
Implementing Tracking Error Control for
Quadrotor UAV

Master’s Thesis
DC 2021.044

Author
Xinyu Zeng

Supervisors
prof. dr. H. Nijmeijer

Coach
dr.ir. A.A.J. Lefeber

Eindhoven University of Technology
Department of Mechanical Engineering

Dynamics and Control

Eindhoven, 4th May 2021

Abstract

In previous research, uniform almost global asymptotic stability of a controller for Autonomous
Unmanned Areal Vehicles (UAVs or drones) has been proved. This project aims at implementing
this controller on a Parrot Mambo drone to validate its stability in reality. By derivating this
controller, we detail the connection between position control and attitude control via a virtual
input. Besides, a flat-out-based reference is determined for smooth tracking. For successful imple-
mentation, we first introduce the drone hardware and analyze the default controller and estimator
of the Parrot Simulink Package. Due to the broad range of parameters in [26] and the robust per-
formance of the default controller, we decide to resemble the linearized default controller to settle
a set of robust gains for our controller. Subsequently, our controller achieves zero-error tracking
in simulations via the Parrot Simulink Package. However, the experiments illustrate undesired
oscillation. Through the eigenvalue checking and estimator validating, one reason comes from
the mini-size of the drone, which cannot stand the robust but high gains. Another reason is the
inaccurate horizontal estimation of the optical flow sensor. A Kalman filter brings the drifting
acceleration into the horizontal velocity estimator. And the crude default optical flow estimator
ignores the rotation in the optical flow field. Facilitating the optical flow theory, we obtain a
theoretical horizontal estimator excluding filters. Its accuracy improves 4% − 33% in pendulum
validations.

Table of Contents

Nomenclature iv

1 Introduction 1

1.1 Background . 1

1.2 Objective . 2

1.3 Thesis outline . 2

2 Preliminaries 3

2.1 Attitude representation . 3

2.1.1 Rotation matrix . 3

2.1.2 Unit quaternion . 4

2.1.3 Euler angles . 5

2.1.4 Comparison of attitude representations . 6

2.2 Time differentiation . 6

2.3 Quadcopter flight dynamics . 6

2.4 Concluding remarks . 7

3 Quadcopter model 8

3.1 Flat-output based reference . 8

3.1.1 Force scale . 9

3.1.2 Rotation matrix . 9

3.1.3 Linear velocity, angular rate and torque . 10

3.2 Controller by E. Lefeber(2020) . 11

3.2.1 Position tracking error control . 11

3.2.2 Attitude control . 12

3.2.3 Combined control in quaternions . 13

3.3 Concluding remarks . 15

ii Final Report of Graduation Project

4 Flying Parrot mambo drone 16

4.1 Experimental Setup . 16

4.1.1 Aerial vehicle . 16

4.1.2 On-board sensors . 16

4.2 Parrot Simulink package . 17

4.2.1 Default state estimator . 17

4.2.2 Default Proportional Integral Derivative controller 20

4.3 Concluding remarks . 22

5 Simulation and Implementation 23

5.1 Approximation of input-output linearization for feedback tuning 23

5.1.1 Linearized full controller [26] without observer 24

5.1.2 Linearized default controller . 26

5.1.3 Comparison and approximation . 26

5.2 Undesired performance with hover reference and causes analysis 27

5.2.1 Default horizontal estimator checking . 28

5.2.2 Eigenvalue checking . 29

5.3 Improvement of horizontal estimation process . 31

5.3.1 Theory of optical flow in motion field . 31

5.3.2 Experimental validation . 34

5.3.3 Hover test . 38

5.4 Concluding remarks . 39

6 Conclusions and recommendations 40

6.1 Summary and conclusion . 40

6.2 Recommendation for further research . 41

A The derivation of desired trajectory 42

B Schema of the default PID controller in Parrot simulink package 45

Bibliography 47

Final Report of Graduation Project iii

Nomenclature

Reference frames
I Right-handed orthonormal earth-fixed frame in North-East-Down (NED) con-

figuration

B Right-handed orthonormal body-fixed frame in North-East-Down (NED) con-
figuration

Number sets
R Real numbers

R
n The n-dimensional Euclidian space

SO(3) The 3D rotation special orthogonal group

Operators
AT The transpose of the vector or matrix A

ẋ Time derivative of a state x

Conj(q), q∗ The conjugate of a quaternion q

norm(q), ‖q‖ The square root of the product of a quaternion q with its conjugate

⊗ Quaternion product

� Quaternion rotation

eig(A) The eigenvalues of matrix A

det(A) The determinant of matrix A

diag(A) The diagonal of matrix A

S(x) The skew symmetric matrix of a vector x

Acronyms
UAV Unmanned Areal Vehicle

CPU Central Processing Unit

IMU Internal Measurement Unit

PWM Pulse-Width Modulation

iv Final Report of Graduation Project

PSP Parrot Simulink Package

VGA Video Graphics Array

Constants and variables
ρ Earth-fixed position vector

ν Body-fixed velocity vector

a Body-fixed acceleration vector

φ, θ, ψ Roll, Pitch, Yaw angle of a body

R Rotation matrix

q quaternion

ω Body-fixed angular velocity vector

f Upward force generated by the rotors

τ Totally torque generated by the rotors

m Mass

J Inertial tensor

g Gravity acceleration

(du, dv) Measured optical flow

λ Eigenvalue of considered system

I 3 by 3 identity matrix

Final Report of Graduation Project v

Chapter 1

Introduction

1.1 Background

The quadrotor(drone) is a kind of unmanned aerial vehicle(UAV) with two pairs of opposite
propellers with clockwise and counter-clockwise rotation to balance the torque [41]. Its position
and attitude are controlled by changing thrusts provided by four propellers using pulse width
modulation (PWM) [41]. From the last century, UAVs gradually developed for the civilian market.
As an aircraft without a human pilot, it provides a possible choice to perform more subtle tasks
in different environments. Nowadays, agriculture drones can observe the wild field issues from a
bird’s-eye view and carry pesticides to spray evenly. In delivering and online shopping companies,
delivery drones are considered a fast and private way for customers.

Even though the robustness, low weight, and small size gain attention to the quadrotor, in the
past decades few commercial quadrotor platforms are available for customization and expensive
for research [28]. At this point, some research groups build specific platforms referring to their
needs [28]. For example, ETH Zurich’s quadrotor embeds a Metric Optical Flow CMOS Camera
for Indoor and Outdoor Applications [18]. Or the OS4 project from Ecole Polytechnique Fédérale
de Lausanne develops a vehicle with a full state backstepping controller [6]. However, recently
with the expansion of the market, more and more companies provide cheaper and nearly open
platforms with low-cost onboard sensors, whose utilization now is a favorable basement for control
design.

As four individual rotors of quadrotor equivalent to one main rotor on a helicopter, quadrotor can
realize smaller airframe size and Pitch-fixed parallels without complex mechanical linkages [20].
However, its advantages are costed by coupled dynamics and under-actuated tracking because of
only four degrees of freedom [29]. Furthermore, another challenge is how to overcome the global
asymptotic stability [26] under several uncertainties of UAVs’ highly nonlinear flight dynamics
[24][41]. Therefore, designing a better auto-navigation algorithm of the quadrotor is a popular
issue in control research.

In previous studies of the Dynamics and Control research group at the Eindhoven University of
Technology, Jeurgen [21] and van den Eijnden [38] have identified the dynamics of an AR. Drone
2.0 and designed a cascade-based controller for it. Brekelmans [7] extended this controller from
simulation to experiments with unit quaternions and identified vehicle parameters of the Parrot
Mambo drone. Following these works, this report focuses on implementing the feedback controller
of [26] on the Parrot Mambo drone, where the steps involving the combination of controllers
and its parameters tuning from simulation to an actual drone. The bridge between position and
attitude controller, however, is rarely discussed in [26]. For such a case, this report aims to detail
the derivation of the controller in [26], the gains tuning by linear approximation with a robust

Final Report of Graduation Project 1

proportional–integral–derivative controller, and the estimation improvement for the optical flow
sensor. Specifically, to avoid delay from the overlap between the default filtered estimator and
designed observer [26] a raw estimator without filters should be redesigned.

1.2 Objective
Enabling autonomous navigation with the controller of previous research in Eindhoven [26] on
a Parrot Mambo drone involves several problems. Although [26] have theoretically proved the
uniform almost global asymptotic stability for this controller, it still waits for experimental val-
idations. Since the given theoretical constraints of gains are too broad for experimental tuning,
the principal question of this project is to find out the feasible and robust range for the gains,
which relate to the vehicle characters and the rotor limitation. Moreover, due to the designed
combination of observer and controller in [26], the unfiltered states from raw data are expected
from the state estimator, where the default estimation algorithm in PSP needs to adjust even
redesign. Specifically, the continuous horizontal drift from the optical flow estimator mentioned
in Brekelmans’ report [7] would be a focus, and this project would provide a solution. There-
fore, given the ultimate goal, this project is separated into several sub-objectives, from theoretical
derivation to final validation.

A quadcopter dynamics model should be first explained for flight relating to reference choice
and control design. Following this model, a sufficient smooth reference based on flat-output
is derived. As the first control attempt, we detail the combination of transition and attitude
control laws in [26]. Then we explore the flight platforms, Parrot mambo drone, and its Simulink
package, to prepare for experiments. And to avoid undesired performance in the experiments,
a linear approximation between the default controller and the designed controller is necessary
for feedback gains tuning. Besides tuning for stability, excluding unnecessary filters from the
default estimator and tuning the designed observer become the next assignment. Moreover, a new
horizontal motion algorithm based on optical flow theory solves the drift mentioned in [7], which is
validated by pendulum experiments. With above preparation, this time, we were able to simulate
and implement stably with suitable gains for hover condition.

1.3 Thesis outline
This thesis consists of six chapters including the current background chapter introduced above.
Chapter 2 outlines the notation, definition [26], and formula for the remainder of this report.
It contains three attitude representations, time differentiation formulas, and quadcopter flight
dynamics. Chapter 3 derives a flat-output based reference model and the controller in [26]. It ex-
plains each sufficient smooth reference state without integral and the combination for the position
and attitude control. Furthermore, a unit quaternion form of the designed controller is derived
from the rotation matrix form in [26] for faster computation at the end of this chapter. Chapter 4
briefly presents the vehicle parameters and on-board sensor of the Parrot Mambo drone for simu-
lations and experiments. Using the detected data from the on-board sensors, this chapter explains
the default algorithms of state estimator and controller in PSP. These default algorithms are then
linearized in Chapter 5 to approximate the designed controller for gains tuning in simulation and
experiments. Additionally, a pure state estimator correcting for horizontal drift without filters is
validated. Finally, Chapter 6 concludes this thesis work and summarises the recommendations for
future research.

2 Final Report of Graduation Project

Chapter 2

Preliminaries

In this chapter, we begin with the comparison of orientational representation forms: rotation
matrix, unit quaternions, and Euler angles, which are discussed for efficiency and intuitiveness.
To be convenient, two specific time differential forms are derived for the quadcopter model. The
flight dynamics model is given in section 2.3 [25] [26] as an overview of UAV’s flight states. These
specifications involve the model expressions in the remainder of this report.

2.1 Attitude representation
An attitude representation defines the rotational relationship of one given frame relative to another
frame. In this report, all frames are considered as North-East-Down(NED). We consider three
representations: rotation matrix, unit quaternions and Euler angles and compare their singularity,
calculational complexity and storage to decide the implemented form in this section.

2.1.1 Rotation matrix

As a common affine form, the rotation matrix delivers the rotation transformation under homo-
geneous coordinates [40] to readers intuitively and accurately. In Euclidean space, a square 3 by
3 matrix R is a rotation matrix, if and only if R satisfies

R−1 = RT (2.1a)
det(R) = 1, (2.1b)

where the set of all matrices satisfying (2.1) is denoted as the 3D rotation special orthogonal group,
SO(3).

In literature, a rotation of a vector is represented as

ρrot = Rρ, (2.2)

where ρ, ρrot ∈ R
3×1 are the pre- and post-rotated vector; R ∈ R

3×3 is the rotation matrix. To
calculate a rotated vector, 6 additions and 9 multiplications are needed. A sequential rotation is
simply multiplied as

Rrot = R2R1 (2.3)

where Ri is the ith rotation in sequence. To calculate a sequenced rotation, 18 additions and 27
multiplications are required.

Final Report of Graduation Project 3

2.1.2 Unit quaternion

An alternative representation of attitude is unit quaternion. In 1843, William Rowan Hamilton
extended the complex numbers to four dimensions as quaternions;

q = q0 + q1i+ q2j + q3k = [q0, q1:3]
T (2.4)

where i, j and k hold similar properties as complex numbers

i2 = j2= k2 = ijk = −1, (2.5a)
ij = k, ji = −k, (2.5b)
jk = i, kj = −i, (2.5c)
ki = j, ik = −j. (2.5d)

For convenience, in the remainder a quaternion is expressed as

q =
[
q0 q1 q2 q3

]T
. (2.6)

Furthermore, we have

Conj(q) = q∗ =
[
q0 −q1 −q2 −q3

]T
, (2.7a)

Norm(q) = ‖q‖ =
√
q∗q =

√
q20 + q21 + q22 + q23 , (2.7b)

q−1q =
q∗q
q∗q

= 1, (2.7c)

q−1 =
q∗

‖q‖2 . (2.7d)

Based on (2.5), the multiplication ⊗ of two quaternions is denoted as

q ⊗ p = (q0 + q1i+ q2j + q3k)(p0 + p1i+ p2j + p3k)

= (q0p0 − (q1p1 + q2p2 + q3p3)) + (q0p1 + q1p0 + q2p3 − q3p2)i+ (q0p2 + q2p0 − q1p3 + q3p1)j + (q0p3 + q3p0 + q1p2 − q2p1)k

=

⎡
⎢⎢⎣
q0p0 − (q1p1 + q2p2 + q3p3)
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 − q1p3 + q3p1
q0p3 + q3p0 + q1p2 − q2p1

⎤
⎥⎥⎦ . (2.8)

Note that there are only 16 multiplications and 12 additions in the quaternions multiplication
calculation (2.8). And because the conjugation is its own inverse [5], conjugating the product
(2.8) gives

(q ⊗ p)∗ = p∗ ⊗ q∗ (2.9)

To express the rotation, Hamilton denoted a quaternion with norm one {q | ‖q‖ = 1} as a
versor(unit quaternion)

q =

[
cos θ2

n sin θ

2

]
, (2.10)

where by the axis–angle method [11] the Euler axis
n satisfies ‖
n‖ = 1 and θ ∈ [0, 2π) denotes the
clockwise rotation angle around
n.

