≥3 points vr,s ∈ Vr sampled from its

respective velocity region r. In the case of the curvature terms
required for the non holonomic constraint, this is done while

constraining the resulting planes to form a (i) non-negative (ii)

lower bound on the function evaluation samples. The reason

for this becomes clear when considering the details of this

particular constraint in Sec. III-B3.

As an example, the linearization of the non-linear rela-

tion between the direction of travel (v1, v2) and the rotation
R(θ) ∈ SO(2) of the vehicle body volume, which is assumed
to be described sufficiently well through linear combinations

of cos(atan2(v2, v1)) ≈ cos(θ) and sin(atan2(v2, v1)) ≈
sin(θ), is worked out. Firstly, the finite grid of Ns sample

points vs,r ∈ Vr for s = {1, . . . , Ns}, r ∈ {1, . . . , NR} is
defined. The target non-linear equation is then evaluated on

these points, e.g.,

f̄r,s = cos(atan2(v2,r,s, v1,r,s)) for s = {1, . . . , Ns},
after which matrix Ar and vector br are constructed as

Ar =

⎡
⎢⎢⎢⎣
1 v1,r,1 v2,r,1
1 v1,r,2 v2,r,2
...

...
...

1 v1,r,Ns
v2,r,Ns

⎤
⎥⎥⎥⎦ , br =

⎡
⎢⎢⎢⎣
f̄r,1
f̄r,2
...

f̄r,Ns

⎤
⎥⎥⎥⎦ .

By defining vector of coefficients xr =
[
p0,r pv1,r pv2,r

]�
that describes the parameters of the polynomial

fr,s(v ∈ Vr) ≈ p0,r + v1pv2,r + v2pv2,r,

the square of the error Arxr − br can be minimized through
the QP (least-squares) problem

min
xr

(Arxr − br)
�(Arxr − br).

The application of the constraints −Arxr ≤ −br and Arxr ≤
br are respectively used to yield an upper- or lower bound of
the function in this region, while −Arxr ≤ 0 can be applied
in the event where the non-negativity of the original function

is to be retained.

2) Predicted Occupancy Avoidance and Satisfaction of Road
Boundaries

Since vehicles, road boundaries and static obstacles are to be

avoided, a method for doing so has to be included in the MIQP-

based optimal trajectory planner. Polygons are used to describe

every obstacle, road boundary and predicted occupancy region,

which allows for doing so up to an arbitrary level of accuracy.

To encode the boundaries of the drivable space into the

optimization problem as constraints, the following set of steps

are executed; note that the simplified adjacency matrix Gs is

used, which in contrast to G does not discern between types
of connections, but simply describes to which lanelets one is

allowed to move from a certain lanelet, cf. Fig. 8.

1. Find what set of lanelets LE(t0) ⊆ L the ego vehicle
(partially) occupies at time t = t0, i.e., compute the set

LE(t0) = {Lj : O(t0) ∩ Lj �= ∅}.
2. Compute the ego vehicle reachable lanelet set LE,R(t0)
for t ∈ [t0, t0 + hτ ] by forming the union of all lanelets
that can be reached from LE(t0) (w.r.t. directional graph
Gs), with the set LE(t0) itself.

3. The legal road space polygon PR is subsequently found

as the union of the lanelet polygons in LE,R(t0), cf. Fig.
8.

4. The corresponding occupancy prediction polygons for

each future time step k are then removed from PR, to

yield h polygons (generally non-convex with holes) PR,k

for k ∈ {1, . . . , h} fully describing the unoccupied sec-
tion of the reachable road space , cf. Fig. 10.

a. Modeling of the ego vehicle volume The ego vehicle area
is a polygon. Computing whether a polygon is fully inside the

feasible reachable spacePR,k requires non-linear (algorithmic)

computations that are not straightforwardly encoded as linear

constraints [28]. Much like [17, 29], the vehicle body is instead

encoded through the union of a set of circles c ∈ {1, . . . , NC}
with radius rcircles, see Fig. 9, that each have a center with
constant offset sc,loc ∈ R

2 from the ego vehicle center of mass

s(t) (constant only w.r.t. the local vehicle reference frame).
The circles must cover the area of the ego vehicle polygon

completely. The circle centers sc(k) ∈ R
2 as observed from the

global (inertial) frame of reference move with the ego vehicle

as

sc(k) = s(k) +R(v(k))sc,loc for c ∈ {1, . . . , NC}. (10)

