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Summary

As drones, or unmanned aerial vehicles (UAVs), become a more predominant solution to problems
in today’s society, so are the questions as to what they can achieve in the near future. In this
near future, it could be possible that drones are deployed for monitoring services in either or both
the surveillance or agriculture industry. Tracking control algorithms are crucial for this to happen.
This thesis attempts to contribute to solving tracking control problems for a specific drone: the
quadrotor. Earlier work on this topic already resulted in good performance, although there were still
improvements to be made. This thesis’ main objective therefore, is to improve on the earlier work on
this topic, because it still showed undesirable transient behaviour in position and heading direction.
It specifically continues on the work of Lefeber, van den Eijnden, and Nijmeijer (2017) and Lefeber,
Greiff, and Robertsson (2020). Hereto, their position control laws are investigated, to validate if
they lead to the undesirable transient behaviour. The attitude control and combined control are
investigated for the same reason as well. The results from these validations show the cause of the
undesirable behaviour, after which improvements for these problems are proposed. To improve the
heading direction tracking performance, a new reference definition is proposed. This new reference
definition is dependent on the actual global position and a target reference position, instead of time,
which is useful for monitoring and surveillance purposes. Numerical experiments show that the newly
designed control laws perform better during transient behaviour when compared to the earlier work.
These experiments also show some flaws in the newly designed reference heading direction method,
for which recommendations for improvements are proposed.
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Chapter 1

Introduction

1.1 Background

Unmanned Arial Vehicles (UAVs), also referred to as drones, have been around for more than a
century [3]. Where its applicability in the earlier years was focused on mainly warfare, it has now
shifted towards research and civilian applications over the past few decades. Commercially available
drones made for video and photography now allow users to capture images that otherwise would
not be possible, due to the great heights and distances a drone can go without losing connectivity.
Drones are now also able to assist researchers by flying in hazardous areas to collect data that would
otherwise be unobtainable. For example, a drone was able to fly autonomously over an erupting vol-
cano in Bali, Indonesia to collect data which in turn could be used to predict the trajectories of lava
streams [4]. Knowing the past and expected growth of the drone market worldwide, it is expected
that developments like this steadily continue in the coming years and it can only be imagined what
that would mean for the near future [5].

When thinking about futuristic smart cities, UAVs also play a key role. Figure 1.1, shows some
examples of what UAVs might be able to do in the foreseeable future. Where some of these exam-
ples, say a UAV taxi, could still be unfeasible for multiple years, others might be more realistic than
one might think. Amazon, for instance, is one of the companies that is investing heavily in parcel
delivery by UAVs, as a new Amazon Air hub is recently launched in the U.S. [6]. Zipline on the
other hand, has already implemented autonomous drones in Ghana, where they were able to shuttle
medical supplies to suspected COVID-19 patients [7]. Another example can be found in agriculture,
where drones can already be used in the monitoring of crops or livestock and in the spraying of fruits,
vegetables, and trees [8]. A closer look into the research papers of the earlier mentioned examples

Figure 1.1: Examples of applications for UAVs in smart cities [9]

reveals that different situations require different UAVs. In case of the UAV in Bali, a fixed-wing
model, see Figure 1.2a, was chosen because of its stronger aerodynamics, longer flight duration, bet-
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2 Chapter 1. Introduction

ter flight control system, higher flight safety, and larger coverage area [10], [11]. However, most of
the drones used for monitoring and spraying crops are multi-rotor winged. There are different types
of multi-rotor winged UAVs, where the differences lie in the number of rotors. Some examples are
quadrotors, see Figure 1.2b, or octocopters. Reasons to use a multi-rotor winged UAV can be high
maneuverability, the capability of hovering and the ability to vertically take-off and land. Despite
that, since multi-rotor winged UAVs are also relatively lightweight, compact and low-priced it makes
them the most popular drones for hobby and recreational use [12].

(a) Fixed-wing drone (b) Quadrotor from DJI

Figure 1.2: Two examples of different drone types

The next big step in drone research now lies in autonomous flying, without a global positioning system
(GPS). Autonomous flight can be achieved by formulating and solving a trajectory tracking problem
where the drone translates along a predefined path, without external meddling. Zipline was already
able to achieve this, however they used a fixed-wing drone. This research aims to contribute to the
goal of autonomous flying without GPS by using a specific quadrotor, the Parrot Mambo Fly, and by
tracking four degrees of freedom: the three translational degrees of freedom and one rotational degree
of freedom. Additionally, this quadrotor should be able to stay headed towards a specific target point
continuously, to also contribute to achieve UAV traffic monitoring or UAV environmental monitoring
for the future smart city depicted in Figure 1.1.

1.2 Previous research

In previous research, quadrotor dynamics have been parametrized using different methods. Some
of these methods are: rotation matrices, Euler angles and unit quaternions. Reasons to use either
method is often a trade-off between fast computing power and little ambiguity. Using quaternions is
a method to ensure fast computation speed when multiplying rotations [13]. A downside can be the
ambiguity that comes with using quaternions, since a rotation, q, can be described in two different
ways, q and −q. This can lead to undesirable results when the control system calculates different
control efforts for these same rotations. Rotational matrices can be described by orthogonal matrices
of size n × n where n ∈ {2, 3}, for respectively planar or spatial rotations. To calculate sequential
rotations, the rotational matrices can be multiplied with respect to the order in which these sequential
rotations occur. These calculations however, are relatively more demanding than those needed for
quaternion multiplications [14].

Lefeber, van den Eijnden, and Nijmeijer (2017) proposed a full state feedback control framework
that has shown to almost-globally uniformly asymptotically stabilize the complete closed-loop sys-
tem and where the estimated errors uniformly locally exponentially converge to the actual errors.
Jeurgens (2017) was able to demonstrate the effectiveness of this control structure on a Parrot AR
Drone 2.0 in a hovering experiment. The absence of damping effects limited the accuracy of the
mathematical model. Brekelmans (2019) was able to include these damping forces into a simulation
model for a Parrot Mambo drone, but did not use them to improve on the control framework. Lefeber,
Greiff, and Robertsson (2020) extended the research from Lefeber, van den Eijnden, and Nijmeijer
(2017) by proposing a novel output feedback controller, to counter the absence of linear velocity mea-
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surements. Some of this controller’s advantages were that it was able to filter acquired measurements,
which could therefore attenuate the effect of measurement noise. Also, this controller was proven to
be uniformly locally exponentially stable, making it robust to disturbances. In addition, they were
able to parametrize the reference dynamics in SO(3), using the theory of flat outputs introduced by
[16], the reference dynamics included a yaw trajectory as well. The concept of flat output is discussed
in more detail later in this report.

1.3 Research gap

However, there remains a gap in research into the ability to use this knowledge to continuously and
accurately track a yaw reference which aims towards a specific target, while following a reference
trajectory, in transient behaviour. Transient behaviour describes the behaviour of the drone before
it has converged to the references. Improving the transient behaviour while tracking a reference
trajectory is therefore also the main interest of this thesis. Applying a flat output trajectory as in
[2], and the control laws and parameters from [1], results in correct, but undesired tracking during
transient behaviour. The following examples demonstrate this. In these examples, the reference
trajectory is defined as

ρr =
[
cos(ωv) sin(ωv) 1.5

]�
(1.1a)

ψr = −ωvt+ π, (1.1b)

with initial conditions

ρ(t0) =
[
4 4 1.5

]�
ν(t0) =

[
0 0 0

]�
R(t0) = I ω(t0) =

[
0 0 0

]�
. (1.2)

The parameters ρ, ψ ν, R and ω are discussed in more detail in Chapter 2.

As visualized in Figure 1.3a, one can see a rotational movement around its z-axis with the same
angular velocity as the rotation of the global position, but instead of facing the centre of the circle
during transient behaviour, it rotates as if on the correct position already. Even though this be-
haviour is undesirable in this thesis, since it does not face a certain position constantly, it is the
expected behaviour. The reason for this comes from the yaw reference being time dependent, instead
of dependent on the position. What can also be observed are the translations during transient be-
haviour, these translations are fast and aggressive, see for example the quick maneuver in Figure 1.3a
around [x, y] = [−1.75, −0.5]. This maneuver is a result of the created overshoot from the reference
trajectory, as seen in Figure 1.4, from rotating, and therefore translating, too quickly. As impres-
sive that these maneuvers are, they are also the cause of the undesirable transient behaviour of the
drone. Similar undesired transient behaviour is seen when increasing the velocity in ρr from (1.1a).

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

(a) ωv = 0.2π. (b) ωv = 1.2π.

Figure 1.3: Quadrotor position and orientation in two-dimensional space while tracking reference dynamics.



4 Chapter 1. Introduction

Figure 1.3b clearly shows that the drone tries to follow the trajectory already, without being at the
correct position. Again, not only is the orientation incorrect, but also the position.

The behaviours showed in both Figure 1.3 can cause complications, for example when its use lies
in surveillance objectives.

Another unwanted consequence which results from the controller of Lefeber, van den Eijnden, and
Nijmeijer (2017), is that large initial errors create errors in the z direction while going through tran-
sient behaviour, despite the absence of initial errors in this z direction, see Figure 1.4. This too can
be an issue for surveillance, as the height and the heading direction both determine the output of a
possible frontal camera. The background information given above highlights some of the issues for

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20

1.5

1.52

1.54

Figure 1.4: Quadrotor position while tracking the reference trajectories from (1.1) with ωv = 0.2π.

which UAVs can be the solution, as of today and possibly in the future. Also, the main problem for
this research is mentioned, and visualized using figures 1.3a and 1.4. The following section provides
more detail to the objectives which are to be achieved in this thesis.

1.4 Objectives

For this research, the goal is thus to design a control law that enables a quadrotor to fly autonomously
in not only horizontal and vertical direction, but also in heading direction without losing sight off a
specific target during transient behaviour. Additionally, this control law should be continuous and
should converge to the reference position in a near straight path. This last step is an addition to
the research conducted by Lefeber, van den Eijnden, and Nijmeijer (2017) and Lefeber, Greiff, and
Robertsson (2020). As shown in Section 1.3, the tracking performance during transient behaviour is
not as desired. If the drone could continuously face a certain target, even through transient behaviour,
surveillance or monitoring applications would be feasible since the output of the frontal camera can
now be utilized continuously. This research is also built on the work of Brekelmans (2019), since a
Parrot Mambo Fly was used in his research, which is the same drone as the one used in this thesis.

To conclude that the research has been successful, several sub-objectives are considered, besides
the main objective mentioned at the start of this section. These are formulated as follows:

• Investigate the cause of the undesirable transient behaviour, by validating the control laws
designed in Lefeber, van den Eijnden, and Nijmeijer (2017) and Lefeber, Greiff, and Robertsson
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(2020). Hereto,

– first validate the position control laws, subsequently

– validate the attitude control laws, and finally

– validate the combined control laws.

• Extend and/or improve on the already designed continuous full-state feedback tracking con-
troller from Lefeber, van den Eijnden, and Nijmeijer (2017) and Lefeber, Greiff, and Robertsson
to fit desired position and attitude tracking through transient behaviour.

• Embed the controllers in a simulation environment and validate its performance.

• Use the knowledge provided by Brekelmans (2019) to implement the designed controllers into
the drone’s hardware and check its actual effectiveness.

Note that results from simulations or experiments can prove the ineffectiveness of a designed control
law, therefore it might be necessary to take a step back and re-evaluate the designed control law.

1.5 Thesis outline

This thesis has the following format. In Chapter 2 some preliminary notations, control designs,
control methods and definitions are provided. The information discussed in this chapter is used ex-
tensively throughout this thesis. Chapter 3 is focused on validating the position control laws from
earlier research. Hereto, multiple new controllers are designed which should behave as desired, after
which these new controllers are compared to the earlier ones. Next, in Chapter 4 a similar approach
is followed as in Chapter 3, but now to validate the attitude controllers from earlier literature. Be-
sides that however, a new attitude control law is proposed which is based on a feedback linearization
method. Using this new method, possibilities arise to include yaw tracking. Hence, a specific yaw
tracking reference is proposed. Then, in Chapter 5, the final controllers from Chapter 3 and 4 are
combined to validate if the thrust definition can be improved to increase the tracking performance
during transient altitude translations. Different proposals are made and examined for their respective
performance. Chapter 6 presents the effectiveness of the designed controllers. These controllers are
compared to results obtained by earlier literature so as to find their specific strengths and shortcom-
ings. Lastly, Chapter 7 presents the conclusions of this work and the recommendations for possible
future work. Appendix A provides additional information regarding the new method described in
Chapter 4 and Appendix B describes the method to generate references from a set of flat outputs.



Chapter 2

Preliminaries

During the whole of this thesis, definitions, relations and results from previous research are used.
These results range from commonly known to nontrivial. This chapter provides insight to the non-
trivial definitions, relations and results. First of all, the two most commonly used methods in this
thesis for parametrizing orientations are discussed. Next, the cascade control structure from [1] is
discussed together with the mathematical model of the quadrotor dynamics as they are the basis of
this thesis. Subsequently, the attitude control law from Lefeber, Greiff, and Robertsson (2020) is
shown. This is followed by a specific form of feedback linearization, which is discussed thoroughly
further on in this thesis. After that, some final definitions are presented.

2.1 Attitude representations

In order to represent relative orientations, or attitudes, of a quadrotor with respect to another rigid
body, coordinate frames are associated to each body. The geometric relationships between each co-
ordinate frame can then be parametrized by several methods. Each of these methods comes with
its distinct strengths and weaknesses. The three most commonly used parametrizations are rota-
tion matrices, Euler angles and quaternions. This section provides information regarding the first
two parametrization methods, as they are used throughout this thesis. For more insight regarding
quaternions, one is referred to [17].

2.1.1 Rotation matrix

Rotation matrices define the coordinate vectors for the axis of one coordinate frame with respect to
another coordinate frame. These matrices have a size of n×n where n ∈ {2, 3}, for respectively planar
or spatial rotations and for this thesis only right-handed coordinate frames are assumed. This means
that the positive direction of rotation is defined by a clockwise rotation and vice versa. Rotation
matrices preserve the lengths and positive directions of rotations while mapping the vectors for the
axis between coordinate frames. These rotation matrices are denoted by R with as subscript the
direction between coordinates frames. For instance, the rotation matrix that maps vectors in frame
A to frame B is denoted by RAB . Rotation matrices are part of the special orthogonal group, SO(n)
where n again defines the order of the system, which comes with the following properties:

• R−1 = RT

• The columns (and therefore the rows) of R are mutually orthogonal.

• Each column (and again therefore each row) of R is a unit vector.

• det(R) = 1

The main advantage of rotation matrices is that their attitude representations are unique. Another
advantage is the capability to sequentially multiply multiple rotation matrices to end up at the desired
coordinate frame. A rotation matrix RAD can for example be described by sequentially multiplying

6
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RABRBCRCD. A disadvantage is that these matrix calculations require more computing power than,
for instance, quaternion multiplications.

