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Tracking Control of an Underactuated Ship

Erjen Lefeber, Kristin Ytterstad Pettersen, and Henk Nijmgkeflow, IEEE

Abstract—n this paper, we address the tracking problem for
an underactuated ship using two controls, namely surge force and
yaw moment. A simple state-feedback control law is developed and
proved to render the tracking error dynamics globally KC-expo-
nentially stable. Experimental results are presented where the con-
troller isimplemented on a scale model of an offshore supply vessel.

Index Terms—Cascade control, marine vehicle control, non-
linear systems, tracking.

I. INTRODUCTION w (heave)

N THIS paper, we study the underactuated tracking control p

of a ship. For a conventional ship it is common to consider

the motion in surge (forward), sway (sideways), andyaw Fig. 1. Definition of state variables in surge, sway, heave, roll, pitch, and yaw
. . for a marine vessel.

(heading), see Fig. 1. Often, we have surge and sway controf*
forces and yaw control moment available for steering the o
ship. However, this assumption is not valid for all ships. Fo¥hereu, v, andr are the velocities in surge, sway, and yaw,
instance, some ships are either equipped with two independé&iPectively, and;, y, ¢» denote the position and orientation of
aft thrusters or with one main aft thruster and a rudder, bt{e ship in the earth-fixed frame. The parametegs > 0 are
are without any bow or side thrusters, like, for instance, mal%')/e” by the ship inertia and added mass effects. The parameters
supply vessels. As a result, we have no sway control force.qr > 0 are given by the hydrodynamic damping. The available
this paper, we consider tracking control for ships having onfPntrols are the surge fores, and the yaw moments,.
surge control force and yaw control moment available. Since The ship model (1) is neither static feedback linearizable, nor
we need to control three degrees of freedom and have only t6@)? it b€ transformed into chained form. It was shown in [2] that
inputs available, we are dealing with an underactuated proble. continuous or discontinuous static state-feedback law exists

Since we seek to control the ship motionin the horizontal plaréflich makes the origin asymptotically stable. The stabilization
we neglectthe dynamics associated with the motion in heave, rBfioblem for an underactuated ship has been studied in [2]-[6].
and pitchwhen modeling the ship. Moreover, asafirststeptowardTraCk'”g control of ships has mainly been based on linear
finding a solution to the underactuated tracking control problefi1odels, giving local results, and steering only two degrees
we do notinclude the environmental forces due towind, currenfd, freedom. In [7] and [8] output-tracking control based on
and waves in the model. Furthermore, we assume that the inefi@flinear ship models has been investigated. Using feedback
added mass and damping matrices are diagonal. In this case!ififgrization and Lyapunov theory, respectively, tracking con-

ship dynamics can be described by (see, e.g., [1]): trollers were _developed that stabilize_d_ the dgsired_ trajectories.
The trajectories were, however, position trajectories, and the
_ M2 d1y u+ 1 uy yaw angle was not controlled. N _
mi1 mi1 mi1 In the case where only the position variables are controlled,
miy doo the ship may turn around such that the desired position trajectory
v= T e ur — M v is followed backward. That is why we focus on state-tracking

instead of output-tracking.

F=— P — — g —— The first complete state-tracking controller based on a non-
ms33 mss mss linear model was developed in [5] and yields global practical
& =wucost —vsiny stability. Another result yielding global practical stability can be

found in [9]. In [10] semi-global asymptotic stability has been
- achieved by means of backstepping, inspired by the results of
Y=r @) [11]. We are not aware of any global tracking results for the
tracking control of an underactuated ship in literature.
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problem formulation. In Section 1V, a full state feedback contrdhn answer to that question can also be found in [12]. For this
law is developed and proven to globally asymptotically stabilizeaper, a corollary suffices.
the tracking-error dynamics. Section V contains experimentalCorollary 1 (cf. [15]): Assume that both (4) and (5) are

results and some conclusions are given in Section VI. globally K-exponentially stable and that continuous functions
k1: Ry — R andks: Ry — R exist such that
Il PRELIMINARIES lg(t, 21, 22)[| < Fa(llw2l) + Ba(llz=l) |zl (6)
In this section, we recall some results that we need in thﬁ‘]en the cascaded system (3) is globallyexponentially
paper. stable.