Shrinking the feasible reachable space PR,k by radius rcircles
then yields a slightly conservative approximation to the feasible
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1
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3

0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1

2

3

4
5

6
7

8

4
5

6
7

8

LE(t0) LE,R(t0)

PR

Gs =

ego vehicle

Figure 8: An example of a simple lanelet map and its correspond-
ing transition graph in a visual representation and as encoded in
the simplified adjacency matrix Gs. Note that for the ego vehicle-
occupied lanelets set LE(t0) to be legal, the sub-graph it spans must
be connected. Note also how the reachable lanelet set LE,R(t0) (and
by extension the reachable lanelet polygon PR) is found by forward
propagation through Gs from LE(t0).

configuration space of these circle centers sc(k), given that
their circumference must remain inside PR,k. By ensuring the

centers of these circles, sc(k) for c ∈ {1, . . . , NC} remain
inside this configuration space estimate PR,C,k, cf. Fig. 10, it

is ensured the entire ego vehicle polygon remains inside PR,k.

s1,loc
s2,loc

s3,loc s(k)

rcircles

Figure 9: The circles at s1,loc, s2,loc and s3,loc with radius rcircles
inscribing the ego vehicle at s(k).

Encoding the constraints that force the circle centers sc(k)
to remain in the feasible configuration space PR,C,k, requires

the non-convex polygon PR,C,k to be represented by the union

of a set of convex polygons first. This process is described

next.

b. Splitting of non-convex polygons Given one of the non-
convex feasible configuration space polygons PR,C,k with

holes, cf. Fig. 10, the polygon is partitioned into a set

of convex polygons PR,conv,k through the application of the

Hertel-Melhorn partitioning algorithm [28]. Simply put, this

algorithm first triangulates the polygon Tri (PR,C,k) through,
e.g., ear-clipping [28], afterwhich itmerges the resulting neigh-
boring polygons (initially all triangles) if the merge results in

a convex polygon, repeating until no more neighbor-pairs are

PR,k

rcircles

PR,C,k Tri (PR,C,k) Part (PR,C,k)

Figure 10: The configuration space partitioning algorithm applied
to a part of the curved merge scenario. From left to right: the
feasible partPR,k of the road at timestep k, determined by subtracting
all relevant obstacle predictions from the road surface; the feasible
configuration space PR,C,k, i.e., the feasible part PR,k reduced by
buffer width rcircles; the triangulation of the buffered feasible part; and
the final convex partition of the feasible configuration space.

left that could yield a convex polygon when merged.

c. Restriction to convex polygons Given this finite set of con-
vex polygonsPR,conv,k for every k ∈ {1, . . . , h}, the last step is
to restrict the centers of the ego vehicle circles sc(k) to always
satisfy sc(k) ∈ PR,conv,k.

Constraining a point sc(k) to lie in one of the convex poly-
gons p is done through a set of linear half-plane constraints
Ap,ksc(k) ≤ bp,k, cf. Fig. 11. The ability for the point to
move from polygon to polygon is subsequently enabled using

indicator constraints by setting

δp,k = 1 ⇒ Ap,ksc(k) ≤ bp,k, and

Np,k∑
p=1

δp,k = 1. (11)

for all k ∈ {1, . . . , h}, i.e., sc(k) needs to only satisfy the
constraints of a single polygon p ∈ {1, . . . , Np,k} at a time.
The last step that remains is writing (11) linearly in terms

of Uk, in order for it to be directly encoded into the solver.

Noting that sc(k) expressed in terms of the states of the ego
vehicle yields the non-linear trigonometric equation (10), we

use the local linearization method to approximate sin(θ(k))
and cos(θ(k)) in region r as respectively

δr = 1 ⇒
{

sin(θ(k)) ≈ psin0,r + psinv1,rv1(k) + psinv2,rv2(k),
cos(θ(k)) ≈ pcos0,r + pcosv1,rv1(k) + pcosv2,rv2(k),

for r ∈ {1, . . . , NR} and (v1(k), v2(k)) ∈ Vr. Substitution

into (10) yields the expression

sc(k) ≈ p0,rc + pv1,rc v1(k) + pv2,rc v2(k) + s(k), (12a)

