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Abstract

This thesis considers path planning and tracking control of autonomously driving
tractor semi-trailer combinations around warehouses and distribution centres. These
are closed-off, predictable environments with few external influences and low driving
speeds. Based on a kinematic single track vehicle model in spatial domain, a
kinodynamic path planning algorithm is developed. It aims to yield a feasible and
smooth path, taking vehicle constraints and external obstacles into account. It takes
the outputs of a pre-existing high-level planner and uses that as initialisation for
a nonlinear optimisation problem formulated based on the curvature of the trailer
combined axle. This curvature function is parametrised using quintic splines, fully
determining the state of the truck in spatial domain. The objective function is a
weighted sum of path length, required steering angle and steering angle change. Two
options for taking constraints into account are presented, one based on distance
functions between simple shape approximations of the truck and its environment and
the other on the hyperplane separation theorem between arbitrary convex polygons.
Using the same single track vehicle model, a nonlinear reference tracking controller
has been designed. Error coordinates defined by shortest distance projection onto
the reference path have been chosen, yielding a unique mapping between vehicle
and reference state. For both forward and backward driving, a control law has
been proposed based on the linearised system for which a constant curvature is
assumed. For this situation, sufficient and necessary conditions for gain tuning to
warrant local asymptotic stability have been derived. The conversion back to time
domain is performed through an optimal velocity profile, taking powertrain, friction
and comfort limitations into account. The planner, spatial controller and velocity
optimisation have been applied to several challenging scenarios, showing good and
reliable reference tracking.
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Chapter 1

Introduction

“Without transport all stands still” was a Dutch advertisement campaign initiated in 2009 [1]. There is no
doubt that much of our modern-day society is highly dependent on fast, reliable and efficient transport
and logistics. Moreover, the Netherlands has established itself as a transport hub, between the main ports
of Schiphol Airport, the Port of Rotterdam and the European mainland. Even though the slogan might be
a slight hyperbole, transport and logistics are essential in industry, agriculture and e-commerce. Besides,
the added value of the Dutch logistics industry itself is �40 billion annually and employs more than a
quarter of a million people [2]. Of the total amount of transported goods within the Dutch borders, 82%
is transported over the road measured by weight, which is primarily done by trucks [3]. Even though the
2020 pandemic had a large negative effect on the sector, the outlook for the future is still growth [4],[5].
One of the looming challenges for Dutch road transport is the relatively high age of its employees, where
the group of 50-60 years old is significantly larger than those aged 30-40 years [4]. Furthermore, the
extremely rapid growth of e-commerce has led to a significant increase in urban cargo, which is highly
reliant on fast and efficient distribution networks. Specifically, the rise of large distribution centres has
seen rapid growth over the last decade [6].

Technological advances have been focused on automation, electrification and improved communication
between companies [7]. Automation in warehouses is increased through robotics, autonomously picking
and sorting goods, and automation of trucks, including autonomy and advanced driver-assist systems.
Attention has been given to trucks on highways, with a focus on lane-keeping, safety and platooning,
since highways are a relatively predictable and clear environment [8],[9]. One might argue, however, that
docking stations of distribution centres are even more applicable for automation. Docking areas around
warehouses are confined, clearly mapped and have barely any (unpredictable) traffic, while the driving
speeds and therefore stopping distances in case of emergency are low.

In the context of logistics automation research, the Automotive Engineering Science laboratory of the
Eindhoven University of Technology has started a research project with TNO to create a safe, efficient and
robust distribution centre environment. In this environment, trucks are designed to navigate autonomously,
dock to the distribution centre and perform parallel parking. Control and planning algorithms have been
developed to fulfil these tasks, based on a scaled, kinematic model of a semi-truck trailer combination.
In previous work, multiple controllers have been developed based on pure pursuit control, lookahead
PID control and input-output linearisation, all combined with inverse kinematics to obtain the tractor
inputs [10],[11],[12]. Additionally, the developed algorithms can be tested and validated on a scaled
testing environment, shown in Figure 1.1, which is a 1:13 replica of a part of the Jumbo distribution
centre in Veghel. This experimental setup consists of the warehouse docks, three semi-trailer trucks, an
optical measurement system and central processing units.

The focus of this thesis is the path planning and tracking control of a single tractor semi-trailer combination
around a warehouse area. Such a tractor semi-trailer combination should be able to traverse these areas
safely, even in the presence of actuator limits and stationary obstacles. The considered vehicle for this
project is shown in Figure 1.2 and consists of a tractor and a semi-trailer, with the kingpin joint located
between the two tractor axles. The actuators of the truck are the steering actuator, capable of tracking
the desired steering angle setpoint, and the motor, for which perfect velocity control is assumed. This
means that the inputs of the truck are a desired steering angle and a desired velocity. Furthermore, it
is assumed that the full state of the truck is known, including its dimensions, the positions of all axles
as a function of time and the articulation angle between truck and trailer through time. In practice,
weight, load distribution and rotation axis significantly differ between trucks and are most often unknown.
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Figure 1.1: Experimental setup at TU/e [11].

Estimating these parameters online is an ongoing research area [13],[14], which is not included in the
scope of this thesis.

This chapter continues with an overview of the considered system in section 1.1, establishing the control
challenges and considerations. In section 1.2 the current state-of-the-art solutions are presented, where
both literature and previous work done at the TU/e is introduced. The research goal and the contributions
of this project are defined in section 1.3, before the contours of the thesis are outlined in section 1.4.

1.1 Control challenges

The kinematic model of the tractor semi-trailer combination is a fourth-order dynamical system, with
only two inputs. It is assumed that the tractor and the trailer have a fixed articulation point. This
point typically lies in between the rear axles and has the property that no sideslip can occur, meaning
that only movement in the direction of the wheels is possible. This point is referred to as the simplified
rear axle, or rear axle in short. In reality, the presence of multiple non-steered axles and nonlinear tyre
behaviour at large side-slip angles complicates the determination of the effective rotation point of the
semi-trailer. Determining this point of rotation online does not lie within the scope of this thesis. The
no-side slip constraint of the rear axle restricts the movements of the tractor and trailer on a velocity level.
In literature, this is referred to as a non-holonomic constraint, meaning that it can not be integrated

Innermost path

Outermost path
Kingpin joint

Swept space

Figure 1.2: Top view tractor semi-trailer combination with swept space.
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with respect to time to yield a positional constraint. As a result, this constraint does not allow for
simplifications in the dynamics, as still all poses in the state space of dimension four are admissible. What
it restricts is the ability to arbitrarily traverse the state space, as these rear axles can exclusively move in
the one direction allowed by this constraint. This non-holonomic constraint complicates both the path
planning and tracking problems, since not every coordinate can be controlled independently.

One significant difficulty in developing a safe and robust approach is the swept path by the truck as it
moves around the warehouse. As indicated in Figure 1.2, the swept area of the truck may be much wider
than the truck itself and is dependent on the previously travelled path. Failure to correctly identify this
swept area may result in significant damage to the truck and its environment. As a result of this large
swept area, it is in general not sufficient to design and stabilise a certain reference trajectory that is only
focused on a single point on the truck. This can be illustrated by considering a controller switching from
forward to backward motion, keeping the control point on the reference throughout. Even though the
control point might be perfectly tracked and maintain a safe distance from any obstacle, this in itself
provides no guarantee that the path is collision-free.

Another challenge is the required switching between forward and backward motions of the truck. At the
switching point, both the reference and the actual velocity of the truck are equal to zero, which entails
that the steering angle can be moved arbitrarily. In order to prevent undesired consequences from hybrid
control at these switching points, such as Zeno behaviour, a smooth and uniform transition strategy is
required. In addition to issues with singularities in the configuration, the differences in vehicle behaviour
between both driving directions is very significant. Firstly, the position of the steered axle switches from
all the way at the front of the vehicle to all the way at the back. Additionally, the rear of the tractor and
the trailer are unstable when driving backwards. During the process of automatic docking, this instability
needs to be completely overcome to accurately position the trailer in front of the docking station. To
guarantee stability of the time-varying tracking problem, a Lyapunov-based stability proof is desired to
show uniform stability of the tracking error coordinates.

1.2 Current solutions

In this section, the context of this thesis is established. Plenty of research from the automotive industry
and research institutes has been performed in the field of vehicle automation. Firstly, an overview of
available methods and frameworks from automotive literature is presented, applicable to autonomous
trucks. Secondly, the previous work performed at the TU/e is introduced, as well as its limitations and
the open challenges that remain.

Literature

In [15], use is made of a direct nonlinear model predictive control (NMPC) algorithm to encompass both
path planning and tracking. Based on a discrete kinematic model of the considered autonomous vehicle,
a search condition of an optimal controller is defined, which is then iteratively evaluated to seek the
optimum. By using the MPC framework, it is very intuitive to take both state and input constraints
into account, yielding a satisfactory and feasible solution. In most literature, however, a clear distinction
is made between path planning and tracking, where first a reference signal is calculated, after which
a controller seeks to track this reference. This division provides the benefit of solving the challenges
separately, simplifying the resulting synthesis. In the next paragraph, path planning is explored, after
which attention is given to tracking control methods.

Path planning

The path planning problem in the presence of non-holonomic and actuator constraints is often referred to
as the kinodynamic path planning problem [16]. There are two main ways of tackling this problem, both
with advantages and disadvantages. The first approach is a decoupled trajectory planning approach, which
starts with the generation of a collision-free path [17]. Then, this path is transformed to ensure that the
non-holonomic and input constraints are met. Finally, a timing function is computed that parametrises
the found path with time to yield a continuous function, satisfying the kinodynamic constraints. The



1.2. CURRENT SOLUTIONS 4

second approach is to directly incorporate the constraints into the optimisation. This means that only
admissible inputs are considered and that the reference path has to satisfy the dynamics of the vehicle.
In this section, the second approach is focused on, since a general and robust method is sought after.
Properties such as time-optimality and completeness are lost when decoupling the planning steps.

One common and intuitive planning algorithm is defined by a potential field, indicating a certain penalty
function on vehicle states which should be minimised [18]. It is constructed as the sum of an attractive
field towards the desired position and a repulsive field away from obstacles. The attractive field may be
defined as the squared distance towards the final position, to ensure smooth trajectories and continuous
derivatives, for instance according to

Uatt =
1

2
||ξ(q − qd)||2, (1.1)

where ξ is a row vector of weights for each of the coordinates in the vehicle state q, and qd the desired final
pose. This attractive field is commonly gradually transitioned into a linear one, to prevent unbounded
attractive forces [18]. These attractive forces can be determined by calculating the gradient of the
potential field.

The repulsive field should be equal to zero whenever all points on the truck are far away from an obstacle
and increase to infinity in the case of a collision. Consider for example the function

Urep,i =

⎧⎨
⎩

1
2ηi

(
1

ρ(q) − 1
ρ0

)2
for ρ(q) ≤ ρ0

0 for ρ(q) > ρ0
, (1.2)

where ρ(q) describes the shortest distance between the current configuration and any workspace obstacle,
ρ0 is the area of influence of a certain obstacle and ηi is the weight of obstacle i. This continuous function
for ρ0 �= 0 and ρ(q) �= 0 can then be added to the attractive field to yield a map of the configuration
workspace with a certain cost associated with each configuration. The strategy is then to follow the
negative gradient of this cost function towards the desired final position, which should have the lowest
global cost (generally zero). This optimisation can then be performed by a gradient descent algorithm,
which searches for a set of optimal waypoints to traverse from the initial to the desired position. The step
size should then be manually tuned to prevent the waypoints from jumping into or even across obstacles
and keep the required computation time acceptable. A significant disadvantage of potential fields is the
possibility of local minima in the potential field. In principle, a simple gradient-based search method does
not escape these minima, and hence the path planning process may get stuck. A number of solutions exist
to avoid and escape local minima, but it remains a prominent problem with this type of method.

Another method of finding an optimal path of waypoints is by the use of a probabilistic roadmap, which
is a network of nodes connected by arc segments [18]. The network of nodes can be sampled by either
(quasi-)random sampling or, in the case of restricted workspaces, be predefined. For our application of
known and relatively simple areas around warehouses, a sophisticated network can be made and refined
by hand. The next step is eliminating all nodes and arcs which cause a collision or are undesirable for
other reasons. Finally, a network of possible transitions between each node, from start to final pose, is
generated from which the optimal set can be retrieved by simple optimal algorithms, such as Dijkstra’s
or A-star algorithms [17],[19]. A disadvantage of this approach is that converging arbitrarily close to
the optimal path comes at the expense of infinite computation time, as optimality is always restricted
by the resolution of the gridded configuration space. A more advanced distribution of points around a
found path is possible, but a completely smooth optimal trajectory can not be found within reasonable
computation times, meaning that subsequent approximations have to be performed. Also in the case
that nodes are defined by hand, scaling or adjusting the configuration space requires an update of the
roadmap, which is not readily available.

Another work introduces a path planning method based on the expansion and connection of exploration
trees in the configuration space, by integrating input functions [20]. Use is made of linearisation of the
dynamics around each node to investigate the kinematic constraints and to randomly attempt multiple
input signals. This way, by continuously restricting the path planning algorithm to use the kinematics of
the vehicle, input exploration trees guarantee that the constraints are always met and that no collisions
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can occur. Therefore, this method is applicable to any dynamic system. One downside is that this
approach is in general not complete, as it requires infinitely small steps to guarantee that the entire
configuration space has been mapped. Moreover, the resulting solutions are in general not smooth,
requiring a smoothing algorithm to yield a feasible input signal. One significant advantage of this method
is that it samples over the input functions. Even a complicated non-holonomic dynamic object such as
a kinematic truck with inputs on acceleration level only has two inputs. By considering longitudinal
(velocity) and lateral (steering) control separately, for instance by optimising over distance instead of
time, this can be brought down to a single input for both stages. This idea greatly simplifies the path
optimisation problem and is used extensively in chapters 3 and 4 of this thesis.

Tracking control

Due to the highly nonlinear nature of the kinematic models for articulated vehicles, finding stabilising
reference tracking control laws is no simple task. It has been proposed to consider the trailer as a virtual
truck when reversing [21]. This way, control laws for the stable forward driving system can be applied,
after which the inverse kinematics of the vehicle are used to translate the resulting motion commands to
the tractor. This method applies to both on- and off-axle hitching, which describe the location of the
kingpin joint, where it specifically focuses on on-axle hitching. Due to the lack of offset between the
revolute joint and the axle of the vehicle, the kinematic restrictions of the axle impose constraints on
the achievable actuation angles. The proposed method is applicable to any number and combination of
dissimilar on- and off-axle hitched trailers. Due to the complexity of the inverse kinematics, this approach
makes it difficult to incorporate constraints on the steering angle. Moreover, due to the reference tracking
being focused on a single point, the behaviour of the remaining trailers and tractor is not considered,
making collision avoidance difficult.

When considering stabilisation along a line, instead of a point, linearisation approaches remain controllable
in all configurations [22]. Consequently, a hybrid controller approach is proposed, with different controllers
for driving forward and backwards, based on the linearised kinematics. With this hybrid control law,
good tracking results have been obtained for reversed straight-line and circle tracking [22]. Furthermore,
convergence is proven for both the nominal and the perturbed system. Here, the trade-off between fast
convergence of the nonlinear system towards the desired reference lines and the input saturations poses a
problem. Another disadvantage is that it is assumed that the velocity v is a given constant, of which
the state and input matrices are a function. Hence, this approach is restricted to steady-state situations,
where a line or curve is tracked at constant velocity. For this thesis, however, the situation of changing
velocities and even driving directions is essential for proper docking.

It has also been proposed to use an input-output linearisation approach to cope with the nonlinear
kinematics as a function of distance [23]. As an output, the deviation from the desired path d is considered,
with the control task of stabilising it towards zero. To this end, the output is differentiated three times,
which is the relative degree of the considered output, until the input appears. Then, input-output
linearisation is performed and a stabilising linear control law is designed. Conditions on the desired
reference curvature are imposed to keep the zero dynamics within acceptable bounds. Practically, this
means that the steering angle limits nor the corresponding maximum articulation angle between the
tractor and the semi-trailer can be exceeded. The complexity of the resulting control law, however,
requires all system parameters and states to be known or measured with high precision. In practical
experiments with a car and trailer, the tracking performance was kept within 20 [cm] of the reference
point, which is much better than an average human driver [23].

Another systematic nonlinear control approach is backstepping, which is for instance used in [24],[25].
The former concerns mobile robots, where backstepping and Lyapunov’s direct method are applied to
generate the required inputs. In addition, Lemma 2.1.3 is used to prove that the proposed tracking errors
converge to zero, even for a negative semi-definite Lyapunov function derivative.

In control of platooning automobiles, a nonlinear control approach based on a Lyapunov synthesis is
developed [26]. Here, the lateral and longitudinal control problems are separated through a conversion
from time domain into distance domain. The lateral control problem is then solved using methods
from the mobile robot domain, using a diffeomorphism as a mapping between vehicle and reference
and expressing error coordinates in the vehicle frame [27]. This conversion into spatial domain and the
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accompanying simplifications yield good results and allow a relatively simple and intuitive controller
approach. This method, however, has not yet been applied to tractor semi-trailer combinations, whose
dynamic properties are principally different. The longitudinal control task is a constant time gap spacing
policy, which is not relevant for this thesis.

TU/e research

The motivation to start an autonomous truck docking project at the TU/e originated with the analysis
of high capacity vehicles [28]. This work identifies backward parking as one of the most problematic
scenarios for professional truck drivers. Insufficient driver view, lack of awareness about controllability
limits and the unstable vehicle behaviour of trucks are argued to be the main contributors to the issue with
docking. This observation has led to an increase in attention towards driver support systems for docking
of articulated vehicles, which takes over the path planning and tracking control responsibilities of the
driver. For the path planning part, the path is defined as a set of reference points Ri, where optimality is
defined as a path of minimum length between the initial pose R0 and the terminal pose Rn. A distinction
is made between the forward and backward driving paths, which are optimised over separately, based on
the common switching point at which the truck is stationary. The proposed algorithm proved to be fast in
calculation and applicable to arbitrary articulated vehicle combinations. However, it imposes no continuity
requirements on the path and exhibits jumps in the required steering angle signal. The bi-directional
tracking controller is based on vehicle kinematic behaviour and a combination of proportional integral
control actions, for which the closed-loop stability is guaranteed using a linearised system. It acts on two
look-ahead points to account for the lateral and orientation errors with respect to the reference path,
similar to how human drivers assess the pose of their truck. The controller gains and preview distances
are tuned manually based on the current truck configuration. For this tuning, a step-wise approach is
developed, based on the logic of the Ziegler-Nichols method. Shortcomings of this research lie in the
simplicity of the path, which does not include transient behaviour between straight lines and cornering
situations. Besides, the resulting steering and yaw behaviour is oscillatory, which is undesirable as it
leads to unnecessary wear on tyres and actuators and makes the truck less predictable.

Within the TU/e project, the first steps towards truck modelling and control have been made, focusing
specifically on tractor semi-trailer combinations [10]. Here, a preview point located at a fixed distance
behind the truck is defined, which is compared to the nearest point on the path, yielding an angular
error. A simple proportional controller is applied to eliminate this error, which is then converted by
inverse kinematics with the small-angle assumption to the desired steering input. By trial and error,
the preview length and proportional gain are tuned to yield stable results in simulation. Even though
multiple attempts have been made to obtain optimal stabilising gains, the resulting simulations did not
show good tracking behaviour. Each corner was initially overshot before the controller managed to steer
the errors back to zero. Besides, the small-angle assumption is in practice not valid for the steering angle,
nor for the articulation angle between tractor and trailer. Since space is often limiting, large steering
angles are generally required to traverse these areas.

Consequently, expansions on this work were made, with the focus on reverse docking and parallel
parking [11],[12]. The main contribution is considering multiple lateral errors at the lookahead point
instead of a single heading error. Here, a distinction is made between the lateral error at the rear
axle, the heading error and the error due to the curvature of the path. These three errors can then be
independently tuned by gains to have more control over the qualitative behaviour of the tracking. Again,
the calculated virtual steering angle nor articulation angle is equal to the tractor steering angle. For
this conversion, an input-output linearisation approach to cope with the nonlinear kinematics is applied
in [11], whereas the same inverse kinematic relation as [10], but without the small-angle assumption has
also been proposed [12]. In addition to feedback modifications, a kinematic curvature-based feedforward
approach was implemented to compensate for error excitation through the reference signal. Still, the
proposed control laws are incapable of perfect tracking due to the lookahead point being used as the
measurement point for the error coordinates, leading to significant errors at the dock.