For basic stability concepts, the reader is referred to [13, Sec third ingredient we need for this paper is a result from linear
3.4]. A slightly weaker notion than global exponential stabilitgy stems theory. For basic concepts, the reader is referred to [16].

is the following. The result we need in this paper is a corollary of [17, Th. 2].
Definition 1 (cf. [14]): We call the system Corollary 2: Consider the time-varying linear system

with z € R™ and f (¢, ) piecewise continuous ihand locally where A(¢) is continuous A(0) = 0, ¢: R — R continuous.
Lipschitz inz, globally KC-exponentially stablé there exist a Assume that for alk # 0 the pair(A(s), B) is controllable. If

v > 0 and a clas¥ function«(-) such that ¢(t) is bounded, Lipschitz in, and constants. > 0 ande > 0
Il < s(lla(to)l) expl=y(t = to)] exist such that

. . . Vt>0,3s:t—6.<s<t such thafep(s)| > €
Consider a systerh = f(¢, ) that can be written as _ )
then the system (7) is uniformly completely controllable.

i1 = fi(t, 1) + g(t, 21, T2)T2 (3a) The condition imposed o (t) in Corollary 2 plays an im-
&g = folt, x2) (3b) portant role, not only in this paper, but also in identification and
adaptive control systems. It is known as the “persistence of ex-
citation condition.”
Definition 2: A continuous function: R;. — R is said to
be persistently excitingf all of the following conditions hold:
* constantk’ > 0 exists such thatp(t)| < K forall ¢t > 0;
* constantZ > 0 exists such thap(t) — ¢(t')| < L|t — ¢/|
1 = f1(t, z1). forallt, ¢’ > 0;
» constant®$,. > 0 ande > 0 exist such that

Vt>0,3s:t—6.<s<t suchthaip(s)| > e.

wherezr; € R", 2 € R™, fi(t, z1) is continuously differen-
tiable in (¢, z1) and fo(t, x2), g(t, 21, z2) are continuous in
their arguments, and locally Lipschitz i, and (z1, z2) re-
spectively.

Notice that ifzo = 0 (3a) reduces to

Therefore, we can view (3a) as the system

Yo dy = fi(t, o) 4) . . y . .
_ Remark 1: Notice that the third condition og(t) in Defi-
that is perturbed by the output of the system nition 2 can be interpreted as follows: assume that we plot the
So: @g = folt, 22). (5) graph of|¢(¢)| and look at this plot through a window of width

_ 6. > 0. Then, no matter where we put this window on the graph,
Assume that the systems and., are asymptotically stable, jways a time instant exists where(s)| is at least > 0.
then for (4) we know thalim; .., z1(t) = 0 and for (5) we

x2(t) tends to zero. In that case, the dynamics (3a) reduces to ) )
the dynamics (4). It seems plausible also, that, therefore, (3af-Onsider the system (1). Assume that a feasible reference

, o TS
and as a result the cascaded system (3) become asymptotidgFCLOry(ur, vr, Ty Try Yry Wry U,y ua, )" IS given, i.e., a

stable. trajectory satisfying
Unfortunately, this is not true in general as can be seen from =22 dy w, + 1 sy
the system "omygr T my T om0
i’l =—x1 + :L‘%:L'Q I1(0)$2(0) > 2 i]r — _mll UpTy — d22 vy
. ma2 22
T2 =T 7>0 M1 — Mao d33 1
which has a finite escape tim&.. = (1/27)In(z:(0) T T s U T e T e V2T

x2(0)/(21(0)z2(0) — 2)). However, under certain conditions it

is possible to conclude asymptotic stability of (3) when both i =ty COS Yy — vp SiN Yy