10 2022



GRADUATION PROJECT — DC 2022.049 M.J.T.C. VAN ZUTPHEN

for c = {1, . . . , Nc}, (v1(k), v2(k)) ∈ Vr and

p0,rc =

[
pcos0,rs

1
c,local − psin0,rs

2
c,local

psin0,rs
1
c,local + pcos0,rs

2
c,local

]
, (12b)

pv1,rc =

[
pcosv1,rs

1
c,local − psinv1,rs

2
c,local

psinv1,rs
1
c,local + pcosv1,rs

2
c,local

]
, (12c)

pv2,rc =

[
pcosv2,rs

1
c,local − psinv2,rs

2
c,local

psinv2,rs
1
c,local + pcosv2,rs

2
c,local

]
. (12d)

Substituting this expression (12) into the convex polygon con-

straint (11) yields the linear form that must be encoded for

all circles describing the ego vehicle c ∈ {1, . . . , Nc}, all
regions over which the non-linear equations are linearized

r ∈ {1, . . . , NR}, all time-steps k ∈ {1, . . . , h} and all poly-
gons within the respective timestep p ∈ {1, . . . , Np(k)}.

[
dx
dy

]
=

[
x2

y2

]
−

[
x1

y1

]

c = dx · y1 − dy · x1

c ≤ dx · y − dy · x

1
2

n1,1 = n2,1

n1,2 = n2,3

n2,2

n1,3

dy

dx

e2,1

e2,2

e1,1 = e2,3

Figure 11: An example feasible space consisting of two polygons,
1 and 2, where the encoding of one of the half-plane constraints
composing convex polygon 2 is described by the included equations,
resulting in the linear constraint c ≤ dx · y − dy · x. Nodes are
labeled through notation np,i, with p the polygon index and i the node
index, edges equivalently through ep,i. Note that all polygon nodes
are defined in counter- clockwise direction, this ensures the half-plane
constraints satisfy the presented equation.

3) Non-Holonomic Constraint
Since the dynamic model in the MPC architecture lacks the

ability to describe the non-holonomic character of a passenger

car, this constraint on the trajectory is encoded through the

locally linearized implementation of the curvature κ constraint.
The curvature of the trajectory (of any line) is described by

κ =
v1a2 − v2a1√

v21 + v22
3 .

Constraining the trajectory to satisfy curvature constraint

κmin ≤ κ ≤ κmax, where κmin < 0 < κmax, is achieved
by substituting the expression for κ and rewriting to yield

κmin

√
v21 + v22

3

≤ v1a2 − v2a1, (13a)

κmax

√
v21 + v22

3

≥ v1a2 − v2a1, (13b)

which remains valid due to
√

v21 + v22
3 ≥ 0. Linearization of

these two inequalities is done through the linear approximation

of
√
v21 + v22

3
in v1 and v2 as√

v21 + v22

3

≈ pcurve0,r + pcurvev1,r v1 + pcurvev2,r v2,

and a linear approximation of the right-hand side through

(v1, v2) ≈ (v1,avgr , v2,avgr ) for (v1, v2) ∈ Vr, yielding

κmin(p
curve
v1,r v1 + pcurvev2,r v2)− v1,avgra2 + v2,avg,ra1 ≤

−κminp
curve
0,r ,

(14a)

κmax(p
curve
v1,r v1 + pcurvev2,r v2)− v1,avgra2 + v2,avg,ra1 ≥

−κmaxp
curve
0,r ,

(14b)

for all r ∈ {1, . . . , NR}. Note that the least-squares fit that
computes the parameters (pcurve0,r , pcurvev1,r , p

curve
v2,r ) ∈ R

3 is con-

strained to be (i) non-negative and (ii) a lower-bound. This as (i)

the division required to yield (13) relies on the non-negativity

of
√
v21 + v22

3
and (ii) the replacement of

√
v21 + v22

3
by a

function that evaluates to lower-or-equal values to the original

function guarantees satisfaction of κmin ≤ κ ≤ κmax.

4) Cost Function
The cost objectives as described conceptually in Sec. II are

encoded through the techniques described below.

a. Path following Deviation from reference trajectory X̂k =[
x̂�
1 · · · x̂�

h

]�
set by the routing module, with correspond-

ing Ûk =
[
û�
0 · · · û�

h

]�
is to be penalized. To this end,

Jp(Xk, Uk) is formulated as

Jp(Xk, Uk) =

h−1∑
k=0

‖xk+1 − x̂k+1‖2Q + ‖uk − ûk‖2R, (15)

where the ‖ · ‖2A notation is defined as ‖x‖2A = x�Ax and
Q = Q� ∈ R

n×n, R = R� ∈ R
m×m, Q � 0 and R � 0.