In addition to tracking, path planning in both forward and backward driving directions was also
considered [11]. For the backward path towards the dock, an arrangement with straight lines and circular
arcs was proposed to achieve a minimum distance trajectory. The forward path was generated next,
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using as final pose the start of the backward path. Here, use was made of a modified rapidly exploring
random tree (RRT) algorithm, to cope with obstacle avoidance, input constraints and non-holonomic
constraints. Good results were obtained in simulation, as well as in practice, for the proposed path
planning. Open challenges remain for the continuity of the generated path, on which no requirements
have been imposed. Besides, the switching point, from which the truck initiates backward parking, is
simplified to be perpendicular to the parking spot, with articulation and steering angles equal to zero.
In practice, space limitations of the warehouse docking area and the focus on spending as little time as
possible on parking make this approach infeasible.

The latest contribution to the autonomous trucks project has been made on the topic of path planning,
providing a comprehensive overview of available strategies and algorithms [29]. It proposes a graph-search
A-star algorithm as a high-level planner for the trailer. Then, the waypoints generated by this path
are used to streamline the closed-loop RRT algorithm, which is referred to as the low-level planner.
Consequently, a study on simulation results and the computational complexity related to the discretisation
steps has been performed, yielding a functional path planner in both forward and reverse directions,
capable of obstacle avoidance. However, satisfying the required accuracy leads to a computationally
expensive solution, preventing the approach to be implemented in online applications. Moreover, there
are no continuity requirements imposed on the generated path, yielding a highly oscillatory steering
reference signal.

In addition to contributions towards the control algorithms on the trucks, work has been done on developing
the TruckLab experimental setup [30],[31]. Firstly, [30] determined the properties and dimensions of the
two radio-controlled trucks used for scaled testing. Consequently, a MATLAB implementation containing
a control architecture capable of taking over the remote control of the trucks was developed. Initially, the
control was done by a pedal and wheel setup, primarily used in gaming, whereas this was later converted
to hardware-in-the-loop using the previously developed control algorithms. Due to the significant amount
of play and inaccurate actuation of the steering system of these trucks, [31] started on the development of
an improved experimental setup. Here, the choice was made not to start with an industrial toy truck, but
to develop the hardware in-house, based on an existing mobile robot platform. The major improvements
are found within the steering system, the propulsion system, the software operating system and the
inclusion of a LiDAR sensor and IMU.

With the previous work and state-of-practice of the control of autonomous trucks at the TruckLab, the
challenges for this thesis have been introduced and outlined. In the next section, these challenges form
the basis of the research goal, as well as for the requirements and preferences of the several supplementary
goals of the project.

1.3 Research goal

The main goal of this research is defined as:

”Develop a path planning and tracking control algorithm for docking
autonomous tractor semi-trailer combinations at warehouses.”

From this goal, several subgoals can be identified, outlying the requirements and challenges towards a
future practical implementation. First of all, the considered autonomous trucks are tractor semi-trailer
combinations, as these are most often used near warehouses and have been used for the experimental
implementation [31],[32]. Generality towards multiple articulated vehicles, for instance with dollies or
more trailers, is preferred but not the main focus of this thesis. Successful docking for full-sized vehicles
is defined as reverse parking the truck towards the docking station, within the tolerances of 5 cm laterally
and 0.5 deg in heading compared to the perpendicular centreline [29]. Secondly, the path planning
algorithm needs to contain static obstacle avoidance, while considering the entire swept path of the
vehicle, as introduced in Figure 1.2. Additionally, to prevent the oscillatory and rash steering of previous
implementations, it should guarantee continuity up to the steering angle velocity. Regarding the velocity
signal, it should be at least once continuously differentiable, with the additional constraint of feasible
longitudinal accelerations. Moreover, the kinodynamic constraints imposed by the geometry of the truck
must be respected at all times, with the assumption that no lateral slip occurs at any axle. Furthermore,
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the path planning algorithm should be adjustable for different vehicle dimensions, and preferably also
tunable for different vehicle configurations and wishes of the user. Thirdly, the tracking controller is
designed to follow the reference as closely as possible and should to this end be capable of perfect reference
tracking. In order to be relevant in practice, it needs to be predictable, tunable and preferably intuitive.
Uniform asymptotic stability towards the reference is required for the set of feasible initial conditions
expected to be encountered at a realistic warehouse. Finally, the developed algorithms are to be tested
at the 1:13 scaled setup within the TruckLab. Here, the real-time applicability and the robustness to
measurement and modelling errors are tested.

The research goal specifies the requirements and preferences for designing a suitable path planner and
tracking controller for practical implementation. In short, this project aims to extend and improve upon
existing path planning and tracking control algorithms of autonomous trucks at distribution centres. It
should consider the swept path of the truck to guarantee collision-free movement, satisfy kinematics and
actuator constraints, be robust to initial offsets and be proven uniformly asymptotically stable.

1.4 Thesis outline

With the background of the project and the available results from literature established, this thesis proposes
a new and complete path planning and control strategy for autonomous tractor semi-trailer combinations
around warehouses. Starting, the preliminaries chapter introduces the necessary mathematical foundations
and theoretical results which are used throughout the thesis. Additionally, it contains the derivation of
the dynamic model of the tractor semi-trailer combination based on kinematic relations. Consequently, in
the path planning chapter, an algorithm is proposed that generates feasible reference paths with arbitrary
initial and final conditions. Using these reference paths, the path tracking control chapter describes the
analysis and controller synthesis of a robust and reliable control strategy. Finally, the main conclusions of
this thesis are drawn and recommendations for future research are made.
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Chapter 2

Preliminaries

In this chapter, mathematical and control concepts are introduced which are used in this thesis. First,
mathematical and geometrical properties of functions and polygons are given. Next, the concept of
Lyapunov stability for nonlinear systems is considered and how to prove uniformity using a Matrosov-like
approach. Finally, properties of LTI systems, including controllability and stability are introduced. In
addition to these mathematical concepts, the coordinate convention of the tractor semi-trailer system is
proposed, on the basis of which its kinematic relations are derived. These single track vehicle dynamics
serve as the starting point for the remainder of this thesis.

2.1 Theorems

Lemma 2.1.1. Continuity [33] Consider a differentiable function f : R → R. If a constant M ∈ R

exists such that

sup
s∈R

∣∣∣∣df(s)ds

∣∣∣∣ ≤M

then f(s) is uniformly continuous on R.

Definition 2.1.2. Continuous differentiability [33] A function f : D → R, with D ∈ R, is said to

be of class Ck, if dkf(s)
dsk

exists (k times continuously differentiable) and is continuous on D.

Lemma 2.1.3. Barbălat’s Lemma [34] Let f : R+ → R be a uniformly continuous function. Suppose

that limt→∞
∫ t
0
f(τ)dτ exists and is finite. Then

lim
t→∞ f(t) = 0.

Definition 2.1.4. Convex polygons [35] A convex polygon is a polygon without holes and self-
intersecting edges, in which no line segment between two points in the polygon crosses the edge of the
polygon. Equivalently, it is a polygon whose interior is a convex set. In a convex polygon, all interior
angles are less than or equal to 180 degrees.

Theorem 2.1.5. Hyperplane separation theorem [36] Let A and B be two disjoint nonempty convex
subsets of Rn. Then there exist a nonzero vector v and a real number c such that

〈x, v〉 ≥ c and 〈y, v〉 ≤ c

for all x in A and y in B; i.e., the hyperplane 〈·, v〉 = c, with v the normal vector, separates A and B.

Definition 2.1.6. Sigmoid functions Define σ(s) as a continuous monotone function on R, differentiable
at s = 0, satisfying σ(s)s > 0 for s �= 0, |σ(s)| ≤ 1 and dσ

ds

∣∣
s=0

> 0.
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Theorem 2.1.7. Lyapunov stability [37] Let x = 0 be an equilibrium point for ẋ = f(x). Let
V : Rn → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀ x �= 0

||x|| → ∞ ⇒ V (x) → ∞
V̇ (x) < 0, ∀ x �= 0,

then x = 0 is globally asymptotically stable (GAS).

Theorem 2.1.8. Matrosov’s Theorem [38] Consider a nonlinear, time-invariant system described by
the equation ẋ = f(x), where x(t) ∈ R

n, and f : Rn → R
n is locally Lipschitz continuous. Assume x = 0

is an equilibrium point, i.e. f(0) = 0. Consider the following conditions.

� (M1) There exists a differentiable, positive definite and radially unbounded function V0 : Rn → R+

such that V̇0 ≤ 0.

� (M2) There exist two differentiable functions V1 : Rn → R and V2 : Rn → R, two continuous, positive
semi-definite functions Y1 : Rn → R and Y2 : Rn → R and a continuous function F2 : R → R,
satisfying F2(0) = 0, such that

V̇1 ≤ −Y1
V̇2 ≤ −Y2 + F2(Y1).

� (M3) There exists a positive definite function ω : Rn → R such that Y1(x) + Y2(x) ≥ ω(x).

Then the following hold. (M1), (M2) and (M3) imply that the equilibrium x = 0 of system ẋ = f(x)
is globally uniformly asymptotically stable (GUAS). Moreover, (M2) and (M3) imply that all bounded
trajectories of the system converge to the equilibrium x = 0.

Lemma 2.1.9. Controllability [37] Consider the LTI system ẋ = Ax+Bu with x ∈ R
n, for which the

controllability matrix is given by

R =
[
B AB A2B . . . An−1B

]
.

The system is controllable if the controllability matrix R has full fow rank, i.e. rank(R) = n.

Theorem 2.1.10. Routh-Hurwitz Theorem [39] Let f(z) : C → C be a polynomial of degree n with
no roots on the imaginary axis. Let us define P0(y) (a polynomial of degree n) and P1(y) (a nonzero
polynomial of degree strictly less than n) by f(iy) = P0(y) + iP1(y), respectively the real and imaginary
parts of f on the imaginary line. Furthermore, define p as the number of roots of f(z) in the left half-plane;
q the number of roots of f(z) in the right half-plane; Δarg f(iy) the variation of the argument of f(iy)
when y runs from −∞ to +∞; w(x) is the number of variations of the generalised Sturm chain obtained
from P0(y) and P1(y) by applying the Euclidean algorithm; I+∞

−∞r is the Cauchy index of the rational
function r over the real line.

With the notations introduced above, the Routh-Hurwitz theorem states that:

p− q =
1

π
Δarg f(iy) =

{
+I+∞

−∞
P0(y)
P1(y)

for odd degree

−I+∞
−∞

P1(y)
P0(y)

for even degree
= w(+∞)− w(−∞).

Corollary 2.1.11. The third-order polynomial P (s) = s3 + a2s
2 + a1s+ a0 has all roots in the open left

half plane if and only if a2 > 0, a0 > 0 and a2a1 > a0.
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2.2 Dynamics

In order to control or prescribe feasible paths for a tractor semi-trailer, its dynamic behaviour and
response need to be understood. Consequently, such a model can be manipulated such that they behave
as desired. To this end, kinematic models are developed that describe the evolution in time of the pose of
the truck. Note that the pose is defined as the full vehicle state, including positions in the world frame.
Based on the truck topology of Figure 1.2, we define the coordinates describing the pose of the truck as
in Figure 2.1. In this section, a single track vehicle model is derived, which serves as a building block for
the truck model. Moreover, the most attractive control and projection point, around which the motion
equations are defined, is discussed in detail.

x

y

ϕ

O

v1

(x1, y1)

ϕ1

(x0, y0)

(x1f , y1f )

(x0f , y0f )

δ

v0

v0f

L0b

L0f

L1
ϕ0

v1f
β

L0

Figure 2.1: Coordinate convention tractor semi-trailer combination.

Single track vehicle model

A single track model, often referred to as a bicycle model, is schematically represented in Figure 2.2. Here,
the dimensions and properties of the tractor are taken as an example, but notice that the trailer behaves
analogously. The single track vehicle model is often used as a simple representation of dynamic vehicle
behaviour when tyre side-slip angles are included, as well as kinematic behaviour at low speeds. In this
project, due to the low speeds involved and the assumption of the no side-slip constraint at any of the
tractor and trailer axles, the kinematic version is applicable. First of all, it consists of the translational
part, given by

ẋ0(t) = v0(t) cosϕ0(t)

ẏ0(t) = v0(t) sinϕ0(t),
(2.1)

with x0(t) and y0(t) the coordinates of the tractor rear, v0(t) the longitudinal velocity of the tractor and
ϕ0(t) the orientation of the tractor with respect to the global inertial frame. These equations describe
the movement of the trailer rear in the global frame, for which we know that its only velocity component
is in the longitudinal direction, indicated by ϕ0(t). Regarding the rotational part, the dynamics are given
by

ϕ̇0(t) =
v0f (t)

L0
sin δ(t) =

v1f (t)

L0b
sinβ(t)

=
v0(t)

L0
tan δ(t) =

v0(t)

L0b
tanβ(t),

(2.2)

where use is made of the relationships v0(t) = v0f (t) cos δ(t) and v0(t) = v1f (t) cosβ(t). Here, v0f (t) and
v1f (t) are the velocities at the tractor front wheels and the kingpin joint, respectively. Furthermore, we
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have the length between the tractor axles L0 and between rear axle and kingpin joint L0b. Notice that
from the equations above, we can relate the steering angle δ(t) to the side-slip angle β, through

δ(t) = tan−1

(
L0

L0b
tanβ(t)

)
. (2.3)

This means that these angles can always be statically related to one another, which allows input constraints
to be transferred as well. Moreover, this entails that both the planning and control problems could be
solved either in terms of δ(t), or in β(t), as they are interchangeable through (2.3).

x

y

ϕ

O

(x1f , y1f )

v0 ϕ0

δ

β

(x0, y0)

L0b

L0f
L0

v1f

v0f

Figure 2.2: Single track vehicle model convention.

In order to proceed towards the kinematics of the entire tractor semi-trailer system, we derive the
kinematics of the trailer analogously to those of the tractor. We then obtain

ẋ1(t) = v1(t) cosϕ1(t)

ẏ1(t) = v1(t) sinϕ1(t)

ϕ̇1(t) =
v1f (t)

L1
sin(β(t) + ϕ0(t)− ϕ1(t))

=
v1(t)

L1
tan(β(t) + ϕ0(t)− ϕ1(t)),

(2.4)

where use is made of the relationship between

v1f (t) =
v1(t)

cos(β(t) + ϕ0(t)− ϕ1(t))
. (2.5)

This leaves six dynamic equations describing the evolution of the truck. To reach a minimal description,
we can omit two of these coordinates through the holonomic constraints imposed by the kingpin joint,
shown in Figure 2.1. The choice of which coordinates to eliminate from the model is non-trivial and
based on the choice of the control point.

Control point

We have derived the kinematics describing the behaviour of a single track vehicle model, the tractor and
semi-trailer. The two holonomic constraints originated from the connection at the kingpin joint are given
by

x1(t) + L1 cosϕ1(t) = x0(t) + L0b cosϕ0(t)

y1(t) + L1 sinϕ1(t) = y0(t) + L0b sinϕ0(t),
(2.6)
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allowing us to eliminate two dynamical equations and still uniquely prescribe the pose of the truck.
Not all arbitrary sets of four coordinates yield this unique definition, however. Consider for example
the set of four position coordinates describing the tractor and trailer rear axles, which still permit two
symmetrical configurations, together forming a kite shape. Instead, we take the coordinates at either
truck or trailer rear, accompanied by the orientations of both components. Either of these choices yields
a unique representation of the system, shown below as

ẋ0(t) = v0(t) cosϕ0(t)

ẏ0(t) = v0(t) sinϕ0(t)

ϕ̇0(t) =
v0(t)

L0b
tanβ(t)

ϕ̇1(t) =
v1(t)

L1
tan(β(t) + ϕ0(t)− ϕ1(t))

(2.7)

with the focus on the tractor rear axle or

ẋ1(t) = v1(t) cosϕ1(t)

ẏ1(t) = v1(t) sinϕ1(t)

ϕ̇1(t) =
v1(t)

L1
tan(β(t) + ϕ0(t)− ϕ1(t))

ϕ̇0(t) =
v0(t)

L0b
tanβ(t),

(2.8)

which takes the trailer rear as the control point. Here, the choice is made to continue with the latter set of
equations, where the trailer rear is the control point and all velocities are to be expressed in v1(t). Reasons
for this choice are, first of all, that the most challenging scenario for a tractor semi-trailer combination is
reversing. Here, the ϕ1(t)-dynamics would become unstable with respect to the kingpin joint (substituting
v1(t) < 0 in the ϕ1-dynamics of (2.8)), as we would expect for a reversing trailer. Manipulating the
trailer orientation or position requires relatively large steering efforts, which can not directly be controlled
by the steering angle. Besides, taking only the position of the tractor rear and the orientations of the
tractor and trailer leads to significant error propagation and extreme sensitivity to disturbances. Instead,
by taking the trailer rear as the control point, we obtain a more straightforward structure. Here, the
idea is to design a ’virtual’ control law for the trailer rear, meaning a desired input from the kingpin
joint. The tractor is then simply required to attain this virtual control, leading to the complete system
stabilising around the reference. The resulting controllers are referred to as virtual controllers, as they do
not directly act on the input of the system. Secondly, the requirements on docking precision are imposed
onto the trailer rear. The main purpose of the planning and control tasks considered in this project are
docking the trailer at a docking station. The margins for successful docking are small enough to warrant
the control point being placed as close as possible to the point of interest.

Tractor semi-trailer kinematic model

As mentioned in the introduction, the two inputs to this system are the steering angle δ(t) and the forward
velocity of the tractor v0(t). Additionally, we have stated that the pose of the truck is uniquely defined
at each point in time by the four coordinates contained in the tuple q(t) = (x1(t), y1(t), ϕ1(t), ϕ0(t))

T .
Consider their dynamics (2.8), where we recognise that both v1(t) and v0(t) appear. Provided we can
find a relationship between the two, we can express the velocity optimisation problem in either velocity
as well, similar to the logic used between δ(t) and β(t). The most intuitive relation would be to equate
the respective velocities at the kingpin joint, according to

v1f (t) =
v0(t)

cosβ(t)

v1f (t) =
v1(t)

cos(β(t) + ϕ0(t)− ϕ1(t))
,

(2.9)

which can be rewritten as

v0(t) =
v1(t) cosβ(t)

cos(β(t) + ϕ0(t)− ϕ1(t))
. (2.10)
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Unlike (2.3), this is not a static relationship, meaning that it is affected by the current pose of the vehicle.
Moreover, we recognise a singularity at

cos(β(t) + ϕ0(t)− ϕ1(t)) = 0, (2.11)

which corresponds by means of (2.10) to the situation where the trailer axle is stationary, while the
tractor is driving circles around it. This is an important practical state constraint to take into account
when designing feasible reference trajectories, as is done in the path planning chapter.

In conclusion, we have obtained the dynamics of the tractor semi-trailer system, expressed in the trailer
axle coordinates, given by

ẋ1(t) = v1(t) cosϕ1(t)

ẏ1(t) = v1(t) sinϕ1(t)

ϕ̇1(t) =
v1(t)

L1
tan(β(t) + ϕ0(t)− ϕ1(t))

ϕ̇0(t) =
v1(t)

L0b cos(β(t) + ϕ0(t)− ϕ1(t))
sinβ(t),

(2.12)

all expressed with inputs β(t) and v1(t). Note that both of these inputs have to be transformed to the
actual system inputs δ(t) and v0(t) to yield a feasible controller.

v1

(x1, y1)

ϕ1

ϕ0

x

y

ϕ

O

L0b

L1

β

v1f

Figure 2.3: Tractor semi-trailer kinematic model representation.