Assuming that a vector zrot ∈ R
3 is rotated from initial vector z ∈ R

3 by a versor q, the rotation[
0
zrot

]
= q � z (2.11)

4 Final Report of Graduation Project

is pre- and post-multiplied by the quaternion and its conjugate (see Rodrigues’ rotation formula
[32])

q � z = q ⊗
[
0
z

]
⊗ q∗ =

⎡
⎢⎢⎣
1 0 0 0
0 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
0 2(q0q3 + q1q2) q20 − q21 + q22 − q23 2(q1q3 − q0q1)
0 2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

⎤
⎥⎥⎦
[
0
z

]

=

[
1 01×3

03×1 Q(q)

] [
0
z

]
(2.12)

This driving expression (2.12) shows 18 multiplications and 12 additions.

Note that due to the existence of the quadratic term in (2.12), Q(q) implies the same rotation
from either positive or negative versor. However, the ambiguous mapping is unidirectional from
rotated vector to versor, where converting the whole system into versor before calculation would
avoid the uncertainty.

Additionally, the time derivative of a versor would be easily derived from (2.10) [13] [33]

q̇ = lim
Δt→0

q(t+Δt)− q(t)

Δt

= lim
Δt→0

q(t)⊗ q(Δt)− q(t)

Δt

= lim
Δt→0

q ⊗ (

[
1

n θ2

]
−

[
1

03×1

]
)

Δt

= lim
Δt→0

q ⊗
[
0

n θ2

]
Δt

=
1

2
q ⊗

[
0
ω

]
, (2.13)

where θ is a small disturbance of the rotation angle around Euler axis n; ω =
nθ̇ is the angular
rate.

2.1.3 Euler angles

As the most common way, Euler angles are intuitive and brief for readers and broadly used in
the IMU sensor. It uses three intrinsic rotations angles(φ, θ, ψ) around XYZ frame axes. In the
aircraft field, the Roll, Pitch, Yaw angles(RPY) are widely used in the North-East-Down(NED)
frame.

In Euclidean space, following the ZYX rotation sequence the conversion from Euler angles to
rotation matrix is given by

RZYX =

⎡
⎣1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

⎤
⎦
⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦
⎡
⎣ cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ , (2.14)

and from Euler angles to unit quaternion

q =

⎡
⎢⎢⎣
sin φ

2 cos θ2 cos
ψ
2 − cos φ2 sin θ

2 sin
ψ
2

cos φ2 sin θ
2 cos

ψ
2 + sin φ

2 cos θ2 sin
ψ
2

cos φ2 cos θ2 sin
ψ
2 − sin φ

2 sin θ
2 cos

ψ
2

cos φ2 cos θ2 cos
ψ
2 + sin φ

2 sin θ
2 sin

ψ
2

⎤
⎥⎥⎦ . (2.15)

Final Report of Graduation Project 5

Both can be computed uniquely. However, there is a unidirectional disadvantage of Euler angles
named as Gimbal Lock leading to singularity and uncertainty in mathematics, when Euler angles
[17] are decomposed from rotation matrix or unit quaternion; for instance, once Pitch angle θ = π

2
in (2.14), the Roll and Yaw angles cannot be derived uniquely from one rotation matrix.

2.1.4 Comparison of attitude representations

As was shown in the above sections, to avoid the singularity of attitude it must choose rotation
matrix or unit quaternion for flight control, even though Euler angles is still used in derivations.
In sight the calculations between the rotation matrix(2.2,2.3) and unit quaternion(2.8,2.12) as
Table.2.1, unit quaternions shows less 17 calculations in itself multiplication but 15 more steps
for its rotation. Moreover considering only four elements of storage of a versor rather than nine

Action Additions Multiplications
Rotation matrix multiplication 18 27
Unit quaternion multiplication 12 16

Rotation matrix rotation 6 9
Unit quaternion rotation 12 18

Table 2.1: The computation amount of quaternions and rotation matrix [14] [7]

elements of a rotation matrix the implementation chooses the unit quaternion as the final form;
though to avoid ambiguity the control design is exhibited by a rotation matrix.

2.2 Time differentiation
In this section, there are two particular time differential forms introduced as pre-knowledge. One
is for rotation dynamics, and another one is for 2-norms.

If R is a rotation matrix and ω = [ω1, ω2, ω3]
T is the angular velocity, let S(ω) denote the skew-

symmetric map

S(ω) =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (2.16)

The equivalence that the cross product a× b = S(a)b [26] can be used for the time differentiation
of rotation dynamics

Ṙ = R× ω = RS(ω). (2.17)

In the remainder, we define 2-norm of x = [x1, x2, x3]
T ∈ R

3 as

‖x‖ =
√
xTx =

√
x21 + x22 + x23. (2.18)

Its time derivative is

d

dt
‖x‖ = 1

2
√
x2
1+x

2
2+x

2
3

(2x1ẋ1 + 2x2ẋ2 + 2x3ẋ3) =
xT ẋ

‖x‖ . (2.19)

2.3 Quadcopter flight dynamics
As was shown in Figure 2.1, the quadcopter can be regarded as a rigid body and only provides
thrust perpendicular to its upper surface. Following [26], two frames are introduced here to

6 Final Report of Graduation Project

Figure 2.1: Physical schematic model of drone

describe translation and rotation of the drone. Inertial frame I = [eI1, eI2, eI3] is a North-East-
Down(NED) earth-fixed frame and body-fixed frame B = [eB1, eB2, eB3], is fixed in the drone’s
center of mass, whose z-axis eB3 is always in opposite direction of the thrust. The translation
vector between two frames, B with respect to I, is presented as ρ = [x, y, z]T ∈ R

3., and the
rotation matrix R ∈ SO(3) denotes the intrinsic rotation from B to I. Furthermore, the angular
velocity ω ∈ R

3 and linear velocity ν ∈ R
3 are both denoted in B. The UAV flight dynamics can

be described in the following way [25];

ρ̇ = Rν, (2.20a)

ν̇ = −S(ω)ν + gRT e3 − f

m
e3, (2.20b)

Ṙ = RS(ω), (2.20c)
Jω̇ = S(Jω)ω + τ, (2.20d)

where m is the mass of drone J = diag[J11, J22, J33] is the drone’s moment of inertia in B, f is
the thrust magnitude, τ = [τ1, τ2, τ3]

T is the torque vector, and g is the gravity acceleration.

2.4 Concluding remarks
This chapter has described three attitude presentations: rotation matrix, unit quaternion, and
Euler angles. Given the earlier comparison and discussion in section 2.1, we decide the unit
quaternions as the final form in code and the rotation matrix form in literature for intuition. The
two crucial time differentiating rules have been introduced for the remainder. In the end, the
introduction of quadcopter dynamics takes a insight into the system and prepares the theoretical
analysis for control design in the next chapter.

Final Report of Graduation Project 7

Chapter 3

Quadcopter model

This chapter introduces the quadcopter UAV’s model for the Parrot mambo drone, which gathers
a flat-output-based reference and a controller designed in [26]. The standard derivation of the
flat-output-based reference is given in section 3.2, which is sufficiently smooth without integration
[26] used to exam the controller by highly demanding state-trajectory. Next, section 3.2 details
the very information about the controller [26]: a combination of position and attitude feedback
control with a denoising observer. Finally, for convenience, a versor form of the full controller used
in implementation is presented in section 3.2.3.

3.1 Flat-output based reference

Figure 3.1: Rotation order from inertial frame to body frame

As introduced in Chapter 2, a feasible continuous reference dynamics should satisfy (2.20) as

ρ̇r = Rrνr (3.1a)

ν̇r = −S(ωr)νr + gRTr e3 − (fr/m)e3 (3.1b)

Ṙr = RrS(ωr) (3.1c)
Jω̇r = −S(Jωr)ωr + τr. (3.1d)

A desired trajectory for UAV’s controller tracking should be sufficiently smooth even given ag-
gressive requirements [26]. Considering there are only four degrees of freedom for the drone, the
given reference γ only needs four dimensions. That is⎡

⎣γ1(t)γ2(t)
γ3(t)

⎤
⎦ =

⎡
⎣xr(t)yr(t)
zr(t)

⎤
⎦ = ρr(t) (3.2a)

γ4(t) = ψr(t) (3.2b)

8 Final Report of Graduation Project

where all γ are four times differentiable; if z̈r = g, −ẍr sinψr+ ÿr cosψr �= ±√
ẍ2r + ÿ2r (see (3.8));

the first three dimensions describe the position of the UAV and satisfy ẍ2r+ ÿ2r +(g− z̈r)2 �= 0(see
(3.5)); the fourth one γ4 is defined as the yaw angle denoting the ZYX extrinsic rotation order
(see Figure 3.1,yaw angle ψ, pitch angle θ, roll angle φ) from inertial frame to body frame.

Besides the given position ρr, the rest states [fr, ḟr, f̈r, Rr, Ṙr, vr, ωr, ω̇r, τr] of the reference dy-
namics are derived below.

3.1.1 Force scale

Observing equations (3.1), the force scale fr of the reference may be normed and rearranged from
the time derivative of (3.1a). That is

ρ̈r = Ṙrνr +Rrν̇r = ge3 − (fr/m)Rre3. (3.3a)

fr = m‖ge3 − ρ̈r‖ = m
√
ẍ2r + ÿ2r + (g − z̈r)2. (3.3b)

According to (2.19), the first order and second order time derivatives of fr can be written as

ḟr = −m (ge3 − ρ̈r)
T ρ

(3)
r

‖ge3 − ρ̈r‖ (3.4a)

f̈r = m
(ρ

(3)
r)T ρ

(3)
r

‖ge3 − ρ̈r‖ −m
(ge3 − ρ̈r)

T ρ
(4)
r

‖ge3 − ρ̈r‖ − ḟ2r
‖ge3 − ρ̈r‖ , (3.4b)

where ρ(i)r is the i-th order time derivative of position reference ρr.

3.1.2 Rotation matrix

Determining a unique rotation matrix in SO(3) requires four independent parameters. From
equation (3.3a), the first three parameters are obtained

Rre3 =
m

fr
(ge3 − ρ̈r) =

1√
ẍ2r + ÿ2r + (g − z̈r)2

⎡
⎣ −ẍr

−ÿr
g − z̈r

⎤
⎦ :=

⎡
⎣r1r2
r3

⎤
⎦ := r, (3.5)

provided ẍ2r + ÿ2r + (g − z̈r)
2 �= 0.

Referring to (3.2b), it denotes a yaw angle ψr in a ZY X rotation sequence from the inertial frame
to the body frame(see (2.14)), which leads to

Rr = RTZY X(ψr, θr, φr) =

⎡
⎣cosψr − sinψr 0
sinψr cosψr 0
0 0 1

⎤
⎦
⎡
⎣ cos θr 0 sin θr

0 1 0
− sin θr 0 cos θr

⎤
⎦
⎡
⎣1 0 0
0 cosφr − sinφr
0 sinφr cosφr

⎤
⎦ ,

(3.6)
where φr, θr are temporally introduced as roll and pitch angle.

Substitution of (3.6) into (3.5) gives⎡
⎣r1r2
r3

⎤
⎦ =

⎡
⎣cosψr − sinψr 0
sinψr cosψr 0
0 0 1

⎤
⎦
⎡
⎣ cos θr 0 sin θr

0 1 0
− sin θr 0 cos θr

⎤
⎦
⎡
⎣1 0 0
0 cosφr − sinφr
0 sinφr cosφr

⎤
⎦
⎡
⎣00
1

⎤
⎦

=

⎡
⎣sinφr sinψr + cosφr cosψr sin θr
cosφr sinψr sin θr − cosψr sinφr

cosφr cos θr

⎤
⎦ . (3.7)

Final Report of Graduation Project 9

Then it is possible to write the corresponding cosine and sine functions of the unknown roll and
pitch angles φr, θr as

sinφr = r1 sinψr − r2 cosψr (3.8a)

cosφr =
√
1− (r1 sinψr − r2 cosψr)2 (3.8b)

cos θr = − r3√
1− (r1 sinψr − r2 cosψr)2

(3.8c)

sin θr =
r1 sinψr + r2 cosψr√

1− (r1 sinψr − r2 cosψr)2
. (3.8d)

Substituting (3.8) into (3.6) we have

Rr =

⎡
⎢⎢⎢⎣

r3 cosψ√
1−(r1 cosψ+r2 sinψ)2

− r1r2 cosψ+(1−r21) sinψ√
1−(r1 cosψ+r2 sinψ)2

r1

r3 sinψ√
1−(r1 cosψ+r2 sinψ)2

r1r2 sinψ+(1−r22) cosψ√
1−(r1 cosψ+r2 sinψ)2

r2

− r1 cosψ+r2 sinψ√
1−(r1 cosψ+r2 sinψ)2

(r1 sinψ−r2 cosψ)r3√
1−(r1 cosψ+r2 sinψ)2

r3

⎤
⎥⎥⎥⎦ . (3.9)

Its time derivative is

Ṙr =

⎡
⎢⎣

ṙ3 cosψ−r3 sinψψ̇
C − r3 cosψ

C2 Ċ dR12 ṙ1
ṙ3 cosψ+r3 cosψψ̇

C − r3 sinψ
C2 Ċ dR22 ṙ2

− ṙ1 cosψ−r1 sinψψ̇+ṙ2 sinψ+r2 cosψψ̇
C + r1 cosψ+r2 sinψ

C2 Ċ dR32 ṙ3

⎤
⎥⎦ (3.10)

dR12 = − ṙ1r2 cosψ+r1ṙ2 cosψ−r1r2 sinψψ̇−2r1ṙ1 sinψ+(1−r21) cosψψ̇
C +

r1r2 cosψ + (1− r21) sinψ

C2
Ċ

dR22 =
ṙ1r2 sinψ+r1ṙ2 sinψ+r1r2 cosψψ̇−2r1ṙ2 cosψ−(1−r22) sinψψ̇

C +
r1r2 sinψ + (1− r22) cosψ

C2
Ċ

dR32 = (r1 sinψ−r2 cosψ)ṙ3+(ṙ1 sinψ−r1 cosψψ̇−ṙ2 cosψ+r2 sinψψ̇)r3
C +

(r1 sinψ − r2 cosψ)r3
C2

Ċ,

where C =
√
1− (r1 cosψ − r2 sinψ)2 and Ċ = (−2(r1 cosψ−r2 sinψ))(ṙ1 cosψ−r1 sinψψ̇−ṙ2 sinψ−r2 cosψψ̇)

2
√

1−(r1 cosψ−r2 sinψ)2
.