Which can be written without the summation as

Jp(Xk, Uk) = (Xk−X̂k)
�Ω(Xk−X̂k)+(Uk−Û)�Ψ(Uk−Ûk),

where Ω = Diag (Q,Q, . . . , Q), Ψ = Diag (R,R, . . . , R) of
appropriate sizes. Eliminating Xk through the substitution of

relation (7) yields the quadratic form in Uk as

Jp(x0, Uk) = U�
k HpUk + 2f�

p Uk + Cp, (16)

where

Hp = Γ�ΩΓ +Ψ, (17a)

fp = ((Φx0 − X̂k)
�ΩΓ− Û�Ψ)�, (17b)

Cp = (Φx0 − X̂k)
�Ω(Φx0 − X̂k) + Û�ΨÛ . (17c)
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b. Comfort The physical comfort experience of a human pas-
senger is largely invariant of velocity and location, as a different

magnitude of a constant vehicle velocity, when, e.g., reading a
book, is only discernable through a potential change in noise

caused by drag. Similarly, the effect of a relatively constant

vehicle acceleration, although directly detectable by a human,

is quickly mitigated by a change of posture.

Conversely, rapid changes in the acceleration vector do com-

promise the comfort of passengers by not allowing them time

to adapt to a new acceleration level. Using this observation, the

comfort of passengers can be understood to correlate inversely

with the jerk values of the vehicle trajectory. The comfort ob-

jective Jc is therefore designed to penalize large jerk values
through the cost-term

Jc(Uk) =

H−1∑
ν=1

‖u(ν)− u(ν − 1)‖2V ,

whereV is a positive-definitem×mmatrix of real values. This
objective, through the use of Uk, can alternatively be written

as

Jc(Uk) = (ΔUk)
�ΠΔUk, (18)

where Π = Diag (V, V, . . . , V ) and

Δ =

⎡
⎢⎢⎢⎣
I −I 0 · · · 0
0 I −I · · · 0
...

...
. . .

. . .
...

0 0 0 I −I

⎤
⎥⎥⎥⎦ ,

of appropriate size.

c. Merging the cost terms To facilitate the balancing of com-
fort vs. progress in the final cost function J(x0, Uk), the
comfort-biasing scalar weighting parameter w ∈ R>0 is in-

troduced to form the complete cost formulation that combines

(16) and (18) as

J(x0, Uk) = Jp(x0, Uk) + wJc(Uk),

= U�
k (Hp + wΔ�ΠΔ)Uk + f�

p Uk + Cp.
(19)

5) Optimal Control Problem Formulation
The MIQP problem posed conceptually in Sec. II yielding the

ideal trajectory T ∗ is thereby computed through the optimiza-
tion of objective function

U∗
k = argmin

Uk

(19),

while subject to constraints

(7), (9), (11), (12) and (14),

yielding T ∗ through the post-processing conversion step T ∗ =
Φx0 + ΓU∗

k .

C. Emergency Maneuver
The emergency maneuver planning is subject to the same cost-

function and constraint architecture as the ideal trajectory plan-

ner. The differences between them arise in the components of

1. cost function tuning,

2. initial state,

3. predictions they avoid,

4. reference trajectory.

The cost function of the ideal trajectory planning is tuned

to yield a comfortable (low in jerk and acceleration) controller

that tracks the trajectory well, i.e., a balance is found between
comfort and trajectory tracking. In the emergency maneuver

planning cost function, more emphasis is put on the track-

ing of the (zero-velocity) trajectory, i.e., the weight factor w
described in (19) of the two planners satisfy wideal trajectory >
wemergency maneuver. Additionally, the weight penalizing devia-
tion from the reference locations ‖s(k) − sref‖2Q{1,3} , i.e., the
first- and third diagonal elements of Q are set to zero in the
emergency maneuver planning problem as only the velocity

reduction of the vehicle matters for the emergency maneuver,

in contrast to the positive weights on spacial error in the ideal

trajectory planning problem.

The initial state used to plan the ideal trajectory is simply

x(0), while the emergency maneuver problem starts planning
from the first-planned ideal trajectory state: x∗(1).
As for the prediction avoidance constraints (11), (12), the

emergency maneuver planning is constrained to avoid the legal

reachable set prediction polygons, as avoiding these regions

guarantees the (legal) safety of all its future planned states at

the moment of planning. In contrast, in the original formula-

tion of the fail-safe trajectory planning protocol [21], the ideal

trajectory planning is expected to plan using the most likely

scenario prediction. In this work, the ideal trajectory planning

does not plan using the most likely scenario prediction exclu-

sively, but instead uses a mix of legal reachable set- and most

likely scenario predictions. The prediction set considered by

the ideal trajectory planning problem is constructed by taking

the first hform ∈ {0, . . . , h− 1} legal reachable set predictions
and appending the most likely scenario predictions for the rest

of the horizon k ∈ {hform + 1, . . . , h}. Tuning the length of
this formal horizon hform results in a trade-off between conser-
vativeness of the resulting path and frequency of emergency

maneuver interventions, two undesirable traits of the algorithm.