2.3 Conclusion

In this chapter, the required foundations from mathematical and control theory used in this thesis
have been introduced. Additionally, a representation of the dynamic behaviour of a tractor semi-trailer
combination has been derived, from which relations between actual and virtual steering angles and
velocities followed. We now consider the system as displayed in Figure 2.3, consisting of two trailers
controlled by the steering angle at the kingpin joint. This dynamical system serves as the starting point
of the path planning and tracking control chapters.
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Chapter 3

Path planning

This chapter explains the need for a reliable and feasible path planner for navigation around distribution
centres and proposes a planning strategy. First of all, section 3.1 introduces the goals, limitations and
proposed strategy, including a short introduction of the used high-level planner. Next, the path planning
problem is formulated in section 3.2 as a nonlinear optimisation problem. Section 3.3 deals with two
implementable methods for obstacle avoidance, before section 3.4 goes in-depth to solving the formulated
planning problem. Finally, section 3.5 concludes the chapter.

3.1 Goals and strategy

A control strategy for manoeuvring trucks around distribution centres is the nonlinear control problem
to steer a dynamic system from an arbitrary initial condition towards a desired final pose, satisfying
its kinematic constraints. The behaviour of the truck is of the class of mobile robots with trailer, in
this case connected by off-axled hitching, meaning that L0b �= 0. No controllers have been encountered
providing point-to-point control for this type of nonlinear systems, and use is often made of reference
paths. Specifically, the controller is designed to suppress and minimise its errors around this reference
path. This chapter deals with the challenge of designing a feasible reference path for tractor semi-trailer
combinations with the tracking control application in mind. Being feasible indicates that the path
should comply with the input and state constraints on the truck, such as articulation and steering angles.
Moreover, the path should stay clear of any static obstacles around the distribution centre, to avoid
collisions in the case of tracking errors. Dynamic obstacles are not taken into account, which remains for
future work. The simplest approach to deal with them would be to wait until they have come to a full
stop and then plan a new path around them. In general, satisfying the limitations mentioned above would
allow infinite feasible paths from the initial to the final pose. These options are weighted over travel time,
tyre wear, smoothness and predictability. This means that one (or multiple) paths are optimal in the
sense of a weighted cost function. Intuitively, these preferences can be achieved by minimising the number
of switches between forward and backward driving, path length and curvature changes. Furthermore,
the velocity profile should be designed such that it maximises the velocity within acceptable bounds on
velocity, longitudinal and lateral acceleration, again to be chosen by the customer.

General strategy

As mentioned in the introduction of the report, warehouse layouts are predictable, well-mapped and
confined areas, making them suitable for automation. Their layouts are generally simple, with the path
towards the dock allowing the truck to drive forward past the dock, before reversing towards the desired
final pose. This method of splitting up the planning process into forward and backward driving segments
has been successfully applied [28],[11]. Five challenging scenarios have been selected as scaled benchmark
tests for the path planner, shown in Figure 3.1 and in Appendix B [29]. Here, the required trajectories are
all dictated by surrounding obstacles and a suitable switching point has to be found by the planner.

In order to simplify the construction of a path planner, we first focus on the behaviour of the trailer. By
fully defining the motion of the trailer, the next step is to obtain the required pose of the tractor, from
which the system inputs δ(t) and v0(t) can be inferred. Additionally, we choose to solve the lateral and
longitudinal planning separately, by parametrising the dynamics in spatial domain s(t) instead of in time
domain t. The last part of the strategy deals with the combination of a rough, general planner with a
more accurate and extensive one.
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Figure 3.1: TruckLab benchmark scenario for path planner (1:13).

Two-stage strategy

Previous contributions to the TU/e research have proposed to make use of a two-stage planner for the
path in spatial domain [29],[40]. This would allow a coarse, fast planner to very quickly give insight
into general path characteristics. It could for instance identify how to drive around obstacles, what the
approximate total length would be and how many switches between forward and backward driving are
required. This information could be used as a starting point for the more precise, but significantly slower
planner that would synthesise the eventual smooth path. This strategy is often referred to as high- and
low-level planning [40].

The requirements of the high-level (HL) planner are that it should find a path, whenever it exists, from
initial to final pose, expressed as a sequence of poses. Moreover, it should remain clear of obstacles, take the
most limiting kinodynamic constraints of the truck into account and be able to compute quickly. Within
the project, such an HL-planner has previously been developed based on a hybrid A-star algorithm [29].
It assumes a simplified version of the kinematic vehicle model such that the tractor is replaced by the
front wheel of a car-like single track model, as in 2.2. Then the rear axle of the truck is assumed to be
equal to the rear axle of the virtual car and the kingpin joint becomes the location of the steered wheels
of the virtual car. The pose of a single track kinematic car model is completely determined by the tuple
(x1(k), y1(k), ϕ1(k)), of which the dynamics are discretised and evaluated at time step k, where the pose
is transmitted through time by

x1(k + 1) = x1(k) + Δtv1(k) cosϕ1(k)

y1(k + 1) = y1(k) + Δtv1(k) sinϕ1(k)

ϕ1(k + 1) = ϕ1(k) + Δt
v1(k)

L1
tan(ϕ0(k)− ϕ1(k)),

(3.1)

with Δt the time increment, k ∈ N the time index and ϕ0 the heading of the tractor, in this case the
virtual steering angle. The ϕ1-dynamics are based on the kinematic relations of section 2.2. With the
dynamics established, it is assumed that the vehicle can only make six distinct inputs at each time k,
and that these inputs are maintained until k + 1 (ZOH-assumption). These inputs are driving forward
or backward with v1 = 1 with maximum left steer ϕ0 = ϕ0,max, maximum right steer ϕ0 = −ϕ0,max or
zero steer ϕ0 = 0. Then from any point in the (x, y)-plane, the car can travel to six nearby poses, for
each of which the feasibility concerning obstacles is checked. With these dynamics and input choices
defined, a hybrid A-star algorithm can be applied to find the shortest path between any initial and final
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condition. A-star is an extension of Dijkstra’s algorithm, where a heuristic is used to estimate the cost
to the final state, often referred to as the cost-to-go [19]. It creates a tree of branches of possible paths
from the initial pose, taking into account the cost of the path it has already travelled, as well as the
expected cost to the final state. As a result, it performs a much more informed search than Dijkstra’s
algorithm and maintains its optimality property provided that the heuristic does not overestimate the
actual cost from any position to the final state. In the considered HL-planner, the Euclidean distance
between start and end is considered, which is less than or equal to any path travelling to this final pose.
The algorithm continues until all branches have either converged to the final state or have a higher cost
than one feasible path, at which point it is certain that they can not be optimal. Then, the cheapest
feasible path is selected, and used as the basis for the low-level planner detailed in the remainder of this
chapter. In the situation where no feasible path exists, a maximum iteration counter is exceeded and the
planner concludes that it could not find a path within an acceptable time.

The output of the high-level planner is a list containing the tuple (x1(k), y1(k), ϕ1(k)) of all points along
the path, as well as the required inputs (v1(k), ϕ0(k)) at each point. When applied to the TruckLab
benchmark scenario of Figure 3.1, the resulting output of the HL-planner is shown in Figure 3.2, where it
avoids all obstacles and finds a path connecting the initial and final conditions. Disadvantages of the path
are the fact that the required inputs are extremely sharp, either having maximum left, zero or maximum
right steer. Moreover, the steering is considered to be done by the tractor orientation ϕ0(k), which can
not directly be controlled. As a result, some combinations of inputs can not be realised by the tractor,
but might still be present in the path.
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Figure 3.2: HL path for TruckLab scenario.

Based on the high-level path output, we seek to extract as much information out of it as possible, to
be used in the low-level planner. First of all, the path is divided into different segments to ease the
computations of the low-level planner. The need for this segmentation procedure and how the breakpoints
are determined is detailed in section 3.2. Secondly, by investigating the signs of input v1(k), the switching
points between forward and backward driving are obtained. Thirdly, the HL-path provides information
on the approximate path length. By summing all intermediate Euclidean distances between the points on
the path, the total path length is obtained. Finally, the curvature of the path can be approximated by
sampling or averaging over a small domain on the path. This indicates whether a left or right turn is
required to traverse the segment, as well as on the sharpness of the turn. In short, based on the HL-path
we can obtain breakpoints, switching points, path length and curvature indications, together shaping the
initial guess of the low-level path. More detail on the choice of breakpoints can be found in section 3.2,
while in section 3.4 the implementation of initial length and curvature is considered.
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Spatial-temporal strategy

For the low level planner we once again consider the dynamics of the trailer in continuous time, as derived
in section 2.2. It is given by

ẋ1(t) = v1(t) cosϕ1(t),

ẏ1(t) = v1(t) sinϕ1(t),

ϕ̇1(t) =
v1(t)

L1
tan θ(t),

(3.2)

with θ(t) = β(t) + ϕ0(t)− ϕ1(t) the virtual steering angle of the trailer, where we recognise that both
virtual inputs v1(t) and β(t) appear. Note that these are not actually the inputs of the vehicle and are
considered ’virtual’ as a consequence. In order to independently solve for both virtual inputs, we recognise

that we can rewrite the dynamics into spatial domain by applying v1(t) =
ds(t)
dt , yielding

x′1(s(t)) = cosϕ1(s(t)),

y′1(s(t)) = sinϕ1(s(t)),

ϕ′
1(s(t)) =

1

L1
tan θ(s(t)) = κ(s(t))

(3.3)

where coordinate s(t) denotes the travelled distance and κ(s(t)) is the curvature. The design of the
function s(t) indicates the speed with which the truck drives, which is to be optimised using velocity
optimisation in section 4.4. This observation, together with the dynamics in (3.3), means that the
movement of the trailer in spatial domain is completely determined by the initial conditions x1(0), y1(0)
and ϕ1(0) and the curvature function κ(s). Since the initial conditions are known, the path to be designed
is fully determined by the curvature function, where the explicit dependency of s on time t is dropped for
clarity. This is therefore the starting point of the optimisation problem, that is to find the function κ(s)
yielding the most desirable path, whilst satisfying all requirements and limitations imposed by the path
planning problem.

3.2 Path planning problem formulation

With the strategy of the path planning problem introduced, the next step is to formulate the optimisation
problem of the low-level planner. The design and implementation of this low-level planner is the
contribution of this thesis on the topic of path planning. In this section, attention is first given to the
choice of the breakpoints in the segmentation process, before deriving the kinematics of the entire truck.
Consequently, the requirements on continuity at the breakpoints are derived, with which the entire
low-level path planning optimisation problem can be formulated.

Segmentation

As discussed in section 3.1, the high-level path can be divided into an arbitrary positive number of
segments. The breakpoints separating these segments should be chosen such that they minimally limit
the pose of the truck, as well as divide the path into segments of approximately equal complexity. In
practice, when a truck traverses an arbitrary distribution centre environment, it tends to follow roads (or
markings), alternated by sharp steering manoeuvres and crossroads. As a result, placing the breakpoints
at the ends of straights encapsulates this alternating behaviour between different parts of the path in a
way that minimises the variance of the pose. If the path is to be divided into different segments and the
start and end of each segment are enforced to be equal to the breakpoints, the orientation of the truck
and trailer at that breakpoint should not be a burden. With the choice of ends of straights, therefore,
it comes as no surprise that the tractor and trailer are in line, with small intermediate angle between
the two. Mathematically, this follows from the ϕ′

1(s)-dynamics of (3.3) with β(s) = 0 and constant
ϕ0(s). For s→ ∞, the trailer orientation converges to lims→∞ ϕ1(s)− ϕ0(s) = 0. Placing the breakpoint
at the end of a straight therefore minimises the articulation angle between tractor and trailer, giving
the most freedom for the low-level planner to design the turns. After a breakpoint, the next segment
starts with a steering manoeuvre, followed by a straighter part again. Figure 3.3 shows the resulting
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breakpoints for the TruckLab scenario, where segments of at least 1 m length are required. We recognise
that segments of approximately equal length are obtained and that the resulting breakpoints are preferred
at ends of straights. Due to the shape of the HL-path, not more segments and accompanying breakpoints
are required. Due to the breakpoints lying at the end of a straight, the orientation of the truck is as
predictable as possible, namely close to a straight line. The velocity switching points, indicated in red in
Figure 3.3, can be trivially extracted from the HL-path by considering the choice of velocity at each time
step k.
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Figure 3.3: Segmentation for HL path TruckLab scenario.

Full truck dynamics

From section 2.2, we know the dynamics of the entire truck, with the trailer rear as control point and
expressed in v1(t), to be that of (2.12), with β(t) the side slip angle observed at the kingpin joint. For
sake of brevity, we can consider θ(t) = β(t) + ϕ0(t)− ϕ1(t) as the trailer virtual steering angle. Recall
that β(t) and δ(t) are directly related through the known nonlinear geometric relation (2.3), so finding
the required β(t) for the above system yields the solution for δ(t). In order for the path to correctly
incorporate penalties and constraints on the input, we require a description of this input as a function of
time, which is sought in the following derivation. Starting off, we transition from time domain dynamics
to the spatial domain, using v1(t) =

ds
dt , resulting in

x′1(s) = cosϕ1(s)

y′1(s) = sinϕ1(s)

ϕ′
1(s) =

1

L1
tan θ(s) = κ(s)

ϕ′
0(s) =

1

L0b cos θ(s)
sinβ(s)

=
1

L0b

√
1 + L2

1κ
2(s) sinβ(s),

(3.4)

where prime indicates a derivative with respect to s and we have once again assumed positive v1(t) [41],[26].
The latter assumption entails that cos θ(s) > 0 for all s, since only then both tractor and trailer are
moving in forward direction. Specifically, when cos θ(s) = 0, an infinite curvature κ(s) is obtained and the
system is in a singularity. Using the curvature definition of (3.4), we have expressed the ϕ0(s)-dynamics
in terms of κ(s), as detailed in Appendix B, further eliminating θ(s) from the dynamics. As mentioned in
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the strategy section previously, we seek to design the curvature function κ(s) as a suitable path. Then,
we convert the resulting motion of the trailer to the inputs at the tractor. We therefore consider the
curvature function κ(s) as input of this system, which together with ϕ1(0) defines ϕ1(s). Provided some
x1(0) and y1(0), the positions x1(s) and y1(s) also follow for all s. From this point onwards, we also
drop the dependency on travelled distance s for clarity, since all variables except lengths L0b and L1 are
functions of s. Consequently, the position of the kingpin joint is described by

x1f = x1 + L1 cosϕ1 y1f = y1 + L1 sinϕ1, (3.5)

of which the first and second derivatives with respect to travelled distance s, substituting the expressions
in (3.4), are given by

x′1f = cosϕ1 − L1κ sinϕ1 y′1f = sinϕ1 + L1κ cosϕ1

x′′1f = −κ sinϕ1 − L1κ
′ sinϕ1 − L1κ

2 cosϕ1 y′′1f = κ cosϕ1 + L1κ
′ cosϕ1 − L1κ

2 sinϕ1.
(3.6)

With the movement of the kingpin joint around the (x, y)-plane, we can write virtual steering angle θ of
the trailer, as well as the change in angle θ′, as

θ = atan2(y′1f , x
′
1f )− ϕ1

θ′ =
x′1fy

′′
1f − x′′1fy

′
1f

x′21f + y′21f
− κ

θ′ =
L1κ

′

1 + L2
1κ

2
.

(3.7)

The last result is obtained by substituting (3.6) into (3.7) and rewriting the resulting expression. Using
the dynamics of ϕ′

1(s) in (3.4), we have an alternative and simpler way of deriving θ and θ′ which does
not require calculations on the kingpin joint, namely

κ =
1

L1
tan θ

θ = tan−1(L1κ)

θ′ =
L1κ

′

1 + L2
1κ

2
.

(3.8)

Geometrically, we find the relationship θ = β+ϕ0 −ϕ1, from which we can derive a dynamical expression
for β(s), starting by differentiation and substituting ϕ′

0-dynamics, as in

θ′ = β′ + ϕ′
0 − ϕ′

1

β′ = − 1

L0b

√
1 + L2

1κ
2 sinβ + θ′ + κ.

(3.9)

The resulting expression can be interpreted as a stable autonomous part, disturbed by the inputs θ′ and κ,
which are a direct result of required curvature at the trailer rear. What we have achieved is that any con-
tinuously differentiable curvature function κ(s), together with the initial state (x1(0), y1(0), ϕ1(0), ϕ0(0)),
fully determines the state of the entire vehicle as a function of distance. Moreover, we have obtained the
dynamical relationship for the virtual steering input β as a function of the states of the vehicle. The
latter can be used for the objective function and constraints on the input.

Continuity requirements

With the strategy of splitting the path into different segments, a risk of discontinuities at the breakpoints
has been created. If each segment is to be optimised separately, alignment on all system states is required
at breakpoints, as well as C1 continuity for the input δ, as by Definition 2.1.2. These constraints can
be simplified to be expressed closer to the optimisation function: curvature κ, further simplifying the
optimisation problem.

Starting off, the geometrical relationship between actual and virtual steering angles of (2.3), shows that
continuity of β implies continuity at the actual input. Consequently, by means of θ = β + ϕ0 − ϕ1, we
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can replace the continuity requirement on ϕ0 by one on θ, since we had previously assumed continuous
β and ϕ1. Furthermore, (3.9) indicates that for equal κ, β and θ′, an equal value for β′ is obtained.
Continuing, (3.8) allows the requirement on θ′ to be replaced by one on κ′, since we have already assumed
alignment of κ. Graphically, Figure 3.4 shows the relationships between the six variables on top, on which
continuity is in principle required, and a sufficient set of variables for which continuity implies that the
original state and input are continuous. The highlighted variables are the furthest simplification towards
input constraints on the optimisation function that the proposed description allows. This simplifies the
resulting optimisation problem as not all system states and input δ need to be reconstructed during the
computation.

δ δ′ϕ0ϕ1y1x1

β β′θ

κ θ′ κ′

Figure 3.4: Relationship tree for continuity requirements.

In short, we have six variables on which we require alignment on a switching point between different
path segments, as well as throughout each segment, namely x1, y1, ϕ1, κ, κ

′ and β. Notice that five of
these six constraints act on the trailer axle and one describing the tractor side slip at the kingpin joint.
Furthermore, three of them have been expressed explicitly in the optimisation function κ, namely ϕ1,
being defined as the integral of κ, κ itself and its derivative κ′, simplifying the kinematics that have to be
evaluated during optimisation. The remaining issue is still that the final expression in (3.9) is an ODE,
meaning that it has to be solved online and that it is dependent on the initial value β(0).

The observation that solving an ODE is required to obtain the required input of the truck to follow the
path parametrised by κ(s), means that the proposed convention with the trailer axle as control point is
not feedback linearisable. Feedback linearisability entails the presence of a finite set of outputs whose
derivatives fully determine the states and inputs, without the need for an integration procedure [42]. Note
that κ does not suffice as it, together with its derivatives, is unable to uniquely identify β. Conversely,
input curvature κ and its derivatives can not be used to fully constrain the movement of the entire truck.
In literature, it has been shown that the truck semi-trailer combination can be made feedback linearisable
by proper choice of outputs [42]. However, the required relations to reconstruct the system states based
on this output function are too complicated to include in the optimisation problem.

Optimisation problem

With the strategy and dynamics of the tractor semi-trailer combination introduced, all building blocks of
the optimisation problem are present. Integration of the dynamics of (3.4), together with (3.8) and (3.9),
yields

x1(s) = x1(0) +

∫ s

0

cosϕ1(s)ds

y1(s) = y1(0) +

∫ s

0

sinϕ1(s)ds

ϕ1(s) = ϕ(0) +

∫ s

0

κ(s)ds

β(s) = β(0) +

∫ s

0

[
− 1

L0b

√
1 + L2

1κ(s)
2 sinβ(s) +

L1κ
′(s)

1 + L2
1κ(s)

2
+ κ(s)

]
ds

(3.10)

where without loss of generality we assume s(0) = 0. The functions above are the basis of the kinematics
reconstruction used in the optimisation procedure. Note that by the derivation of Figure 3.4, the
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tuple q(s) = (x1(s), y1(s), ϕ1(s), β(s)) prescribes all points on the truck along the entire reference
path. As a result, the procedure is to optimise the curvature function κ(s) between the initial pose
q(0) = (x1(0), y1(0), ϕ1(0), β(0)) and the final pose q(sf ) = (x(sf ), y(sf ), ϕ(sf ), β(sf )), where s ∈ [0, sf ].
Note that the total path distance sf is an unknown variable and therefore included in the optimisation.
The path planning optimisation problem for a single segment is then defined by

Find κ(s), sf

to minimise J(sf , κ(s), κ
′(s))

s.t. (3.10)

q(s) ∈ Qfree

q(0) = q0 q(sf ) = qf

κ(0) = κ0 κ(sf ) = κf

dκ

ds

∣∣∣∣
0

= κ′0
dκ

ds

∣∣∣∣
sf

= κ′f

|β(s)| ≤ βmax

∣∣∣∣dβds
∣∣∣∣ ≤ β′

max

0 ≤ sf ≤ smax

∀ s ∈ [0, sf ],

(3.11)

where J(sf , κ(s), κ
′(s)) is the cost function, q0 and qf are the initial and final desired poses determined

by the breakpoints, Qfree the obstacle-free configuration space, κ0, κf , κ
′
0 and κ′f the initial and final

curvatures and curvature derivatives, respectively. These, too, are defined by the state of the vehicle
at the breakpoints, where the curvature is assumed to be equal to zero. Moreover, βmax and β′

max are
the maximum virtual steering angle and the maximum steering speed. Finally, smax is the maximum
admissible distance for the to be optimised path.