2.1.2 Euler angles

Named after the famous Swiss mathematician, Euler angles are the most commonly used method to
represent the attitude in a certain frame [18]. By rotating along three consecutive angles, about the
successively rotated axes of the base frame, a relation can be constructed that maps the base frame to
the new frame. The order of rotation matters, since generally, sequential rotations along varying axes
do not result in identical mappings [19]. Multiple conventions are known when using Euler angles,
most common are proper Euler angles, Tait-Bryant angles and Roll-Pitch-Yaw (RPY) angles. The
latter is most commonly used for automotive, air and spacecraft, and naval purposes [20]–[22]. For
RPY-angles, the order of body-fixed rotations is first along the x axis (φ), then along the y axis (θ)
and finally along the z axis (ψ). The RPY-angle convention is used extensively throughout this thesis
and is presented in the following equation

R = RBI =

⎡
⎣cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦
⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦
⎡
⎣1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ . (2.1)

This rotation matrix maps the inertial frame, I, to the body frame, B. To obtain the map from the
body frame to the inertial frame, the transpose of (2.1) can be used, such that

RIB = R�
BI =

⎡
⎣1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

⎤
⎦
⎡
⎣cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦
⎡
⎣ cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ . (2.2)

The frames I and B, together with their respective axes, are visualized in Figure 2.1. To uniquely
define the rotation matrix, this thesis assumes φ ∈ (−π

2 ,
π
2

]
, or cosφ ≥ 0. Without this assumption,

similar rotation matrices are found when using a yaw of π + ψ, a pitch of π − θ and a roll of π + φ.
Appendix A.3 presents a pseudo code to ensure this assumption holds. These Euler angles come with
little ambiguities, as they are intuitive and requires minimal parameters. However, they also come
with singularities such as Gimbal Lock [23]. Gimbal Lock arises when θ = (n+ 1/2)π and yields

R(ψ, ((n+ 1/2)π, φ) =

⎡
⎣0 sin(φ+ ψ) cos(φ− ψ)
0 cos(φ− ψ) − sin(φ+ ψ)
1 0 0

⎤
⎦ , (2.3)

using the double angle formulae. From this matrix it can be seen that the roll and pitch angles, and
therefore also their derivatives, are not uniquely defined anymore, thus causing singularities.

2.2 Cascade control

This thesis builds upon the cascade control structure for quadrotors from [1]. So, in order to under-
stand what is to come, first the theory from earlier research is revisited. First of all, the dynamics
for a quadrotor are discussed, subsequently the control laws from [1] and finally the attitude control
law from [2].

2.2.1 Quadrotor dynamics

Figure 2.1 already provided the inertial frame and the body frame and the necessary mapping be-
tween the two by R. From this figure also ρ can be noticed, which defines the position of the center
of mass of the quadrotor with respect to the inertial frame and is expressed by ρ = (x, y, z)� ∈ R

3.
The body-fixed linear velocities and the body-fixed angular velocities are described by ν ∈ R

3 and
ω ∈ R

3 respectively.

The expression for the quadrotor velocity can be obtained through some logical reasoning, the body-
fixed accelerations are derived by using Newton’s second law, the attitude kinematics through use of
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θ

φ

ψ

Figure 2.1: Schematic overview of the quadrotor.

the Poisson equation and the attitude dynamics again with Newton’s second law. For more elaborate
explanations on the quadrotor dynamics, one is referred to [12]. The complete quadrotor dynamics
can be summarized as follows:

ρ̇I = RBIνB (2.4a)

ν̇B = −S(ωB)νB + gR�
BIe3I − (f/m)e3B (2.4b)

ṘBI = RBIS(ωB) (2.4c)

Jω̇B = S(JωB) + τB, (2.4d)

where S is a skew-symmetric matrix defined as

S(a) = −S(a)� =

⎡
⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦ , (2.5)

which is used to write cross products into a compact, clear form. The following notation for a cross
product operator is therefore adopted

a× b := S(a)b. (2.6)

The quadrotor reference dynamics are described in an identical way. Note that the reference dynamics
can be distinguished from the quadrotor dynamics through the subscript r. From these dynamics, a
cascaded structure can be recognized, because the position dynamics are influenced by the attitude
dynamics through R and ω. This cascaded structure is illustrated in Figure 2.2. To convert the total

Attitude
Dynamics

Position
Dynamics

τ

f

(R,ω)

Figure 2.2: Cascaded structure of quadrotor dynamics.

force and torques to the force per rotor using the frames from Figure 2.1 the following relation can
be used from [13] ⎡

⎢⎢⎣
f
τ1
τ2
τ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
l −l −l l
l l −l −l
−d d −d d

⎤
⎥⎥⎦
⎡
⎢⎢⎣
T1
T2
T3
T4

⎤
⎥⎥⎦ , (2.7)
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where l is the distance from the center of a rotor to the center of mass of the quadrotor, d a scalar
damping parameter and Ti the thrust per rotor i.

2.2.2 Tracking control

In order to achieve closed-loop stability, [12] proposed a cascaded control structure from which he
designed his control laws. The key structure is presented in Figure 2.3. The exact control laws
from his thesis are not discussed, as other improved control laws have been developed since then.
Lefeber, van den Eijnden, and Nijmeijer (2017) introduced a method to express the translational

Attitude Error
Subdynamics

Position Error
Subdynamics

Attitude
Control

Position
Control

Figure 2.3: Closed-loop cascade control structure from [1].

error coordinates in the body frame B, such that the body-fixed linear accelerations can be used
as virtual input. An advantage of this method is that independence of the choice of inertial frame
is obtained, which would not be the case when defining the translational error coordinates in the
body frame. Before obtaining the position tracking error dynamics, first the position tracking error
coordinates are defined [

ρe
νe

]
=

[
R�

r (ρr − ρ)
νr −R�

r Rν

]
, (2.8)

where for sake of clarity, the notations I and B are removed. Instead, R defines the mapping from
frame B to I and Rr the mapping from the reference frame R to I. Differentiation of the translational
tracking error coordinates results in the translational tracking error dynamics

ρ̇e = −S(ωr)ρe + νe (2.9a)

ν̇e = −S(ωr)νe +
f

m
R�

r Re3 −
fr
m
e3. (2.9b)

From (2.9b) a virtual input is defined as

u =
f

m
R�

r Re3 −
fr
m
e3, (2.10)

to obtain

ρ̇e = −S(ωr)ρe + νe (2.11a)

ν̇e = −S(ωr)νe + u. (2.11b)

which is used to design tracking control laws. The feedback

u = −σ(kρρe + kννe), (2.12)

designed by [2] was proven to be uniformly globally asymptotically stable and uniformly locally ex-
ponentially stable. For these definitions, refer to [24]. Furthermore, note the presence of σ, which is
a saturation function as defined in Section 2.4 in Definition 2.4.1.

From [2], also tracking attitude error coordinates and dynamics can be obtained, together with the
proposed input, τ , to stabilize the tracking attitude dynamics.
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Consider the dynamics (2.4c)-(2.4d) and their equivalents for the reference attitude dynamics. Define
the errors Re = RrR

�, R̃ = R̂R�, ωe = ωr − ω, and ω̃ = ω̂ − ω, where x̂ defines the estimated value
of vector x resulting from an observer. Then the input

τ = τr + S(Jω̂e)ωr +Kωω̂e +
n∑

i=1

kiS(R
�
r vi)R̂

�vi (2.13)

˙̂
R = R̂S(ω + δR) (2.14a)

J ˙̂ω = S(Jω)ω + τ + δω, (2.14b)

where the innovation terms δR and δω are given by

δR = −cR
n∑

i=1

kiS(R̂
�vi)(R�

r vi +R�vi) (2.15a)

δω = −cωJS(ωr)ωe − cωKωωe − Cωω̃, (2.15b)

with Kω = K�
ω > 0, Cω = C�

ω > 0, cR > 0, cω > 0, and ki > 0 such that M =
∑n

i=1 kiviv
�
i has

distinct eigenvalues, renders the equilibrium point (Re, R̃, ωe, ω̃) = (I, I, 0, 0) UaGAS and ULES.

Now, Lefeber, van den Eijnden, and Nijmeijer (2017) noted that by rewriting (2.10) the aim could
be to use f and τ to let fR�

r Re3 converge to the vector fre3 +mu. A fitting thrust could therefore
be defined as

f = ||fre3 +mu||, (2.16)

which also ensures f > 0. Then, by defining a new rotation matrix Rd, which maps the reference
frame R to a desired frame D, the goal to determine τ which makes fR�

r Re3 converge to the vector
fre3 +mu can be replaced with the goal to determine a τ which makes R�

r R converge to Rd. By
proposing Re = RrRdR

�, ωe = R�
d ωr + ωd − ω and ω̂e = R�

d ωr + ωd − ω̂, then the equilibrium

point (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) = (0, 0, 0, 0, 0, I, 0, I, 0) is UaGAS and ULES. Note that z̃ defines
a term used for filtering observed position tracking errors, which is ignored further. More details on
the desired frame D, how it is defined and how it leads to Rd and ωd, is provided later in this thesis.

2.3 Input-Output linearization

The concept of Input-Output linearization is used for this thesis. Input-Ouput linearization is a
specific form of feedback linearization. Another form of feedback linearization includes full-state
linearization. Both methods, discussed thoroughly in [24], propose a state feedback control to trans-
form a nonlinear system. However, where full-state linearization linearizes the complete state equation
without necessarily linearizing the output equation, Input-Output linearization specifically linearizes
the input-output map while the state equation may be only partially linearized. For example, consider
a class of nonlinear systems of the form

ẋ = f(x) +G(x)u (2.17a)

y = h(x), (2.17b)

where ẋ described the derivative of x, which specifies the state space of a system. Also here, f and
G are linear or nonlinear functions and u is the input variable. Feedback linearization poses the
question of whether there exists a state feedback control

u = α(x) + β(x)v, (2.18)

where α and β are (non)linear functions and v the state feedback control, such that for full-state
linearization, using a change of variables of the form

z = T (x), (2.19)
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transforms the nonlinear system into an identical system, but linear. This transformation can, op-
positely, also cause the output to be transformed into a nonlinear term. Input-Output linearization
however, specifies a control input u, of the form (2.18), such that

ẋ = v (2.20a)

y = h(x), (2.20b)

where now a tracking control problem can be solved using linear control theory. Note that Input-
Output linearization is only possible when the (sum of the) relative degree(s) of the output(s) is
smaller than or equal to the dimension of the state and only linearizes the input-output map. The
definition of relative degrees is presented in the next section in Definition 2.4.2. Khalil explains the
linearization of only the input-output map by the following example. Here, a full system is described
as

ẋ1 = a sin(x2)

ẋ2 = v

y = x2.

Clearly, the relation between input and specified output is purely linear. It is also apparent that
state variable x1 is not connected to the output, while still being highly nonlinear. This has to be
accounted for when using Input-Output linearization, because these zero dynamics can result in un-
stable behaviour.

If a system (2.17) is decomposed in an external part, ξ, and an internal part, η, it is said to be
in nominal form. This external part can be linearized by the state feedback control (2.18), while
the internal part is made unobservable by the same control. If the external part is set to be 0, the
internal dynamics can be rewritten to

η̇ = f(η, 0), (2.21)

which is called the zero dynamics. If the system (2.21) has an asymptotically stable equilibrium point
in the domain of interest, the system is said to be minimum phase.

2.4 Definitions

The following section provides additional definitions, theorems and mathematical methods that are
used throughout this thesis.

Saturation functions

Consider σ(s(·)) : R
n → R

n to be a vector-function which is twice continuously differentiable and
monotone and where s(·) satisfies s(0) = 0 and limx→0 s(x)/x = s′(0) > 0. Also, let Vσ(e) =∫ e�e

0
s(x)/xdx, which is positive definite and radially unbounded.

Definition 2.4.1 (cf. [1, Definition 1]). A function σi for which ||σi(e)|| ≤ γ for all e is called a
saturation function.

Examples for saturation functions are σ(x) = γ x√
1+x�x

or σ(x) = γ tanh(||x||2/γ)||x||−1
2 , with a

saturation bound γ > 0 that either decreases the available domain for small values, or increases the
available domain for large values.

Flatness

A system is flat if it is possible to find a set of outputs, which is equal to the number of inputs, such
that all states and inputs can be determined from these outputs without integration [25]. For the
exact definition of flatness, one is referred to [16].
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Furthermore, if a reference to a flat output is made, it is meant that reference trajectories are specified
from these flat outputs without the need of integration, provided they are sufficiently smooth. The
smoothness of a function is a property that defines the number of derivatives in a certain domain.
Sufficiently smooth therefore indicates that the function should be differentiable at least as many
times needed to define the reference trajectories.

Lie derivative [24]

Consider the following single-input-single-output (SISO) system

ẋ = f(x) + g(x)u (2.22a)

ẏ = h(x), (2.22b)

where the sufficiently smooth functions f , g and h lie in a domain D ⊂ R
n. The derivative ẏ is given

by

ẏ =
∂h

∂x
[f(x) + g(x)u]

.
= Lfh(x) + Lgh(x)u, (2.23)

where

Lfh(x) =
∂h

∂x
f(x), (2.24)

is called the Lie Derivative of h with respect to f . Using this notation is convenient, since it is
concisely written when calculating the derivative is repeated with respect to the same vector field or
another new one. Some notations can be found below

LgLfh(x) =
∂(Lfh)

∂x
g(x)

L2
fh(x) = LfLfh(x) =

∂(Lfh)

∂x
f(x)

Lk
fh(x) = LfL

k−1
f h(x) =

∂(Lk−1
f h)

∂x
f(x)

L0
fh(x) = h(x)

Relative degrees

Definition 2.4.2 (cf. [24, Definition 13.2]). A nonlinear system, (2.17), has relative degree k,
1 ≤ k ≤ n in a region D0 ⊂ D if

LGL
i−1
f h(x) = 0, i = 1, 2, . . . , k − 1; LGL

k−1
f h(x) �= 0 (2.25)

for all x ∈ D0.

In the special case that k = n, the nominal form reduces to a system where no internal part η exists.
In this case, the system has no zero dynamics and, by default, is said to be minimum phase and thus
has no unobservable internal dynamics.

Error measure for SO(3)

From [2], an error measure is defined to compare elements of SO(3). Hereto, define a measure by its
associated logarithmic map log: SO(3) → so(3), as

d(R1, R2) = || log(R1, R
�
2 )|| ∈ [0, π]. (2.26)

In other words, this error defines the absolute distance between two orientations on a sphere.
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Position Control

As mentioned in Section 1.4, this research aims to improve and extend on earlier work from [1] and
[2] since unwanted tracking performance was observed when using these control laws. In the prior,
a cascade control structure has been identified which led to control laws capable of sufficient track-
ing through corrupted measurements and saturation effects. Lefeber, Greiff, and Robertsson (2020)
extended this work by designing a filtered output feedback controller with proven uniform local ex-
ponential stability, without relying on full state information. However, at the core of both these
controllers lies the cascaded control structure and in both papers control laws are designed for the
position control first, subsequently for the attitude control and finally for the cascaded closed-loop
system.

