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Summary

The goal of this project is to create a tool which creates schedules for electric buses from timetables that
can be used in practice. The objective is to minimize the number of buses and the number of fast chargers
needed to create a schedule. The problem is a mixed-integer linear programming (MILP) problem and
is solved with a column generation (CG) model. The columns in the CG model represent vehicle tasks,
which describe a day route for a bus. The subproblem is a large MILP problem, which has to find new
vehicle tasks with negative reduced costs. One of the main problems is the long computational time of
solving the subproblem. In this thesis multiple methods are investigated to reduce the computational
time of the subproblem. A greedy algorithm, a genetic algorithm and a diving heuristic are implemented.
All three heuristics do not perform well enough. A different approach has also been investigated. The
idea of this approach is to create a multiple step CG model, where the subproblem is decomposed into
multiple subproblems. This attempt has been unsuccessful. A promising method is that of writing the
subproblem as a shortest path problem (SPP) with the help of a graph. The graph consists of trip nodes
and charger nodes. The arcs from and to trip nodes are deadhead trips, while the arcs between charger
nodes are charging sessions. A shortest path is found with a label-correcting algorithm, which takes
into account the reduced costs, the SoC, the minimum charge time and the minimum shift time. The
label-correcting algorithm is based on the Bellman-Ford algorithm. This latter method is implemented in
the CG model. The fractional solution of the optimal solution of the Restricted Master problem (RMP)
in the CG model is rounded up with a diving heuristic, which has been chosen because it is in general
relatively fast and gives relatively accurate solutions.

Timetables of different cities are simulated. An assumption is made that the energy consumption is
1.5 kWh/km. The results of the new model look promising and are compared to a lower bound for the
number of buses needed. For the cities of Le Havre and Bordeaux the lower bound for the number of
buses is reached. For Eindhoven the lower bound for the number of buses is not reached, but the schedule
uses fewer buses than the current used schedule. The model can create schedules within reasonable time
for timetables with the size of the timetable of Rotterdam. The CG model has three main disadvantages:
The used charge curve is linear instead of non-linear, trips can be assigned in the schedule multiple times
and it is not possible to restrict the number of chargers at a location.
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Abbreviations
CG Column generation
CS Concurrent scheduler
ERC − SPP Elementary resource constrained shortest path problem
eV SP Electric vehicle scheduling problem
ILP Integer linear programming
LP Linear programming
MILP Mixed-integer linear programming
MP Master problem
RMP Restricted master problem
SP Subproblem
SSP Subsubproblem
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Alist Set of all arcs in the graph ordered on earliest start time
Cl Set of all charging locations
L Set of all labels in a node
PCl

Set of all charging sessions at a charger location
T Set of all trips
Tfinal Set of all trips in the final solution
V Set of vehicle tasks
Vfinal Set of vehicle tasks in the final solution
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Decision variables
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ezv Variable that states how much energy is charged in timeblock z in
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npclfinal
Number of charger used in the final solution at charging session pcl

npcl
Number of chargers used during charging sessions p at charger location
cl
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v

v A vehicle task
xtv Variable that states if trip t is assigned to vehicle task v

Parameters
εmax Maximum energy charged at a timeblock [kWh]
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Appendix: Sets
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Appendix: Variables & Parameters
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g Number of generations
lci Charging interval
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s A charger task
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Chapter 1

Introduction

In recent years the transition from the use of fossil fuels to other alternative energy sources has been
a global trend. The goal of the EU is to achieve that 27% of all energy sources comes from renewable
energy sources by 2030 [1]. This can be partly achieved by making use of electric buses in the public
transport sector. Use of electric buses lead to an increase in use of renewable energy resources and to a
decrease in CO2 emission. Eight percent of the pollution in cities is from city buses [1]. Most buses in
the EU still use fossil fuel, but a shifting trend to the use of electric buses is visible. In more and more
cities buses equipped with drivetrains that contain combustion engines are replaced with buses that have
alternative engines. In 2017 eighty percent of the buses used diesel engines, but it is expected that 52%
of all buses use electric engines in 2030 [1].

The bus manufacturer VDL Bus & Coach is one of the front-runners in this new trend. In Febru-
ary 2020 670 electric buses of VDL Bus & Coach have been operational. However, there are still a lot
of challenges left in the transition from diesel buses to electric buses. One of the major challenges is the
short driving range of electric buses, which means that the buses need to be recharged during the day.
This leads to several problems.

One of these problems is creating a schedule for electric vehicle buses. Currently, most schedules are
made for diesel buses and have to be rewritten for electric buses. In the new schedule all the trips from
a given timetable have to be assigned to electric buses. Each electric bus is assigned a set of trips, which
the bus has to drive during the day. The schedule also has to take account for place and time for charging
electric buses. A lot of elements have to be taken into account when creating a schedule for electric buses.
The most important elements are the battery capacity of the bus, the energy consumption of the bus,
the charger locations, the charger types and the number of chargers at a location.

VDL Bus & Coach often receives the question from the customer if they can provide a schedule for
a given timetable of a city. The schedule has to use one of the electric city bus types from VDL Bus &
Coach and needs to include how many buses and chargers are used and at which location. Currently, the
employees working in the sales department create these schedules manually, which can take many hours.
With an increasing size of the timetable, it becomes increasingly difficult to manually find a feasible and
near optimal solution. To create a better and faster schedule VDL ETS has been working on creating a
vehicle scheduling tool. The tool has to create a schedule for a given number of trips from a timetable
which has time constraints. The problem that the tool has to solve is an optimization problem. This
means that the tool has to find the best possible solution out of all feasible solutions. The problem can
be placed in the category of an eVSP, which stands for electric vehicle scheduling problem.

VDL ETS and TU/e have started a cooperation to create this tool in order to solve the previous men-
tioned problem. TU/e student Monhemius has done an internship at VDL ETS. Monhemius has used a
MILP (Mixed integer linear problem) solver to solve the problem [2]. The conclusion of the internship
is that the use of a MILP solver leads to computational times that are too long. TU/e student Wijn-
heijmer has done a graduation project [3] with the goal of reducing the computational time. Wijnheijmer
has made a concurrent scheduler based on the one of Adler [4], which creates a new schedule fast but
often this schedule is suboptimal. Therefore, Wijnheijmer has made another model, which is a column
generation (CG) model. The main problem of the column generation model of Wijnheijmer is the long
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computational time. The model also misses some important features that make it possible to be used in
practice. The most important ones are deadhead trips, multiple charger locations and non-linear char-
ging. The goal of this project is to create a scheduling tool for VDL, where the CG model of Wijnheijmer
is used as a starting point.