The function to be minimised, J(sf , κ(s), κ
′(s)), is a penalty function including path length as well as

the 2-norm of the curvature and its derivative, as in

J(sf , κ(s), κ
′(s)) = α1sf︸ ︷︷ ︸

J1

+α2

∫ sf

0

∣∣∣∣
∣∣∣∣dκ(s)ds

∣∣∣∣
∣∣∣∣2 ds︸ ︷︷ ︸

J2

+(1− α1 − α2)

∫ sf

0

||κ(s)||2ds︸ ︷︷ ︸
J3

. (3.12)

Here, 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1 are tuning parameters with which the weights on the different penalties
can be changed, satisfying 0 ≤ α1 + α2 ≤ 1. This way, the qualitative properties of the path obtained
from the optimisation problem (3.11) can be manipulated based on preference, since the solution is always
optimal in the sense that J(sf , κ(s), κ

′(s)) is minimised. The purpose of J1 is straightforward, increasing
the gain leads to shorter paths, generally reducing travel time and saving energy. Secondly, the term J2
affects steering intensity, meaning the rate of change of the steering angle, reducing tyre wear due to
slip of the steered wheels, unpredictability and actuator strain. Thirdly, the component J3 penalises the
curvature itself, leading to a smoother path, more room for corrections as the feedforward steering angle
will be limited and less tyre wear as the presence of multiple axes induces slip when cornering. It should be
noted that the objective function is expressed in terms of curvature at trailer rear κ(s), whereas the choice
for the steering input δ(s) or virtual steering input β(s) would have been more intuitive. Equation (3.9),
however, shows that the primary contributor to changes in the steering angle is θ′(s), which is expressed
in terms of curvature κ(s) and curvature change κ′(s). Using β(s) itself is numerically unattractive, as it
follows from a nonlinear ODE, which is why this simplification towards κ(s) is made.

Another addition to the optimisation problem (3.11) is the requirement q(s) ∈ Qfree, stating that the
state of the truck should always be member of the obstacle-free configuration workspace. Define O as
the united set of all obstacles, or O = ∪Oi ∀ i ∈ {1, 2, . . . , nO} with Oi ∈ R

2 the set of points spanning
obstacle i and nO the number of obstacles. Moreover, consider A(q(s)) ∈ R

2 as the set of points covered
by the truck, as a function of the tuple q(s), and Q ∈ R

4 as the entire configuration workspace. We can
then construct the obstacle-free configuration space as

Qfree = {q(s) ∈ Q|A(q(s)) ∩ O = ∅}. (3.13)
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Computing Qfree, however, becomes computationally expensive for even moderately complex configuration
spaces [18]. For a four-dimensional configuration space, especially for systems with revolute joints, this
computation is next to impossible and not applicable to a distribution centre environment. Calculating
the space beforehand is not feasible either, as the presence, position and dimension of other trucks around
the centre leads to infinitely many options. Therefore, in the next section, two obstacle avoidance methods
are introduced that circumvent the construction of an explicit representation of Qfree.

3.3 Obstacle avoidance

To guarantee obstacle avoidance for all generated paths by the optimisation problem (3.11), without
explicitly computing Qfree, two methods are introduced and compared. Firstly, a bounding box with
obstacle points method, which calculates the minimum distance of the truck along a path to each obstacle.
As long as these minimum distances exceed a certain safety margin, a collision-free path can be concluded.
Secondly, the Separating Axis Theorem (SAT) is applied to compare polygona l obstacles with a simplified
footprint of the truck. Using this more involved method, the shortest distance is calculated as well,
which again has to exceed some threshold. In this section, the working principles of both methods are
introduced and compared on feasibility, computational requirements and conservatism.

Bounding box with obstacle points

The first proposed method is a very straightforward way to deal with obstacles. At its core, it only
considers distances between points and lines, which are very easy and cheap to compute. Around
distribution centres, encountered obstacles tend to be polygonal or spherical, and most of the times
convex. As a result, by using lines and points, we can capture a large number of different obstacle
configurations around a given planning task. The proposed method involves creating a convex bounding
box around the current segment, within which the to be optimised path has to be placed. Provided that
the truck stays a certain safety distance dO away from the boundaries of the box, and no obstacles are
present within, it can be concluded that the segment contained in that box is collision-free. In case there
are obstacles within the box, they are defined as a finite number of points, to which a minimum distance
dO has to be kept at all times.

Starting point

End point

Control points

Bounding box

Figure 3.5: Bounding box with obstacles points visualisation.

Consider Figure 3.5, where the bounding box, indicated by the dashed line, has been applied to aid the
obstacle avoidance approach. First of all, it has been selected such that it encloses the start and end
points of the segment, both indicated in green. Secondly, it excludes a number of obstacles which can be
disregarded in the planning optimisation as the path is not allowed to leave the box in the first place.
This only leaves the obstacles within the bounding box as possible collisions of the path, for which the



3.3. OBSTACLE AVOIDANCE 24

second part of the procedure is required. Here, we place obstacle points oi at vertices or in the centre of
approximately spherical objects, as indicated in blue. The top row of blue obstacle points is positioned at
the vertices of the rectangular objects placed there and do not have an inherent radius. Below the dotted
path, there are two more obstacle points, which are placed in the centres of obstacles. These encompass
the entire object by introducing an obstacle radius rOi

to them. Finally, we require the path of the
truck to remain a certain safety distance dO away from all obstacles, based on the control points and
dimensions of the truck. Consider the control points at the trailer axle p1(s) = (x1(s), y1(s)) and at the
kingpin joint p1f (s) = (x1f (s), y1f (s)). Additionally, consider the obstacle points oi = (xOi

, yOi
) for all

i ∈ {1, 2, . . . , n�}, with n� the number of obstacle points. We then attempt to find conditions for obstacle
avoidance for all travelled distance s. The lines spanning the bounding box B(x, y) are defined as

bj(x, y) = bjxx+ bjyy + bjc, (3.14)

for all j ∈ {1, 2, . . . , nb} with nb the number of lines spanning the bounding box. For the case of Figure 3.5,
this number nb = 4. Define the minimum distance constraint between the truck and any edge of the
bounding box as

ρ(p1(s), bj(x, y)) =min
s

|bjxx1(s) + bjyy1(s) + bjc|√
b2jx + b2jy

≥ dO

ρ(p1f (s), bj(x, y)) =min
j,s

|bjxx1f (s) + bjyy1f (s) + bjc|√
b2jx + b2jy

≥ dO,
(3.15)

where ρ(·) indicates the Euclidean distance function between two objects, s ∈ [0, sf ] and j ∈ {1, 2, . . . , nb}.
In other words, we have two control points that are checked against nb lines spanning the bounding box,
yielding 2nb inequality constraints. The minimum distance of all lines, along the entire segment s, has
to be lower bounded by the safety distance dO, accounting for the dimensions of the truck. If these
conditions are met, it is safe to say that the truck remains within the bounding box along the entire
segment, excluding all obstacles outside of it.

Regarding the obstacles points, a similar approach is taken. The minimum distance between obstacle
points and the control points on the truck is given by

ρ(p1(s), ok) = min
s

||p1(s)− ok||2 − rOk
≥ dO

ρ(p1f (s), ok) = min
s

||p1f (s)− ok||2 − rOk
≥ dO,

(3.16)

where we notice the additional distance rOk
that has to be covered to clear an obstacle of said radius. The

above inequality constraints have to be sufficed for all obstacle points k, as a result of which no collision
between the path and obstacles can be concluded. This adds an additional 2nk inequality constraints to
the optimisation problem.

It should be noted that only comparing the rear trailer and kingpin joint to the surrounding map can
still lead to collisions, as the truck could also hit obstacles between these points. Obviously, the distance
dO can be chosen high enough that all points on the truck are considered. This comes at the cost of
conservatism, as a truck is not accurately approximated by two circles. As a result, the value of dO has
to be chosen such that it balances collision possibilities and conservatism, depending on the dimensions
of the truck.

Separating Axis Theorem

From the observation that a truck is poorly approximated by circles, it follows as a logical next step
to look for better simple shape approximations of the truck footprint A(q(s)). Looking at Figure 1.2,
a possible approximation would be to take one rectangle for the trailer, and one for the tractor. By
adjusting the width of the tractor rectangle slightly, protruding elements such as steered wheels and
rear-view mirrors can be included without introducing much conservatism at all. In addition to the truck,
all obstacles expected around a distribution centre can be approximated by (unions of) convex polygons.
This reduces the collision avoidance task to the problem of preventing intersections between the two
rectangles describing the truck and the convex polygons defining the obstacles.
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The problem of fast collision identification between convex polygons is an often encountered problem,
which occurs for example in geometry, constrained optimisation problems and video game design [43].
One common solution is the hyperplane separation theorem 2.1.5 [36]. This theorem states that if there
exists a hyperplane that separates two convex objects, they do not intersect. In two-dimensional studies,
this theorem is often referred to as the separating axis theorem, stating that an axis is sought along which
there is a gap between the projections of two convex objects upon that axis [36]. If such an axis is found,
the search can be stopped and it can be concluded that no collision occurs. It also states that checking all
axes normal to the edges of the objects suffices to conclude that collision does occur. Figure 3.6a shows
an example where two identical rectangles are placed such that only one axis allows the conclusion that
no collisions occur, namely the yellow axis of the right obstacle. If both objects are projected upon that
axis, there is a gap to be observed in between, meaning that both objects are at least that distance apart.
One of the axes along which no gap exists is shown in purple, where the ranges between the extreme
projections of the red and black obstacles overlap.

(a) Separating axis theorem example along two axes,
indicated in purple and yellow. The projections of the
red and black obstacles are indicated by the coloured

dots on the axes.
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(b) Random collision check for 100 rectangles on the
TruckLab scenario. Red rectangles indicated collisions
with the environment while black ones are collision-free.

Figure 3.6: Separating axis theorem examples.

As mentioned above, the SAT works by looping over all relevant axes of the obstacles and the truck. The
choice to approximate the truck by two rectangles leads to only four axes having to be checked coming
from the truck orientation, namely �e0x, �e

0
y, �e

1
x and �e1y. The obstacles, however, could in general have

arbitrary many axes along which they are oriented. In distribution centre environments, the number of
obstacles itself tends to be limited, as well as the orientations at which they are placed. Buildings, roads,
fences and parked trucks are often positioned perpendicularly, or with a constant angle with respect to
each other. As a result, the total amount of axes along which collisions have to be checked is limited as
well. Consider for example the scenario shown in Figure 3.5, where most normals to obstacles are along
the horizontal and vertical directions. The key strength of this algorithm is that, whenever the truck
does not collide with its environment, one evaluated axis is enough to make that conclusion. Moreover,
due to the narrow shape of a truck, the lateral direction of the trailer, �e1y, most often directly proves no
collision, making it the most efficient starting axis.

The projections are calculated by taking the inner product between the normal vectors to each edge
and the vertices of both objects currently under consideration. When this is done, the maximum and
minimum projections of one object along the considered axis are evaluated and compared to those of the
other object. If, in the case of the purple axis in Figure 3.6, the ranges between maximum and minimum
projections overlap, we proceed to another axis. Only when all axes show overlapping behaviour, certainty
of collision can be concluded. Once another axis, in this case the yellow one, shows a gap between the
extreme projections of both obstacles, the search is stopped and a gap distance is concluded. Note that if
the search is stopped after finding a gap, a larger gap might exist along a yet unexamined axis. The above
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procedure is described in pseudo-code in Algorithm 1. Figure 3.6b shows the results of 100 randomly
oriented rectangles around the TruckLab scenario, with the red colour indicating collisions with the
environment.

Data: Vertices of all obstacles
1 for all obstacles including truck do
2 Compute normals to edges;
3 Normalise identified normals;

/* Normalisation is not required for the result of the algorithm, but assumed

because it conserves the dimensions of the obstacle onto the projection. */

4 end
5 Omit duplicate normal directions;
6 for all unique normals, starting at �e1y do
7 for all obstacles including truck do
8 Calculate inner products of current obstacle with current normal;
9 Identify minimum and maximum projections;

10 end
11 Compute projection ranges between minimum and maximum projection;
12 Compare projections ranges of truck to those of the obstacles;
13 if no overlap then
14 Conclude no collision;
15 return the gap distance between the projection ranges (Gd > 0);

16 end

17 end
18 Conclude collision;
19 return The gap distance between the projection ranges (Gd < 0);

Algorithm 1: Separating Axis Theorem algorithm.

Recalling from (3.11) that we require q(s) ∈ Qfree ∀s ∈ [0, sf ], indicating that infinitely many truck
poses q(s) have to be checked to conclude that the entire path segment is collision-free. As a result, a
procedure is required to minimise the number of required tests, while still maintaining the no-collision
guarantee. Consider the gap distance found by Algorithm 1, which provides an indication of a safe driving
distance δs(s). As mentioned before, the maximum gap distance along all axes is in principle unknown,
but could always be computed if needed. Using the computed minimum distance between the truck
and nearest obstacle, a safe driving distance is sought, meaning that no collision checks are required
on the interval between s and s+ δs. Then, by starting at the initial condition, which is known to be
collision-free by virtue of the high-level path, the path can incrementally be checked for collisions. Finding
the maximum safe driving distance based on a gap distance is no simple task, however. Suppose the truck
was described by a simple point mass model, in which case the minimum safe driving distance would be
the largest observed gap distance. In case the track was assumed to be straight, the same conclusion
applies. However, for the truck, this computation is much more involved. Here, we consider the truck as
the union of two rectangular blocks, placed along an arbitrary reference path, as shown in Figure 3.7. A
very conservative but guaranteed safe driving distance would follow as

δs(s) = Gd(s)− (circumscribed circle− inscribed circle), (3.17)

with the circumscribed and inscribed circle shown in Figure 3.7. The difference in radius of these circles
relates to the symmetry of the truck with respect to the control point at the trailer rear, which the trailer
and tractor combination is clearly lacking. Due to the large length to width ratio of the truck, especially
with respect to the trailer rear control point, this approach often yields negative results, meaning that it
can not guarantee any safe driving distance at all, due to large variations in the curvature possibly being
present. In the proposed method, however, an approximation based on the assumption that the path is
relatively straight for small driving distances is made, allowing

δs(s) = min(δsmax, kSAT ·Gd(s)), (3.18)

with a maximum driving distance δsmax to satisfy the assumption that the path remains relatively straight
and the safety factor kSAT ≤ 1 to account for possible curvature changes. The safety factor represents a
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trade-off between computational demands and the risk of collisions in extreme cases. Using the latter
option for δs(s), the pose of the truck can be evaluated at a finite number of positions along the possible
path segment, allowing the optimisation problem to avoid paths containing collisions.

Tractor block

Trailer block

Inscribed circle

Circumscribed circle

Control point

Figure 3.7: Convex area approximation and inscribed and circumscribed circles of the truck.

In conclusion, the Separating Axis Theorem is a much more robust and less conservative method to
identify collisions along reference paths than the bounding box method. It efficiently and accurately
approximates the shapes of both the truck and of the surroundings and determines whether or not
collisions occur swiftly. The smallest distance to a collision of the currently evaluated path is then
returned to the optimisation problem, which has to be positive.

3.4 Solving the optimisation problem

Reconsidering the optimisation problem introduced in (3.11), it is clear that the entire path for a given
initial and final pose is determined by the curvature function κ(s). In this section, the approaches towards
determining the optimal curvature function will be detailed. Firstly, a parametrisation of the curvature
is proposed, based on splines expressed at curve knots. Secondly, for these curve knots, suitable initial
values are sought to speed up the optimisation process and avoid local minima. Finally, the solver is
introduced with which the nonlinear optimisation problem is solved and possibilities for speeding up the
optimisation are introduced.

Spline approximation

Solving an optimisation problem over a function space is in principle an infinite-dimensional problem.
Instead, we seek to approximate the function κ(s) over a single segment by a finite number of coefficients
and basis functions, requiring only the coefficients to be optimised. This solution leads to the field of
polynomial approximation, where arbitrary resolution can be obtained by increasing the polynomial
order. In practice, splines, which are relatively low order polynomials connected at their ends, are often
preferred over higher order polynomials due to numerical considerations. The continuity requirements
analysis of section 3.2 showed that constraints on κ(s), κ′(s) and β(s) are required at the starts and ends
of each segment. Due to β(0) relying on κ(0) and κ′(0) by virtue of (3.9) and (3.8), only five constraints
remain. Preventing the optimisation problem from being overconstrained, we need to introduce at least
as many degrees of freedom as constraints, such that all constraints can be respected. As a result, the
lowest order spline that can be applied in this method is a quintic spline space, described by

κi(s) = α0,i + α1,i(s− si) + α2,i(s− si)
2 + α3,i(s− si)

3 + α4,i(s− si)
4 + α5,i(s− si)

5

s ∈ [si, si + sfi],
(3.19)
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with αj,i being the j-th coefficient of the i-th spline and si the starting distance of the i-th spline. Note
that this notation assumes ns spline functions per path segment, which is a tradeoff between accuracy
and numerical complexity. The choice of si at the start of each spline entails that s = s1 = 0 at the first
spline of each segment. Recall that all segments are optimised over separately, each containing ns spline
functions. At the start of spline function κi, the s coordinate is equal to si, as in Figure 3.8. Furthermore,
the derivative of the curvature function (3.19) with respect to s is obtained from simple differentiation
and is given by

κ′i(s) = α1,i + 2α2,i(s− si) + 3α3,i(s− si)
2 + 4α4,i(s− si)

3 + 5α5,i(s− si)
4

s ∈ [si, si + sfi].
(3.20)

These curvature functions are fully defined by their parameters, which are collected in the coefficient
vector as

pi =
[
α0,i α1,i α2,i α3,i α4,i α5,i sfi

]T ∈ R
7, (3.21)

where we have six spline coefficients αj,i and the spline length sfi as optimisation variables.

Spline i− 1 Spline i Spline i+ 1

s

si+2si+1sisi−1

sfi−1 sfi sfi+1

κ(si)

κ(si + sfi)κ(si +
1
3sfi)

κ(si +
2
3sfi)

Figure 3.8: Schematic representation of parametrisation of spline function i.

The nonlinear optimisation problem for a single segment then boils down to finding the optimal value
p∗i for each of the ns spline functions contained in the optimisation problem (3.11) for the associated
segment. From this optimisation vector and the corresponding curvature function, all references on all
vehicle states can be inferred. Even though multiple options are mathematically valid for inferring these
references, for instance driving forward and backwards or angle changes of π, it is trivial to consider only
desired paths where no internal collisions occur.

