
Graduation project at Vanderlande

Development of a deadlock recovery
algorithm for grid-based AGV systems

Graduation project report

Manufacturing Systems Engineering
Department of Mechanical Engineering

By J.H.N. Somers
0876720

TU/e supervisor dr.ir. A.A.J. Lefeber
Vanderlande supervisors ir. K.J.C. Fransen

dr.ir J.A.W.M. van Eekelen

DC 2022.002

Eindhoven, January 21, 2022

Graduation project report

Abstract

To use large scale AGV systems many control problems need to be solved. A Grid-Based Con-
trols model is developed within Vanderlande to study and improve control algorithms. Deadlock
handling is one of the control problems. The goal of the project is to develop a deadlock recovery
algorithm for grid-based AGV systems. The algorithm is developed with maximising throughput
in mind and balancing the complexity of the added code. The algorithm is used in grid-based
layouts, which means that the layout is divided into grid elements called tiles. In a deadlock, a
circular dependency is present of AGVs that need the tile held by another AGV to proceed. This
has the result that AGVs wait indefinitely. To resolve a deadlock, the circular dependency needs
to be broken. This is done by rerouting one of the involved AGVs, called resolving AGVs.

In literature, dedicated deadlock recovery infrastructure is often used to make sure an AGV can
always directly divert. It is shown that all deadlocks can be recovered without the use of ded-
icated deadlock infrastructure. To do so, an algorithm is given, including system requirements,
that lets AGVs always reach their destination. The actual algorithm tested and implemented in
the Grid-Based Controls model is different for efficiency reasons. The algorithm is based on a
modular framework in which each sub-algorithm can be adjusted without influencing the consec-
utive calculations. The framework consists of four main parts and is established after identifying
the necessary recovery steps. These steps are found by analysing the formation of deadlocks in
a range of settings and layouts. Different alternatives of sub-algorithms are designed to create
different deadlock recovery algorithm variants.

The first sub-algorithm creates a resolvability ranking of involved AGVs. The ranking reflects
which AGV is expected to be the best resolving AGV. Multiple ranking methods are created
based on AGV and system properties. Next, a set of involved AGVs is appointed as resolving
AGVs, by choosing the AGVs in the top of the ranking. The number of resolving AGVs is varied
during testing. A path planner tries to plan a deadlock-free recovery path for resolving AGVs.
Path planning during deadlock recovery is done with a slightly adapted variant of the default
path plan algorithm developed by Fransen [1]. If the initial resolving AGV(s) cannot resolve the
deadlock, an extra resolving AGV needs to be found. Two different methods are tested for this
sub-algorithm.

Exploratory simulations are done on a small layout to compare algorithm variants. The results
of these simulations created a list of algorithm variants to test on full-scale layouts. It is shown
that deadlock algorithm variants that lower congestion around a deadlock the most, give the
best system throughput. Because of this, the Least Extra Costs Path ranking gives the best
results. The ranking generally provides a resolving AGV that wants to get away from the con-
gested deadlock area and can easily do so. Furthermore, increasing the number of initial resolving
AGV is only useful under specific circumstances. And lastly, the two methods to choose an extra
resolving AGV do not show significant throughput differences, thus the simplest method is chosen.

The original deadlock handling technique is deadlock avoidance. The final implemented deadlock
recovery algorithm is tested in combination with different deadlock avoidance settings. Simulations
show that the throughput of systems using deadlock recovery without deadlock avoidance can
equal that of systems that include deadlock avoidance. A requirement to level throughput without
deadlock avoidance to systems including deadlock avoidance, is a small deadlock detection interval.
Moreover, only using deadlock detection and recovery as deadlock handling method can lower the
computation time by a factor four, given the smallest deadlock detection interval tested.

Eindhoven University of Technology II

Graduation project report

Preface

I was eight years old when I travelled for the first time by airplane. The experience of walking
through Schiphol Airport, boarding a small propeller plane and arriving in a rainy Ireland was
wonderful. However, the most mesmerising part of the holiday was the fact that our suitcase
disappeared behind a check-in desk and neatly presented itself again on a conveyor belt on the
other side of the Channel. Its a nice way to conclude my master Manufacturing Systems Engineer-
ing within the company that created the experience that sparked my enthusiasm for mechanical
engineering and automation: Vanderlande.

It was a great opportunity to help solve a genuine problem during my graduation project. It
felt good to develop an algorithm and program code that is directly implemented and used in
the existing simulation model of the team. I want to truly thank Karlijn Fransen en Joost van
Eekelen as my company supervisors. Thank you for the nice brainstorm sessions and sending me
home with more questions than answers. I’m also grateful for the weekly meetings with my thesis
supervisor Erjen Lefeber who helped me to align my thoughts and look critically at my own work.

My graduation project at Vanderlande marks the end of my time at the TU/e. What started as
a big guess proved to be a great experience. The 62nd Board of W.S.V. Simon Stevin, dispuut
HenK, housemates of Octo Alpha and all other friends: a big thank you to you all.

Eindhoven University of Technology IV

Graduation project report

Glossary

Term Definition
AGV Automated Guided Vehicle
- Blocked An AGV for which the next tile of its path is occupied
- Connected A blocked AGV which is connected to a deadlock, but not part

of the deadlock
- Involved A blocked AGV which is part of a deadlock
- Resolving An AGV whose path is replanned to resolve a deadlock
Chute Exit slide in a baggage or parcel sorting system
Grid density Ratio of the number of AGVs in a system divided by the num-

ber of driveable tiles in the layout
Handling point Location in a layout where an AGV can interact with the en-

vironment
Job Task to bring a parcel or baggage item from a pick-up to a

drop-off location
Layout Area on which an AGV system operates including possible

obstacles and handling points
Resolvability ranking Ranking of involved AGVs of which AGV is most suitable to

be resolving AGV
Segment Driveable link between two tiles
- Deadlock The segment leading to the next involved AGV in the deadlock
- Divert A outward segment that might be used in a deadlock resolving

path
- Prohibited A segment receiving a temporary extra high weight to prevent

it is chosen in a recovery path
Tail Set of connected AGVs
Tile Grid element in a layout
- Involved A tile on which an involved AGV is located.
Throughput The number of jobs that can be processed per unit time

Eindhoven University of Technology VI

Graduation project report Contents

Contents

1 Introduction 1

2 AGV systems within Vanderlande 3
2.1 AGVs within Vanderlande . 3
2.2 Grid-Based Controls model . 4

3 Deadlock characterization 7
3.1 Deadlock conditions . 7
3.2 Deadlock handling . 8
3.3 Deadlock types . 8

4 Deadlock recoverability 11
4.1 Deadlock recoverability in a layout with cycles . 12
4.2 Deadlock recoverability in a layout with non-cycles 14

5 Recovery algorithm 19
5.1 Literature . 19
5.2 Algorithm structure . 20
5.3 Prohibited segments . 22
5.4 Reachability guarantee . 25
5.5 Resolvability ranking . 27
5.6 Number of resolving AGVs . 28
5.7 Extra resolving AGV . 29

6 Exploratory simulations 31
6.1 Performance measure . 32
6.2 Simulation set-up . 32
6.3 Implementation flaws . 34
6.4 Ranking and extra resolving AGV methods . 35
6.5 Number of resolving AGVs . 38
6.6 Detection interval . 40
6.7 Computation time . 41
6.8 Conclusion exploratory results . 42

7 Full-scale simulations 43
7.1 Simulation set-up . 43
7.2 Results . 45
7.3 Deadlock avoidance versus detection and recovery 51
7.4 Reachability . 56

8 Conclusion 59
8.1 Recommendations . 60

References 61

Eindhoven University of Technology VIII

Graduation project report 1 Introduction

1 Introduction

Vanderlande is a market leader in automation solutions of logistic processes [2]. The company
consists of three business segments: airports, parcel and warehousing. For the airport segment,
the company develops baggage handling systems. These systems are installed at more than 600
airports around the globe, including twelve of the twenty biggest airports in the world. The parcel
segment is centred around sorting parcels as quickly as possible, which is done about 52 million
times a day by all their parcel equipment combined. In warehousing, processes are automated by
for instance automated storage and retrieval systems or picking stations.

Especially in the airport and parcel segment, the solutions of Vanderlande use conveyor belts to
transport and sort baggage or parcels, see Figure 1.1. With this proven technology, high through-
put can be achieved. Throughput is the number of bags or parcels that are delivered per time
instance. It is the most important performance measure of sorting systems. The conventional con-
veyor belt systems have some drawbacks. Low flexibility is one of them, since conveyor belts need
fixed infrastructure. Expanding or adapting a layout is therefore expensive and time-consuming.
The need for fixed infrastructure makes conveyor belt systems also not very scalable. Lastly,
conveyor belt systems are also not robust. If a motor on the main conveyor belt fails, the entire
system might come to a complete standstill. Expensive redundant systems need to be installed
to achieve enough availability of the systems of high demanding customers. To overcome the
mentioned disadvantages of traditional conveyor belt systems, Vanderlande develops systems that
use Automated Guided Vehicles (AGVs). In these systems, each AGV individually transports an
item from a pick-up to a drop-off location. AGVs can therefore execute the same transport and
sorting tasks as conveyor belt systems.

Figure 1.1: Parcel sorting system using conveyor belts [3].

AGV systems come with their own challenges. Many control problems have to be solved. Van-
derlande uses a Grid-Based Controls model to develop control algorithms for AGV systems. The
division of tasks among AGVs is one of them. Finding an efficient path between the sources and
destinations is also an important task. Furthermore, control methods need to be implemented to
avoid collisions and handle deadlocks. A deadlock consists of a chain of blocked AGVs. A blocked
AGV is an AGV for which the next tile of its path is occupied. The chain of blocked AGVs creates
a situation in which the AGVs wait indefinitely on each other to move.

Eindhoven University of Technology 1

Graduation project report 1 Introduction

Thesis objectives
A deadlock has a negative influence on the performance of an AGV system. In the worst case,
a deadlock can even stall the complete system. Consequently, it is important to have a strategy
to handle deadlocks. A deadlock avoidance algorithm is implemented by Van Weert [4]. This
algorithm checks if the next step of an AGV leads to a deadlock. If that is the case, the AGV has
to wait and can temporarily not go to the next tile of its path. Many deadlocks can be avoided
with the deadlock avoidance algorithm, although this is not the case for all deadlocks. Being
able to recover from a deadlock is hence a necessity if the AGV controls are to be implemented
at customers. That is why a deadlock recovery algorithm is designed during this project. The
algorithm should be robust to make sure it can be used in different settings and layouts. Further-
more, throughput loss due to deadlocks should be minimised, as throughput is the most important
performance measure for customers. Lastly, the computational complexity should be taken into
account to assure the algorithm can be executed in real-time and the code is easily maintained.
The aim of this project is therefore as follows:

Development of a deadlock recovery algorithm for grid-based AGV systems, keeping in mind the
effect on system throughput and computational complexity.

The development of a deadlock recovery algorithm is split into the next five objectives.

• Explore deadlock recovery techniques in literature and determine which methods can be
applied to the grid-based AGV system.

• Create a deadlock recovery framework. To do this, possible deadlock recovery steps and
approaches must be identified.

• Implement the found deadlock recovery framework in the existing Grid-Based Control model
including different variants.

• Determine the most suitable deadlock recovery algorithm based on simulation results.

• Compare deadlock handling strategies, including the developed deadlock recovery algorithm.

Report structure
The report continues with the following structure. In Chapter 2 the use of AGV systems within
Vanderlande is explained as well as the Grid-Based Controls model used during the project. The
structure of deadlocks and the different deadlock handling techniques are elaborated in Chapter 3.
In Chapter 4, it is shown under which conditions deadlocks can be recovered. The actual tested and
implemented deadlock recovery algorithm differs from the algorithm of Chapter 4 and is worked
out in Chapter 5. Next, exploratory simulations and results are shown in Chapter 6. Based on the
exploratory simulations, a set of deadlock recovery algorithms is tested on full-scale simulations.
These simulations and results are discussed in Chapter 7. Lastly, the report is concluded in
Chapter 8 in which also recommendations for future work are given.

Eindhoven University of Technology 2

Graduation project report 2 AGV systems within Vanderlande

2 AGV systems within Vanderlande

This chapter dives deeper into different AGV applications and the general control problems that
need to be tackled. Section 2.1 explains possible AGV applications within Vanderlande over
the three business segments. Secondly, Section 2.2 describes the functioning of the Grid-Based
Controls model of Vanderlande which is used during this project.

2.1 AGVs within Vanderlande

Automated Guided Vehicles are material transport devices that can drive without the need for a
human operator. This property makes AGVs suitable for automated logistics, which is the core
business of Vanderlande. AGV systems are used and investigated to enhance the flexibility and
scalability of transporting and sorting systems over the traditional conveyor belt systems. AGV
systems can potentially be used in all market segments of Vanderlande since all market segments
involve transporting goods in some way.

In the parcel segment, the goal is to sort parcels as quickly as possible with the need for maximal
reliability [3]. AGVs can be used for this goal, potentially with different sizes of AGVs. The
’Zippy’ AGV is a nice example of the use of AGVs in the parcel segment [5]. Each AGV is tasked
with delivering one parcel to the right chute. Bigger AGVs can also be used to load and unload
parcel containers, see Figure 2.1.

(a) AGVs sorting parcels to chutes (b) AGV transporting full parcel containers

Figure 2.1: Two examples of the use of AGV in the parcel market segment [5].

In the market segment warehousing, many goods need to be sorted, transported and stored. AGVs
can assist in moving incoming goods to the right storage location. The ADAPTO system is an
example of a shuttle system that is currently used for warehousing to automatically store and re-
trieve products, see Figure 2.2a. AGVs can also be used in the airport segment of Vanderlande [6].
AGVs can serve as baggage sorting devices and/or as transport systems. FLEET is a baggage
handling system, based on the use of AGVs, that is currently used in some smaller projects. Fig-
ure 2.2b shows the FLEET system in a check-in area of an airport.

AGVs can provide a solution to the need of Vanderlande to provide systems with higher robustness,
scalability and flexibility. Much less infrastructure is needed and the overall system can proceed
if just one AGV shuts down. The main challenge, however, is achieving enough throughput with
AGV systems [7].

Eindhoven University of Technology 3

Graduation project report 2 AGV systems within Vanderlande

(a) ADAPTO storage and retrieval system [8]. (b) FLEET system use at Dallas Airport [9].

Figure 2.2: Examples of current AGV usage within Vanderlande.

2.2 Grid-Based Controls model

AGVs can be controlled based on different type of layouts. AGV systems that use grid-based lay-
outs are not yet implemented in real-life by Vanderlande. However, Vanderlande uses a Grid-Based
Controls simulation model in MATLAB. The Grid-Based Controls model is built and continuously
being developed to test and simulate algorithms for grid-based AGV systems. This Grid-Based
Controls model is used during this project. Therefore, this section explains the structure of the
Grid-Based Controls model.

In a grid-based layout the driveable area in a layout is split into virtual grid elements, called tiles,
see Figure 2.3. A tile is a driveable zone of the total area in which the AGVs operate. Such an
operating area can for instance be a baggage sorting area. An AGV can only drive from tile A to
tile B if a segment is present between the two tiles. The segments have specified driving directions.
Most of the time unidirectional segments are used.

The Grid-Based Controls model has some ground principles [10]. The first principle is that tiles
do not overlap. Another principle is that AGVs move from tile to tile. Besides that, AGVs do
not touch any other tiles if they move from from tile A to tile B. An AGV has to reserve a tile
before it can drive on it. To avoid collisions, a tile can only be reserved by one AGV at a time.
Furthermore, each tile is big enough that an AGV can turn within a tile, without touching other
tiles.

AGVs in the Grid-Based Controls model perform sorting tasks. An AGV has to first retrieve a
job at a pick-up location to start the sorting task. A pick-up location is for instance the infeed
from the check-in desk at an airport. Thereafter, the job must be delivered to a drop-off location.
This might be a chute that brings a suitcase to the correct truck. Drop-off locations might be
grouped when they correspond to the same exit. This can be the case on four sides of a chute. In
that case, it does not matter to which of the grouped drop-off locations the AGV drives. Apart
from driveable tiles, there can also be obstacles in the layout, such as concrete columns or the
location of chutes. Figure 2.3 illustrates how obstacles, handling locations and the AGV status
are visualised in the Grid-Based Controls model. Furthermore, the driving direction on each tile
is also visible by the directed segments.

The control methods in the Grid-Based Controls model are as follows. Job assignment happens
online in a dynamic manner. An AGV gets a new job whenever it is finished with its current job.
It is sent to the nearest pick-up location to get a new job. Often an infinite supply of new jobs is
used, with destinations of jobs that are randomly chosen. At a pick-up point, jobs are distributed
to AGVs in a first come first serve manner.

Eindhoven University of Technology 4

Graduation project report 2 AGV systems within Vanderlande

Legend:
Pick-up point

Drop-off point

Unloaded, moving AGV
Unloaded, not moving AGV
Unloading AGV
Loading AGV
Loaded, moving AGV
Loaded, not moving AGV

Obstacle

Tile in the path of AGV 1

Reserved tiles in path of AGV 1

Figure 2.3: Sample layout in the Grid-Based Controls model with AGVs [11]. The status of an
AGV is visualised by different colors. An AGVs path is shown in (dark) orange.

Paths are only planned per task. For instance, when an AGV loads a parcel at a pick-up point,
the AGV only receives a path to the destination of the parcel, not any further. For path planning
the method of Fransen et al. [1] is used. This method is an A* path planning algorithm combined
with dynamic node weights. The algorithm searches for the cheapest deadlock-free path. Each tile
is represented by a node in a graph. Each node has a weight that can change during simulation.
The weights of the nodes increase as AGVs are standing still on the nodes, and dampen out if
AGVs start driving again. The idea of this method is to plan paths outside of congested areas
and distribute AGVs more evenly over the whole layout.

Lastly, traffic control in the Grid-Based Controls model makes sure that AGVs do not collide or
enter a dead- or livelock. Traffic control is independent of path planning. Thus, the path execu-
tion is decoupled from path planning. An AGV can only continue its path if it has reserved the
next tile(s) of the path. Traffic control makes sure that only one AGV can reserve a tile at the
same moment to prevent collisions. An AGV tries to reserve multiple tiles in a row to be able
to continue driving without stopping. An AGV has to wait until another AGV releases a tile, if
the next tile to reserve in the path is reserved by another AGV. An AGV only releases a tile if
the AGV fully moved to the next tile. The second part of traffic control consists of a deadlock
avoidance algorithm implemented by Van Weert [4]. The deadlock avoidance algorithm prevents
that an AGV is allowed to reserve a tile that leads to a deadlock. Deadlocks are elaborated further
on in Chapter 3. On the other hand, in a livelock AGVs do move, but there is no general progress.
Livelocks are currently no problem within the model.

So, there are algorithms for all general AGV control steps in the Grid-Based Controls model,
including a deadlock avoidance algorithm. However, not all deadlocks can be avoided [4]. Once a
deadlock occurs, the full system will stall in the end, because paths are blocked by the deadlock.
Currently, there is no deadlock recovery method in place. This means that deadlocks can only
be resolved by manual intervention. Manual intervention is not wanted as seen from a perfor-
mance perspective, but also from the perspective of full automation. Furthermore, current control
methods are geared towards avoiding deadlocks no matter the costs, since deadlocks cannot be
recovered easily. Developing a deadlock recovery algorithm reduces the costs of a deadlock, which
might open up possibilities to make other control steps more efficient. In other words, the addition
of a deadlock recovery algorithm increases the quality of the AGV controls. To find a suitable
recovery algorithm, different types of deadlocks and deadlock handling methods are discussed next
in Chapter 3.