Note that once z̈r equals to 0, i.e. r = [r1, r2, 0]
T , there is a risk that cosφr becomes 0, i.e.

φr = ±π
2

, leading to two conditions: r = [− sinψ, cosψ, 0]T and r = [sinψ,− cosψ, 0]T . Taking

φr =
π

2
as an example, (3.7) is rewritten as

⎡
⎣r1r2
0

⎤
⎦ =

1√
ẍ2r + ÿ2r

⎡
⎣−ẍr−ÿr

0

⎤
⎦ =

⎡
⎣ sinψr
− cosψr

0

⎤
⎦ , (3.11)

where θr cannot be determined in this case. Therefore, to ensure the accessibility of θr, we have
a constraint that if z̈r = g, −ẍr sinψr + ÿr cosψr �= ±√

ẍ2r + ÿ2r to avoid cosφr = 0.

3.1.3 Linear velocity, angular rate and torque

With a complete rotation matrix Rr, the linear velocity vr can be derived from (3.1a) as

vr = RTr ρ̇r (3.12)

with ρ̇r = [ẋr, ẏr, żr]
T .

10 Final Report of Graduation Project

And the angular velocity ωr = [ω1, ω2, ω3]
T follows from (3.1c):

S(ωr) = RTr Ṙr. (3.13)

Substituting (3.9) and (3.11) into (3.13) gives

ωr =

⎡
⎢⎢⎣

ṙ1 cosψ−ṙ2 sinψ√
1−(r1 cosψ+r2 sinψ)2

r3 cosψ√
1−(r1 cosψ+r2 sinψ)2

ṙ1 +
r3 sinψ√

1−(r1 cosψ+r2 sinψ)2
ṙ2 − r1 cosψ+r2 sinψ√

1−(r1 cosψ+r2 sinψ)2
ṙ3

− r3 cosψ(r1 sinψ−r2 cosψ)
1−(r1 cosψ+r2 sinψ)2 ṙ1 − r3 sinψ(r1 sinψ−r2 cosψ)

1−(r1 cosψ+r2 sinψ)2 ṙ2 +
(r1 cosψ+r2 sinψ)(r1 sinψ−r2 cosψ)

1−(r1 cosψ+r2 sinψ)2 ṙ3 +
r3ψ̇

1−(r1 sinψ−r2 cosψ)2

⎤
⎥⎥⎦

(3.14)
which can be simplified as

ωr =

⎡
⎣ 1

r3
(Rr21ṙ1 −Rr11ṙ2)

Rr11ṙ1 +Rr21ṙ2 +Rr31ṙ3
−Rr32

r3
ω2 +

r3
cos2 φ ψ̇

⎤
⎦ , (3.15)

where Rrij is the corresponding element in row i and column j of rotation matrix Rr (3.9).
Subsequently, the angular acceleration can be determined by differentiating (3.15):

ω̇r =

⎡
⎣ω̇1

ω̇2

ω̇3

⎤
⎦

=

⎡
⎢⎣ − 1

r3
ṙ3ω1 +

1
r3
(Ṙr21ṙ1 +Rr21r̈1 − Ṙr11ṙ2 −Rr11r̈2)

Ṙr11ṙ1 +Rr11r̈1 + Ṙr21ṙ2 +Rr21r̈2 + Ṙr31ṙ3 +Rr31r̈3

−(Ṙr32

r3
ω2 − Rr32

r23
ṙ3ω2 +

Rr32

r3
ω̇2) + (ṙ3

cos2 φr
ψ̇r − 2 ṙ3

cos3 φr
cosφr sinφrφ̇rψ̇r +

r3
cos2 φr

ψ̈r)

⎤
⎥⎦ ,

(3.16)

where Ṙrij is the corresponding element in row i and column j of the time derivative of rotation
matrix Ṙr = RrS(ωr) (3.1c).

Consequently, the torque τr of the reference can be rearranged from (3.1d) as

τr = Jω̇r − S(Jωr)ωr. (3.17)

3.2 Controller by E. Lefeber(2020)
The study by [26] innovates a filtered output feedback tracking control for quadcopters, which has
proved uniform almost global asymptotic stability(UaGAS) in literature [26]. In section 3.2.1 and
3.2.2 respectively a position controller and an attitude controller are presented. In the end, the
versor form of the combined controller is stated in section 3.2.3.

3.2.1 Position tracking error control
This section addresses a feedback control law, which is driven by the translational error dynamics.
It also designs a virtual input u to avoid the untraceable attitude in this part. Herein let the
difference between the reference (ρr, νr) and the estimated states (ρ, ν) denote the translational
error [

ρe
νe

]
=

[
RTr (ρr − ρ)
νr −RTr Rν

]
. (3.18)

Facilitated by general dynamics(2.20), we obtain the translational error dynamics

ρ̇e = −S(ωr)ρe + νe (3.19a)

ν̇e = −S(ωr)νe + f

m
RTr Re3 −

fr
m
e3. (3.19b)

Final Report of Graduation Project 11

Considering that the only controllable thrust magnitude f is unable to affect attitude R, a sub-
stitution as a virtual input is constructed

u =
f

m
RTr Re3 −

fr
m
e3, (3.20)

which leads to the translational error dynamics

ρ̇e = −S(ωr)ρe + νe (3.21a)
ν̇e = −S(ωr)νe + u, (3.21b)

in closed-loop with observed output feedback

u = −σ(kρρ̂e + kν ν̂e), (3.22a)
˙̂ρe = −S(ωr)ρ̂e + νe + L1z (3.22b)
˙̂νe = −S(ωr)ν̂e + u+ L2z (3.22c)
ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)ρ̃e, (3.22d)

where kρ > 0, kν > 0 are the feedback gains; L1 > 0, L2 > 0 and L3 > 2L2/L3 are filter parameters;
ρ̃e = ρe − ρ̂e is the difference between estimated and filtered error; σ(∗) is a saturation function

σ(x) =

⎧⎪⎨
⎪⎩
γ tanh(||x||2/γ)||x||−1

2 x, if σ(x) �= 0
0, x = 0

x, elsewhere
, (3.23)

to avoid reaching the maximum motor ratio, which might trigger instability.

From (3.20), a thrust magnitude f , can be determined:

mu+ fre3 = fRTr Re3 (3.24a)
f = ‖mu+ fre3‖, (3.24b)

3.2.2 Attitude control
In the previous section, a stable position tracking was developed, however, depending on a virtual
input u. In this section, by introducing desired attitude dynamics based on this virtual input, we
can update the reference for attitude and finally bridge the position control law with attitude.

Let the desired thrust direction fd and desired rotation matrix Rd (further details see AppendixA)
denote the term RTr Re3 and a non-unique rotation matrix in (3.24a)

fd := RTr Re3 =

⎡
⎣fd1fd2
fd3

⎤
⎦ =

fre3 +mu

‖fre3 +mu‖ =
fre3 +mu

f
(3.25)

Rd :=

⎡
⎢⎣1−

f2
d1

(1+fd3)
− fd1fd2

(1+fd3)
fd1

− fd1fd2
(1+fd3)

1− f2
d2

(1+fd3)
fd2

−fd1 −fd2 fd3,

⎤
⎥⎦ (3.26)

which derive a desired angular rate

Ṙd = RdS(ωd) (3.27a)

ωd =

⎡
⎢⎢⎣
−ḟd2 + fd2ḟd3

1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎦ . (3.27b)

12 Final Report of Graduation Project

From (3.25), as Rd and RTr R share the same last column fd, we can require RTr R converging to
Rd. With known Rd and Rr, R can be simply derived from RrRd; in other words, we should
update the attitude tracking reference as the rotation matrix Rrd and angular rate ωrd as

Rrd = RrRd (3.28a)

ωrd = RTd ωr + ωd, (3.28b)

which renders new reference dynamics

Ṙrd = RrdS(ωrd) (3.29a)
Jω̇rd = S(Jωrd)ωrd + τrd (3.29b)

τrd = −S(Jωrd)ωrd + J(RdS(ωd))
Tωr + JRTd ω̇r + Jω̇d. (3.29c)

For the derivation of these dynamics see AppendixA. Thereafter, drawing into the similarity of
position control, the filtered attitude controller can be achieved by the orientational dynamics

Ṙ = RS(ω) (3.30a)
Jω̇ = S(Jω)ω + τ (3.30b)

with closed-loop input

τ = τrd + S(Jω̂e)ωrd +Kωω̂e +
3∑
i=1

kiS(R
T
rdνi)R̂

T νi, (3.31a)

˙̂
R = R̂S(ω − CR

3∑
i=1

kiS(R̂
T νi)(R

T
r νi +RT νi)) (3.31b)

J ˙̂ω = S(Jω)ω + τ − cωJS(ωr)ωe − cωKωωe − Cωω̃, (3.31c)

where the errors are defined as Re = RrdR
T , R̃ = R̂R, ωe = ωrd−ω, ω̂e = ωrd− ω̂ and ω̃ = ω̂−ω;

vi = ei is the direction vector; Kω = KT
ω > 0 and ki > 0 are the attitude feedback gain;

Cω = CTω > 0, cR > 0 and cω > 0.

3.2.3 Combined control in quaternions
As illustrated in section 2.1.3, the calculation of unit quaternions is more efficient than the rotation
matrix’s, which is friendly for a limited CPU of the drone. However, to avoid the ambiguous map-
ping for the same rotation from either positive or negative versor, the general flight dynamics(2.20)
are rearranged (details about quaternions see section 2.1.2) into

ρ̇ = q � ν (3.32a)
ν̇ = −S(ω)νr + gq∗ � e3 − (f/m)e3 (3.32b)

q̇ =
1

2
q ⊗

[
0
ω

]
(3.32c)

Jω̇ = −S(Jω)ω + τ, (3.32d)

and the versor form of the reference dynamics is given by

ρ̇r = qr � νr (3.33a)
ν̇r = −S(ωr)νr + gq∗r � e3 − (fr/m)e3 (3.33b)

q̇r =
1

2
qr ⊗

[
0
ωr

]
(3.33c)

Jω̇r = −S(Jωr)ωr + τr, (3.33d)

Final Report of Graduation Project 13

which leads to [
ρe
νe

]
=

[
q∗r � (ρr − ρ)

νr − (q∗r ⊗ q)� ν

]
. (3.34)

Then building a virtual input u = −σ(kρρ̂e + kν ν̂e), stability is guaranteed for the close loop
system

˙̂ρe = −S(ωr)ρ̂e + νe + L1z (3.35a)
˙̂νe = −S(ωr)ν̂e + u+ L2z (3.35b)
ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)(ρe − ρ̂e). (3.35c)

Corresponding to the desired rotation matrix Rd (3.26), a desired versor qd can be derived (see
Appendix A):

qd =

⎡
⎢⎢⎢⎢⎢⎣

√
(1+fd3)

2

− fd2√
2(1+fd3)
fd1√

2(1+fd3)

0

⎤
⎥⎥⎥⎥⎥⎦ . (3.36)

Updated attitude reference (3.28) may be rewritten to give

qrd = qr ⊗ qd (3.37a)
ωrd = q∗d � ωr + ωd, (3.37b)

which satisfy

q̇rd =
1

2
qrd ⊗

[
0
ωrd

]
(3.38a)

Jω̇rd = S(Jωrd)ωrd + τrd (3.38b)
τrd = −S(Jωrd)ωrd + Jq̇∗d � ωr + Jq∗d � ω̇r + Jω̇d. (3.38c)

Finally, the overall objective of these equations is to rewrite the full feedback control (3.22) and
(3.31) into unit quaternions. The particular shape of related model dynamics has been delivered
above. It is possible to formulate the cascade controller for full states using quaternions as

u = −σ(kρρ̂e + kν ν̂e), (3.39a)
˙̂ρe = −S(ωr)ρ̂e + νe + L1z (3.39b)
˙̂νe = −S(ωr)ν̂e + u+ L2z (3.39c)
ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)ρ̃e (3.39d)

τ = τrd + S(Jω̂e)ωrd +Kωω̂e +
3∑
i=1

kiS(q
∗
rd � νi)q̂

∗ � νi (3.39e)

˙̂q =
1

2
q̂ ⊗

[
0

ω + δR

]
(3.39f)

J ˙̂ω = S(Jω)ω + τ + δω, (3.39g)

where

δR = −cR
3∑
i=1

kiS(q̂
∗ � νi)[(qrd + q)−1 � νi] (3.40a)

δω = −cωJS(ωrd)ωe − cωKωωe − Cωω̃ (3.40b)

14 Final Report of Graduation Project

3.3 Concluding remarks
As stated above, this chapter derives a smooth trajectory based on flat-output as a reference for
controller validation. Following those reference states, the position tracking errors build a virtual
input, which relates desired dynamics to update the attitude reference. Facilitated by this virtual
input, we obtain a full state controller for both position and attitude and further rewrite it in
versor form for quicker computation.

Final Report of Graduation Project 15

Chapter 4

Flying Parrot mambo drone

Before implementing the newly designed controller by [26] on the set-up, it is necessary to simulate
this controller by the Aerospace Toolbox in Matlab. This toolbox allows customers to evaluate
vehicle motion and orientation using built-in aerospace math operations and coordinate system
and spatial transformations [31]. It also provides a platform for Parrot’s specific Support Package
based on the Aerospace Toolbox, to design a customized controller and access those sensors’
navigation data [30]; thereafter, the host-computer can remotely deploy the controller on the set-
up to track demanding references [30]. The insight of the default estimator and controller would
provide clues for gains tuning of the controller by [26] in the next chapter.