1.1 Timetable

The previous section has described that the customers give a timetable of the city as input. This section
explains what a timetable looks like. The timetables contain the following information:

� A list with the start and end times of the trips

� The start and end locations of the trips

� The distance covered per trip

� The distance between locations (optional)

� The driving time from one location to another location (optional)

� The battery capacity of the bus

� The charge capacity of the charger per location

� The number of charge locations (and the number of chargers per location)

The table below shows the first part of a timetable:

From Start Time End Time To Distance [m]
Hôpital Estuaire 04:50:00 05:27:00 Graville 14295
Graville 05:00:00 05:40:00 Hôpital Estuaire 14487
Hôpital Estuaire 05:15:00 05:52:00 Graville 14295
Graville 05:33:00 06:13:00 Hôpital Estuaire 14487
Hôpital Estuaire 05:35:00 06:13:00 Graville 14295

Table 1.1: The first part of the Timetable of Le Havre

In general timetables contain between 200 until 4500 trips. Sometimes the distance of deadhead trips
are also given in a timetable. Deadhead trips are trips from one location to another location without
having passengers in a bus. An example is given below:

Distance [m] Hôpital Estuaire Graville Depot 1 Fuel 1
Hôpital Estuaire 0 14295 400 14295
Graville 0 0 12900 0
Depot 1 400 12900 0 12900
Fuel 1 14295 0 12900 0

Table 1.2: Distance of the deadhead trips of Le Havre

Table 1.2 also gives the information on how many charging locations there are and where these are
located. Depot 1 is the depot and also the location where slow chargers are available and Fuel 1 is a
fast charger location. A similar table is created for the deadhead trips in which the drive time is stated.
In Appendix A an overview is given on the timetables used in this project, where the most important
information on the timetables is given.

1.2 Schedule

From the timetable a schedule has to be created, which has to provide insight regarding the amount of
buses that are needed to drive the schedule. To each bus a part of the trips of the timetable is assigned.

TU/e 2
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Each trip in the timetable has to be assigned to a bus. The schedule also has to contain information
on charging sessions meaning when, where and for how long a bus needs to charge. The cost for the
bus company consists of the costs of the number of buses used and of the number of fast chargers used.
These costs have to be minimized. The schedule has to be suited to be used in practice. Therefore, VDL
ETS and the sales department of VDL Bus & Coach have several requirements which a tool has to take
into account when creating a schedule. These requirements are listed below:

1. The schedule has to include deadhead trips, which are trips driven from one location to another
location, while these trips are not listed in the timetable. For example a bus has driven a trip and
needs to charge. The deadhead trip is the trip from the end location of the trip to the charger
location.

2. There has to be a minimum shift time in the schedule. A shift is a series of sequential driven trips
without the option of charging the bus in between driving the trips. A minimum shift time is
needed, because the bus transport companies do not want the bus to leave the depot while driving
only one short trip.

3. There has to be a minimum charge time in the schedule. The main reason is that in practice it is
not possible to implement a bus charging for a period, which then stops charging, to make place for
another bus and then starts charging again. Bus transport companies do not accept such solutions.

4. There is a one-minute charger connection time, which has to be implemented.

5. A bus cannot have a lower State of Charge (SoC) than the minimum allowable SoC for that bus
type. The SoC is the percentage of charge left in the battery. A bus can be charged until a
maximum SoC, which is a certain limit depending on which charger is used.

6. It must be possible to use multiple charging locations and different charger types, when these are
available. There are multiple charging locations in most cities. At some locations only a limited
number of fast chargers are allowed. In general there are also two different kinds of chargers used:
A slow charger and a fast charger. Slow chargers are often placed at the depot, while fast chargers
are often placed at charge locations closer to the city. For each bus one slow charger is available
at the depot. Slow chargers do not have to be taken into account, when calculating the cost of the
schedule.

7. There is a maximum idle time for the buses. In most locations it is not possible for a bus to stand
still for a long period of time, since there is no parking space. The driver is also paid for waiting,
if the bus is idle. It is preferable that the maximum idle time is as low as possible. The range for
the maximum idle time is between a minute and ten minutes. A bus is allowed to be idle at the
depot for a longer time than the maximum idle time.

8. The charge curve cannot be linear and has to follow the real slope, which is non-linear. The charge
rate is based on the charge curve and the current SoC of the bus.

TU/e 3
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Figure 1.1: Example of a schedule shown in a Gantt chart

An example of a schedule can be seen in Figure 1.1. The green bars represent the trips, the yellow
bars represent the deadhead trips, the blue bars represent the charging sessions at the depot with a
slow charger and the red bars represent the charging sessions with a fast charger. The numbers in the
green bars are corresponding with the numbers of the trips, which are implemented to increase the user-
friendliness of the Gantt chart. The numbers are often left out in this thesis, since these are not relevant
for explaining the model.

1.3 Problem definition

The main problem of this project is to create a scheduling tool for VDL ETS that has to make a schedule
for electric buses for a given timetable. There are three problems:

1. The tool has to be able to create a schedule from a given timetable that can be implemented in
practice. To be able to implement a schedule in practice the requirements in section 1.2 have to
be met.

2. The tool has to minimize the cost of the schedule, which makes it an optimization problem. The
cost consists of the number of buses and the number of fast chargers used in the schedule.

3. Schedules have to be created in a reasonable time, which is defined as that the schedule has to be
able to be created within a day. The largest timetable contains around 4500 trips, but the goal
of this project is to be able to simulate timetables with the size of the timetable for Rotterdam,
which includes 1096 trips and 2 charge locations.

The starting point of this project is the column generation model of Wijnheijmer [3]. The computational
time is too long for the current model of Wijnheijmer [3] and the created schedules cannot be used in
practice. The schedules do not meet requirements 1,2,4,6,7 and 8 of section 1.2.

1.4 Outline

The thesis is structured as follows: In Chapter 2 a literature overview is given, then a short explana-
tion about MILP is given and an explanation on the column generation method is given. The latter
named method is the method which is used in this thesis. The results of the work of previous students
Monhemius [2] and Wijnheijmer [3] are discussed in the last part of Chapter 2. In Chapter 3 first a lower
bound of the problem is found in order to estimate the quality of solutions of the new models. The main
part of Chapter 3 consists of explaining methods that are used to accelerate solving the subproblem.
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These methods include heuristics for solving the subproblem, a multiple step column generation method
and the method to rewrite the problem to a resource constrained shortest path problem. The latter
named method is used in the tool. In Chapter 4 the new model is discussed, in which the implementa-
tion of the method is explained. In Chapter 5 the additional features, that are needed to be able to run
the column generation model smoothly, are explained. Chapter 6 gives the results of the new model. The
last chapter consists of the conclusion and of the recommendations to improve the model in the future.