This thesis follows the same cascaded structure and the same sequence for designing control laws,
therefore firstly, in this chapter, the position control subsystem is analyzed. This is necessary since
Section 1.3 has shown undesirable behaviour in the complete closed-loop system. More specifically,
Figure 1.3 showed undesirable transient translations in that it already rotated without being near to
the reference position, and Figure 1.4 showed unnecessary altitude changes, since the drone initially
had the correct altitude. As both observations could be related to the previously designed position
control law, this chapter provides more insight on how this position control law influences the closed-
loop dynamics. First, however, Section 3.1 explains in more detail the motivation for analyzing the
position control law after which, in Section 3.2, the position control law is validated. This chapter
ends by giving some concluding remarks in Section 3.3.

3.1 Motivation

The motivation to start analyzing the position control design comes from initial testing of the com-
plete system. As explained in Section 1.3, relatively simple trajectories still caused the quadrotor to
either gain or lose altitude at the start of its movements without having initial altitude errors. Rela-
tively more aggressive trajectories also had undesired transient behaviour, which is clearly visible in
Figure 1.3b. A possible reason for these errors in transient behaviour was found in the translational
tracking dynamics. By proposing a trajectory where the drone has a time dependent position and
velocity reference and where the initial conditions were set such that

ρe(t0) =
[
ρe,1 ρe,2 0

]�
νe(t0) =

[
0 0 0

]�
R(t0) = Rr, (3.1)

then, from (2.11a), it can be seen that initial errors in the horizontal plane can already result in
tracking errors in the e3-direction without initially having errors in this direction. The equations

13
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(3.2) show where those errors originate from

ρ̇e = −
⎡
⎣ 0 −ωr,3 ωr,2

ωr,3 0 −ωr,1

−ωr,2 ωr,1 0

⎤
⎦ ρe + νe (3.2a)

ρ̇ee3 =
(−ωr,2 ωr,1 0

)⎛⎝ρe,1ρe,2
0

⎞
⎠+ 0. (3.2b)

And since ρe is used for the feedback output (2.12), this could result in unnecessary initial increases
or decreases in altitude during transient behaviour. This research aims to improve the transient
behaviour of the position by designing a control law which enables the drone to fly in a straight path
towards its target, therefore it makes sense to start validating the position control first.

3.2 Validation

In order to validate the position tracking control law from [1] and [2], it is best to recall the desired
behaviour which is to be validated. As stated in Chapter 1, this research aims to design a control
law which improves transient behaviour by flying in a direct path to its target. Thus, it would be
desired if the drone would move in a straight line to its target.

To validate if the current position tracking control satisfies this behaviour, first, control laws which
achieve straight line tracking of the position are defined. These control laws are ordered such that
each consecutive control law is more realistic. Hereto, first a control law is designed that ensures
movement along a straight line, without involving orientation in any way and finally, a control law is
designed which is capable of tracking a time dependent orientation as well. Using this final controller
and comparing it to the previously designed control law, this thesis tries to draw conclusions on the
suitability of the control law from [1].

3.2.1 Translational tracking control 1

Without the presence of drone attitude, the problem is defined as follows. From an initial position
ρ0 with velocity ρ̇0, the drone should follow a trajectory towards ρr with ρ̇r, such that there can only
be movement along the line crossing through ρ0 and ρr. This problem is discussed in more detail by
using an example.

The drone, set at position ρ0 at time t = 0, is hovering and should move to position ρr where it
should hover as well. Therefore:

ρ(0) = ρ0 �= ρr ρ̇0 = ρ̇r = 0 (3.3)

where the dynamics are defined as

ρ̈ = u, (3.4)

in which u is the control input. Movement along a straight line through points ρ0 and ρr is defined
as

ρ(t) = α(t)ρ0 + [1− α(t)] ρr

= α(t) [ρ0 − ρr] + ρr, (3.5)

where α is some time dependent function scaling the current position to the distance ρ0 and ρr. By
differentiating (3.5) two times, the desired dynamics can be obtained.

ρ̇(t) = α̇(t) [ρ0 − ρr] (3.6a)

ρ̈(t) = α̈(t) [ρ0 − ρr] = u. (3.6b)
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What can be noticed from (3.6) is the absence of feedback terms, making it an open-loop (feed-
forward) controller. By adding feedback terms, therefore making it a closed-loop controller, the
system improves in stability and robustness without losing the advantages of feed-forward.

Define
e = ρ− ρr, (3.7)

which leads to the corresponding error dynamics

ë+ kdė+ kpe = 0, (3.8)

with kp > 0, kd > 0, such that the system is Hurwitz [26]. Rewriting (3.8) to

ë = −kdė− kpe (3.9)

results in stable translational error dynamics. Note however, that to this point no input is defined
that is similar to (3.4). Therefore, combine the definition in (3.7) with the error dynamics of (3.8),
to obtain

ρ̈− ρ̈r = −kdė− kpe, (3.10)

which can be rewritten to
ρ̈ = ρ̈r − kdė− kpe = u, (3.11)

to obtain the input u that ensures straight line translational tracking dynamics.

3.2.2 Translational tracking 2

The general idea for designing a control law that includes time dependent attitude references is similar
to the previous method. Again, the goal is to design a controller as in (3.11). This time however, Rr

enters the system. Therefore it has to be accounted for and since Rr is time dependent, there has to
be accounted for the derivatives of Rr as well. As can be seen in (2.4c), ωr terms arise through the
first derivative. Similarly, τr arises through the second derivative of Rr, which on its turn originates
from (2.4d). It is therefore not straightforward to implement the exact same methods as in the pre-
vious subsection.

Now, instead of using the error coordinates as defined in (3.7), define

ρe = R�
r (ρr − ρ) (3.12a)

νe = R�
r (ρ̇r − ρ̇) = νr −R�

r Rν. (3.12b)

From (3.12a), it can be noted that the definition for the position tracking error is not described by
ρ− ρr, which is often used in literature, for instance in [27]–[29]. Instead, the same position tracking
error as in [1] is used. One of the reasons for using their definition is that it is independent of the
definition of the inertial frame, since it is defined in the tracking reference frame R, but the main
reason comes from the resulting combination of input thrust and orientation when deriving the error
dynamics.

Using these error coordinates, the following error dynamics can be obtained

ρ̇e = Ṙ�
r (ρr − ρ) +R�

r (ρ̇r − ρ̇)

= −S(ωr)R
�
r (ρr − ρ) +R�

r (Rrνr −Rν) = −S(ωr)ρe + νe (3.13a)

ν̇e = Ṙ�
r (ρ̇r − ρ̇) +R�

r (ρ̈r − ρ̈)

= −S(ωr)R
�
r (ρ̇r − ρ̇) +R�

r (ρ̈r − ρ̈) = −S(ωr)νe +R�
r (ρ̈r − ρ̈). (3.13b)

From the last term it is possible to replace (ρ̈r − ρ̈) with the previously mentioned error dynamics in
(3.10) and to combine it with the error coordinates from (3.12)

ν̇e = −S(ωr)νe +R�
r [kd(ρ̇− ρ̇r) + kp(ρ− ρr)]

= −S(ωr)νe − kdνe − kpρe

= −S(ωr)νe + u. (3.14)
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then, an input u = ρ̈r−ρ̈ can be recognized, which originates from the desired Hurwitz error dynamics
in (3.10). Rewriting u = ρ̈r − ρ̈, leads to

u = (f/m)R�
r Re3 − (fr/m)e3, (3.15)

from simple differentiation of the dynamics (2.4). This is also the foundation of the position tracking
control law from Lefeber, van den Eijnden, and Nijmeijer (2017), where they assumed u to be a
virtual input to achieve the desired position tracking error dynamics. Clearly, the attitude R cannot
be an input as it is a result of the input torque, therefore the term virtual input is used.

Lefeber, Greiff, and Robertsson (2020) proved that these closed-loop dynamics are UGAS and ULES
and from (3.10) and (3.11) it can be concluded that the control input u tracks a trajectory which
moves along a straight line towards ρr. Therefore, it can be concluded that the position control is not
at fault for the behaviour described in Section 3.1. This is furthermore illustrated by the simulation
in Figure 3.1, where

ρr =
[
cos(ωv) sin(ωv) −1.5

]�
, (3.16)

and

ρ0 =
[
4 4 −1.5

]�
ν0 =

[
0 0 0

]�
R0 = Rr = I ωv = 0.2π kp = kd = 4,

which, by using (2.4a), also leads to νr. From Figure 3.1b, it can be observed that there is no initial
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Figure 3.1: Resulting quadrotor position using (3.14)

position error in the z direction and that by using the translational tracking control law from (3.14),
it can also never appear. It can also be noted from 3.1a, that it is difficult to confirm if the drone
translates in a straight line to the target, as the target is time dependent. Both observations however,
indicate that the undesirable transient translations and altitude changes do not originate from the
position control.

3.3 Concluding remarks

In this chapter a position tracking control law has been validated. The reason for validating this
position tracking control law originates from unwanted results found using that control law. Instead
of directly validating the entire system, the choice was made to design a control law which does
not account for attitude dynamics in any way, which would behave according to the goals stated
in Chapter 1. The final controller designed in this chapter could track time dependent position ref-
erences and time dependent attitude references. While designing this final controller, described in
(3.14), it becomes clear that it is equivalent to the controller designed in [1] and [2]. Figure 3.1, con-
firmed that the translational tracking control law does not create altitude errors if there are initially
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none and it also showed that the transient translations from Figure 1.3a are not a direct result from
the translational tracking control law. Therefore it can be concluded that the unwanted behaviour
cannot be caused by the position control law.

In Chapter 4 different attitude control laws are validated, to examine if they could lead to unde-
sirable behaviour.



Chapter 4

Attitude control

In the previous chapter, it has been shown that the unwanted altitude changes and the transient
translations explained in Section 1.3 are not the result of the position tracking controller from [2].
Instead, it performs as desired, which means that the root of the undesirable behaviour is still
unknown. Therefore, the next step is to validate the attitude tracking controllers from [1] and
[2]. Designing a controller which can track a path in a straight line means not only designing a
fitting position controller, it also means designing a controller which rotates such that the desired
horizontal translations can be achieved and a controller that ensures the desired altitude translations.
The latter is discussed later in this report, the former is discussed in this chapter. The attitude
control laws from [1] and [2] are both capable of tracking ”easy-to-follow” trajectories and trajectories
involving aggressive maneuvering, but do they also cause the unwanted transient translations or
altitude changes or both? Section 4.1 is dedicated to answering this question by simulating and
presenting the attitude of the drone using the attitude controller from [2], since the attitude controller
from [1] includes unnecessary terms which are left out in [2]. In Section 4.2 the possibility of designing
a new attitude tracking controller is discussed, where the main focus lies on a controller based on using
a feedback linearization technique known as ”Input-Output linearization”. Finally, in Section 4.4 some
concluding remarks are given.

4.1 Motivation

Both [1] and [2] have proposed a method for tracking attitude dynamics. Similar methods were used,
in that they both define error measures for R and ω which they use to define a stabilizing control
input for τ , however each has their own version of the final control input. Again, both these versions
are proven to be ULES and UaGAS. Contrary to the position control however, it is unclear how these
control inputs exactly rotate in order to stabilize the system. It is clear from the simulations shown
in [1] and [2] and independent simulations, using either method, similar initial conditions and similar
trajectories, that settling times are relatively quick, but whether these rotations are fitting for the
goal of this report is to be decided.

In order to conclude if either method could be applicable for this research, attitude dynamic simu-
lations were conducted to visualize the attitude for multiple initial orientations. As mentioned, only
simulations using the attitude controller by [2] are performed. This for the reasons that the attitude
controller from [1] includes unnecessary nonlinear terms and because these simulations can be per-
formed simply by using the control law from [2] and assuming there are no observer errors in (2.13).
By solely focusing on the attitude it is not difficult to imagine what the desired attitude dynamics
should be. Therefore, the attitude dynamics and complementary controllers are extracted from the
system and evaluated separately.

Starting by simulating the first situation. Here, the reference orientation is set to be

Rr = I, (4.1)

18
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Figure 4.1: Attitude and reference in Euler angles from controller by [2].

which indicates a hovering position. The initial orientation is set as

R(t0) =

⎡
⎣ 0.9848 0 0.1736

0 1 0
−0.1736 0 0.9848

⎤
⎦ ,

which occurs after a pitch, θ, rotation of 10 degrees. Under ideal circumstances, the quadrotor would
rotate with negative pitch angles to rotate back to the reference attitude. In no situation it would
be necessary to rotate using either roll or yaw, knowing that this would not benefit in moving along
a straight line. See Figure 2.1 for the corresponding angle representations.

Results can be seen in Figure 4.1. From here, it is visible that the system converges quickly. However,
what can also be noticed is that both roll and yaw rotations occur. Even though these rotations are
small, they are large enough to cause movements in undesired directions. Only by rotating directly
to a reference position it is possible to translate in a straight path towards that reference position.
Therefore, the result obtained by using the attitude controller from [2] does not suffice and alternative
methods are thus necessary.

4.2 Alternative attitude control

Before an alternative attitude controller can be designed, it is best to start defining the requirements
of this controller. Most importantly, the new controller should be able to rotate towards its reference
orientation as fast as possible, without using rotations which do not contribute to the goal of the
position control. Next to that, only rotations around the body-fixed x and y axis can lead to the
reference orientation, since the goal of this thesis is to control the heading direction, which follows
from rotations around the body-fixed z axis, independently too. In the next part of this section, the
method described as Input-Ouput linearization is proposed as solution.
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4.2.1 Input-Output linearization

From Chapter 2, it is known that Input-Output linearization is a method that linearizes the input-
output map of a system. This linear input-output map can then be used to solve a tracking control
problem. If the input-output map of the quadrotor attitude dynamics can be linearized, it can be
used to track attitude dynamics as specified. A similar approach is used in [27], however this research
did not use cascade control structure, but a control structure with an inner and outer loop. In order
to implement Input-Output linearization for the attitude dynamics described in (2.4c)-(2.4d), firstly
the state space variables are specified

x =

[
x1
x2

]
=

[
R(φ, θ, ψ)

ω

]
. (4.2)

Note that R is a result of sequential roll, pitch and yaw rotations defined by respectively φ, θ and ψ,
as seen in (2.1). Next, the following outputs are proposed

y =

⎡
⎣y1y2
y3

⎤
⎦ =

⎡
⎣ψθ
φ

⎤
⎦ . (4.3)

Setting y to describe the roll, pitch and yaw angles ensures total control over the attitude of the
quadrotor, if and only if the sum of the relative degrees ki, of each output yi, with i = {1, 2, 3}, is
smaller than or equal to the dimension, n, of the state space x [30]. The relative degree of a system
is defined by [24] and is discussed in Section 2.4.