Curve knot spacing

The proposed parametrisation has the significant drawback that its coefficients αj,i do not have a physical
interpretation. This entails that it is not trivial to assign constraints to them, nor to make sensible
estimates of their values to support optimisation. Therefore, we seek to reparametrise the coefficient vector
into a more intuitive form, to which constraints can directly be applied. Consider the reparametrisation
of pi into

p∗i =
[
κ(si) κ′(si) κ

(
si +

1
3sfi
)

κ
(
si +

2
3sfi
)

κ (si + sfi) κ′ (si + sfi) sfi
]T

= T (sfi)pi,
(3.22)

requiring the transformation matrix

T (sfi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0

1 1
3sfi

(
1
3sfi
)2 (

1
3sfi
)3 (

1
3sfi
)4 (

1
3sfi
)5

0

1 2
3sfi

(
2
3sfi
)2 (

2
3sfi
)3 (

2
3sfi
)4 (

2
3sfi
)5

0
1 sfi s2fi s3fi s4fi s5fi 0

0 1 2sfi 3s2fi 4s3fi 5s4fi 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.23)
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In the new vector p∗i , the curvature and derivative of curvature at the beginning and the end of each
spline can be recognised. Since these directly appear in the optimisation problem formulated in (3.11),
this allows for the direct application of constraints on the parameter vector. Moreover, it contains the
curvature at two intermediate points along the spline function, which is a much more intuitive way to
approach a path than polynomial coefficients. In essence, the transformation T (sfi) scales the coefficients
in pi, which have very different units and magnitudes, into physical properties of the path in p∗i . Note
that this transformation is a nonlinear transformation between the vectors pi and p

∗
i , as the variable

sfi is a priori unknown and in itself an optimisation variable. The knots at which the curvature is now
directly prescribed are not to be confused with the knots used in B-splines, which serve a completely
different purpose [44].

As previously mentioned, this nonlinear coordinate transformation in the optimisation variables allows
the application of linear constraints into the new variables p∗i . From (3.11), we recall that κ(0) = κ0,
κ(sf ) = κf , κ

′(0) = κ′0 and κ′(sf ) = κ′f , which in terms of the new parameter vector becomes⎡
⎢⎢⎣
1 0 . . . 0 0 0
0 1 . . . 0 0 0
0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎤
⎥⎥⎦
[
p∗1
p∗ns

]
=

⎡
⎢⎢⎣
κ0
κ′0
κf
κ′f

⎤
⎥⎥⎦ . (3.24)

In addition to constraints on the segment ends, we also require the splines to be interconnected smoothly,
as discussed in section 3.2. Here, it was concluded that continuity on all states is guaranteed by continuity
on x1(s), y1(s), ϕ1(s), κ(s), κ

′(s) and β(s). Recalling (3.10), we recognise that only κ(s) and κ′(s) are not
enforced through their initial conditions. Therefore, we require defining them in terms of the optimisation
vectors p∗i and p∗i+1, according to

κi(sfi + si) = κi+1(si+1)

κ′i(sfi + si) = κ′i+1(si+1)[
0 0 0 0 1 0 0
0 0 0 0 0 1 0

]
p∗i =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
p∗i+1 ∀ i ∈ {1, 2, . . . , ns}.

(3.25)

In addition to these linear equality constraints on the curvature functions, there exists also an inequality
constraint on the total path length. This constraint on the path length is simply given by

0 ≤ sf =

ns∑
i=1

sfi ≤ smax, (3.26)

which is the sum of all spline function lengths.

The proposed parametrisation of spline function i, is schematically visualised in Figure 3.8. Here, the
intermediate distances between the different spline functions sfi are clearly visible, as well as the curve
knots at which the curvature is prescribed. Note that any distribution of the intermediate curve knots
is mathematically equivalent, while the choice for an equidistant distribution is most intuitive. The
application of the constraints is also clearly visible, namely alignment on curvature and its derivative at
all spline function ends si. This way, a twice differentiable curvature spline is obtained, which means that
all system states are also continuous, on the basis of section 3.2.

Initial estimates

Properly initialising a nonlinear optimisation problem such as (3.11) can greatly benefit computational
speed and convergence properties. Intuitively, if the optimisation problem starts in a small neighbourhood
around the global optimum, it should be able to converge to said optimum swiftly. Obviously, the
global optimum is unknown before the optimisation problem, but the information incorporated in the
HL-path is available. Of the HL-path, it is known that it contains the optimal solution for a particular
discretisation size for a path travelled by a bicycle model. The primary task of the low-level planner is
to infer continuous states of the entire tractor semi-trailer model along the entire path and ensure that
it satisfies state and input constraints. To this end, it requires a continuous curvature function, twice
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differentiable along the entire path and constraints on the entire tractor semi-trailer state. Regardless, the
optimal path of (x1(s), y1(s)) will generally be close for both planners, meaning that more information
than just breakpoints can be inferred from the HL-path. In section 3.1, mention was made of obtaining
path length and curvature approximations, which will both be dealt with in this section.

Starting with the length of each segment, and consequently of each spline function, we simply measure
the length of the HL-path between each of the breakpoints. This yields, for each segment, the value
sf =

∑ns

i=1 sfi, with ns the number of spline functions within that segment. As an initial guess, we then
encode

sfi =
sf
ns

∀ i ∈ {1, 2, . . . , ns}, (3.27)

making all spline functions equal in length from the start. Since the choice has been made to optimise
over each segment independently, we ensure that they align on a common value. This value has been
chosen equal to zero, which corresponds to the choice of breakpoints at the ends of straights, where
the curvature is indeed close to zero. A small downside of this choice is that some freedom is lost in
the optimisation process since the HL-path fully prescribes the pose at the breakpoints. The choice of
alignment at zero curvature at the end of straights implies that κ0, κ

′
0, κf and κ′f of (3.24) are equal to

zero, as well as the corresponding initial guesses of p∗1 and p∗ns
. Recalling Figure 3.8 and (3.22), we still

require the value of the curvature κ(s) at the two remaining intermediate positions. Moreover, for p∗2
up to p∗ns−1, we required four guesses of the curvature κ(s) and two of the derivative of curvature κ(s)
at the spline function ends. Due to the structure of the curve knot spacing technique, these can all be
sampled based on sfi and si. Instead of sampling directly from the HL-path at a single point, the average
of the surrounding path is taken in such a way that contributions of the entire HL-path are included. For
segment i, depicted in Figure 3.8, the initial estimate of κ(si +

1
3sfi) is taken as the arithmetic mean of

κ(s) for s ∈ [si + 1
6sfi si +

1
2sfi
]
. (3.28)

Applying the method above yields a decent estimate of the expected optimisation parameters. Consider
as an example the TruckLab scenario, consisting of the three segments shown in Figure 3.3. In order
to balance the design freedom against the computational complexity of increasing the number of spline
coefficients, it has been found that using two connected splines within each segment provides good
planning results. This yields a total of fourteen coefficients that, provided known initial conditions, fully
define the path along each segment. Next, we approximately infer the length of each segment and the
curvature at each curve knot as mentioned, the result of which is listed in the initialisation column in
Table 3.1. The first segment is fully straight, meaning that the only nonzero entries of p∗i are the lengths,
which are simply defined according to (3.27). For segments two, however, the sharp curvature to the
right, signed negative, is clearly visible. Moreover, we recognise the constraints defined in (3.24) and
(3.25).

In addition to examining the numerical values of the initialisation process, the resulting path can be
plotted against the HL-path, as done in Figure 3.9. Here, it is clear that the initial path contains the
most important characteristics of the optimal final path. It is not yet necessarily feasible, which is
most apparent at the end of the second segment, where a large jump is observed towards the start of
segment 3. This is a result of a slightly conservative approach to the curvature estimation, meaning
that the optimisation process always approaches the global optimum from the side corresponding to
the straightest resulting path. However, the initial path does not consider obstacles, meaning that it
could contain collisions. Since it is designed to approximate the HL-path, which does take obstacles into
account, it gives a clear preference on how to traverse between obstacles.

Nonlinear optimisation problem

Solving the nonlinear optimisation problem proposed in (3.11) is performed using MATLAB R2020a, with
the fmincon.m function of the MATLAB optimisation toolbox. It allows the inclusion of the objective
function, linear and nonlinear constraints and initial search conditions, all of which are used for the path
planner. Using an interior point algorithm, the global minimiser to the (multivariate) objective function
is sought that still satisfies all constraints. As mentioned before, the segments are not dependent on the
results of one another, meaning that they are optimised separately. This allows parallelisation of the
computation, greatly speeding up the path planning process.
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Table 3.1: Initialisation and optimisation results for TruckLab scenario.

Initial Optimal
Segment 1 2 3 1 2 3

κ1(0) 0 0 0 0 0 0
κ′1(0) 0 0 0 0 0 0
κ1(

1
3sf1) 0 -0.5968 -0.4939 0 -1.0208 -0.6000

κ1(
2
3sf1) 0 -0.9055 -0.7408 0 -0.7913 0.3839

κ1(sf1) 0 -0.9055 0 0 -0.4300 0.4143
κ′1(sf1) 0 0 0 0 0.9585 0.1635
sf1 2.0225 2.6250 1.6550 2.0215 4.1000 2.6747
κ2(0) 0 -0.9055 0 0 -0.4300 0
κ′2(0) 0 0 0 0 0.9585 0
κ2(

1
3sf2) 0 -0.3219 0.2264 0 -0.1188 0.5642

κ2(
2
3sf2) 0 -0.1543 0.9055 0 0.0112 0.9493

κ2(sf2) 0 0 0 0 0 0.4143
κ′2(sf2) 0 0 0 0 0 0.1635
sf2 2.0225 2.6250 1.6999 2.0235 1.7111 2.7879
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Figure 3.9: Graphical representation of initialised path.

The results of the optimisation for the TruckLab scenario with the scaled trucks of Appendix A are
shown in Table 3.1, as well as graphically in Figure 3.10. Here, the bounding box obstacle avoidance
method is used, as well as the gains of the objective function α1 = 0.001 and α2 = 0.029. We notice that
the resulting path connects smoothly at the segment breakpoints and at the path ends. Moreover, the
resulting path forms an intuitive shape overall. The numerical results show that for the first segment, the
initial guess is already the global optimum, since this segment is a perfectly straight line. For segment two,
the described initialisation procedure correctly estimates the sign and magnitude of the curvature. The
optimisation result, however, does introduce a significant length disparity between both spline segments,
which also leads to the curvature values having different interpretations, as they are curve knots at
differently spaced intervals. The third segment deviates the most from the initial estimates, since it
has the most complicated and unpredictable shape. Here, we recognise that both splines are defined in
forwards driving direction and meet at the switching point, where we find equal curvature and curvature
derivative.
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Figure 3.10: TruckLab scenario planned path.

One such reference path is shown in Figure 3.10 and the other benchmark tests in Appendix B. For
the considered benchmark tests, the performance of the planner is satisfactory and satisfies all imposed
constraints. However, when increasing dO, the planner sometimes fails to find a feasible path when it
should still exist. This means that the proposed planner is not complete, primarily due to the limited
amount of design freedom resulting from taking only two spline functions per path segment. Regarding
computation time, the path shown in Figure 3.10 takes ≈ 60 s on an Intel Core i7-4710MQ CPU,
preventing online recalculation in case of large tracking errors. The computation time is further increased
when using the SAT method, which is numerically expensive to compute at multiple points along the
path. These numerical difficulties also show in the robustness in finding a feasible path, which is also
decreased for the SAT method, meaning that even more space is required to yield good results.

3.5 Observations and conclusions

In this chapter, the path planning strategy for tractor semi-trailer combinations around warehouses
is introduced. It involves a two-stage planning scheme, where a simple and fast high-level planner is
used to yield an approximate solution. Based on this path, independent segments are identified for
which a nonlinear optimisation problem is solved, seeking the optimal path parametrised by its curvature
function. On this function, linear and nonlinear constraints are imposed, ensuring smoothness, state
and input constraints and obstacle avoidance. From this curvature function, the full state of the tractor
semi-trailer combination is inferred at any point along the path, serving as the reference to the path
tracking controller.

The resulting path consists of segments optimal in an arbitrarily weighted objective function for the chosen
approximation, satisfies kinodynamic and input constraints, is once continuously differentiable at the input
δ and avoids collisions with surrounding obstacles. Besides, due to the transition into distance domain, the
planning problem has been made such that the curvature and velocity are optimised over separately. With
the proposed search direction initialisation procedure, on the basis of the HL-path, a first estimate lying
reasonably close to the optimum is obtained, speeding up the computation. Furthermore, parallelisation
allows for an even more efficient implementation, where all segments are evaluated simultaneously.

On the other hand, drawbacks of the proposed method are that it is not complete, meaning that a
feasible path may not always be found when it exists. This problem is accentuated when the Separating
Axis Theorem method is used for obstacle avoidance, due to the numerical complexities involved. The
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separating axis method, however, is the only one that provides guarantees that collisions are avoided. For
the bounding box method, significant levels of additional safety distance have to be introduced, further
shrinking the feasible domain. Additionally, the computation time of the low-level planner prevents online
recalculation of the path, so only the predetermined path can be used for the truck to follow. Finally, the
obtained path is not necessarily the global optimum, as the breakpoints are determined by the HL-planner.
Even though it is optimal in its own condition, it does not take all kinodynamic constraints nor feasible
inputs into account.
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Chapter 4

Path Tracking Control

The second essential part for implementing autonomous driving of trucks is to obtain a robust and reliable
control strategy. With the reference path established and the entire pose of the truck assumed known,
the controller is responsible for steering the truck towards the reference and rejecting disturbances. This
chapter details the goal of tracking and specifies the considered system in section 4.1. Next, a simplified
system is considered to get familiar with the system and nonlinear control in section 4.2. Furthermore, in
section 4.3 the controller for the tractor semi-trailer system is introduced and conditions for its stability
are proposed. The velocity control problem is tackled in section 4.4. Finally, section 4.5 concludes the
chapter, showing simulations, validating the controller and investigating its robustness. The symbols used
to describe the state of the vehicle in this chapter refer to the actual measured vehicle state, while the
reference is indicated by subscript r, i.e. vehicle state q(t) and reference vehicle state qr(t).

4.1 Tracking problem definition

In order to synthesise a controller for the tractor semi-trailer system, the control objective must be
defined. There are several options to define a tracking problem, being reference tracking, trajectory
tracking and path tracking. Since the time component of the reference vehicle has not been established,
due to the assumption of stationary obstacles, it serves no clear purpose to define the error dynamics
in time domain as e(t) = q(t) − qr(t). Moreover, tracking a reference defined in time leads to loss of
uniformity, as well as practical limitations such as a tendency to cut corners [27] or drive unnecessarily
slow. Another option is trajectory tracking, where the coordinates xr(t) and yr(t) are known functions of
time and serve as the reference point for the ego vehicle. This method also involves both longitudinal and
lateral control tasks simultaneously. Instead, we choose path tracking, where we assume that the path is
completely independent of time. Placing the vehicle in the vicinity of the path implies some projection
onto the reference path, obtaining the reference state qr(sr(s)) at that position. This full reference state
can be used, regardless of the magnitude of the velocity at which the considered vehicle is driving. The
additional degree of freedom obtained with this method is the mapping sr(q(s(t))), or sr(s), relating any
pose of the truck to any distance along the reference. The error coordinates are therefore defined along
the lines of e(s) = q(s) − q(sr(s)). This choice ensures that the path is always tracked with the most
accuracy possible, meaning that less conservatism has to be included regarding distance to obstacles.
Moreover, there is no time component associated with the path, meaning that the considered vehicle
should always drive at the optimal velocity with regards to the path, instead of trying to catch up or
coast down. Optimality in this sense means maximising the driving speed subject to powertrain, safety
and comfort constraints.

System description

The representation of the to be controlled system has been introduced in section 2.2. Consider the tractor
semi-trailer dynamics

ẋ0(t) = v0(t) cosϕ0(t)

ẏ0(t) = v0(t) sinϕ0(t)

ϕ̇0(t) =
v1f (t)

L0b
sinβ(t)

(4.1)

ẋ1(t) = v1(t) cosϕ1(t)

ẏ1(t) = v1(t) sinϕ1(t)

ϕ̇1(t) =
v1f (t)

L1
sin θ(t) = v1(t)κ(t),

(4.2)
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as well as the location of the kingpin joint

x1f (t) = x0(t) + L0b cosϕ0(t)

y1f (t) = y0(t) + L0b sinϕ0(t)
(4.3)

x1f (t) = x1(t) + L1 cosϕ1(t)

y1f (t) = y1(t) + L1 sinϕ1(t).
(4.4)

Differentiating (4.3) and (4.4), substituting the dynamics, multiplying with sinϕ0(t) and cosϕ0(t),
respectively, equating both the x1f (t) coordinates and y1f (t) coordinates, subtracting the equation in y
from the equation in x, yields

L0bϕ̇0(t) = −v1(t) sin[ϕ0(t)− ϕ1(t)] + L1v1(t)κ(t) cos[ϕ0(t)− ϕ1(t)]. (4.5)

We now have an expression for ϕ̇0(t) which does not include β(t), and is expressed in trailer coordinates
and itself only. Defining ψ(t) = ϕ0(t)− ϕ1(t) yields the dynamics of the system

ẋ1(t) = v1(t) cosϕ1(t)

ẏ1(t) = v1(t) sinϕ1(t)

ϕ̇1(t) = v1(t)κ(t)

ψ̇(t) =
1

L0b
[−v1(t) sinψ(t) + L1v1(t)κ(t) cosψ(t)]− v1(t)κ(t).

(4.6)

We once again proceed to split up lateral and longitudinal control of the truck, through a distinction
between spatial and temporal dynamics. This distinction allows the separate solving of the steering angle

and the optimal velocity. Conversion into spatial domain using v1(t) = ±ds(t)
dt and κ(t) yields for forward

and backward driving, respectively,

x′1(s) = ± cosϕ1(s)

y′1(s) = ± sinϕ1(s)

ϕ′
1(s) = ± 1

L1
tan(β(s) + ψ(s)) = κ(s)

ψ′(s) = κ(s)

[
L1

L0b
cosψ(s)− 1

]
∓ 1

L0b
sinψ(s),

(4.7)

which is independent of the magnitude of the velocity [41],[26]. Unlike path planning, we can not assume
that forward driving is always maintained, so we have to specifically consider reversing. As a result, the
differences come from substituting a negative velocity in the dynamics (4.6). Moreover, we define ṡ(t) ≥ 0,
meaning that the travelled distance will always increase or remain level. Due to the change in travel
direction, the sign of κ(s) also changes, cancelling the minus sign in the ϕ1-dynamics. By means of the
definition of κ(s) in (4.7), we can relate the curvature at the trailer rear to the tractor virtual steering
angle, according to

β(s) = ± tan−1(L1κ(s))− ψ(s). (4.8)

This observation allows a controller synthesis on the basis of (4.7), using κ(s) as the input. From this
controller in terms of κ(s), the required virtual steering angle β(s) can be inferred, from which eventually
we know the actual steering angle input δ(s).

Regarding reference dynamics, the same starting point is chosen as in (4.6), namely

ẋ1r(t) = v1r(t) cosϕ1r(t)

ẏ1r(t) = v1r(t) sinϕ1r(t)

ϕ̇1r(t) = v1r(t)κr(t)

ψ̇r(t) =
1

L0b
[−v1r(t) sinψr(t) + L1v1r(t)κr(t) cosψr(t)]− v1r(t)κr(t).

(4.9)

Conversion into the spatial coordinate of the truck, by means of v1r(t) = ±dsr(s)
ds

ds(t)
dt = ±s′r(s)ds(t)dt ,
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yields

x′1r(sr(s)) = ±s′r(s) cosϕ1r(sr(s))

y′1r(sr(s)) = ±s′r(s) sinϕ1r(sr(s))

ϕ′
1r(sr(s)) = s′r(s)κr(sr(s))

ψ′
r(sr(s)) = s′r(s)κr(sr(s))

[
L1

L0b
cosψr(sr(s))− 1

]
∓ 1

L0b
s′r(s) sinψr(sr(s)).

(4.10)

Here, we notice the dependency of the reference coordinates on sr(s), being the travelled distance along
the reference. In general, the mapping sr(s) can be any arbitrary projection of the vehicle onto the
reference path. In fact, for error dynamics, we require the relative rates of change s′r(s) of the distance
sr(s) with respect to s instead of the current mapping. By choice of the error coordinates and associated
mapping this rate of change is implied, as shown in the next paragraph.

