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Extended Look-Ahead Tracking Controller With
Orientation-Error Observer for Vehicle Platooning

Anggera Bayuwindra , Erjen Lefeber , Jeroen Ploeg , and Henk Nijmeijer , Fellow, IEEE

Abstract—This paper presents a novel extended look-ahead
concept of an integrated lateral and longitudinal vehicle following
controller with an orientation-error observer. The control law is
based on input-output feedback to address a local tracking prob-
lem. It is known that due to the position control in the look-ahead
approach, the follower vehicle may cut corners. To address this
problem, a reference-induced extended look-ahead tracking point
is introduced such that the cutting-corner is compensated. More-
over, the stability of the internal dynamics is analyzed. To address
the situation where the orientation tracking error is not mea-
surable or corrupted by noise, an orientation-error observer,
constructed from the position tracking error, is designed. The
performance of the extended look-ahead controller and the
orientation-error observer is investigated by means of a simu-
lation study, and validated with experiments on a mobile robot
platform.

Index Terms—Control algorithm, vehicle platooning, observer,
cascaded system, longitudinal and lateral control.

I. INTRODUCTION

IN RECENT years, the increasing needs for mobility has
caused a high need of transportation. One solution to

compensate for the increasing number of vehicles is to develop
more infrastructure or to increase the capacity of existing
infrastructure. Since the development of the infrastructure is
time consuming, costly, and infeasible in some situations,
increasing highway capacity is seen as the most effective
solution. One of the methods to increase the highway capac-
ity is vehicle platooning. With the concept of automated
vehicles, platooning allows a vehicle to drive closer to its
preceding vehicle by eliminating the reaction time of human
driver. The concept of vehicle platooning in longitudinal move-
ment is realized through Cooperative Adaptive Cruise Control
(CACC). CACC, as an extension of ACC, utilizes wireless
communications between vehicles (V2V communication) so
that acceleration information of the preceding vehicle can be
used as a feed-forward term to attenuate disturbances along the
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platoon [1]. This is an advantage of CACC over ACC, whereas
the disturbance in ACC may be amplified in the upstream
direction [2]. For lateral movement, vehicle platooning control
can be designed by two main approaches, i.e., a path following
approach and a trajectory tracking approach. In path following,
the control objective is to drive the vehicle over a desired path
without any time constraint, i.e., there is no requirement of
when the vehicle should arrive at a certain point. Since there
is no time requirement, the vehicle’s longitudinal velocity can
be freely regulated, independent of the position on the spatial
path [3]. On the other hand, in the trajectory tracking approach,
the desired path is parameterized with respect to time, i.e., the
vehicle is required to be at a specific position along the path
at a specific time.

In [4], a lane keeping controller based on the path following
approach, is designed such that the vehicle follows a reference
path, e.g., the path composed of lane markings (either road
surface or embedded magnetic markings) using a camera or
magnetic sensor, known as a “look-down” technique. It should
be noted that the term “look-down” is rather loose since the
vehicle also requires to look for the lane markings in front
of it. The control objective of a lane keeping is to design
a steering input that brings the lateral error, i.e., distance
from the vehicle’s position to the path, to zero. Most path
following methods address the control problem by assigning
the motion along a path in a single coordinate. The single
intrinsic coordinate system used in the path following itself is
known as a Serret-Frenet reference frame, where the origin is
determined by the projection of the vehicle [3]. The projection
of the vehicle’s position onto the path is then used as reference
for the control problem. The research in [5] has shown that
the orthogonal projection with respect to the path has a local
character in the sense that the vehicle has at first to get to
the desired path orthogonally before it can project itself on
the path. Since in the Serret-Frenet frame the longitudinal
distance has been transformed into a curvilinear distance,
the longitudinal control then can be realized through CACC.
The combination of a lane keeping controller and CACC
becomes a trajectory control problem, since there is a time
requirement to be fulfilled. With this combined approach,
the follower vehicles in a platoon drive in the exact same
path as the leader vehicle, and the spacing distance objective
can be fulfilled with the CACC controller [6]. However,
the lane keeping performance in this approach relies heavily
on the reference markers and V2I (vehicle-to-infrastructure)
communication to provide the platoon with information about
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road structure. From the viewpoint of vehicle platooning,
the major disadvantage of the path following approach is
when the inter-vehicle distance is getting small, the look-down
system is unable to track the lane markings accurately as they
are obstructed by the preceding vehicle [7].

As an alternative to lane keeping, a direct vehicle-following
control is designed. A direct vehicle-following control uses
the current preceding vehicle’s position as a reference while
keeping a desired distance. The vehicle-following control of
vehicle platoons was developed from CACC and was first
designed for a longitudinal control [8]–[10]. In this approach,
the follower vehicle tracks the current position of the preceding
vehicle by using a camera (or lidar) and determines the relative
distance with respect to the follower vehicle, commonly known
as a “look-ahead” technique. The vehicle-following control
was then extended to both longitudinal and lateral control
in [11]–[13]. The objective of this longitudinal and lateral
vehicle-following control is to minimize the error between
the measured relative distance and the desired distance (e.g.,
spacing policy in CACC), and to minimize the lateral error
with respect to the preceding vehicle’s path. One of the
main challenges in this approach is to determine the path of
the preceding vehicle. Since the follower vehicle can only
measure the distance as a straight line (as opposed to the
curvilinear distance in the Serret-Frenet frame), the follower
vehicle can deviate from the path of the preceding vehicle
during cornering, known as corner cutting. In [12], a reference
virtual point, which is positioned at a desired known distance
behind the lead vehicle, is proposed to compensate the corner
cutting. The results shows that the proposed solution was
able to compensate the corner cutting for the path with
small curvatures, but was ineffective for the path with large
curvatures. In [14], an extended look-ahead approach has been
designed, based on dynamic feedback linearization, to com-
pensate for the corner cutting. The extended look-ahead uses
the velocity and heading information of the preceding vehicle
(which are available from radar and V2V communication)
to create a virtual reference-induced look-ahead point as a
new tracking objective for the follower vehicle. The results
are then elaborated in [15] with the formal stability analysis,
where the stability of the internal dynamics is guaranteed
under bounded curvatures, lateral jerk, and acceleration of
the preceding vehicle. The error dynamics in [14], [15] are
defined as a global tracking problem, in which the position
and orientation of each vehicle is assumed to be measurable
with respect to a global (i.e., fixed) coordinate frame. The
shortcoming of this method is that the global position and
orientation of vehicles are commonly not available in practical
situations.

The main contribution of this paper is the design of the
extended look-ahead controller as a local tracking problem,
where the error dynamics are defined with respect to the
target position of the follower vehicle. The advantage of our
proposed controller to the path-following control (e.g., [3], [5])
is that it does not need lane markings and utilizes the already
available information from CACC setup, thus providing bene-
fits for a practical implementation and cost-efficiency. To study
the internal dynamics of the resulting system, a formal stability

Fig. 1. A unicycle mobile robot in Cartesian coordinates.

analysis is provided. Moreover, the control strategy is then
further extended with an orientation-error observer, addressing
the situation where the relative orientation between vehicles
is not measurable, or corrupted by noise. The effectiveness
of the extended look-ahead controller against corner-cutting is
demonstrated by a simulation case study, and further validated
by an experiment with mobile robots.

The organization of this paper is as follows: Section II
presents the concept of the extended look-ahead control design
for vehicle platoons, starting with the problem formulation.
The extended look-ahead controller is proposed, and a sta-
bility analysis is subsequently provided. Section III presents
the design of the orientation-error observer. The results of
the simulation study are presented in Section IV. For fur-
ther validation, the extended look-ahead controller and the
orientation-error observer are implemented in a mobile robot
platform in Section V. Finally, the concluding remarks are
discussed in Section VI.