¥, andX, are asymptotically stable. In [12, Lemma 2], it was UYr = Uy SIN Yy + v, COS Y,
mentioned that if the systems (4) and (5) are globally uniformly
asymptotically stable and solutions of the cascaded system (3) Yr =10 (8)

are globally uniformly bounded, then the system (3) is globalotice that a drawback exists in considering the error coordi-
uniformly asymptotically stable. The question that remainsates: —z,. andy—v,., since these position errors depend on the
then, is when solutions of (3) are globally uniformly boundedthoice of the inertial frame. This problem is solved by defining
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the change of coordinates as proposed in [2] which boils downiderer is a new input, the subsystem (9¢) and (9f) reduces to
considering the dynamics in a frame with an earth-fixed origihe linear system
having thez- _andy—ams always oriented along the ship surge- = PR— (12)
and sway-axis ’

. which can easily be stabilized by choosing a suitable control law
z1 =z o8y +ysing for v, for example

29 = —xsinv + ycos V= —CiTe — (223 c1, ca > 0. (13)

z3 =1p. As a result, the subsystem (9c) and (9f) is rendered globally

The reference variables ., z ,. andzs , are defined corre- exponentially stable. In the closed-loop system this stabilized
spondingly. Next, we define the tracking errors subsystem can be cqn3|dered as the sysignie., the system
P g g (3b). Now one input is left that should be chosen such that the

Ue = U — Uy overall closed-loop system is rendered asymptotically stable.
We aim for a closed-loop system of the form (3). Besides, for
asymptotic stability of the system (3) itis necessary that the part

2 = fi(t, z1) (14)

Zle =21 = Zl,r is asymptotically stable. This is something that should be guar-
anteed by the controller design. From Corollary 1 we further-
more know that it might be sufficient too! As a result, we can
23 =23 — Z3,7- conclude that it might suffice in the controller design for the re-
maining input to render the part (14) asymptotically stable and
“forget” about theg(t, z1, z2)z2 part.

Ve =V — Uy

Te =T — 1T

Z2e =22 — Z2r

In this way, we obtain the tracking error dynamics

i, = m22 (Vere + Vers(t) + vy10) — di1 " Notice_ thgt itis fairly easy to arrive from (3a) at (14), s_imply
miy mii by substitutingz, = 0. This is also the way to proceed in the
+ (ur — u1) (92) controller design. In the first step we designed a control law for
mii o one of the two inputs in such a way that in closed loop a sub-
. miy dos system was stabilized. Before we proceed with the controller de-
be == (were + uere(t) + upre) — el (9b)  sign we assume that the stabilization of this subsystem worked
out, i.e., we substitute. = 0 andzz . = 0 in (9a), (9b), (9d),
Fo = T T 22 (0 e+ wty + Uy ve) — ds3 re (9e). This results in
m33 m33 . Mmoo (t) dll n 1 ( )
Ue = —— VeT'p — —— Ue — (U1 — U1
+ — (u2 — ug,) (9¢c) mii mi1 mi1 ! '
ms33 d
Fle =Ue + 22eTe + 22T () + 22,07 (9d) Ve = _m uerr(t) — 22 Ve
ma2 ma2
Zoe =Ve — Z1,eTe — 21,eTr(t) — 21,07 (9e) Yo =t + 22070 (1)
23,0 =Te- (9f)

22,6 = Ve — Zl,err(t)

Asin[10], we study the problem of stabilizing the tracking errafhich is a linear time-varying system
dynamics (9).