Eindhoven University of Technology 5

Graduation project report 3 Deadlock characterization

3 Deadlock characterization

In order to develop a deadlock recovery algorithm, the characteristics of deadlocks need to be un-
derstood. A deadlock recovery algorithm can only be made if it is properly known what deadlocks
are and how they are formed. So, this chapter dives deeper into deadlock conditions (Section
3.1) and different types of deadlocks (Section 3.3). In between, Section 3.2 describes the four
general deadlock handling techniques. These are elaborated to understand the impact of deadlock
handling on the type of deadlocks that can occur.

3.1 Deadlock conditions

Deadlocks have been first researched in the context of multiprogramming operating systems. Tasks
are distributed and concurrently executed to enhance the utilization of the system resources. The
division of tasks may create a situation in which two tasks both wait on the completion of the
other task. In this situation both processes wait forever to proceed, meaning that there is a
deadlock. Coffman [12] describes the four necessary and sufficient conditions for a deadlock. The
four Coffman conditions translated to AGV systems are:

• ’Mutual exclusion’ condition: AGVs claim exclusive control of the tiles they reserved. Only
one AGV is allowed on a tile.

• ’Wait for’ condition: AGVs hold tiles already allocated to them while waiting for the reser-
vation of additional tiles. Tiles are only released if an AGV is fully located on the next tile
in its path.

• ’No preemption’ condition: Tiles cannot be emptied before an AGV completes the use of a
tile. An AGV cannot leave a tile spontaneously.

• ’Circular wait’ condition: A circular chain of paths exists, such that each AGV holds one or
more tile(s) that are needed by the next AGV in the chain.

The first three Coffman conditions are always true for AGV systems. Figure 3.1 shows an example
of a deadlock situation, in which also the circular wait condition is satisfied. Each red block in
the figure depicts an AGV. The arrow on the AGV shows the desired driving direction.

Figure 3.1: Deadlock with four involved deadlocks [4].

A deadlock resolution method can only handle deadlocks in the AGV system by preventing or
resolving a circular wait condition, since the first three Coffman conditions are always true.

The circular waiting condition arises if AGVs are close to each other and AGVs want to reserve
tiles which are in the path of another AGV. A deadlock can happen anywhere in a layout where
AGVs encounter each other and their paths cross. However, such an encounter is way more prone
to happen in areas of a layout where many interactions between AGVs happen. That is why
deadlocks generally occur in congested and dense areas of a layout. Handling points, such as
pick-up locations, are therefore likely to experience deadlocks.

Eindhoven University of Technology 7

Graduation project report 3 Deadlock characterization

3.2 Deadlock handling

A deadlock occurs if there exists a circular wait condition between AGVs. There are multiple
ways to deal with the condition. Deadlock handling methods can be divided into four main
categories [13]: ignorance, prevention, avoidance, and detection and recovery. With deadlock
ignorance, there is no strategy in place to deal with deadlocks. This strategy can be used if dead-
locks occur infrequently and controlling deadlocks is technically or financially difficult. Deadlock
prevention methods are deadlock handling techniques in which resources are granted in such a
way that deadlocks never occur. Deadlock prevention strategies are used before path execution
is started. An example of deadlock prevention is reserving all the needed tiles of a path at once.
Deadlock prevention policies tend to be very conservative. The third deadlock handling strategy
is deadlock avoidance. Deadlock avoidance methods determine if a tile can be granted by looking
at the resulting state. The tile can be granted, if the resulting system state is safe. These methods
happen online and usually require large computations. The last deadlock handling strategy is
detection and recovery. With this method, resources are granted without any check. However, a
detection method checks periodically if a deadlock has occurred. A recovery procedure is started,
if a deadlock is found. Using deadlock detection and recovery is believed to perform worse than
deadlock avoidance, since the method is reactive instead of proactive [14].

In the Grid-Based Controls model, a deadlock avoidance algorithm is chosen as the main deadlock
handling method. The method checks if a circular wait condition holds if an AGV would reserve
a tile. An AGV is only allowed to reserve a tile if this circular wait condition does not hold. The
current deadlock avoidance method does a proper job in avoiding most deadlocks. However, not
all deadlocks can be avoided if paths of AGVs are not completely known [4]. Thus, there is a need
for an additional deadlock recovery algorithm.

3.3 Deadlock types

Deadlocks arise when a circular dependency is present. Deadlock avoidance is used in the Grid-
Based Controls model to avert the circular dependency. The use of deadlock avoidance introduces
multiple types of deadlocks. The three general types of deadlock are discussed below, since dead-
lock recovery should be able to resolve all of them.

Monocycle deadlocks
The deadlock type that corresponds with the definition of Coffman is the monocycle deadlock. In
this type of deadlock, all the involved AGVs directly wait on the release of a tile that is occupied by
another AGV in the circular wait chain. Figure 3.2 shows two examples of monocycle deadlocks.

(a) Monocycle deadlock with ten involved
AGVs. (b) Monocycle deadlock with tails.

Figure 3.2: Two monocycle deadlocks. Red AGV are involved AGVs, blue AGVs are connected
AGV and the green AGV is a non-blocked AGV [4].

Figure 3.2a shows a monocycle deadlock with ten involved AGVs. The ten AGVs clearly satisfy

Eindhoven University of Technology 8

Graduation project report 3 Deadlock characterization

the circular wait condition which confirms the existence of a deadlock. Figure 3.2b shows that
not only involved AGVs can be affected by a deadlock. AGV 1, 2, 3 and 4 are involved in the
deadlock. However, AGV 7, 8, 9 and 10 are also unable to proceed due to the deadlock. These
AGVs are called connected AGVs and can also be referred to as the tail of the deadlock. AGV 6
is not affected by the deadlock as it can reserve its next tile.

Multicycle deadlocks
Multicycle deadlocks occur when monocycle deadlocks are avoided. There are multiple imminent
deadlock cycles for a specific tile in this type of deadlock [15]. Multiple AGVs can reserve their next
tile, but doing so results in a deadlock. The reservation is therefore prohibited by the monocycle
avoidance algorithm. Strictly speaking, the circular wait condition of Coffman does not hold for
this type of deadlock, since multiple AGVs can still move. The number of potential deadlock
cycles in multicycle deadlocks can vary. Figure 3.3 show an example with respectively two and
three imminent deadlock cycles. Figure 3.3a shows an imminent deadlock cycle by AGV 3, 4 and
5. The deadlock cycle would be complete if AGV 2 reserves tile K. Similarly, AGV 1, 2 and 6
form an imminent cycle. This imminent cycle becomes a deadlock if AGV 5 reserves tile K. Since
AGV 2 and 5 are both not allowed to reserve zone K a multicycle deadlock arises. AGV 2 and 5
are called prohibited AGVs. Figure 3.3b shows a three-cycle deadlock. In a three-cycle deadlock
one imminent cycle is connected to two other imminent cycles. In this case, the imminent cycle
with AGV 3 and 7 is connected to two other imminent cycles.

(a) Two-cycle deadlock. (b) Three-cycle deadlock.

Figure 3.3: Two examples of multicycle deadlocks. Red AGVs are involved deadlocks, orange
AGVs are prohibited deadlocks [4].

Inevitable Multicycle Deadlock
In a multicycle deadlock, a monocycle deadlock occurs within a few steps. That is why a multicycle
deadlock avoidance algorithm tries to prevent multicycle deadlocks. Avoidance of multicycle
deadlocks can, however, introduce another type of deadlock: an inevitable multicycle deadlock.

Figure 3.4: Inevitable two-cycle deadlock [4].

Figure 3.4 shows an example of an inevitable two-cycle deadlock. The avoidance algorithm pro-

Eindhoven University of Technology 9

Graduation project report 3 Deadlock characterization

hibits AGV 2 to reserve tile J, since this reservation leads to a two-cycle deadlock of Figure 3.3a.
Despite a two-cycle deadlock is avoided, the system is in deadlock since no AGV can move, because
AGV 2 is not allowed to reserve its next tile.

Avoiding inevitable two-cycle deadlocks, can lead to inevitable three-cycle deadlocks. New more
complex deadlocks are introduced each time a simpler type of deadlock is avoided. The more com-
plex the deadlock becomes the less frequently it happens. However, in practise not all deadlocks
can be avoided due to limited computation time and the fact that not all paths of AGVs are known.

To summarise this chapter, deadlocks occur when the four Coffman conditions are met. The
’circular wait’ condition is the only condition that can be prevented or broken in AGV systems
to avoid, prevent or resolve deadlocks. The current main deadlock handling method is deadlock
avoidance. Different types of deadlocks occur, depending on the deadlock avoidance algorithm
used. As stated above, deadlock avoidance cannot avoid all deadlocks. A deadlock recovery
algorithm is needed to create robust controls in which all deadlocks can either be avoided or
resolved. Therefore, the next Chapter 4 proposes an algorithm and discusses conditions under
which all deadlocks can be recovered.

Eindhoven University of Technology 10

Graduation project report 4 Deadlock recoverability

4 Deadlock recoverability

Chapter 3 shows that deadlocks can occur in many different ways. For instance, the layout, num-
ber of AGVs in a system and the job distribution can have a big influence on then size, shape,
location and the number of the deadlocks that occur. It is key that a deadlock recovery algorithm
can make a system deadlock-free, no matter the deadlock differences. To this end, a study is done
to see if deadlocks can always be resolved and if so, under which conditions. The result of this
study is shown in this chapter. An algorithm, including boundary conditions, is presented which
guarantees that each deadlock can be resolved. This is done by making sure that each AGV can
reach each tile in the layout. The found algorithm can be implemented in the Grid-Based Controls
model, if an absolute guarantee is needed that each AGV can reach its destination. However, the
actually implemented deadlock recovery algorithm, which is described in Chapter 5, is different
from the algorithm presented in this chapter. The implemented algorithm is different, since the
algorithm presented in this chapter comes at the cost of high inefficiency. Implementation of the
found algorithms in the Grid-Based Control model would also require many unwanted adjustments
of the existing controls.

Many different system layouts and controls can be used in AGV systems. For the propositions in
this chapter some principles, already applied within Vanderlande, are used to confine the prob-
lem. First, only layouts are regarded that use non-overlapping tiles. Next to that, each tile is big
enough to fully contain an AGV. So, an AGV is that is located on a tile it does not occupy any
other tiles. Segments can exist between tiles to connect them. Moreover, only strongly connected
layouts are considered. These are layouts in which there is a path from each tile to each other tile
in the layout, and implies that there are no sinks or sources. Lastly, the path of all AGVs in the
system can be altered.

The propositions in this chapter have a strong link to graph theory. To aid the propositions a few
definitions are elaborated below.
Path: a sequence of segments in which all segments are distinct.
Directed path: a path in which the orientation of all segments is the same.
Directed layout : a layout in which the segments have a specific direction.
Strongly connected directed layout : a directed layout in which there is a directed path from any
tile to any other tile in the layout.
Directed circuit : a non-empty directed path in which the first tile is equal to the last tile.
Subcircuit : a circuit whose tile and segment sets are subsets of the tile and segments set of another
circuit.
Directed cycle: a directed circuit in which only the first/last tile occurs twice, all other tiles only
occur once.
Directed non-cycle: a directed circuit that is not a cycle.
Common tile: a tile which is part of multiple cycles.

Two propositions are used to show when deadlocks deadlock can be resolved. The split is based
on the layout that is used. Only strongly connected layouts are considered. This means that
there is a path from each tile to each other tile in the layout. A directed circuit can be formed by
connecting the paths from and to a tile. A circuit is a path that starts and ends at the same tile.
Circuits can either be cycles or not. The circuit is also a cycle if the start/end tile is the only tile
that occurs twice in the circuit. A circuit is called a non-cycle if the circuit is not a cycle. Figure
4.1 shows an example of circuit being a cycle or not. In most of the layouts used at Vanderlande, a
cycle can be formed between each tile pair. The first proposition focuses on showing recoverability
for these layouts. The second proposition discusses recoverability for layouts in which there is a
non-cycle between at least one tile pairs.

Eindhoven University of Technology 11

Graduation project report 4 Deadlock recoverability

A

B

(a) A directed circuit, and a cycle

A

B

C

(b) A directed circuit, but not a cycle (non-cycle)

Figure 4.1: Examples of small strongly connected directed layouts with circuits formed by con-
necting paths from tile A to B and tile B to A.

First, a general lemma is discussed to help the two following propositions.

Lemma 1 Each tile in a circuit can be emptied if that circuit includes an empty tile, movement
of an AGV to the empty tile is not restricted and AGVs outside the circuit do not move.

Given a circuit α with an empty tile A, there is an AGV X in that circuit which has empty tile A
in front, when following the direction of the circuit, see Figure 4.2a. AGV X can move to tile A
since it is empty. The previous tile of AGV X, tile B, becomes empty if AGV X drives to tile A, see
Figure 4.2b. This means that the empty tile moves one step backwards compared to the direction
of the circuit α, if an AGV which is located in the circuit drives to the empty tile. The procedure
of moving AGVs along the circuit to the newly created empty tile can be repeated indefinitely.
Thus, each tile in the circuit can be emptied.

3

X

1
2

4

A

B

(a) Starting situation

3

1
2 X

4

A

B

(b) Empty tile relocated within circuit

Figure 4.2: Each tile in circuit α can be emptied by moving AGVs in the direction of the circuit.

4.1 Deadlock recoverability in a layout with cycles

This section discusses the proposition for layouts in which a directed cycle can be formed between
each tile pair. This means that from each tile A, a circular path can be found via each other tile
in the layout in which only tile A occurs twice in the path. Lemma 1 shows that the empty space
in a circuit can be moved around. Lemma 2 extends the same idea to the movement of AGVs
within a cycle.

Lemma 2 An AGV which is located in a directed cycle can be moved to any location in the cycle,
if that cycle includes an empty tile, movement of an AGV to the empty tile is not restricted and
AGVs outside the circuit do not move.

Eindhoven University of Technology 12

Graduation project report 4 Deadlock recoverability

Given an AGV X which is located in a cycle with an empty tile, AGV X can move in the direction
of the cycle if the successor tile is empty. By Lemma 1, it is possible to empty the successor
tile of AGV X. If that is done, AGV X can move one step in the direction of the cycle. The
procedure can be repeated indefinitely. By repeating the procedure, AGV X can move sequen-
tially one step further in the direction of the cycle, and thus move to any location within the cycle.

Lemma 1 and 2 show that AGVs and an empty space can be moved around in a cycle. With this
insight, Proposition 1 shows that each AGV can reach each tile in the layout.

Proposition 1 One empty driveable tile in a strongly connected directed layout is necessary and
sufficient to make sure each AGV can reach its destination. Requirements are that a directed cycle
can be formed between each tile pair, AGV movement to empty tiles is not restricted other than
by layout constraints and the paths of each AGV in the system can be altered.

Assume an AGV X is currently located at tile A and has destination tile B. By assumption, there
is a cycle α including tile B and the empty tile in the layout, see Figure 4.3a. Lemma 1 shows that
the empty tile can be located at tile B. So, without loss of generality, it can be assumed that tile
B is the empty tile. By assumption, there also exists a directed cycle β in which tiles A and B are
located. There is an empty tile in cycle β, since tile B is part of cycle β. Thus, Lemma 2 tells that
AGV X can reach its destination, see Figure 4.3b. The previous procedure can be repeated se-
quentially for each AGV in the layout. Therefore, each AGV in the layout can reach its destination.

1

3

2
4

X

B

A

(a) Empty tile at destination via cycle α

1

4

2

3

B

A

X

(b) AGV X at destination via cycle β

Figure 4.3: AGV X can move to destination tile B once the empty tile is located at tile B.

Furthermore, it is easily concluded that one empty driveable tile in the layout is a necessary con-
dition. No AGV has an empty tile in front if there are no empty driveable tiles in the layout. So,
no AGV can move and thus reach its destination if there are no empty tiles in the layout.

Now that is known that each AGV can reach its destination, Corollary 1 extends the knowledge
to the recoverability of a deadlock.

Corollary 1 One empty driveable tile in a finite strongly connected directed layout is necessary
and sufficient to recover from a deadlock. Requirements are that a directed cycle can be formed
between each tile pair, AGV movement to empty tiles is not restricted other than by layout con-
straints and the paths of each AGV in the system can be altered.

Given the mentioned requirements, each AGV is always able to reach its destination, see Propo-
sition 1. This is consequently also the case if the system starts in deadlock. Thus, a deadlock can
be recovered. Some or all AGVs that started in deadlock cannot reach their destination if this
would not be the case.

Eindhoven University of Technology 13

Graduation project report 4 Deadlock recoverability

4.2 Deadlock recoverability in a layout with non-cycles

If a cycle can be formed between each tile pair, Proposition 1 of Section 4.1 holds. The proposition
of this section is for finite strongly connected directed layouts in which some tile pairs can only be
connected by non-cycles in stead of cycles. A circuit is a non-cycle, if the circuit contains a tile,
other than the start/end tile, that occurs more than once in the path. Such a path is a circuit,
since it ends at its begin tile, but not a cycle. Showing recoverability gets more complex if not all
tile pairs can from a cycle. Lemma 3 and 4 are therefore introduced below. Lemma 3 shows that
a circuit can be split into a sequence of cycles. After that, Lemma 4 shows that two, instead of
one, empty tiles are needed in the circuit for an AGV to follow a non-cycle circuit.

Lemma 3 Directed circuit α can be fully defined by a sequence of directed cycles with a common
tile. Requirement is that circuit α is in a finite strongly connected directed layout.

Since circuit α is part of a strongly connected layout there is always a path between two tiles
in that layout. Thus, circuit α can always be constructed by concatenating finite directed paths
between tiles. Assume path between tiles A, B and C from circuit α, see Figure 4.4a. These paths
are finite since the layout is finite. Circuit α either is a cycle or it is not. If circuit α is a cycle, the
lemma can be concluded. If circuit α is not a cycle, this means that the directed circuit intersects
itself. As a consequence at least one tile, other than the begin/end tile A, occurs more than once
in the circuit. A list of all tiles where circuit α intersects itself can be made. This is done by
counting how often a tile occurs in the circuit. Tiles, other than the begin/end tile A, are added
to the list if they occur more than once. Since circuit α is not a cycle, there is at least one tile
in this list. The circuit is split into subcircuits I and II that have a common tile, to decompose
circuit α, see Figure 4.4a. Tile D is the common tile. The split is done by dividing circuit α into
three consecutive parts. Part one is directed path P1 which starts at tile A and ends at the first
occurrence of tile D. Part two is directed circuit II. Circuit II is a subcircuit of circuit α, starting
and ending at tile D. Lastly, part three is directed path P2 from the last occurrence of tile D to
the last tile in circuit α, tile A. Paths P1 and P2 can be concatenated to form directed subcircuit
I, since the end tile of P1 is the same as the begin tile of P2 and vice versa. The circuits I and
II are split at tile D, so the two subcircuits have a tile in common: tile D. Thus, each non-cycle
circuit can be split into two subcircuits with a common tile.

A C

D

B

I

II

(a) First split

A C

D

B

I

II

III

E

(b) Split of circuit II

Figure 4.4: Split of circuit α into a sequence of cycles.

Subcircuits I and II are cycles or not. If the subcircuits are cycles, the circuit is reduced to a
combination of cycles. If a subcircuit, say circuit II, is not a cycle, circuit II can be split again
into two subcircuits. The split is done with the same procedure as the split of circuit α. The
procedure of splitting circuits into two subcircuits is repeated until each subcircuit is a cycle, see
Figure 4.4b. This procedure is finite, since there is a finite number of intersection points. There

Eindhoven University of Technology 14

Graduation project report 4 Deadlock recoverability

is a finite number of intersection points, since circuit α is composed of finite paths.