TU/e 5



Chapter 2

Background information and
Literature review

In Chapter 1 the problem of this thesis has been introduced, which is the creation of a schedule for
electric buses from a given timetable. In this chapter a literature review is given on creating schedules
for electric vehicles. The second part of this chapter explains the basic theory on the optimization
methods used in this thesis to solve large integer problems. These methods are also implemented in the
work of Monhemius [2] and Wijnheijmer [3]. The results of these works are explained in the last part of
this chapter.

2.1 Literature review

The problem that the tool has to solve is, according to literature, called a vehicle scheduling problem
(VSP), which is a problem where a number of trips with fixed start and end times has to be assigned to
(often a minimum number of) vehicles. There has been and there still is a lot of research done on VSP
models. An overview of the VSP problem is given by [6]. The problem that has to be solved for VDL
is an eVSP (electric vehicle scheduling problem) for electric city buses. The complexity of the eVSCP
(electric vehicle scheduling and charging problem) is NP-hard, which is proven by Sassi et al. [5]. A
lot of different techniques can be used for solving the problem. Some have tried to use a MILP solver:
Monhemius [2] and Pereira [7] which has tried to solve a multi-depot electric vehicle scheduling problem
(MD-eVSP). The latter paper uses a MILP first and afterwards a global heuristic to solve the problem.
The previous papers come to the conclusion that heuristics are needed to solve the problem. A variety
of heuristics can be used. One of the options is using a Large Neighbourhood Search (LNS). Perumal
et al. [8] uses this method for a single depot electric vehicle scheduling problem (SD-eVSP), in the
heuristic a branch-and-price (B&P) algorithm is used to repair the solution. Chao & Xiaohong [9] use
a Non-dominated Sorting Genetic Algorithm-II to solve a SD-eVSP problem. Teng et al. [10] solves a
multi-objective SD-eVSP with a particle swarm optimization heuristic.

The majority of the papers use a column generation algorithm to solve an eVSP problem for electric
buses. An in-depth explanation of using this method can be found in the book of Desaulniers et al. [11]
and the paper of Lübbecke [12]. The papers that use column generation to solve the eVSP often differ in
requirements. For example Adler [3] solves a VSP problem with buses that have alternative fuels, where
the electric batteries are not charged at a station but are replaced with new batteries. The problem
is solved with multiple algorithms including a concurrent scheduler and a column generation method.
In the latter method the subproblem is formulated as a resource constrained shortest path problem
(RC-SPP) and is solved with a labelling-correcting algorithm. Li [14] also considers using replaceable
batteries. In the paper a column generation algorithm is used, where the subproblem is also structured
as a RC-SPP and is solved with a labelling algorithm. Sundin [15] uses column generation for a SD-eVSP
model, where it is assumed that multiple buses can charge at the same moment at the same charger.
Van Kooten Niekerk [16] describes the subproblem as a RC-SPP and solves it with a labelling-correcting
algorithm. Charging is modelled in discrete time and the costs of simultaneous charging of multiple
buses is not taken into account. Posthoorn [17] uses the same approach as Van Kooten Niekerk, but the
paper differs in finding an integer solution and it limits the number of chargers.
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2.2 Introduction on solving large integer problems

The eVSP is a problem with many integer variables. The number of buses and the trips assigned to
these buses are all integer variables. Integer problems can be formulated as an ILP (integer linear
programming) problem. In the problem of this thesis continuous variables are also used, namely the
duration of a charging session. The optimization problem which includes integer variables and continuous
variables is called a MILP (mixed integer linear programming) problem. A MILP solver is often used to
solve the MILP problem, for example the intlinprog solver of MATLAB can be used. The MILP problem
and the use of a MILP solver is explained in the first subsection. In many cases a MILP solver is too
slow to solve the problem. The MILP problem can be solved with a heuristic or it can be split into
smaller problems. The latter method is used in the column generation method. This method is used in
this thesis and the theory behind it is explained in section 2.2.2.

2.2.1 Mixed integer linear programming

For small integer problems with few variables often a MILP formulation is used and the problem is solved
with a MILP solver. A standard notation for a MILP problem is as follows:

min

n∑
j=1

cTj xj (2.1)

subject to

n∑
j=1

aijxj = bi i = 1, 2, ...,m (2.2)

n∑
j=1

ahjxj ≤ bh h = m+ 1,m+ 2, ..., z (2.3)

xj ∈ Z
+
0 j = 1, 2, ..., r (2.4a)

xj ∈ R
+
0 j = r + 1, r + 2, ..., n. (2.4b)

The objective function (2.1) states that the costs have to be minimized over all decision variables xj .
The equality constraints are given in (2.2), the inequality constraints are given in (2.3). For larger and
more complex problems often the MILP formulation cannot be solved with a MILP solver due to long
computational times. In most cases the problem becomes more complex and larger when there are more
integer decision variables. The main reason for this is that the maximum steps a MILP solver needs to
take to find the optimal solution is 2j , when xj is a binary variable.

2.2.2 Column generation

Different methods are used for solving complex MILP problems, which cannot be solved by a MILP solver
in a reasonable time. One of these methods is called the column generation method. In large integer
problems the number of decision variables is large, but not all of these are used in the final solution. Most
of the decision variables are equal to zero and only some of them have a non-zero value. The column
generation method tries to take advantage of this by only using a limited number of decision variables.
The method starts with a feasible solution to the problem. The feasible solution consists of a subset of
all decision variables. Each iteration a decision variable is added to the subset of decision variables that
can improve the current solution, until the optimal solution is found. The column generation method is
explained in-depth in the following paragraphs.