II. CONTROL OF VEHICLE PLATOONING WITH
EXTENDED LOOK-AHEAD

A. Problem Formulation
Consider a unicycle-type vehicle with the posture

[x(t), y(t), θ(t)]T (see Fig. 1) that can be described by fol-
lowing differential equations

ẋ = v cos θ (1a)
ẏ = v sin θ (1b)
θ̇ = ω, (1c)

where Pv =(x, y) are the Cartesian coordinates of the axle
center of the vehicle, θ is the orientation of the vehicle with
respect to the global X axis, v is the linear velocity input and
ω is the angular velocity input of the vehicle.

Consider a reference vehicle with the posture
[xr (t), yr (t), θr (t)]T and the kinematics given by

ẋr = vr cos θr (2a)
ẏr = vr sin θr (2b)
θ̇r = ωr , (2c)

where (xr , yr ) are the Cartesian coordinates of the axle
center of the reference vehicle, θr is the orientation of
the reference vehicle with respect to the global X axis,
vr and ωr are the reference velocity and angular velocity
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Fig. 2. Trajectory tracking problem with extended look-ahead, where
|P0Pr| = |P0Ps| = d.

input, respectively. The trajectory tracking problem is typi-
cally solved by stabilizing the position of Pv with respect
to the reference Pr and orientation of θ with respect to
the reference orientation θr . The relative kinematics between
these points can be determined with respect to the follower
vehicle frame (e.g., see [16]–[19]), the reference vehicle frame
(e.g., see [3], [12]), or any moving frame, which results in dif-
ferent error dynamics. In our approach, we choose the relative
kinematics with respect to the frame of the desired posture
of the follower vehicle. This choice makes the mathematical
development easier than other frame choices, as explained in
the next section.

Now consider a trajectory tracking problem with a
look-ahead distance (referred as a vehicle-following control
problem), in which the objective of the follower vehicle
is to follow the reference vehicle at a desired distance d .
We define P0 as a target point of the follower vehicle, and
Pla as a look-ahead point attached to the follower vehicle.
The coordinates of Pla are defined as

xla = x + d cos θ (3a)
yla = y + d sin θ, (3b)

where (x, y) are the Cartesian coordinates of the follower
vehicle, |P0Pr| = d , and the distance d ∈ R+ (see Fig. 2).
With this look-ahead point, the control objective of the vehicle
following problem could then be to stabilize at zero the
tracking errors (xla −xr , yla − yr ) of that point Pla with respect
to the reference point Pr. However, in a curve, the leader-
follower vehicle system has a unique instantaneous center of
rotation (ICR), such that the line through the axle of each
unicycle goes through this ICR. Consequently, when (xla, yla)
have converged to (xr , yr ), the follower vehicle will drive at a
shorter distance to the ICR, i.e., it will cut corners [12], [14].
It is interesting to remark that this problem is analogous to a
truck-trailer combination, see Fig. 3. On cornering maneuvers,
a trailer coupled to the truck will also have the cutting-corner
problem and human drivers solve this problem by letting the
truck turn at the point in front of the cornering point, denoted

Fig. 3. Analogy of cutting corner in a truck with trailer (left) and in a
vehicle platooning (right). The solid gray line is a path traveled by the leader
vehicle/truck, while the dashed black line is a path traveled by the follower
vehicle/container.

Fig. 4. Compensation of the cutting corner problem in a truck with container
(left), and in a vehicle platooning (right).

by P̃c, such that the trailer will travel on the desired arc, see
Fig. 4(left).

Based on the same approach, we extend the look-ahead
point in our error dynamics, thus creating a “reference-induced
look-ahead point” as the new tracking point objective (denoted
by Ps) for the follower vehicle such that cutting corner can be
compensated. The position of Ps in the Cartesian coordinate
system is defined by (xs, ys) and formulated such that the dis-
tance of |PvPs| equals the look-ahead distance d (Fig. 4(right)).
In other words, the “reference-induced look-ahead point” Ps
can be regarded as the position of where the look-ahead point
Pla should be. With this new look-ahead point Ps, our control
objective is then to stabilize at zero the tracking errors (xla−xs ,
yla − ys), see Fig. 2. Before we define the tracking error, first
we shall derive the position of Ps geometrically based on the
position of reference vehicle Pr.

B. Derivation of the Reference-Induced Look-Ahead Point Ps

To derive the position of Ps, let us first denote P0 as a
moving origin point, where (x0, y0) is the position of P0 in
the Cartesian coordinate system, θ0 is the angle with respect
to the global X axis, and |P0Pr| = d . This point P0 can also
be considered as the position of where the follower vehicle Pv
should be. Define αr as the angle of the circular arc formed
by P0 and Pr, see Fig. 5. To derive the angle αr , let us denote
κr as the curvature of the reference vehicle, which is defined
as

κr := dθr

dsr
=

(
dθr

dt

)
/

(
dsr

dt

)
= ωr

vr
, (4)

where vr �= 0, θr is the orientation of the reference vehicle
(which can also be considered as the angle of the tangent to
the curve or path), and sr is the curvilinear coordinate. On a
curved path, it can be observed that d characterizes the chord
length of a circular segment formed by P0 and Pr, and the
angle αr can be defined as

αr = 2 arcsin
(

1
2

dκr

)
, (5)
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Fig. 5. Projection of the reference-induced look-ahead point Ps.

where |κr | ≤ κmax < 1/d , and κmax is a constant, maximum
value of the curvature of the reference vehicle. It should be
noted that αr is defined as a function of the curvature κr
of the reference vehicle, which fully determines the circular
arc. Thus, it is not a circular arc through any two arbitrary
points, but it is an arc through the position of Pr with a known
curvature. By noting that (see Fig. (5))

sin
αr

2
= 1

2
dκr , cos

αr

2
=

√
4 − d2κ2

r
2

, (6)

the derivative of αr with respect to time is obtained as

α̇r = 2d√
4 − d2κ2

r
κ̇r . (7)

Since the length of P0Pr equals the desired inter-vehicle
distance d , the position of P0 in a global Cartesian coordinate
system can be defined as

x0 = xr − d cos
(
θr − αr

2

)
(8a)

y0 = yr − d sin
(
θr − αr

2

)
. (8b)

First we define the rotation matrix as

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
. (9)

From Fig. 5, it can be observed that the coordinate of Ps can be
obtained by a rotation of −αr

2 from the coordinate Pr around
(x0, y0) as

[
xs
ys

]
=

[
x0
y0

]
+ RT

(αr

2

) [
xr − x0
yr − y0

]
. (10)

By substituting (8) into (10), applying the angle sum formula,
and noting that R(θr −αr ) = R(θr )RT (αr ), we can eventually

rewrite (10) as[
xs
ys

]
=

[
xr
yr

]
+ d

⎡
⎣cos (θr − αr ) − cos

(
θr − αr

2

)
sin (θr − αr ) − sin

(
θr − αr

2

)
⎤
⎦

[
xs
ys

]
=

[
xr
yr

]
+ d R (θr − αr )

⎡
⎣1 − cos

αr

2
− sin

αr

2

⎤
⎦ , (11)

where R(θr − αr ) as the rotation matrix through an angle
θr − αr . It can be observed that the position of the
reference-induced look-ahead point Ps depends on the position
of the reference vehicle Pr, the angle αr , and the angle θr −αr ,
which in fact, is the desired orientation of the follower vehicle.
On a straight path, αr = 0, thus Ps will be equal to Pr.
In the following section, we define the error dynamics with
the extended look-ahead approach.