By the above procedure, each pair of subcircuits has a common tile, namely the tile on which
the subcircuits are split. This means that in the end, each directed cycle has a common tile with
at least one other cycle that is a subcircuit of the original circuit α. Thus, each directed circuit
that is not already a cycle, can be written as a sequence of directed cycles. The circuit α can be
followed by using segments of the found directed cycles. This can be done, since the segment sets
of all cycles combined will be the same as the original segment set of circuit α.

To conclude, Lemma 3 shows that a non-cycle circuit can be decomposed in a sequence of cycles.
Next, Lemma 4 shows how and under which conditions an AGV can follow a sequence of cycles.

Lemma 4 AGV X which is part of cycle α can be located at any tile in cycle β, given that unique
cycles α and β have at least one common tile and two empty tiles are present in cycle α and β
combined.

Cycle α and β contain at least two tiles, since no cycle can be made with one tile only. Therefore,
the empty tiles are either both located in one cycle or there is one empty tile located in both
cycles. If both empty tiles are located in one cycle, say cycle α one of the empty tiles can be
moved to a common tile by Lemma 1. Once one empty tile is located on the common tile, this
empty tile is now also part of cycle β. Now, each cycle contains an empty tile. So, without loss of
generality, it is assumed that each cycle contains one empty tile, see Figure 4.5a.

To goal is to move AGV X from cycle α to any tile in cycle β. AGV X is located in cycle α either
on a common tile or not. If AGV X is located on a common tile, it can move to any location
in cycle β by Lemma 2. If AGV X is not on a common tile, the empty tile in cycle β needs to
be located on a tile that is not a common tile, by the use of Lemma 1. There is at least one
non-common tile in cycle β, since the cycles α and β are unique. Since AGV X is not located on
a common tile, it will not move during the procedure of relocating the empty space in cycle β.
If the empty tile of cycle α did move during this procedure, it can be moved back to a common
tile by Lemma 1. There is now one empty tile in cycle α and one empty tile in cycle β, with the
latter not on a common tile, see tile D in Figure 4.5a. AGV X can be located at a common tile of
cycle α and β by using Lemma 2 to move AGV X in cycle α. The result is visible in Figure 4.5b.
Once AGV X is located at a common tile it is part of cycle β. Since tile D is not part of cycle
α, at least one empty tile remains part of cycle β after locating AGV X on the common tile. By
Lemma 2, AGV X is able to move to any location in cycle β, see Figure 4.5c.

1

4

2

X

A

B

C D

3

(a) Initial situation with one
empty tile in each cycle.

1

3

2

X

4

A

B

C D

(b) AGV X located at common
tile C by moving along cycle α

2

3

X

4

A

B

C D
1

(c) AGV X located at destination
tile B by moving along cycle β

Figure 4.5: Cycles α and β both containing an empty tile and sharing a common tile C.

Lemma 4 shows that an AGV can follow a non-cycle circuit if there are two empty tiles location

Eindhoven University of Technology 15

Graduation project report 4 Deadlock recoverability

in that circuit. Consequently, Proposition 2 shows that each AGV can reach its destination in a
layout, even if there are some tile pairs for which only a non-cycle can be formed.

Proposition 2 Two empty driveable tiles in the layout are sufficient to make sure each AGV can
reach its destination. Requirements are a finite strongly connected directed layout, the movement
of AGVs to empty tiles is not restricted other than by layout constraints and the paths of each
AGV in the system can be altered.

Assume an AGV X is currently located at tile A and has destination tile B, see Figure 4.6. Lemma
1 shows that the destination tile B can be emptied. So, without loss of generality, it can be assumed
that one empty tile is located at tile B, see Figure 4.6.

6

2

4

1

3

B

5

C

A
X

(a) Starting situation

B

C

A

2

X

1

3

4 5

6

(b) Empty tile located at destination tile B

Figure 4.6: Destination tile B can be emptied by following circuit α.

There is one other empty tile in the layout, located at tile C. A circuit, called circuit β, is
constructed by concatenating the directed paths between tile A, B and C. This circuit contains
AGV X and two empty tiles, see Figure 4.7. Lemma 3 shows that circuit β can be decomposed in
a sequence of cycles, S, which are all connected through common tiles. This sequence consists of
cycles I and II in the example in Figure 4.7. Lemma 1 tells that the empty tiles can move to any
location within circuit β. Thus, the empty tiles can be located in the current cycle (I) of AGV X
and the next cycle (II) of sequence S.

B

C

A
 I

II

2

X

1

3

4 5

6

Figure 4.7: Circuit β decomposed into cycles I and II.

By Lemma 4, AGV X can proceed to cycle II of sequence S and reach its destination, see Figure
4.8. If sequence S would consist of more cycles, the empty tiles are consecutively relocated to the

Eindhoven University of Technology 16

Graduation project report 4 Deadlock recoverability

current cycle of AGV X and the next cycle of sequence S. In this way, by using Lemma 4, AGV
X can follow circuit β. Once AGV X is in the same cycle as destination tile B it can reach its
destination by Lemma 2. The above procedure can be repeated sequentially for each AGV in the
layout. Therefore, each AGV in the layout can reach its destination.

X6

B

C

A
 I

II

2
1

4 5

3

(a) AGV X travelled cycle I.

X

1

4
B

C

A
 I

II
6

2

5

3

(b) AGV X travelled cycle II.

Figure 4.8: AGV X can reach destination tile B by following circuit β. This is done by following
sequence S consisting of the decomposed cycles of circuit β.

Thus, Proposition 2 describes an algorithm for any AGV to reach its destination. Next, Corollary 2
continues on the proposition to show the recoverability of a deadlock.

Corollary 2 Two empty driveable tiles in a finite strongly connected directed layout is sufficient
to recover from a deadlock. Requirements are that the movement of AGVs to empty tiles is not
restricted other than by layout constraints and the paths of each AGV in the system can be altered.

Given the mentioned assumptions each AGV is always able to reach its destination, see Proposi-
tion 2. This is consequently also the case if the system starts in deadlock. Thus, a deadlock can
be recovered. If this would not be the case, some AGVs that started in deadlock cannot reach
their destination.

To conclude, Proposition 1 and 2 show algorithms to locate AGVs at their destination. Proposi-
tion 1 shows that at least one empty tile is needed to resolve a deadlock, if cycles can be formed
between each tile pair in the layout. Two empty tiles in the layout are needed if some circuits
between tile pairs are non-cycles. Keeping the requirements in mind, a deadlock can always be
recovered by the presented algorithms. However, the algorithms are inefficient and would require
large adaptations to the current AGV controls. Therefore, another deadlock recovery algorithm
is found to actually implement in the Grid-Based Control model. The implemented deadlock
recovery algorithm is elaborated in Chapter 5.

Eindhoven University of Technology 17

Graduation project report 5 Recovery algorithm

5 Recovery algorithm

Section 2.2 and Chapter 3 describe the Grid-Based Control model which is used during the project
and the deadlocks that can occur. Furthermore, it is shown that deadlocks that occur in the
model, can always be recovered if there are two empty tiles in the layout, using the algorithms of
Chapter 4. But, the algorithms of Chapter 4 are very inefficient as one AGV at a time is driven
to its destination. Therefore, there is a need for another recovery algorithm more suited for the
Grid-Based Control model. An algorithm is found that fits better to the modular structure of the
Grid-Based Control model. The algorithm is created after a literature study which is presented
in Section 5.1. The resulting structure of the implemented algorithm is discussed in Section 5.2.
An important feature of the algorithm is the use of prohibited segments. This feature is explained
in Section 5.3. In some extreme cases, AGVs cannot reach their destination with the use of the
recovery algorithm. These edge cases are discussed in Section 5.4. Lastly, the algorithm consists of
multiple independent steps. The content of some independent steps are varied and the variations
are presented in Sections 5.5, 5.6 and 5.7.

5.1 Literature

The phenomenon of deadlocks is not new. Deadlocks and deadlock handling techniques are studied
since the 1960s as parallel computing emerges [12]. A deadlock can occur if parallel computations
need to access the same memory. Starting from 1990, deadlocks in (physical) manufacturing
systems are studied due to the rise of industrial automation [16–20]. The research of deadlock
handling also expands to path planning and execution of AGVs, around the year 2000. The devel-
oped deadlock handling strategies for AGV systems only focus on deadlock prevention or deadlock
avoidance [14]. No research is done on deadlock recovery of AGV systems as it is believed to re-
sult in lower performance as opposed to preventing and avoiding deadlocks. Deadlock recovery
techniques applied to non-AGV systems are investigated to find a suitable deadlock recovery ap-
proach. Much inspiration comes from deadlock recovery strategies in automated manufacturing
plants. These systems are physical systems, just as AGV systems. This means that a deadlock
can only be recovered by breaking the circular wait condition of Coffman, see Section 3.1. At least
one of the involved processes needs to re-plan their use of resources to break the circular waiting
condition. There are different ways to make sure diverting is possible. Multiple deadlock recovery
approaches based on breaking the circular wait condition are discussed below.

Dedicated deadlock infrastructure
Many researchers propose dedicated deadlock infrastructure to be able to break the circular wait
condition. They use graph theory to detect a deadlock in manufacturing systems [17–20]. The
deadlock is then resolved by placing one of the involved jobs in a deadlock buffer. This buffer can-
not be used during normal operation which makes sure that diverting from the original planning is
always possible. Yeh [21] also shows a graph-based real-time deadlock recovery approach for auto-
mated manufacturing systems, but assumes a buffer at every resource instead of one central buffer.

Apart from dedicated buffers, the circular wait condition can also be broken by rerouting over
dedicated deadlock lanes. Lankes et al. [22] use this method in a Network on a Chip. When a
router gets in a deadlock, one of the packages at the input side of the router is delivered through a
deadlock channel. Moorthy et al. [15] propose the use of a dedicated deadlock lane in the context
of zone-controlled AGVs. In both methods, the deadlock lane can be accessed from all other
resources. The deadlock lane thus provides a way to reroute in case of a deadlock, so the circular
wait condition can always be broken. Thirdly, Lehman et al. [23] study deadlock recovery methods
for ship container terminals. A deadlock might consist of an AGV that needs to be unloaded by
a crane, but the crane has a container that needs to be unloaded on the AGV. In that case, a
dedicated deadlock AGV arrives to provide a space to unload.

Eindhoven University of Technology 19

Graduation project report 5 Recovery algorithm

Change purpose of resource to buffer
Next to using dedicated infrastructure and hardware to resolve deadlocks, one can also temporar-
ily use resources as buffers. To have a resource to divert to, Wu and Zhou [24] discuss a deadlock
resolution approach of a robotic manufacturing cell. In their method, robots are treated both as
material handling devices and as temporary buffers in case of a deadlock. Zhou and Zhou [25]
propose a deadlock recovery approach in a wafer fabrication plant that uses railed Overhead Hoist
Vehicles to transport wafers. Part of the recovery method consists of using storage for finished
wafers as temporary buffers to divert a wafer to.

Rerouting without dedicated infrastructure
Deadlocks can also be recovered by rerouting processes, without dedicated infrastructure or the
use of buffers. Im et al. [26] explain a deadlock recovery method for material handling devices in a
wafer fabrication plant. The plant is divided into segments. Each segment can have intersections
with other segments. In the case of a deadlock, paths are evaluated of all deadlocked devices that
are at an intersection. If a device is at an intersection and can divert, the path of that device is
changed to break the circular wait condition. Fransen et al. [1] present a dynamic path planning
approach for grid-based AGV systems. The path of an AGV is determined based on a graph
representation of the grid, including weights on the nodes. The weights of nodes can change over
time. The path of AGVs might change if the weights of the nodes have changed. Therefore, a
deadlock might resolve if one of the involved AGVs gets a new path and the circular condition
of the deadlock is broken. Lehmann et al. [23] studied deadlock recovery in a container terminal.
Multiple deadlock scenarios are studied. Some of the deadlocks are resolved by replanning the
order in which containers are loaded and unloaded by the crane. The container is chosen with the
least (time) impact on the original schedule.

It is clear that one or more paths of involved AGVs need to be replanned to resolve a deadlock. This
corresponds with breaking the circular wait condition of the involved AGVs. In manufacturing
systems, it is common to use dedicated deadlock resources to be able to guarantee a redirecting
option. In other approaches, no dedicated deadlock resources are used, but processes are altered
based on the current system state. Deadlock recovery for the Grid-Based Controls model purely
based on additional controls is preferred, as it does not cost any additional space and/or AGVs.
The general deadlock resolving approach of Im et al. [26] is used. Literature shows that there should
always be a resource to divert to, in this case, a tile. If no involved AGV can divert directly, the
deadlock recovery algorithm should create a diverting option. When there is a diverting option
(created), there should be some criteria to select which AGV(s) is/are going to divert. These
criteria could be on different topics, such as the location of the deadlock in the grid or the remaining
path of the deadlocked AGVs. Lastly, the path of an AGV must be replanned in such way that
it chooses a deadlock-free path. The identified recovery steps are implemented in the algorithm
structure which is explained in the next section.

5.2 Algorithm structure

In the current Grid-Based Controls model a deadlock detection algorithm is implemented based
on the work of Van Weert [4]. This algorithm runs at a fixed time interval to detect any dead-
locks. If a deadlock is detected this algorithm provides a list of involved AGVs. The moment the
detection algorithm finds one or multiple deadlocks, the recovery algorithm is started. It is clear
from Section 5.1 that the circular condition between involved AGVs needs to be broken to resolve
a deadlock. This is done by giving at least one of the involved AGVs a different path. Providing a
recovery path to one or more involved AGVs to resolve the deadlock(s) is the goal of the deadlock
recovery algorithm. The algorithm succeeds in its task if the system is deadlock-free when the
algorithm is finished. This section describes the found algorithm structure to do so.

The algorithm consists of multiple independent steps with fixed in- and output. The algorithm is
split up based on the general actions which need to be taken to resolve a deadlock. By creating

Eindhoven University of Technology 20

Graduation project report 5 Recovery algorithm

independent sub-algorithms, each sub-algorithm can be improved separately without influencing
the other sub-algorithms. Figure 5.1 shows the global structure of the algorithm in a flowchart
and is elaborated below the figure. The variants of the general algorithm which are tested are
described in Section 5.5, 5.6 and 5.7.

Create resolvability
ranking

 Determine resolving
AGV(s)

Yes

No

Yes or a path is planned
twice for each involved AGV

Is deadlock
resolved?

No

Yes

Are
there (new)
deadlocks?

End

No

Are all
initially
detected

deadlocks
handled?

Plan recovery pathFind extra resolving
AGVNo

Yes

Are all
involved

AGVs tried to
give a new

path?

With extra weights on
deadlock segment if path is
planned for the second time

for an AGV

Deadlock(s)
detected Special label:

Find and check divert
segments

Update prohibited
segments

Plan recovery path(s)

Maximum number of
iterations

Figure 5.1: Flowchart of the general structure of the deadlock recovery algorithm.

The first main action of the algorithm is to determine which AGV(s) get(s) appointed as resolving
AGV(s). A resolving AGV is an AGV for which a recovery path is searched to break the circu-
lar wait condition of the deadlock. The task of finding resolving AGV(s) is split into two parts.
First, a ranking of involved AGVs is made. The ranking reflects which AGV is most suited to be
resolving AGV. This ranking is called the resolvability ranking. All involved AGVs are placed in
this ranking from highest to lowest resolvability score. Different methods can be used to create
the resolvability ranking and are elaborated in Section 5.5. Secondly, a list of the actual resolving
AGVs is determined by another function. This is done by picking some AGVs from the top of the
ranking. The exact number of resolving AGVs can be varied, see Section 5.6. Thus, the output
of the first part of the algorithm is a list with resolving AGV(s).

Next, the resolving AGV(s) get(s) a recovery path. For this step a path planning function based
on Fransen [1] is used. In this method, the path with the lowest costs is chosen, based on the sum
of three costs: node weights, segment weights and turn penalties. The node weights are dynamic

Eindhoven University of Technology 21

Graduation project report 5 Recovery algorithm

weights per tile based on how busy that tile is. The more an AGV stands still on a tile, the higher
the dynamic weight. The segment weights represent the time it takes to travel from tile to tile.
Lastly, the turn penalties take into account the extra time it takes to turn. Additionally, a tempo-
rary extra weight can be added during path planning. This temporary weight is used to penalise
a path that would immediately result in a deadlock. An extra weight is added to the first segment
of that path if a path would immediately result in a deadlock, after which path planning is run
again. This procedure is repeated until either a deadlock-free path is found or a maximum num-
ber of segments is checked. If no deadlock-free path can be found, the initial optimal path is chosen.

Lastly, once a new path is tried to plan for all resolving AGVs, it is checked if the deadlock is
resolved. This is done by running the deadlock detection algorithm again. The deadlock recovery
algorithm is started again if the system is not deadlock-free. It can be the case that the resolving
AGV(s) did not resolve the deadlock. This might, for instance, happen because there are no other
outgoing segments from the current tile of the resolving AGV. An extra involved AGV has to be
appointed as resolving AGV if the deadlock is not resolved. The two different methods to find an
extra resolving AGV are described in Section 5.7. The methods provide one extra resolving AGV
per time the function is called. Paths of consecutive extra resolving AGVs are altered until either
the deadlock is resolved or a recovery path is tried to find for all involved AGVs.

The deadlock recovery algorithm always terminates. The algorithm terminates because of two
measures. The first is that deadlock recovery of a specific deadlock is terminated if the deadlock
cannot be resolved. This can happen in very specific cases related to path planning, as is explained
in Section 5.4. Next to that, there is a maximum number of consecutive iterations of the deadlock
recovery algorithm. The limit on the number of checks prevents an infinite loop.

5.3 Prohibited segments

The goal of the deadlock recovery algorithm is to deliver a deadlock-free system. However, it
might happen that a deadlock cannot be resolved without introducing a new deadlock. The use
of prohibited segments makes sure that the system becomes deadlock-free, even if new deadlocks
need to be introduced. Prohibited segments are also used to prevent infinite recovery loops. This
section explains how prohibited segments are applied.

First, the notion of deadlock and divert segments is shortly introduced before the feature of
prohibited segments is explained. Each involved AGV has only one deadlock segment. A deadlock

1

3

4

2

Figure 5.2: A multicycle deadlock with deadlock segments (red) and divert segments (green).
Segments to empty tiles are skipped as deadlock segment.

Eindhoven University of Technology 22

Graduation project report 5 Recovery algorithm

segment of an AGV is the segment leading to the next involved AGV in the deadlock. Figure 5.2
shows the deadlock segments of an example deadlock in red. The deadlock segment of AGV 4
is the dotted red arrow and note that the empty tile is skipped. Divert segments are possible
outward segments that might be used in a deadlock resolving path. As an example, the divert
segments of Figure 5.2 are coloured green. All divert segments of a deadlock can be found by
listing all direct outward segments of the deadlock cycle.

The first use of prohibited segments is to force recovery of a deadlock. Figure 5.3 shows an ex-
ample of a situation in which resolving one deadlock creates a new one. AGV A is the only AGV
that can resolve the deadlock. But, the path planner will not choose a different path, since the
alternative path also leads to a deadlock. Prohibited segments are used in this case. A temporary
extra weight is assigned to that segment if a segment is prohibited. The weight is higher than the
penalty for a standard deadlock. In this way, a path with a new deadlock is preferred over a path
including the original deadlock. Prohibited segments are only used if there are no deadlock-free
alternatives. In Figure 5.3b the segment between AGV A and B is made prohibited, so AGV A
is forced to take a path without that segment. Creating the new deadlock gives the opportunity
to make the system deadlock-free. This opportunity would not be there if the original deadlock
of Figure 5.3a is kept intact.