Error coordinates and projection

The next step is deriving error coordinates, describing the relative difference between the vehicle and the
reference positions. Stabilisation of these error coordinates will result in lims→∞ q(s) − qr(sr(s)) = 0,
which is the desired vehicle behaviour. The position coordinates (x, y) are dependent on the choice of
inertial frame, leading to the dependency of the error coordinates on this frame. The benefits of taking
a frame of reference independent of an arbitrary inertial frame have long been understood [27]. This
leads to two possible options, expressing the error dynamics in the frame of the vehicle ϕ1(s) or that
of the reference path ϕ1r(sr(s)), shown in Figure 4.1. In either case, we can significantly simplify the
dynamics by taking the mapping sr(s) such that we can eliminate one error coordinate. This simplifies the
dynamics and controller synthesis, at the cost of using the remaining degree of freedom mentioned earlier.
Another advantage is that we obtain a unique surjective mapping between vehicle position (x1(s), y1(s))
and reference point (x1r(sr(s)), y1r(sr(s))), meaning that the mapping is time-independent. Any position
of the truck maps to a unique reference point, provided that the lateral errors are not too extreme. More
elaborate conditions are presented near the end of this section.

Intuitively, taking the shortest distance approach between vehicle and reference path seems the most
straightforward projection option. Alternatively, a perpendicular mapping to either the vehicle or reference
is also a known choice [26]. The shortest distance projection, which is equivalent to taking the projection
perpendicular to the reference, fails for extreme lateral errors as the projection might not be unique. On
the other hand, the projection perpendicular to the vehicle fails for extreme heading errors as it can occur
that no projection is obtained at all. The resulting error dynamics are significantly simpler in the former
case, meaning that we choose the shortest distance projection as our mapping sr(s). This corresponds to
expressing the error in the frame of the projection onto the reference, or of qr(s), as shown in Figure 4.1.
In section 2.2, it has been argued that the best choice of control point is the trailer axles, meaning that
the projection is taken from the point (x1(s), y1(s)) onto (x1r(sr(s)), y1r(sr(s))), with ϕ1r(sr(s)) as the
orientation of the frame of the errors.

(x1, y1)

(x1r, y1r)

ϕ1

ϕ1r

x

y

ϕ

O
Reference path

Reference frame lateral projection
Vehicle frame

Reference frame shortest distance

Figure 4.1: Representation of reference projection options with possible error frames.
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So far, we have assumed that a mapping sr(s) from the vehicle to the reference path always exists. In
reality, for finite paths and arbitrary initial conditions, this is not the case. For instance, driving slightly
too far along a path results in overshooting the stopping point, meaning that the closest point on the
reference is slightly behind the vehicle. This is problematic since this means that the position of the truck
is not unique, as the projection is based on the assumption that the projection is always perpendicular
to the track. One possible option to deal with these situations is to allow arbitrary elongations of the
reference path at either end, with corresponding reference states steering back towards the original end of
the path. These elongations are not part of the actual reference track, but when the projection falls onto
them, they guide the vehicle back to the actual switching or stopping point. This way, the control strategy
becomes much more robust to extreme initial conditions and misjudged stopping distances.

From this point onwards, the explicit dependency on reference and travelled distances sr(s) and s is
omitted for sake of brevity. Defining the tracking errors as

xe = (x− xr) cosϕ1r + (y − yr) sinϕ1r

ye = −(x− xr) sinϕ1r + (y − yr) cosϕ1r

ϕe = ϕ1 − ϕ1r

ψe = ψ − ψr,

(4.11)

yields after differentiation and rearranging the error dynamics

x′e = yes
′
rκr ∓ s′r ± cosϕe

y′e = −xes′rκr ± sinϕ1e

ϕ′
e = κ− s′rκr

ψe = κ

[
L1

L0b
cos(ψe + ψr)− 1

]
− s′rκr

[
L1

L0b
cosψr − 1

]
∓ 1

L0b
sin(ψe + ψr)± 1

L0b
s′r sinψr.

(4.12)

Due to the choice of projection, arranging our error frame such that the entire distance between reference
and vehicle becomes the ye-coordinate, we obtain xe ≡ 0. Substituting this in the dynamics above yields

y′e = ± sinϕe

ϕ′
e = κ− s′rκr

ψ′
e = κ

[
L1

L0b
cos(ψe + ψr)− 1

]
− s′rκr

[
L1

L0b
cosψr − 1

]
∓ 1

L0b
sin(ψe + ψr)± 1

L0b
s′r sinψr,

(4.13)

as well as the projection rate of change

s′r =
cosϕe

1∓ yeκr
. (4.14)

This projection rate of change expression indicates the limitations on the maximum acceptable lateral
error. For the projection to maintain unique mappings, 1 ∓ yeκr > 0 must be satisfied at all times.
Practically, this means that the trailer rear may never be at the centre of the inscribed corner of the
reference path, since this would mean that the projection change would be undefined. Note that the
maximum lateral error at the outside of a reference turn is unbounded.

The dynamics (4.13) are the starting point for the controller design, which controls the input is κ. In
short, the control task is to design a controller for the system (4.13), such that it stabilises the error
dynamics around the origin. In turn, this implies that the state of the vehicle coincides completely with
the state of the reference, as well as the trailer rear coinciding completely with the projection point.
Demanding stabilisation of the error system towards the origin implies the use of perfect feedforward,
which is the only remaining input signal once this stabilisation has been completed.

4.2 Trailer system

As a first step towards finding a controller for the dynamics in (4.13), a simplified system is considered.
Omitting the ψe-dynamics yields the dynamics of a car-like vehicle. In this case, this dynamics would
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refer to the behaviour of the trailer with the assumption of the tractor as the steering wheel, but it
could easily be transformed into isolated truck dynamics. We make this simplification to get familiar
with nonlinear analysis, controller design and stability proofs, all of which will be useful for the complete
system. Consider the system dynamics

y′e = ± sinϕe

ϕ′
e = κ− s′rκr

(4.15)

with s′r according to (4.14), describing the error coordinates of the trailer only.

Lyapunov-based synthesis

We seek to find a stabilising controller using Lyapunov synthesis, for which we need to find a suitable
Lyapunov function candidate. In order to obtain a bounded term cyσ(ye) in the controller, we require it
in the first term of V ′, which we have to integrate for the original Lyapunov function. Therefore, we take
the Lyapunov function candidate

V = S(ye) +
1

cy
(1− cosϕe), (4.16)

with S(τ) =
∫
σ(τ)dτ the integral of the sigmoid function σ(ye) of Definition 2.1.6 and cy > 0 an arbitrary

constant. The purpose of taking this integral of the sigmoid function and the 1− cosϕe term becomes
clear when the controller is proposed. Differentiating (4.16) with respect to travelled distance s yields

V ′ = σ(ye) [± sinϕe] +
1

cy
sinϕe [κ− s′rκr] , (4.17)

for which a suitable controller is given by

κ = s′rκr ∓ cyσ(ye)− cϕ sinϕe

=
cosϕe

1∓ yeκr
κr ∓ cyσ(ye)− cϕ sinϕe,

(4.18)

with cϕ > 0, rendering the Lyapunov function candidate equal to

V ′ = −cϕ
cy

sin2 ϕe, (4.19)

which is clearly negative semi-definite. Therefore, we can conclude on the basis of Theorem 2.1.7 that the
errors remain bounded and the system is at least Lyapunov stable. Further analysis is required to prove
asymptotic convergence towards the origin, which is shown in the next paragraph. In this controller, we
recognise that 1∓ yeκr > 0 is a hard requirement, as this directly stems from the chosen projection. As a
result, the above inequality should be guaranteed by proper choice of cϕ and cy, for which conditions
are derived later in this section. Notice that the magnitude of the feedback terms cyσ(ye) and cϕ sinϕe

is now bounded by the controller gains cy and cϕ, respectively. This illustrates the purpose of using a
sigmoid function for the lateral error ye, namely to saturate the steering angle at extreme lateral errors.
Regarding the sigmoid function, as an example, the functions

σ1(ye) = tanh ye σ2(ye) =
ye√
1 + y2e

(4.20)

both suffice the requirements of Definition 2.1.6, making them suitable to use in feedback. Their primitives,
to be used in the Lyapunov function (4.16), are

S1(ye) = ln cosh ye S2(ye) =
√
1 + y2e − 1, (4.21)

respectively.
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Uniform asymptotic stability

In order to prove GUAS of the nonlinear time-varying controller proposed previously, we require the use
of Matrosov’s theorem 2.1.8. Consider the closed-loop dynamics

ỹ′e = ± sin ϕ̃e

ϕ̃′
e = ∓cyσ(ỹe)− cϕ sin ϕ̃e,

(4.22)

where the controller κ of (4.18) has been substituted. From the controller synthesis, we have that

V1 = S(ỹe) +
1

cy
(1− cos ϕ̃e) (4.23)

and its spatial derivative

V ′
1 = −cϕ

cy
sin2 ϕ̃e = Y1(ϕ̃e) (4.24)

as the first Lyapunov function, which is clearly negative semi-definite. Choosing the second function

V2 = −ϕ̃eϕ̃
′
e, (4.25)

yields, after differentiation and substitution of ϕ̃e = 0 the spatial derivative

V ′
2 = −ϕ̃′2

e − ϕ̃eϕ̃
′′
e

= −c2yσ(ỹe)2 + F2(||ϕ̃e||)
= Y2(ỹe, ϕ̃e),

(4.26)

where F2(||ϕ̃e||) is a function of the trailer heading error satisfying F2(0) = 0. Then, we establish that
Y1(ϕ̃e) = 0 implies that Y2(ỹe, ϕ̃e) ≤ 0 and that Y1(ϕ̃e) = Y2(ỹe, ϕ̃e) = 0 implies that ϕ̃e = ỹe = 0, with
which GUAS for the controlled system (4.22) has been proven. Effectively, this means that either Y1(ϕ̃e)
is decreasing, leading towards the origin, or that Y1(ϕ̃e) is stationary and Y2(ỹe, ϕ̃e) is not increasing. If
Y2(ỹe, ϕ̃e) is indeed decreasing, the system once again moves towards the origin, while if both are stationary
and no longer decrease, it has been shown that we must be at the origin of the error system.

State constraints

If we want to guarantee that the errors remain bounded by some maximum value, which is required
to keep the projection continuous, as shown in (4.14), one option is to look at the Lyapunov functions.
Consider the Lyapunov function candidate proposed in (4.16), evaluated for some initial pose of the
reference and robot. We then notice that by V ′ ≤ 0, the value of V (s) ≤ V (0) for all travelled distance s.
As a result, we can describe maximum possible values for both states, as a function of the initial poses.
Take the requirements 1 ∓ yeκ

max
r > 0 for some maximum reference curvature κmax

r and cosϕe > 0 to
guarantee the reference point moving forward at all times. The former can be simplified to

|ye| < 1

κmax
r

, (4.27)

which holds in general for both driving directions and arbitrary reference curvature satisfying |κr| < κmax
r .

Furthermore, assume known initial ye(0) and ϕe(0), for which we know that an initial value of the
Lyapunov function provides an upper bound to both system states, according to

V (0) = S(ye(0)) +
1

cy
(1− cosϕe(0)) ≥ S(ye(s)) < S

(
1

κmax
r

)
V (0) = S(ye(0)) +

1

cy
(1− cosϕe(0)) ≥ 1

cy
(1− cosϕe(s)) <

1

cy
.

(4.28)

In the most extreme case, all of the Lyapunov function value is condensed into a single state, so the
leftmost inequalities above are valid in the sense of equality. If we then apply the maximum values that
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the states ye(s) and ϕe(s) may attain, we obtain two inequalities, from which we can deduce requirements
on cy, the lateral feedback gain. Rewriting the equations above yields

cy >
1− cosϕe(0)

S
(

1
κmax
r

)
− S(ye(0))

cy <
cosϕe(0)

S(ye(0))
,

(4.29)

where it is interesting to note that this yields an upper and lower bound for the lateral gain cy, independent
of the heading gain cϕ. This is a result of only cy appearing in the Lyapunov function (4.16). Moreover,
this means that for some set of initial values and κmax

r , we obtain a range of possible values for cy, whereas
for other options we either have only one or zero feasible options. Equating both requirements provides
maximum space to the initial conditions, yielding

cosϕe(0) >
S (ye(0))

S
(

1
κmax
r

) . (4.30)

Only for initial conditions satisfying the above inequality can we guarantee, albeit conservatively, that
the state constraints are not violated by proper choice of cy. This inequality can be interpreted as an
upper bound on the allowable initial heading error ϕe(0). Depending on the amount of leeway remaining
in the 1∓ yeκr > 0 constraint, the acceptable initial heading error varies. In case either initial error is
chosen as zero, one trivially finds the other constraint as the limiting factor.

Additionally, it is interesting to examine the case of extreme lateral errors. When the truck returns to
the reference path, it should at most attain a heading error of 90 deg, i.e. cosϕe ≥ 0. This corresponds
to the situation where the lateral error is of such magnitude that the truck drives straight back towards
the reference path, perpendicular to it. In order to guarantee that the controller (4.18) tends to zero for
cosϕe = 0 and extreme ye, we require

κ =
cosϕe

1∓ yeκr
∓ cyσ(ye)− cϕ sinϕe

= ∓cyσ(ye)− cϕ sinϕe

(4.31)

to be nonnegative for ye << 0 (with sinϕe = 1) and nonpositive for ye >> 0 (with sinϕe = −1). This
can be achieved due to the sigmoid function used on the lateral error, specifically by taking

cϕ ≥ ±cy. (4.32)

If implemented, this prevents the truck from returning to the reference path driving in circles and moving
back along the reference. Instead, the truck will maintain driving perpendicular to the reference path, until
the lateral error is diminished sufficiently and the truck merges with the reference. When close enough,
the heading term of the controller begins to dominate the lateral term until both become zero.

4.3 Full truck system

Extending the considered system can be done in multiple ways. We first consider a cascaded control
structure, before we attempt to look at the system (4.13) in its entirety and apply the same methods
as in section 4.2. Consequently, we simplify the system by looking at time-invariant reference signals,
as well as linearisation about these references. For these simplified systems, controllers are synthesised
and conditions for stability are provided. Finally, the obtained insights are combined in the design of a
complete controller, which is to be tested in a simulation environment.

Constant curvature

Finding a controller that directly stabilises the nonlinear system is attempted in two different ways.
First, we take the curvature of the trailer system and use it as the desired curvature which needs to be
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realised by the tractor. This refers to a cascaded approach, where a desired controller of a subsystem
is the reference for the next subsystem. Secondly, we mimic the method of section 4.2 and use a direct
Lyapunov synthesis for finding a controller. Both of these methods are shown in Appendix C

For the above approaches, we have not been able to find a stabilising controller for the nonlinear
time-varying system directly. Therefore, we attempt to make simplifications by first considering the
time-invariant case with references of constant curvature, before looking at the linearisation of the
dynamics. Notice that for a reference of constant curvature, ψ′

r = 0 holds, from which we obtain

κr

[
L1

L0b
cosψr − 1

]
∓ 1

L0b
sinψr = 0, (4.33)

from which we can either isolate κr or ψr. Due to the dynamics (4.13) containing only one instance of κr,
we substitute

κr =
± sinψr

L1 cosψr − L0b
, (4.34)

yielding the nonlinear time-invariant dynamics

y′e = ± sinϕe

ϕ′
e = κ∓ s′r

sinψr

L1 cosψr − L0b

ψ′
e = κ

[
L1

L0b
cos(ψe + ψr)− 1

]
∓ 1

L0b
sin(ψe + ψr),

(4.35)

assuming that |ψr| < cos−1
(

L0b

L1

)
. For these time-invariant dynamics, a Lyapunov-based controller

synthesis using the Lyapunov function candidate

V = S(ye) +
1

c1
(1− cosϕe) +

1

c2
(1− cosψe) (4.36)

has not provided any results, for the same reasons described in Appendix C. Even for the simple case of
tracking a straight line, or κr = ψr = 0, the dynamics

y′e = ± sinϕe

ϕ′
e = κ

ψ′
e = κ

[
L1

L0b
cosψe − 1

]
∓ 1

L0b
sinψe

(4.37)

still do not provide a straightforward Lyapunov-based synthesis using (4.36). This is a result of the
complexity of the control task, which requires the simultaneous stabilisation of two trailers, both of which
are directly affected by the input κ.

Linearisation

Another approach to simplify the dynamics of (4.13) is to linearise it around the reference ye = ϕe = ψe = 0
and κ = s′rκr = κr, yielding

ȳ′e = ±ϕ̄e

ϕ̄′
e = ∓κ2r ȳe + κ̄

ψ̄′
e =

[
1

L0b
sinψrκr ± κ2r

(
1− L1

L0b
cosψr

)]
ȳe ± L1 − L0b cosψr

L0b(L0b − L1 cosψr)
ψ̄e +

[
L1

L0b
cosψr − 1

]
κ̄.

(4.38)

By applying Lemma 2.1.9, we find that the determinant of the corresponding controllability matrix is
always strictly nonzero, meaning that the origin of this system is controllable. Substituting the constant
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curvature assumption (4.34) yields the LPV dynamics

ȳ′e = ±ϕ̄e

ϕ̄′
e =

∓ sin2 ψr

(L0b − L1 cosψr)2
ȳe + κ̄

ψ̄′
e = ± L1 − L0b cosψr

L0b(L0b − L1 cosψr)
ψ̄e +

[
L1

L0b
cosψr − 1

]
κ̄,

(4.39)

for which we seek to find a stabilising κ̄, suitable for a feasible domain on ψr. Assuming any state feedback
of the form

κ̄ = −cyye − cϕϕe − cψψe, (4.40)

yielding a closed loop system characterised by the polynomial P = λ3 + a2λ
2 + a1λ+ a0, we require the

roots to be in the left half of the complex plane by Theorem 2.1.10. By means of the Routh-Hurwitz
criterion of Corollary 2.1.11, we obtain the necessary and sufficient conditions

a2 > 0 a0 > 0 a2a1 − a0 > 0, (4.41)

to guarantee roots with strictly negative real part. For our system, taking into account that a1 > 0 is
implied, these become

a2 = −L
2
0bcψ − L2

0bcϕ ± L1 ∓ L0b cosψr + L2
1cψ cos2 ψr + L1L0bcϕ cosψr − 2L1L0bcψ cosψr

L0b(L0b − L1 cosψr)
> 0

a1 = ±cy ± L2
1 cosψr − L0b(L1cϕ ± cos2 ψr + L1cϕ cos2 ψr ∓ 1) + L2

0bcϕ cosψr

L0b(L0b − L1 cosψr)2
> 0

a0 =
1

L0b
cy cosψr − 1

L0b(L0b − L1 cosψr)3

[
sin2 ψr(±L1 + L2

0bcψ ∓ L0b cosψr + L3
1cy cos

2 ψr

+ L2
1cψ cos2 ψr + L1L

2
0bcy − 2L1L0bcψ cosψr − 2L2

1L0bcy cosψr)
]
> 0

a2a1 − a0 =
±1

L2
0b(L0b − L1 cosψr)2

[
± L2

1cϕ ± L2
0bcϕ − L1L

2
0bc

2
ϕ + L3

0bc
2
ϕ cosψr + L4

0bcycϕ − L4
0bcycψ

+ L3
1cϕcψ cos2 ψr + L1L

2
0bcϕcψ ∓ 2L1L0bcϕ cosψr − L1L

2
0bc

2
ϕ cos2 ψr − L3

0bcϕcψ cosψr + L2
1L0bc

2
ϕ cosψr

+ 2L1L
2
0bcϕcψ cos2 ψr − L2

1L0bcϕcψ cos3 ψr − L3
1L0bcycψ cos3 ψr + L2

1L
2
0bcycϕ cos2 ψr

− 3L2
1L

2
0bcycψ cos2 ψr − 2L1L

3
0bcycϕ cosψr + 3L1L

3
0bcycψ cosψr − 2L2

1L0bcϕcψ cosψr

]
> 0

(4.42)

for forward and backward driving, respectively. Isolating from these inequalities the gains cy, cϕ and cψ,
we find that they have to fulfil the conditions

cy > 0

cϕ ≷− cyL0b

cψ >
1

(L0b − L1 cosψr)2(L1cϕ − L2
0bcy − L0bcϕ cosψr + L1L0bcy cosψr)

[
L1L

2
0bcϕ cos2 ψr(cϕ − L1cy)

+ L0bcϕ cosψr(cϕL
2
1 ± 2cyL1L

2
0b + 2L1 ∓ cϕL

2
0b)− cϕ(±L2

1 − cϕL1L
2
0b + cyL

4
0b ± L2

0b)
]
.