Lastly, the reference trajectories. The reference trajectory

of the ideal trajectory planning is constructed as a maximum

acceleration-to-desired-velocity trajectory along the centerline

of the desired lanelet, originating from the point on this cen-

terline closest to the ego vehicle. In contrast, the emergency

maneuver planning trajectory only contains a set of 0-velocities

as its spacial deviation is, as mentioned before, not penalized

by the cost-function, i.e., the trajectory tracking component
is repurposed to penalize any velocity magnitudes away from

zero. This is done as bringing your vehicle to a standstill is
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assumed a universally safe action [30].

D. Legal Reachable Set
The legal reachable set prediction, which the emergency ma-

neuver uses to guarantee its safety, is an essential part of this

behavior planner. By confirming that a trajectory does not

cause the ego vehicle to intersect the legal reachable sets of

any of the environment vehicles, one can guarantee that it is

impossible for the vehicles to collide during the execution of

this trajectory when all road users abide to the law. The legal

reachable set describes the complete set of points that could
be occupied by an environment vehicle at a future moment in

time, given that it complied to the (i) law of the road and the

(ii) laws of physics.

The legal reachable set prediction is generated using the

method developed in [30] with a small number of adaptations.

The legal reachable set method constructs an over-estimate of

the physically reachable set w.r.t. the environment vehicle dy-

namics and subsequently reduces this set through environmen-

tal/legal considerations such as road boundaries, speed limits

and safe merging distance to yield a legal reachable set over-

estimation. Over-estimations are employed as the computation

of exact reachable sets of non-linear dynamical systems such

as those of the traffic participants is impossible within the con-

straints of a live behavior planner [31].

The approach, using polygonal reachable set over-

estimations R̂α, was first developed in [20]. Given two over-

estimations, e.g., one that overestimates the amount of accel-
eration that can be achieved in all directions R ⊂ R̂amax

and

one that notes the reachable set must be a sub-set of the en-

tire road-network R ⊂ R̂road, taking their intersection yields
a less conservative estimation that is still guaranteed to be an

over-estimation

R ⊂ R̂amax
∩ R̂road.

Similarly, a region R̂α can be subtracted from the legal reach-

able set estimate R̂ by ensuring the subtracted region is an

under-estimation of the true region that cannot be reached.

The legal reachable set applied in this work is constructed by

the intersection, and subtraction of the following over- and

under-estimations, see Fig. 12

1. maximum acceleration (in all directions),

2. set of legal lanes w.r.t. current environment vehicle loca-

tion,

3. speed limit on the road (plus a certain percentage),

4. the duty to switch lanes only when a sufficiently, large

safety-gap is sustained,

5. no backwards motion,

6. avoidance of the ego vehicle predecessor.

One important adaptation has been made to the algorithm for

legal reachable set prediction [30] to enable it to be used in the

context of this work. The merging of the legal reachable set

polygons that are defined per lanelet in [30], are instead merged

into a single polygon through the use of its outer-boundaries.

In the original algorithm, the occupancy of every lanelet is

defined through a unique polygon. The imperfections of road

boundary data causes small holes to occur on the boundary

between two lanelets when doing a direct merge in such sce-

nario. When combined with the configuration space method

(shrinking feasible space by rcircles, Sec. III-B2), this would
result in large erroneous holes in the feasible space.

environment vehicle

3)

1)

2)4)

5)

ego vehicle

Figure 12: Illustration visualizing five of the six reachable-set shrink-
ing steps. 1) the maximum acceleration in all directions overestima-
tion; 2) the reduction to the set of all legal lanes; 3) the satisfaction
of the speed limit (with a slight margin); 4) the illegality of switching
lanes without leaving a safety-gap; 5) no backwards motion; 6) avoid-
ance of the ego vehicle predecessor, similar to 5) but not displayed as
this only occurs when the ego vehicle shares a lane with the environ-
ment vehicle.