A
A

(a) Initial deadlock

AB

(b) Newly introduced deadlock

Figure 5.3: Example in which resolving a deadlock (solid line) results in another deadlock (dotted
line) due to a prohibited segment (red).

Iteratively resolving newly introduced deadlocks creates the risk of an infinite recovery loop. Such
a situation occurs when AGV A in the example of Figure 5.3b gets a new path during the recovery
of the new deadlock (dotted line). When AGV A gets a new path the original deadlock (solid line)
is restored. The second use of prohibited segments is to prevent such an infinite recovery loop.
After a deadlock is resolved, the deadlock segment of resolving AGV becomes prohibited. The
segment becomes prohibited no matter if prohibited segments were needed to resolve the deadlock.
The previous deadlock will not be restored if a new deadlock is introduced. The previous deadlock
is not restored, because the path resulting in the original deadlock would contain a prohibited
segment. When the system is deadlock-free at the end of a recovery call, the list with prohibited
segments is reset.

In one situation a prohibited segment becomes unprohibited before the end of a deadlock recovery
call. Before a deadlock is resolved, the divert segments of the considered deadlock are listed. It
might happen that all divert segments of a new deadlock are prohibited. An example is shown in

Eindhoven University of Technology 23

Graduation project report 5 Recovery algorithm

Figure 5.4b as the result of resolving the deadlock of Figure 5.4a.

65

7

4

2

1

3
H

I

A B

DC

E F

G

(a) Initial deadlock (AGV 1,2,3), two unprohibited
divert segments.

6

72

1

3

4

5
A B

C D

E F

G H

I

A B

DC

E F

G

(b) New deadlock (AGV 2,4,5) introduced. Seg-
ment ED becomes prohibited.

6

72

1

3

4

5
A B

C D

E F

G H

I

A B

DC

E F

G

(c) Segment ED becomes unprohibited as all divert
segments were prohibited

6

7

1

3

4

5
A B

C D

E F

G H

I

A B

DC

E F

G

2

(d) Original deadlock (AGV 1,2,3) is restored. Seg-
ment CE becomes prohibited, only one unprohib-
ited divert segment left.

1

3

4

5
A B

C D

E F

G H

I

A B

DC

E F

G

6

72

(e) New deadlock (AGV 1,6,7) introduced. Seg-
ment DG becomes prohibited.

1

3

4

5
A B

C D

E F

G H

I

A B

DC

E F

G

6

72

(f) System is deadlock free.

Figure 5.4: The use of prohibited segments (red) making sure a deadlock free solution is found.
Unprohibited divert segments are marked green.

A divert segment needs to be made unprohibited, to resolve the new deadlock and find a deadlock-
free solution. The divert segment that is made unprohibited, is chosen based on a list in which all
newly created deadlocks are stored. Deadlocks are stored including the deadlock segment of the
resolving AGV of the previous deadlock, that created the new deadlock. The deadlock is looked
up in the list and the corresponding segment is made unprohibited if all divert segments of a

Eindhoven University of Technology 24

Graduation project report 5 Recovery algorithm

deadlock are prohibited, see Figure 5.4c. The previous deadlock gets restored by this action, but
with one important difference. One extra divert segment of the deadlock is now prohibited, see
Figure 5.4d. So, when the original deadlock is resolved for the second time, another AGV will be
resolving AGV, see Figure 5.4e.

The use of prohibited segments creates a very important property of the recovery algorithm. It
makes sure that the system is, in principle, always deadlock-free after a call of the deadlock recovery
algorithm. The algorithm introduces a depth-first search to an AGV that can divert deadlock-free.
By the procedure, each divert segment is systematically visited to find an AGV that can divert
with a deadlock-free path. A divert segment becomes prohibited in the end if using that segment
does not yield a deadlock-free solution. It has the result that the corresponding branch of AGVs
is not visited again.

The use of prohibited segments prevents recovery loops. Another method, to prevent loops, is
used in an earlier version of the recovery algorithm using prohibited AGVs. An AGV is marked
prohibited if it resolves a deadlock. The prohibited AGV cannot be chosen as resolving AGV
during the recovery of a new deadlock, in the same call of recovery algorithm. The use of prohib-
ited AGVs works properly if a tile has a maximum of two outward segments. But, for instance,
hexagonal tiles can have more than two outward segments. Imagine an AGV is on a tile with three
outward segments. The AGV is in a deadlock with a path that uses the first outward segment.
The deadlock is resolved by giving that AGV a new path, including the second outward segment.
Marking the AGV as prohibited, excludes the use of the third outward segment, although the
third segment might be necessary to resolve a newly created deadlock. Prohibited segments are
in the end used to prevent this problem.

Despite the use of prohibited segments there are some situations in practice in which the system
is not deadlock-free at the end of the recovery algorithm. This is due to implementation flaws.
The limitations are further discussed in Section 5.4.

5.4 Reachability guarantee

As described in Section 5.3, the use of prohibited segments and sequentially resolving deadlocks
makes sure the system is deadlock-free at the end of the deadlock recovery algorithm. Nonetheless,
there are two characteristics in the practical implementation of the algorithm that might cause
that the system does not become deadlock-free. The use of the deadlock recovery algorithm also
introduces a risk of livelocks. The three characterises discussed in this section have the conse-
quence that no absolute guarantee can be given that each AGV reaches its destination.

The first characteristic relates to path planning. The use of prohibited segments should enforce
that for each divert segment a path is planned, if needed. However, it might happen that a divert
segment only ends up in the recovery path if the path contains a loop. Figure 5.5 shows a situation
in which not all divert segments are used in a recovery path. The deadlock, shown in blue, has two
divert segments. The use of both divert segments results in a new deadlock. To force progress,
one of the deadlock segments, segment DE, becomes prohibited. This should enforce that AGV 2
gets a different path. However, AGV 2 always has to use segment DE to reach destination tile I.
The use of prohibited segment DE is very expensive, but adding the intended divert segment CE
to the path always results in even higher costs. Thus, the unprohibited divert segment CE is not
used in a recovery path. This problem can be solved by planning paths via a third tile, tile C in
the example. This solution is not implemented as the flaw did not give any situation in which the
system could not be deadlock-free. The layouts used at Vanderlande do not contain areas that
can only be reached by using one specific segment which reduces the risk that the system cannot
become deadlock-free. Only AGVs that are one tile away from their destination experience this
path plan characteristic.

Eindhoven University of Technology 25

Graduation project report 5 Recovery algorithm

65

7

4 1

3
H

I

A B

DC

E F

G

Pro
hib

ited

2

Figure 5.5: Deadlock (blue) with two divert segments (green). Segment CE is only added to the
path of AGV 2 (solid line) if a loop if added (dotted line). There is no path to destination tile I
without the prohibited segment DE.

Secondly, new deadlocks might be introduced in the process of finding an AGV that can get a
deadlock-free recovery path. The number of extra created deadlocks is finite, but can be large
in dense layouts. The consequence is that deadlock recovery takes a long time. Routine tasks
are paused and processes can come to a stop if the central controller is occupied with deadlock
recovery. Sending way-points to AGVs that are not involved in the deadlock is one of these routine
tasks. There is a maximum number of times that newly created deadlocks are resolved within one
deadlock recovery call, to prevent overloading the central controller. The unresolved deadlocks
are detected and resolved with the next deadlock detection action. However, ending the deadlock
recovery algorithm before the system is deadlock-free, can create an infinite recovery loop. This
edge case is illustrated by the example in Figure 5.6.

(a) Begin situation (b) Situation after recovery algorithm ended

Figure 5.6: Example of an infinite recovery loop. The coloured boxes represent (possible) dead-
locks. The arrows on AGVs indicate the driving direction.

Assume that the recovery algorithm is configured to at most resolve one newly created deadlock.
Figure 5.6a shows the beginning situation with Deadlock 1 in the bottom left corner of the layout.
Deadlock1 can only be resolved by rerouting AGV A. This recovery action introduces Deadlock 2.
The previous deadlock segment of AGV A becomes prohibited. Therefore, Deadlock 2 can only

Eindhoven University of Technology 26

Graduation project report 5 Recovery algorithm

be resolved by rerouting AGV B. Now Deadlock 3 is introduced, but the maximum number of
recovery iterations is reached. So, Deadlock 3 is not recovered during the first call of deadlock
recovery. All AGVs remain in position as shown in Figure 5.6b. Deadlock 3 is detected with the
next detection cycle, and recovery is started for this deadlock. Deadlock 3 can be recovered by
rerouting AGV B or C. An infinite recovery loop occurs if AGV B is chosen as resolving AGV.
Deadlock 2 is restored if AGV B is given a new path. AGV A will be the recovery AGV for
Deadlock 2, since the previous deadlock segment of AGV B becomes prohibited. At the end of
this second deadlock recovery call, the system ends up in exactly the same state as started.

AGVs do not move and reach their destination if a deadlock recovery loop occurs. AGVs also
do not reach their destinations if a livelock happens. In that case, an AGV moves but does not
make any progress. A livelock might happen if an AGV is appointed as resolving AGV at exactly
the same location as it was a resolving AGV before. There is a chance that cyclic behaviour is
introduced causing the AGV to never reach its destination. The chance that a livelock occurs can
be decreased by introducing randomness in the deadlock recovery algorithm. This might be done
by using a random resolvability ranking once in a while, or flipping the created ranking upside
down once in a random number of recovery calls.

The edge cases discussed in this section prevent AGVs from reaching their destination, either
because a deadlock can not be recovered, an infinite recovery loop happens or a livelock occurs.
The edge cases are caused by the algorithm structure. The structure including the use of prohibited
segments is fixed. However, some parts of the algorithm can be changed. The parts of the algorithm
that can change are next discussed in Section 5.5, 5.6 and 5.7.

5.5 Resolvability ranking

Creating the resolvability ranking is one of the independent functions in the deadlock recovery
algorithm. The resolvability ranking of involved AGVs can be made based on many different sys-
tem parameters and calculations. This section discusses the different methods there are found to
create a resolvability ranking. The resolvability ranking methods which are presented are distilled
from studying deadlock situations and manually trying to resolve them.

Longest remaining path
For this ranking method, the length of the remaining path is decisive. The more remaining tiles
an AGV needs to travel to its destination, the higher it ends up in the resolvability ranking. The
idea behind this method is that AGVs with a long remaining path, generally have a destination
far away. By choosing such an AGV as resolving AGV, the AGV is sent away from the congested
area in which a deadlock typically occurs. Secondly, rerouting an AGV which has a long remaining
path probably has a smaller influence on the remaining duration of the path as opposed to an AGV
which is almost at its destination. Lastly, this method is tested since it requires no costly computa-
tions. The length of the remaining path is easily extracted from the model. A possible downside of
this method is that the consequence for the resolving AGV(s) is not known and taken into account.

Most used tile
In general, a certain global flow can be identified within a layout. Such a flow can, for instance,
be found around a pick-up point, where AGVs have to arrive from a specific direction. In such
a situation, there is an inbound flow of unloaded AGVs and an outbound flow of loaded AGVs.
A deadlock can occur if a loaded AGV X wants to cross the flow of unloaded AGVs. AGV X is
essentially blocking the entire flow of AGVs to and from the pick-up point. Therefore, it would
make sense to remove this blockage and thus appoint AGV X as resolving AGV. The Most Used
Tile method tries to identify which AGV is blocking the most other AGVs.
To identify the ’blocking’ AGV, the Most Used Tile method first creates a list with the tiles on
which involved AGVs are located. These tiles are called involved tiles. Secondly, it is checked how
often an involved tile occurs in all remaining paths of involved AGVs. The resolvability ranking

Eindhoven University of Technology 27

Graduation project report 5 Recovery algorithm

is made based on the occurrences of the involved tiles. The AGV that is located on a tile with the
most occurrences ends on top of the ranking. So, the idea of this method is to restore the flow
in the system by removing AGVs that hinder the most other involved AGVs. A downside of the
method might again be that the consequence for the resolving AGV is not considered.

Last in queue
It is clear that areas around handling points are vulnerable for congestion and therefore deadlocks.
A deadlock around a handling point is often created when the inbound and outbound flow of that
handling point cross. Since multiple AGVs are travelling to the same handling point, multiple
AGVs have the same destination. The Last In Queue method tries to find virtual queues for
destinations to relocate them. In that way, room is created to let other AGVs pass. Of all AGVs
travelling to the same handling point, it makes sense to choose the AGV with the longest remaining
path to the destination as resolving AGV. This AGV has relatively the most time to divert before
it would arrive at the handling point.
First the destination of each AGV is checked and counted to make the ranking. This creates a
ranking of destinations, in which the destination that occurs the most comes on top. The place in
the ranking is randomly divided if destinations have equal occurrence. Next, for each unique des-
tination a sub-ranking is created. This sub-ranking ranks AGVs with the same destination from
the longest remaining path to shortest remaining path. The full resolvability ranking is made
by concatenating the sub-rankings of each destination. In the resulting resolvability ranking, the
involved AGV with the longest remaining path going to the most popular destination, ends up
first in the ranking.

Least extra cost path
The above ranking methods all use the current path of involved AGVs to determine the resolv-
ability ranking. This means that the calculation of possible recovery paths is not needed. It eases
computations, however the consequence for the resolving AGV(s) is not taken into account. This
might result in recovery paths which are, for instance, much longer than the original path or go
through a very congested area.
The Least Extra Cost Path resolvability ranking method uses the relative extra cost of the recov-
ery path as a ranking value. The use of costs of a recovery path prevents an unfavourable recovery
path. The AGV with relatively the least extra cost for its recovery path ends on top of the ranking.
The cost of the current remaining path is first calculated. This is done based on node weights,
segment weights and turn penalties which makes up the costs for path planning, see Fransen et
al. [1]. The path planner tries to plan a new deadlock-free path after the costs of the current path
are calculated. The costs of the new path are compared to the old path. The involved AGV with
the least increase or even a decrease in path costs ends up on top in the resolvability ranking. An
involved AGV is placed at the bottom of the ranking if it cannot get a deadlock-free path.

5.6 Number of resolving AGVs

A second parameter that can be adjusted in the deadlock recovery algorithm is the number of
involved AGVs to give a recovery path. A deadlock is resolved by letting one or more AGVs di-
vert from their original path. One AGV that diverts is enough to resolve the deadlock. However,
giving multiple AGVs a new path might reduce congestion sooner. Reducing congestion improves
the flow in the area of the deadlock and decreases the chance of direct new subsequent deadlocks.
Another possible gain of labelling multiple AGVs as resolving AGVs is that it saves computation
time. No extra recovery AGV has to be found if the deadlock is resolved after assigning new paths
to multiple resolving AGVs. The number of resolving AGVs is determined by a percentage of the
number of involved AGVs. The percentage can be varied in the settings of the algorithm. It is
made sure that there is always at least one resolving AGV.

Eindhoven University of Technology 28

Graduation project report 5 Recovery algorithm

5.7 Extra resolving AGV

The last independent step in the recovery algorithm that can be varied is finding an extra resolving
AGV. A check is performed to see if the deadlock is resolved, after the path planner did try to
plan a recovery path for each initial resolving AGV. It can be the case that the deadlock is intact
after planning recovery paths. This can happen if, for instance, the layout prevents the resolving
AGV from diverting. Consequently, the path of a different involved AGV has to be replanned. To
find this extra resolving AGV, two methods are found.

Next in path
The Next In Path method is introduced to clear the way for the initial resolving AGVs. The initial
resolving AGVs are on top of the resolvability ranking. Thus, by some measure, it is expected that
these AGVs are most suitable to give a recovery path. If the resolving AGV(s) did not resolve the
deadlock, they are apparently blocked by other AGVs or layout constraints. The Next In Path
method continues the path of a resolving AGV until the next involved AGV in the deadlock if
found. The AGV encountered in the path is chosen as an extra resolving AGV for which a recovery
path is planned. The idea is to remove the blocking. The path of the extra AGV is continued to,
again, find an extra resolving AGV if the extra AGV did not resolve the deadlock.

Next in ranking
The second method to find extra resolving AGVs uses the resolvability ranking. The ranking tells
how suited an involved AGV is to give a recovery path. So, the resolvability ranking should provide
the best candidate of the AGVs which are previously not chosen as resolving AGV. Therefore,
the Next In Ranking method picks the first AGV in the ranking for which no recovery path is
searched yet.

This chapter shows the general structure of the implemented deadlock recovery algorithm. Parts
of the algorithm are elaborated for which different variants are designed. Next to that, the use
of prohibited segments is discussed, as well as three edge cases in which AGVs do not reach their
destination. Exploratory simulations are performed for all algorithm variants. The simulations
give insight into the effectiveness of each variant and the importance of specific design choices.
The set-up of these exploratory simulations and the results are discussed in Chapter 6.

Eindhoven University of Technology 29

Graduation project report 6 Exploratory simulations

6 Exploratory simulations

The goal of the deadlock recovery algorithm is to deliver a deadlock-free system. As described in
Section 5.2, there are three parts of the algorithm for which different variants are made. Besides
variants of the deadlock recovery algorithm, the length of the deadlock detection interval is also
expected to influence the system performance. It is expected that each deadlock can be recov-
ered, no matter which variant of the deadlock recovery algorithm is used, due to the algorithm
structure. The system performance and computation time are hence the relevant differences be-
tween algorithm variants. The goal of simulations is to find the algorithm variant that gives the
best system performance and investigate the computation time of the variants. Congestion and
hinder is the main reason that there is a limit on the maximum performance of an AGV system.
Algorithm variants that are the best in lowering congestion, should therefore give the best system
performance.

Previous Sections 5.5, 5.6, and 5.7 describe why variants of the recovery algorithm can perform
better than others in specific situations. But, predicting which and how deadlocks exactly occur
is impossible due to the randomness in the AGV system and interaction with other AGV control
algorithms. Thus, it is difficult to predict which algorithm variants provides the best system
performance over the long run, purely based on their design. Simulating algorithm variants and
evaluation of the results is therefore key to understand the most important contributions to the
best performance. Simulating and testing all the different settings on full-scale layouts takes too
much time. Therefore, exploratory simulations are done on a smaller layout. The exploratory
simulations are used to get a feeling for the effectiveness of each algorithm variant and how it
combines with the other control algorithms. A small selection of algorithm variants is chosen to
simulate on full-scale layouts, based on the finding of the exploratory simulations. The layout
used for the exploratory simulations can be seen in Figure 6.1. Each different layout creates a
different AGV flow in the system. That is why the location and size of deadlocks is dependent on
the layout. The test layout is made to represent as much of existing layouts as possible by the
combination of layout characteristics. The bottom part resembles a layout that is characterized
by many intersections and multiple drop-off tiles per drop-off location. The top part of the layout
relates to layouts with big loops and the costs of an alternative path is high.

Figure 6.1: Layout which is used for the exploratory simulations.

In the remainder of this chapter, first the performance measures are explained in Section 6.1. In
Section 6.2 the test parameters are elaborated. The system behaviour for the different algorithm
variants are discussed in Section 6.4 and 6.5. The effect of changing the deadlock detection
interval is shown in Section 6.6. Section 6.7 shows the computation time of the algorithm. Lastly,
a conclusion on the exploratory simulations is draw in Section 6.8.

Eindhoven University of Technology 31

Graduation project report 6 Exploratory simulations

6.1 Performance measure

The algorithm variants are compared by the results of simulations. There are three main perfor-
mance measures used to evaluate the variants.

• Throughput [jobs / hr]: the number of completed jobs per hour. A measure for the achieved
capacity of an AGV system.

• Computation time [s]: the computation time it takes to complete a (sub-)algorithm.