In order to create a column generation method, a master problem (MP) must first be formulated, which
is an optimization problem with the following structure:

min
∑
j∈J

cTj uj (2.5a)

subject to:
∑
j∈J

aijuj ≥ bi ∀i ∈ I (2.5b)
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uj ∈ {0, 1} ∀j ∈ J. (2.5c)

uj are the decision variables, aj are the associated columns, bi are the resources available for each re-
source i. uj describes if column aj is present in the solution. Column aj contains information on which
resources of bi are used. The master problem can be solved with a MILP solver. However, the problem
size increases with 2j . The problem becomes unsolvable in reasonable time in the case that there are
many columns aj and thus many decision variables uj . For example: In a VSP each trip from a certain
timetable has to be driven once during a day, while using as few buses as possible. The columns aj are
in this case defined as vehicle tasks. A vehicle task contains a set of trips driven by one bus during a
day. In the master problem all possible vehicle tasks are enumerated. Thus, all possible combinations
of trips that can be driven in one day by a bus are present in the MP. The minimum number of buses
is obtained by choosing as few vehicle tasks as possible, while every trip is assigned once in the chosen
vehicle tasks. The objective function determines which vehicle tasks aj are chosen by choosing the linked
decision variables uj . The problem becomes unsolvable in reasonable time, when the number of vehicle
tasks is huge.

The idea of column generation is to take advantage of that only a very small percentage of all vehicle
tasks are present in the solution, while most vehicle tasks are not used at all. The column generation
method uses a subset of J , namely J ′ ∈ J . The first step is to split up the MP into two parts. The first
part is called the restricted master problem (RMP) and the second part is called the subproblem (SP).
The RMP is derived from the master problem (MP). The RMP is as follows:

min
∑
j∈J ′

cTj uj (2.6a)

subject to:
∑
j∈J

aijuj ≥ bi ∀i ∈ I (2.6b)

0 ≤ uj ∀j ∈ J ′. (2.6c)

where J ′ is a small subset of J . The RMP is very similar to the MP. There are two differences the subset
J ′ is used and the integer decision variables (2.6c) are relaxed. The idea is that it is also possible to find
the optimal solution with a small subset of J , if the subset is correctly selected. Initially, J ′ consists of a
set of columns that are a feasible solution of the RMP. Each iteration a new column is added to the RMP
which can improve the current solution of the RMP. The selection of the new columns is done in the
subproblem. This means for the previous example of a VSP, that not all vehicle tasks are enumerated
in the formulation, but that only a small set of these vehicle tasks are present in the RMP and that the
subproblem creates each iteration a new vehicle task that is added to the RMP.

To find new columns that improve the solution of the RMP in the subproblem, sensitivity analysis
is needed. This analysis has to be performed on the RMP. In general, it is difficult to perform sensitivity
analysis on a MILP problem, therefore the lower bounds and upper bounds of the integer decision vari-
ables (2.6c) are relaxed. This means that the integer decision variables have become continuous decision
variables. The relaxed RMP can be solved with a LP solver. Sensitivity analysis can be performed on a
LP problem with the use of the (dual) simplex algorithm, which is often used by LP solvers to solve a
LP problem. The LP solver performs sensitivity analysis with the help of the dual problem of the RMP.
To understand this the primal problem of the RMP is rewritten to the dual problem:

min
∑
i∈I

yibi (2.7a)

subject to:
∑
i∈I

yiaij ≤ cj ∀j ∈ J ′ (2.7b)

yi ≥ 0 ∀i ∈ I. (2.7c)

The dual problem computes for each constraint in the primal problem a dual variable. This dual variable
is sometimes also called shadow price or dual price. The dual variable describes the change in value in the
objective for each constraint, if the value of the right-hand side of the constraint in the primal problem
(or in this case the RMP) is increased by one unit, while the rest of the RMP stays unchanged. Thus, it
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describes the change in the objective function (2.6a), if one constraint out of the set of constraints (2.6b)
is changed as follows: ∑

j∈J

aijuj ≥ bi + 1, (2.8)

while the other constraints remain the same. The dual variables can be combined with the costs of
the decision variable in an equation that gives information on how to choose a new column to improve
the objective value of the RMP. This equation is called the reduced cost and stems from the simplex
algorithm, where it is used to determine which non-basic variable is placed in the basis. The equation is
derived from the set of constraints (2.7b) and is as follows:

cj −
∑
i∈I

yiai, (2.9)

where cj is the cost in the objective function for using the new decision variable, ai describes the num-
ber of resources used for each constraint by the new decision variable and yi are the dual variables per
constraint of the primal problem. The reduced costs give the change in objective value when adding a
small part of the new variable to the basis of the solution of the RMP. The column generation method
uses the reduced cost equation (2.9) to find a column that improves the objective function (2.6a). The
idea is to find a column with negative reduced costs. This is done with the help of the subproblem.

The equation (2.9) is the objective function of the subproblem. The values of ai are the decision variables
and are often integer variables. For a minimization problem the goal of the subproblem is to maximize∑

i∈I yiai. The subproblem of the RMP is as follows:

min cj −
∑
i∈I

yiai (2.10a)

subject to: ai ∈ {0, 1} i = 1, 2, ..., I. (2.10b)

In most models constraints are added to the subproblem to limit the choice of ai. The solution of
the subproblem, which is a column consisting of the variables ai, is added to the RMP. This column is
coupled to a new decision variable uj . Then the RMP is solved again and the dual variables are updated.
This cycle continues until the subproblem cannot find a column with negative reduced costs. Then the
RMP is solved to optimality. This means for the VSP example, that the RMP is solved first. Then the
subproblem is solved, which creates a new vehicle task with a new combination of trips. The vehicle
task is added to the RMP. The RMP is solved with the new vehicle task. Then the subproblem is solved
again. This continues until the subproblem cannot find set of vehicle task with negative reduced cots.

To explain column generation model in geometrical terms: The RMP can be seen as a polyhedron,
which is created by the current constraints in the RMP. Solving the RMP with a simplex algorithm gives
the vertex with the lowest objective costs for the current polyhedron. Then the subproblem has to be
solved. The subproblem considers every non-basic variable. The objective function of the subproblem is
the reduced cost, which is the slope of the arc from the current vertex to a new vertex. The new vertex
is a solution with a new column in the basis compared to the current vertex. The subproblem adds a
column with negative reduced costs to the RMP. Adding a variable to the basis with a negative slope
means that the objective value has to decrease, except for the case that the new variable cannot be placed
in the basis due to e.g. it can lead to an infeasible solution. It is not known by how much the objective
value decreases, when a new variable is added. The reduced cost only tells something about the slope to
the new vertex. The column with the lowest reduced costs is not in all cases the best option. The poly-
hedron that represents the RMP is changed when a new column is added. Therefore, the RMP is solved
again and it finds the new vertex as solution. The optimal minimum solution is reached in the case that
for all non-basic decision variables the reduced costs are non-negative. This is because in that case, it
can be concluded that adding any possible new decision variable cannot lead to a vertex with lower costs.