IV RESULTS

In this section, the proposed SCBP method is validated using

the application scenarios described in Section II-A. First, on

the straight lane merging scenario, an example of failure of the

original MIQP method due to most likely scenario prediction

uncertainty is provided. Next, the application of the SCBP on

the same scenario is shown to result in collision free motion.

This straight lane merging scenario is then simulated another

1000 times subject to randomly determined environment vehi-

cle trajectories. This is used to quantify the difference between

collision avoidance efficacy in the original MIQP and novel

SCBP method over varying conditions.

Additionally, the abilities of the SCBP method are demon-

strated qualitatively on a curved lane merging scenario. It is

shown that the method is able to autonomously (i) merge onto

a road, (ii) pass environment vehicles, (iii) handle non-straight

roads, and (iv) keep an appropriate amount of safety distance,

while existing methods are generally only able to perform a

strict sub-set of these. Finally, the running time of the method

is analysed.
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A. Collision Example
To provide a benchmark for comparison, consider the ex-

ample in Fig. 13A. This straight lane merge scenario as

introduced in Sec. II-A is simulated for hyper parameters

(NR, τ, h, hE , hform) = (4, 1/3, 8, 5, 0). The ego vehicle is
tasked with following the center-line of the middle lane with

80 (km·h−1). Vehicle 1, occupying this middle lane, unexpect-

edly reduces its velocity by 20% for two consecutive time-steps

at k ∈ {8, 9}, after which it accelerates back to its target ve-
locity of 75 (km·h−1). Using the original MIQP-MPC method

[17], a trajectory is generated in receding horizon that fully

relies on the most likely scenario prediction. Since the most

likely scenario prediction assumes constant acceleration, the

brake maneuver is not anticipated. The ego vehicle does not

maintain enough distance from its predecessor, vehicle 1, to

respond when vehicle 1 activates its brakes. This results in

infeasibility of the MIQP-MPC planning problem, i.e., the ego
vehicle finds itself in an unavoidable-collision state. The sim-

ulation is terminated at this failure.

Figure 13: A: the original MIQP-MPC planner becomes infeasible
(encounters unavoidable collision) in this randomly generated simu-
lation scenario, which terminates the simulation at k = 10. B: the
proposed SCBP method uses emergency maneuver steps to anticipate
on possible brake maneuvers by environment vehicles. It manages
able to safely navigate this scenario.

B. Collision Prevention - SCBP Approach
Trajectory planning through the proposed SCBP method is

compared to the original MIQP-based benchmark example de-

scribed above. Consider the same example scenario as simu-

lated in Fig. 13A. Fig. 13B describes the trajectory resulting

from the application of the SCBP controller. Through the four

emergency-maneuver-activation events at k ∈ {7, 8, 9, 10}, the
SCBP first preventively and later reactively slows the ego ve-

hicle down as it takes into consideration the possibility of un-

expected brake maneuvers. This enables the SCBP method to

successfully reach the target lane without collision, illustrat-

ing the ability to preserve safety in contrast to the MIQP-MPC

benchmark example.

a. SCBP Safety The original MIQP-MPC method has no ef-
fective way of maintaining spacial safety buffers. This can

cause it to favour almost touching predicted future occupancy

locations, as it often results in the most efficient path. Unex-

pected environment vehicle maneuvers occurring during such

close encounters thereby have the potential to result in collision.

The SCBP is implicitly constrained to maintain a safety buffer

as it is required to have a feasible safety maneuver planned at

each time step. Moving the ego vehicle too close to an environ-

ment vehicle can prohibit the existence of a feasible emergency

maneuver. Steps that compromise the spacial safety buffer are

thereby prevented from executing in favor of a previously com-

puted emergency maneuver.

This effect can be observed in large-volume simulation. Out

of 1000 randomly generated straight lane merge simulations

scenarios, 24.7% resulted in failure when employing the orig-

inal MIQP-MPC method. Failure meaning the method either

caused termination of the simulation through an observed colli-

sion (14.4%) or infeasibility of the planning problem (10.3%).

By exchanging the original MIQP- for the SCBP method, this

failure percentage on the same 1000 scenarios drops to a mere

0.5%. All of them collisions caused by the simulated environ-

ment vehicles not being responsive to the ego vehicle actions,
i.e., the emergency braking of the ego vehicle resulted in col-
lision as environment vehicle followers did not slow down in

response. This means the ego vehicle was not responsible for

any of the recorded collisions in the SCBP simulations.

C. Curved Lane Merge
To illustrate the extensive ability of the SCBP algorithm to

make decisions and cope with environmental factors, the be-

havior planner is simulated on the example scenario in Fig. 14.