4.1 Experimental Setup

To verify the previous theoretical design in Chapter 3, it is crucial to understand firmware and
obtaining its parameters. The experimental setup contains a Parrot Mambo drone and a host
computer with a Parrot Simulink package on Matlab (2019a version).

4.1.1 Aerial vehicle

Given by its official website and Brekelmans’s work [7], Parrot mambo drone is a lightweight
mini-drone with size 0.18 × 0.18 meter, whose weight is only 0.068 kilogram and the inertia is
diag[0.069, 0.0775, 0.150] · 10−3kg·m2 (including four removable propeller bumpers as protection)
designed for easy handling. As a classic quadrotor, it contains four fixed propellers to generate
thrust and the carried battery supports a 10 minutes flight.

4.1.2 On-board sensors

The on-board sensors consist of a vertical camera, an inertial measurement unit(IMU), and an
ultrasound sensor, which are detailed below.

Vertical camera

The vertical camera is used to measure optical flow for horizontal speed. Its lens is 80 degrees
processing a VGA resolution (640x480p) signal at 60 frames per second. This camera can also be
used to detect object characters, such as color, for further absolute position recognition.

16 Final Report of Graduation Project

IMU

The IMU includes a 3-axis accelerometer and a 3-axis gyroscope running at 200Hz. The accel-
erometer provides body-fixed accelerations on xyz directions and the gyroscope measures Euler
angle rates following ZY X order.

Ultrasound sensor

The ultrasound sensor is used to estimate the altitude and vertical velocity in the inertial frame.
It provides a "distance" between the drone and any event as a relative quantity [37]. To avoid the
attitude suddenly varying, the terrain should be horizontal without obstacles.

By obtaining the data from the above sensors, the real-time system embedded on the drone
estimates states and controls flight simultaneously at a 200Hz rate [8].

4.2 Parrot Simulink package
This section focuses on the autonomous flying kernel of the Parrot Simulink package(PSP): con-
trol strategy. It consists of two default modules: a state estimator and a Proportional Integral
Derivative controller. As a decisive role, the state estimator promises timely accurate states for
the controller to compute the desired force and torque within those states for the rotor commands.

4.2.1 Default state estimator

The structure of the default state estimator is shown in Figure 4.1. The system combines integ-
rator and several predictive filters based on a flight dynamics model to fuse data, predict states
and denoise [37]. It starts from extracting and tracking the sensor measurements(see Section
4.1.2): linear accelerations, angular rates, height, and a scaled horizontal motion. All features are
initialized by necessary calibration data obtained in the steady set-off stage, and IMU data are
filtered in sensor preprocessing.

a_xyz - [0 0 g]
w_xyzIMU

z_sonUltrasonic sensor

du,dvOptical flow

w

a

a_x,a_y

a_z

Low-pass filter

v_x,v_yOF correction

RPYintegrator

RP
acceleration
correction

Kalman filter

Kalman filter

Complementary
filter

w_xyz

z
v_z

Roll,Pitch
Yaw

x,y
v_x,v_y

Figure 4.1: Schema of the default estimator in Parrot Simulink package

Before detailing the estimation processing, we denote (∗) as a measured raw feature or a certain
final estimated state, ˆ(∗) as an estimation of state, and ˆ(∗)′ as a prior estimation of ˆ(∗). And as in
Chapter 3, R is the rotation matrix from body-fixed to the inertial frame; Ts is the sample time
of sensors.

Final Report of Graduation Project 17

IMU based attitude estimation

As the outcome of gravity and flight dynamics, IMU measurements are affected by accelerator bias
ab, gyroscope bias ωb, gravity tensor Gb = [0, 0, g]T and additive random noises aa, nω [35]. The
measured raw linear acceleration A = [A1, A2, A3]

T and body-fixed angular rate Ω = [Ω1,Ω2,Ω3]
T

are given by

A = areal +RTGb + ab + na (4.1a)
Ω = ωreal + ωb + nω. (4.1b)

Assuming that the additive random noises are Gaussian distributed and the IMU biases are random
walk with Gaussian distributed deviates [35]. In such a case, the measurements are preprocessed
by FIR filter and IIR filter

fFIR(A(Z)) := a(Z) =

5∑
k=0

h(k)Z−kA(Z) (4.2a)

fIIR(Ω3(Z)) := ω3(Z) =

∑5
k=0 b(k)Z

−k∑5
k=0 a(k)Z

−kΩ3(Z), (4.2b)

where ∗(Z) denotes the signals in Z-domain; h(k) = [0.026, 0.14, 0.33, 0.33, 0.14, 0.026] are the coef-
ficients of the FIR filter; a(k) = [0.28, 1.27, 2.42, 2.42, 1.27, 0.28], b(k) = [1, 2.23, 2.52, 1.58, 0.54, 0.08]
are the coefficients of the IIR filter. Herein, the filtered acceleration and body-fixed angular rate
are presented as

a = [a1, a2, a3]
T (4.3)

ω = [Ω1,Ω2, ω3]
T . (4.4)

To estimate the Euler angles, we use integrator for consecutive frames of the Euler rate [φ̇gyr, θ̇gyr, ψ̇gyr]T
with zero initial condition, which can be transformed from the body-fixed angular rate as⎡

⎣φ̇gyrθ̇gyr
ψ̇gyr

⎤
⎦ =

⎡
⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

⎤
⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦ =Wbeω (4.5a)

⎡
⎣φgyrθgyr
ψgyr

⎤
⎦ =

∫
Wbeω dt. (4.5b)

The mapping relationship is given from [16] [10]⎡
⎣ω1

ω2

ω3

⎤
⎦ =

⎡
⎣φ̇gyr0

0

⎤
⎦+R(φ)

⎡
⎣ 0

θ̇gyr
0

⎤
⎦+R(φ)R(θ)

⎡
⎣ 0

0

ψ̇gyr

⎤
⎦ . (4.6)

Note that, when the drone reaches a steady situation, an additional Roll and Pitch angle correction
with acceleration are introduced⎡

⎣a1a2
a3

⎤
⎦ = RT

⎡
⎣00
g

⎤
⎦ = g

⎡
⎣ − sin θ
cos θ sinφ
cos θ cosφ

⎤
⎦ (4.7a)

θa = arcsin−a1
g

(4.7b)

φa = arctan
a2
a3

; , (4.7c)

18 Final Report of Graduation Project

where RT is the transfer matrix from inertial frame to body frame following ZYX order

RT =

⎡
⎣1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦
⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦
⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦ (4.8)

Consequently, the attitude estimation algorithm is

⎡
⎣φθ
ψ

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.999

⎡
⎢⎣φgyrθgyr

ψgyr

⎤
⎥⎦+ 0.001

⎡
⎢⎣φaθa
0

⎤
⎥⎦ , if (1 + 0.02) ∗ g >

√∑3
i a

2
i > (1− 0.02) ∗ g

⎡
⎢⎣φgyrθgyr

ψgyr

⎤
⎥⎦ , else

. (4.9a)

Ultrasonic sensor based height and velocity

Due to the noisy altitude signal from the ultrasonic sensor, the default operation of the vertical
motion estimator implements a Kalman filter with a state dynamics model

[
˙̂z′
˙̂v′zI

]
=

[
0 1
0 0

] [
ẑ′

v̂′zI

]
+

[
0
1

]
z̈ (4.10a)

zsonar =
[
1 0

] [ẑ
v̂zI

]
(4.10b)

where zsonar is the raw altitude data from the ultrasonic sensor; v̂zI is the prior estimated z-
axis velocity in the inertial frame; z̈ is the z-axis acceleration in the inertial frame, which
compromises the body-fixed acceleration a as an input to adapt the vertical linear velocity. That
is ⎡

⎣ẍÿ
z̈

⎤
⎦ = R

⎡
⎣a1a2
a3

⎤
⎦+

⎡
⎣00
g

⎤
⎦

=

⎡
⎣cosφ cos θ cosφ sin θ sinψ − cosψ sinφ sinφ sinψ + cosφ cosψ sin θ
cos θ sinφ cosφ cosψ + sinφ sin θ sinψ cosψ sinφ sin θ − cosφ sinψ
− sin θ cos θ sinψ cos θ cosψ

⎤
⎦
⎡
⎣a1a2
a3

⎤
⎦+

⎡
⎣00
g

⎤
⎦

(4.11a)

z̈ = −a1 sin θ + a2 cos θ sinψ + a3 cos θ cosψ + g. (4.11b)

This results in the final estimated altitude and vertical linear velocity[
ẑ
v̂zI

]
=

[
ẑ′

v̂′zI

]
+

[
Lzc
0

]
(zsonar −

[
1 0

] [ẑ′
v̂′zI

]
) (4.12a)

where Lzc is the continuous constant Kalman gain. Note that the required linear velocity should
be in the body-fixed frame, therefore v̂zI can be written as;⎡

⎣v1v2
v3

⎤
⎦ = RT

⎡
⎣ ẋ
ẏ
v̂zI

⎤
⎦ , (4.13)

where ẋ, ẏ are the horizontal linear velocities in the inertial frame given by the horizontal
movement estimator (see next section).

Final Report of Graduation Project 19

Optical flow based horizontal position and velocity

The main role of the optical flow sensor is to reflect the vehicle motion on the image plane. The
horizontal speed estimator from the image relates two interconnected algorithms [8]. Referring to
Parrot Patents [15] [1], the first one is discrete-time digital processing to determine an optical flow
field between each pair of successive images, which can be decomposed into image pyramids. As the
distribution of the movement of brightness pattern [19], optical flow field provides motion of each
pixel, then this algorithm combined Lucas-Kanade estimation method [27] and pyramid of images
estimate [1] [12] a corresponding maximum detectable pixel displacement as a constant optical flow
(du, dv) in a focal plane. However, from the output of firmware, the magnitude of optical flow data
is 10−3 unmatched the possible displacement. Due to the inaccessible firmware, we assume the
optical flow output is refined with the scale of focal length and pixel size experimentally validated
in Chapter 5. For the same reason of the inaccessibility, the further detail of the optical flow
detecting algorithm is needless to mention in this report.

Within the detected optical flow (du, dv), the second algorithm revealed in the Parrot Simulink
Package utilizes a compensation gain and the altitude z for frame change and scale change between
the image plane and the scene [12] to achieve the horizontal body-fixed linear velocity:

ẋ = −1.15z ∗ du (4.14a)
ẏ = −1.15z ∗ dv. (4.14b)

Additionally, because of the low-cost accelerator, the noisy acceleration is insufficient to be in-
tegrated twice for position [12] but introduced to filter linear velocities(4.14) with a state-space
model [

˙̂v′x
˙̂v′y

]
=

[
1 0
0 1

] [
ax
ay

]
(4.15a)[

ẋ
ẏ

]
=

[
v̂x
v̂y

]
(4.15b)

which leads to [
v̂x
v̂y

]
=

[
v̂′x
v̂′y

]
+

[
Lxy 0
0 Lxy

]
(

[
ẋ
ẏ

]
−

[
1 0
0 1

] [
v̂′x
v̂′y

]
). (4.16)

where Lxy is a constant Kalman gain.

Finally, the horizontal localization of the vehicle is derived from integrated horizontal velocities

[
x
y

]
=

∫ [
1 0 0
0 1 0

]
R

⎡
⎣v̂xv̂y
v̂z

⎤
⎦ dt (4.17)

where vertical velocity v̂z is given by (4.13).

4.2.2 Default Proportional Integral Derivative controller

As was presented in section 4.2.1, the default state estimator evaluates and filters position, Euler
angles, linear velocity, and angular rate from sensor data. The default controller, a Proportional
Integral Derivative(PID) controller, receives said states and acquires desired references [36]. Such
a PID controller promises good robustness and responses in a short time with a slight overshoot
and nearly zero steady-state error [41]. Note that the Derivative module of the control strategy
obscurely assumes all reference states except position are zero, which only performs for hover

20 Final Report of Graduation Project

Figure 4.2: Schematic overview of the default PID controller in Parrot simulink package

condition to avoid the unstable behavior from its imprecise model. Further description of this
controller is presented below.

The general PID algorithm separates controllers for the force scale f and torque vector τ cor-
responding to the altitude and attitude. In the first circuit, an prior PD controller of horizontal
position error would adjust Roll and Pitch angle references, where the tilting vehicle obtains the
horizontal component of thrust to correct the location. That is[

θr
φr

]
= PeulSat(R(ψ)

[
xr − x
yr − y

]
) +Deul

[
v1
v2

]
, (4.18)

where Peul =
[−0.24 0

0 0.24

]
and Deul =

[
0.1 0
0 −0.1

]
; Sat(∗) is a saturation function

Sat(x) =

⎧⎪⎨
⎪⎩

3, if x > 3

−3, if x < 3

x, elsewhere;
(4.19)

R(ψ) is the rotation matrix

R(ψ) =

[
cosψ sinψ
− sinψ cosψ

]
=

[
1 ψ
−ψ 1

]
+ h.o.t (4.20)

from the inertial frame to the body-fixed frame.

Referring to the updated roll and pitch angles references (4.18), their corresponding components
of the torque are designed by a PID controller(Further detail see Figure.B.1)[

θ̇e
φ̇e

]
=

[
θr
φr

]
−

[
θ
φ

]
(4.21a)[

τ2
τ1

]
= Pτ12

([
θr
φr

]
−

[
θ
φ

])
+ Iτ

[
θe
φe

]
−Dτ12

[
ω2

ω1

]
, (4.21b)

where Pτ12 =

[
0.013 0
0 0.01

]
, Iτ12 = 0.01 and Dτ12 =

[
0.002 0
0 0.003

]
.

Besides the horizontal position controller above, the remainder controllers for the altitude and
yaw angle corresponding to force scale f and third component of the torque τ can be written as

f + fr = Pz(zr − z)−Dzv3 (4.22a)
τ3 = −Pτ3ψ −Dτ3ω3, (4.22b)

Final Report of Graduation Project 21

where fr = mg; Pz = 0.8 and Dz = 0.5; Pτ3 = 0.004 and Dτ3 = 0.00012.