C. Error Dynamics and Controller Design of the Extended
Look-Ahead

We consider the trajectory tracking problem between Pla
and Ps, expressed in the frame of the desired posture of the
follower vehicle, with origin P0. It should be noted that we
define the relative kinematics with respect to this particular
frame because we want to cancel the rotation matrix R(θr −αr )
factor in (11). Hence, the error state components are defined
as [

z1
z2

]
= RT (θr − αr )

[
xla − xs
yla − ys

]
, (12)

with xla = x + d cos θ , yla = y + d sin θ , and [xs, ys]T as
described in (11). It can be seen directly that [z1, z2]T denotes
the relative position error. To obtain the error dynamics,
we start first by differentiating [z1, z2]T with respect to time
and taking (11) and (5) into account, resulting in[

ż1
ż2

]
= (ωr − α̇r )

[
z2

−z1

]
+

[
cos δ −d sin δ
sin δ d cos δ

] [
v
ω

]

−
[
cos αr
sin αr

]
vr −

⎡
⎣ sin

αr

2
1 − cos

αr

2

⎤
⎦ dωr

+ dα̇r

⎡
⎢⎣

1
2

sin
αr

2
1 − 1

2
cos

αr

2

⎤
⎥⎦ , (13)

where

δ = θ − θr + αr . (14)

By applying the double angle formula on sin αr and cosαr ,
substituting (6) and (4) into (13), we eventually obtain the
error dynamics as[

ż1
ż2

]
= (ωr − α̇r )

[
0 1

−1 0

] [
z1
z2

]
−

[
vr

dωr

]

+
[
cos δ −d sin δ
sin δ d cos δ

] [
v
ω

]
+

[
hκ,1
hκ,2

]
κ̇r (15)

with

hκ,1 = d3κr

2
√

4 − d2κ2
r
, hκ,2 = 4d2 − d2√4 − d2κ2

r

2
√

4 − d2κ2
r

. (16)
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If the follower vehicle converges to its desired position,
θ converges to θr −αr . Hence, δ in (14) is, in fact, the angular
error of the follower vehicle. It can be observed that error
dynamics (15) consist of: a linear time-varying term multi-
plying [z1, z2]T , since ωr and α̇r are external time-varying
parameters; and a nonlinear term multiplying inputs [v, ω]T ,
since δ is a state of the system. The objective now is to
design control laws [v, ω]T that asymptotically stabilize the
system (15) at the origin, based on input-output feedback
linearization in [20, Chapter 13], [21]. Since the matrix mul-
tiplying [v, ω]T is invertible, by choosing the control inputs[

v
ω

]
=

[ cos δ sin δ

− 1
d

sin δ
1
d

cos δ

][ −k1z1 + vr − hκ,1κ̇r
−k2z2 + dωr − hκ,2κ̇r

]
, (17)

where d > 0, we obtain the closed-loop system as follows[
ż1
ż2

]
=

[ −k1 ωr − α̇r
−ωr + α̇r −k2

] [
z1
z2

]
. (18)

Noted that by the input-output feedback linearization,
we obtain a closed-loop system which is a linear time-varying
(LTV) system. Hence, the Lyapunov stability criterion is used
to prove the stability of the closed-loop system. By the choice
of k1, k2 > 0, it can be directly verified that the origin of
subsystem [z1, z2]T is exponentially stable by the Lyapunov
function V12(z1, z2) = 1

2 z2
1 + 1

2 z2
2 such that

V̇12 (z1, z2) = −k1z2
1 − k2z2

2 < 0, (19)

for (z1, z2) �= 0, which means that V̇12 is negative definite
in (z1, z2). Since, however, the model (1) is of third order
and the error dynamics (15) are of second order, first-order
internal dynamics are present. The internal dynamics are the
unobservable part of the system dynamics that comply with
the desired output, while the zero dynamics is the internal
dynamics of the system when the system output is kept at
zero by the input [20]. It should be noted that analyzing
the (global) stability of the internal dynamics has a more
generic meaning than only analyzing the stability of the
zero dynamics. Therefore, in the next section we analyze the
stability of the internal dynamics.

D. Stability Analysis of the Internal Dynamics
From Section II.C, it has been shown that the control

law (17) exponentially stabilizes the second-order error
dynamics, which leaves us with the first-order internal dynam-
ics since the original model (1) is of third order. The first
obvious choice for the internal state would be δ, since δ
resembles the orientation error between the actual and the
desired orientation of the follower vehicle. However, in a
steady state condition, which implies that z1 = z2 = 0
and κ̇r = 0, this choice leads to two equilibrium points
δ = 0 and δ = arctan[(−2dκr )/(d2κ2

r − 1)], where the
physical interpretation of these points is depicted in Fig. 6
(see Appendix A for the derivation). The posture (x1, y1, θ1)
is the stable equilibrium point, and can be considered as the
correct posture of where the follower vehicle should be. On the
other hand, (x2, y2, θ2) is the unstable equilibrium point, and
depends on the curvature of the preceding vehicle. Due to

Fig. 6. Posture of the follower vehicle, (x1, y1, θ1) and (x2, y2, θ2), on two
equilibrium points. In the stable equilibrium point (x1, y1, θ1), δ1 = 0; and
in the unstable equilibrium point (x2, y2, θ2), δ2 �= 0 �= π .

Fig. 7. The mapping of the equilibrium points from δ (left) to z3 (right).
By this mapping, the stable equilibrium point is at z3 = 0; and the unstable
equilibrium point maps to z3 = π .

the curvature-dependence of this unstable equilibrium point,
we decided to define z3 such that the stable equilibrium point
corresponds with z3 = 0 and the unstable equilibrium point
with z3 = π (see Fig. 7). To that end, we define

z3 = δ + β, (20)

where the angle β is characterized by (see Appendix B for the
derivation)

sin β = dκr cos δ − dκr√
d2κ2

r (1 − cos δ)2 + (1 + dκr sin δ)2
, (21a)

cos β = 1 + dκr sin δ√
d2κ2

r (1 − cos δ)2 + (1 + dκr sin δ)2
. (21b)

where |κr | ≤ κmax
r < 1/d . Note that from (20) and straight-

forward application of the trigonometric rules for the sum of
angles, we have

sin z3 = sin δ + dκr (1 − cos δ)√
d2κ2

r (1 − cos δ)2 + (1 + dκr sin δ)2
, (22a)

cos z3 = cos δ + dκr sin δ√
d2κ2

r (1 − cos δ)2 + (1 + dκr sin δ)2
. (22b)

Moreover, the derivative of β with respect to time follows from
the inverse tangent function, derived from (21a) and (21b),
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yielding

β̇ = d κ̇r cos δ − d κ̇r

d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2

−
(

dκr sin δ + d2κ2
r (1 − cos δ)

d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2

)
δ̇. (23)

Using (21), (22), (17), and noting the fact that δ̇ = ω−ωr +α̇r ,
we obtain the derivative of z3 with respect to time as

ż3 = d κ̇r cos δ − d κ̇r

d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2

+
(

d2κ2
r (1 − cos δ) + dκr sin δ + 1

d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2

)
δ̇

= f3 (z) , (24)

where

f3 (z) = − v̄r

d
sin z3 + ξr (25)

v̄r = N√



vr (26)

ξr = N



(
k1 sin δ

d
z1 − k2 cos δ

d
z2

)
+ gκ κ̇r (27)

N = d2κ2
r (1 − cos δ) + dκr sin δ + 1 (28)


 = d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2 (29)

gκ = N



fr (δ, d, κr ) − d (1 − cos δ)



(30)

fr (δ, d, κr ) = 4d
2
√

4 − d2κ2
r

+ d2κr

2
√

4 − d2κ2
r

sin δ

− 4d − d
√

4 − d2κ2
r

2
√

4 − d2κ2
r

cos δ, (31)

z = (z1, z2, z3), (N,
) > 0 (see (60) and (61) in Appen-
dix C), and δ as in (14). It should be noted that (24) is a
closed-loop system since the inputs (v, ω) have been taken
into account. Thus, the overall closed-loop system is composed
of (18) and (24), which is a third order system.

Remark 1: Note that since |κr | ≤ κmax
r < 1/d , v̄r is lower-

and upper-bounded by

|vr | ≤ |v̄r | <
√

2 |vr | , (32)

and |ξr | is bounded by

|ξr | ≤ 2+√
2

d k1 |z1| + 2+√
2

d k2 |z2| + 7d
9 |κ̇r | . (33)

Proof of (32) and (33): See Appendix C.
Using these bounds on |v̄r | and |ξr |, asymptotic stability of

the internal dynamics (24) can be concluded by the following
proposition.