This curved lane merge scenario as introduced in Sec. II-A

is simulated for hyper parameters (NR, τ, h, hE , hform) =
(8, 1/3, 6, 5, 2). The ego vehicle is initialized with initial ve-
locity ‖v(0)‖2 = 80 (km·h−1) on the center-line of the on-
ramp (right lane) in the direction of its center-line. It is tasked
with following the center-line of themiddle lanewith target ve-
locity ‖v‖2 = 80 (km·h−1). Two environment vehicles drive

respectively ‖v1(t)‖2 = 40 and ‖v2(t)‖2 = 44 (km·h−1) on

the center-line of the middle lane for the entire duration of the

simulation. Optimizing its objective requires the ego vehicle

to merge onto the middle lane while avoiding collision with

the environment vehicles, and subsequently either following

its predecessor or passing him.
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Figure 14: The curved merge scenario with ‖v1‖2 = 40 (km·h−1),
‖v2‖2 = 44 (km·h−1); simulated for (NR, τ, h, hE , hform) =
(8, 1/3, 6, 5, 2). The emergency maneuver was activated at k ∈
{6, 7, 9}. A visualization of the scenario that lead to this decision at
k = 9 is displayed in the insert.

As vehicle 1 has a lower velocity than the ego vehicle, the

ego vehicle decides to first pass him and merge in front. As

vehicle 2 starts out ahead of the ego vehicle, once on the middle

lane, the ego vehicle is forced to either (i) slow down to adapt

its velocity to its predecessor or (ii) pass him on the left. As

can be seen in the simulation results in Fig. 14, the ego vehicle

autonomouslymakes the decision to pass vehicle 2 on the left as

this optimizes its combined objective of following the center-

line of the middle lane and making progress along the road

with 80 (km·h−1) over the planning horizon h.
The curvature of the resulting path is plotted in Fig. 15

over the time steps k ∈ {1, . . . , 23} corresponding to Fig. 14.
The fact that the line described by the trajectory curvature

κ(k) remains within the bounds κmax ≥ κ(k) ≥ κmin for
k ∈ {1, . . . , 23} indicates that the trajectory is trackable for
the ego vehicle model (1). The same holds for the acceleration

and velocity magnitudes and their limits, visualized in Fig. 16.

Figure 15: The curvature of the trajectory traversed in the curved
merge scenario.

Figure 16: The acceleration and velocity magnitudes of the trajectory
traversed in the curved merge scenario.

a. Safety Buffer While executing its behavior planning, the
SCBP method is able to adaptively keep a safe amount of dis-

tance from environment vehicles. Note how the algorithm

maintains a safety margin w.r.t. vehicle 2 when passing at

timestep k = 15, cf. Fig. 14. The ego vehicle can be seen
to move to the left lane early, leaving a buffer of space be-

tween it and vehicle 2, which is not explicitly demanded in

the behavior planner formulation but a result of the non-zero

formal horizon setting hform = 2. Such distance would, in
case of hform = 0, be created through emergency maneuver
activations, cf. Fig. 13B.

Note that the decisions made at time steps k ∈ {6, 7, 9}
were emergency maneuvers, in all of these cases caused by

the impossibility of a safe emergency maneuver at their newly

planned ideal trajectory state T ∗
x(1). To illustrate the decision

making process, the planning problem at k = 9 is visualized
in the insert of Fig. 14. As the ideal trajectory is almost un-

obstructed after k = hform, it plans its next step close to (80
km·h−1). The feasible space left after the 1 + hE = 6 legal
reachable set prediction steps is subsequently insufficient to

enable a new emergency maneuver plan.
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D. Computational Time
The straight lane road encoding requires significantly less con-

vex polygons (2 vs. 18 when compared to the curved lane

merge). This has the amount of indicator constraints in the

problem reduced by an almost proportional amount.

The computational time of a planning cycle is an essential

property of the algorithm and must remain sufficiently low to

be applicable in practice. The straight lane merge scenario

has been initialised randomly one additional time, after which

this set up has been simulated for a grid of hyper parameter

values constructed by h × NR = {3, . . . , 8} × {4, 8, 12, 16},
where the emergency maneuver planning horizon hE is set to

hE = h − 1 and the discrete time step size to τ = 1/3 (s).
The average time required for a planning cycle under these

conditions has been recorded and visualized in Fig. 17.
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Figure 17: The average computational time of one planning cy-
cle as a function of the hyper parameters h ∈ {3, . . . , 8}, NR ∈
{4, 8, 12, 16}. The computation time displayed at (h,NR) = (8, 16)
is theoretical, it was generated by extrapolating the rest of the data
and was not actually computed as the 18 cycles required to run this
simulation scenario are expected to take 18 · 33 = 594 (min), which
is 9.9 (h).