After calculating the Lie derivatives two times for each output, it can be found that LGLfh(x) �= 0,
which concludes that the attitude dynamics are Input-Output linearizable. Furthermore, it holds
that the sum of the relative degrees is exactly equal to the dimension, n, of the state space, x, in
(4.2), which means there are no zero-dynamics. Appendix A provides a detailed description on how
these results are obtained.

Knowing that yi is Input-Output linearizable, what remains is to define τ such that the input-output
map reduces to yi = vi. The following state feedback control is proposed

τ = −S(Jω)ω + J

⎡
⎣−sθ 0 1
cθsφ cφ 0
cθcφ −sφ 0

⎤
⎦[

v −M(ψ̇, θ̇, φ̇, ω)ω
]
, (4.4)

which results in the desired, linear, input-output map. Note that s and c are abbreviations of sin and
cos.

By achieving a linear input-output map, it remains to define the desired tracking behaviour. As
mentioned in Section 3.2.1, a tracking control law to ensure linear movement can be described by
(3.9), with in a like manner kp,r > 0, kd,r > 0 such that a Hurwitz system is ensured. Note that (3.7)
cannot be used here, therefore instead let

ei = yi − yi,r (4.5a)

ėi = ẏi − ẏi,r, (4.5b)

where yi defines ψ, θ and φ for i = {1, 2, 3} respectively, from (4.3). Similarly, ẏi defines ψ̇, θ̇ and φ̇
for i = {1, 2, 3} respectively.

In addition to the controller defined in Section 3.2.1, for the attitude error tracking dynamics, also a
feedforward term has been implemented. This feedforward term can also be found in (3.11), but is
used here as follows:

ëi = −kp,re− kd,r ė (4.6a)

ÿi − ÿi,r = −kp,rei − kd,r ėi (4.6b)

ÿi = ÿi,r − kp,rei − kd,r ėi, (4.6c)
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where ÿi defines the second derivatives of (4.3).

Note that yi can be derived from the rotation matrix described in (2.1), according to the pseudo
code in Appendix A. Also, ẏi can be derived from the expression of ω as function of yi and ẏi in [31],
which can be rewritten to an expression of ẏi as function of yi and ω. The exact expression can be
found in Appendix A, (A.2). Recall that for the sake of clarity Euler angles are used, Appendix A
also presents the implemented method in SO(3).

Considering the desire to achieve specific orientations by rotating in roll and pitch angles only, with
the intend that yaw remains free to choose, the following approach from [1] is followed.

Define

fd =

⎡
⎣fd1fd2
fd3

⎤
⎦ =

fre3 +mu

||fre3 +mu|| , (4.7)

as the desired thrust direction, specified in more depth in Chapter 5. Then, let

Rd =

⎡
⎢⎣1−

f2
d1

1+fd3
− fd1fd2

1+fd3
fd1

− fd1fd2
1+fd3

1− f2
d2

1+fd3
fd2

−fd1 −fd2 fd3

⎤
⎥⎦ , (4.8)

denote the desired rotation matrix which rotates the desired thrust vector, fd, to the thrust vector of
the reference (i.e. e3) in the plane spanned by both vectors. By differentiating Rd and premultiplying
it with Rd according to the dynamics in (2.4c), to obtain a definition for ωd results in

ωd =

⎡
⎢⎢⎣
−ḟd1 + fd2ḟd1

1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎦ . (4.9)

Now, instead of retrieving yi,r from the entries of matrix Rd in (4.8) in combination with the definition
of the rotation matrix in (2.1), where R is defined by RPY-angles, take

RRP =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦

=

⎡
⎣ cθ sφsθ cφsθ

0 cφ −sφ
−sθ cθsφ cφcθ

⎤
⎦ , (4.10)

to define a rotation matrix, RRP , consisting of only roll and pitch rotations. This rotation matrix
ensures rotations are only in x and y direction, leaving the yaw angle free to define later. From the
definition of RRP and the entries fd1, fd2 and fd3 in rotation matrix Rd, it is possible to find y2,r and
y3,r. As mentioned in Section 2.1.2, it is assumed that cosφ ≥ 0 to guarantee uniquely defined rotation
matrices, and Appendix A provides a pseudo code that calculates the Euler angles accordingly.
Furthermore, ẏ2,r and ẏ3,r can be obtained by differentiating RRP and using the dynamics from
(2.4c) to obtain a skew symmetric matrix S(y1,r, y2,r, ẏ1,r, ẏ2,r), which defines the desired angular
velocities. Then, by combining the definition of a skew symmetric matrix (2.5) and the entries of
(4.9), let

S3,2(y1,r, y2,r, ẏ1,r, ẏ2,r) = ωd,1 (4.11a)

S1,3(y1,r, y2, ẏ1,r, ẏ2,r) = ωd,2, (4.11b)

which are two equations with two unknowns, which can be solved to find ẏ2,r and ẏ3,r. Finally, the
expressions for ÿ2,r and ÿ3,r result from differentiation of the expressions for ẏ2,r and ẏ3,r.
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Recall from Section 2.1.2, that by using the parametrization in Euler angles, singularities can arise
[23]. These singularities can enter the control law from the tracking dynamics in (4.6c), when retriev-
ing orientation representation in Euler angles. If the rotation matrix from which the Euler angles are
retrieved describes a Gimbal Lock orientation, it is not possible to uniquely define the roll and pitch
angles. Greiff (2017) proposes a method to avoid these singularities, by augmenting the quadrotor
dynamics (2.4) to keep the pitch constant at its most recently feasible value, θf , when sufficiently
close to the singularity. Thus, in order to define yi sufficiently correct at every instant, let

R =

{
R(ψ, θ, φ), if || cos(θ)|| > ε

R(ψ, θf , φ), if || cos(θ)|| ≤ ε
, (4.12)

where ε defines a scalar bound. Now, to finalize the new attitude controller only the yaw reference
angle needs to be defined.

4.3 Yaw angle reference

The previous section has provided a method to linearize the input-output map of the attitude dy-
namics to solve the tracking control problem of (4.6c) and it also provided methods to determine the
outputs yi, its derivatives and the reference outputs yr,1, y2,r and its derivatives. The reference out-
put y3,r and its derivatives have not been defined yet. This section provides the necessary expressions.

For this thesis, it is desired to define a yaw angle reference that is able to continuously face a specific
reference target point, ρt, which lies in the horizontal plane spanned by e1I and e2I . Since the drone
itself is not necessarily idle in its global position, the yaw reference should adjust according to the
changes in position. Figure 4.2 illustrates the correct yaw angle.

b2

b1

(a) 2D quadrotor view

b2

b1

ρ

ρt

ψ

ρ2t − ρ2

ρ1t − ρ1

(b) Yaw calculation method

Figure 4.2: Yaw illustrations.

The following yaw reference angle is proposed

ψr = atan2 (ρ2t − ρ2, ρ1t − ρ1) , (4.13)

where atan2 is the 2-argument arctangent. The reference angular velocity ψ̇r follows from the deriva-
tive of ψr

ψ̇r =
−ρ̇1(ρ2t − ρ2)

(ρ2t − ρ2)2 + (ρ1t − ρ1)2
− ρ̇2(ρ1t − ρ1)

(ρ2t − ρ2)2 + (ρ1t − ρ1)2
, (4.14)

and ψ̈r from differentiating ψ̇r.

It should be noted that singularities can occur using these formulations. For situations where ρt = ρ
the yaw reference is undefined. Furthermore, Figure 4.3 shows a situation where the drone is di-
rectly heading towards ρt. Before the drone has reached this reference target point, the yaw angle
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and the desired yaw angle are equal thus resulting in no control action. As soon as ρt = ρ and the
yaw reference becomes undefined, the system can become unstable. Once the drone has passed this
reference target point the yaw error is also immediately significant, which can lead to large control
actions. Such undesirable situations can be avoided by using collision avoidance control laws, where
the equilibria are asymptotically stable and no collisions between objects occur [32]. When using
collision avoidance control laws, the drone moves around the reference target point so that it can
never ”collide” with it which also means that the yaw reference is continuously defined.

ρt, b1, ψr

ρ

(a) ψr = ψ = −1/4π

ρ, ρt

b1

(b) ψr is undefined, ψ = −1/4π.

ρt, ψr

b1

ρ

(c) ψr = 3/4π, ψ = −1/4π.

Figure 4.3: Yaw illustrations.

4.4 Concluding remarks

In this chapter the attitude tracking control problem has been considered. Even though the position
tracking controller resulted in straight line movements, the quadrotor would still not achieve the
requirements if the attitude tracking control is deficient. Previous control laws have been validated,
which resulted in the conclusion that they did not suffice. This conclusion followed from the results
obtained in Figure 4.1, which showed rotations along axis that would result in undesirable transla-
tions. Therefore, a new attitude tracking controller has been proposed.

This new attitude tracking controller is designed by using a feedback linearization method called,
Input-Output linearization. The system (2.4c)-(2.4d) proved to be Input-Output linearizable, since
the sum of the relative degrees of the outputs equaled the state dimension. It has been shown that
the state feedback controller from (4.4) is able to linearize the input-output map. Therefore, what
was left to do was to define the desired tracking behaviour. The final tracking control law is shown
in (4.6c). In view of the goal to rotate the quadrotor around its x and y axis only to achieve the
reference position, a method is proposed to define the suiting roll and pitch angles. This method uses
the definitions from (4.10) and the values that result from (4.7) and (4.8).

The yaw reference has been specified separately. It has been designed such that it constantly faces a
certain point in space, ρt, by defining the angle between the current position in the horizontal plane
and the target point. The corresponding angular velocity and accelerations that match ψr have been
derived through differentiation of (4.13).

The new attitude tracking control law allows for multiple possible scenarios of singularity. In case
of singularities through gimbal lock, it has been shown that the method described by [31] in (4.12)
can avoid these singular cases, by augmenting the attitude dynamics as in (4.12). However, in case
of singularities induced by undefined yaw references, there has yet to be implemented a method that
can prevent it. The method from [32] describes tracking control laws that include collision avoidance.
It is suggested to implement similar control laws to define ρt as an object with which collisions do
not occur so that the actual position ρ and the reference target point ρt are never equal and thus
resulting in a continuously defined yaw reference.

This chapter includes a method to describe pitch and roll angles from the virtual input u, which
is defined in Chapter 3, even though this method has not been discussed yet. The following chapter
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therefore includes detailed derivations for the purpose of explaining where the roll and pitch angles
originate from. Chapter 4 also discusses its effectiveness, to validate if the method remains suitable
for this research or has to be altered.



Chapter 5

Combined control

From previous chapters it has become clear that the position control laws do not result in the un-
wanted altitude changes and it has become clear what the desired input torque, τ , should be in
order to rotate in a manner that fits the goals of this research, namely to track a trajectory in the
shortest possible way: in a straight line. Up until this point, little attention has been given to the
other input of the total system, described in (2.4), being the thrust. Rotations alone do not guar-
antee straight line tracking, a fitting thrust per orientation is equally important. In Section 4.2 the
variables fd, Rd and ωd were mentioned, without thoroughly explaining what they represent. There,
attention has been given as to what their utility is for defining desired thrust directions and desired
orientations. What has not been mentioned yet, is their convenience for defining the final thrust input.

This chapter pays attention to deriving a thrust definition that increases tracking performance during
transient altitude translations. As in earlier chapters, firstly a motivation is given regarding the pre-
viously defined thrust methods and their effectiveness. By means of illustrations these methods are
validated. Next, two alternatives for the already available thrust definitions are proposed. The first is
based on geometric properties of the vectors used to define the already existing thrust magnitude, the
second is based on angular differences and corresponding scaling values. Both methods are described
in depth and their respective strengths and flaws are identified. At last, some concluding remarks are
given.

5.1 Motivation

As explained in Chapter 3, u defines a virtual input to stabilize the position tracking error dynam-
ics. Being a virtual input, u on itself is not suitable to be implemented in the actual closed-loop
system. The only inputs which are available are the input thrust, f , and the input torque, τ . In
the previous chapter a definition for τ has been designed which would achieve the desired results of
this research. It has been shown that this τ is capable of converging R to Rr such that no rotations
occur which would lead to unnecessary translations. However, it is not yet possible to translate
between two certain positions if the initial attitude is already equal to the reference attitude. This
is why fd, Rd and ωd have been designed. They define the necessary thrust direction, attitude and
angular velocity to achieve the desired translation, as explained earlier in Chapter 2. Lefeber, van
den Eijnden, and Nijmeijer (2017) explained the reason behind using these equations is to replace the
goal of determining a τ which converges fR�

r Re3 to fre3 +mu to determine τ which converges R�
r R

to Rd, by using (2.16). Chapter 4 has shown a method to define the required roll and pitch angles
from Rd to ensure straight line translations, but the suitability of f from (2.16) is yet to be determined.

As can be seen from Figure 1.4, this method induces altitude errors when translating in a hori-
zontal plane while initially being at the correct altitude. It has to be noted that the exact method
from [1] has been followed here and as Chapter 4 has shown, the attitude control was not suitable
for this research. Therefore, in order to validate the thrust definition from (2.16), it has been im-
plemented in a controller which consists of the validated position tracking controller for the position
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error subdynamics, (3.11), and the newly defined attitude controller for the attitude subdynamics,
(4.4), with tracking dynamics based on (3.9). Figure 5.1 shows the results. From here, it can be

(a) Position tracking response in XY-plane. (b) Position tracking response in YZ-plane.

Figure 5.1: Translations using new position and attitude controllers, but with non validated thrust definition.

seen that the altitude translations do not match the horizontal translations. Even before the attitude
is changed enough for it to translate horizontally, the altitude increases already. After a certain
amount of time the altitude translations match the horizontal translations, indicating that R�

r R has
converged to Rd. Nonetheless, since the goal of this research is to ensure straight line movements,
the thrust definition from (2.16) is deemed unsuitable. Therefore, options for defining a new thrust
equation have to be explored, which is the subject of the two following sections.

5.2 Geometric thrust solution

This section proposes an alternative for the thrust definition from (2.16). This proposal is based on
finding a solution to the geometric problem that arises when using the desired rotation matrix Rd

in combination with u, the orientation of the thrustvector, given by Re3, and most importantly the
thrust definition from (2.16). Figure 5.2 visualizes this exact problem. In this figure, one can see a

mu

f

Re3

fg

u
R

fRde3

Figure 5.2: Schematic visualization of thrust problem in two dimensions.

two-dimensional representation of the attitude of a quadrotor, represented by the line annotated with
R. Additionally, multiple vectors are shown, Re3 which defines the direction of the current thrust,
u which defines the desired resulting (negative) acceleration direction, obtained from (3.11), Rde3
which defines the desired thrust direction and �fg which defines the gravitational force in opposite
direction. Recall, that by using a NED-frame, e3 is aimed towards the ground. Figure 5.2 visualizes
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the behaviour that occurs when using the thrust definition from [1] and [2]. Here, one can see that the
desired thrust direction, Rde3, is scaled with f from (2.16) to exactly match fre3+mu = fRde3, where
fr defines the gravitational force, fg. The resulting acceleration direction exactly matches the desired
acceleration direction. However, clearly Rde3 �= Re3, which leads to a resulting acceleration direction
that does not match mu, since f is too large for this situation. In Figure 5.2 a two-dimensional
situation is shown, but it has to be noted that this problem is not limited to a two-dimensional space.
By imagining that the vector Re3 is rotated such that it now points inwards or outwards of the paper,
the problem immediately becomes three-dimensional.