To be convenient, substitute (4.18) into (4.21), where the high order term of R(ψ) can be ignored
under hover condition, a full default controller is derived

f +mg = 0.8(zr − z)− 0.5v3 (4.23a)
φr = 0.24Sat[−ψ(xr − x) + (yr − y)]− 0.1v2 (4.23b)
θr = −0.24Sat[(xr − x) + ψ(yr − y)] + 0.1v1 (4.23c)[
φ̇e
θ̇e

]
=

[
φr
θr

]
−

[
φ
θ

]
(4.23d)

τ1 = 0.01(φr − φ) + 0.01φe − 0.003ω1 (4.23e)
τ2 = 0.013(θr − θ) + 0.01θe − 0.002ω2 (4.23f)
τ3 = −0.004ψ − 0.00012ω3, (4.23g)

4.3 Concluding remarks
This chapter relates to a brief introduction of setup and the derivations of default estimator and
controller in Parrot Simulink package. As a sophisticated estimator, it determines and filters
required states for the later controller. Even though such an unmodeled system limits the de-
fault controller at the hover point, it can be a fundamental component to perform better for the
controller by [26] in the next chapter [39].

22 Final Report of Graduation Project

Chapter 5

Simulation and Implementation

In this chapter, the controller theoretically introduced in Chapter 3 is numerically simulated
and experimentally validated. Due to the complex nonlinear behavior, as mentioned in Chapter
4, the default PID controller is an ideal fundamental subject to mimic. Its linearization and
approximation for gains tuning of [26] can be found in section 5.1. Next, a comparison between
simulations and experiments is delivered and analyzed in section 5.2. Section 5.3 states the optical
flow theory for improving the performance, estimates the horizontal velocity from optical flow with
a better model and presents the new estimator validation and flight results.

5.1 Approximation of input-output linearization for feedback
tuning

Even though the constraints of feedback gains based on Lyapunov theory [26] are proposed to
ensure a stable flight processing, its experiments still take a high risk with undesired instability.
In reality, breeze, imbalanced rotors, or any other turbulence would limit the ideal stability region.
However, for such a nonlinear system with six feedback gains, determining the theoretical robust
constraints is challenging. For many sophisticated control strategies, the lowest level is designed
with PID control, which can be viewed as the "bread and butter" of control engineering [3].
Therefore, as mentioned in section 4.3, the default PID controller is an appropriate entry point
for the controller in [26] to resemble.

Because a linear control system is much simpler than its nonlinear form [23], this section starts by
linearizing the default PID controller and the paper’s controller [26] separately around the equilib-
rium hover point. Then given by the same inputs and outputs, the two linearized controllers are
comparable, which allows the paper’s controller to find equivalent gains. Finally, via simulations,
a set of well-performed gains are settled.

For the controller, we define

• Input space: u := [x, y, z, v1, v2, v3, φ, θ, ψ, ω1, ω2, ω3]
T

• State space: x := [θe, φe]
T

• Output space: y := [f, τ1, τ2, τ3]
T

• Parameter: m: vehicle mass; J : inertial tensor; xr, yr, zr: constant hover position reference;
Rr = I, ωr = [0, 0, 0]T : attitude references; fr = mg: constant thrust reference equal to
gravity; [v1, v2, v3] = I: the direction vector.

Final Report of Graduation Project 23

Linearizing a controller around hover

uT = [xr, yr, zr, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T (5.1a)

xT = [0, 0]T (5.1b)

yT = [mg, 0, 0, 0]T , (5.1c)

requires us to consider the variables

ū := u− uT = [x− xr, y − yr, z − zr, v1, v2, v3, φ, θ, ψ, ω1, ω2, ω3]
T (5.2a)

x̄ := x− xT = [θe, φe]
T (5.2b)

ȳ := y − yT = [f −mg, 0, 0, 0]T , (5.2c)

Specifically, we denote (∗) as an original state, (∗)L as the linearized form of (∗), (∗),i as the ith
element of a vector (∗), (∗)i,j as the element on the ith row and the jth column of a matrix (∗).
Furthermore, ρ is a vector of [x, y, z]T , ν is a vector of [v1, v2, v3]T , ω is a vector of [ω1, ω2, ω3]

T

and R is the rotation matrix from body-fixed to the inertial frame from Euler angles, which is

R =

⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦ . (5.3)

5.1.1 Linearized full controller [26] without observer

Before going to linearize the system [26], since the outputs from the default estimator are filtered
(see section 4.2.1), the default PID does not contain any observer inside. For comparability, the
full controller [26] should also be simplified without observer around hover point as[

ρe
νe

]
=

[
RTr (ρr − ρ)
νr −RTr Rν

]
=

[−ρ
−Rν

]
(5.4a)

uvir = −(kρρe + kννe) (5.4b)
f = ‖muvir + fre3‖ (5.4c)

fd :=
fre3 +muvir
‖fre3 +muvir‖ (5.4d)

Rd :=

⎡
⎢⎣1−

f2
d1

(1+fd3)
− fd1fd2

(1+fd3)
fd1

− fd1fd2
(1+fd3)

1− f2
d2

(1+fd3)
fd2

−fd1 −fd2 fd3

⎤
⎥⎦ (5.4e)

ωd :=

⎡
⎢⎢⎣
−ḟd2 + fd2ḟd3

1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎦ (5.4f)

Rrd = RrRd = Rd (5.4g)

ωrd = RTd ωr + ωd = ωd (5.4h)

τrd = −S(Jωrd)ωrd + J(RdS(ωd))
Tωr + JRTd ω̇r + Jω̇d = −S(Jωd)ωd + Jω̇d (5.4i)

τ = τrd + S(Jωe)ωrd +Kωωe +
∑3
i=1 kiS(R

T
rdνi)R

T νi = τrd + S(J(ωd − ω))ωd +Kω(ωd − ω) +
∑3
i=1 kiS(R

T
d νi)R

T νi,
(5.4j)

where uvir is the virtual input without saturation function, because its small variance under the
hover condition settles in the linear range of saturation function.

24 Final Report of Graduation Project

Following the general procedure [23] [9], differentiating the position control (5.4a)-(5.4c) with
respect to input u gives

ρeL = ρe(0) +
∂ρe
∂u

ū = − [
ū1 ū2 ū3

]T (5.5a)

νeL = νe(0) +
∂νe
∂u

ū = − [
ū4 ū5 ū6

]T (5.5b)

uvirL = −(kρρeL + kννeL) (5.5c)

fL = f(0) +
∂f

∂u
ū = mg +

(fre3)
T

‖fre3‖ muvirL = mg − [0, 0,m](kρρeL + kννeL) (5.5d)

f̄L = fL − fr = −[0, 0,m](kρρeL + kννeL). (5.5e)

Subsequently, the designed parameters (5.4d)-(5.4f) can be linearized as

fdL = fd(0) +
∂fd
∂u

ū =

⎡
⎣00
1

⎤
⎦− 1

g

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ (kρρeL + kννeL) (5.6a)

RdL = Rd(0) +
∂Rd
∂u

ū =

⎡
⎢⎢⎢⎢⎢⎣

1 0 −kρρeL,1 + kννeL,1
g

0 1 −kρρeL,2 + kννeL,2
g

kρρeL,1 + kννeL,1
g

kρρeL,2 + kννeL,2
g

1

⎤
⎥⎥⎥⎥⎥⎦ (5.6b)

ωdL = ωd(0) +
∂ωd
∂u

ū = −1

g

⎡
⎣−kρkνρeL,2 + (kρ − k2ν)νeL,2
kρkνρeL,1 − (kρ − k2ν)νeL,1

0

⎤
⎦ . (5.6c)

which leads to

τrdL = J
∂ω̇d
∂u

ū = −J
g

⎡
⎣−kρkν ρ̇eL,2 + (kρ − k2ν)ν̇eL,2
kρkν ρ̇eL,1 − (kρ − k2ν)ν̇eL,1

0

⎤
⎦ (5.7a)

τL = τL(0) + τrdL +Kω(ωdL − ωL) +
∂

∂u
(

3∑
i=1

kiS(R
T
d νi)R

T νi

= τrdL +Kω(ωdL − ω)−
3∑
i=1

kiS(vi)S(vi)

⎡
⎣RdL,2,3 +RL,2,3
RdL,3,1 +RL,3,1

RL,1,2

⎤
⎦

= τrdL +Kω(ωdL − ω)−
⎡
⎣(k3 + k2) 0 0

0 (k3 + k1) 0
0 0 (k2 + k1)

⎤
⎦
⎡
⎣RdL,2,3 +RL,2,3
RdL,3,1 +RL,3,1

RL,1,2

⎤
⎦

= -
J

g

⎡
⎣−kρkν ρ̇eL,2 + (kρ − k2ν)ν̇eL,2
kρkν ρ̇eL,1 − (kρ − k2ν)ν̇eL,1

0

⎤
⎦− Kω

g

⎡
⎣−kρkνρeL,2 + (kρ − k2ν)νeL,2
kρkνρeL,1 − (kρ − k2ν)νeL,1

0

⎤
⎦−Kp

⎡
⎣RdL,2,3 + φ
RdL,3,1 + θ

ψ

⎤
⎦−Kωω,

(5.7b)

where RL is linearized from (5.3) around φ = θ = ψ = 0 as

RL = R0 +
∂R

∂u
ū

= I +

⎡
⎣0 −ψ 0
ψ 0 0
0 0 0

⎤
⎦+

⎡
⎣ 0 0 θ

0 0 0
−θ 0 0

⎤
⎦+

⎡
⎣0 0 0
0 0 −φ
0 φ 0

⎤
⎦+ h.o.t =

⎡
⎣ 1 −ψ θ
ψ 1 −φ
−θ φ 1

⎤
⎦+ h.o.t.

(5.8)

Final Report of Graduation Project 25

Consequently, substituting (5.2) into above derivation of linearized full controller, its linear outputs
are achieved as

f̄ = mkρū3 +mkν ū6 (5.9a)

τ̄ =
kρ[(kρ − k2ν)J −Kωkν − gKp]

g

⎡
⎣−ū2ū1

0

⎤
⎦+

kν(2kρ − k2ν)J −Kω(kρ − k2ν)− gKpkν
g

⎡
⎣−ū5ū4

0

⎤
⎦−Kp

⎡
⎣ū7ū8
ū9

⎤
⎦−Kω

⎡
⎣ū10ū11
ū12

⎤
⎦.

(5.9b)

5.1.2 Linearized default controller
Following the same linearization procedure as above, we can differentiate the default altitude
controller(4.23a) as

f̄ = 0.8ū3 + 0.5ū6. (5.10)

Given by the hover horizontal reference around initial point [xr, yr] = [0, 0] and the steady indoor
environment, (4.23b)-(4.23c) would not trigger the saturation function, i.e.

φr = 0.24[−ψ(xr − x) + (yr − y)]− 0.1v2 (5.11a)
θr = −0.24[(xr − x) + ψ(yr − y)] + 0.1v1, (5.11b)

which can be linearized as

θrL = −0.24xy − 0.1v2 (5.12a)
φrL = 0.24x+ 0.1v1. (5.12b)

Therefore, the linearized default attitude controller (4.23d)-(4.23g) yields

˙̄x =

[
φ̇eL
θ̇eL

]
=

[−0.24ū2 − 0.1ū5 − ū7
0.24ū1 + 0.1ū4 − ū8

]
(5.13a)

τ̄ =

⎡
⎣0.01 0

0 0.01
0 0

⎤
⎦ x̄+

⎡
⎣−0.01 0 0

0 −0.013 0
0 0 −0.004

⎤
⎦
⎡
⎣ū7ū8
ū9

⎤
⎦+

⎡
⎣−0.003 0 0

0 −0.002 0
0 0 −0.00012

⎤
⎦
⎡
⎣ū10ū11
ū12

⎤
⎦ .

(5.13b)

5.1.3 Comparison and approximation
For an appropriate choice of feedback gains in the controller by [26], section 5.1.1 and 5.1.2 show
two relatively similar linear control laws. In each case, there is the same state error stabilizing
system, where the altitude feedback gains can be derived from the comparison of (5.9a) and (5.10)
as

kρ =
0.8

m
kν =

0.5

m
. (5.14)

However, because the default controller neglects the flight dynamics but an error state-space model
(5.13a) for integral instead, it is clear that (5.9b) and (5.13b) cannot match exactly. Due to the
well-corresponding force control laws of (5.9a) and (5.10), both torque controls are supposed to
ignore the overlapped part about transitional states. We obtain

Kp =

⎡
⎣(k3 + k2) 0 0

0 (k3 + k1) 0
0 0 (k2 + k1)

⎤
⎦ =

⎡
⎣0.01 0 0

0 0.013 0
0 0 0.004

⎤
⎦ (5.15a)

Kω =

⎡
⎣0.003 0 0

0 0.002 0
0 0 0.00012

⎤
⎦ (5.15b)

26 Final Report of Graduation Project

As expected, the approximated feedback gains still satisfy the stability constraints from Lyapunov
theory posed in section 3.2 as

kρ =
0.8

m
> 0, (5.16a)

kν =
0.5

m
> 0 (5.16b)

Kω =

⎡
⎣0.003 0 0

0 0.002 0
0 0 0.00012

⎤
⎦ = KT

ω > 0 (5.16c)

k1 = 0.0035 > 0 (5.16d)
k2 = 0.0005 > 0 (5.16e)
k3 = 0.0095 > 0. (5.16f)

5.2 Undesired performance with hover reference and causes
analysis

The PID-based gain tuning for the paper’s controller, which has been discussed in the previous
section, should sufficiently prove stability when operating on load. But from the non-observer
simulations with default estimator, the analogical Kω still triggers oscillation until introducing the
vehicle initial tensor J(see Figure.5.1a5.1b). Finally, within a simple design of experiment(DOE)
for none steady-state error, smallest overshoot and settle time with Minitab and Simulink(see
Figure.5.1c), we obtain a set of well-performed feedback and observer gains as

kρ =
0.8

m
kν =

0.5

m
Kω = 30J (5.17a)

k1 = 0.0035 k2 = 0.0005 k3 = 0.0095 (5.17b)

L1 =
1

m
L1 =

10

m
L1 =

2L2

L1
+ 1 (5.17c)

cR = 0.0001 cω = 0.001 CR = 30J (5.17d)

0 2 4 6 8 10

Time[s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Po
si

tio
n[

m
]

x
y
z

(a)

0 2 4 6 8 10

Time[s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Po
si

tio
n[

m
]

x
y
z

(b)

0 2 4 6 8 10

Time[s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Po
si

tio
n[

m
]

x
y
z

(c)
Figure 5.1: The x, y, z position of hover simulations. (a)The results with analogical gains; (b)
The results with re-tuned gains introducing the vehicle tensor flow J ; (c) The results with with
final settled gains (including feedback and observer gains)

Unfortunately, the hover experimental results of these gains are undesired: once the drone reaches
a certain height, a dangerous circling around the origin starts, even flipping over. During the
experiments, all hand-tuning tries failed to correct the aggressive thrust, which easily reaches the

Final Report of Graduation Project 27

500 Pulse-Width Modulation signals limitation per motor or cannot lift to the required height and
shut down. To figure out the possible causes of instability, it is necessary to have insights into the
horizontal estimator and controller eigenvalue.