• Resolving AGV ratio [-]: the ratio of recovery actions for which the initially found resolving
AGV(s) did resolve the deadlock and no extra resolving AGV needed to be found. This
measure gives insight into how often a suitable involved AGV ends on top of the resolvability
ranking.

Next to the throughput, computation time and ratio some other metrics are logged. The number
of deadlocks that occurred during deadlock and deadlock size are two of them. It is also logged
at which point in the algorithm a deadlock is resolved. The extra metrics are used to understand
the performance of the algorithm variants and their interaction with other control algorithms.

6.2 Simulation set-up

A proper duration of each simulation and the number of simulations need to determined to find
reliable results for the performance measures of Section 6.1. First, the length of a single run is
checked. Sets of ten simulations are started with different simulation lengths to compare the mean
throughput. The goal of these simulations is to check for start-up behaviour at the beginning of
the simulation. The simulations are done with 30 AGVs without deadlock avoidance. A random
resolvability ranking is used as this is a baseline to compare the other recovery variants. Figure
6.2a shows the results of the simulations with different lengths. Ten runs are not enough to say
if the data is distributed according to a normal distribution. Thus, the results are shown in box-
plots instead of confidence intervals. Boxplots show the full range of data points divided into four
quartiles, including the median of the data between the second and third quartile. The boxplots
in Figure 6.2a for relatively short runs (500s/1000s) do not show a noticeable offset in through-
put. It is concluded that start-up behaviour does not influence the mean throughput considerably
for runs longer than 500s. On the other hand, increasing the length of the simulation decreases the

500 1000 1500 2000 2500 3000 4000 5000

Duration simulation [s]

150

200

250

300

350

400

450

500

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[c
o

m
p

le
te

d
 j
o

b
s
 /

 h
r]

(a) Simulation duration

10 20 30 40 50 60

Number of simulations

150

200

250

300

350

400

450

500

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

[c
o

m
p

le
te

d
 j
o

b
s
 /

 h
r]

(b) Number of simulations

Figure 6.2: Figures on simulation duration and number of simulation for the exploratory simula-
tions.

Eindhoven University of Technology 32

Graduation project report 6 Exploratory simulations

spread of the mean throughput. Therefore, a simulation length of 2000s is chosen for the the
simulations.

Next, the number of simulations per setting is determined. The grouped mean throughput per
combination of different number of runs is shown in Figure 6.2b by means of confidence inter-
vals. Contrary to boxplots, confidence intervals do not show the real range of the used data. A
confidence interval shows an estimated range for the true value of a parameter. The confidence
intervals in Figure 6.2b on the mean throughput are created with student-t distribution and are
relatively small. The number of runs per simulation is set on 30 runs, as this is expected to have
a proper balance between run time and accuracy.

Figure 6.2b shows confidence intervals, since the mean throughput is assumed to be normally
distributed. This is assumed after performing a Lilliefors test on normality and visually inspecting
the mean throughput of the 210 simulations in a normal probability plot shown in Figure 6.3a.
The data of the considered performance measure lies on the straight reference line if the data
is normally distributed. Normality is checked in the same way for the two other performance
measures: the number of deadlocks during a simulation and the resolving AGV ratio. Figure 6.3b
and 6.3c show the normality plots of the latter two measures. It is assumed that these measures
are also normally distributed. The spread of the performance measures in the rest of the report
is therefore visualised using 95%-confidence intervals.

220 240 260 280 300 320 340 360 380 400 420

Mean throughput [completed jobs / hr]

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

P
ro

b
a

b
ili

ty

Normal Probability Plot

Normal reference

(a) Mean throughput

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Ratio deadlock resolved by resolving AGV [-]

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

P
ro

b
a

b
ili

ty

Normal Probability Plot

Normal reference

(b) Mean resolving AGV resolving the deadlock ra-
tio

75 80 85 90 95 100 105 110 115 120

Number of deadlocks [-]

0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

P
ro

b
a

b
ili

ty

Normal Probability Plot

Normal reference

(c) Mean number of deadlocks

Figure 6.3: Normal probability plot comparing the performance measures based on 210 runs to a
normal distribution.

Eindhoven University of Technology 33

Graduation project report 6 Exploratory simulations

6.3 Implementation flaws

During exploratory testing of the recovery algorithm, two unexpected flaws are discovered. Dead-
locks might not be resolved as a consequence of the flaws. The flaws originate from reusing of the
existing path plan function. The two flaws and their fixes are elaborated on below.

Implementation flaw, deadlock avoidance during path planning
The deadlock recovery algorithm is implemented in the existing Grid-Based Control model. To
prevent duplicate code, path planning during deadlock recovery is executed by an existing path
planning function. This path planning function is originally built to periodically reroute paths
of AGVs as a part of the dynamic path planning of Fransen [1]. The path planner searches a
deadlock-free path from the current tile of the AGV. The newly found path is ignored if it leads
to a deadlock. The deadlock check during path planning is executed by the deadlock avoidance
algorithm. The use of deadlock avoidance is troublesome when the reroute function is used for
the deadlock recovery.

The problem is illustrated by the following example. Assume the model uses monocycle dead-
lock avoidance. This makes sure that no monocycle deadlocks occur during simulation. However,
monocycle avoidance can introduce two-cycle deadlocks as stated in Section 3.3. Therefore, the
deadlocks that deadlock recovery has to recover are two-cycle deadlocks. During deadlock recov-
ery, the path planning function is called for an involved AGV. It is checked if the newly calculated
path creates a deadlock. However, this check is done by deadlock avoidance, which is on monocycle
level. Thus, the two-cycle deadlock, for which the recovery algorithm is called, is not detected.
This can lead to the situation in which the original path of an AGV, and thus the deadlock is kept
intact, despite there is a path available that resolves the deadlock.

The deadlock that needs to be recovered can only be found with the deadlock detection algorithm,
not the deadlock avoidance algorithm. Thus, the deadlock check during path planning is altered.
The deadlock detection algorithm is used whenever path planning is called during deadlock re-
covery. With the use of deadlock detection, the original path, which causes the deadlock, is not
chosen again if there is a deadlock-free alternative path. The deadlock avoidance algorithm is
still used to predict deadlocks when path planning is called in the standard path planning. This
ensures that paths are not discarded unnecessarily.

Implementation flaw, loop detection during path planning
The use of the existing path planning function introduces another implementation flaw. Paths
are checked for loops after they are planned. Loops are not allowed due to possible bookkeeping
errors within the simulation. A new path is thrown away if a loop is detected. By this check,
a suitable and needed recovery path might be disregarded. It can even occur that all recovery
paths create a loop, and the deadlock is not recovered at all. An example of a loop in a recovery
path is shown in Figure 6.4. The figure shows a deadlock in which the AGV located at tile A is
assigned as resolving AGV. The AGV is only one tile away from its destination tile B. Figure 6.4b
shows the found deadlock-free recovery path. The AGV travels to the same drop-off chute, but
at another location: tile C. The new path creates a loop with the already traversed path of the
AGV. Consequently, the deadlock-free path is disregarded and the original path is restored. This
has the result that the deadlock is not recovered. This flaw is fixed by adapting the controls so it
could handle with loops in paths.

The Grid-Based Controls model is adapted to fix the unexpected implementation flaws. The
exploratory simulations are performed with the fixed model. The results of the exploratory sim-
ulations are discussed in the following sections. Lastly, a conclusion on which algorithm variants
are used in full-scale simulations is drawn in Section 6.8.

Eindhoven University of Technology 34

Graduation project report 6 Exploratory simulations

A

B

C

(a) Original path

A

B

C

(b) Newly calculated path

Figure 6.4: Example of a disregarded recovery path for AGV at tile A due to a loop in the new
path. Red line: contour of the deadlock, solid black line: already traversed path, dotted black
line: remaining path.

6.4 Ranking and extra resolving AGV methods

Two central parts of the recovery algorithm are the ranking method and the method determining
the extra resolving AGV. Each different combination of these methods creates a unique recov-
ery algorithm variant. There are five different ranking algorithms: Random, Longest Remaining
Path, Most Used Tile, Last In Queue and, finally, Least Extra Costs Path. The Random ranking is
added as a reference. Furthermore, there are two different methods used to find an extra resolving
AGV: Follow Path and Next In Ranking. Simulations are performed to investigate all possible
combinations of these two parts of the algorithm. The simulations are done without deadlock
avoidance and with a deadlock detection interval of 20 seconds. Only one AGV per deadlock is
appointed as resolving AGV. The small layout of Figure 6.1 is used. The simulations are executed
for different numbers of AGVs to explore the effect of grid density on the effect of deadlock recovery.

As stated before, it is expected that recovery algorithms that lower congestion the most, give the
best performance. Each algorithm variant has some properties that can lower congestion, result-
ing in a better performance compared to other variants. However, simulations have to tell which
properties are more valuable than others. The Longest Remaining Path and Least Extra Costs
Path ranking methods both appoint an AGV that has to travel far, thus potentially decreasing
local congestion. But, the Least Extra Costs Path ranking is expected to yield better system
performance as it takes into account the costs of the alternative path. The better performance
could come at the expense of higher computation costs. The Last In Queue ranking method is
designed to work well around busy handling points. It aims to make way for AGVs that need to
pass by a handling point, but do not need to visit it. This ranking is predicted to work well if
handling points are the bottleneck and there is enough room to divert to a less dense area. Next,
the Most Used Tile ranking creates a resolving AGV that hinders the most other involved AGVs.
So, that ranking should give the best results when deadlocks occur in a dominant AGV flow.

There are two methods designed to find an extra resolving AGV: Follow Path and Next In Rank-
ing. The Next In Ranking method just takes the next involved AGV of the ranking. This method
should perform best if all involved AGVs are roughly equally sensible choices. The Follow Path
method aims to remove the blockage of the initial resolving AGV. Thus, making it more likely
that the initial resolving AGV can start driving. The Follow Path method is therefore predicted
to perform better if the consequences per AGV differ more.

Eindhoven University of Technology 35

Graduation project report 6 Exploratory simulations

The system performance is discussed in this section. After that. the effect of using different re-
solvability ranking methods on the computation time is reviewed in Section 6.7.

Throughput
The mean throughput is the most important performance measure. Figure 6.5 shows the results
for the mean throughput on the small test layout. In general Figure 6.5a and 6.5b show that there
is no favourable method to find an extra resolving AGV if the initial resolving AGV could not
resolve the deadlock. The confidence intervals of the Follow Path and Next In Ranking methods
lie very close to each other. This indicates that there is no clear better method.

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

600

625

650

675

700

725

750

775

800

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - nAGVs: 16

Follow path

Next in ranking

(a) 16 AGVs (28% density)

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

350

375

400

425

450

475

500

525

550

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - nAGVs: 24

Follow path

Next in ranking

(b) 24 AGVS (41% density)

Figure 6.5: Mean throughput for different resolvability ranking methods. The combinations with
a specific method to find an extra resolving AGV are visualised in separate colors.

The only big difference in extra resolving AGV method can be seen in Figure 6.5a when the Ran-
dom resolvability ranking is used. Figure 6.6 shows a very typical deadlock in the test layout which
explains the difference. The deadlock occurs when unloaded AGVs have a path to the pick-up lo-
cations at tiles A and F, and a loaded AGV (tile D) wants to cross the paths of the unloaded AGVs.

B C

D E

A

F

Figure 6.6: Dominant deadlock situation (marked by red box) in which loaded AGV at tile D can
decrease congestion in the area of the deadlock.

Eindhoven University of Technology 36

Graduation project report 6 Exploratory simulations

The extra resolving AGV method is only called if the AGV at tile B ends up on top of the random
ranking. The deadlock can be resolved if an AGV at tile C, D or E is chosen as resolving AGV
and the method to find an extra AGV is not called. In the example, AGV D is given a new path
if an extra resolving AGV is chosen with the Follow Path method. This AGV can easily be sent
away from the congested area with a new black path as in Figure 6.6. The area of the deadlock
becomes less dense when the AGV at tile D is given a new path. This has a positive effect on
the throughput. With the Next In Ranking algorithm, the AGVs at tile C or E are also chosen
regularly, since the extra AGV is based on the random ranking. The AGVs at tile C and E can
divert, however, the AGVs will return quickly to the congested area as their destination is one of
the pick-up points. The deadlock is thus resolved, but congestion is not decreased, which results
in lower average throughput.

Secondly, the ranking methods are compared. The performance of the Most Used Tile and Last
In Queue ranking algorithms in the simulations with 16 AGVs can also be clarified by the above
explanation. The Most Used Tile ranking algorithm looks for the AGV that is blocking the most
other AGVs. Given the dominant deadlock location, the AGV at tile D is often chosen as resolv-
ing AGV. Choosing the AGV at tile D decreases the congestion in the area where the deadlock
happened and thus has a positive effect on the throughput. The decent performance of the Most
Used Tile ranking is as expected, since there is a clear flow of AGVs around a pick-up point. The
Last In Queue method performs worse than expected, since it does not outperform the Random
ranking. The Last In Queue method finds involved AGVs which have the same destination and
chooses the AGV that is last in the virtual queue to that destination. In the used layout, AGVs
at tile C or E are often chosen as resolving AGV with this ranking method. Again, the deadlock
resolves but congestion is not decreased by choosing these AGVs. This explains the poorer per-
formance over the other ranking methods. Furthermore, the Longest Remaining Path and Least
Extra Costs Path rankings also do not perform better than the Random Ranking. This probably
comes from the fact that the remaining path lengths are not very distinct due to the small layout.
The Longest Remaining Path ranking is thought to perform better in bigger layouts.

The mean throughput of the first four ranking methods for the simulations with 24 AGVs is com-
parable, see Figure 6.5b. This is an unexpected result, as it means that the Longest Remaining
Path, Most Used Tile and Last In Queue rankings do not perform better than randomly appointing
a resolving AGV. The Least Extra Costs Path ranking however outperforms the Random, Most
Used Tile and Last In Queue ranking methods. The performance is better, because the ranking
copes the best with congestion. The simulations are done with a very dense layout with a density
of 41%. AGVs hinder each other more than in the simulations with 16 AGVs (28% density). The
path planning algorithm that is used to calculate the extra costs of a recovery path, also takes
into account how busy the path currently is. This means that an AGV on top of the Least Extra
Costs Path ranking can relative easy move away from the congested area, which is beneficial for
the throughput. Other rankings appoint a resolving AGV, but do not take into account how busy
the recovery path is. As the layout is very dense, there is a big chance that the resolving AGV is
waiting for other AGVs and thus does not decrease the congestion quickly.

Ratio initial resolving AGV resolving the deadlock
Next, it is counted how often the initially appointed resolving AGV(s) actually resolves the dead-
lock. This number is converted into a ratio of the total number of deadlocks during simulation.
The ratio tells how well the first AGV in the ranking can divert with a deadlock-free path. In
the case a deadlock is not resolved by giving the original resolving AGV(s) another path, an extra
resolving AGV is found.

The used layout consists of many crossings, thus many tiles in the layout have two outwards
segments. A resolving AGV on a tile with two outward segments can divert. The alternative
path is likely to be deadlock-free if the system is not too dense, since the outward segments are
probably empty. As an example, Figure 6.6 shows free outward segments for AGVs C, D and E.

Eindhoven University of Technology 37

Graduation project report 6 Exploratory simulations

Most of the tiles with only one outward segment are handling points. The rankings that regu-
larly appoint resolving AGVs on handling points are therefore expected to score lower on the ratio.

The value of the ratio per algorithm variant as the result of the simulations is shown in Figure
6.7. The simulations that are performed with 16 AGVs show a better ratio than the simulations
with 24 AGVs. It makes sense that the initial resolving AGV can divert in fewer cases as density
increases. The Most Used Tile and Least Extra Costs Path ranking methods have the highest
ratio for both densities. The Least Extra Costs Path ranking method has a check to see if the
recovery path is different from the current path. If the recovery path is different, it is quite certain
that the resolving AGV can resolve the deadlock. It is therefore as expected that this ranking
method has a high ratio. The Most Used Tile method identifies the AGV that is blocking the
most other involved AGVs. The AGV on top of this ranking is thus blocking the most prevailing
flow in the system. The AGV at tile D in Figure 6.6 is an example of such AGV. In the time that
the AGV at tile D is standing still, the AGVs following the flow (black arrow) can continue and
thus empty the way for the resolving AGV. With this in mind, the AGV that blocks the flow can
likely divert and thus the ratio of this method is high. The ratio of the Longest Remaining Path
ranking is comparable to that of the Random ranking. The relatively small difference in remaining
path length is probably the cause of this fact.

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

nAGVs: 16

Follow path

Next in ranking

(a) 16 AGVs (28% density)

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

nAGVs: 24

Follow path

Next in ranking

(b) 24 AGVS (41% density)

Figure 6.7: Average ratio of resolving AGV(s) resolving the deadlock for different resolvability
ranking methods. The combinations with a specific method to find an extra resolving AGV are
visualised in separate colors.

The exploratory simulations show that using different ranking methods do show significant effects
on the achieved throughput. On the other hand, the method to find an extra resolving AGV does
not seem to matter. The following sections also discuss the effect of the number of resolving AGV
and the length of the detection interval. A full conclusion on the exploratory simulations is given
in Section 6.8.

6.5 Number of resolving AGVs

Next to the resolvability ranking and extra resolving AGV methods, different algorithm variants
are made, based on varying the percentage of initial resolving AGVs. Only one AGV needs to
get an alternative path to resolve a deadlock. However, replanning paths for more AGVs, could
distribute AGVs better over the layout and decrease congestion. On the other hand, diverting
more AGVs than necessary can decrease performance, since AGVs get a longer path. Simulations

Eindhoven University of Technology 38

Graduation project report 6 Exploratory simulations

with a varying number of resolving AGVs should give insight into whether the possible benefit
outweighs the possible drawback.

The result on the resolving AGV ratio is elaborated below. The simulations are only run with
Next In Ranking as an extra resolving AGV method, since Section 6.4 shows that the differences
with the Follow Path method are very small. The simulations are performed for 0, 50 and 100
percent of the number of involved AGVs set as resolving AGVs. At least one AGV is chosen as
resolving AGV, thus the setting 0% gives one resolving AGV. Over 95% of all deadlocks during
simulation have four involved AGVs. This means that the setting 50% gives two resolving AGVs.
The deadlock detection interval is again set at 20 seconds.

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

600

625

650

675

700

725

750

775

800

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - nAGVs: 16

0%

50%

100%

(a) 16 AGVs (28% density)

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

350

375

400

425

450

475

500

525

550

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - nAGVs: 24

0%

50%

100%

(b) 24 AGVS (41% density)

Figure 6.8: Mean throughput for different resolvability ranking methods. The combinations with
certain percentages of resolving AGVs are visualised in separate colors.

The mean throughput shows a clear positive response to increasing the number of resolving AGVs,
see Figure 6.8. This response comes from the forced reevaluation of the paths of involved AGVs.
Even if the first resolving AGV actually resolves the deadlock, a new path is planned for the other
resolving AGVs. The paths of the other resolving AGVs do not change to resolve a deadlock, since
the first resolving AGV already resolved the deadlock. However, the paths of the other resolving
AGVs can change because another path with lower costs is found. The costs are partly based on
how busy a path is expected to be. In other words, planning a recovery path for more AGVs than
necessary can decrease congestion of the area of the deadlock, thus having a positive influence on
throughput.