(4.43)

The above conditions reveal some insight into the workings of the feedback controller and what the effect
of each gain is. Starting with cy, which requires a positive gain on the lateral error, which is responsible
for suppressing the trailer lateral error. Consequently, we have the heading gain cϕ, of which the stability
condition is driving direction dependent. For forward driving, we would expect a positive gain, which
is not necessarily required. Due to the inherent stable nature of trailers during forward motion, it is
permitted to have it slightly working against the lateral gain, as long as it remains sufficiently small. For
backward driving, the situation is switched as a result of the sign change first observed in (4.7). Also for
the nonlinear controller derived for the isolated trailer system in (4.18), we noticed this sign difference
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when reversing. In fact, due to the unstable nature in this case, the heading gain needs to dominate this
effect and is therefore bounded from below. Regarding the articulation angle gain cψ, we find a lower
bound, depending on the reference track. Its responsibility is to keep the tractor in line, and prevent
it from returning to its stable undesired equilibrium. Looking at the system from the perspective of
Figure 2.3, the gain cψ keeps the trailer close to the reference, which is clearly more involved in the
case of backward driving. Moreover, for increasing reference curvature, the reference articulation angle
increases as well, meaning that the tractor rear is further away from its stable equilibrium. This results
in a significant increase in required cψ, to counteract this instability and maintain stable reversing. As a
consequence, limiting the maximum allowable reference curvature allows for a smaller articulation angle
gain cψ, improving the error attenuation performance of the controller.

Considering the maximum steering angle of the truck of approximately 30 deg and the vehicle dimensions
listed in section 2.2, we find a maximum constant articulation angle of approximately |ψr| ≤ 1, satisfying

the assumption that |ψr| < cos−1
(

L0b

L1

)
. In a practical scenario, the maximum curvature of the reference

path could be used as the determining factor in that case, as not every reference path contains the tightest
possible turns. Consequently, we have conditions for local asymptotic stability around the reference for
the admissible range of constant curvature references, or circles. In order to verify whether the proposed
controller of (4.40) also works for time-varying references, simulations are performed in section 4.5. Here,
the limitations of the controller obtained from the linear system are put to the test as well.

Controller extensions

Based on the linear state-feedback controller proposed in (4.40), we can attempt to apply some of the
lessons learnt in section 4.2. As long as it is ensured that the linearisation of the controller around
the origin of the error system remains identical to the linear state feedback controller, all results and
conclusions obtained for the linear controller above remain valid. Recalling the two proposed controllers
of (4.18) and (4.40), we find

κtrailer = s′rκr ∓ cyσ(ye)− cϕ sinϕe (4.44)

as the controller derived for the trailer system and

κ = s′rκr − cyye − cϕϕe − cψψe (4.45)

as the state feedback controller for the linearised system. Apart from the sign switch at the lateral
feedback term, the principal differences lie in the saturation and sine functions. Applying the same logic as
in section 4.2, the saturation function will help in preventing excessive steering angles for extreme lateral
errors. There are multiple options for feasible sigmoid functions for this application, provided that they
satisfy Definition 2.1.6. Furthermore, the sine function more accurately cancels the lateral ye-dynamics,
as well as deals with the angle ϕe correctly. The wrapping of angles, as in ϕe = ϕe + 2kπ, now leads to
correct representation in the controller. Finally, we have the articulation angle feedback term cψψe, for
which we do not have an example. Since its main function is ensuring the stability of the ψe coordinate,
stabilising the tractor around the reference, it can be strengthened by taking the tangent function tanψe

instead. This implies that for extreme errors, the associated feedback term tends to infinity. Had it not
been for the input constraints, this would have lead to the guarantee that |ψe(s)| < π/2 for all s. Again,
this also incorporates the domain of angles properly, meaning that tanψe = tan(ψe + 2π). Combining
the above statements and observations yields the nonlinear controller

κ = s′rκr − cyσ(ye)− cϕ sinϕe − cψ tanψe, (4.46)

of which the linearisation remains identical to the prior choice, hence local stability is preserved for gains
satisfying (4.43). It would also be possible to flip the sign of the lateral feedback term and maintain
a constant condition on cϕ, but this serves no real purpose. The results from section 4.2, regarding
conditions on the gains to satisfy state constraints and input constraints at extreme errors, no longer
hold. They can, however, be used as guidelines when tuning gains.

Converting this controller back to the δ controller that is required for the eventual hardware implementation
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requires (2.3), (4.8) and (4.46). Rewriting yields

δ = tan−1

(
L0

L0b
tan
(± tan−1(L1κ)− ψ

))

= tan−1

(
L0

L0b
· ±L1κ− tanψ

1± L1κ tanψ

) (4.47)

with the curvature controller using the square root sigmoid function, given by

κ =
cosϕe

1∓ yeκr
κr − cy

ye√
1 + y2e

− cϕ sinϕe − cψ tanψe. (4.48)

From a physical perspective, the behaviour of controller (4.48) makes sense. First of all, we have a
feedforward term based on the reference curvature and projection speed s′r. For small tracking errors,
this projection speed tends to one, meaning that the reference curvature is used as direct feedforward. In
the case of errors, the feedforward term is supplemented by a nonlinear state feedback part. Consider for
instance the case when driving backwards and close to a straight reference path, a deviation of the rear of
the trailer to the left (ye > 0) requires steering to the left, as does a clockwise deviation of the orientation
of the trailer (π > ϕe > 0). If the truck itself has a clockwise orientation deviation ( 12π < ψe < 0) steering
to the right is required. For forward driving, the situation is precisely reversed, due to the ± signs in the
inverse kinematics (4.47).

Regarding tuning intuition, we have the lateral gain cy taking the role of a proportional gain on the
error. Increasing its value decreases rise time at the cost of overshoot. Secondly, the trailer heading
gain cϕ acts as a differential term to the system behaviour. Due to the ye-dynamics, whose derivative is
given by ± sinϕe, we recognise that increasing the lateral gain adds damping to the controlled system.
Generally, this leads to slightly increased rise times, but reduced overshoot and especially reduced settling
times. These two gains are the main tuning knobs for adapting the controller, since cψ is primarily
introduced to maintain the stability of the articulation angle. A high gain ensures that the articulation
angle remains close to the reference, which provides very little freedom for the system to suppress other
errors. Therefore, this gain should be chosen as low as possible, while maintaining the conditions for
stability of (4.43). Recall that the requirement on cψ is dependent on the gains cy and cϕ, as well as on
the maximum value of ψr considered path. Increasing cψ further than necessary increases rise time and
settling time and has no noticeable effect on overshoot.

4.4 Velocity control

The paths and controllers derived so far have only considered the spatial domain, meaning that it was

made completely independent of time. Employing the relationship v1(t) = ±ds(t)
dt we converted the

dynamics into spatial domain and eliminated the effect of the magnitude of the velocity. Still, a velocity
controller is required to go back from the analysis and synthesis domain towards a practical setting. Since
the spatial dynamics are not affected by the driven velocity, we assume that the travelled trajectory is
known a priori. Specifically, the curvature of the trailer can be computed based on the controller and
the initial conditions all the way until the final position. Admittedly, due to imperfections in modelling
and noise, this path is not driven exactly, leading to small deviations in realised curvature. This can be
solved by recomputing the predicted curvature ahead and associated desired velocity at each discrete
point in time, or whenever some boundary is exceeded. Since there is no reference value associated with
the velocity, as the control task is simply to drive the maximum admissible velocity, the velocity profile is
the result of a constrained linear optimisation problem.

Optimisation problem formulation

Starting off, we establish the velocity of any point on the truck as v(s(t)) = ds(t)
dt , with s(t) the travelled

distance of the associated point. Restricting ourselves to the point of no side-slip, namely the rear axles
of tractor and trailer, the velocities above are purely longitudinal velocities, equal to v0(s(t)) and v1(s(t))
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of Figure 2.1. From this, we also obtain the accelerations ax(s(t)) =
dv(s(t))

dt = d2s(t)
dt2 at both the tractor

and trailer rear. Even though the lateral velocities are zero, the lateral accelerations are given by

a0y(s(t)) = v20(s(t))κ0(s(t)) a1y(s(t)) = v21(s(t))κ1(s(t)), (4.49)

denoting the tractor and trailer, respectively, with κi(s(t)) the curvature of the path at the corresponding
axle. Note that by the controller design, only κ1(s(t)) is available, but that this can easily be rewritten
into the curvature at the truck. For all relevant accelerations and velocities, we can define limits to shape
the desired velocity profile. Define these limits as

vmin
0 ≤ v0(s(t)) ≤ vmax

0

a+,min
0x ≤ a+0x(s(t)) ≤ a+,max

0x

a−,min
0x ≤ a−0x(s(t)) ≤ a−,max

0x

|a0y(s(t))| ≤ amax
0y

|a1y(s(t))| ≤ amax
1y ,

(4.50)

to accommodate for maximum velocity with forward and backward driving, maximum acceleration and
deceleration with both forward (a+) and backward (a−) driving and the maximum lateral acceleration of
both the truck and trailer. With these, all friction, powertrain, comfort and safety requirements can be
guaranteed. Note that the longitudinal velocity of the trailer is not listed, as the combination of trailer
lateral acceleration and tractor velocity through (2.10) sufficiently bounds the trailer velocity. It could
simply be added if need be, but is in general never the limiting constraint.

By expressing all constraints of (4.50) into the position of a single control point, we can once again
significantly simplify the resulting optimisation problem. It turns out we have four (or eight) constraints
on the tractor rear, where the input v0(t) applies, while we only have one (or two) on the trailer rear.
The straightforward choice is therefore the tractor rear as the control point of the velocity optimisation
problem. Expressing the known curvature at the trailer rear into the curvature at the tractor rear requires
the dynamics of (2.12), yielding

κ0(s(t)) =
L1κ1(s(t))∓ tanψ(s(t))

L0b [1± L1κ1(s(t)) tanψ(s(t))]
, (4.51)

where use has been made of ϕ̇0(s(t)) = v0(s(t))κ0(s(t)). With the relationship between the velocities
v0(s(t)) and v1(s(t)) of (2.10), we can express all constraints of (4.50) into the trailer axle. These
constraints, combined with the aim to maximise the longitudinal velocity of the tractor, yields the desired
linear optimisation problem.

Finding the optimal velocity

Knowing that the velocity optimisation problem is an optimisation problem with linear cost function and
constraints, the minimiser is a so-called bang-bang solution. The solution will always satisfy at least one
constraint in the sense of equality, meaning that we can always take the most stringent one. First of all,
the constraints of (4.50) are compared at each distance s to obtain the pointwise maximum velocity. We
do assume that all future path information, meaning κ(s) and q(s), is calculable and known. Moreover,
note that in the velocity optimisation, the tractor rear is considered the control point, meaning that the
travelled distance s indicates the travelled distance of the tractor. This step takes lateral acceleration
limits and the maximum velocity into account, according to

v0,point(s) = min

(
vmax
0 ,

√
amax
0y

κ0(s)
,

√
amax
1y

κ1(s)

cosβ(s)

cos(β(s) + ψ(s))

)
, (4.52)

where the explicit dependency of s(t) on time t has been omitted and β(s) and ψ(s) are obtained from
the current input and vehicle state, respectively. Taking the minimum out of the three terms ensures
that the corresponding constraints are met at each point along the path. A switching point can easily be
included by setting v0,point(sswitching) = 0, where sswitching is the value of s at the switching point.
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The calculated velocity profile is the ideal velocity without taking powertrain and braking capabilities
into consideration. In order to do so, we discretise the path into equidistant, arbitrarily small portions,
for which a constant acceleration is assumed. This allows the incorporation of the maximum longitudinal
acceleration of the truck by iteratively moving forward from the initial velocity of v0(0). Considering the
definitions of acceleration and velocity of rectilinear motion

a0x(s) =
dv0(s)

dt
v0(s) =

ds

dt
, (4.53)

we can eliminate dt and obtain v0(s)dv = a0x(s)ds. Integrating both sides from s to s+Δs, assuming
constant acceleration for this interval, yields

1

2

[
v20(s+Δs)− v20(s)

]
= a0x(s)Δs. (4.54)

Isolating v0(s+Δs) results in the updating scheme for forward driving, given by

v0,forward(s+Δs) = min

(
v0,point(s+Δs),

√
v20 + 2a+,max

0x Δs

)
, (4.55)

where clearly the pointwise velocity may not be exceeded. Finally, we perform a very similar approach
as the forward integration approach, but this time taking the maximum deceleration of the vehicle into
account. The corresponding updating sequence starts at the known final velocity v0(sf ) and satisfies

v0,backward(s−Δs) = min

(
v0,point(s−Δs),

√
v20 − 2a+,min

0x Δs

)
. (4.56)

This backward optimisation procedure is the latest step in the implemented method, meaning that it yields
v0(s). For backward driving, an analogous approach is performed, but with the adjusted longitudinal

acceleration limits a−,max
0x and a−,min

0x .

In short, this yields a feasible velocity profile, satisfying both the lateral and longitudinal constraints on
the truck. It is optimal within the resolution chosen for Δs, assuming that infinite jerk can be applied to
the system. Since it is a linear optimisation procedure, the optimum will always be on the boundary of
the feasible domain, meaning that at least one constraint is met in the sense of equality. Most of the time,
this will be the maximum acceleration or deceleration that is active. In the case of sharp turns, however,
the pointwise velocity may be limiting for a certain distance, being the constraint met in equality in this
case.

4.5 Validation and limitations

In the previous sections, methods have been introduced to design a controller on the basis of a complicated
nonlinear system. A controller is proposed which is proven only locally stable around the reference track
for the time-invariant case. To investigate its performance in the time-varying, nonlinear application
it is designed for, we require a realistic simulation environment of the controller truck system. Along
with the tracking results, attention is given to generating Lyapunov functions which (locally) provide
stability guarantees to the system. Finally, the limitations of the controller regarding initial conditions
and controller gains are investigated, before concluding the chapter.

Simulation results

The plant model of the simulation environment is based on the dynamics of (2.12), where the velocity
conversion of (2.10) and steering angle conversion (2.3) are used. The considered truck parameters and
dimensions are listed in A, which belong to the scaled version that is used in the TruckLab. The reference
signals are either generated by an arbitrary κ(s) function or by the output of the path planning algorithm,
both of which imply the full state of the system provided known initial conditions. The controller (4.48)
has been implemented, together with the inverse kinematics of (4.47) to obtain the tractor steering
angle.
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Testing the performance of the controller requires choosing suitable gains. Assuming some path without
too sharp turns, we can apply the conditions of (4.43) to find a set of suitable gains. We choose the set

cy = 2 cϕ = 3 cψ = 1 (4.57)

for forward driving and
cy = 2 cϕ = −3 cψ = 4 (4.58)

for reversing motions. The difference in cψ is required to maintain articulation angle stability, where we
recognise that the constraint in (4.43) is stricter for backward driving, resulting in a higher gain. First of
all, consider the simplest possible reference path, a straight line, being defined by a constant reference
curvature of zero. Taking several initial conditions around this reference yields the results in Figure C.2
for forward driving. Figure 4.2 shows the same initial conditions for backward driving. We recognise
stable reference tracking for initial errors deviating significantly from the origin. The transient behaviour
is relatively short and the closed-loop system exhibits no overshoot. The plots for input curvature and
Lyapunov function traces are provided in Appendix C.
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(b) Error traces.

Figure 4.2: Controller validation for backward driving on straight reference path.

In addition to straight-line references, we can also consider nonzero constant curvatures, yielding circular
reference paths. Figures C.5 and 4.3 show simulation results for varying initial conditions for a constant
curvature of κr(t) = −0.4. The supporting graphs for input curvature and Lyapunov function traces can
be found in Appendix C. These simulations show that the qualitative behaviour is very similar for both
driving directions, meaning that good error attenuation performance is obtained. Furthermore, perfect
tracking is observed after stabilisation of the transient effects has been completed, as the feedforward is
identical to the reference steering angle in this case.

Tracking a time-varying reference is more relevant to validate in simulation, as there is no proof that
the controller yields a stable closed-loop system. Considering the TruckLab scenario of Figure 3.2,
we obtain the tracking results shown in Figure 4.4, supported by Appendix C. Here, we recognise
that the controller is capable of dealing with time-varying reference curvatures and significant errors
simultaneously. The switching point is also dealt with correctly, inducing no further difficulties to the
tracking performance.

Regarding the driven velocity, where the method of section 4.4 was applied, we obtain the velocity trace
shown in Figure 4.5 for the TruckLab scenario. Here, parameters are chosen such that the different
regimes in the optimisation problem are displayed clearly. We clearly recognise the start and endpoints,
as well as the switching point at approximately 13m. Moreover, the sections where the powertrain, the
maximum velocity and the lateral accelerations are limiting can also be distinguished. This figure also
shows the trailer velocity being significantly smaller than the tractor velocity in corners, which is to be
expected and also follows from (2.10).
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Figure 4.3: Controller validation for backward driving on circular reference path.
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Figure 4.4: Controller validation for TruckLab scenario.

Lyapunov functions

In addition to simulation results supporting the idea that the proposed controller is stabilising and
exhibits sufficient performance, we can also consider Lyapunov functions. Finding a function satisfying
the properties of a Lyapunov function, introduced in Theorem 2.1.7, further supports the idea that the
closed-loop system is stable. First of all, the linearisation allows a quadratic Lyapunov function of the
form

V = eTP (ψr)e, (4.59)

with e = (ȳe, ϕ̄e, ψ̄e)
T the error coordinates and P (ψr) > 0 a positive definite weighting matrix that is

dependent on a constant reference articulation angle. By means of the Lyapunov equation

ÃT (ψr)P (ψr) + P (ψr)Ã(ψr) = −Q, (4.60)

where Ã(ψr) is the closed-loop system matrix satisfying e′ = Ã(ψr)e and Q > 0 an arbitrary positive
definite matrix, we can find a Lyapunov function to the closed loop system of Ã(ψr). Taking Q = I3
yields a Lyapunov function for both forward and backward driving for any given articulation angle, given
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Figure 4.5: Velocity trace example for TruckLab scenario.

by (4.59). For the straight line ψr = 0 example, we obtain

P+(0) =

⎡
⎣ 1.58 0.75 −0.04

0.75 1.17 −0.07
−0.04 −0.07 0.05

⎤
⎦ P−(0) =

⎡
⎣ 1.68 −0.89 0.10
−0.89 1.36 −0.16
0.10 −0.16 0.06

⎤
⎦ , (4.61)

for forward and backward driving, respectively. The Lyapunov function should always decrease when the
error system is close to the origin, meaning when V is small. The resulting Lyapunov function traces for
the TruckLab scenario are shown in Figure 4.6, where the Lyapunov function for ψr = 0 is displayed and
switched according to driving direction.

In addition to a quadratic Lyapunov function at a given constant articulation angle ψr, we attempt to
find a constant Pc(ψr) that holds for all admissible values of ψr. To this end, we define a polytopic system
and solve the LMI problem

Minimise τ

s.t. Ã(ψr)
TQ+QÃ(ψr) < τI3

∀ ψr ∈ [−ψmax
r , ψmax

r ]

Q = QT

Q > I,

(4.62)

where we can reconstruct Pc(ψr) = Q−1, yielding a common quadratic Lyapunov function (CQLF) for
all admissible constant curvatures. For the set of gains proposed in (4.57) and (4.58), this LMI yields a
feasible solution, meaning that the closed-loop linear system is indeed quadratically stable for constant
curvature. The Lyapunov function (4.59) with the matrix

P+
c =

⎡
⎣51.9 61.5 49.1
61.5 88.4 70.8
49.1 70.8 69.9

⎤
⎦ P−

c =

⎡
⎣ 75.2 −94.0 47.4
−94.0 135.0 −71.9
47.4 −71.9 50.5

⎤
⎦ (4.63)

proves this, for forward and backward driving, respectively. Note that this does not imply that a
time-varying reference signal is stabilised, even when containing only admissible reference articulation
angles. Additionally, we find a different CQLF for both driving directions, as both the system dynamics



4.5. VALIDATION AND LIMITATIONS 50

and controller gains differ. Around a switching point, it should be ensured that no Zeno behaviour,
meaning no uncontrolled switching between forward and backward driving, can occur. Zeno behaviour
could prevent the Lyapunov functions from decreasing towards zero, as the system essentially becomes
stuck at a switching point.
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Figure 4.6: Lyapunov functions for TruckLab scenario corresponding to the initial conditions of
Figure 4.4.