Here, on the logarithmic z-axis of the surface plot, the
exponential increase of computational time with increasing

hyper parameters becomes clear. This exponential nature can

be traced back to the emergency maneuver generation. In Fig.

18 and 19, the computational time of the individual algorithm

components are displayed separately. It becomes clear that

the ideal trajectory planner scales polynomially with the hyper

parameters, which is observed on the log-scaled axis as an

increase with a linear character. The computational time of

the emergency maneuver scales more exponentially than the

combined running time, cf. Fig. 18.

The reason for this could be the fact that the emergency

maneuver uses the legal reachable set until its last prediction

step, in contrast to the ideal trajectory that in this case only uses
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Figure 18: The average computational time of one planning cycle
as a function of the hyper parameters hE ∈ {2, . . . , 7}, NR ∈
{4, 8, 12, 16}. The computation time displayed at (hE , NR) =
(7, 16) is theoretical, it was generated by extrapolating the rest of
the data.

the first hform = 2. The legal reachable set grows with every
predicted time step, reducing the feasible space to plan in to

the point of (almost) filling the entire road. As the uncertainty,

and therefore the legal reachable set, grows endlessly with

time, the application of this method loses much of its value for

moments far into the future. A solution could be amore tailored

formulation of the emergency maneuver optimization problem

that aims to bring the vehicle to v = 0 in as little time steps
as possible and then terminates, disregarding the irrelevant

tail that is subject to huge legal reachable sets constraining its

feasible space.

As for the lower hyper parameter value runs, the fastest at

(h,NR) = (3, 4) had an average cycle time of 0.38 (s) on
an Intel(R) Core(TM) i7-4710MQ CPU 2.50 (GHz), which

makes the method too slow for safety critical implementation

in its current form. One of the main downsides of the algorithm

is the necessity to run the prediction modules, ideal trajectory

planner and emergency trajectory planner in sequence. This

makes acceleration through parallelisation impossible.

V CONCLUSION

In this paper, the safe, convex behavior planner algorithm is

developed for road scenarios populated with mixed traffic envi-

ronment vehicles. Themain ideawas to integrate an emergency

maneuver safety mechanism into the global optimum yielding

MIQP behavior planning architecture proposed by Esterle et
al. [17]. This modification has enabled the MIQP behavior
planning method to be applied safely under uncertainty. We

have demonstrated in simulation that over 1000 randomized

merge scenarios, not a single collision was caused by the ego
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Figure 19: The average computational time of one planning cy-
cle as a function of the hyper parameters h ∈ {3, . . . , 8}, NR ∈
{4, 8, 12, 16}. The computation time displayed at (h,NR) = (8, 16)
is theoretical, it was generated by extrapolating the rest of the data.

vehicle when subject to the proposed SCBP algorithm, while

previous work only achieved collision free motion in 75.3% of

these scenarios.

The addition of the safety method in its current form has

come at a higher processing cost, which has thus-far resulted

in prohibitively high computation times, although not by a large

margin. Through algorithm acceleration efforts, the running

time could potentially be improved to the point of real-time

capability, as many such opportunities were likely left on the

table.

The current architecture activates a non-adaptive environ-

ment maneuver whenever the ego vehicle finds itself in dan-

gerous situations. This prevents the vehicle, in the event of

unavoidable collision scenarios caused by dangerous maneu-

vers by environment vehicles, from actively minimizing impact

of collision.

Additionally, the emergency maneuver planning is currently

used as a method by which to judge the safety of the next ideal

trajectory step retroactively, i.e., after it is already planned.
Attempts at making the ideal trajectory take this safety into

account while planning thus far resulted in the formulation of

the formal horizon hform. A more integrative method might
be found in the formulation of the SCBP problem into a single

optimization problem. The ideal trajectory could then be gener-

ated while constrained to have a feasible emergency maneuver

from its first-planned point.

Futurework should aim atmaking themethod safer in events

where other road users cause dangerous situations. Where the

current method merely avoids legal responsibility, it would be

more desirable to additionally avoid damage when involved in

an accident. Additionally, for the method to become real-time

capable, acceleration of the algorithm is required.
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