5.2.1 Default horizontal estimator checking

As mentioned in section 4.2.1, the default horizontal estimator applies an inaccurate conversion
model and fuses data from the optical flow sensor and accelerometer. According to Parrot [12], the
data from the low-cost accelerometer is too noisy to integrate twice, which leads the doubt about
the necessity of data fusing. Moreover, considering the remaining drift problem in Brekelmans’s
report [7], the unmodeled optical flow estimation should be taken into account.

Accelerometer drift

To evaluate the interaction of the accelerometer, the drone is manually held around 0.4m high
above the origin, which is repeated three times. The position [x, y, z]T is integrated from horizontal
optical flow and detected by ultrasonic sensor shown as Figure 5.2a. Movement x and y of this
load diagram clearly illustrate the increasing horizontal drift, but the movement z offers a reliable
detection keeping around 0.4m high. The optical flow converges around zero as depicted as Figure
5.2b.

0 10 20 30 40 50

Time[s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Po
si

tio
n[

m
]

x
y
z

(a)

0 5 10 15 20 25 30 35

Time[s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

O
F[

-]

du
dv

(b)

0 10 20 30 40 50

Time[s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ac
ce

le
ra

tio
n[

m
/s

2]
ax
ay

(c)
Figure 5.2: Handheld hover experiments (a)The position of handheld experiments.From 10
second the drone reaches desired height; (b) The raw x− and y−axis optical flow [du, dv]T from
optical flow sensor; (c) The raw x− and y−axis data [ax, ay]

T from accelerometer

Based on the refined conversion algorithm (4.14), such stable and reliable altitude and optical flow
should promise the horizontal position around zero close to the ground truth. In other words,
the drift only can be introduced by the constantly drifted acceleration in the Kalman filter as
depicted as Figure 5.2c. Due to the variant drift of each experiment, it cannot be removed by set-
off. Therefore, we recommend removing the Kalman filter with acceleration (further experimental
proof see section 5.3.2).

Unmodeled optical flow estimator

Referring to the default estimator in section 4.2.1 and the thesis of G.H. Brekelmans [7], both
methods only consider the depth variation but ignore the rigid orientation, which are unmodeled
as

ẋ = −az ∗ du (5.18a)
ẏ = −az ∗ dv, (5.18b)

where in [7] a = 1.05 and in the default estimator a = 1.15.

28 Final Report of Graduation Project

However, as the flow field always reflects the change from the transition and rotation of on-board
camera itself, it is inappropriate to leave the angular rate along. Hence, in section 5.3, we would
further detail a new corrected estimator fusing the data from gyroscope and optical flow sensor.

5.2.2 Eigenvalue checking
Given the drifted horizontal estimation, it is natural to investigate the robust stability of the
paper’s controller within the inaccurate estimated inputs and unknown environmental variances
[34]. From the none-observer state-space representation

ρ̇e = −S(ωr)ρe + νe (5.19a)
ν̇e = −S(ωr)νe + u (5.19b)
u = −(kρρe + kννe) (5.19c)

q̇ =
1

2
q ⊗

[
0
ω

]
(5.19d)

Jω̇ = S(Jω)ω + τ (5.19e)

τ = τrd + S(Jωe)ωrd +Kωωe +
3∑
i=1

kiS(q
∗
rd � νi)q

∗ � νi, (5.19f)

we can follow the similar steps of section 5.1.1 to linearize this model around hover point as[
ρ̇e
ν̇e

]
=

[
0 I
0 0

] [
ρe
νe

]
+

[
0
I

]
u (5.20a)

u =
[−kρ −kν

] [ρe
νe

]
(5.20b)

Ė =

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦ = ω (5.20c)

ω̇ = τL (5.20d)

τL =
kρ[(kρ − k2ν)J −Kωkν − gKp]

g︸ ︷︷ ︸
Kτ1

⎡
⎣ ye
−xe
0

⎤
⎦+

kν(2kρ − k2ν)J −Kω(kρ − k2ν)− gKpkν
g︸ ︷︷ ︸
Kτ2

⎡
⎣ vye
−vxe
0

⎤
⎦−KpE −Kωω,

(5.20e)

with

Kp =

⎡
⎣(k3 + k2) 0 0

0 (k3 + k1) 0
0 0 (k2 + k1)

⎤
⎦ . (5.21)

Such set of equations can be equivalently rearranged into⎡
⎢⎢⎣
ρ̇e
ν̇e
Ė
ω̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 I 0 0
0 0 0 0
0 0 0 I
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣
ρe
νe
E
ω

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0
I 0
0 0
0 I

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

[
uL
τL

]
(5.22a)

[
uL
τL

]
=

[−kρI −kνI 0 0
K1 K2 −Kp −Kω

]
︸ ︷︷ ︸

K

⎡
⎢⎢⎣
ρe
νe
E
ω

⎤
⎥⎥⎦ (5.22b)

K1 =
[−Kτ1(:, 2) Kτ1(:, 1) 0

]
(5.22c)

K2 =
[−Kτ2(:, 2) Kτ2(:, 1) 0

]
(5.22d)

Final Report of Graduation Project 29

From the pole-placement theorem, we know that stabilizing the closed loop

ė = (A−BK)e =Me (5.23)

requires the eigenvalues ofM in the open left-half plane. Substituting (5.22) intoM , its eigenvalues
are calculated as

eig(M) =

⎡
⎢⎢⎣

−Kω1/2−
√

(K2
ω1 − 4k2 − 4k3)/2√

(K2
ω1 − 4k2 − 4k3)/2−Kω1/2

−Kω2/2−
√

(K2
ω2 − 4k1 − 4k3)/2√

(K2
ω2 − 4k1 − 4k3)/2−Kω2/2

−Kω3/2−
√

(K2
ω3 − 4k1 − 4k2)/2√

(K2
ω3 − 4k1 − 4k2)/2−Kω3/2

−kv/2−
√

(k2v − 4kρ)/2

−kv/2−
√

(k2v − 4kρ)/2

−kv/2−
√

(k2v − 4kρ)/2√
(k2v − 4kρ)/2− kv/2√
(k2v − 4kρ)/2− kv/2√
(k2v − 4kρ)/2− kv/2

⎤
⎥⎥⎦

(5.24)

Substitution of the value of the well-p simulation gains (5.17) results in the following eigenvalue

eig(M) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0012 + 0.1140i
−0.0012− 0.1140i
−0.0010 + 0.1000i
−0.0010− 0.1000i
−7.1865 + 0.0000i
−7.1865 + 0.0000i
−7.1865 + 0.0000i
−1.6371 + 0.0000i
−1.6371 + 0.0000i
−1.6371 + 0.0000i
−0.0022 + 0.0632i
−0.0022− 0.0632i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.25)

The first four and last two entries given above are too close to zero, which can be one possible
cause for the oscillating and circling during the experiments. To align the magnitude of all entries,
the eigenvalue of closed loop can set a boundary of λ < −1 to obtain underlying constraints of

30 Final Report of Graduation Project

attitude gains, which leads to

Kω =

⎡
⎣Kω1 0 0

0 Kω2 0
0 0 Kω3

⎤
⎦ > 2I (5.26a)

⎡
⎣(k2 + k3) 0 0

0 (k1 + k3) 0
0 0 (k2 + k1)

⎤
⎦ > I. (5.26b)

However, such aggressive gains are infeasible for a mini-drone like Parrot Mambo. In general,
during hover experiments with default PID controller, the gyroscope provides the range of angular
rate in [−0.2, 0.2]rad/s. Assuming an ideal situation that position error and angle error are around
4 decimal places (trailing zeros suppressed). If we set a conservative gain as Kω = 2I, the torque
(5.20e) is given by at least 1 decimal places(trailing zeros suppressed). Combined with the anti-
gravity thrust f , the motor will immediately reach the limitation and flip over (see a torque
simulation comparison between infeasible paper’s controller and stable default PID controller in
Figure 5.3a and 5.3b).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time[s]

-8

-6

-4

-2

0

2

4

6

8

To
rq

ue
[N

*m
]

tau1
tau2
tau3

(a)

0 2 4 6 8 10

Time[s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

To
rq

ue
[N

*m
]

10-5

tau1
tau2
tau3

(b)
Figure 5.3: Torque comparison: (a)The torque range of tuned attitude controller gains; (b) The
torque range of default PID controller

Therefore, the robust gains are impossible to apply to our set-up. But the improvement of optical
flow estimation might compensate the sensitive controller and stop sending continuous drifted
horizontal position error that causes vehicle tilting.

5.3 Improvement of horizontal estimation process
There follows a description of a new horizontal estimation based on modeled optical flow(OF)
processing. We provide a corresponding relationship between the data of OF sensor and the rigid
motion. Then the new estimator is validated by the handheld hover experiments and simple
harmonic pendulum experiments. In particular, since a small constant acceleration drift leads to
a greater increasing velocity error after integration shown in section 5.2.1, it is appropriate to
exclude the Kalman filter with acceleration data in the new estimator.

5.3.1 Theory of optical flow in motion field

After estimating the optical flow(u̇, v̇) through the firmware, in order to explain the actual linear
velocity, an accurate model should not only perform the scaling change as (4.14), but also the

Final Report of Graduation Project 31

Figure 5.4: Pinhole camera model (Bradski 2000)

rotation interaction [12]. Theoretically, we assume the optical flow is generated by rigid motions
in a pinhole model [2] [12].

In an ideal pinhole model, let the optical axis be the z-axis of the camera frame (see Figure
5.4), and let ρ = [xc, yc, zc]

T be the coordinate of a point in the camera frame. And projected
coordination p = [x, y, f]T under the image frame is given by

p

f
=
ρc
zc
. (5.27)

A close look at the image plane in Figure.5.5, the pixel frame normalizes the physical image frame
with the pixel size P × P . Its origin sets at the upper-left corner rather than the image center.
Any point on the image plane can be transformed as

(u, v) =
(0, 0)− (x0, y0) + (x, y)

P
=

(x− x0, y − y0)

P
(5.28a)

(x, y) = ((u, v)− (0, 0)− (u0, v0))P = (u− u0, v − v0)P. (5.28b)

During the navigation, the instantaneous velocity of the camera can be decomposed to a translation
T = [vx, vy, vz]

T and a rotation ω = [ωx, ωy, ωz]
T [2]. Considering relative movement, the point

ρ = [xc, yc, zc]
T can be viewed as moving in an opposite way [18]

ρ̇c = −ω× ρc − T

= −
⎡
⎣vx − ycωz + zcωy
vy + xcωz − zcωx
vz − xcωy + ycωx

⎤
⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣
vx − yzc

f
ωz + zcωy

vy +
xzc
f
ωz − zcωx

vz − xzc
f
ωy +

yzc
f
ωx

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.29)

By derivation of (5.27) with respected to time, the optical flow can be expressed as

ṗ = f
ρ̇czc − ρcżc

z2c
. (5.30)

32 Final Report of Graduation Project

Figure 5.5: Image plane(each pixel is a squad)

Substituting (5.29) into the above equation, the projected point moving in the image frame can
be expressed as

ẋ =
vzx− vxf

zc
− ωyf + ωzy +

ωxxy − ωyx
2

f
(5.31a)

ẏ =
vzy − vyf

zc
+ ωxf − ωzx+

ωxy
2 − ωyxy

f
, (5.31b)

where ẋ, ẏ can be sampled and scaled into the discrete optical flow [u̇, v̇] as

[
u̇
v̇

]
=

⎡
⎢⎢⎣
ẋ

P
ẏ

P

⎤
⎥⎥⎦ . (5.32)

Comparing with the magnitude of the altitude zc ∈ (0, 6]m and the focal length f = 23mm, the
image plane of the charge-coupled device(CCD) only comes in 1/2.4-inch (Diagonal 7.487mm).
Therefore, in (5.31) those terms, which contain the image coordinate [x, y] and are divided by
altitude zc or the focal length f , are smaller in more than one order of magnitude than others
[18]. And as mentioned in section 4.2.1, for an evenly integrated detection algorithm on the whole
image, transition vz or rotation ωz of the z−axis has no contribution to optical flow. A simplified
conversion model is

ẋ =
−vxf
zc

− ωyf (5.33a)

ẏ =
−vyf
zc

+ ωxf. (5.33b)

As the last step, the optical flow [u̇, v̇] detected in pixel frame needs to be reversed to horizontal
velocity [vx, vy] in body frame, which is

vx =
−zc
f
ẋ− ωyzc = (

−P
f
u̇− ωy)zc (5.34a)

vy =
−zc
f
ẏ + ωxzc = (

−P
f
v̇ + ωx)zc. (5.34b)

Final Report of Graduation Project 33

5.3.2 Experimental validation

Even though the mathematical equation (5.34) promises the horizontal velocity theoretically, since
the output (du, dv) of the OF sensor is still unclear about Parrot interpretation of their unit and the
internal correction of the inaccessible firmware, (5.34) requires the introduction of two parameters
(a, b) into reversion:

vx(a, b) = (−a ∗ du− b ∗ ωy)zc (5.35a)
vy(a, b) = (−a ∗ dv + b ∗ ωx)zc. (5.35b)

For factor estimation and validation, the experiments, such as handheld hover and pendulum
experiments, with calculable trajectory as ground truth are desired for statistical analysis.