Figure 6.5a gives some clue that the Most Used Tile ranking yields higher throughput than some
of the other ranking methods in the least dense layout. Figure 6.8a shows that the Most Used Tile
ranking performs better than the Random, Last In Queue and Least Extra Costs Path ranking
methods if all involved AGVs are set as resolving AGV. The difference seems strange at first glance,
since all involved AGVs get a new path. However, the resolving AGVs get a new path sequentially
based on the ranking. The reason that throughput is not equal if all paths are replanned, is be-
cause of the order in which the paths are replanned. For the high-density simulations, the Least
Extra Costs Path ranking outperforms the other ranking if only the first AGV in the ranking is
assigned as resolving AGV, see Figure 6.8b. However, the advantage over other ranking methods
vanishes if all involved AGVs get a new path. The distinctive advantage per rankings diminishes
since AGVs hinder each other a lot with high density.

Eindhoven University of Technology 39

Graduation project report 6 Exploratory simulations

Lastly, Figure 6.9 shows the effect of increasing the percentage of resolving AGVs on the ratio
with which resolving AGVs do resolve the deadlock. The result is as expected. The ratio becomes
one when all AGVs are given a new path. In other words, there is almost always one involved
AGV that can get a deadlock-free recovery path.

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

nAGVs: 16

0%

50%

100%

(a) 16 AGVs (28% density)

Random

Longest re
maining path

Most u
sed til

e

Last in
 queue

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

nAGVs: 24

0%

50%

100%

(b) 24 AGVS (41% density)

Figure 6.9: Average ratio of resolving AGV(s) resolving the deadlock for different resolvability
ranking methods. The combinations with certain percentages of resolving AGVs are visualised in
separate colors.

It is clear from Figure 6.8 that increasing the percentage of resolving AGVs has a positive influence
on the throughput. However, this effect is due to more rerouting and not specifically due to a better
recovery approach. The optimal path can change if dynamic weights are used. Thus, planning
a path for more AGVs during deadlock recovery, gives more AGVs a better path. However, in
practice, periodic rerouting is used. This means that approximately every 10 seconds the path
of each AGV is adjusted if a better path is found. Periodic rerouting is disabled during the
above simulations to isolate the effect of the deadlock recovery algorithm. The simulations are
also performed including periodic rerouting. The increase in throughput, as in Figure 6.8, is not
visible if periodic rerouting is enabled. This fact confirms that the increase in throughput for more
resolving AGV comes from more rerouting.

6.6 Detection interval

The deadlock detection interval is the last system parameter that is varied. The interval is a
value not directly related to the deadlock recovery algorithm. However, it might largely influence
the performance of the system. Congestion is limited if deadlocks are detected earlier, and thus
recovered earlier. The best throughput should be achieved with the smallest detection interval.

Figure 6.10 shows the average throughput for increasingly dense simulations for different deadlock
detection intervals.The average throughput first increases. AGVs do not hinder each other at all,
and thus no deadlocks occur for low densities. Starting from a density of 17,5%, AGVs start to
hinder each other so the throughput does not increase as fast, and deadlocks start to form. A
longer detection interval has only effect if there are deadlocks. So, changing the interval only has
an effect on throughput starting from 17,5% density.

Eindhoven University of Technology 40

Graduation project report 6 Exploratory simulations

0 10 20 30 40 50

Density [%]

0

100

200

300

400

500

600

700

800

900

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r] 2s

5s

10s

15s

20s

30s

45s

60s

(a) Full result

15 20 25 30 35

Density [%]

600

650

700

750

800

850

900

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r] 2s

10s

30s

60s

(b) Zoomed with few detection intervals

Figure 6.10: Throughput versus the density of the layout and the detection interval.

Congestion increases with increasing density to a point that throughput decreases. As expected,
the maximum achievable throughput increases if the deadlock detection interval increases. The
number of connected AGVs is limited, if a deadlock is detected early after formation. Thus,
the added waiting time is restricted. As expected, figure 6.10b clearly shows that the maximum
throughput increases for shorter deadlock detection intervals. The figure also shows that the den-
sity at which the maximum throughput is achieved increases. As deadlocks are detected earlier,
hinder is minimized and more AGVs can be placed in a layout before the caused extra hinder of
an additional AGV decreases throughput.

Section 6.4, 6.5 and 6.6 elaborate on the system performance for different deadlock recovery
algorithm variants. Next, the computation time of different ranking methods is discussed. After
that, a conclusion on the algorithm variants is given in Section 6.8 based on the exploratory
simulations.

6.7 Computation time

To be able to properly compare the ranking algorithms, the computation time needs to be taken
into account as well. It is expected that the Random ranking is the quickest, because creating a
random ranking is a simple operation. The Least Extra Costs Path ranking needs to calculate
the alternative path of each involved AGV to make up the ranking. Consequently, this ranking is
deemed to be the most computationally expensive.

The computation time of the ranking algorithm and the total recovery algorithm are measured.
50% of the involved AGVs is appointed as resolving AGV for the simulations. The results on
computation time are stated in Table 6.1.

Table 6.1: Mean computation time per ranking method based on approximately 3000 samples.

Ranking method
Mean total recovery
computation time [s]

Mean ranking
computation time [s]

1 Random 3,87e-2 7,17e-6 (0,019%)
2 Longest remaining path 4,40e-2 4,09e-5 (0.093%)
3 Most used tile 4,04e-2 8,12e-5 (0.20%)
4 Last in queue 4,26e-2 6,45e-5 (0.15%)
5 Least extra costs path 7,49e-2 4,39e-2 (58,61%)

Eindhoven University of Technology 41

Graduation project report 6 Exploratory simulations

The Random ranking is the quickest as expected. Rankings 2, 3 and 4 only use prior available
information to determine the ranking. This has the result that the computation time to create the
ranking is very low compared to the total recovery computation time. The Least Extra Costs Path
ranking method calculates a new path for every involved AGV. The average computation time for
this ranking method is more than half of the total recovery computation time, since calculating
new paths is relatively expensive.

6.8 Conclusion exploratory results

Exploratory simulations are performed to find improvements of the algorithm. The small scale
simulations help tremendously in finding and fixing minor bugs. Two more substantial path plan-
ning flaws are described in Section 6.3. The relative short simulation time of the exploratory
simulations makes the development of the algorithm, as presented in Section 5.2 a lot easier. For
instance, the use of prohibited segments, instead of AGVs, is an improvement implemented as a
result of exploratory simulations. The exploratory simulations also give a feeling for the effec-
tiveness of deadlock recovery variants. A choice is made on which recovery variants are tested
on full-scale layouts, based on the exploratory results. These full-scale simulations are discussed
in the next Chapter 7. The results in Sections 6.4, 6.5 and 6.7 are the basis for the following
conclusions on algorithm variants.

The simulations give the insight that the effectiveness of the deadlock recovery algorithm is linked
to the extent to which congestion is decreased as a result of the recovery actions. As resolvability
ranking, only the Random, Longest Remaining Path and Most Used Tile methods are tested on
full-scale layouts. The Random ranking acts as a baseline. The Longest Remaining Path and Most
Used Tile ranking methods have good potential in decreasing the congestion in the area of the
deadlock, and are therefore prone to result in the highest throughput. The Last In Queue ranking
method is not chosen, since that ranking method shows the worst throughput performance. This
ranking method selects resolving AGVs that do resolve the deadlock, but do not effectively reduce
the congestion around a handling point. The Least Extra Costs Path ranking method is also not
chosen. The ranking shows comparable results to the chosen ranking methods, but at the expense
of longer computations. Especially the Longest Remaining Path ranking is thought to perform
equally to the Least Extra Costs Path ranking in larger layouts.

As a method to find an extra resolving AGV, the Next In Ranking method is chosen for the
full-scale simulations. The exploratory simulations show that there is no significant difference
in throughput between the two extra resolving AGV methods. Therefore, the simplest method
is chosen. Furthermore, it is clear from Figure 6.8 that increasing the percentage of resolving
AGVs has a positive influence on the throughput. However, this effect is due to more rerouting
and not specifically due to a better recovery approach. In practice, periodic rerouting is used,
so there is no need to force a reroute action by the deadlock recovery algorithm. Hence, for
full-scale simulations, only one resolving AGV is appointed. Moreover, the deadlock detection
interval has a huge influence on the performance of the AGV system when deadlock recovery
is the deadlock handling method. The deadlock detection interval is kept at 20 seconds. The
full-scale simulations of Chapter 7 are about the relative performance of the deadlock recovery
variants, so it is not a problem that better overall performance can be obtained by lowering the
deadlock detection interval. After the most promising deadlock recovery algorithm is found in the
following Section 7.2, the performance of deadlock recovery is compared to deadlock avoidance
in Section 7.3. In these simulations, the effect of the deadlock detection interval is taken into
account.

Eindhoven University of Technology 42

Graduation project report 7 Full-scale simulations

7 Full-scale simulations

The goal of this project is to develop a deadlock recovery algorithm that yields as high as pos-
sible throughput. The exploratory simulations of Chapter 6 give insight into how the deadlock
recovery algorithm interacts with the other AGV controls. It is clear that congestion control is
an important factor in the performance of the recovery algorithm. This chapter describes the
results of full-scale simulations in order to conclude to most suitable deadlock recovery algorithm
variant. The full-scale simulation layouts are larger than the layout used for the exploratory tests,
to resemble real-life situations better. Only a selection of most promising algorithm variants is
tested, based on the results of the exploratory simulations, see Section 6.8. The variants of the
deadlock recovery algorithm only use different resolvability ranking methods.

The use of different ranking algorithms is tested with simulation described in Section 7.1. The
results are discussed in Section 7.2. The deadlock recovery variant that yields the best throughput
is compared to deadlock avoidance in Section 7.3. A conclusion on computation time of the recov-
ery algorithm can be drawn based on these results. Lastly, Section 7.4 discusses the reachability
guarantees of Section 5.4 with the use of the deadlock recovery algorithm during simulations.

7.1 Simulation set-up

The full-scale simulations are done on two different layouts: GridSorter4 and BeeHive4. These
layouts have many intersection points and are therefore prone to have deadlocks, see Figure 7.1.
Both layouts have pick-up stations around the edges and chutes spread across the layout to drop
off luggage or packages. Each chute has multiple drop-off locations around it. GridSorter4 has
square tiles and BeeHive4 has hexagonal tiles. The use of hexagonal tiles can give different types
of deadlocks and paths compared to a layout with square tiles.

(a) GridSorter4 (b) BeeHive4

Figure 7.1: Layouts used for full-scale simulations

Eindhoven University of Technology 43

Graduation project report 7 Full-scale simulations

There are some additional parameters to set for each simulation. The density is set to 25%. This
means that 25% of the driveable tiles of the layout are occupied by an AGV. This number is
higher than 15-20% which is typically used, to make sure enough deadlocks occur, to be able to
compare the deadlock recovery algorithm variants. Furthermore, the deadlock detection interval
is set to 20 seconds. This interval is a bit shorter than the default value of 30 seconds to compen-
sate for the higher density. The exact influence of the detection interval is discussed in Section 7.3.

The length of the simulation is varied to investigate the effect on the throughput and the presence
of a start-up effect. The effect is tested on the GridSorter4 layout with the random resolvability
ranking setting. The throughput is assumed to be normally distributed and thus visualised us-
ing 95%-confidence intervals, based on the result in Section 6.2. Figure 7.2a shows the effect on
throughput for different lengths of simulations.

0 2000 4000 6000 8000 10000

Duration simulation [s]

700

800

900

1000

1100

1200

1300

1400

1500

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r] tDisregarded = 0s

tDisregarded = 100s

tDisregarded = 500s

tDisregarded = 750s

tDisregarded = 1000s

(a) Different lengths of disregarded periods

0 2000 4000 6000 8000 10000

Duration simulation [s]

700

800

900

1000

1100

1200

1300

1400

1500

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r] tDisregarded = 750s

(b) Disregarded start-up period of 750s

Figure 7.2: Mean throughput for different lengths of simulations while disregarding a start-up
period. Data point are connected by lines for visibility only.

Different colours represent throughput values for which different start-up periods are disregarded.
The line for tDisregarded = 0 displays the result without disregarding any start-up period, and
shows that there is a clear start-up behaviour. This behaviour happens since all AGVs have a
random initialisation location in the layout. As a result, AGVs do not hinder each other that
much at the beginning, which increases the throughput. As the simulation proceeds, queues build
up around the pick-up locations, creating steady-state behaviour. The increased throughput at
the beginning of the simulation increases the average throughput. Disregarding the start-up pe-
riod makes sure the steady-state throughput is obtained quicker. The obtained throughput does
not change anymore between disregarding the results of the first 750 or 1000 seconds, see Fig-
ure 7.2a. Hence, the first 750 seconds is considered as the start-up period. Figure 7.2b shows the
throughput for different simulation durations, for which the first 750 seconds is disregarded. A
duration of 4000s is chosen for the simulations. The duration is a balance between decreasing the
95%-confidence intervals and simulation time. All metrics in the following sections are thus based
on the results from 750 till 4000s of each simulation.

Secondly, the number of simulations per setting is set to 30, based on Figure 7.3. This number is
a balance between precision and simulation time.

Eindhoven University of Technology 44

Graduation project report 7 Full-scale simulations

10 20 30 40 50 60

Number of simulations

700

750

800

850

900

950

1000

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
[c

o
m

p
le

te
d
 j
o
b
s
 /
 h

r]

Figure 7.3: Mean throughput for grouping varying number of simulations with disregarding the
first 750 seconds.

7.2 Results

This section discusses the obtained results for two different layouts. The only difference in dead-
lock recovery algorithm is made in the resolvability ranking method. Contrary to the conclusion of
the exploratory simulations, four, instead of three, ranking algorithms are tested on the full-scale
layouts. The exploratory results of Chapter 6 show that it is important that the resolving AGV
quickly travels away from the deadlock area. Resolving AGVs in the BeeHive4 layout are hindered
more during their travel away from the deadlock area than in the layout for the exploratory simula-
tions. Therefore, the Least Extra Costs Path ranking is also included in the full-scale simulations.
This ranking method also considers congestion of the alternative path, which could result in bet-
ter throughput compared to the other ranking methods. Furthermore, the Longest Remaining
Path ranking should perform better than the Random ranking. This is expected, due to bigger
differences in remaining path length compared to the exploratory simulations. The Most Used
Tile ranking is designed to restore a dominant flow that is blocked by a deadlock. This ranking
should give the best results if there are many deadlocks around handling points.

GridSorter4
Figure 7.4 shows the mean throughput in the GridSorter4 layout. The results for the Random

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

650

700

750

800

850

900

950

1000

1050

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - Layout: GridSorter4

Figure 7.4: Mean throughput during a simulation on the GridSorter4 layout.

Eindhoven University of Technology 45

Graduation project report 7 Full-scale simulations

ranking are a baseline for the other ranking methods. The Most Used Tile ranking is the most
promising ranking method based on the exploratory simulations. However, Figure 7.4 clearly
shows that the Most Used Tile ranking underperforms the Random ranking for the GridSorter4
layout, despite many deadlocks happen around pick-up points. This can be explained by Fig-
ure 7.5, which shows a very common deadlock.

The deadlock occurs around a pick-up location where streams of unloaded and loaded AGVs cross.
The Most Used Tile ranking looks for the AGV that is on a tile over which the most other involved
AGVs have to travel. AGV at tile D ends almost always on top of the ranking. However, tile D is
the pick-up location, so that AGV cannot divert. The second AGV in the ranking is often located
at tile A. The AGV at tile A can divert, but the AGV is unloaded and thus quickly returns to the
congested area around the pick-up point. The Most Used Tile ranking cannot predict if an AGV
can and will swiftly move away from the congested area, which is the most important property to
improve the throughput. The Most Used Tile ranking shows exactly the behaviour for which the
Last In Queue ranking method is dropped after the simulations on the small layout.

A B C

ED

Figure 7.5: Common deadlock (in red) around a pick-up point in the GridSorter4 layout. The
dotted arrow indicate diverting options to resolve the deadlock.

The Longest Remaining Path and Least Extra Costs Path ranking algorithms perform signifi-
cantly better than the Random ranking. This is not the case in the small exploratory tests. The
difference can be explained by the size difference of the layouts. The GridSorter4 layout has 3,1
times as many tiles as the small layout. The differences in the remaining path length of involved
AGVs are bigger and thus is the ranking more distinct. Secondly, the distances within the layout
are bigger, so sending away the AGV with the long remaining path has a bigger effect.

The Least Extra Costs Path ranking method seems to perform better than the Longest Remaining
Path method. However, this conclusion cannot be drawn, as the confidence intervals overlap too
much. The two ranking methods perform alike, since resolving AGVs are not hindered a lot by
other AGVs during the first steps of their recovery path. The tiles along the dotted arrows in
Figure 7.5 are almost always empty. This means that a resolving AGV can easily move away
from the deadlock area. The Least Extra Costs Path ranking takes into account the congestion
along the recovery path, but this does not have a very big advantage compared to the Longest
Remaining Path ranking.

Secondly, Figure 7.6 shows the resolving AGV ratio for the GridSorter4 layout. The Least Extra
Costs Path ranking method has the maximum ratio, as expected. Paths are planned during the
creation of the ranking. It is taken into account if an AGV can get a deadlock-free path. The
Longest Remaining Path and Most Used Tile ranking score worst on this performance measure.
Deadlocks often occur around a pick-up point, see Figure 7.5. The resolving AGV appointed by

Eindhoven University of Technology 46

Graduation project report 7 Full-scale simulations

the two rankings is often located at the pick-up point (tile D) and cannot divert. Thus, another
AGV has to be found to resolve the deadlock.

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

Layout: GridSorter4

Figure 7.6: Mean ratio of the resolving AGV actually resolving the deadlock for the GridSorter4
layout based on a set of 30 simulations per ranking method.

BeeHive4
Now the performance of the deadlock recovery algorithm variants is discussed for the simulations
on the hexagonal BeeHive4 layout. The results shown below are based on sets of 45 instead of
30 simulations. The number of simulations per set is increased since the BeeHive4 layout is 40%
bigger than GridSorter4. This has the result that the average throughput fluctuates more between
simulations.

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

1550

1600

1650

1700

1750

1800

1850

1900

1950

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Mean throughput - Layout: BeeHive4

Figure 7.7: Mean throughput during a simulation with the BeeHive4 layout.

The mean throughput of the Most Used Tile ranking is lower than the Random ranking for the
same reason as with the GridSorter4 layout. The resolving AGV following from that ranking does
not drive away from the congested deadlock area. The mean throughput value of the Longest
Remaining Path ranking is a bit surprising at first sight, as it is not significantly better than the
Random ranking. The result can be explained by two observations. The first is that the BeeHive4

Eindhoven University of Technology 47

Graduation project report 7 Full-scale simulations

has twelve pick-ups points. As a result, pick-up points are less congested, so more deadlocks occur
in the middle of the layout. The path length of involved AGVs of deadlocks in the middle of
the layout is less distinct. Thus, a ranking by the Longest Remaining Path method approaches a
randomly generated ranking for deadlocks in the center of the layout. The second observation is
that resolving AGVs in the BeeHive layout cannot drive away from the congested area as easy as
in the GridSorter4 layout. Figure 7.5 shows that the recovery AGV can often immediately drive
a few tiles away from the deadlock in the GridSorter4 layout. On the other hand, an AGV with
a recovery path in the BeeHive4 layout is generally more obstructed, see Figure 7.8.

Since resolving AGVs are hindered by other AGVs, the Least Extra Costs Path ranking performs
the best. The extra costs of a recovery path consist of extra tiles to drive, turn penalties and tile
weights. The latter is a measure of how congested the path is. AGVs that can divert through
a lower congested area are thus preferred by the ranking method. Furthermore, the ranking is
based on the relative extra costs compared to the current path. AGVs with a long current path,
consequently have lower relative extra costs and are thus preferred by the ranking method. In
short, the ranking provides a resolving AGV that wants to get away from the congested area
(long remaining path) and can easily do so (low congestion on the path). This has the result that
congestion is lowered in the area of the deadlock and because of that, the throughput increases.