. . r d m 7
Problem: Find appropriate state feedback law&ndu, of i —— —2 rr(t) 0 0
the form - i mlld
v mi1 22
= =t - 0 0
U1 —Ul(u, v, T, T, Y, 1/}7 Uy s Upy Try Try Yry z/)r) 2116 Mmoo ( ) mao
U2 :’U,z(’u,./ v, T, T, Y, 1/17 Ups Upy Tyy Tpy Yr, d)r) (10) 2'«2 e 1 0 0 r’”(t)
such that the closed-loop trajectories of (9) and (10) are globally L 0 1 —rr() 0 .
uniformly asymptotically stable. u 1
‘ mi1
Ve
IV. CONTROLLER DESIGN ] |0 1 —ui,]. (15)
Our controller design aims at arriving at a closed-loop error e 0
dynamics of the form (3). To start with, we look for a way to 22 e 0

obtain in closed loop a subsyste, i.e., a subsystem (3b).
In that light, it is good to remark that we can use one input f
stabilization of a subsystem of the control system (9).

By defining the preliminary feedback

Allthat remains to be done, is to find a feedback controlleefor
%at stabilizes the system (15). It follows from Corollary 2 that
the system (15) is uniformly completely controllable (UCC) if
the reference yaw velocity. (¢) is persistently exciting. As a re-
Up = Ug, » — (M11 — Maz)(uv — u,vy) + dasre + masr (11)  sult, if the reference yaw velocity, (¢) is persistently exciting,
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we can use any of the control laws available in literature for stethere
bilizing linear time-varying systems. In addition to these results,

we propose the following control law. hy > dyy — diy
Proposition 1: Consider the system (15) in closed loop with b — maoky(ky 4 k1 + diy — dao)
the control law 2T daoks +maiks
d
uy = uy,, — k1ue + kare(t)ve — kaz1, e + karr(t)22,. (16) 0 < k3 < (k1 + d11 — do2) m—22
11
wherek; (: = 1, ..., 4) satisfy ky >0
k1 > daa — d11 ks > — ds3
ey = maoky(ky + k1 + diy — da2) ke > 0.
dazkiy +marks If u,, vy, 21, andz_, are bounded and, () is persistently
0 < ks < (ki + di1 — da») a2 exciting, the_n the closed-loop system (9) and (18) is globally
miy K-exponentially stable.
ky > 0. (17) Proof: Due to the design, the closed-loop system (9) and

(18) has a cascaded structure as shown in the equation at the
If r..(¢) is persistently exciting then the closed-loop system (18pttom of the page. From Proposition 1 we know that the system
and (16) is globally exponentially stable. 21 = fi(t, z1) is globally exponentially stable and from stan-
Proof: See the Appendix. m dard linear control that the systein = f5(¢, 22) is globally
Remark 2: Notice that the condition that.(¢) has to be per- exponentially stable. Furthermore, due to the fact thatv,,
sistently exciting appeared in the literature before. Not only i ., andz,_, are boundedy(t, 21, 22) satisfies (6). Applying
the paper [10] on tracking control of an underactuated ship, bDorollary 1 provides the desired result. [ |
also in the literature on tracking control of a mobile robot [15], Remark 4: Notice that the only property of the system=
[16], [19]. In these papers, the reference angular velocity hadfo(t, z1) that we need in this proof, is the fact that it is globally
be persistently exciting. exponentially stable. Under the assumption thét) is persis-
Remark 3: Notice that determining gairnls (i = 1, ..., 4) tently exciting (which yields uniform complete controllability
which meet (17) is feasible. The gaihg andk, could for in- according to Corollary 2), more control laws fay are avail-
stance be chosen first. The condition bnguarantees that a able in literature that also guarantee global exponential stability
gainks can be chosen. After choosing the gainsks, andky, of the system (15). In case we replacewith any of these, the
the required value foks can be determined. proof still holds. Therefore, several other choicesdoican be
Combining the controllers (11), (13), and (16) we are nomade. For instance, one might consider the following:
able to formulate the cascaded systems based solution to the a “standard” linear control law [16] which involves using

tracking control problem: the state-transition matrix of the system (15);
Proposition 2: Consider the ship tracking error dynamics (9) ¢ aless complicated control law [which also needs the state-
in closed loop with the control law transition matrix of the system (15)] as presented by [20];

 a pole-placement based control law, like for instance the
ur =u1r — kite + kot (t)ve — kaz1,e + karr(t)22.. (182) one presented by [21] [which requires the signald), i (t),
and(d?r, /dt*)(t) to be continuous and available], or any other
control law one prefers that guarantees global exponential sta-
— ksre — kez3,e (18b) bility of the system (15).