Handheld hover validation

(a) (b)

(c) (d)
Figure 5.6: The handheld hover validations. ∗Mea denotes the default estimated velocity and
∗Cal denotes the calculated velocity with same default model but without Kalman filter.

A particular advantage of hover experiments is the zero reference horizontal velocity, i.e. [vx, vy]T =
[0, 0]Tm/s, which is an intuitive starting point for troubleshooting. Measurements were performed
in a hand-lifting drone and focused on the static period. During this period, a desired horizontal
velocity estimation should converge to the ground truth, zero.

34 Final Report of Graduation Project

As mentioned earlier, we suspect that it is the Kalman filter of the default controller triggering
horizontal velocity drifts constantly. For validation, the default estimated velocity compares with
its pure conversion model (4.14) in Figure 5.6. In the first three sets of data (5.6a-5.6c), the
default estimated velocity drifts clearly, where the unfiltered velocity calculated from the same
model(4.14) converges around zero. Even though the default estimator performs more reliably in
Figure(5.6d), in reality besides the rotating reference, resisting wind requires to tilt the vehicle.
Due to such situations, gravity acceleration tensor Gb always interferes with the horizontal ac-
celeration measurements with an item RTGb (see (4.1a)). There is hesitation to trust the noisy
gyroscope-based rotation matrix R can ensure an accurate Gb transformation and the final correct
calibration. Therefore, it is necessary to remove the Kalman filter to avoid velocity drift caused
by acceleration through hand-held hover verification.

Pendulum validation

Figure 5.7: The sketch of
pendulum model

Figure 5.8: The pendulum
set-up

As the most common simple harmonic model, a simple pendulum can be easily assembled. The
classic model(see Figure.5.7) consists of a mass point m and an infinitely light rod with length
l initiated at a θ0 angle displacement from vertical position on and rotates around a frictionless
pivot [4]. Considering Newton’s second law

F = ma, (5.36)

in the pendulum model, the gravity force provides the force F and angular acceleration delivers
the linear acceleration a = l d

2

dt2 θ, which is

−mg sin θ = ml
d2

dt2
θ. (5.37)

To simplify the state space model of (5.37), we assume the pendulum oscillates in a small angle(θ <
8°) that

(1− cos 8°)/1 ≈ 0.0097 < 1%. (5.38)

Therefore, with the small angle approximation, sin θ ≈ θ, we have

ẋ1 = x2 (5.39a)

ẋ2 = −g
l
x1, (5.39b)

Final Report of Graduation Project 35

0 5 10 15 20 25

Time[s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ve
lo

ci
ty

tes
t[m

/s
]

vx New est
Ground truth

Figure 5.9: The fitted velocity and theoretical value

OF factor New Improvement
(cov_OF-cov_New)/cov_OF

cov_OF cov_New a b

(a) 0.405 0.3292 1 0.02 0.187160494
(b) 0.5181 0.3455 1 0.04 0.33314032
(c) 0.564 0.5397 1 0 0.043085106
(d) 0.3026 0.2562 1 0.02 0.15333774
(e) 0.3739 0.3497 1 0 0.064723188
(f) 0.3177 0.3015 1 0 0.050991501

Table 5.1: Corresponding covariance of 6 simple pendulum experiments

where x1 is the angle θ and x2 is the angular velocity θ̇; g is gravity acceleration; l is pendulum
length. The solution of the angle position x1 or θ can be written as

θ = θ0 sin

(√
g

l
t

)
(5.40)

Given by (5.40), the theoretical value of period T and linear velocity v can be derived

T = 2π

√
l

g
(5.41a)

v = θ̇l = θ0
√
gl cos

(√
g

l
t

)
(5.41b)

In the experiments, we attach the drone with a light stick in a joint as shown in Figure 5.8
and collect 6 sets of data with small-angle oscillation. However, since the friction attenuates the
oscillation significantly and enlarges the period gradually as Figure 5.9, only the first period of six
experiments is available to evaluate the covariance of the estimation.

As illustrated in Figure.5.10, each first period of 6 simple pendulum data sets was separated and
fitted with the theoretical value/ground truth (5.41b). Considering this theoretical value as the
expected value, we can evaluate the covariance from the two estimation models: (5.18b) and (5.35).
Specifically, the optical flow factor (OF factor) method(5.18b) sets the parameter as 1.05 from [7],
and the new estimator (5.35) dynamically calculates its optimal parameters a ∈ [1, 2), b ∈ [0, 1)
based on a minimum covariance loop. From Table 5.1, in general, this new estimator can match all
the ground truth more accurately, even though 3 sets of data only improve 4.3− 5.1%. Observing
all pairs of calculated parameters (a, b) for this new estimator, we can find that different from the
dynamic b, a is statical to 1; and half of the datasets show the introduction of angular compensation

36 Final Report of Graduation Project

parameter b significantly improving the accuracy more than 15%. To benefit from the angular
compensation and avoid more noise from the gyroscope, we recommend using a conservative value
b = 0.02. However, since the experiments significantly lose energy from friction or air resistance,
in the future, including the friction factor into the model can sufficiently utilize more periods of
data and improve the accuracy of parameters (a, b).

(a) (b)

(c) (d)

(e) (f)
Figure 5.10: The pendulum validations. ∗OFfactor denotes the default estimated velocity
without Kalman filter(i.e. Brekelmans’s method [7]) and ∗Newest denotes the calculated velocity
based on (5.35) with smallest covariance.

Final Report of Graduation Project 37

5.3.3 Hover test

Given the validations in section 5.3.2, we determine a new optical flow estimator excluding the
Kalman filter and applying the new estimation model

vx = (−du− 0.02ωy)zc (5.42a)
vy = (−dv + 0.02ωx)zc. (5.42b)

As a robust controller, the default PID controller can be the first subject to validate this new
estimator in hover experiments without flipping safety concerns. There are two sets of hover flight
position data. In Figure 5.11, even with preprocessing filters, the original default horizontal estim-
ator still provides turbulent horizontal velocity, which renders its integrated horizontal position
increasingly drifting away from the origin. Figure 5.12 shows that the new estimator delivers a
stable set of velocity regressing to zero, even though all filters have been removed. Subsequently,
its position also converges to the origin. However, even though this new estimator has promised
the default PID controller to drift less during hover flight, it still cannot avoid the oscillations and
achieve stable flight of the paper’s controller.

0 2 4 6 8 10 12 14 16 18

Time[s]

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Po
si

tio
n[

m
]

x
y
z

(a)

0 2 4 6 8 10 12 14 16 18

Time[s]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Ve
lo

ci
ty

[m
/s

]

vx
vy

(b)
Figure 5.11: The hover performance with default estimator: (a) x, y, z position (b) Horizontal
velocity vx, vy

0 2 4 6 8 10 12 14

Time[s]

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Po
si

tio
n[

m
]

x
y
z

(a)

0 2 4 6 8 10 12 14

Time[s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ve
lo

ci
ty

[m
/s

]

vx
vy

(b)
Figure 5.12: The hover performance with new estimator: (a) x, y, z position (b) Horizontal
velocity vx, vy

38 Final Report of Graduation Project

5.4 Concluding remarks
By the support of the default PID controller, a set of resembling gains are derived from the
linearized comparison between the default controller and the paper’s controller. Within these
knowledge and Simulink tests, a set of gains finally settles in perfect simulation results; however,
they perform undesirably in reality. Its causes analysis illustrates that the drifted horizontal
estimator and sensitive controller force lead to the circling flight. Unfortunately, such a mini
drone cannot satisfy such high gains for robustness. Hence, we focused on the improvement of the
estimator. Via the hover experiments with the default controller, our estimator has been proved
for better reference tracking.

Final Report of Graduation Project 39

Chapter 6

Conclusions and recommendations

The purpose of this thesis is to implement the controller in [26] on a Parrot Mambo drone. Accord-
ing to the contents of the earlier chapters, this chapter draws conclusions and recommendations
for future research. In Section 6.1, we summarize the work of this project and conclude it. Based
on these conclusions, suggestions for future research are discussed in Section 6.2.

6.1 Summary and conclusion
This project acts as a stepping stone for future controller design and implementation on the
Parrot Mambo drone. Beginning with a theoretically promising controller of [26], we discussed
the orientation representation forms, two crucial time derivative expressions, and a general flight
dynamics model as preliminaries in Chapter 2. Without loss of generality, the versor is chosen as
the final form in code for faster calculation, whereas a rotation matrix representation is commonly
exhibited in the whole thesis for intuitive expression. For simplifying mathematical equations in
the remainder, two time-differentiation forms are explained in section 2.2. In the end, as the
foundation of control design, a nonlinear flight dynamics model of the quadcopter is introduced.

Based on the general flight dynamics, Chapter 3 first derives a flat-output-based reference. It
ensures a sufficiently smooth trajectory for future controller validation. The controller from the
study in [26] is discussed in the second section. We explain the construction of position and
attitude controllers and detail the virtual-input-based bridge for both controllers. Finally, a full
state controller with versor form is delivered. Specifically, since there is a designed observer as a
low-pass filter, it is unnecessary to facilitate any extra preprocessing filter to avoid the delay.

Before starting to implement the controller of Chapter 3, Chapter 4 delivers a pivotal insight
into the experimental set-up: a Parrot Mambo drone and the Parrot Simulink Package. Given
Parrot’s website and Brekelmans’ work [7], the two crucial physical characters: mass and inertial
tensor, have been settled. And we are also aware of the limited accuracy and accessibility of each
on-board sensor. After that, a control law consisting of an estimator and a controller should take
over the measured data, estimate the required states, and control the rotor. These algorithms can
be simulated and then embedded through the Parrot Mambo package to the drone. Considering
the default control law given by the Parrot Mambo package is robust in hover experiments, this
chapter detailedly analysis the schemas and mathematical formulas of this control law. Hereto,
the next chapter can utilize this information for the implementation of the paper’s controller.

Given the theoretical control law of Chapter 3 and the experimental set-up pre-knowledge of
Chapter 4, the final implementation is discussed in Chapter 5. For such a complex nonlinear
controller illustrated in Chapter 3, its broad theoretical constraints provide few hints for stability
tuning during the implementation. Therefore, linearizing and resembling a robust controller, like

40 Final Report of Graduation Project

the default PID controller in Chapter 4, promises an intuitive tuning range. Supported by this
range, we determine a set of well-performed gains with a perfect performance in hover simulations.
However, its experimental validations oscillate or even circle dangerously. Through the eigenvalue
and state estimation checking, the sensitive attitude controller and the constantly drifted horizontal
estimation should be the causes of the instability. For the former one, some eigenvalue entries of the
optical gains are too close to zero, only 2 decimal places(trailing zeros suppressed). Following the
pole-placement theorem, we can set a relatively robust constraint for eigenvalue, i.e. λ < −1, and
derive its corresponding constraints for gains. Due to the motor limitation, the derived robust but
high gains are infeasible for the Parrot Mambo mini-drone. For the latter cause, as mentioned in
Brekelmans’ thesis [7], the default optical flow estimator drifts continuously for horizontal velocity.
From the handheld hover experiments, the noisy accelerometer is proved as the cause for most
constant drift, where it is wise to remove the Kalman filter. Additionally, for better estimation,
we developed a theoretical model from the theory of optical flow in the motion field, which takes
not only transition (as the default estimator did) but also rotation into account. Validated by the
simple pendulum experiments, this new estimator can improve at least 5%− 33% accuracy.

6.2 Recommendation for further research
Even though a set of well-performed gains has been settled among well-performed hover simula-
tions, its hover experiments show dangerous oscillation. As mentioned in section 6.1, the eigenvalue
checking has proved the infeasibility of the robust gains for such a mini-drone. Therefore, we focus
on improving the horizontal motion estimator to limit the continuous drifted signals, which would
ask the attitude controller tilting vehicle and finally lead to oscillation even circling. Although
our new horizontal estimator improves 5− 33% accuracy, it depends on the altitude data. Given
the observers designed in Chapter 3, we removed all filters of estimation processing. During the
experiments, the altitude occasionally reflects the nonnegligible peak noise. For future research,
we recommend to re-consider adding some filters before the estimation. To avoid over filtering,
it is wise to design a set of control experiments to statistically evaluate the delay and the ac-
curacy improvement of the combination of ultra-sonar filter and observer. Moreover, the camera
photo would provide the position information, too. Via setting two known landmarks, the scale
between the absolute size/distance and the shown size/distance on the image can easily calculate
the height. Note that the onboard camera provides a small field of view (FoV). Therefore, this
auxiliary height calculation algorithm might only suit the hover experiment to catch all landmarks.
Or paving equally spaced landmarks is a more general choice in the future.

For the continuous oscillation of the paper’s controller [26] during its experiments, we recommend
taking the inertial tensor of the vehicle and the sign of direction vectors vi into account. In the
default PID controller, the inertia tensor is absent, which causes the drone to maintain balance
even if the horizontal position has biased more than 0.5m. Additionally, in the paper the well-
performed simulation bases on a drone supposed as 0.1 kg but 1000 times larger inertial tensor
than our set-up’s. For the direction vectors vi, our implementation uses positive unit vectors
from the axes of a Cartesian coordinate system; however, the paper uses two negative vectors for
the attitude controller. Therefore, future research should reconsider these points to stabilize the
vehicle attitude.

Final Report of Graduation Project 41

Appendix A

The derivation of desired trajectory

As mentioned in Chapter 3, this Appendix would detail the derivation of the desired attitude set
for attitude, including rotation matrix Rd, unit quaternions qd, and angular rate ωd. Moreover,
their time differential formulas would also be delivered to update the attitude reference dynamics
(3.29a-3.29c). From (3.25) it delivers a clear message that though Rd = RTr R or qd = q∗rq the
vector e3 can be rotated to the desired thrust direction fd. For intuition, the derivation (3.26,3.36)
focuses on versor form [22].

As was known for a unit quaternions qd, it can be constructed by an Euler axis
n and rotation
angle θ around
n. That is

qd =

[
cos θ2

n sin θ

2

]
. (A.1)

Once the fd direction

fd =

⎡
⎣fd1fd2
fd3

⎤
⎦ (A.2)

is derived by (3.25), the Euler axis and rotation angle can be achieved by inner product and cross
product between e3 and fd

e3 · fd = fd3 = ‖e3‖‖fd‖ cos θ (A.3a)

e3 × fd =

⎡
⎣−fd2fd1

0

⎤
⎦ = ‖e3‖‖fd‖ sin θ
n (A.3b)

.