A

Figure 7.8: Congested recovery path of resolving AGV at tile A in the BeeHive4 layout.

Next, the resolving AGV ratios of the BeeHive4 simulations are shown in Figure 7.9a. The Ran-
dom, Longest Remaining Path and Least Extra Costs Path ranking methods show very similar
ratios to the ratios of the GridSorter4 simulations.

The Most Used Tile ranking has a resolving AGV ratio of about 0.5, where the same ranking
only scored about 0.35 in the GridSorter simulations. This improvement can be explained by the
BeeHive layout, see Figure 7.9b. The Most Used Tile ranking finds the AGV that is on a tile,
over which the most other involved AGVs have to travel. In the example, AGV C and E are on
a drop-off location, that only has one outward segment. Each AGV that needs to travel to the
tiles of AGV C or E, always also needs to go over tiles G and D respectively. Tiles of AGV G
and D will therefore always be visited at least one time more than the tiles of AGV C and E.
Thus, AGV C and E will never end on top of the Most Used tile ranking. The probability that a
resolving AGV cannot divert with the Most Used Tile ranking decreases, and thus improves the
ratio shown in Figure 7.9a.

Eindhoven University of Technology 48

Graduation project report 7 Full-scale simulations

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
 r

e
s
o
lv

in
g
 A

G
V

 r
e
s
o
lv

e
d
 d

e
a
d
lo

c
k
 [
-]

Ratio deadlock resolved by resolving AGV(s) -

Layout: BeeHive4

(a) Ratios

C

D

A
B

E
F

G

(b) Example deadlock in which AGVs without di-
verting option end up lower in the Most Used Tile
ranking.

Figure 7.9: Mean ratio of the resolving AGV actually resolving the deadlock for the BeeHive4
layout based on a set of 45 simulations per ranking method.

Conclusion on throughput
The Least Extra Costs path ranking performs the best in the BeeHive4 layout and shares the
best throughput values with the Longest Remaining Path ranking in the GridSorter4 layout. The
ranking method can be crowned as the best ranking, based on system performance in the tested
layouts. Furthermore, it is important to decrease local congestion around a deadlock as quickly
as possible to obtain the highest throughput. The Least Extra Costs Path ranking is believed to
deal the best with congestion in general, since it is the only ranking that takes into account the
alternative paths. Because of that reason, the ranking is expected to also give the best system
performance in other layouts than GridSorter4 and BeeHive4.

Computation time
A suitable deadlock recovery algorithm should not only yield the highest throughput. The com-
putation time of a recovery action is also an important consideration. The Least Extra Costs
Path ranking method calculates a path for each involved AGV. It is therefore expected that the
deadlock recovery algorithm using this ranking algorithm has the longest computation time. The
Most Used Tile ranking has the worst resolving AGV ratio in the GridSorter4 layout. This means
that often an extra resolving AGV has to be appointed and more paths need to be planned. For
this reason, using the Most Used Tile ranking is thought to be more expensive than using the
Longest Remaining Path. For the same reason, using the Longest Remaining Path ranking is
predicted to take longer than the Most Used Tile ranking in the BeeHive4 layout.

Figure 7.10 shows the average duration of one recovery call for the different ranking methods in
both layouts. The time it takes to recover a deadlock is split into three parts. The 95%-confidence
intervals of the individual parts are omitted for clarity as the size of the intervals is below 5% of
the mean. The ranking part shows the time it takes to create the resolvability ranking. The Assign
path part is the part of the algorithm for which the resolvability ranking is the input. This part of
the algorithm stops when a deadlock is resolved. Path planning for extra resolving AGVs is also
included in the Assign path part. Lastly, there is a small remaining portion of the computation
time that is devoted to logging and general actions.

Figure 7.10 shows that the average duration of one call of the recovery algorithm (data point) is
not equal to the average computation time needed to recover one deadlock (bar). This is the case,
because generally multiple deadlocks are recovered within one deadlock recovery call. On average

Eindhoven University of Technology 49

Graduation project report 7 Full-scale simulations

1.15 deadlocks are recovered per recovery call in the GridSorter4 layout and 1,41 deadlocks per
recovery call in the BeeHive4 layout. Multiplying these factors with the average time needed to
recover one deadlock yields the average duration of one deadlock recovery call.

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

0

0.02

0.04

0.06

0.08

0.1

0.12

D
u

ra
ti
o

n
 r

e
c
o

v
e

ry
 a

lg
o

ri
th

m
 [

s
]

Total recovery

Other

Ranking

Assign path

(a) GridSorter4

Random

Longest re
maining path

Most u
sed til

e

Least e
xtra

 costs path

Resolvability ranking method

0

0.05

0.1

0.15

0.2

0.25

D
u

ra
ti
o

n
 r

e
c
o

v
e

ry
 a

lg
o

ri
th

m
 [

s
]

Total recovery

Other

Ranking

Assign path

(b) BeeHive4

Figure 7.10: The average duration of one recovery call (data points) and the duration of the
recovery of one deadlock (stacked bars). Note the difference in y-axis range.

The time it takes to create the resolvability ranking is negligibly small for the first three ranking
algorithms. However, creating the Least Extra Costs Path ranking is by far the longest action in
a recovery call when this ranking is used. It is as expected that creating the Least Extra Costs
Path ranking takes the longest computation time. Furthermore, the computation time of the As-
sign path part of the recovery algorithm shows large differences between ranking methods. The
expectation that the resolving AGV ratio explains the difference in duration of Assign path is only
partly true.

Two related other values are found, that explain the duration of the Assign path part and thus the
differences. The Assign path part stops when a deadlock-free path is found for an involved AGV.
Thus, the number of recovery paths planned and the time it takes to plan one path determines
the duration of the Assign path part. Table 7.1 shows both values. When using the Least Extra
Costs Path ranking, the first AGV in the resolvability ranking can almost always divert. That is
why only one path needs to be planned in the Assign path part of the algorithm. If the initial
resolving AGV could not get a deadlock-free path, an extra resolving AGV is picked by looking to
the next AGV in the resolvability ranking. In general, the consecutive AGVs in the resolvability
ranking for the Longest Remaining Path and Most Used Tile ranking cannot divert as often as a
random extra resolving AGV. That is why more paths need to be planned for these rankings.

The average duration of one path plan action differs between used ranking methods. This is due
to the used path planning algorithm: A* shortest path search. This path planning algorithm uses
a heuristic to estimate the travel costs between two tiles. The better the heuristic estimates the
real costs, the faster the algorithm is. The heuristic uses the Euclidean distance between the tiles
as an estimate for the costs. The involved AGVs on top of the Longest Remaining Path and Least
Extra Costs Path rankings have relative long paths. This means that the recovery path is likely to
still be in the direction of the destination. In this case, the Euclidean distance is a good estimate
for the cheapest path. However, the AGV on top of the Most Used Tile ranking is often an AGV
that has to travel away from its destination to divert deadlock-free. In these cases, the Euclidean
distance is a worse estimator of the cheapest path compared to a recovery path in the direction

Eindhoven University of Technology 50

Graduation project report 7 Full-scale simulations

of the destination. Thus, it takes longer to find the cheapest deadlock-free path.

Table 7.1: The average number of times a path is planned for an involved AGV before the deadlock
is resolved during Assign path and the duration of one path plan action. Ranking: 1. Random,
2. Longest remaining path, 3. Most used tile, 4. Least extra costs path.

GridSorter4 BeeHive4
Ranking 1 2 3 4 1 2 3 4
Number of paths planned to
resolve one deadlock [-]

1.95 2.27 3.21 1.00 1.73 1.85 1.99 1.01

Average duration to plan
one path [s]

0.014 0.010 0.016 0.010 0.030 0.021 0.029 0.015

Figure 7.10 shows that a recovery call with the Least Extra Costs Path ranking takes approxi-
mately two to four times as long as the other a recovery action with the other ranking methods.
However, no conclusion can be drawn yet whether this computation time is too long. To put the
computation time of the recovery algorithm with the Least Extra Costs Path ranking in perspec-
tive, the computation time of detection and recovery versus deadlock avoidance is compared in
Section 7.3.

7.3 Deadlock avoidance versus detection and recovery

There are multiple ways to deal with deadlocks as described in Section 3.2. Deadlock avoidance
is previously used as the main deadlock handling method. The deadlock avoidance algorithm can
be adjusted to avoid different types of deadlock, from monocycle cycle deadlocks up to inevitable
thee-cycle deadlocks. The most strict deadlock avoidance variant is always used as there was no
deadlock recovery algorithm available. New combinations of deadlock handling techniques can be
formed with the addition of deadlock recovery. The use of a different deadlock handling technique
results in different throughput effects.

To illustrate the differences, assume a set of AGVs encounter each other in a way that a deadlock
is created. Deadlock avoidance prevents the deadlock by letting AGVs wait for a little moment
before a deadlock arises. The additional waiting avoids the deadlock, but can introduce additional
hinder to consecutive AGV. Additional hinder can result in throughput loss compared to a system
without deadlock avoidance. Such hinder is prevented if only deadlock detection and recovery
is used. In theory, the throughput can increase if only deadlock detection and recovery is used.
However, letting deadlocks happen, creates a period in which involved AGVs are standing still.
In the period between deadlock creation and recovery, none of the involved AGVs is moving. This
waiting has a negative influence on the throughput. The use of deadlock recovery can thus improve
and deteriorate throughput compared to using deadlock avoidance. Therefore, the performance of
three different combinations of deadlock handling techniques is compared in this section.

Three deadlock handling variants are compared. Deadlock detection and recovery is combined
with: no deadlock avoidance, monocycle avoidance and three-cycle avoidance (referred to as
multicycle avoidance). The goal is to analyse the effect of the deadlock handling technique on
throughput and computation time for increasing density and varying the deadlock detection inter-
val. Deadlock recovery performs the best with the shortest deadlock detection interval. Vis [14]
expected nonetheless that only using deadlock detection and recovery as deadlock handling tech-
nique gives the worst system performance. The simulations should also conclude if the computa-
tionally expensive Least Extra Costs Path ranking can be used. Deadlock avoidance is a relative
cheap action, but is executed before every tile reservation. Recovering a deadlock is very expensive
compared to one deadlock avoidance action, however it happens not that often. The contrast make
it hard to predict which deadlock handling technique is overall computationally less expensive.

Eindhoven University of Technology 51

Graduation project report 7 Full-scale simulations

Simulations are completed for a range of densities. Besides grid density, the deadlock detection
interval is also varied between 5, 15 and 60 seconds. It is expected that throughput is lower if the
deadlock detection interval is bigger because deadlocks are not resolved as quickly. The layout
used for the comparison is GridSorter5, see Figure 7.11. The GridSorter5 layout is identical to
GridSorter4 apart from four additional pick-up points. Pick-up points are added in GridSorter5 to
make sure the bottleneck for throughput is the interaction between AGVs, not the pick-up points.

Figure 7.11: GridSorter5 layout used for comparison of deadlock handling methods.

Figures 7.12, 7.14 and 7.15 show the two main performance indicators of the three deadlock han-
dling combinations: average throughput and cumulative computation time.

Only deadlock detection and recovery
The results when only deadlock detection and recovery is used, are shown in Figure 7.12.

10 15 20 25 30 35 40

Density [%]

400

600

800

1000

1200

1400

1600

1800

2000

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

5s

15s

60s

(a) Mean throughput

10 15 20 25 30 35 40

Density [%]

0

5

10

15

20

25

30

C
u

m
m

u
la

ti
v
e

 d
u

ra
ti
o

n
 a

lg
o

ri
th

m
 [

s
]

Avoid, 5s

Detect and Recover, 5s

Avoid, 15s

Detect and Recover, 15s

Avoid, 60s

Detect and Recover, 60s

(b) Computation time

Figure 7.12: Performance of the system with deadlock recovery as the only deadlock handling
method for three different deadlock detection intervals.

First, Figure 7.12a shows that throughput first increases for increasing density, as AGVs do almost

Eindhoven University of Technology 52

Graduation project report 7 Full-scale simulations

not hinder each other. Starting from approximately 12,5% density the first hinder and deadlocks
occur. Figure 7.13 shows the number of deadlocks during a simulation to confirm this. The
throughput changes for different deadlock detection intervals, starting as the first deadlocks occur
with a density of 12,5% density. The quicker deadlocks are detected, the fewer AGVs are standing
still and the higher the throughput. Not only the involved AGVs are standing still longer if
deadlocks are detected relatively late (detection interval of 60 seconds), but there will also be
more connected AGVs. This increases congestion in the area of the deadlock, which has a negative
influence on the throughput, even after the deadlock is resolved.

10 15 20 25 30 35 40

Density [%]

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

d
e

a
d

lo
c
k
s
 [

-]

Only recovery

Monocycle avoidance + recovery

Multicycle avoidance + recovery

Figure 7.13: The average number of deadlocks during a simulation for the three different deadlock
handling combinations with a deadlock detection interval of five seconds.

Secondly, Figure 7.12b shows the cumulative computation time during a simulation of, on one hand,
deadlock avoidance, and on the other hand deadlock detection plus recovery. The computation
time of deadlock avoidance is not zero, despite deadlock avoidance is disabled. The computation
time is not zero, since the avoidance algorithm is still called. But, it just gives the prediction that
no deadlock will occur. One avoidance step takes as little as about 50 microseconds, but happens
around 40.000 times per simulation. This creates a cumulative computation time of a couple of sec-
onds. The total computation time of deadlock detection and recovery relates mostly to the number
of deadlocks that occur and thus the number of recovery actions. The cumulative computation
time of deadlock detection is only about 1.5 seconds, for a deadlock detection interval of five sec-
onds and a density of 40%. The number of deadlocks increases as the detection interval decreases.
Deadlocks are more quickly resolved, thus the involved AGVs can earlier introduce new deadlocks.

Deadlock detection and recovery plus monocycle deadlock avoidance
Figure 7.14 shows the performance indicators of simulations in which monocycle deadlock avoid-
ance is combined with deadlock detection and recovery. The number of deadlocks decreases a lot
with enabled deadlock avoidance, see Figure 7.13. This explains why the influence of the deadlock
detection interval on throughput in Figure 7.14a is very small.

The low average number of deadlocks also explains why the computation time of deadlock detec-
tion and recovery in Figure 7.14b is low. The cumulative computation time of deadlock avoidance
steadily increases for increasing density, since more AGVs mean more deadlock avoidance actions.
The computation time of deadlock avoidance for 30% and 40% density stands out. The compu-
tation time of deadlock avoidance, in combination with a 60-second detection interval, jumps up.
For these densities, the first deadlocks start to emerge. These deadlocks are multicycle deadlocks.
Deadlock avoidance is only called if there is an empty tile in front of the considered AGV.

Eindhoven University of Technology 53

Graduation project report 7 Full-scale simulations

10 15 20 25 30 35 40

Density [%]

400

600

800

1000

1200

1400

1600

1800

2000

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

5s

15s

60s

(a) Mean throughput

10 15 20 25 30 35 40

Density [%]

0

5

10

15

20

25

30

C
u

m
m

u
la

ti
v
e

 d
u

ra
ti
o

n
 a

lg
o

ri
th

m
 [

s
]

Avoid, 5s

Detect and Recover, 5s

Avoid, 15s

Detect and Recover, 15s

Avoid, 60s

Detect and Recover, 60s

(b) Computation time

Figure 7.14: Performance of the system with deadlock recovery in combination with monocycle
deadlock avoidance as deadlock handling methods for three different deadlock detection intervals.

Multicycle deadlocks include an empty tile, and thus deadlock avoidance is called for some AGVs
that are involved in a deadlock. The avoidance algorithm is only terminated when all involved
AGVs are checked. It takes quite long until a deadlock is resolved with a detection interval of 60
seconds. Thus, deadlock avoidance is called often for involved AGVs that are stuck in a deadlock.
This significantly increases the duration of a deadlock avoidance call.

Deadlock detection and recovery plus multicycle deadlock avoidance
The strictest deadlock avoidance algorithm is multicycle avoidance. The use of multicycle avoid-
ance in combination with deadlock detection and recovery shows comparable throughput results
as monocycle avoidance, see 7.15a. This can be explained by the number of deadlocks during
simulation. The cumulative computation time of the deadlock handling methods also shows the
same trend in Figure 7.15b. However, the avoidance algorithm is more complex, so the cumulative
computation time for deadlock avoidance shows a steeper increase.

10 15 20 25 30 35 40

Density [%]

400

600

800

1000

1200

1400

1600

1800

2000

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

5s

15s

60s

(a) Mean throughput

10 15 20 25 30 35 40

Density [%]

0

5

10

15

20

25

30

C
u

m
m

u
la

ti
v
e

 d
u

ra
ti
o

n
 a

lg
o

ri
th

m
 [

s
]

Avoid, 5s

Detect and Recover, 5s

Avoid, 15s

Detect and Recover, 15s

Avoid, 60s

Detect and Recover, 60s

(b) Computation time

Figure 7.15: Performance of the system with deadlock recovery in combination with multicycle
deadlock avoidance as deadlock handling methods for three different deadlock detection intervals.

Eindhoven University of Technology 54

Graduation project report 7 Full-scale simulations

Combined results
The throughput and cumulative computation time of the three deadlock handling methods are
combined in Figure 7.16 to easily compare the results. The figure shows the results for a deadlock
detection interval of five seconds, as this setting gave the best results when deadlock avoidance is
turned off.

10 15 20 25 30 35 40

Density [%]

1000

1200

1400

1600

1800

2000

M
e

a
n

 t
h

ro
u

g
h

p
u

t
[c

o
m

p
le

te
d

 j
o

b
s
 /

 h
r]

Only recovery

Monocycle avoidance + recovery

Multicycle avoidance + recovery

(a) Mean throughput

10 15 20 25 30 35 40

Density [%]

0

5

10

15

20

25

30

C
u

m
m

u
la

ti
v
e

 d
u

ra
ti
o

n
 a

lg
o

ri
th

m
s
 [

s
] Only recovery

Monocycle avoidance + recovery

Multicycle avoidance + recovery

(b) Mean cumulative computation time of all dead-
lock handling algorithms (avoidance + detection +
recovery)

Figure 7.16: Comparison of the performance of the system between the three deadlock handling
variants for a five second deadlock detection interval.

Surprisingly, the throughput, when only deadlock recovery is used, comes very close to the through-
put when using deadlock avoidance. Noteworthy, there is no significant throughput difference
around the peak of 17.5% grid density. However, for densities starting from 25% the claim of
Vis [14] seems true that deadlock handling including deadlock avoidance performs a bit better
than pure deadlock detection and recovery. On the other hand, pure deadlock detection and
recovery with the Least Extra Costs Path ranking is significantly computationally less expensive
than deadlock avoidance. The most interesting range of densities is around the maximum through-
put. In this density range, pure deadlock detection and recovery takes approximately four times
less time than monocycle avoidance in combination with detection and recovery. The benefit of
pure deadlock detection and recovery can even be increased, if the avoidance algorithm is not
uselessly called if deadlock avoidance is turned off.

In general, the use of deadlock detection and recovery in combination with or without deadlock
avoidance can result in almost the same behaviour. One precondition is that deadlocks are quickly
detected. As stated at the beginning of this section, disabling deadlock avoidance potentially in-
creases throughput. Figure 7.16 shows that disabling deadlock avoidance nevertheless does not
clearly increase throughput. This result is explained by the number of deadlocks that occur. Fig-
ure 7.13 shows that about fifty deadlocks occur if deadlock avoidance is disabled. This means
that in simulations with deadlock avoidance, only fifty tile reservations are prohibited by deadlock
avoidance. Fifty tile reservations are only ± 0.1% of all reservations. Thus, the possible through-
put gain of disabling deadlock avoidance is very small. The small throughput gain by disabling
avoidance is cancelled by the extra waiting time to detect a deadlock.