An overview of column generation is given in Figure 2.1. The decision variables in the optimal solution
are often not integer for large problems, but are fractional, since the lower bounds and upper bounds of
the decision variables are relaxed in the RMP. The fractional result has to be converted to an integer
solution. This is the last step of the column generation method. Converting the fractional optimal
solution of the RMP can be done in multiple ways. In the paper of Joncour et al. [18] and the paper
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constraintIf new column has
non-negative reduced
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Figure 2.1: Overview of the column generation method

of Barnhardt et al. [19] some of the more common methods are shortly described. There are two main
approaches to solve this problem.

The first one is called branch-and-price. Branch-and-price is based on the branch-and-bound technique,
where the bounds are replaced with the objective costs of the RMP. The branch-and-price algorithms
start by solving the RMP until optimality. Then one of the nodes, which are often decision variables,
is branched on. For example one decision variable is set to one and another decision variable is set to
zero. This leads to two new problems and thus two different RMP’s. The two problems are often smaller
than the original problem. These are solved again with column generation until optimality is reached.
Then again a node is branched. This continues until the optimal integer solution is found. In a VSP
or a VRP (vehicle routing problem) often the arcs in a graph are branched on instead of the decision
variables, where the arcs in the graph are the deadhead trips and the nodes the trips. The reason for this
is that it makes the problem faster smaller, which leads to a reduction in computational time [20]. The
nodes are pruned in a minimization problem when the objective value is higher than the lower bound. A
lower bound can be found by obtaining a feasible integer solution. These are often found with the help
of primal heuristics, before applying the branch-and-price algorithm. Primal heuristics try to find a fast
and good integer solution from a fractional solution.

The use of primal heuristics is the second main approach to find an integer solution from the frac-
tional RMP solution. Primal heuristics are also used just for the purpose of obtaining a solution to the
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CG model. The advantage of using a primal heuristic is that it is relatively fast. The disadvantage is
that the solution can be suboptimal, whereas the branch-and-price algorithm leads to an optimal solu-
tion. There are multiple primal heuristics used in literature. In general two heuristics are used the most
which are the restricted master heuristic and the diving heuristic. The first one solves the RMP with
the current decision variables in the RMP, where the upper and lower bound of the decision variables
are not relaxed. This means that the problem is a MILP problem and can be solved with a MILP solver.
This has two disadvantages. The first one is that the RMP can contain a lot of columns and thus a lot of
decision variables. The problem might become too large to solve with a MILP in the case that all these
decision variables become integer variables. The second disadvantage is that this method often does not
give the optimal solution, since the columns needed for finding an optimal fractional solution are often
different from the columns needed for finding an optimal solution to the MILP problem. The second
primal heuristic is the diving heuristic of which the idea is based on rounding the fractional decision
variables in steps. One decision variable is rounded up, when the RMP is solved to optimality. The
decision variable with the largest fractional value is rounded up and is fixed to one in the RMP. This
leads to a new RMP and thus the RMP has to be solved again until optimality with the help of column
generation. Then a new decision variable is rounded up. This cycle continues until there are no more
fractional decision variables and all decision variables are integer. In this thesis it is chosen to use a
diving heuristic. The reason for this is that it is faster than the restricted master heuristic and it also
often creates a better solution. The branch-and-price method is not chosen due to the possible long
computational time.

2.3 Previous work

As mentioned earlier, this thesis is made with as starting point the work of two previous students. The
first work is from Monhemius [3]. Monhemius had formulated a MILP problem to solve the eVSP. The
model includes charging, which is modelled in continuous time, a choice of different vehicle or charger
types, a minimum charge time, minimum and maximum break time and multiple charger locations. The
main problem of this approach is the long computational time of solving a MILP problem with a MILP
solver. The problem with the model is, according to Monhemius, that there are too many variables to
solve the problem with a MILP, since solving a problem with a MILP solver is exhaustive. Monhemius
shows that the number of variables have an exponential relation to the computational time and concludes
that using a MILP is not a viable option to solve an eVSP. Monhemius recommends using different tech-
niques to solve the eVSP, one of them is the column generation method.

This method is used in the thesis of Wijnheijmer [3]. First, Wijnheijmer has created a concurrent
scheduler to solve the problem of VDL. It finds the optimal solution in 17 of the 18 test cases. These
cases are however very small problems and most methods or algorithms for solving an eVSP find an op-
timal solution for very small eVSP’s. Wijnheijmer concludes that the results of the concurrent scheduler
are not always optimal and can be improved in some cases. The column generation method improves the
result between 8.1% and 18.7% in the work of Adler [4], compared to the concurrent scheduler of Adler.
Note that the problem is different and in this example the CG method is solved until optimality and
the results are only for relatively small examples. Wijnheijmer has created a column generation model
to improve the results. The objective function of the RMP (2.11a) is to minimize the number of vehicle
tasks and the amount of energy that is used. The constraints are that each trip has to be driven at least
once by a bus (2.11b), the number of chargers have to stay below a certain number during each time
block (2.11c) and the amount of energy charged cannot exceed the maximum allowable amount of energy
during each time block (2.11d). The charging is thus modelled in discrete time. Wijnheijmer divides the
schedule in a hundred time blocks to take into account charging. The RMP is shown below, because it
is often used in Chapter 3:

obj min
∑
v∈V ′

cvuv (2.11a)

subject to
∑
v∈V ′

xtvuv ≥ 1 ∀t ∈ T (2.11b)

∑
v∈V ′

szvuv ≥ ns ∀z ∈ Z (2.11c)

∑
v∈V ′

ezvuv ≥ εmax ∀z ∈ Z (2.11d)
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uv ≥ 0 ∀v ∈ V ′, (2.11e)

where V ′ are the vehicle tasks, uv is a decision variable that is one if vehicle task v is used in the solution,
xtv is one if trip t is assigned to vehicle task v, szv is one if a charger is used in vehicle task v during
time block z, ns is the maximum number of chargers allowed, ezv is the amount of energy charger during
time block z by vehicle task v and εmax is the maximum allowed amount of energy charged during a time
block. There are three different dual variables for this RMP. The first one is πt and corresponds with
constraint (2.11b) and it gives a shadow price for each trip. The second one is θζ , which corresponds to
the constraint (2.11c) and gives a shadow price for the number of chargers used in each time block. The
last dual variable is ρζ , which corresponds to constraint (2.11d) and gives a shadow price for the total
energy chargers per time block. The equation for the reduced cost [3] is as follows:

cv −
∑
t∈T

πtδt +
∑
z∈Z

(θzσz + ρzεz), (2.12)

where δt is a decision variable and determines if trip t is used, σz determines if a charging session is used
at timeblock z and εz determines the amount of energy charged in timeblock z.