It is obvious that the Euler axis can be extracted from [22] (A.3) as

n =
e3 × fd
sin θ

=
e3 × fd√

1− (e3 · fd)2
=

1√
1− f2d3

⎡
⎣−fd2fd1

0

⎤
⎦ , (A.4)

and the cosine and sine function of half rotation angle θ
2 are given as

cos
θ

2
=

√
(1 + cos θ)/2 =

√
(1 + e3 · fd)/2 =

√
(1 + fd3)/2 (A.5a)

sin
θ

2
=

√
(1− cos θ)/2 =

√
(1− e3 · fd)/2 =

√
(1− fd3)/2. (A.5b)

42 Final Report of Graduation Project

Substitution of (A.4-A.5) into (A.1) gives

qd =

⎡
⎢⎢⎢⎢⎢⎣

√
(1+fd3)

2

− fd2√
2(1+fd3)
fd1√

2(1+fd3)

0

⎤
⎥⎥⎥⎥⎥⎦ . (A.6)

Equivalently, its rotation matrix is

Rd =

⎡
⎢⎣1−

f2
d1

(1+fd3)
− fd1fd2

(1+fd3)
fd1

− fd1fd2
(1+fd3)

1− f2
d2

(1+fd3)
fd2

−fd1 −fd2 fd3

⎤
⎥⎦ . (A.7)

Differentiating (3.36) with time gives

q̇d =

⎡
⎢⎢⎢⎢⎣

1
4 (

1+fd3
2)−

1
2

−(ḟd2√
2(1+fd3)

− fd2ḟd3

(2(1+fd3))
3
2
)

ḟd1√
2(1+fd3)

− fd1ḟd3

(2(1+fd3))
3
2

0

⎤
⎥⎥⎥⎥⎦ . (A.8)

Following (3.32c), the desired angular is derived as

ωd = 2q∗d ⊗ q̇d =

⎡
⎢⎢⎣
−ḟd2 + fd2ḟd3

1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎦ . (A.9)

The desired attitude parameters have been derived in above equations. It is possible to update
the attitude reference dynamics:

Ṙrd =
d

dt
(RrRd) = ṘrRd +RrṘd

= RrS(ωr)Rd +RrRdS(ωd)

= RrRdS(R
T
d ωr) +RrRdS(ωd)

= RrdS(R
T
d ωr + ωd︸ ︷︷ ︸
ωrd

)

= RrdS(ωrd) (A.10a)

Jω̇rd = J
d

dt
(RTd ωr + ωd)

= JṘTd ωr + JRTd ω̇r + Jω̇d

= J(RdS(ωd))
Tωr + JRTd ω̇r + Jω̇d

= S(Jωrd)ωrd + (−S(Jωrd)ωrd + J(RdS(ωd))
Tωr + JRTd ω̇r + Jω̇d)︸ ︷︷ ︸

τrd

= S(Jωrd)ωrd + τrd (A.10b)

or equivalently,

q̇rd =
1

2
qrd ⊗

[
0
ωrd

]
(A.11a)

Jω̇rd = S(Jωrd)ωrd + τrd (A.11b)
τrd = −S(Jωrd)ωrd + Jq̇∗d � ωr + Jq∗d � ω̇r + Jω̇d. (A.11c)

Final Report of Graduation Project 43

Note that in (A.12) the particular shape of τrd is associated with several time derivatives of desired
parameters

q̇∗d =
1

2
(qd ⊗

[
0
ωd

]
)∗ =

1

2

[
0
ωd

]∗
⊗ q∗d = −1

2

[
0
ωd

]
⊗ q∗d (A.12a)

ω̇d =

⎡
⎢⎢⎣

−f̈d2 + (ḟd2ḟd3+fd2f̈d3)(1+fd3)−fd2ḟ2
d3

(1+fd3)2

f̈d1 +
(ḟd1ḟd3+fd1f̈d3)−fd1ḟ2

d3

(1+fd3)2

(fd2f̈d1−fd1f̈d2)(1+fd3)−(ḟd1fd2−fd1ḟd2)ḟd3
(1+fd3)2

⎤
⎥⎥⎦ (A.12b)

However it is clear that the 1st and 2nd order derivatives of desired thrust direction fd (3.25) are
needed, which are given by:

d

dt
fd = − ḟ

f2
(fre3 +mu) +

1

f
u̇

= − ḟ
f
fd +

1

f
mu̇ (A.13a)

d2

dt2
fd =

d

dt
(− ḟ
f
fd +

1

f
mu̇)

=
1

f
(−f̈fd − 2ḟ ḟd +mü). (A.13b)

Consequently, it is also necessary to derive the 1st and 2nd order derivatives of thrust magnitude
f = ‖fre3 +mu‖. That is

d

dt
f =

d

dt
‖fre3 +mu‖

=
(fre3 +mu)T

‖fre3 +mu‖ mu̇

=
(fre3 +mu)T

f
mu̇ (A.14a)

d2

dt2
f =

d

dt

(fre3 +mu)T

f
mu̇

=
1

f
(−ḟ2 +m2u̇T u̇+ (fre3 +mu)Tmü) (A.14b)

.

44 Final Report of Graduation Project

Appendix B

Schema of the default PID controller
in Parrot simulink package

See next page

Final Report of Graduation Project 45

+

x_
r,y

_r

v_
x,

v_
y

P_
eu

l

D
_e

ul

Ps
i

si
n

co
s

-1

m
at

rix

co
nc

at
en

at
e

m
at

rix

m
ul

tip
lic

at
io

n
Sa

t(x
)

x,
y

-+

Ph
i,T

he
ta

P_
ta

u1
2

w
_x

,w
_y

D
_t

au
12

+ +

+-

kT
s/

(z
-1

)
I_

ta
u1

2
-

+
+

ta
u_

1,
ta

u_
2

zPs
i

Ps
i_

r

- +

P_
ta

u3

D
_t

au
12

w
_z

-+
ta

u_
3

z_
r

v_
z

P_
z

D
_z

_ +
+

_

-
m

*g
+

fR
(p

si
)=

[c
os

(p
si

),-
si

n(
ps

i);
si

n(
ps

i),
co

s(
ps

i)]

x_
e,

y_
e

Ps
i_

e

z_
e

dp
hi

_e
,d

th
et

a_
e ph

i_
e,

th
et

a_
e

F
ig

u
re

B
.1

:
Sc

he
m

a
of

th
e

de
fa

ul
t

P
ID

co
nt

ro
lle

r
in

P
ar

ro
t

si
m

ul
in

k
pa

ck
ag

e;
w

he
re

bl
ue

bo
xe

s
ar

e
es

ti
m

at
ed

st
at

es
,o

ra
ng

e
bo

xe
s

ar
e

re
fe

re
nc

es
,

re
d

bo
xe

d
ar

e
pr

oc
es

si
ng

pa
ra

m
et

er
s,

pu
rp

le
bo

xe
s

ar
e

P
ro

po
rt

io
na

l,
In

te
gr

al
an

d
D

er
iv

at
iv

e
ga

in
s

w
.r

.t
P
∗,
I ∗
,D

∗
an

d
gr

ee
n

bo
xe

s
ar

e
ou

tp
ut

s

46 Final Report of Graduation Project

Bibliography

[1] E. Adelson, C. Anderson, J. Bergen, P. Burt, and J. Ogden. Pyramid methods in image processing.
RCA engineer, 29(6):33–41, 1984.

[2] G. Adiv. Inherent ambiguities in recovering 3-d motion and structure from a noisy flow field. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(5):477–489, 1989.

[3] K. Åström. Control system design lecture notes for ME 155a. Department of Mechanical and Envir-
onmental Engineering University of California Santa Barbara, 333, 2002.

[4] G. Baker and J. Blackburn. The pendulum: a case study in physics. Oxford University Press, 2005.
[5] M. Bekar and Y. Yaylı. Involutions of complexified quaternions and split quaternions. Advances in

Applied Clifford Algebras, 23(2):283–299, 2013.
[6] S. Bouabdallah and R. Siegwart. Backstepping and sliding-mode techniques applied to an indoor mi-

cro quadrotor. In Proceedings of the 2005 IEEE international conference on robotics and automation,
pages 2247–2252. IEEE, 2005.

[7] G. Brekelmans. Extended quadrotor dynamics: from simulations to experiments. Msc thesis, Eind-
hoven University of Technology, Dynamics and Control Group, Department of Mechanical Engineer-
ing, Eindhoven, The Netherlands, 2019. DC2019. 090.

[8] P. J. Bristeau, F. Callou, D. Vissiere, and N. Petit. The navigation and control technology inside the
AR. drone micro UAV. IFAC Proceedings Volumes, 44(1):1477–1484, 2011.

[9] C. Byrnes and A. Isidori. Local stabilization of minimum-phase nonlinear systems. Systems & Control
Letters, 11(1):9–17, 1988.

[10] P. Castillo, R. Lozano, and A. Dzul. Stabilization of a mini-rotorcraft having four rotors. In
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2693–2698. IEEE, 2004.

[11] T. Curtright, D. B. Fairlie, and C. K. Zachos. A compact formula for rotations as spin matrix
polynomials. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10:084,
2014.

[12] T. Derbanne. Method of evaluating the horizontal speed of a drone, in particular a drone capable of
performing hovering flight under autopilot, July 30 2013. US Patent 8,498,447.

[13] J. Diebel. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix, 58,
01 2006.

[14] D. Eberly. Rotation representations and performance issues. Magic Software: Chapel Hill, NC, USA,
2002.

[15] W. L. Gaddy. Digital processing method and system for determination of optical flow, Apr. 29 2014.
US Patent 8,712,095.

[16] M. Greiff. Modelling and control of the crazyflie quadrotor for aggressive and autonomous flight by
optical flow driven state estimation, 2017. ISSN 0280-5316. Student Paper.

[17] D. Hoag. Apollo guidance and navigation: Considerations of apollo imu gimbal lock. Canbridge:
MIT Instrumentation Laboratory, pages 1–64, 1963.

[18] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys. An open source and open hardware embedded
metric optical flow cmos camera for indoor and outdoor applications. In 2013 IEEE International
Conference on Robotics and Automation, pages 1736–1741. IEEE, 2013.

Final Report of Graduation Project 47

[19] B. Horn and B. Schunck. Determining optical flow. In Techniques and Applications of Image Under-
standing, volume 281, pages 319–331. International Society for Optics and Photonics, 1981.

[20] X. Huo, M. Huo, and H. R. Karimi. Attitude stabilization control of a quadrotor uav by using
backstepping approach. Mathematical Problems in Engineering, 2014, 2014.

[21] N. Jeurgens. Identification and control implementation of an AR.Drone 2.0. Msc thesis, Eindhoven
University of Technology, Dynamics and Control Group, Department of Mechanical Engineering,
Eindhoven, The Netherlands, 01 2017. DC 2017.013.

[22] A. Kehlenbeck. Quaternion-Based Control for Aggressive Trajectory Tracking with a Micro-Quadrotor
UAV. PhD thesis, University of Maryland, 01 2014.

[23] A. Krener and A. Isidori. Linearization by output injection and nonlinear observers. Systems &
Control Letters, 3(1):47–52, 1983.

[24] B. Y. Lee, H. I. Lee, and M. J. Tahk. Analysis of adaptive control using on-line neural networks
for a quadrotor UAV. In 2013 13th International Conference on Control, Automation and Systems
(ICCAS 2013), pages 1840–1844. IEEE, 2013.

[25] T. Lee, M. Leok, and N. McClamroch. Global formulations of Lagrangian and Hamiltonian dynamics
on manifolds. Springer, 2017.

[26] E. Lefeber, M. Greiff, and A. Robertsson. Filtered Output Feedback Tracking Control of a Quadrotor
UAV. Number DC 2020.053 in DC Reports. Eindhoven University of Technology, Dynamics and
Control Group, Department of Mechanical Engineering, Eindhoven, The Netherlands, May 2020.

[27] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo
vision. In IJCAI. Vancouver, British Columbia, 1981. https://www.ri.cmu.edu/pub_files/pub3/
lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf.

[28] J. Lugo and A. Zell. Framework for autonomous on-board navigation with the AR. Drone. Journal
of Intelligent & Robotic Systems, 73(1-4):401–412, 2014.

[29] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and control
of quadrotor. IEEE Robotics and Automation magazine, 19(3):20–32, 2012.

[30] Matlab. Parrot minidrones support from simulink, 2020. https://nl.mathworks.com/
hardware-support/parrot-minidrones.html, Last accessed on 2020-6-15.

[31] Matlab. Aerospace toolbox, 2020. https://nl.mathworks.com/products/aerospace-toolbox.html, Last
accessed on 2020-6-15.

[32] J. Mebius. Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general
formula for four-dimensional rotations. arXiv preprint math/0701759, 2007.

[33] H. Parwana and M. Kothari. Quaternions and attitude representation. arXiv preprint
arXiv:1708.08680, 2017.

[34] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Mathematics of Control, Signals
and Systems, 6(1):1–9, 1993.

[35] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile monocular visual-inertial state
estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

[36] M. Rischmuller and F. D’haeyer. Method of piloting a multiple rotor rotary-wing drone to follow a
curvilinear turn, June 25 2013. US Patent 8,473,125.

[37] H. Seydoux, F. Callou, and M. Babel. Altitude estimator for a rotary-wing drone with multiple
rotors, Mar. 24 2015. US Patent 8,989,924.

[38] S. van den Eijnden. Cascade based tracking control of quadrotors. Msc thesis, Eindhoven University
of Technology, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven,
The Netherlands, 2017. DC 2017.012.

[39] A. Visioli. Practical PID control. Springer Science & Business Media, 2006.
[40] S. Widnall. Lecture l3-vectors, matrices and coordinate transformations. https://ocw.mit.edu/

courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_
Lec03.pdf, 2009. Lecture note.

[41] A. Zulu and S. John. A review of control algorithms for autonomous quadrotors. arXiv preprint
arXiv:1602. 02622, 2016.

48 Final Report of Graduation Project