Up = U2, — (M11 — M22)(UeVe + Vple + Urve)

. r ki+d ko +m k k 7
i _kitdn 2 2,0 2 o . ma2 (ve +v,) 0
mi1 mi1 mi1 o My miy
, d mi1
Ve | = _ rr(t) — 0 0 Ve | 4|~ (e +ur) 0 Te
ma2 ma2 ma2 230
e 1 0 0 () e Betme 0
22 L0 1 —ro(t) 0o | lred | —(Greta,) 0f
fl(:zl) g(tyzl,zz)
. [ dsz+ ks ke
Te - —— Te
[ . } = ma3s ms3s [ } .
23,8 1 0 2313
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, dSPACE bus. By using Simulink blocks, the software is com-
el e e : piled and then downloaded into the DSP. The DSP sends the
et thruster commands to the ship via a radio-transmitter. The sam-
pling frequency used in the experiments was 50 Hz.
The reference trajectory to be tracked was similar to that in
[10], namely a circle with a radius of 1 m that should be tracked
at a constant surge velocity of 0.05 m/s. From the initial refer-

ence state
u,-(0) =0.05 m/s
v-(0) =0 m/s
r-(0) =0.05 rad/s
z,.(0) =4.75m
Fig. 2. Guidance, navigation, and control laboratory. yT(O) =35m
Similarly, any control law that renders the system (12) glob- ¥, (0) = rad
ally uniformly asymptotically stable can be used for and the requirement
Remark 5: In caser,.(t) is constant (but not equal to zero), w () =0.05mls  Yi>0
then the system (15) becomes a standard time-invariant linear -
system which can be stabilized by means of standard linear con- r.(t) =0.05radls Vt>0

trol theory. . o _ _the reference trajectofy.,., v,., 7., z.., ¥, ¥,]7 can be gener-
Remark 6: As pointed out by [22], it is possible to normallzeated’ since it has to satisfy (8).

the system’s equations in terms of the advancement velocityag iy [10], we chose in the experiments not to cancel or com-
|r-(2)],in or.der to r(_—:-pla_ce time by Fhe Qistance gone by the_ reﬁ'ensate for the damping terms (i.e., assulme= ds; = 0),
erence vehicle. This “time normalization” makes the solutiongnce these are restoring terms, and due to possible parameter
“geometrically” unaffected by velocity changes, yielding conyncertainties cancellations could result in destabilizing terms.
vergence in terms of this distance, inst'ead of time. In praCticevFortuning the gains of (18) we considered the two linear sub-
this has the advantage that the damping rate does not chagggems (12) and (15) that resulted from the cascaded analysis.
with different values of-(t). Both can be expressed as a standard linear time-invariant system
of the formi = Ax + Bu. We used optimal control to arrive at

V. EXPERIMENTAL RESULTS the control lawu = — Kz for which the costs
To support our claims, we performed some experiments at the /Oo T T
. S t t t)" Ru(t)) dt
Guidance, Navigation and Control Laboratory located at the De- (2(t)" Qu(#) + u(t)" Ru(t))

partment of Engineering Cybernetics, Norwegian University @fre minimized. For) we chose a diagonal matrix with entries
Science and Technology, Trondheim, Norway, shown in Fig. &, = (1/Az;) (i = 1, ..., 4), whereAz; is the maximum
In the experiments we used Cybership I, which is a 1:70 sc&@ror we would tolerate in:;. For R we took the inverse of
model of an offshore supply vessel. The model ship has a lengiaximum allowed input. This resulted in the choice

of 1.19 m, and a mass of 17.6 kg. The maximum surge force is 00 0 0
approximately 0.9 N and the maximum yaw moment is approx-
imately 0.9 Nm. The vessel moves in a 10-by-6 m pool with a _ 05 0 0 R=11
depth of about 0.25 m. 0 0 20 O
Three spheres mounted on the model ship can be identified by 0 0 0 10

infrared cameras. Three infrared cameras are mounted in su%lra{h e system (15) and

way that (almost always) one or two cameras can see the boat.