The subproblem has the objective to obtain a new vehicle task with the lowest reduced cost. The
vehicle task describes the day task for a bus. It includes the information on which trips are driven,
in which time blocks a charger is used and how much energy there is charged during each time block.
There are multiple constraints for the new vehicle task: The first one is that trips can not be driven
simultaneously, charging cannot happen while a trip is driven, the SoC always has to be higher than a
certain minimum SoC and lower than a certain maximum SoC and the last constraint is that there is a
minimum charge time.

This model is simulated and tested by Wijnheijmer with 4 timetables. Only the small timetables with
14 and 15 trips are fully simulated for a limited number of chargers. The tests give promising results,
namely the schedule created by the CG model is cheaper than the schedule of the concurrent scheduler.
A decent solution is not found for the larger problems. For Timetable 4, which consists of 203 trips and
1 charger, a solution is found, but the costs are high. For Timetable 7, which consists of 1096 trips and
4 chargers, not one solution is found due to a long computational time. The details of Timetable 4 and
Timetable 7 can be found in Appendix A.

The starting point of this thesis is the CG model of Wijnheijmer. Therefore, it is interesting to go
deeper into the problems of the model. There are two main problems in the model of Wijnheijmer. The
first one is the long computational time using a CG method. The column generation model of Wijn-
heijmer solves an eVSP. The computational time of the model is tested for schedules with a different
number of trips and 4 chargers. The results are shown below:

Number of trips Computational
time [sec]

Bottleneck

13 42 print function
99 394 intlinprog function of subproblem
203 980 intlinprog function of subproblem
267 2119 intlinprog function of subproblem
332 4343 intlinprog function of subproblem
477 53565 (stopped

after 3 iterations)
intlinprog function of subproblem

Table 2.1: Computational time for a varying number of trips of the CG model of Wijnheijmer (Using a zbook
15 with an Intel core i7-4700 MQ with 8 GB RAM )

The model cannot solve the timetable of 477 trips within a reasonable time. Note that there is a stop
criterion in the model, which makes the CG model stop after 200 iterations, which means that not all
timetables are solved until optimality. The computational time increases in proportion by more than the
number of trip increases. For larger schedules it can be concluded that the computational time of the
model of Wijnheijmer is too long. The bottleneck in the CG model of Wijnheijmer is the subproblem.
The largest schedule that VDL needs to simulate contains 4500 trips, but the target goal is to simulate
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the timetable of Rotterdam, which includes 1096 trips. One of the main problems is to accelerate solv-
ing the subproblem. The combination of charging and assigning trips makes the problem complex and
difficult to solve. Chapter 3 is dedicated to find a method to accelerate solving the subproblem.

The second problem is that parts of the requirements for using the schedule in practice are missing.
The first requirement that is missing is the introduction of deadhead trips in the model. A deadhead
trip is the trip a bus needs to drive between two trips or a charger and a trip in a model. The second
requirement that is missing is the option of having multiple charger locations. The current model only
allows charging at the depot. The third part that still needs to be implemented is the use of non-linear
charging instead of linear charging. In the current model of Wijnheijmer the buses are charged according
to a linear charge curve, while in practice the charge curves are non-linear. The fourth extension that
needs to be implemented is that a minimum shift time has to be introduced. In the current model
it can happen that one bus has to drive one single trip, which in theory can be part of an optimal
solution, but in practice the customer does not accept this. The last requirement that is not implemen-
ted is that there is a limit on how long a bus can stand still at a location. Buses are only allowed to
stand still for a long time in the depot. In the new CG model these requirements have to be implemented.

The model of Wijnheijmer seems to have potential to work well, if the two problems are solved. First
the problem of a long computational time of the subproblem has to be fixed, before making the problem
more complex with the extra constraints. This only leads to longer computational times to solve the
model. In Chapter 3 heuristics are implemented to try to speed up the solving of the subproblem.

2.4 Summary

The problem the tool has to solve is known as an electric vehicle scheduling problem (eVSP). In this
chapter previous work on solving the eVSP has been given. Then an introduction has been given on
solving large mixed linear integer problems, where the theory behind the column generation method has
been explained. At the end of the chapter the work of two previous students who have tried to solve
the same problem has been given. The problems of both their works have been discussed. The work of
Wijnheijmer [3] can have potential, if the subproblem is solved faster and if the model can be extended
to include multiple constraints. The most difficult problem to solve is the long computational time of
the subproblem. Therefore, the next step is to find a method that accelerates solving the subproblem of
Wijnheijmer [3].
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Chapter 3

Methods for solving the subproblem

The starting point of this thesis is the column generation model of Wijnheijmer[3], which has been dis-
cussed in Chapter 2. The main problem of the model of Wijnheijmer is the long computational time of
the subproblem. The objective of the subproblem of Wijnheijmer is to find a vehicle task with negative
reduced costs. The main goal of this chapter is to find a fast and accurate method to solve the subprob-
lem that creates a vehicle task with negative reduced costs.

The most often used solution is solving the subproblem with a heuristic, which is described in [12]
and [21]. The subproblem does not have to be solved until optimality. Any created vehicle task with
negative reduced costs can improve the objective value of the RMP as is explained in Chapter 2. Three
heuristics for solving the subproblem of Wijnheijmer [3] are introduced in this chapter. These are a
greedy algorithm, a genetic algorithm and a diving heuristic. The subproblem can also be solved faster
by reducing the size of the subproblem of Wijnheijmer [3], which can only be made smaller when both
the RMP and the subproblem of Wijnheijmer [3] are reformulated. A method is introduced in section 3.3
which formulates a model such that the subproblem of creating a vehicle task is split in multiple sub-
problems that are solved in series. The method is called the multiple step column generation method.
In section 3.4 a simplified model of an eVSP is used to show the potential of rewriting the subproblem
to a shortest path problem (SPP). This has the benefit that algorithms are already available that can
be used to solve the subproblem efficiently. This method has been implemented in the final model. The
other methods have not been implemented in the final model for various reasons, which are explained in
this chapter.