Proposition 2: Consider the dynamics (24) where v̄r and ξr
are given in (26) and (27), respectively. Let z12 = [z1, z2]T ,
and assume for all t ≥ 0 that 0 < vmin

r ≤ vr (t), |κr (t)| ≤
κmax

r < 1/d, and |κ̇r (t)| ≤ K , where d, K ∈ R
+.

1) For ε > 0, if

‖z12(0)‖ ≤ vmin
r ε(

2 + √
2
) √

k2
1 + k2

2

, (34)

where k1, k2 > 0, then there exists t∗ such that
for t ≥ t∗,

|sin z3(t)| ≤ 7d2

9vmin
r

K + ε. (35)

2) Moreover, if additionally

lim
t→∞ κ̇r (t) = 0, (36)

then limt→∞ sin z3(t) = 0.
3) Finally, for 0 < ε < 3

10 , if (34) holds,

cos z3(0) ≥
√

1 − ( 7
18 − 8

27ε
)2

, (37)

and

|κ̇r (t)| ≤ K = vmin
r
d2

(
1
2 − 5

3ε
)

, (38)

we have v(t) ≥ εvmin
r > 0 and limt→∞ z3(t) = 0,

rendering the internal dynamics (24) stable.
Proof: See Appendix D.

Therefore, we can conclude that the internal dynamics (24),
which correspond to the orientation of the vehicle, are stable
under these conditions: the initial position error is not too
large (bounded by (34)), the initial orientation error is bounded
by (37), and the curvature derivative of the preceding vehicle
is bounded by (38). Moreover, it is important to note that for a
platoon with more than 2 vehicles, v(t) will become the refer-
ence for the next vehicle. By Proposition 2(c), the requirement
of v(t) > 0 is fulfilled for the initial condition z3(0) being
bounded by (37) and κ̇r (t) satisfying (38).

III. ORIENTATION-ERROR OBSERVER DESIGN

From the previous section, it has been proven that the
proposed controller design (17) guarantees that all error states
(z1, z2, z3) converge to zero, under the assumption that all
states of the kinematic model are available and measurable
for control. Here, the relative position (z1, z2) can be obtained
from the camera or lidar, the preceding vehicle states (vr , ωr )
can be obtained through wireless communication with the
preceding vehicle, κr can be determined from vr and ωr , κ̇r
can be approximated by the backward Euler method, and δ is
determined from the relative orientation θ − θr and αr , which
may be measured using the camera. It is assumed that the
relative position (z1, z2) can be measured accurately, and there
is no delay involved in the wireless communication. In prac-
tical situations, there is often a case where the orientation
of vehicles (θ , θr , or both) are not available, or disturbed
by noise due to inherent limitations of the vision system.
To address this problem, a state feedback controller combined
with an observer that estimates the orientation was designed
in [22], [23]. However, these approaches result in a combined
observer-controller design which is different than the proposed
tracking controller (17). Therefore, we adapt the observer
designed in [23] by determining the orientation angle θ from
the available states (z1, z2, v, ω) and design an observer such
that the estimated angle (denoted by θ̂ ) converges to the actual
orientation angle θ .

Consider the kinematic model of the unicycle as given
in (1), and the available outputs as [x, y]T . We extend the
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dimension of the system (1) by defining new variables s and
c as

s = sin θ, c = cos θ, (39)

which replace the orientation angle θ . As a result, we obtain
the extended model of the unicycle as

ẋ = vc, ẏ = vs, (40a)

ṡ = ωc, ċ = −ωs, (40b)

where [x, y]T are the available outputs, [v, ω]T are inputs, s
and c as defined in (39). It should be noted that the transforma-
tion from the three-dimensional system (1) to four-dimensional
system (40) introduces a constraint of the form s2 + c2 = 1.

Based on (40), an observer for x , y, c, and s can be defined
as follows

˙̂x = v ĉ + l1ζx (41a)
˙̂y = v ŝ + l2ζy (41b)

˙̂c = −ωŝ + l3vζx (41c)
˙̂s = ωĉ + l4vζy, (41d)

where l1, l2, l3, l4 > 0, and ζx = x − x̂ , ζy = y − ŷ, ζc = c− ĉ,
and ζs = s − ŝ are the observer errors. Thus, we obtain the
following observer error dynamics

ζ̇x = ẋ − ˙̂x = vζc − l1ζx (42a)

ζ̇y = ẏ − ˙̂y = vζs − l2ζy (42b)

ζ̇c = ċ − ˙̂c = −ωζs − l3vζx (42c)

ζ̇s = ṡ − ˙̂s = ωζc − l4vζy . (42d)

It can be observed directly that if (42) converges to zero,
then the estimated states (x̂, ŷ, ĉ, ŝ) converge to (x, y, c, s).
To prove stability of (42), the following proposition can be
used.

Proposition 3 ([24], [25]): Consider the dynamics (42) with
l1, l2, l3, l4 > 0. If v, ω are bounded differentiable functions,
v̇ is bounded, and 0 < vmin ≤ v(t), then (42) is uniformly
globally asymptotically stable (UGAS) at the origin.

Proof: See Appendix E.
Using Proposition 3, we have that the origin of (42) is
uniformly globally asymptotically stable (UGAS) and ζx(t),
ζy(t), ζc(t), ζs(t) converge to zero as t → ∞, subject to the
necessary and sufficient condition of v(t) > 0 for all t [see
Proposition 2(c)]. It remains to prove the convergence of the
estimated orientation angle to the actual orientation angle θ .
Define the estimated orientation angle θ̂ as

θ̂ := atan2
(
ŝ, ĉ

)
, (43)

where ĉ and ŝ are generated by the observer (41). Note also
that

sin θ̂ = ŝ√
ĉ2 + ŝ2

, cos θ̂ = ĉ√
ĉ2 + ŝ2

, tan θ̂ = ŝ
ĉ
. (44)

Let us define ζθ = tan(θ − θ̂ ). By noting that ζc = c − ĉ,
ζs = s− ŝ, and using the fact that tan θ = sin θ/ cos θ , we have

ζθ = tan θ − tan θ̂

1 + tan θ tan θ̂
= ĉ sin θ − ŝ cos θ

ĉ cos θ + ŝ sin θ

= (c − ζc) sin θ − (s − ζs) cos θ

(c − ζc) cos θ + (s − ζs) sin θ

= ζs cos θ − ζc sin θ

1 − ζc cos θ − ζs sin θ
. (45)

Since ζc(t) and ζs(t) converge to zero, we have ζθ (t) converge
to zero as t → ∞, which directly implies the convergence
of θ̂ to θ for the initial estimated orientation error satisfying
|θ(0) − θ̂ (0)| < π/2.

IV. SIMULATIONS

In order to illustrate the effectiveness of the extended
look-ahead controller and the observer, a number of simu-
lations are performed. Additionally, the purpose of this simu-
lation is to properly determine the control parameters for the
experimental setup. First, we consider a scenario of 4 vehicles
platoon, where all states (position and orientation) can be
measured accurately and are not disturbed by noise. This
allows us to investigate the optimal gains k1 and k2 and the
effectiveness of the extended look-ahead controller against
corner-cutting. Second, we consider a scenario of a 2 vehicles
platoon where the second vehicle is controlled by extended
look-ahead controller with the orientation-observer, in the
presence and absence of noise. In this scenario, the perfor-
mance of the observer is evaluated.