5.2.1 Solving for two-dimensional situation

Rather than solving this problem in three dimensions directly, it is firstly considered as a two-
dimensional problem. For guaranteeing straight line translations, accelerations are needed in the
direction of u, the scale of this vector solely defines the speed at which it would translate along the
trajectory. Therefore, by formulating f , such that fRe3 = fre3 + kmu, where k defines some scalar
value, straight line translations would be guaranteed. Figure 5.3 illustrates the resulting situation.

Re3

fg

u
R

f

kmu

Figure 5.3: Schematic visualization of the desired solution to the thrust problem in two dimensions.

The resulting acceleration vector is evidently smaller than the one in Figure 5.2, since it is scaled
with k, yet this acceleration direction is feasible. The quadrotor slowly, but accurately, follows the
desired trajectory when using this thrust definition.

To determine the fitting thrust definition, this problem is solved by identifying it as a system with
two linear equations, which by using the matrix equation can be written as

A�x = �b, (5.1)

where

A =
[
Re3 mu

]
=

[
Re3,1 mu1
Re3,2 mu2

]
, (5.2)

�b =

[
fr,1
fr,2

]
, (5.3)

�x =

[
f
k

]
. (5.4)

Since A is a n-by-m matrix that, in the two-dimensional situation, becomes a square matrix of size
n, the equality can be solved by using

�x = A−1�b, (5.5)

if the equations are independent, i.e. the matrix A has full rank. By identitfying f = �x1, the
geometrically ideal thrust definition can be found.
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5.2.2 Solving for three-dimensional situation

For situations in 3 dimensions, this method is impracticable, since exact intersections between fRe3
and fre3+mu rarely occur. It is at this point too, that it has to be noted that straight line movements
are not feasible for each initial attitude. For instance, if Re3 lies in the plane spanned by e1 and e3
only, it is initially not possible to directly translate towards a point in e2. Using the attitude tracking
controller from (4.4) with (3.9) guarantees rotations directly towards e2, but this is not immediate.
Therefore, decisions have to be made as to what defines the desired behaviour.

A possible solution is to define a new frame, Ru, which rotates the reference frame Rr around its
z axis such that u becomes a two-dimensional vector. By doing so, matrix equations are applicable
once more if the second entry of Re3 is ignored. As a result of this method, the quadrotor follows
a straight line trajectory in the frame Ru. This does not guarantee that the quadrotor follows a
straight line trajectory in the inertial frame, but as previously stated, this is not possible for some
scenarios. In the figure below, a schematic representation can be seen of the rotation matrix Ru.

e1

e2

e3

u e2e1,u

e3

Figure 5.4: Visualization of rotation matrix Ru.

5.2.3 Flaws

Even though the previously determined method to define a geometrically ideal thrust seems suitable,
multiple flaws cause the contrary. The first flaw is illustrated in Figure 5.5. According to this method,
the geometrically ideal thrust finds itself on the intersection between fRe3 and fre3 + kmu. In the
scenario described in Figure 5.5, this would lead to a thrust of f = 0 and k = fre3/mu, which
would result in the quadrotor falling straight down. As the absence of upwards thrust also causes
the inability to generate torque, the quadrotor would not be able to rotate and therefore, would keep
falling until it hits the ground. For this reason [1] and [2] constrained 0 < fmin

r ≤ fr and therefore
fd > 0. Another flaw resulting from the method to define the thrust by using matrix equalities, is the
possibility of negative thrusts. Figure 5.6 illustrates such a scenario. The desired acceleration of the
quadrotor has positive terms in the e2 direction, whereas the thrust direction has negative terms in
the e2 direction. By using (5.5) an intersection is calculated between fRe3 and kmu. From Figure 5.6
it can be observed that there is one unique intersection point. However, the resulting thrust at this
intersection point is negative, which is unwanted and even impossible to achieve for quadcopters as
they only rotate in one direction. Again, for this reason [1] and [2] constrained 0 < fmin

r ≤ fr and
therefore fd > 0.

Since there are no achievable thrusts that would lead to straight line behaviour, there again has to
be decided what the next best solution could be. Two possible alternatives can be proposed. Firstly,
the minimal possible thrust that still achieves positive thrusts per rotor or, secondly, a high thrust
to achieve torques capable of rotating the quadrotor as fast as possible to the upward position. Both
however, imply that discontinuities arise.

Discontinuities are the main reason this method is deemed unfit. One of the discontinuities that
arise when using this method, can be traced back to the main purpose of using (5.5), being that
it calculates scaling factors �x so that an equality between two systems can be found. An equality
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Re3
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u

R

Figure 5.5: Example 1, where f = 0 and the quadrotor would fall down.
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Figure 5.6: Example 2, where f < 0 which is not achievable.

between two systems in this case means an intersection point between fRe3 and fre3 + mu. In
situations described in Figure 5.3, a clear intersection point can be derived. However, in situations
visualized in Figure 5.7 no unique solution for f can be found.

Once the angle between Re3 and mu, say γ, turns 0 or π so that ||Re3|||| cos(γ)|| = ||Re3||, there
is no unique solution anymore. This is in line with the condition from (5.5), that the two systems
need to be independent, thus guaranteeing A has full rank. Therefore, no unique solution can be
found for f in such scenarios. From Lefeber, van den Eijnden, and Nijmeijer (2017), it is known
that a fitting solution is defined by (2.16), but by implementing conditions to the thrust definition,
making it a hybrid controller, the controller loses continuity. Since the goal of this thesis is to define
a continuous control law, the presence of discontinuities are highly inconvenient and therefore to be
avoided if possible.

5.3 Scaling with attitude error

It is from Figure 5.7, another alternative for defining the thrust is determined. In order to fly in a
straight path, starting from a hovering position, towards a point in three-dimensional space directly
above or below the current point in three-dimensional space, a thrust force of f = ||fre3 +mu|| is
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R R

u

u

Re3 Re3

Figure 5.7: Example 3, without a unique intersection point and ideally with f = ||fre3 +mu||.

needed, because Re3 = Rde3. If, with the same initial hovering attitude, the target position is placed
such that Re3 ⊥ Rde3, the ideal thrust to track a straight line trajectory is f = fr, which results
in the quadrotor hovering at the initial position. Knowing the ideal thrust for the two scenarios
described here, it is possible to formulate a thrust definition that scales between these two points.
If the angle between e3 and Re3 is equal to the angle between e3 and Rde3, the thrust should be
f = ||fre3 +mu|| as in (2.16), if the angle difference is π/2, the thrust should be f = fr. Any other
value in between is scaled with mu according to the angle difference. Since Re3 is defined in the
inertial frame I and Rde3 in the reference frame R, the angle difference cannot be calculated directly.
Therefore, to write both vectors in the same frame, let

f̂ = R�
r Re3, (5.6)

be the orientation of the thrust vector in the reference frameR. From (4.8), it is known that Rde3 = fd
and from Section 5.2.2 it is known that by rotating around the z axis, the vector fd can be described
in only two directions. Using this method allows for calculating the angular difference between Re3
and fd in a specific two-dimensional plane, in which straight line movements are to be tracked.
The exact formulation for defining the angle difference is as follows.
Let

z = atan2(fd,2, fd,1), (5.7)

be the angle of the desired thrust vector in the horizontal plane from b1 in Figure 2.1. Then

Rfd =

⎡
⎣ cos(z) sin(z) 0
− sin(z) cos(z) 0

0 0 1

⎤
⎦ , (5.8)

defines a rotation matrix that rotates the vector fd such that it can be described using only the first
and last element of the three-dimensional vector. Multiplying the vectors f̂ and fd with this rotation
matrix ensures both vectors are in the same frame, where thus fd can be described by only its first
and last element. Calculating the specific angles from now the b1 direction in the new frame for both
f̂ and fd results in

λ1 = atan2
(
(Rfd f̂)

�e1, (Rfd f̂)
�e2

)
(5.9a)

λ2 = atan2
(
(Rfdfd)

�e1, (Rfdfd)
�e2

)
(5.9b)

λe = λ2 − λ1. (5.9c)

For the correct scaling factor, it is proposed to use the following function

g(λe) =
1 + cos(2λe)

2
, (5.10)

to achieve the thrust definition
f = ||fre3 + g(λe)mu||. (5.11)

As can be seen from Figure 5.8 this results in maximum values for situations where λe = nπ, with
n ∈ Z, minimum values for situations where λe =

π
2 + nπ and weighted averages otherwise.
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Figure 5.8: Scaling function from (5.10).

5.3.1 Flaws

Using the thrust definition from (5.11) does not result in great tracking performance for any scenario.
For situations where a strictly positive thrust can result in an intersection with the vector fre3+mu,
this method does not result in the behaviour described in Section 5.2, which is preferred. More flaws
originate from (5.10). This function is continuous, as desired, however not linear between the extreme
values which means that the error scales differently around λe = n

2π compared to a discontinuous,
but linearly scaling, function as

g(λe) =
1− || sin(λe)||+ || cos(λe)||

2
. (5.12)

As mentioned earlier, discontinuities were avoided for this thesis, even though improved tracking
performance could be achieved with it.

5.4 Concluding remarks

In this chapter the thrust definition has been considered. A motivation has been given as to why
the previous definition did not comply completely with the goal of tracking a trajectory in a straight
line. The definitions from [1] and [2] were based on the assumption that the current thrust direction
Re3 is equal to the desired thrust direction Rde3 or fd, while this is not constantly valid. Using this
method resulted in behaviour that, initially, was undesirable. From Figure 1.4 it was observed that
translations in the horizontal plane also caused unnecessary translations in the vertical plane, which
this chapter showed to be a result of the thrust definition in (2.16).

It was therefore concluded that alternative thrust definitions should be determined, in order to pre-
vent these unnecessary vertical translations. The first proposal was based on deriving the point of
intersection between scaled versions of Re3 and fre3 +mu. By using this method, a perfect thrust
can be obtained that exactly tracks the trajectory in a straight line. However, this method comes
with multiple flaws. Flaws that can result in thrusts equal to 0, which would result in no torque
and therefore no rotations. No thrust results in a free fall, and no rotation results in no possibility
to change the thrust, therefore the quadrotor falls until it crashes. Another unwanted result from
the method described by (5.5) is the possibility of negative thrusts. This results from the fact that
intersections can also occur when scaling with negative values. It is by way of contrast not possible
to generate negative thrusts. For the two unwanted scenarios therefore, a constraint for the refer-
ence thrust has been defined by [1] and [2], which combined with a saturation function limits the
minimum thrust to be at least greater than 0. The final flaw resulting from defining a thrust by
using matrix equalities, is caused by discontinuities. In Figure 5.7 it has been shown that no unique
solution is obtainable, since the vectors are not linearly independent. When using (5.5) this means an
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unsolvable equation and thus a singularity, which would result in a failing control algorithm. If the
thrust vectors from Figure 5.7 would rotate clockwise or counterclockwise, these singularities would
not occur, as long as the vectors stay linearly independent. Discontinuities like these can be avoided,
however not in a continuous control law. It is possible that, for instance, hybrid controllers could
handle these kind of discontinuities. However, since this thesis is not based on hybrid control laws but
continuous control laws, discontinuities are to be avoided and another alternative had to be proposed.

The alternative proposal for the thrust definition was based on weighted averages. Reason for this
was the ability to track trajectories sufficiently correct for situations where the vectors Re3 and fd
are parallel or conversely perpendicular, when the initial attitude was hovering. For parallel vectors,
the ideal thrust should be f = ||fre3+mu|| and for perpendicular vectors it should be f = fr. It was
proposed to define an angle, λe, that defines the error between Re3 and fd in order to scale the thrust
between the two extreme values. The proposed scaling factor has been defined in (5.10) and the final
thrust definition can be seen in (5.11). Although no discontinuities follow from this thrust definition,
perfect tracking behaviour cannot be guaranteed. One of the reasons is that the scaling function
does not scale in a linear fashion between the two extreme values, which can only be achieved with
discontinuous scaling functions as in (5.12).

This chapter finalizes the validation and the, where necessary, adaptations of the previously de-
fined control laws from [1] and [2]. The following chapter visualizes and compares the effectiveness
of the newly defined control laws to the already existing ones by means of numerical simulations.



Chapter 6

Results

Where the previous chapters have been mainly theoretic, this chapter provides the necessary practical
view. The cascaded control structure from [1] has been implemented in a simulation environment and
the previously defined control laws are compared to the newly defined control laws from this thesis.
By simulating the different methods, a comparison can be made which is less abstract than differences
in theory. Also the behaviour of the discretized controllers can be observed. As mentioned in this
thesis, singularities in the control law can occur under certain circumstances. These singularities,
and the resulting behaviour during these singularities, are presented and discussed in this chapter as
well.

For this to be possible however, a simulation model has to be designed first. The model is de-
scribed briefly in Section 6.1 together with the specifications of the commercial drone on which this
thesis is based on. Next, in Section 6.2 the actual simulation results are presented and discussed.
This section consists of multiple subsections where firstly a simulation is shown in order to compare
the performance of the newly designed control laws to the earlier ones shown in Chapter 1. Hereto,
firstly some expectations are mentioned, after which, based on the results from this simulation, con-
clusions are drawn and compared to the set expectations. From these conclusions, other simulations
are shown that evaluates the limits of the control laws. This chapter finishes with some concluding
remarks in Section 6.3.