The performances of the different methods have to be measured in order to decide if a method is suffi-
cient to use in the tool. The main performance parameter in all models is the number of buses used in a
schedule. A lower bound for the number of buses needed for a schedule is created to get an estimation
on how far a solution of one of the methods is off the optimal solution. The lower bound is introduced in
section 3.1. The Timetable 4 and Timetable 7 are often used in this chapter. Timetable 4 is restricted
to the use of one charger and Timetable 7 is restricted to the use of 4 chargers. The details of these
timetables can be found in Appendix A. These timetables have also been used by Wijnheijmer [3]. This
makes a comparison possible of the performance of the models of Wijnheijmer and the new models. In
this chapter only large models are used, since the timetables in practice are large and most problems
occur when creating schedules for large timetables.

3.1 Lower bounds

In this section lower bounds are created to be able to estimate the quality of the solutions of the new
methods. The quality of the solution is mainly based on the number of buses that are used in a schedule
for a given timetable. The number of fast chargers used in a solution is also a factor. In this section
three lower bounds are introduced. The first two lower bounds determine a lower bound for the number
of buses used. The first lower bound is based on the number of trips driven simultaneously and the
second one is based on the total energy needed to drive all trips in a timetable as a function of time.
These lower bounds are discussed first. The third lower bound is used to find a minimum value for the
number of fast chargers needed to create a schedule given a certain number of buses. This lower bound
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is also based on the total energy needed to drive a timetable as a function of time and is last discussed
in this section.

The first lower bound is based on the trips that need to be driven simultaneously and is similar to
the lower bound used by Wijnheijmer [3]. The lower bound is determined by counting the amount of
trips driven simultaneously each minute. The lower bounds for Timetable 4 and Timetable 7 are shown
in Figure 3.1. The lower bound for the number of buses is 7 for Timetable 4 and 43 for Timetable 7. In
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Figure 3.1: A lower bound of the number of buses as function of time based on simultaneously driven trips

each figure two peaks, which correlate with the rush hour times, can be noticed. These two rush hour
peaks are typically seen in other timetables for cities.

The second lower bound is based on the progression of the total amount of energy in the model during
a day. The model starts with one bus. At the first minute of the day the total energy available in
the system is equal to the number of buses times the maximum allowable energy per bus. This can be
formulated as

etot(1) = bemax, (3.1)

where etot(1) is the total amount of energy available at the first minute of the schedule, emax is the
maximum allowable amount of energy in a bus and b is the number of buses used. Each minute etot(t) is
updated and is reduced with the energy costs of a trip et, if trip t is finished. Each minute it is tracked
if the total amount of energy available in the model is larger than the current number of buses times the
minimum allowable amount of energy per bus, when this is not the case a bus is added to the model.
Thus:

etot(t) ≥ bemin, (3.2)

where etot(t) is the total amount of energy in the system and emin is the minimum allowable amount of
energy per bus. The model is reset, when equation (3.2) does not hold. An extra bus is added to the
system and the model is run again. This continues until equation (3.2) holds for every minute of the day.

The variable etot(t) can also increase, when there are chargers available. Buses also have to be avail-
able to use the charger. The number of buses available can be calculated by subtracting the number of
currently driven trips from the number of total buses. The total amount of energy is then improved by
the charging rate times the number of available chargers (or the number of available buses) and cannot
exceed the number of buses times the maximum allowable amount of energy in a bus. The results for
Timetable 4 and Timetable 7 are shown in Figure 3.2, which shows the progression of the total energy
in the system for the minimum amount of buses that can be used. The total energy becomes lower than
the sum of the minimum SoC needed of all buses, when one bus less is used. In both cases the lower
bound is lower than the lower bound based on simultaneously driven trips. The lower bound based on
total energy in the model can lead to a tighter lower bound in some cases than the lower bound based on
simultaneously driven trips, but in most practical timetables it is a less tight lower bound. A combination
of these lower bounds is used in attempt to solve the eVSP problem with a heuristic instead of taking
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(a) Timetable 4: Total energy in the system for 6 buses
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(b) Timetable 7: Total energy in the system for 37 buses

Figure 3.2: Lower bound based on available energy in system for Timetable 4 and Timetable 7

the column generation model approach to solve the eVSP. This heuristic is described in Appendix B.1,
but it does not perform well enough.

The third bound is a lower bound to determine the number of fast chargers that have to be used,
when the number of buses used is known. The lower bound works on the same principle as the previous
described lower bound and is almost similar to the lower bound used by Monhemius [2]. In this lower
bound the number of buses is fixed and the number of chargers are changed. An extra charger is added
to the system, if equation (3.2) does not hold. The number of used chargers in the model is the lower
bound for the minimum needed amount of chargers. The lower bound for the number of chargers for
Timetable 7 with 43 buses is shown in Figure 3.3. Figure 3.3b shows that the lower bound for chargers for
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Figure 3.3: Lower bound for chargers based on available energy in system for Timetable 7 for the use of 43
buses

Timetable 7 is 2. The lower bound is calculated differently, when there are slow chargers available. Slow
chargers are chargers that are available at the depot. Slow chargers are mainly used to charge the bus at
night, but can also be used to charge the bus during the day. There are as many slow chargers available
as there are buses. Taking these into account the lower bound has to be found in a slightly different
manner for the number of fast chargers. The model that creates the lower bound starts with as many
slow charger as there are buses. A slow charger is exchanged for a fast charger, when equation (3.2) does
not hold. This leads to a lower bound for the number of fast chargers. This lower bound is conservative,
which means that probably the lower bound often cannot be reached with the optimal solution.
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3.2 Heuristics

Heuristics are methods to obtain results in a faster manner than the exact solution methods but are
not guaranteed to be optimal. Heuristics are often used to solve the subproblem in the CG model. The
advantage of using a heuristic is that it can solve the subproblem of Wijnheijmer [3] much faster than a
MILP solver. The advantage of solving the subproblem with a MILP solver is that it finds the column
with the lowest reduced costs in case of a minimization problem. Finding the column with the lowest
reduced costs is not necessary, since any column with negative reduced costs can decrease the objective
value. Another disadvantage of using a MILP solver is that most freely available MILP solvers only have
one solution as output instead of multiple solutions. There is a possibility that the model structure of
Wijnheijmer [3] is sufficient for use, if a heuristic is used instead of a MILP solver. Multiple heuristics
can also be used. For example one heuristic can be used in the first few iterations to quickly improve the
RMP (restricted master problem) solution and dual variables, while another more accurate heuristic that
is slower can be used for the last iterations. Using multiple heuristics in one iteration is also possible.
In this section multiple algorithms are discussed that can replace the current MILP solver that is used
in the subproblem of Wijnheijmer [3].