We consider a platoon of 4 vehicles, with the first vehi-
cle controlled by the tracking controller of [16] to track a
predefined eight-shaped trajectory, while the other vehicles
controlled by the extended look-ahead controller to track
their respective preceding vehicle. It should be noted that
the first vehicle can also be directly controlled (simulating
a driving scenario where the first vehicle is driven by a
human), or controlled by other trajectory-tracking (e.g., [17])
or path-following controllers (e.g., [5]). The eight-shaped
trajectory is generated by two-half circles with the radius 0.3 m
and quintic polynomial functions. The controller performance
to track a circular trajectory (constant curvature) as in [15]
is also performed, but the eight-shaped trajectory is chosen
since it also represents a combination of constant and varying
curvatures. The reference curvature of the eight-shaped path
is given in Fig. 8. The dimensions of the track are chosen in
accordance with the experimental setup, which is presented
in the next section. The first vehicle starts at initial position
(x, y) = (0.7, 0.5) m, maneuvering along the eight-shaped
path. The other vehicles start at (0.625, 0.425), (0.55, 0.35),
and (0.475, 0.275) for vehicle 2, 3, and 4, respectively. All
vehicles are initiated with v = 0.06 m/s and θ = 0.9707 rad/s,
and d = 0.1 m is chosen. The extended look-ahead controller
gain is determined by an iterative manner and is equal for
vehicle 2, 3, and 4. It should be noted that the choice for the
proper gain is also determined by the available experimental
arena and the reference trajectory. It is also worth noting that
the higher gain value results in a faster convergence towards
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Fig. 8. Reference curvature for an eight-shaped path with v = 0.06 m/s.

Fig. 9. Trajectory of 4-vehicles platoon tracking an eight-shaped path, with
k1 = k2 = 0.75.

the desired path. However, the higher gain value also results in
a more sensitive response to the curvature change. In practical
situation, this is undesirable since a slight change in states
measurement (e.g., due to noise, sensor inaccuracy) could
result in an over compensation. The trajectory of all vehicles
with k1 = k2 = 0.75 is shown in Fig. 9. It can be observed that
all vehicles in the platoon converges to the reference path and
corners are not cut. This shows the advantage of our controller
in comparison to the controller in [12], where corners with
κ̇r �= 0 are still cut. From Fig. 10, it can be observed that z1
and z2 converge to zero. On the other hand, the orientation
error z3 converges to zero if κ̇r = 0, which can be seen from
t = 11 s until t = 22 s and from t = 42 s until t = 55 s.
On the transition state when κ̇r �= 0, z3 is bounded given the
condition that κ̇r is small enough.

In the second scenario, we consider a platoon of 2 vehicles,
with identical parameters as vehicle 1 and vehicle 2 in the
previous simulation. A two-vehicles setting is used since we
want to study the convergence of the estimated orientation
to the true orientation of the follower vehicle. The first
vehicle is controlled by the tracking controller [16], while
the second vehicle is controlled by the extended look-ahead
controller (17) with the observer (41). The initial condition
of the observer states are set as x̂(0) = 0.625, ŷ(0) =
0.425, and θ̂ = 0.8 rad/s. It is assumed that the position
can be measured accurately without any noise, while the
orientation measurement is disturbed by a noise. The noise
of the orientation sensor is simulated as a white noise with a
power spectral density of 5 × 10−5. For the observer gains,
we select l1 = 10, l2 = 10, l3 = 1000, and l4 = 1000.

Fig. 10. Errors of a platoon with the extended look-ahead controller on an
eight-shaped path.

First, we simulate the system without the observer, i.e., the
control laws (17) are calculated using the orientation measured
from the sensor with noise. Second, we simulate the system
with the orientation-error observer, where the orientation is
estimated based on the position sensor. We denote θ as the
true orientation, θ̂ as the estimated orientation, and θ̄ as
the orientation obtained from the sensor. The error plots of
θ − θ̄ (for the scenario without the observer) and θ − θ̂
(for the scenario with the observer) are depicted in Fig. 11.
It can be observed that for the scenario without the observer,
the measured orientation (shown in gray line) is heavily
disturbed by noise. On the other hand, the error θ − θ̂ (shown
in black line) is not disturbed by noise and converges to zero,
which means that the estimated orientation θ̂ converges to the
true orientation θ .

V. EXPERIMENTS

In this section, we conduct an experiment to confirm the the-
oretical analyses and subsequent to the simulation results. This
practical experiment is conducted also to provide an insight in
how the parameters for our controller can be chosen to accom-
modate the slave controller in mobile robots. Furthermore,
the purpose of this experiment is to verify the performance of
the orientation-error observer in an experimental environment,
where the orientation measurement is disturbed by noise
due to inherent limitation of the sensor/vision system. The
main components of this experimental setup are: four mobile
robots (E-puck [26]), a PC, and a camera. A unique marker
(2D barcode) is attached to each E-puck for identification,
such that the orientation and the position of each E-puck can
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Fig. 11. Errors of θ − θ̂ and θ − θ̄ , where θ is the true orientation, θ̂ is the
estimated orientation, and θ̄ is the orientation obtained from the sensor with
noise.

TABLE I
E-PUCK SPECIFICATION

Fig. 12. The E-puck mobile robot and markers used for identification.

be determined (see Fig. 12). The PC is used to generate a
reference trajectory and to determine the absolute coordinates
and orientations of the robots from the camera. The control
algorithm is also computed in the PC, and is send directly to
each E-puck via a Bluetooth protocol. The experimental setup
is shown in Fig. 13. Since the E-puck is a differential-drive
mobile robot, its motion is controlled by providing velocity
inputs of the left and right wheels, denoted by vl and vr ,
respectively. The transformation of the linear and angular
velocity, v and ω, to the individual wheels velocity can be
determined using the following relation

vl = v − ωL
2

, vr = v + ωL
2

, (46)

where L is the length between the left and right wheel of
E-puck, as given in Table I.

In order to support comparison of the simulation results
presented in the previous section, for this experiment we
use the identical eight-shaped reference trajectory as in the
simulation. In the first experiment, we use the extended
look-ahead controller without the observer, thus, the orien-

Fig. 13. The mobile robot experimental setup with E-pucks in the 1.75 ×
1.28 m arena. The camera is attached to the frame to measure the position
and orientation of the robots.

Fig. 14. Trajectory of E-pucks with extended look-ahead controller, where
the orientation is measured directly from the camera.

tation of the mobile robots are obtained directly from the
camera. The objectives of the first experiment are to study the
effectiveness of the extended look-ahead controller, compared
to the theoretical results presented in the previous section,
to verify the suitable gain for the experiment, and to study the
behavior of the system under the presence of measurement
noises. In the second experiment, we apply the observer to
estimate the orientation of the mobile robots. The objective
of this second experiment is to study the effectiveness of the
observer in practice, and to confirm the simulation results. All
E-pucks are initiated with v = 0.06 m/s, with the controller
gains k1 = k2 = 0.75 for both experiments, and with the
observer gains l1 = 10, l2 = 10, l3 = 1000, and l4 = 1000
for the second experiment.

Fig. 14 shows the trajectory of robots with the extended
look-ahead controller. It can be observed that the trajectory
of all follower robots converge to the reference trajectory.
Clearly, this experiment shows that the extended look-ahead
controller effectively avoids corner-cutting. However, it can
be seen that the follower vehicles start to deviate on the left
side of the eight-shaped path, due to the inaccuracy (due to
noise, or displacement of the 2D marker) in the orientation
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Fig. 15. 2-norm of the position error from experiments incorporating
extended look-ahead controller without observer.

Fig. 16. Trajectory of E-pucks with extended look-ahead controller and an
orientation observer. The orientation of each E-puck is estimated from the
position.

Fig. 17. 2-norm of the position error from experiments incorporating
extended look-ahead controller with observer.

measurement. The 2-norm of the position error, define as√
z2

1 + z2
2, is depicted in Fig. 15. It can be observed from

this plot that E-puck 3 has the largest deviation, peaking
at t = 40 s. To address this problem, the orientation-error
observer is integrated to the extended-look-ahead controller in
the second experiment. In Fig. 16, the trajectory of all robots
with the extended look-ahead controller and orientation-error
observer is shown. It can be seen directly that the tracking
accuracy of all follower robots is improved, thus showing the
effectiveness of the orientation-error observer. From Fig. 17,

where the 2-norm of the position error is depicted, it can also
be verified that the observer reduces the deviation caused by
the inaccuracy of the orientation measurement. We may also
notice some measurement noises on the position measurement,
but they are small enough (less than 0.02 m) and can be safely
neglected.