From each camera the positions of the spheres are transmitted _ [50 0 ] R=11

via a serial line to a dSPACE signal processor (DSP). From these 0 50

positions the ship position and orientation can be calculated fé¥ the system (12). In this way, we obtained the following gains

nonlinear passive observer of [23] is used to estimate the unmsa-the control law:

sured states. The estimates for position and velocities generated

by this observer are used forfeerc;back in the control Iav& No the- W1 = tt,r = 10.28ue +9.2v, — 44421 +2.T422.  (19)

oretical guarantee for a stable controller observer combinationuy = usy . — (m11 — ma2)(teve + vVotle + upve)

can be given (yet), as for nonlinear systems no general separa-

tion principle exists. However, in the experiments it turned out —9.02re = 6.74z;... (19b)

to work satisfactorily. The resulting performance of this controller is shown in Fig. 3.
The control law and position estimates are implemented onrathe first two graphs, we compare the actual position of the

Pentium 166 MHz PC which is connected with the DSP via ship with its desired position. The third graph contains the error
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Fig. 3. Cascade controller (19) with gains based on optimal control.

in orientation. The fourth and fifth graph depict the controls afsystem, but as soon as the camera status is nonzero we no longer
plied to the ship. The bottom graph depicts the camera statget correct position measurements. In Fig. 3, we can see that
The reason for showing this is that the infrared cameras frdor instance after about 240 s we had a temporary failure of the
time to time loose track of the ship. As long as the camera stattemera-system. This explains the sudden change in the orienta-
equals zero we have position measurements from the camei@na erroriy. and in the controls; andu,. Note, however, that
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Fig. 4. Cascade controller (19) under disturbance of author walking through the pool.

the peaks in the error time evolution corresponding to camesame robustness with respect to modeling errors and with re-
failures mostly were due to observer estimation errors and regtect to disturbances due to currents and wave drift forces.
reflecting the actual ship behavior. To illustrate this robustness even more, we performed one
From the fact that the presented controller can be applied segperiment in which the first author was wearing boots and
cessfully in experiments, we might conclude that it possessealking through the pool, trying to create as much waves as
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possible and disturbing the ship as much as he could. The re- 0 <miip — dog (23c)
sults are depicted in Fig. 4. It can be noticed that, due to the 9

heavy waves, the camera system had much more difficulties in 0 <miyAp+ dazks (23d)
keeping track of the ship. Nevertheless, a reasonable tracking 0 <ky+m) (23e)
performance was achieved.

0 <ky+ mirp. (23f)
VI. CONCLUDING REMARKS Proof: First, we remark that from (20a) and the fact that

In this paper, we studied the complete state-tracking problgfz > 0; m11 > 0 we have
for an underactuated ship that has only surge control force and 0< a2 < ki + din _
yaw control moment, which is a common situation for many my1 mi1
supply vessels. Consider the polynomial (22). Then, obviously

By means of a cascaded approach we developed a global k1 + dnq
tracking controller for this tracking problem. The resulting p(0) =p i = ks >0

control law has a very simple structure and guarantees glogaly
K-exponential stability of the tracking error dynamics. The s oy \ 2 s
cascaded approach reduced the problem of stabilizing the p( ) =mu <—) — (k1 4+ di) — + k3
nonlinear tracking error dynamics to two separate problems i i
of stabilizing linear systems. This insight simplified the
gain-tuning a lot, since optimal control could be used to arrive
at suitable gains. Therefore, from the intermediate value theorem we know that a
A disadvantage of both the cascade controller and the backnstant\ exists,0 < A < das2/m11, such thaip(\) = 0 and
stepping-based controller presented in [10] is the demand th&o ayu, das/m11 < pu < (k1 + dq1)/ma1, such thap(p) = 0.
the reference angular velocity does not tend to zero. Solutionsie a result we obtain that andy are well defined by means of
the tracking of a straight line are presented in [10] and [24]-[26R1). From (20) and
The controller presented in this paper also proved to work rea- dao
sonably well in experiments. This implies a certain robustness 0<A< g