In addition to a quadratic Lyapunov function, we can reconsider Lyapunov functions of the form (4.36).
Attempting to find gains c1 and c2 such that the resulting derivative is never increasing, runs into the
issue shown in Figure 4.7. These are the three (unweighted) terms of the nonlinear Lyapunov function,
where an initial condition of ỹe(0) = 0.5 and ϕ̃e(0) = ψ̃e(0) = 0 is considered. Here, we recognise that
in order to decrease the lateral error, the articulation error first has to increase. This means that no
weights c1 and c2 exist for which the sum of the three terms never increases. Presumably, cross-terms are
required to yield such a Lyapunov function, but this lies outside the scope of this thesis.

Controller limitations

Since the proposed controller of equations (4.47) and (4.48) is based on the linear system, there are
supposedly initial conditions for which the controller fails to stabilise the system. Moreover, from the
controller synthesis, we recall that the projection onto the reference path is defined provided that (4.14)
remains bounded. To this end, the inequality 1∓ ỹeκr > 0 must hold for all distance s. Additionally, the
conversion (4.47) contains the system dimensions, meaning that incorrect estimation of these dimensions
leads to an incorrect control law.

Executing simulations with some extreme initial errors, we obtain Figure 4.8. This result shows that the
controller behaves properly, even in the case of extreme lateral and heading errors. The trajectory of
the path corresponding to the largest initial lateral error shows some overshoot in x-direction, which is
further increased for larger initial conditions. For initial errors at the right side of the track, the first turn
is required to be taken tighter than the reference. In a practical setting, there is a limit to the amount of
corner that can be cut, due to steering system and articulation angle limitations. Regarding the heading
error, it is clear that all traces quickly converge to the desired reference path. Interestingly, for ϕ̃e(0) = π
the controller does not manage to turn around the truck, as this initial condition coincides with the
unstable equilibrium of the controlled system. On close inspection, we also recognise the reference path
extension to guarantee a feasible mapping when driving behind the initial condition. Even though the
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Figure 4.7: Nonlinear Lyapunov function terms.

reference path was not defined for x < 1, this extension still guides the truck back to the original reference
path.
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Figure 4.8: Extreme initial condition simulations.

If we take an initial condition close to or past the limit on 1∓ ỹeκr > 0, we find the results in Figure 4.9.
The most extreme admissible initial condition is plotted here, which lies very close to the centre of the
circle the reference path currently forms. Note that a curvature κr corresponds to a radius 1

κr
, where

on the centre the shortest distance projection to the reference track may be undefined. Attempting to
simulate an initial condition exceeding this restriction leads to undefined projections and chattering
behaviour, meaning that this should be avoided at all times.

Modelling errors are expected to have a detrimental effect on the tracking performance of the controller,
even once stabilisation of the initial errors has been completed. The most common modelling error would
be the trailer length, as this can not be measured beforehand, is highly trailer-dependent and even varies
with load. Different loading conditions affect the weight distribution, which influences the effective point
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Figure 4.9: Extreme initial conditions for projection feasibility constraint.

of rotation of the trailer axles. Investigating a wrongly identified trailer length L1 yields the results
in Figure 4.10, where lengths between 0.5L1 (q1) and 2L1 (q6) were considered in the controller. The
resulting initial error attenuation for the straight line is not too affected. The feedforward signal much
more so, as the conversion from reference to eventual steering angle uses the inaccurate L1 estimation.
This observation emphasises the importance of an accurate online estimation of the effective trailer
lengths, as well as the other relevant vehicle dimensions.
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Figure 4.10: Simulation results using wrongly estimated trailer lengths L1.

4.6 Observations and conclusions

In this chapter, a controller stabilising the tractor semi-trailer system around an arbitrary full-state
reference has been proposed. To this end, error dynamics have been defined, using the shortest distance
mapping between vehicle and reference path. These error dynamics are defined in spatial coordinates,
meaning that they are independent of the magnitude of the velocity. In order to synthesise a controller,
a simplified system was considered first, consisting of a trailer only. The lessons learnt and methods
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used here are then applied to the full system. However, simplifications were required to eventually
obtain a locally stabilising controller, namely a constant reference curvature assumption and linearisation.
These controllers have been expanded using nonlinear functions to extend their performance and area
of applicability. The eventual controller performance has been validated in a simulation environment,
where it was tested for multiple different references and extreme initial conditions. Regarding velocity
optimisation, a simple linear optimisation problem was proposed. This optimisation problem maximised
the driven velocity, subject to powertrain, safety and comfort constraints. A minor drawback is the
computation involved with determining κ(s) ahead of the vehicle, which is required to anticipate turns
coming up. It should be recomputed every so often to compensate for model mismatches or estimation
errors accumulating when driving.

The resulting controller is capable of stabilising the error dynamics in all realistic scenarios tested.
Necessary and sufficient conditions for gain tuning have been derived, meaning that a lot of design
freedom remains to influence the behaviour of the controller. Moreover, the controller is capable of perfect
reference tracking, as it uses the reference steering angle as the feedforward signal. Regarding stability
proofs, only local stability of the time-invariant system for arbitrary admissible curvatures has been
proven. Any extensions towards obtaining global or uniform results have not been successful. Moreover,
the convergence speed at which errors are attenuated is not quantitatively assessed. No guarantees have
been found that prove that the error has been been brought sufficiently close to the origin for successful
docking.

One drawback of the proposed control strategy is the sensitivity to estimation and modelling errors. The
state and model of the system need to be mapped accurately for the assumptions made in the controller
design to hold. Additionally, the system has not been proven stable for all feasible operating conditions,
although simulations show that large initial errors and time-varying references are dealt with correctly.
Furthermore, the choices of control point and projection are the most intuitive, yielding the simplest
analysis and controller synthesis. The performance, however, might not be better than that of a controller
for which the projection was not statically defined. Leaving the projection sr(s) as an additional controller
input gives the controller more flexibility and possibly improves tracking performance.
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Chapter 5

Conclusions and recommendations

The role of road freight transport on the Dutch and European roads is predicted to continue to grow. Most
of this transport is performed by tractor semi-trailer combinations, known for their flexibility and efficiency.
In the current society of rapid engineering progress and automation, numerous opportunities exist to
improve the logistics sector. This thesis aims to contribute by specifically considering autonomously
driving trucks around warehouses and distribution centres. These are low-speed, closed-off and predictable
environments with few external influences. In this chapter, a summary of the thesis and its primary
conclusions and recommendations for future research are stated.

In order to describe the motion and dynamic behaviour of tractor semi-trailers, a kinematic model has been
derived to model and predict the states of the vehicle. Based on one of these models, a kinodynamic path
planning algorithm is developed, aiming to yield a feasible and optimal path, taking vehicle constraints
and external obstacles into account. It takes the outputs of a coarse high-level planner and uses that as
initialisation to identify how obstacles ought to be passed and where the truck should turn around. Then,
a nonlinear optimisation problem is formulated based on the curvature function, which is parametrised
using quintic splines. With the coefficients of the spline as the output of the optimisation problem, the
states of the truck in spatial domain are fully determined. The objective function that is to be minimised
is a weighted sum of the path length, the bending energy (a measure of curvature) and steering intensity (a
measure of derivative of curvature). Two options for taking constraints into account have been presented,
one based on distance functions between simple shape approximations of the truck and its environment,
and the other on the hyperplane separation theorem between arbitrary convex polygons.

Based on the same single track vehicle model as used in the path planning part of this thesis, a nonlinear
reference tracking controller has been designed. To this end, error coordinates using the shortest distance
projection have been chosen, such that stabilisation of the error coordinates implies perfect reference
tracking. The projection serves as a unique mapping between vehicle state and reference state, simplifying
the resulting expressions and ensuring vehicle behaviour independent of initialisation or re-calculation of
reference paths. The error dynamics, which are defined in spatial domain, are dependent on the driving
direction of the truck. For both directions, a control strategy has been derived and analysed for an isolated
trailer system. The lessons learnt for this simple controller are applied to the entire vehicle system, where
linearisation and constant curvature assumptions are required to sufficiently simplify the dynamics. Based
on this linearisation, a state feedback controller is proposed, with sufficient and necessary conditions
for gain tuning to warrant local asymptotic stability. Then, the dynamics are converted back to time
domain through the optimal velocity profile along the entire path, taking powertrain, friction and comfort
limitations into account. The controller and velocity profile have been applied to several reference paths,
showing good and reliable reference tracking.

In conclusion, a pathfinding algorithm has been developed which respects general state and obstacle
constraints. It employs a model of the entire vehicle, meaning that feasibility and continuity of all
vehicle states are guaranteed. It does so in a rather conservative manner, however, leading to loss
of ’completeness’, since the planner may fail to find a feasible path when one exists. Moreover, the
computational and numerical complexity of the optimisation problem prevents real-time application. The
separating axis theorem method for collision avoidance specifically, works in an isolated environment
but complicates the optimisation to such an extent that often no feasible solutions are found. In fact,
neither obstacle avoidance method behaves completely as desired. The re-parametrisation of the spline
coefficients using curve knot spacing acts as a scaling factor between the optimisation parameters and
allows intuitive initialisation. It reduces the computational complexity of the optimisation problem, but



55

unfortunately not enough to warrant online implementation. The planner is also reliant on decent output
of the high-level planner for arbitrary paths, meaning that it can only function independently for simple
paths of few turns.

The proposed control strategy is capable of perfect reference tracking, using the steering angle obtained
from the reference vehicle as feedforward. Moreover, in close proximity to the reference, the controller
has been proven locally asymptotically stable and conditions have been provided allowing tuning without
compromising this stability. Using nonlinear functions, the controller has been improved to deal with the
domain of angles, as well as saturate the input in case of extreme lateral errors. No stability guarantees
have been derived for the general nonlinear system, however, which means that reference tracking with
arbitrary errors and time-varying reference curvatures is not proven reliable. By means of simulation, it
has been shown that for realistically feasible reference paths, the controller behaves well and provides
excellent tracking performance. The control strategy provides an identical tuning method for forward
and backward driving, allowing a relatively simple and intuitive setup and operation. The velocity
optimisation is simple, but reliable and robust, although it requires simulation in future time to anticipate
the path ahead.

Recommendations

Even though good results have been obtained in both path planning and tracking controller design,
various improvements are possible. Below, a list of the most important recommendations for future work
are provided.

� Experimentation
The performance and robustness of the proposed planning and control strategies have only been
tested in a simulation environment. Performing real-life experiments should validate the proposed
methods and be a starting point for further improvements.

� Online collision avoidance
In addition to tracking a collision-free path, online safety features need to be implemented to deal
with situations in which extreme errors or dynamical objects would otherwise cause a collision.

� Obstacle detection
Neither proposed obstacle detection method performs as desired. The bounding box method
introduces significant conservatism in the solution, while the separating axis theorem method is
numerically too harsh on the solver, meaning that a new method should be introduced.

� State and system estimation
The reliance on accurate and reliable kinematic models and estimation is very significant. In both
planning and control, a large sensitivity towards the system states and effective trailer lengths
exists, meaning that a state and parameter accurate estimation procedure is required. One option
is to implement an Extended Kalman Filter.

� Path planner complexity
Before the proposed planner can be applied in a practical setting, its implementation needs to
be revisited and its numerical complexity reduced. Currently, it is not robust, nor fast enough
for practical implementation. Improving the implementation will also allow higher-order spline
approximations, further increasing the freedom of the planner.

� Stability proof
A global (uniform) stability proof of the controlled nonlinear system has not been done yet, which
would be desired. Even though multiple simulations show good reference tracking, the controlled
system intricacies have not been fully understood.

� Error attenuation
No error attenuation guarantees have been found to prove that the controller with specific gains
sufficiently rejects initial errors. Successful docking requires small lateral and heading errors,
meaning that disturbances and errors should be attenuated swiftly.
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Appendix A

Preliminaries

The considered scaled trucks are developed within the TU/e research [31]. Their dimensions, as well as
the full truck dimensions the scaled model is based on, are listed in Table A.1. The subscript Lf refers to
the front of the truck, while Lr refers to the rear. Furthermore, subscript Lo indicates overhang, meaning
the length of the truck past either the kingpin joint or the rear effective axle.

Table A.1: Full truck and scaled model dimensions [31].

Dimension Symbol Full truck [m] Scaled [m]
Tractor
Wheelbase L0 3.60 0.271
King pin - rear axle L0b 0.47 0.035
King pin - front axle L0f 3.13 0.236
Front overhang L0fo 1.37 0.103
Rear overhang L0ro 0.99 0.074
Total length L0 + L0fo + L0ro 5.96 0.448
King pin height - 1.19 0.090
Total height - 3.53 0.264
Total width - 2.48 0.187
Trailer
Wheelbase L1 7.62 0.573
Front overhang L1fo 1.68 0.126
Rear overhang L1ro 2.50 0.188
Total length L1 + L1fo + L1ro 13.68 1.028
King pin height - 1.19 0.090
Total height - 4.00 0.301
Total width - 2.55 0.192
Axle spacing - 1.31 0.099
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Appendix B

Path planning

Derivations

In this section, the intermediate steps required for (3.4) are detailed. Recall

ϕ′
0(s) =

1

L0b cos θ(s)
sinβ(s), (B.1)

where we substitute by means of the ϕ1-dynamics the relationship θ(s) = tan−1(L1κ(s)). Executing and
simplifying yields

ϕ′
0(s) =

1

L0b cos(tan
−1(L1κ(s)))

sinβ(s)

=
1

L0b

√
1 + L2

1κ
2(s) sinβ(s),

(B.2)

where we have arrived at the desired result of (3.4).

Planning results

The results of the path planner for the four remaining benchmark scenarios, designed by [29], are shown
in figures B.1, B.2, B.3 and B.4. The choice of gains for the objective function is α1 = 0.001 and
α2 = 0.029. Here, both the high-level path, as well as the low-level path designed in this thesis are shown
and compared. The low-level path is indicated by two lines, denoting the movements of the trailer rear
and kingpin joint. We observe that the low-level path is significantly longer than the HL-path, as it has to
satisfy all kinodynamic constraints of the vehicle. Moreover, it stands out that for scenario 4, where the
HL-planner actually fails to yield a feasible path, the proposed planner is still capable of planning.
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Figure B.1: Benchmark scenario 1.
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Figure B.2: Benchmark scenario 2.
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Figure B.3: Benchmark scenario 3.
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Figure B.4: Benchmark scenario 4.
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Appendix C

Tracking control

Nonlinear controller synthesis

In section 4.2, we have established that the controller in (4.18) stabilises the trailer error system (4.15) and
that conditions can be found for which the state constraints and specific input constraints are respected.
We then seek to find a controller that directly stabilises the nonlinear system, to which we describe two
synthesis methods in the following sections.

Cascaded approach

Consider this controller κ as the desired curvature κd at the trailer rear, which is to be ensured by
manoeuvring the tractor properly. We then convert this desired curvature κd to a desired virtual steering
angle θd at the kingpin joint, according to

θd = ± tan−1(L1κd), (C.1)

where the ϕ1-dynamics of (4.7) and θ = β + ψ are used. Taking the error coordinate θe = θ − θd yields
the very naive controller choice

β = ± tan−1(L1κd)− ψ, (C.2)

which does indeed stabilise θe = 0 and hence ensures that κ = κd, but fails to stabilise the internal
dynamics of the tractor. Taking for instance the articulation angle ψ, we find

ψ′ = κd

[
L1

L0b
cosψ − 1

]
∓ 1

L0b
sinψ, (C.3)

where the virtual control law κd does not consider the ψ dynamics. Here, in the situation of a straight
reference, when the stabilisation of the trailer has been completed, we can clearly see the remaining
dynamics

ψ′ = ∓ 1

L0b
sinψ (C.4)

being unstable for backward driving. This is a direct result of the system properties shown in Figure 2.3,
where the steering law has to stabilise both the tractor and trailer rear simultaneously when reversing.
The controller β of (C.2) fails to account for the articulation angle ψ, meaning that both β and ψ have
their stable equilibrium at π, which is clearly undesirable. Instead, we introduce another error coordinate
βe = β − βr, yielding the system

y′e = ± sinϕe

ϕ′
e = κ− s′rκr

θ′e = β′ + ψ′ ∓ L1κ
′
d

1 + L2
1κ

2
d

β′
e = β′ − s′rβ

′
r.

(C.5)

Substitution of the cascaded controller

β′ =
±L1κ

′
d

1 + L2
1κ

2
d

− ψ′ + u (C.6)



vi

yields

y′e = ± sinϕe

ϕ′
e =

L1κd ± tan θe
L1(1∓ L1κd tan θe)

− s′rκr

θ′e = u

β′
e =

±L1κ
′
d

1 + L2
1κ

2
d

− ψ′ − s′rβ
′
r + u,

(C.7)

with

κd = κrs
′
r ∓ cyσ(ye)− cϕ sinϕe

κ′d = κ′rs
′
r + κrs

′′
r − cy

dσ(ye)

dye
sinϕ1e − cϕ cos(ϕe)ϕ

′
e

s′r =
cosϕe

1− yeκr

s′′r =
− sin(ϕe)ϕ

′
e(1− yeκr) + cos(ϕe)(y

′
eκr + yeκ

′
r)

(1− yeκr)2

ψ′ =
L1κd ± tan θe

L1(1∓ L1κd tan θe)

[
L1

L0b
cosψ − 1

]
∓ 1

L0b
sinψ

ψ = ± tan−1(L1κd) + θe − βr − βe

(C.8)

In this system, the error βe is required to be stabilised to yield a stable system, meaning that the tractor
rear will be stabilised as well as the trailer. Controller u remains as the to be designed input to this system,
for which it is possible to locally stabilise this system around the origin. Even though the approach
seemed simple and intuitive, namely to proceed with the controller of the previous section and steer the
tractor such that the desired trailer behaviour is obtained, the resulting expressions have become very
complicated. This is a result of the controller operating on the spatial derivative of the steering angle β′,
resulting in a dynamic controller and requiring the derivatives of most of the system states.

Lyapunov-based

Instead, we reconsider the dynamics of (4.13), where we directly seek to apply a Lyapunov-based synthesis,
similar to the approach in section 4.2. Taking the Lyapunov function candidate

V = S(ye) +
1

c1
(1− cosϕe) +

1

c2
(1− cosψe) (C.9)

yields the spatial derivative

V ′ = σ(ye) [± sinϕe] +
1

c1
sinϕe [κ− s′rκr] +

1

c2
sinψe

[
κ

[
L1

L0b
cos(ψe + ψr)− 1

]

− s′rκr

[
L1

L0b
cosψr − 1

]
∓ 1

L0b
sin(ψe + ψr)± 1

L0b
s′r sinψr

]
,

(C.10)

where the virtual input κ occurs multiple times. Here, it is strictly possible to find a control law making
this Lyapunov function derivative negative (semi)definite, however it implies using the denominator

κ ∼ 1

sinϕe +
1

L0b
sinψe(L1 cosψe − 1)

. (C.11)

Equating this denominator to zero describes a set of poses, including the origin, for which the controller
becomes unbounded, meaning that this controller is not applicable. Taking a linearisation of the error
system around the origin yields a Lyapunov function containing cross-terms, which is supposedly also
required for the nonlinear system.
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Tracking simulations

The additional plots from the simulations of section 4.5 are shown in this section. Here, multiple
initial conditions, over several reference paths, in both driving directions are considered and good error
attenuation and reference tracking is observed for each of them. The outline of the initial pose of the
truck is shown to illustrate the initial errors of the simulations.
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Figure C.1: Additional plots backward simulation with straight reference.
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Figure C.2: Controller validation for forward driving on straight reference path.



viii

0 1 2 3 4 5 6 7 8
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Curvature κ(s).

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Lyapunov functions.

Figure C.3: Additional plots forward simulation with straight reference.
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Figure C.4: Additional plots backward simulation with circular reference.
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Figure C.5: Controller validation for forward driving on circular reference path.
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Figure C.6: Additional plots forward simulation with straight reference.
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Figure C.7: Additional plots TruckLab scenario.
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