VI. CONCLUSION

This paper presents a novel extended look-ahead con-
troller in vehicle platooning. The look-ahead target point is
extended to a virtual point induced from the position and
the curvature of the reference vehicle, thus ensuring a better
tracking performance at cornering, preventing corner-cutting
behavior. A stability result on the internal dynamics is pre-
sented, showing that the closed-loop system is stable under
the given bound of the reference curvature and the initial
relative position and orientation of the vehicles. The simulation
results show that the proposed approach improves the tracking
performance at cornering, ensuring that the corners are not
cut. To address the orientation measurement noise in the
experiment, an orientation-error observer is also designed. The
effectiveness of the integrated extended look-ahead controller
and orientation-error observer is further validated by means
of experiment with a platoon consisting of four E-pucks.
The experimental results confirm that the application of the
extended look-ahead controller in vehicle platooning compen-
sates for corner-cutting, and also confirm that the observer
reduces the noise presents in the orientation measurement.
The continuation of this paper is to extend the approach
to the single-track model, as an important step towards the
application of our controller in a real vehicle. To adapt our
controller to a single-track dynamic model with tire forces,
we can design a slave controller that controls acceleration
or speed, internally compensating for the vehicle mass. The
stability of the real vehicle can be guaranteed by other
controllers (Electronic Stability Control (ESC), or Anti-Lock
Braking System (ABS), for instance), and our controller can be
used in conjunction with those other controllers. In conclusion,
the application of our controller to the real vehicle may poses
additional conditions, but is feasible.

APPENDIX A
In this appendix we show the derivation in obtaining the

equilibrium point of δ. Consider δ = θ − θr + αr , as in (14).
By differentiating it with respect to time, we obtain

δ̇ = ω − ωr + α̇r . (47)

Substituting ω as in (17) and (7) into (47) eventually yields

δ̇ = − (1 − cos δ)ωr − vr

d
sin δ + ζr , (48)

where

ζr = k1 sin δ

d
z1 − k2 cos δ

d
z2

+
(

hκ,1

d
sin δ − hκ,2

d
cos δ + 2d√

4 − d2κ2
r

)
κ̇r , (49)
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(z1, z2) as in (12), and (hκ,1, hκ,2) as in (16). In a steady
state condition, which implies that z1 = z2 = 0 and κ̇r = 0,
we have

δ̇ = − (1 − cos δ)ωr − vr

d
sin δ. (50)

By noting that κr = ωr/vr and sin2 δ = 1 − cos2 δ, the equi-
librium points of (50) are determined by(

1 + d2κ2
r

)
cos2 δ − 2d2κ2

r cos δ +
(
d2κ2

r − 1
)

= 0,

and given by

δ
 = 2nπ (51)

δ
 = arctan
( −2dκr

d2κ2
r − 1

)
+ 2nπ, (52)

where n = 0,±1,±2, . . . .

APPENDIX B

In this appendix we show how β is derived mathematically,
such that z3 has equilibrium points at [0, π]. Consider

z3 = θ − θr + αr + β, (53)

where β : [−2π, 2π] → [−1, 1]. Taking the input ω as in (17)
into account, the derivative of z3 is given by

ż3 = − 1
d

sin (θ − θr + α)
(−k1z1 + vr − κ̇r hκ,1

)
+ 1

d
cos (θ − θr + α)

(−k2z2 + dωr − κ̇rhκ,2
)

− ωr + α̇r + β̇. (54)

In the equilibrium we have

ż3 = −vr

d
sin (z3 − β) + ωr cos (z3 − β) − ωr , (55)

and we want ż3 = 0 for z3 = 0 and z3 = π , i.e.,

z3 = 0 ⇒ sin β = −dκr cos β + dκr

z3 = π ⇒ sin β = −dκr cos β − dκr

which can be rewritten as

sin β = dκr cos z3 − dκr cos β. (56)

By substituting (53) into (56), and noting that δ = θ −θr +αr ,
we have

sin β = dκr (cos δ cos β − sin δ sin β − cos β)

sin β (1 + dκr sin δ) = cos β (dκr cos δ − dκr )
sin β

cos β
= dκr cos δ − dκr

1 + dκr sin δ
, (57)

resulting in sin β and cosβ as in (21a) and (21b).

APPENDIX C

In this section the claim on the boundedness of v̄r and ξr
is proven.

Proof: First we want to show the lower and upper bound
of v̄r . We can rewrite (29) as


 = d2κ2
r (1 − cos δ)2 + (1 + dκr sin δ)2

= 2d2κ2
r (1 − cos δ) + 2dκr sin δ + 1. (58)

= 2d2κ2
r + 1 + 2

(
dκr sin δ − d2κ2

r cos δ
)

. (59)

To obtain the lower- and upper-bound of 
, let us define
an angle γ , characterized by sin γ = dκr/

√
d2κ2

r + 1 and
cos γ = 1/

√
d2κ2

r + 1 such that we can write (59) as


 = 2d2κ2
r + 1 + 2dκr

√
d2κ2

r + 1 (cos γ sin δ − sin γ cos δ)

= 2d2κ2
r + 1 + 2dκr

√
d2κ2

r + 1 (sin (δ − γ )) .

Since |sin (δ − γ )| ≤ 1, we have


 ≥ 2d2κ2
r + 1 − 2

∣∣∣∣dκr

√
d2κ2

r + 1
∣∣∣∣ and


 ≤ 2d2κ2
r + 1 + 2

∣∣∣∣dκr

√
d2κ2

r + 1
∣∣∣∣

⇒ 3 − 2
√

2 ≤ 
 ≤ 3 + 2
√

2, (60)

as the lower- and upper-bound of 
, where the extreme value
is obtained for |dκr | = 1. To show that N > 0, note that we
can rewrite (28) as

N = 1
4

d2κ2
r (3−cos δ) (1−cos δ)+

(
1+ 1

2
dκr sin δ

)2
. (61)

Since N > 0, by taking (58) into account, we can also
rewrite (28) as

N =
√(

d2κ2
r (1 − cos δ) + dκr sin δ + 1

)2

=
√


 + (
d2κ2

r (1 − cos δ) + dκr sin δ
)2

. (62)

Moreover, since 
 > 0 (which follows directly from (29)),
by substituting (62) into (26) we obtain

v̄r = vr

√
1 + 1




(
d2κ2

r (1 − cos δ) + dκr sin δ
)2

= vr

√
1 + (N − 1)2



≥ vr , (63)

which is the lower bound of v̄r . Note also that by using (58),
we can rewrite N as

N = 1
2

(
 + 1) . (64)

By substituting (64) into (63), and taking the upper bound of

 in (60) into account, we eventually obtain

v̄r = vr

√
(
 + 1)2

4

≤ vr

√
2, (65)

which is the upper bound of v̄r .
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To show the upper bound of ξr , note that we can rewrite
N/
 as

N



= d2κ2
r (1 − cos δ) + dκr sin δ + 1

2d2κ2
r (1 − cos δ) + 2dκr sin δ + 1

= 1
2

(
1 + 1




) ≤ 1
2

(
1 + 1


min

)
≤ 1

2

(
1 + 1

3−2
√

2

)
= 2 − √

2
3 − 2

√
2

= 2 + √
2, (66)

where we use the lower bound of 
 in (60). Moreover, we also
have

|gκ | =
∣∣∣∣ N



fr (δ, d, κr ) − d (1 − cos δ)




∣∣∣∣ <
7
9

d, (67)

where the bound on |gκ | is obtained by evaluating the function
and the maximum value is obtained for κr = 1/d and δ = 3

4π .
By using the triangle inequality and substituting (66), (67)
into (27), we have

ξr = N

d

[
sin δ − cos δ

] [
k1z1
k2z2

]
+ gκ κ̇r

|ξr | ≤ 2+√
2

d (k1 |z1| + k2 |z2|) + 7
9 d |κ̇r | , (68)

which is the bound of |ξr |.