6.1 Simulation model

In this section the simulation model, used to achieve the coming results further on in this chapter,
is provided and elaborated. The simulation program of use is Simulink and the basic layout of the
simulation model is visualized in Figure 6.1. Here the block named ”Control Algorithm” consists of
the control laws provided in the chapters 3 through 5.

r
Control

Algorithm
Dynamics Sensors

State
Estimation

d

(f, τ)

Controller Plant

Figure 6.1: Schematic visualization of the closed-loop model structure implemented in Simulink.
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To compare the performance of the newly described control laws to the previously defined control
laws, the same basic structure of the model in Figure 6.1 is used, but implemented with the ”Control
Algorithm” from [1] and [2]. As explained earlier, the thrust f and torque τ are inputs to the system
(2.4) coming from the control algorithm, which are saturated to comply with actuator constraints
as, for instance, maximum obtainable lift [33]. Next the behaviour of the quadrotor is simulated by
means of the equations provided in (2.4). Normally the translations and rotations that follow from the
system dynamics are measured by sensors in an internal measurement unit (IMU). Possible sensors
in an IMU can be accelerometers, magnetometers or gyroscopes. The use of sensors is inherent to the
presence of measurement noise, which can cause small errors. These small errors are then fed back to
the control algorithm which can then lead to undesirable inputs, if the control algorithm is not robust
enough. The Input-Output linearization method from this thesis is not generally considered to be
robust, as it does not account for sensor noise [34]. This, combined with the fact that this report
has not paid attention to filtering measurement noise or time delay control [2], [35], is the reason
that it is assumed that all states of the system are available at all times to provide a clear image
of the difference between the control algorithms. Moreover, Lefeber, Greiff, and Robertsson already
provide a UaGAS control law that uses only filtered signals, which is able to attenuate measurement
noise. Logically, it is not possible to know all the states without using sensor data. IMUs are able
to measure rotations, translations and accelerations, which provides information of three of the four
total states of the system. In modern UAVs, the unavailable state is the linear velocity. Downwards
facing cameras with optical flow sensors are able to measure linear velocities by integrating the mo-
tions between two frames, the downside is that optical flow sensors only work properly in certain
environments. In environments such as landscapes or oceans, there are often little distinctions to be
made between two frames, making it hard to calculate the flow. By using external camera devices
such as OptiTrack [36] it is also possible to calculate linear velocities through integrating translations
between frames. These devices are expensive solutions and require an extra internal device to con-
nect with the UAV. State observers such as the ones designed in [12] and [2] require no additional
measurements and can also accurately estimate otherwise unavailable state information. Knowing
that many appropriate solutions to sensor noise and unavailable states are already available, it can
be argued that implementing full state information directly from the system dynamics makes little
difference to implementing alternative solutions.

Not only the control laws are of importance for correctly simulating the system, also its complemen-
tary parameters. Earlier research on the Eindhoven University of Technology provides parameters
fitting to a quadrotor from Parrot called the ”AR Drone 2.0”. The reports from [12] and [37] are
amongst those. Later research on the Eindhoven University of Technology was based on another
drone from Parrot, the ”Mambo Fly”. These drones are considerably different from each other in not
only size, the AR Drone 2.0 is three to four times the span of the Mambo Fly, but also in weight,
inertia and present sensors. The table below provides more specifications of the Parrot Mambo Fly.

Table 6.1: Overview of the sensors on the Parrot Mambo Fly.

Sensor

Down-facing camera 640 x 480
Front-facing camera No
GPS No
Barometer Yes
Three-axis magnometer No
Three-axis gyroscope Yes
Three-axis accelerometer Yes
Ultrasonic distance sensor Yes
Optical flow sensor Yes

It is important to visualize these differences, since this research, just as the research of [13], uses
the parameters of the Parrot Mambo Fly. This because the Parrot AR 2.0 drones were no longer
available. Differences between the results provided in the coming section and the results obtained by
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other research is therefore explained because of the differences in drone use.

6.2 Simulation results

In this section multiple simulations are performed and their corresponding results are shown and dis-
cussed. These simulations are done in order to compare the performance of the newly designed control
laws to the already existing ones from [2] in closed-loop. Both the expected strengths and weaknesses
are discussed beforehand, after which the simulations either confirm or oppose these expectations. As
there have not been made adjustments to the position control, no specific attention has been given
to that matter. It can be assumed that the position control law from (3.11) is implemented in every
control algorithm.

For the following simulations, the initial conditions from (6.1) are used.

ρ0 =
[
4 4 −1.5

]�
ν0 =

[
0 0 0

]�
R0 = I ω0 =

[
0 0 0

]�
. (6.1)

The coming simulations all describe a time dependent reference position trajectory, which is defined
as

ρr(t) =
[
cos(ωvt) sin(ωvt) −1.5

]�
, (6.2)

with ωv = 0.2π. Time dependent trajectories require a specific method to determine the other
correct, time dependent, references. It is possible to obtain the references of the complete system, as
in (2.4), from only a few flat outputs. This method does not require integration of references, but is
dependent on the smoothness of the desired trajectory. For the trajectory to be sufficiently smooth
means it should be differentiable at least as many times needed to define all the system states from
these derivatives [16]. The exact method to rewrite flat output trajectories to full state references is
provided in detail in Appendix B. To also track a specific target reference position for the yaw angle,
the following position is set

ρt =
[
0 0 0

]�
, (6.3)

which is the center of the rotations in the horizontal plane described in (6.2). Note that it is of no
importance how the third entry for ρt is chosen, as it is not necessary from the definition in (4.13).
Additionally, the control parameters used for all simulations can be seen in Table 6.1.

Table 6.1: Control parameters used in simulations.

Parameter Description Value
(kp, kd) Translational control gains (4,4)
γ Saturation bound 2
(kp,r,1, kd,r,1) Yaw control gains (4,4)
(kp,r,2, kd,r,2) Pitch control gains (25, 10)
(kp,r,3 kd,r,3) Roll control gains (25,10)
ε Scalar bound preventing Gimbal Lock 0.1

6.2.1 Control laws with target heading direction

By comparing the already existing control laws to the newly designed ones in this report, it is possible
to make distinctions in behaviour. Earlier in Chapter 1, it was shown that the transient behaviour
denies translations in a straight path towards the target and Chapter 5 showed that the thrust def-
inition caused unnecessary altitude errors, which were also visible in the figures from Chapter 1. It
is expected that these results show increased tracking performance, when compared to the results
obtained in Figure 1.3, in that the drone follows a straight path towards the reference position.
This follows from the Input-Output linearization and the desired tracking dynamics. It is also ex-
pected that there is little to no overshoot during transient behaviour, since the attitude control is
not designed to be agile and therefore capable of difficult maneuvers. Instead, it is designed to track
references without having unnecessary translations. This means that the new attitude control law
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converges slower to the reference orientations and therefore also slower to the reference position. For
this reason, little overshoot is expected. As for the altitude changes, they are expected to decrease,
albeit slightly. This because the newly designed thrust definition is also a slight improvement when
compared to the thrust definition from [1]. Lastly, the yaw angle is expected to rotate exactly as
desired, making it face the reference orientation continuously. From Figure 6.4,it is clear that the
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Figure 6.2: Tracking performance using the newly designed control laws.

control laws do not perform as expected. Even though it seems like the most important rotation
angles, φ and θ, show decent tracking performance, it is not visible in the position tracking. The only
points where the tracking performance is good, is from t ≈ 15 until t ≈ 20. This is also the range
where the tracking of the yaw angle is as desired. It is around the points where the yaw angle crosses
ψ = π to ψ = −π, where the system seems to lose control. The fact that the system loses control
from yaw rotations specifically is unexpected, as these rotations should not have an influence on the
other rotation angles, since those translations are decoupled using the Input-Output linearization. It
is clear that around t = 10, not only the yaw tracking performance is bad, but also the roll and pitch
tracking performance, even though they should not be influenced by the yaw rotations. It is possible
that minor errors in the decoupling of the system in the simulation are the cause of this, as it should
not happen. Contradictory however, when the yaw tracking performance decreases around t = 22,
tracking performance in roll and pitch do not decrease. This might indicate that there are other
mistakes at cause. Focusing on the point around t = 19, the tracking performance is good in both
attitude and position and the yaw reference nears the crossing from π to −π. It can be observed that
suddenly the roll and pitch references, and therefore also the actual roll and pitch angles, divert from
the angles they had before. This seems unnecessary, as the tracking performance was good until this
point. From this observation, it is expected that possibly there have been made mistakes in either
the implementation of the reference attitude angles or the definition of these reference angles from
the pseudo code in Appendix A. Then the yaw tracking performance itself. It can be noticed that
one singularity resulting from the yaw reference has not been discussed yet. When the reference yaw
angle crosses the point where ψ = π to ψ = −π, it can be observed that the actual yaw angle is
somewhat ahead of the reference angle and therefore crosses this point earlier than the reference. As
a result, the yaw error suddenly increases to approximately π. This in turn leads to a response of the
yaw angle to return to ψ = π. During this transition however, the reference yaw angle crosses from
ψr = π to ψr = −π, which again results in the actual yaw angle to quickly return to that specific
reference. This behaviour is undesirable and is to be improved.

In order to prove that most of the errors result from the singularity in the yaw reference and that
the other control laws do result in the, expected, desirable behaviour, a new simulation has been
performed. Now, instead of the target reference position from (6.3), the yaw reference angle is set to
0 at all times, and therefore also the derivatives of this yaw angle. Except for this, no other references
have been changed. From Figure 6.3 is can be observed that the absence of a yaw reference improves
the tracking performance significantly. The behaviour in this figure resembles the expectations men-
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Figure 6.3: Tracking performance using the newly designed control laws and no yaw references.

tioned earlier, in that there is little to no overshoot in the tracking of the position references. The
corresponding attitude tracking also performs well, with a minor flaw in the yaw angle around t = 2.
Furthermore, it can be noticed that after about six seconds, the system is converged. However, it can
also be seen that after these six seconds there remain some minor errors in both x and y rotations and
translations, but also in the altitude. This is the result from the Input-Output linearization method
being too slow for the references. It is possible that these errors decrease or even disappear if the
control gains are tuned better.

It can also be observed that the altitude translations behave differently when compared to the altitude
changes in Figure 1.3. Instead of first increasing and then decreasing, the altitude now only increases,
after which it converges to the reference position in a critically damped manner. Unfortunately, the
peak error is now about ten centimeters bigger than in Figure 1.3. However, as the newly defined
thrust definition from (5.11) scales according to the error between the achievable thrust vector and
the desired thrust vector and the thrust definition from (2.16) does not, it is still expected that the
newly defined thrust definition performs better than the one from [1].

To conclude if the new control laws result in improved transient translational behaviour, Figure 6.4
shows the x and y translations. When compared to the results obtained in Figure 1.3a, it can be
observed that the drone translates in a near straight line towards the time dependent reference po-
sition. Now the advantage of the ”slow” Input-Output linearization technique can be seen. Since it
rotates, and thus translates, slower, it is also less influenced by the changing references in transient
behaviour. Now it can also be seen more clearly that there remain some steady state errors in the
position. Figure 6.5 illustrates that this steady state error originates from the minor errors that
remain in the orientation. For more information on the error definition used in this figure, refer to
Chapter 2.

6.2.2 Singularities

Besides the singularity coming from the yaw reference angle around π and −π, Chapter 4 also dis-
cussed another singularity. This one should arise when the position of the drone in the horizontal
plane is equal to the target reference position for the yaw definition. This singularity is expected
to disrupt the complete system, leading it into instability, which is highly unwanted. The following
simulation presents the behaviour of the drone, when it would translate through the target reference
position for the yaw reference. For this simulation the following, time independent, references have
been set, together with the initial conditions from (6.1)

ρr =
[
8 4 −1.5

]�
νr =

[
0 0 0

]�
Rr = I ωr =

[
0 0 0

]�
. (6.4)
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Figure 6.4: Quadrotor position and reference position, using new methods.

The target reference position for the yaw has been set to be

ρt =
[
6 4 0

]�
. (6.5)

From Figure 6.6 it can be observed that, because of the Input-Output linearization, only rotations
around the x-axis occur in order to translate in the y-direction. This happens as desired until t ≈ 2,
since at this point ρ is almost identical to ρt. It is not exactly identical, because otherwise the sim-
ulation would have failed since there would be a singular value for ψr. However, even though no
singular values enter the system, the system does become unstable. This is the result of the unde-
sirable behaviour described using Figure 4.3, where in a short amount of time the yaw error changes
from zero to π, causing extreme, and possibly unachievable, control efforts. Notice how it is possibly
unachievable, since no time has been dedicated to rewrite the control outputs to actual thrusts per
rotor as in (2.7).

From these results, it can be concluded that careful thought has to be dedicated to choosing the
target reference point. If the reference position and the target reference position for the yaw could
become identical, these singularities occur. As mentioned in Section 4.3, by using collision avoidance
methods in combination with the yaw definition, it would never be possible for the position to come
near the target reference position and therefore the unstable behaviour would be avoided.

6.3 Concluding remarks

In this chapter, the newly proposed control laws have been simulated and compared to control laws
that were already available, with the aim to visualize the differences in behaviour and to validate
which control laws would be most suitable for the goal of this research. Hereto, a numerical model
has been developed in Simulink. This model is designed such that all the states are directly available
in the Control Algorithm, which has been illustrated in Figure 6.1. The reason for this came from
the Input-Output linearization method designed in this thesis being not robust to measurement noise
[34] due to the absence of methods that use filtered signals or time delay control [2][35]. Another
method to increase robustness of the feedback linearization can be to implement direct adaptive
feedback linearization techniques, as in [38], in which uncertain system parameters and external dis-
turbances can be corrected for. Multiple simulations have been performed, each with the intent
to highlight the strengths and weaknesses of the newly designed control laws from this thesis. The
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position control laws have been ignored, as the already available position control laws already sufficed.

First of all, simulations were presented where the complete set of tracking control laws were im-
plemented, including the new yaw definition. The results in Figure 6.2 showed undesirable tracking
performance when the target reference position was set to be inside the reference trajectory. This
was because the yaw definition contained a singularity that had not been accounted for, namely the
transition point from ψr = π to ψr = −π. If the actual yaw angle was slightly ahead of the reference
and transitioned earlier to ψ = −π than the reference, it tried to correct for the immediate yaw error
by rotating back to ψ = π. However, during this transition, the reference yaw transitions to ψr = −π,
which leads to the yaw angle rotating back again. These short rotations seemed to have an impact on
the roll and pitch angles as well, which could be because of a minor error in the implementation of the
Input-Output linearization. However, it could also be the result of a mistake in the implementation
of the reference attitude angles or in the definition of these reference angles from the pseudo code in
Appendix A.

Next, by presenting another simulation where the yaw references and its corresponding derivatives
were set to zero, it was shown that the control laws can perform as desired. Figure 6.3 illustrated
that the rotations and positions converge to the desired references, albeit with a steady state error
resulting from the relatively slow Input-Output linearization method. It has also been shown that the
altitude error has increased compared to the results obtained in Chapter 1. However, since the new
thrust definition compensates for the angle difference in desired and actual thrust vector, whereas
the earlier one from [1] does not, it can be concluded that the new thrust definition still performed
better than the earlier one. Figure 6.4 also showed that the new control laws perform better during
transient behaviour, in that the drone translates in a near straight line towards the reference position.

Lastly, simulations have been performed where the expected singularities from Section 4.3 were high-
lighted. It has been shown that the system can become unstable when the actual position and the
target reference position are identical. If this situation occurs during a measurement of the simulation,
the system becomes unstable immediately. Figure 6.6 showed that if this situation occurs between
two measurement points, the large, and possibly unachievable, control efforts that are necessary to
compensate for these errors cause the system to become unstable too.

These results and the results from the previous chapters are discussed in more detail in the following
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Figure 6.6: Tracking performance using the newly designed control laws and a yaw reference that can become
singular.

chapter, where conclusions are drawn and recommendations for future work are suggested.