against modeling errors and disturbances due to currents 3pd-an conclude that the inequalities (23) hold true. -
wave drift forces. In an attempt to get better robustness results, prgof [Proof of Proposition 1]: The closed-loop system
the cascaded approach might be helpful, as well, since robl{gﬁS) and (16) is given by

ness results from linear theory can be used.

mi1

d
Z(dgz—kl —dll)i-l-k'g < 0.
mi1

e
APPENDIX Ve

Before we prove Proposition 1, we first prove the following e

lemma. 29, e
Lemma 1: Let the following conditions be given: [ ki+du ka4 mo (1) ks ks ()
k1 > das — di1 (20a) mi1 mu mi mi
mi1 da2
maoka(ks + k1 +di1 — d — | ——=r(t e 0 0
]{52 = 22 4<d 4k —|—1m 21 22) (ZOb) moo " ( ) mo2
2 1; ’ 1 0 0 rr(t)
0 < k3 < (k1 +di1 — da2) milzl (20c) I 0 1 —rp(t) 0 i
kg > 0. (20d) e
Ve
Define A andy (A < 1) by means of . . (24)
k1 + di e
A p= IT (21a) .
11 ’
i If we defineX andp as in (21) and use (20b), the closed-loop
A = B (21b) dynamics (24) can be expressed as shown in the equation at the
mi1 top of the next page.

which is similar to saying that andy are the roots of the poly-  ysing the change of coordinates

nomial 0 0 m AT
p(x) = muz? — (k1 + din)z + k3. (22) te neA o p= A rm
v, 0 1 0 0 Ty
Then\ andy are well defined, and furthermore | = -1 1
Z1,e 0 0 — T z3
0<pu—A (23a) p=A  p—=A
Z2e m22 M2z 0 0 T4
0 <doo —mi1A (23b) L dao doy i
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r maz (ks + ma1A)(ka + ma1p) k4 T
. —(A+ r.(t -2 — . (t
Ue ( M) mll(m%l)\u + d22k‘4) ( ) a mi1 ( ) Ue
.e d e
el o | =) _ Lt 0 0 !
Fe ma2 ma Z1e
. 1 0 0 re(t)
Z2.e Z2e
L0 1 —r, () 0 |
r myp — da dos —muA
0 0 _mupmdey o dzz —mud
maz(p — A) maa(p — A)
T 0 da miifh miiA 1
. - - TT TT
T2 | ma2 m22(u - /\) m22(ﬂ - A) T2
T3 B maz(ka +m11 ) maz (ks + m11A)(daz — mi1 A)p T3
— 5 Ty —/ 0
iy mi1da daa(mi Ap + dagky) T4
maz (ks + mi1p) maz(ky +myp)(miip — da2)A
e ey — 5 Ty 0 -A
L my1dao doz(mi A + dasks) i
(25)
_ . 0 mipt — doo doa —miA 7
- T - Ty
maz(p — A) maa(p— A)
0 _@ _ miip miiA r
A(t) _ maa ng(u - )\) " m22 (N - /\) "
B mzz(k4 + m11)\) m22(k4 + m11)\)(d22 - mu)\)ﬂ
T 3 Tr —H 0
mi1dao dao(mi Ap + dazks)
mas (kg + mi1t) _ maz(ka + maip)(mip — daz) A , 0 2
L mi1dao " dao(m3 M\ + dazks) " i
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I ma1(miy A + dazks) V(= Mka+A) | (= A) (ks +miip)

which, due to (23a), is well defined, we obtain (25) as shown @orollary 2 that the paifA(¢), C) is UCO, which completes

the top of the page. the proof. ]
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