APPENDIX D
Proof of Proposition 2: From (19), we have ‖z12(t)‖ ≤

‖z12(0)‖. Since |κ̇r (t)| ≤ K , from (33) we have

|ξr (t)| ≤ 2+√
2

d

√
k2

1 + k2
2 ‖z12(t)‖ + 7d

9 K

≤ 2+√
2

d

√
k2

1 + k2
2 ‖z12(0)‖ + 7d

9 K

≤ vmin
r
d ε + 7d

9 K =: ξmax
r , (69)

where we use (34). Consider a positive-definite function

V3(z3) = 1 − cos z3. (70)

The time derivative of V3(z3) along the trajectory (24), by tak-
ing (32) into account, is given by

V̇3 (z3) = − v̄r

d
sin2 z3 + ξr sin z3

≤ −vr

d
sin2 z3 + |ξr | |sin z3|

≤ − vmin
r
2d

[
sin2 z3+

(
|sin z3|− d

vmin
r

|ξr |
)2−

(
d

vmin
r

|ξr |
)2

]

≤ − vmin
r
2d

[
sin2 z3 −

(
d

vmin
r

|ξr |
)2

]
. (71)

Let us define �u = {z3 ∈ R| |sin z3| ≤ d
vmin

r
ξmax
r }, where ξmax

r
is as defined in (69). By noting that |ξr (t)| ≤ ξmax

r , solutions
starting outside �u move in the direction of decreasing V3,
since V̇3 < 0 outside �u , and eventually will be inside and
cannot leave �u as t → ∞, which corresponds to (35) when
substituting ξmax

r from (69) in the definition for �u . This
proves claim (a).

Moreover, for

lim
t→∞ z1(t) = 0, lim

t→∞ z2(t) = 0, lim
t→∞ κ̇r (t) = 0,

we have ξr (t) → 0 as t → ∞, according to (33). From
claim (a), we have that any solution of z3 will be inside and
cannot leave �u as t → ∞, which means that sin z3(t) →

d
vmin

r
ξr (t) as t → ∞. Since d > 0, vmin

r > 0, we have sin z3(t)
converges to zero if and only if ξr (t) converges to zero, hence
proving claim (b).

It is important to note that for a platoon with more than 2
vehicles, v(t) will become the reference for the next vehicle.
Thus, we also need the condition of v(t) ≥ vmin > 0.
From (37) we have | sin z3(0)| ≤ 7

18 − 8
27ε, so using (38),

we start in the set �u and stay in the set �u , which implies
| sin z3(t)| ≤ 7

18 − 8
27ε and cos z3(t) ≥

√
1 − ( 7

18 − 8
27ε

)2
> 0

for all t ≥ 0.
From (17), we have

v = vr (cos δ + dκr sin δ) − (k1z1 cos δ + k2z2 sin δ)

− κ̇r
(
hκ,1 cos δ + hκ,2 sin δ

)
. (72)

Let us denote η := cos δ + dκr sin δ. Note that by using (22)
we have

η = cos z3

√
d2κ2

r (1 − cos δ)2 + (1 + dκr sin δ)2

= cos z3
√

2dκr (dκr − dκr cos δ + sin δ) + 1

=
√

2dκr sin z3 cos z3η + cos2 z3. (73)

By noting that |κr | < 1/d , we solve (73) with respect to η as

η = cos z3

(
dκr sin z3 +

√
d2κ2

r sin2 z3 + 1
)

≥
(
−1 + √

2
)

cos z3. (74)

Moreover, from (16) we have∣∣hκ,1
∣∣ ≤ d2

2
√

3
=: hmax

κ,1 (75a)∣∣hκ,2
∣∣ ≤ d2

(
4−√

3
2
√

3

)
=: hmax

κ,2 . (75b)

Thus, from (72), by substituting (37), (38), and (75), we obtain

v(t) ≥ vr

(
−1 + √

2
)

cos z3(t) −
√

k2
1 + k2

2 ‖z12(t)‖

− K
√∣∣∣hmax

κ,1

∣∣∣2 +
∣∣∣hmax

κ,2

∣∣∣2
≥ vmin

r

(
−1 + √

2
)√

1 − ( 7
18 − 8

27ε
)2 − vmin

r ε

2+√
2

− vmin
r

(
1
2 − 5

3ε
) √

5−2
√

3
3

≥ εvmin
r , (76)

i.e., for |κ̇r (t)| ≤ K , where K is given in (38), we have v(t) ≥
εvmin

r > 0. Moreover, due to cos z3(t) ≥
√

1 − ( 7
18 − 8

27ε
)2

>
0 for all t ≥ 0, we can guarantee that z3(t) does not converge
to π . Thus, the claim of sin z3(t) → 0 also implies that
z3(t) → 0 (modulo 2π), as t → ∞. This proves claim (c).

APPENDIX E
Proof of Proposition 3: Let ζ = (ζx , ζy, ζc, ζs). Differen-

tiating the positive definite Lyapunov function candidate

V1 (ζ ) = l3
2

ζ 2
x + l4

2
ζ 2

y + 1
2
ζ 2

c + 1
2
ζ 2

s , (77)
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along solutions of (42) results in

V̇1 (ζ ) = l3ζxvζc − l1l3ζ 2
x + l4ζyvζs − l2l4ζ 2

y
− ωζcζs − l3vζxζc + ωζcζs − l4vζyζs

= −l1l3ζ 2
x − l2l4ζ 2

y ≤ 0, (78)

which is negative semi-definite. We can conclude that the
origin of (42) is uniformly globally stable (UGS). We can
not only conclude that ζx , ζy , ζc, and ζs are bounded, but
using (42) that also ζ̇x , ζ̇y , ζ̇c, and ζ̇s are bounded, and
therefore also ζ̈x , and ζ̈y (which follows by differentiating (42),
and by using the fact that v̇ and ω̇ are bounded).

Differentiating the bounded function

V2 (ζ ) = −ζ̇xζx − ζ̇yζy (79)

along the solutions of (42) results in

V̇2 (ζ ) = −ζ̈xζx − (vζc − l1ζx)
2 − ζ̈yζy − (

vζs − l2ζy
)2

= −v2
(
ζ 2

c + ζ 2
s

)
+ 2l1vζcζx + 2l2vζsζy

− l2
1ζ 2

x − l2
2ζ 2

y − ζ̈xζx − ζ̈yζy

≤ −v2
min

(
ζ 2

c + ζ 2
s

)
+ Mx |ζx | + My

∣∣ζy
∣∣ , (80)

for certain constants Mx and My , where we used the pre-
viously derived boundedness of signals. Using Matrosov’s
theorem ([27, Theorem 1], cf. [28, Theorem 2]), we can
conclude that (42) is UGAS.

REFERENCES

[1] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw,
and H. Nijmeijer, “Design and experimental evaluation of cooperative
adaptive cruise control,” in Proc. 14th Int. IEEE Conf. Intell. Transp.
Syst. (ITSC), Oct. 2011, pp. 260–265.

[2] S. Sheikholeslam and C. A. Desoer, “A system level study of the
longitudinal control of a platoon of vehicles,” J. Dynamic Syst., Meas.,
Control, vol. 114, no. 2, pp. 286–292, Jun. 1992.

[3] P. Morin and C. Samson, “Motion control of wheeled mobile robots,”
in Springer Handbook of Robotics. Berlin, Germany: Springer-Verlag,
2008, pp. 799–826.

[4] R. Rajamani, H.-S. Tan, B. K. Law, and W.-B. Zhang, “Demonstration of
integrated longitudinal and lateral control for the operation of automated
vehicles in platoons,” IEEE Trans. Control Syst. Technol., vol. 8, no. 4,
pp. 695–708, Jul. 2000.