Chapter 7

Conclusions and Recommendations

This thesis aims at improving the tracking control problem for a quadrotor. Earlier designed nonlinear
control laws have been validated and alternatives have been proposed for the control laws which did
not result in the desired behaviour for this thesis, namely to improve transient translations and
rotations by flying in a straight path towards a certain target. This chapter provides the necessary
conclusions that can be drawn from this thesis. Additionally, some recommendations for possible
future work are presented.

7.1 Conclusions

Firstly, the main results of this thesis are revisited and corresponding conclusions are drawn in the
same order as they have been addressed: from position control, to attitude control, to combined
control. Hereto, the theoretical research on the modeling and control of the quadrotor are stated at
first and subsequently the simulations.

Modelling and Control

The position control law designed by [1] has been validated. In order to do so, the desired position
tracking dynamics have been described and the corresponding controllers to achieve those desired
position tracking dynamics have been designed, firstly for a reference without attitude dynamics and
lastly for a time dependent reference orientation. The final controller was identical to the one de-
scribed in [2], confirming that no alternatives had to be designed for these dynamics. Earlier observed,
undesired, behaviour therefore did not originate from this controller.

Initial experiments showed undesirable behaviour following from the attitude dynamics. Specific
orientations that could be achieved by rotating along a single axis towards the reference orientation
would rotate along multiple axis, leading to unnecessary translations. For this reason, an alternative
for the attitude tracking control has been proposed based on Input-Output linearization techniques.
By using Input-Output linearization the desired rotations were achieved. These desired rotations
were derived from the matrix Rd and a rotation matrix based on rotations around roll and pitch only,
leaving the yaw free to be specified individually. Input-Output linearization is not a common method
to define a control law, mainly because of the sensitivity to sensor noise. Little sensor noise can result
in unstable behaviour. Especially in Input-Output linearization, because faulty state measurements
result in incorrect decoupling terms and therefore faulty tracking control laws [34]. The new definition
for the yaw angle enabled tracking of a constant point in the horizontal plane, which was one of the
goals of this thesis. It has been proven that this definition could be used as a flat output, since the
trajectory is sufficiently smooth. Singularities arose using this definition, but in Section 7.2 a solution
is provided to counteract these singularities. Singularities also arose in the tracking dynamics for the
attitude control, in the form of Gimbal Lock. This was a result of defining these tracking controls in
Euler angles initially, after which they were rewritten to SO(3). These singularities can be overcome
by using (4.12) from [31].

41
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By means of schematic representations of the drone with the directions and magnitudes of the involved
forces and accelerations, it is shown that the thrust definition from [1] did not result in the desired
tracking behaviour for this thesis. Using their definition resulted in undesired altitude changes if the
current thrust vector, Re3, did not align with the desired thrust vector, fd. Two alternatives were
proposed. The former was based on calculating the exact geometrically ideal solution, but, due to
singularities, did not meet the desire of being a continuous control law. The latter used scaled values
for the desired acceleration direction, mu, that follow from the angular differences between Re3 and
fd in a two-dimensional plane. This method is continuously defined and was a step forward from the
previously defined thrust definition.

Simulations

The control laws proposed in this thesis have been implemented in a numerical model of a quadrotor,
this numerical model included parameters corresponding to a Parrot Mambo Fly. The already ex-
isting control laws with corresponding gains have been equipped with the same parameters to study
the differences. Initial simulations where the complete set of newly designed control laws were im-
plemented, showed undesirable tracking results. It was observed that this was either a result of a
mistake in the implementation of the Input-Output linearization or a mistake in the implementation,
or definition, of the reference attitude angles resulting from the pseudo code in Appendix A. A combi-
nation of both is not excluded either. By leaving out the yaw reference definition from (4.13) and its
derivatives, the undesirable behaviour did not arise. This meant conclusions could be drawn from the
other control laws. These simulations showed the expected, desired, behaviour. It was shown that the
rotations and positions converged to their respective references, although minor steady state errors
remained present. These minor errors were expected to be a result of the relatively ”slow” Input-
Output linearization method. Even though the altitude changes seemed to increase when compared
to the results using the control laws from earlier work, the new thrust definition was still concluded
to be an improvement. This because the new thrust definition compensates for the angle difference
in desired and actual thrust vector, whereas the earlier one from [1] does not.

The goal of this research was to improve transient behaviour, which has been achieved to a certain
degree for the attitude control. Although the new combined control law improved on the definition
from [1], it has not fully achieved the desire to translate in a straight line. This does however raise
the question: ”Is it even possible to design a continuous control law that enables straight path tracking
dynamics?” Future research may answer this question.

7.2 Recommendations

Finally, the following section provides recommendations for future work. These recommendations are
presented in an identical order as for the conclusions. That is, firstly the modelling is discussed and
subsequently the simulations.

Modelling

As stated earlier, the attitude dynamics now have not been presented in a realistic manner. Mainly
because of the absence of sensors and therefore state estimators. These additions decrease the tracking
performance of the control law, since sensor noise and estimation errors enter the control algorithm.
Lefeber, Greiff, and Robertsson (2020) presented a tracking controller for quadrotor UAVs which
uses partial state information and filters measurements to attenuate noise, while being closed-loop
uniformly almost globally asymptotically stable and locally exponentially stable. Implementing these
methods in the current control algorithm could limit the decrease in real-life tracking control per-
formance. Another method to improve the accuracy of the numerical model of the quadrotor is to
account for drone specific damping forces, such as blade flapping and drag. Brekelmans (2019) pro-
vided extensive information on this matter.
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As for improving the control method, multiple suggestions are provided. First of all, the Input-
Output linearization method can be made more robust by implementing direct adaptive feedback
linearization techniques as in [38]. Using this technique, the controllers can correct for errors in sys-
tem parameters or external disturbances. Other options can be to use filtered signals or time delay
control [2], [35]. Subsequently, the yaw angle definition can be improved. The results showed that
undesirable behaviour arose when the yaw angle is approximately π. This behaviour arises because
of singularities resulting from using Euler angles. It is proposed therefore, to examine possibilities to
avoid these singularities. Greiff (2017) implemented such a method to avoid gimbal lock, implement-
ing a similar method in the yaw definition can result in proper behaviour. Future work might focus on
designing a similar, yet different, method or focus on rewriting this definition for SO(3) completely.
Another singularity that was discussed shortly in Chapter 4.3, can result from the situation where the
target heading position and the current position are identical. For this position, no heading direction
exists. Therefore, it is preferred to avoid the situation where the target heading position and the
drone position are identical. A fitting solution can be to implement a collision avoidance method as in
[32] (2020), where not another agent or object is to be avoided, but the target heading direction. This
would guarantee that the target heading position and the drone position are never identical, because
it translates around this point, and therefore no singularities can occur. One possible method to
extend this research would be to implement additional control laws that enable the usage of multiple
drones. For monitoring purposes, more drones would mean more vision on the specific target area,
which could be of interest. In the work of [37] and [39], different control laws that achieve tracking
dynamics for multiple drones is provided.

At last, it would be of the most importance to prove the stability of this tracking controller for
both time independent as time dependent reference trajectories.

Simulation

As mentioned in the conclusions already, the absence of sensors and therefore sensor noise fails to
provide a realistic view to the current control law and as a result of that, also the simulation. The
numerical model should therefore be implemented with sensor noise similar to the noise that arises
when using the Parrot Mambo Fly.

Also, it has to be noted that physical limitations of each rotor are not considered in this thesis.
The work of de Jonge (2020) provides a matrix, (2.7), to convert the thrust and torque inputs to
individual thrust forces which subsequently can be rewritten to rotor speeds and therefore required
pulse-width modulations (PWMs) for the actual drone or the numeric representation of the drone. If
the inputs result in rotor speeds or PWMs that are physically unobtainable, the actual output can not
result in desired behaviour. The simulation used in this thesis did not account for such limitations,
possible future research could.

At last, it is clear that the most realistic simulation is an actual experiment. Unfortunately, due
to lack of time, extensive experiments have not been conducted. Future work could therefore imple-
ment the tracking control law on an actual Parrot Mambo Fly, using the Simulink support package
and additional support provided by [13] to draw conclusions from the results that follow from those
experiments.
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Appendix A

Input-Output terms

In this appendix, more insight is given to the Input-Output linearization method from Section 4.2.1.
Hereto, the Input-Output linearization terms are presented first in Euler angles. Next, their conver-
sions from Euler angles to SO(3) are shown, and finally a pseudo code to retrieve Euler angles from
a rotation matrix.

A.1 Relative degrees of outputs

Validating if the relative degrees of yi in (4.3),
∑3

i=1 ki ≤ n, means calculating Lie derivatives until

LGL
k−1
f h(x) �= 0 for each output. Note that this research uses a SO(3) parametrization, but for the

sake of clarity the Euler angle notation is presented, whereas in the following section a method to
rewrite the definitions to SO(3) is described.

First of all, from [31], let

ω = R(ψ)

⎡
⎣ψ̇0
0

⎤
⎦+R(ψ)R(θ)

⎡
⎣0θ̇
0

⎤
⎦+R(ψ)R(θ)R(φ)

⎡
⎣00
φ̇

⎤
⎦ =

⎡
⎣−sθ 0 1
cθsφ cφ 0
cθcφ −sφ 0

⎤
⎦
⎡
⎣ψ̇θ̇
φ̇

⎤
⎦ , (A.1)

which can be rewritten to⎡
⎣ψ̇θ̇
φ̇

⎤
⎦ = Lfh(x) + LGh(x) =

⎡
⎣0 sφ

cθ
cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ

⎤
⎦ω. (A.2)

As LGh(x)u = 0, another Lie derivative has to be calculated. Now, (A.2) is used directly to find⎡
⎣ψ̈θ̈
φ̈

⎤
⎦ = L2

fh(x) + LGLfh(x) =
d

dt

⎡
⎣0 sφ

cθ
cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ

⎤
⎦ω +

⎡
⎣0 sφ

cθ
cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ

⎤
⎦ ω̇

=M(ψ̇, θ̇, φ̇, ω)ω +

⎡
⎣0 sφ

cθ
cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ

⎤
⎦ J−1 [S(Jω)ω + τ ] , (A.3)

where M(ψ̇, θ̇, φ̇, ω) results from the derivative of the matrix in (A.2)

M(ψ, θ, φ, ψ̇, θ̇, φ̇) =
d

dt

⎡
⎣0 sφ

cθ
cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ

⎤
⎦ (A.4)

=

⎡
⎢⎣0

φ̇cφcθ+θ̇sφsθ
cθ2 − φ̇cθsφ−θ̇cφsθ

cθ2

0 −φ̇sφ −φ̇cφ
0 θ̇sφ+φ̇cφcθsθ

cθ2
θ̇cφ−φ̇cθsφsθ

cθ2

⎤
⎥⎦ . (A.5)
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Note that ω can be rewritten to ψ, θ, φ, ψ̇, θ̇ and φ̇ using (A.1).

From the presence of τ , it can be concluded that LGLfh(x) �= 0 and therefore that ki = 2. This
conclusion follows from the fact that τ is an input from (2.4d). The total sum of the relative degrees

is found to be
∑3

i=1 ki = 6. The system is of the 6th order and therefore has 6 states. It can thus be

concluded that
∑3

i=1 ki = n which implies the absence of zero dynamics. For more information on
zero dynamics, see Chapter 2.

A.2 Conversion between Euler angles and SO(3)

To convert the decoupling terms to the desired parametrization a few steps are necessary. First of
which is to decide for which situation the conversion is needed. It can be either for determining the
current states of the system, or for determining the required reference state. Both situations follow the
same method, but with different variables. After deciding for which cause the conversion is needed,
either the rotation matrix from (2.1) is used or the rotation matrix from (4.10), where the former is
needed for defining the current attitude state and the latter for determining the required reference
attitude state. Using either (2.1) or (4.10), the derivative of R can be found through differentiation.
From this expression, it is possible to select a specific entry of Ṙ, where a single Euler derivative
term can be found. Rewriting the resulting expression from Ṙ as a function of Euler angles and
Euler angular velocities to Euler angular velocities as a function of Ṙ and Euler angles results in the
elimination of Euler angular velocity terms. Next, using R, which is a function of Euler angles, the
same method can be used to define Euler angles as functions of R. These Euler angles as function of
R can then be implemented in the definitions for Euler angular velocities as function of Ṙ and Euler
angles, to make Euler angular velocities as a function of R and Ṙ. This completes the description
of the used method. The following subsections specify the method for both determining the current
attitude state and the required reference attitude state.

A.2.1 Current attitude

As mentioned, recall (2.1). For clarity, the resulting matrix is presented below

R =

⎡
⎣cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sθcψ
−sθ sφcθ cφcθ

⎤
⎦ , (A.6)

where it can be noticed that R31 = − sin θ. Rewriting this expression results in

sin θ = −R31, (A.7)

which also leads to the complementary expression for cos θ using the Pythagorean identity. After
implementing these expressions in (A.6), the following can be obtained

cosψ =
R11√
1−R2

31

, (A.8)

which again can be rewritten to an expression for sinψ using the Pythagorean identity. Following
the same method, the expressions for ψ are implemented in (A.6), together with the expressions for
θ to obtain the following expressions for φ

sinφ =
R32√
1−R2

31

(A.9a)

cosφ =

√
−1 +R2

31 +R2
32

−1 +R2
31

=

√
R2

33

1−R2
31

. (A.9b)

These expressions can be used to convert Euler angles to terms of SO(3). For more information on
how to retrieve the exact Euler angles, without the cos, sin and tan terms, refer to the next section
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for a pseudo code.

From (A.6), find that

Ṙ =
d

dt
R

=

⎡
⎣ψ̇cθsψ − θ̇cψsθ −cφcψ(ψ̇ − φ̇sθ) + sφ(θ̇cψcθ + sψ(φ̇− ψ̇sθ)) cψsφ(ψ̇ − φ̇sθ) + cφ(θ̇cψcθ + sψ(φ̇− ψ̇sθ))

ψ̇cψcθ − θ̇sψsθ −cψsφ(φ̇− ψ̇sθ) + sψ(θ̇cθsφ+ cφ(−ψ̇ + φ̇sθ)) sφsψ(ψ̇ − φ̇sθ) + cφ(θ̇cθsψ + cψ(−φ̇+ ψ̇sθ))

−θ̇cθ φ̇cφcθ − θ̇sφsθ −φ̇cθsφ− θ̇cφsθ

⎤
⎦ .