However, only using deadlock detection and recovery can in theory perform better deadlock han-
dling that includes deadlock avoidance. An avoidance action is almost the same as a deadlock
detection action. Deadlock avoidance detects a deadlock just before it occurs. Deadlock detection

Eindhoven University of Technology 55

Graduation project report 7 Full-scale simulations

detects a deadlock just after a deadlock occurred. Assume the deadlock detection interval is very
small and deadlocks are detected very quickly. Then, the waiting time for involved AGVs between
deadlock occurrence and recovery is negligibly small. The only difference between deadlock avoid-
ance and deadlock recovery that is left is path planning. An AGV has to wait if a deadlock is
avoided, but its path remains the same. But, the path of an involved AGV changes if a deadlock is
recovered. Deadlock recovery can force that an AGV gets a recovery path that is beneficial for the
throughput. A recovery path might lead an AGV through a less congested area if, for instance, by
default the shortest path is chosen. The less congested path is not chosen if the deadlock is avoided,
since deadlock avoidance does not change paths. So, deadlock recovery can improve throughput
compared to using deadlock avoidance. On the other hand, throughput will suffer from planning
a recovery path if the paths of AGVs are generally close to the optimal path. In the Grid-Based
Controls model, periodic rerouting happens based on a dynamic path planning algorithm. So, the
paths of AGVs are expected to be close to their optimal path in the Grid-Based Control model.
It is therefore unlikely that disabling deadlock avoidance yields a throughput increase.

To conclude, using short deadlock detection intervals is crucial to minimise throughput loss due
to deadlocks. Only using deadlock detection and recovery as a deadlock handling technique can
equal the throughput performance of deadlock handling in combination with deadlock avoidance.
However, it is unlikely that throughput can be improved by disabling deadlock avoidance. Using
the simplest deadlock avoidance algorithm, instead of the most expensive, is sufficient with the
addition of deadlock recovery. Only using deadlock detection and recovery as a deadlock handling
technique is the best choice if layouts are insensitive to deadlocks or computation time needs to
be trimmed.

7.4 Reachability

Section 5.4 discusses edge cases of the deadlock recovery algorithm. The edge cases prevent AGVs
from reaching their destination, either because a deadlock could not be recovered, an infinite re-
covery loop happens or a livelock occurs. During none of the extensive simulations used for this
chapter, a deadlock could not be recovered or an infinite recovery loop occurred. The typical
layouts and density used by Vanderlande make it unlikely that these edge cases occur. To get a
feeling if the above edge cases do occur at all, a stress test is performed with the small layout of
the exploratory simulations.

(a) Layout used for stress tests with only two empty
tiles (97% density)

(b) Histogram of number of recovery iterations per
recovery call before system is deadlock-free

Figure 7.17: Stress test to test edge cases.

Eindhoven University of Technology 56

Graduation project report 7 Full-scale simulations

In the layout only two tiles are not filled with an AGV, creating a density of 97%, see Figure
7.17a. The test is done using the Random resolvability ranking. The simulation duration was 24
hours. At the end of the simulation, all deadlocks could be recovered. Each AGV did between
6 and 12 drop-offs during the 24 hour simulation period. This gives confidence that a livelock
did not occur. The fact that no deadlock recovery loop occurred can be seen in Figure 7.17b. It
shows the number of deadlocks that needed to be recovered before the system was deadlock-free.
The recovery of by far the most deadlocks did not result in new deadlock, even with the density
of 97%. The maximum number of iterations needed within one deadlock recovery to make the
system deadlock-free call is 21.

The results of this section indicate that there are no reachability issues with the implemented
deadlock recovery algorithm. Apart from reachability, this chapter discusses the result of full-
scale simulations of some variants of the deadlock recovery algorithm. The goal of the full-scale
simulations is to appoint the best performing deadlock recovery algorithm variant. Section 7.2
shows that the Least Extra Costs Path ranking performs the best. Assigning a resolving AGV
based on this ranking lowers the congestion the most, which gives the highest throughput. The
throughput performance of this ranking comes at the cost of the highest computation time. How-
ever, Section 7.3 shows that computation time of deadlock handling can be lowered compared
to using deadlock avoidance, despite using the most expensive deadlock recovery method. Fur-
thermore, the throughput, when handling deadlocks without deadlock avoidance, can equal the
throughput of deadlock handling including deadlock avoidance. Next to the conclusion on the
full-scale simulations, the overall conclusion of the project is given in the following Chapter 8.

Eindhoven University of Technology 57

Graduation project report 8 Conclusion

8 Conclusion

The development of a deadlock recovery algorithm for grid-based AGV systems is presented in
this report. Such an algorithm is needed as the current deadlock handling technique cannot avoid
all deadlocks. A lot of research is done on deadlock prevention and avoidance, however, deadlock
recovery for physical systems is an underexposed research area. Literature shows that a deadlock
in an AGV system can only be recovered by breaking the circular wait condition of a deadlock.
The path of at least one involved AGV needs to be changed to do so. Dedicated deadlock infras-
tructure, like buffers, can be used to make sure an AGV can always divert directly. However, such
dedicated infrastructure is not chosen because of the use of space. Instead, it is shown under which
conditions all deadlocks can be recovered without the use of dedicated deadlock infrastructure. To
do so, an algorithm is presented including system requirements that let AGVs always reach their
destination.

The actual implemented and tested deadlock recovery algorithm in the used Grid-Based Controls
model is different. The implemented algorithm is based on a modular framework in which each
sub-algorithm can be adjusted without influencing the consecutive calculations. The framework
is established after identifying the necessary recovery steps. The recovery steps are found by
analysing the formation of deadlocks in a range of settings and layouts. The four main parts of
the framework are: creating a resolvability ranking of involved AGVs, appointing AGV(s) as re-
solving AGV(s), planning a recovery path and, finally, finding an extra resolving AGV if the initial
resolving AGV(s) could not resolve the deadlock. In the first main part, a resolvability ranking
is created. The ranking is based on which AGV is expected to be the most suitable resolving
AGV. Multiple ranking methods are tested. It is shown that algorithm variants that lower conges-
tion around a deadlock the most, result in the highest system throughput. Of all tested ranking
algorithms, the Least Extra Costs Path ranking is crowned as the best ranking. To create this
ranking, the recovery paths are computed for each involved AGV. Based on the expected recovery
path, the relative extra costs of the recovery path compared to the current path is calculated.
The AGV with the least extra costs ends on top of the resolvability ranking. The additional costs
are partially based on the expected congestion on the recovery path. Next to that, the additional
costs of a recovery path tend to be low for AGVs with a long remaining path. Thus, the resulting
ranking generally provides a resolving AGV that wants to get away from the congested area (long
remaining path) and can easily do so (low congestion on the path). It is found that calculating
a path for each involved AGV, to construct the resolvability ranking, is relative computationally
expensive. The other tested ranking algorithms only use already available system information.
The result is that a recovery action with the Least Extra Costs Path ranking can be four times as
expensive as using other tested rankings.

Secondly, resolving AGVs are appointed based on the resolvability ranking. The AGVs at the top
of the ranking are selected to be given a recovery path. It can be concluded that increasing the
number of resolving AGVs is generally not useful. It is only useful if a path planner is used with
dynamic costs and no or very infrequent rerouting happens. In these cases, a path with lower
costs might be found by the forced reroute action of deadlock recovery. The current standard
path planning algorithm is used to plan recovery paths. No new path planner is developed to keep
code maintenance easy. Next, an extra resolving AGV needs to be found if the initially appointed
resolving AGV could not resolve the deadlock. A method based on the path of the initial resolv-
ing AGV and a method based on the resolvability ranking are compared. The two methods did
not show significant differences in system throughput. Thus, the simplest method based on the
resolvability ranking is chosen in the final deadlock recovery algorithm.

To make sure the system is deadlock-free at the end of the deadlock recovery algorithm, prohibited
segments are applied. Prohibited segments receive a high weight during path planning, by which
a different path is forced. The application of prohibited segments creates a depth-first search over
AGVs in the system to find a deadlock-free solution. The deadlock recovery algorithm introduces

Eindhoven University of Technology 59

Graduation project report 8 Conclusion

three possible edge cases in which AGV cannot reach their destination. But, the layouts used
within Vanderlande are very insusceptible to these edge cases.

With the implementation of the final deadlock recovery algorithm two deadlock handling tech-
niques can be used: deadlock avoidance and, deadlock detection and recovery. The performance
of different deadlock handling combinations is compared. It is shown that the system throughput
is greatly dependent on the length of the deadlock detection interval, when only deadlock detection
and recovery is used. Only using deadlock detection and recovery as a deadlock handling tech-
nique can equal the throughput of using deadlock handling with deadlock avoidance. However, it
is unlikely that throughput can be improved by disabling deadlock avoidance. A benefit of the
added recovery algorithm is the significant decrease in computation time for deadlock handling.
Simulations show that deadlock avoidance can be scaled down to the least expensive variant. Only
using deadlock detection and recovery as a deadlock handling technique is the best choice if layouts
are insensitive to deadlocks or computation time needs to be trimmed.

In conclusion, by using the developed deadlock recovery algorithm it can be guaranteed that the
system becomes deadlock-free. Using the algorithm does not only prevent the system from stalling
in case of a deadlock, but can also reduce the overall computation time of deadlock handling.

8.1 Recommendations

It is shown that lowering congestion in deadlock areas increases the throughput of a system. The
effect indicates that throughput can be increased if general congestion control methods are im-
proved. Methods that predict congestion during path execution could be developed for traffic
control. Jobs assignment can also be improved to prevent congestion around pick-up points.

During this project a deadlock recovery algorithm is developed and implemented in the existing
Grid-Based Controls model of Vanderlande. A balance is found between, on one side, ease of im-
plementation and maintainability of the algorithm and, on the other side, being able to guarantee
deadlocks can be recovered and no livelocks occur. By the current implementation, no absolute
guarantee can be given on deadlock recoverability and the prevention of livelocks. It is not believed
that this problematic behaviour will occur, given the controls and typical layouts currently used
within Vanderlande. However, if some deadlocks cannot be resolved, path planning can be ad-
justed to guarantee all deadlocks are recovered. The needed changes are described in Section 5.4.
And, further research can be put into preventing livelocks if they do occur after all. For instance,
by introducing randomness in the deadlock recovery algorithm.

Furthermore, all AGV control algorithms are geared towards preventing and avoiding deadlocks,
since no deadlock recovery algorithm was in place. Now a deadlock recovery algorithm is im-
plemented, the costs of experiencing a deadlock are lowered dramatically. Therefore, an analysis
can be done to see which current AGV controls can be improved. As an example, the deadlock
avoidance action can be executed in parallel to speed up the computations. Currently, the tile
reservations of all AGVs are checked sequentially. An extra tile reservation is allowed if the reser-
vation is not expected to lead to a deadlock. The tile reservations are updated after each AGV is
checked, to be able to accurately predict a deadlock. The avoidance check could be performed in
parallel for each AGV, after which the tile reservations are updated once. This can speed up the
calculations, at the risk of introducing deadlocks.

Lastly, a short deadlock detection interval is important to achieve the best throughput. Deadlock
detection currently happens at fixed intervals during which all AGVs are checked. However, ways
could be found to shorten the deadlock detection interval without increasing the computation
time. Generally, a lot of AGVs are simply making progress when deadlock detection is run. An
improvement could be that deadlock detection is only performed for AGVs that did not reserve a
new tile within a certain period, which could be a clue that an AGV is involved in a deadlock.

Eindhoven University of Technology 60

Graduation project report References

References

[1] K. Fransen, J. van Eekelen, A. Pogromsky, M. Boon, and I. Adan, “A dynamic path plan-
ning approach for dense, large, grid-based automated guided vehicle systems,” Computers &
Operations Research, vol. 123, p. 105046, 2020.

[2] Vanderlande.com, “About Vanderlande,” 2021, accessed on 2021-12-06, https://www.
vanderlande.com/about-vanderlande.

[3] ——, “Parcel,” 2021, accessed on 2021-12-06, https://www.vanderlande.com/parcel.

[4] M. v. Weert, “Deadlock avoidance and detection for the grid-based AGV-sorter system,”
Master’s thesis, Eindhoven University of Technology, Aug. 2019, https://research.tue.nl/nl/
studentTheses/deadlock-avoidance-and-detection-for-the-grid-based-agv-sorter-sy.

[5] Addverb, “Zippy — sorting robot for intelligent sortation from Addverb,” 2020,
accessed on 2021-12-06, https://www.youtube.com/watch?v=gDe-ErKLoks&ab channel=
AddverbTechnologies.

[6] G. Bartelet, “How autonomous vehicles can add value to the baggage handling process at
airports,” Vanderlande, Whitepaper, Apr. 2020.

[7] E. van Meijl, “FLEET bag value case analysis,” Vanderlande, Presentation, Jan. 2020.

[8] BastianSolutions, “Optimize storage space with this easy-to-expand, automated goods-to-
person shuttle system,” 2019, accessed on 2021-12-06, https://www.bastiansolutions.com/
solutions/technology/goods-to-person/vanderlande-adapto-shuttle-system/.

[9] R. Curley, “Robots to aid passengers checking in luggage at Dallas fort worth,” july
2019, accessed on 2021-12-06, https://www.businesstraveller.com/business-travel/2019/07/
14/robots-to-aid-passengers-checking-in-luggage-at-dallas-fort-worth.

[10] J. van Eekelen, “AgvSorter model,” Vanderlande, 2021, accessed on 2022-01-03, https://
devcolla.vanderlande.com/display/SIMTOOLS/AgvSorter+model.

[11] K. J. C. Fransen, “A path planning approach for AGVs in the dense grid-based agv-
sorter,” Master’s thesis, Eindhoven University of Technology, 2019, https://pure.tue.nl/ws/
portalfiles/portal/138900912/Graduation Report Karlijn Fransen 20190721.pdf.

[12] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM Computing Surveys
(CSUR), vol. 3, no. 2, pp. 67–78, 1971.

[13] Z. W. Li, N. Q. Wu, and M. Zhou, “Deadlock control of automated manufacturing systems
based on petri nets — a literature review,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), vol. 42, no. 4, pp. 437–462, 2011.

[14] I. F. Vis, “Survey of research in the design and control of automated guided vehicle systems,”
European Journal of Operational Research, vol. 170, no. 3, pp. 677–709, 2006.

[15] R. L. Moorthy, W. Hock-Guan, N. Wing-Cheong, and T. Chung-Piaw, “Cyclic deadlock
prediction and avoidance for zone-controlled agv system,” International Journal of Production
Economics, vol. 83, no. 3, pp. 309–324, 2003.

[16] N. Viswanadham, Y. Narahari, and T. L. Johnson, “Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using petri net models,” IEEE Transactions
on Robotics & Automation Magazine, vol. 6, no. 6, pp. 713–723, 1990.

[17] Y. T. Leung and G.-J. Sheen, “Resolving deadlocks in flexible manufacturing cells,” Journal
of manufacturing systems, vol. 12, no. 4, pp. 291–304, 1993.

Eindhoven University of Technology 61

https://www.vanderlande.com/about-vanderlande
https://www.vanderlande.com/about-vanderlande
https://www.vanderlande.com/parcel
https://research.tue.nl/nl/studentTheses/deadlock-avoidance-and-detection-for-the-grid-based-agv-sorter-sy
https://research.tue.nl/nl/studentTheses/deadlock-avoidance-and-detection-for-the-grid-based-agv-sorter-sy
https://www.youtube.com/watch?v=gDe-ErKLoks&ab_channel=AddverbTechnologies
https://www.youtube.com/watch?v=gDe-ErKLoks&ab_channel=AddverbTechnologies
https://www.bastiansolutions.com/solutions/technology/goods-to-person/vanderlande-adapto-shuttle-system/
https://www.bastiansolutions.com/solutions/technology/goods-to-person/vanderlande-adapto-shuttle-system/
https://www.businesstraveller.com/business-travel/2019/07/14/robots-to-aid-passengers-checking-in-luggage-at-dallas-fort-worth
https://www.businesstraveller.com/business-travel/2019/07/14/robots-to-aid-passengers-checking-in-luggage-at-dallas-fort-worth
https://devcolla.vanderlande.com/display/SIMTOOLS/AgvSorter+model
https://devcolla.vanderlande.com/display/SIMTOOLS/AgvSorter+model
https://pure.tue.nl/ws/portalfiles/portal/138900912/Graduation_Report_Karlijn_Fransen_20190721.pdf
https://pure.tue.nl/ws/portalfiles/portal/138900912/Graduation_Report_Karlijn_Fransen_20190721.pdf

Graduation project report References

[18] R. A. Wysk, N.-S. Yang, and S. Joshi, “Resolution of deadlocks in flexible manufacturing
systems: avoidance and recovery approaches,” Journal of manufacturing systems, vol. 13,
no. 2, pp. 128–138, 1994.

[19] H. Cho, T. Kumaran, and R. A. Wysk, “Graph-theoretic deadlock detection and resolution
for flexible manufacturing systems,” IEEE Transactions on Robotics and Automation, vol. 11,
no. 3, pp. 413–421, 1995.

[20] M. Fanti, “Digraph-theoretic approach for deadlock detection and recovery in flexible pro-
duction systems,” Stud. Inf. Control, vol. 5, no. 4, pp. 373–383, 1996.

[21] W. Yeh, “Real-time deadlock detection and recovery for automated manufacturing systems,”
The International Journal of Advanced Manufacturing Technology, vol. 20, no. 10, pp. 780–
786, 2002.

[22] A. Lankes, T. Wild, A. Herkersdorf, S. Sonntag, and H. Reinig, “Comparison of deadlock
recovery and avoidance mechanisms to approach message dependent deadlocks in on-chip net-
works,” in 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip. IEEE,
2010, pp. 17–24.

[23] M. Lehmann, M. Grunow, and H.-O. Günther, “Deadlock handling for real-time control
of agvs at automated container terminals,” in Container Terminals and Cargo Systems.
Springer, 2007, pp. 215–241.

[24] N. Wu and M. Zhou, “Resource-oriented petri net for deadlock resolution in automated
manufacturing systems with robots,” in 2006 IEEE International Conference on Systems,
Man and Cybernetics, vol. 1. IEEE, 2006, pp. 74–79.

[25] Q. Zhou and B.-H. Zhou, “A deadlock recovery strategy for unified automated material
handling systems in 300 mm wafer fabrications,” Computers in Industry, vol. 75, pp. 1–12,
2016.

[26] K. Im, K. Kim, Y. Moon, T. Park, and S. Lee, “The deadlock detection and resolution method
for a unified transport system,” International journal of production research, vol. 48, no. 15,
pp. 4423–4435, 2010.

Eindhoven University of Technology 62

	Introduction
	AGV systems within Vanderlande
	AGVs within Vanderlande
	Grid-Based Controls model

	Deadlock characterization
	Deadlock conditions
	Deadlock handling
	Deadlock types

	Deadlock recoverability
	Deadlock recoverability in a layout with cycles
	Deadlock recoverability in a layout with non-cycles

	Recovery algorithm
	Literature
	Algorithm structure
	Prohibited segments
	Reachability guarantee
	Resolvability ranking
	Number of resolving AGVs
	Extra resolving AGV

	Exploratory simulations
	Performance measure
	Simulation set-up
	Implementation flaws
	Ranking and extra resolving AGV methods
	Number of resolving AGVs
	Detection interval
	Computation time
	Conclusion exploratory results

	Full-scale simulations
	Simulation set-up
	Results
	Deadlock avoidance versus detection and recovery
	Reachability

	Conclusion
	Recommendations

	References