[5] J. Plaskonka, “Different kinematic path following controllers for a
wheeled mobile robot of (2,0) type,” J. Intell. Robotic Syst., vol. 77,
nos. 3–4, pp. 481–498, Mar. 2015.

[6] E. Lefeber, J. Ploeg, and H. Nijmeijer, “A spatial approach to control
of platooning vehicles: Separating path-following from tracking,” IFAC-
Papers OnLine, vol. 50, no. 1, pp. 15000–15005, Jul. 2017.

[7] S. Solyom, A. Idelchi, and B. B. Salamah, “Lateral control of vehicle
platoons,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2013,
pp. 4561–4565.

[8] S. E. Shladover et al., “Automated vehicle control developments in the
PATH program,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130,
Feb. 1991.

[9] D. Swaroop, J. K. Hedrick, and S. B. Choi, “Direct adaptive longitudinal
control of vehicle platoons,” IEEE Trans. Veh. Technol., vol. 50, no. 1,
pp. 150–161, Jan. 2001.

[10] R. Rajamani and S. E. Shladover, “An experimental comparative study of
autonomous and co-operative vehicle-follower control systems,” Transp.
Res. C, Emerg. Technol., vol. 9, no. 1, pp. 15–31, 2001.

[11] C. C. de Wit, “Trends in mobile robot and vehicle control,” in Control
Problems in Robotics and Automation. London, U.K.: Springer-Verlag,
1998, pp. 151–175.

[12] P. Petrov, “Nonlinear adaptive control of a two-vehicle convoy,” Open
& Systemics J., vol. 3, no. 2, pp. 70–78, 2009.

[13] A. Morales and H. Nijmeijer, “Merging strategy for vehicles by applying
cooperative tracking control,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 12, pp. 3423–3433, Dec. 2016.

[14] A. Bayuwindra, O. L. Aakre, J. Ploeg, and H. Nijmeijer, “Combined
lateral and longitudinal CACC for a unicycle-type platoon,” IEEE
Intelligent Vehicles Symposium, Proceedings, no. 4, pp. 527–532, 2016.

[15] A. Bayuwindra, J. Ploeg, E. Lefeber, and H. Nijmeijer, “Combined lon-
gitudinal and lateral control of car-like vehicle platooning with extended
look-ahead,” IEEE Trans. Control Syst. Technol., to be published.

[16] Z. P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: A case
study in backstepping,” Automatica, vol. 33, no. 7, pp. 1393–1399,
Jul. 1997.

[17] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable
tracking control method for an autonomous mobile robot,” in Proc. IEEE
Int. Conf. Robot. Autom., May 1990, vol. 30, no. 5, pp. 384–389.

[18] A. Loría and E. Panteley, “Cascaded nonlinear time-varying systems:
Analysis and design,” in Advanced Topics in Control Systems Theory
(Lecture Notes in Control and Information Science). London, U.K.:
Springer, 2005, pp. 23–64.

[19] E. Panteley, E. Lefeber, A. Loría, and H. Nijmeijer, “Exponential
tracking control of a mobile car using a cascaded approach,” IFAC Proc.
Vol., vol. 31, no. 27, pp. 201–206, Sep. 1998.

[20] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[21] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control
Systems. New York, NY, USA: Springer-Verlag, 1990.

[22] S. P. M. Noijen, P. F. Lambrechts, and H. Nijmeijer, “An observer-
controller combination for a unicycle mobile robot,” Int. J. Control,
vol. 78, no. 2, pp. 81–87, 2005.

[23] J. Jakubiak, E. Lefeber, K. Tchon, and H. Nijmeijer, “Two observer-
based tracking algorithms for a unicycle mobile robot,” Int. J. Appl.
Math. Comput. Sci., vol. 12, no. 4, pp. 513–522, 2002.

[24] J. Jakubiak, H. Nijmeijer, and E. Lefeber, “Observer based tracking
controllers for a mobile car,” Eindhoven Univ. Technol., Eindhoven, The
Netherlands, Tech. Rep., 1999.

[25] T. P. Beumer, “Control of platooning mobile robots: Experimental
validation,” M.S. thesis, Dept. Mech. Eng., Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, 2017.

[26] F. Mondada and M. Bonani. (2007). E-Puck Education Robot. [Online].
Available: http://www.e-puck.org

[27] A. Lorìa, E. Panteley, D. Popovic, and A. R. Teel, “A nested Matrosov
theorem and persistency of excitation for uniform convergence in stable
nonautonomous systems,” IEEE Trans. Autom. Control, vol. 50, no. 2,
pp. 183–198, Feb. 2005.

[28] E. Lefeber, S. J. A. M. Van den Eijnden, and H. Nijmeijer, “Almost
global tracking control of a quadrotor UAV on SE(3),” in Proc. IEEE
Conf. Decis. Control, Dec. 2017, vol. 56, no. 3, pp. 1175–1180.

Anggera Bayuwindra received the B.Sc. and
M.Sc. degrees in electrical engineering (specializing
in control and intelligent system) from the Ban-
dung Institute of Technology, Bandung, Indonesia,
in 2006 and 2012, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands. He was
an Engineer with Infineon Technologies, Batam,
Indonesia. His current research is on the nonlinear
control system design, in particular the integrated

longitudinal and lateral control for cooperative and automated vehicles.

Erjen Lefeber received the M.Sc. degree in applied
mathematics and the Ph.D. degree in tracking control
of nonlinear mechanical systems from the University
of Twente, Enschede, The Netherlands, in 1996 and
2000, respectively. In 2015, he joined the Dynamics
and Control Group, where he worked on modeling
and control of manufacturing systems from 2000 to
2015. Since 2000, he has been an Assistant Professor
with the Department of Mechanical Engineering,
Eindhoven University of Technology. His current
research is on nonlinear control theory, in particular

the control of drones and the control of platooning vehicles.



BAYUWINDRA et al.: EXTENDED LOOK-AHEAD TRACKING CONTROLLER WITH ORIENTATION-ERROR OBSERVER 4821

Jeroen Ploeg received the M.Sc. degree in mechan-
ical engineering from the Delft University of Tech-
nology, Delft, The Netherlands, in 1988, and the
Ph.D. degree in mechanical engineering on the con-
trol of vehicle platoons from the Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands,
in 2014. From 1989 to 1999, he was with Tata Steel,
IJmuiden, The Netherlands, where his interest was
in the development and implementation of dynamic
process control systems for large-scale industrial
plants. He was with TNO, Helmond, The Nether-

lands, from 1999 to 2017, as a Principal Scientist in the field of vehicle
automation and road safety assessment. Since 2017, he has also been a
part-time Associate Professor with the Mechanical Engineering Department,
Eindhoven University of Technology, Eindhoven. He is currently with 2get-
there, Utrecht, The Netherlands, where he leads the research and development
activities in the field of cooperative automated driving for automated transit
systems, in particular platooning. His research interests include control system
design for cooperative and automated vehicles, in particular string stability
of vehicle platoons, the design of interaction protocols for complex driving
scenarios, and the motion control of wheeled mobile robots.

Henk Nijmeijer (F’00) was born in 1955. In
January 2015, he was a Scientific Director of the
Dutch Institute of Systems and Control (DISC).
He is a Full Professor at Eindhoven, and he Chairs
the Dynamics and Control Group. He has published
a large number of journal and conference papers,
and several books, and he is or was at the editorial
board of numerous journals. He has been an IFAC
Council Member since 2011. He is a member of the
Mexican Academy of Sciences. He received the IEE
Heaviside Premium in 1990. He was a recipient of

the 2015 IEEE Control Systems Technology Award. He is appointed as an
Honorary Knight of the Golden Feedback Loop (NTNU) in 2011. He is an
Editor of Communications in Nonlinear Science and Numerical Simulations.
He is a Graduate Program Director of the TU/e Automotive Systems program.