(A.10)
From Ṙ31, note that

θ̇ = − Ṙ31

cos θ
, (A.11)

with which, after substituting the new definition for θ̇, also φ̇ can be found

φ̇ =
Ṙ32 − Ṙ31 sinφ tan θ

cosφ cos θ
. (A.12)

Repeating the previous step, now implementing the new φ̇ definition leads to the following definition
for ψ̇

ψ̇ =
Ṙ21 − Ṙ31 sinψ tan θ

cosψ cos θ
. (A.13)

Now the Euler angular velocities have been defined in terms of Euler angles and Ṙ. To complete
the conversion to SO(3), implement the definitions from (A.7), (A.8) and (A.9) in the equations
from (A.11), (A.12) and (A.13). To reconstruct the current attitude in SO(3) from Euler angles, the
opposite relations can be used, together with (A.6).

The conversions in (A.7), (A.8), (A.9), (A.11), (A.12) and (A.13) have been used to convert the
decoupling terms needed for (4.4) from Euler angles to SO(3) terms.

A.2.2 Reference attitude

To construct the necessary attitude references from SO(3) to Euler angles for the tracking dynamics
in Section 4.2.1, an opposite method is used. Now, instead of (A.6), the matrix from (4.10) is used to
define the Euler angles resulting from the reference attitude matrix (4.8). Note that no yaw definition
has to be derived here, since the reference attitude should be described using online pitch and roll
angles.

First, note that the same relation between sin θ and Rd as in (A.7) can be seen

sin θ = Rd,31, (A.14)

where again cos θ can be retrieved using the Pythagorean identity. The relations for φ this time are
relatively straightforward as they can be retrieved directly, without implementing the expressions for
θ:

sinφ = −Rd,23 (A.15a)

cosφ = Rd,22. (A.15b)

These expressions can be used to convert SO(3) terms to the Euler parametrization. For more
information on how to retrieve the exact Euler angles, without the cos, sin and tan terms, refer to
the next section for a pseudo code.

A.3 Pseudo codes

In this thesis, two similar, yet different, pseudo codes are used to define the tracking dynamics of
(4.6c). First the pseudo code to define yi is shown and subsequently the pseudo code for yi,r.
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Algorithm 1: Pseudo code to convert current attitude R to Euler angles.

Data: R
Result: rewrite the attitude R to Euler angles
[U,∼,V] = svd(R);

R = U*V’ ; % To restore properties R: det(R) = 1 and R�R = I.
if ||fd1|| �= 1 then

θ1 = − arcsin(R31);
θ2 = π − θ1;
φ1 = atan2(R32/ cos(θ1), R33/ cos(θ1));
if cosφ1 ≥ 0 then

φ = φ1;
θ = θ1;
ψ = atan2(R21/ cos(θ1), R11/ cos(θ1));

else
φ = atan2(R32/ cos(θ2), R33/ cos(θ2));
θ = θ2;
ψ = atan2(R21/ cos(θ2), R11/ cos(θ2));

end

else
Error: Gimbal lock.

end

Algorithm 2: Pseudo code to convert desired attitude Rd to Euler angles.

Data: fd
Result: rewrite the desired attitude Rd to Euler angles
if ||fd,1|| �= 1 then

φ1 = − arcsin(fd2);
φ2 = π − φ1;
if cos(φ1) ≥ 0 then

φd = φ1;
else

φd = φ2;
end
θd = atan2(fd1/ cosφd, fd3/ cosφd);

else
Error: reference is singular.

end



Appendix B

Flat output trajectories

B.1 Derivation of rotation matrix for a given third column

Lefeber, van den Eijnden, and Nijmeijer (2017) derived the orientation of the drone based on the
direction of their desired thrust vector. The orientation that followed ensured almost always correct
tracking, but was arbitrary, since only its global position was tracked. The following method de-
scribes how to specify the heading direction as well. Meaning that an extra tracking coordinate has
to be added in the reference tracking dynamics next to the global position ρI , namely yaw rotations,
denoted by ψ.

Hereto, the first step is to find a new expression for the (reference) rotation matrix. The rota-
tion matrix from [1] consisted only of accelerations in x, y and z. As mentioned earlier, it is desired
to include ψ. Therefore, it can firstly be noted that the third column of the rotation matrix can be
rewritten to

⎡
⎣r1r2
r3

⎤
⎦ =

⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦
⎡
⎣00
1

⎤
⎦

=

⎡
⎣cosψ sin θ cosφ+ sinψ sinφ
sinψ sin θ cosφ− cosψ sinφ

cos θ cosφ

⎤
⎦ .

From here, three separate expressions can be obtained. Namely those of r1, r2 and r3. Now, using
cosφ �= 0, these expressions can be rewritten to:

sin θ =
r1 cosψ + r2 sinψ

cosφ
(B.1a)

sinφ = r1 sinψ − r2 cosψ (B.1b)

cos θ =
r3

cosφ
. (B.1c)

51
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Substituting these expressions in (2.1) results in

R =

⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦
⎡
⎢⎣

r3
cosφ 0 r1 cosψ+r2 sinψ

cosφ

0 1 0

− r1 cosψ−r2 sinψ
cosφ 0 r3

cosφ

⎤
⎥⎦
⎡
⎣1 0 0
0 cosφ −r1 sinψ + r2 cosψ
0 r1 sinψ − r2 cosψ cosφ

⎤
⎦

=

⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦
⎡
⎢⎣

r3
cosφ

(r1 sinψ−r2 cosψ)(r1 cosψ+r2 sinψ)
cosφ r1 cosψ + r2 sinψ

0 cosφ −r1 sinψ + r2 cosψ

− r1 cosψ+r2 sinψ
cosφ

r3(r1 sinψ−r2 cosψ)
cosφ r3

⎤
⎥⎦

=

⎡
⎢⎢⎣

r3 cosψ
cosφ − (1−r21) sinψ+r1r2 cosψ

cosφ r1
r3 sinψ
cosφ

(1−r22) cosψ+r1r2 sinψ
cosφ r2

− r1 cosψ+r2 sinψ
cosφ

r3(r1 sinψ−r2 cosψ)
cosφ r3

⎤
⎥⎥⎦ .

(B.2)
Using sin2 φ+ cos2 φ = 1, cosφ ≥ 0 and (B.1b) results in:

cosφ =
√
1− (r1 sinψ − r2 cosψ)2. (B.3)

This in turn can be used to rewrite (B.2):

R =

⎡
⎢⎢⎢⎣

r3 cosψ√
1−(r1 sinψ−r2 cosψ)2

− (1−r21) sinψ+r1r2 cosψ√
1−(r1 sinψ−r2 cosψ)2

r1

r3 sinψ√
1−(r1 sinψ−r2 cosψ)2

(1−r22) cosψ+r1r2 sinψ√
1−(r1 sinψ−r2 cosψ)2

r2

− r1 cosψ+r2 sinψ√
1−(r1 sinψ−r2 cosψ)2

r3(r1 sinψ−r2 cosψ)√
1−(r1 sinψ−r2 cosψ)2

r3

⎤
⎥⎥⎥⎦ . (B.4)

In only two cases it is possible that cosφ = 0 occurs: r =
[− sinψ cosψ 0

]�
and r =

[
sinψ − cosψ 0

]�
,

where the former corresponds with φ = −π
2 and the latter with φ = π

2 . In case of the latter, it thus
occurs that

R =

⎡
⎣cos θ cosψ sin θ cosψ sinψ
cos θ sinψ sin θ sinψ − cosψ
− sin θ cos θ 0

⎤
⎦ =

⎡
⎣−r2 cos θ −r2 sin θ r1
r1 cos θ r1 sin θ r2
− sin θ cos θ 0

⎤
⎦ , (B.5)

which implies that the pitch, θ, cannot be determined from the final column of R for a roll, φ, of π
2 .

From (B.1a) and (B.1c), one can see the problems occurring with φ = π
2 . Since it is necessary to

know the orientation of the drone at any given time, a roll of π
2 is to be avoided.

B.2 Derivation of angular velocities

The next step in rewriting the reference coordinates is to express the angular velocities, ω, in terms
of the newly defined rotation matrix R from (B.4).

Note that from (2.4c), it is known that ṘBI = RBIS(ωB). Differentiating (B.2) and premultiplying
with itself results in S(ωB). Using the definition in (2.5), the following can be obtained

ωB =

⎡
⎣ φ̇− sin θψ̇

cos θ sinφψ̇ + cosφθ̇

cos θ cosφψ̇ − sinφθ̇

⎤
⎦ . (B.6)

The terms θ̇ and φ̇, are undesired and therefore need to be rewritten in terms of other variables. By
starting with differentiating (B.1c), a new definition for φ̇ can be derived

φ̇ =

∂
∂r1

sinφṙ1 +
∂

∂r2
sinφṙ2 +

∂
∂r3

sinφṙ3 +
∂
∂ψ sinφψ̇ + ∂

∂φ sinφφ̇

cosφ

=
sinψ

cos2 φ
ṙ1 − cosψ

cos2 φ
ṙ2 +

r1 cosψ + r2 sinψ

cos2 φ
ψ̇. (B.7)



B.3. Rewriting the reference dynamics 53

The θ̇-term can be derived from either cos θ or sin θ, the following derivation is done through sin θ.

θ̇ =

∂
∂r1

sin θṙ1 +
∂

∂r2
sin θṙ2 +

∂
∂r3

sin θṙ3 +
∂
∂ψ sin θψ̇ + ∂

∂φ sin θφ̇

cos θ
.

Note that the new expression of φ̇ can be implemented here. This, combined with the definitions of
sin θ and cos θ, results in

θ̇ =
(−1 + r22) cosψ − r1r2 sinψ

−r3 cos2 φ ṙ1 +
r21 sinψ − sinψ − r1r2 cosψ

−r3 cos2 φ ṙ2 +
r2(−1 + r21 + r22) cosψ − r1(−1 + r21 + r22) sinψ

−r3 cos2 φ ψ̇.

Knowing that each column from R is a unit vector, since it is a rotation matrix, it can be said that

r21 + r22 + r23 = 1. (B.8)

This results in

θ̇ = −r
2
1 cosψ + r23 cosψ + r1r2 sinψ

−r3 cos2 φ ṙ1 − (r22 + r23) sinψ + r1r2 cosψ

−r3 cos2 φ ṙ2 − r2r
2
3 cosψ − r1r

2
3 sinψ

−r3 cos2 φ ψ̇

=
r3 cosψ

cos2 φ
ṙ1 +

r21 cosψ + r1r2 sinψ

r3 cos2 φ
ṙ1 +

r3 sinψ

cos2 φ
ṙ2 +

r22 sinψ + r1r2 cosψ

r3 cos2 φ
ṙ2 − r3(r1 sinψ − r2 cosψ)

cos2 φ
ψ̇

=
r3 cosψ

cos2 φ
ṙ1 +

r3 sinψ

cos2 φ
ṙ2 +

(r1 cosψ + r2 sinψ(ṙ1r1 + ṙ2r2))

r3 cos2 φ
− r3(r1 sinψ − r2 cosψ)

cos2 φ
ψ̇.

Differentiation of (B.8) yields
ṙ1r1 + ṙ2r2 + ṙ3r3 = 0, (B.9)

which can be used to simplify θ̇ further to get

θ̇ =
r3 cosψ

cos2 φ
ṙ1 +

r3 sinψ

cos2 φ
ṙ2 − (r1 cosψ + r2 sinψ)(ṙ3r3))

r3 cos2 φ
− r3(r1 sinψ − r2 cosψ)

cos2 φ
ψ̇

=
r3 cosψ

cos2 φ
ṙ1 +

r3 sinψ

cos2 φ
ṙ2 − r1 cosψ + r2 sinψ

cos2 φ
ṙ3 − r3(r1 sinψ − r2 cosψ)

cos2 φ
ψ̇.

(B.10)

Combining equations B.7 and B.10 to rewrite (B.6), results in

ωB =

⎡
⎢⎢⎣

ṙ1 sinψ−ṙ2 cosψ√
1−(r1 sinψ−r2 cosψ)2)

r3 cosψ√
1−(r1 sinψ−r2 cosψ)2)

ṙ1 +
r3 sinψ√

1−(r1 sinψ−r2 cosψ)2)
ṙ2 − r1 cosψ+r2 sinψ√

1−(r1 sinψ−r2 cosψ)2)
ṙ3

− r3 cosψ(r1 sinψ−r2 cosψ)
1−(r1 sinψ−r2 cosψ)2) ṙ1 − r3 sinψ(r1 sinψ−r2 cosψ)

1−(r1 sinψ−r2 cosψ)2) ṙ2 +
(r1 sinψ−r2 cosψ)(r1 cosψ+r2 sinψ)

1−(r1 sinψ−r2 cosψ)2) ṙ3 +
r3

1−(r1 sinψ−r2 cosψ)2) ψ̇

⎤
⎥⎥⎦,

(B.11)
which can be written more compactly as

ωB =

⎡
⎣ωB,1

ωB,2

ωB,3

⎤
⎦ =

⎡
⎣

1
r3
(R2,1ṙ1 −R1,1ṙ2)

R1,1ṙ1 +R2,1ṙ2 +R3,1ṙ3
−R3,2

r3
ωB,2 +

r3
cos2 φ ψ̇

⎤
⎦ , (B.12)

where Ri,j denotes the element in row i and column j of the rotation matrix R as derived in (B.4).

B.3 Rewriting the reference dynamics

For the last step in rewriting the reference dynamics into the desired coordinates, ρI =
[
x y z

]�
and ψ need to be a flat output (i.e., so that the state and input from these signals and their derivatives
can be determined [16]). Therefore, some assumptions need to be made first. These assumptions are
that

1. ρ and ψ are respectively four and two times differentiable at least,

2. ẍ2 + ÿ2 + (g − z̈)2 �= 0 to assure positive thrust, and
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3. if z̈ = g, then ẍ sinψ − ÿ cosψ �= −
√
ẍ2 + ÿ2 to avoid a roll, φ, of π

2 .

Then, from the dynamics (2.4), one can write

ρ̈I = ṘBIνB +RBI ν̇B
= ge3I − (f/m)RBIe3B, (B.13)

which, using f > 0, results in

f = ‖fRBIe3B‖
= m ‖ge3I − ρ̈I‖2
= m

√
ẍ2 + ÿ2 + (g − z̈)2, (B.14)

where the properties ‖R‖ = 1 and ‖e3‖ = 1 are used. Also note that RBIe3B can be defined from
(B.13) as follows

RBIe3B =
m

f
(ge3I − ρ̈I), (B.15)

where the definition of f can be substituted for (B.14), resulting in

RBIe3B =
ge3I − ρ̈I
‖ge3I − ρ̈I‖

=

⎡
⎢⎢⎣

−ẍ√
ẍ2+ÿ2+(g−z̈)2

−ÿ√
ẍ2+ÿ2+(g−z̈)2

g−z̈√
ẍ2+ÿ2+(g−z̈)2

⎤
⎥⎥⎦ . (B.16)

Now RBI can be completed using (B.4). Also, using (B.12) ωB follows. Finally, τB and νB follow
from (2.4a) and (2.4d). Note that the dynamics are now expressed in arbitrary ρI and ψ, as long as
they satisfy the three constraints stated earlier, which is generally the case, since trajectories that do
not meet the constraints are mostly not useful.