3.2.1 Placement of restrictions on the MILP solver

The main problem of the model of Wijnheijmer is that it takes too much time for the MILP solver to find
an optimal solution. Using a different and faster MILP solver can reduce the computational time. The
current solver implemented is the intlinprog solver of MATLAB, but this is not the fastest solver. The
website of prof. Mittelman [22] compares the computational time of multiple MILP solvers for multiple
problems. The commercial Gurobi solver is on average more than 10 times as fast as the current MILP
solver. Not all MILP solvers can be used, because a requirement of VDL is that the solver has to be
freely available (with exception to the solvers of MATLAB). The CBC MILP solver is almost twice as
fast on average as the intlinprog solver and is free for use. The solver is implemented in the model of
Wijnheijmer. This leads to half the computational time:

Number of trips Computational
time(sec)

13 34
99 176
203 982
267 1694

Table 3.1: Computational time for a varying number of trips of the CG model of Wijnheijmer with the CBC
MILP solver (Using a zbook 15 with an Intel core i7-4700 MQ with 8 GB RAM )

It can be concluded that the computational time is reduced, when comparing Table 3.1 with Table 2.1.
The computational time is not reduced enough, because for timetables with a thousand trips the com-
putational time is still too long. An option to reduce the computational time even more is to solve the
MILP suboptimally with the MILP solver. The idea is that there is a possibility that the MILP solver
can find a suboptimal solution within a reasonable time. MILP solvers are often already equipped with
algorithms to find a fast solution, because a decent lower bound for the problem can be found. This is
useful for the branch & bound method. The MILP solver can be forced to solve a problem suboptimal by
setting the maximum iterations to a lower number and by setting the maximum solve time to a low time.
The maximum number of iterations and the maximum solve time has been set to gradually increase over
the iterations, where in the last few iterations the MILP solver is solved till optimality. The timetable
with 99 trips has been solved in 141.4 seconds. It reduces the computational time compared to the result
in Table 3.1. The simulation for Timetable 7 has been stopped manually after 50 iterations and 13 hours
simulation time. It can be concluded that using a MILP solver for solving the subproblem of the model
of Wijnheijmer is not an option, instead a heuristic has to be made for this problem.

3.2.2 Greedy algorithm

A relative simple and fast heuristic that can be implemented is the greedy algorithm, which is a heuristic
where locally at each step the best choice is made. It is often used to find a fast and good approximation
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of the solution and it is implemented to investigate the performance of such an algorithm in solving
the subproblem of Wijnheijmer. The algorithm tries to create a vehicle task (i.e. a day task for one
bus) based on the dual variables for trips πt and the dual variables for charging sessions θζ . These dual
variables are based on the dual of the RMP (2.11a).

The algorithm determines which trips are chosen based on the dual variables πt of each trip. The
trips are prioritized over the chargers, since it is hard to determine how much charging needs to be
done before the trips are planned. The algorithm is shown in the Appendix B.2 and it consists of three
parts. The first part assigns a trip with the highest dual variable πt to a bus. Consecutive driven trips
are planned with positive dual variables πt until the minimum SoC is reached, then the battery is fully
charged. The second part is used to remove the surplus energy, which is left in the bus at the end of
the day. The latest charging sessions are deleted until there is no surplus energy any more at the end of
the vehicle task. The third part is implemented to take into account the dual variables for the charging
sessions. The first step of the third part is to replace charging sessions with high positive dual variables
to empty earlier time blocks, where the dual variables for the charging sessions are low. The second step
of the third part is to replace earlier assigned trips with charging sessions, when this is profitable.

The greedy algorithm has been implemented in the model of Wijnheijmer and the model has been
simulated. The maximum amount of iterations has been set to 800. The fractional results of the re-
laxed RMP have been rounded with the rounding algorithm of Wijnheijmer [3]. The RMP has been
re-optimized by creating 50 new columns, after a variable has been rounded up. The costs for a bus have
been set to 111.11 euro per day and the costs for the energy have been set to 0.2 euro per kWh [3]. The
results of the CG model with the greedy algorithm can be found in Table 3.2 and Figure 3.1.

Costs
Timetable 4

Simulation time
Timetable 4

Costs
Timetable 7

Simulation time
Timetable 7

Concurrent sched-
uler

1294 euro 4.38 sec 7902 euro 81.92 sec

CG with MILP 9465 euro 1712 sec - -
CG with Greedy al-
gorithm

1550 euro 34.04 sec 7404 euro 1421 sec

Table 3.2: Results of the greedy algorithm compared to the results of Wijnheijmer [3]

There are mixed results in Table 3.2. For Timetable 7 the CG model plus the greedy algorithm works
better than the other options. For Timetable 4 the concurrent scheduler is the best method to use. The
conclusion that the results are poor can be drawn from Figure 3.1. The number of buses used is well
above the lower bound for the number of buses, which is 43 buses. There are also too many empty gaps
in the schedule.

The algorithm can be run longer with more columns, but this is not going to lead to much better
results, because the improvement in the objective value of the RMP per iteration has been too low. The
implemented greedy algorithm can still be improved in a few ways. The main improvement is to fill the
gaps with trips of the relocated charging sessions. The greedy algorithm has not been improved anymore,
since it is unlikely that improving the CG model with extra rules is going to give accurate enough results.
It is too difficult to create the perfect set of rules for choosing the best choice at each time step. The
main reason is that it is beforehand unknown what the most beneficial place and duration is to charge.
The greedy algorithm can still serve as a heuristic to reduce the objective value quickly of the RMP. A
more accurate algorithm is needed for the later phase of the simulation of the column generation method.

3.2.3 Genetic algorithm

A genetic algorithm has been implemented to investigate if this algorithm is able to solve the subproblem
accurately. The genetic algorithm is based on the evolution theory of natural selection, which makes it
an evolutionary algorithm. It consists of 3 main steps. The first step is to create an initial population,
which is in this case the solution of the greedy algorithm. Thus, the population is a set of columns. The
second step is to select a part of the population, which is used to create the new generation. There are
multiple different methods used for this step. These methods are called selection methods. The third
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Figure 3.1: A schedule for Timetable 7 simulated with a greedy algorithm

step is to create the new generation, which is often done based on crossover or mutation. Crossover is
performed by making a new variable based on assigning chromosomes of different variables to the new
variable and mutation is performed by changing one of the chromosomes of the variable. A chromosome
is a part of the column and the variables are the columns. Crossover mixes multiple parts of columns
and mutation changes a part of the column.

First, a standard genetic algorithm that is available in the global optimization toolbox of MATLAB has
been implemented. The standard genetic algorithm often gives an infeasible solution for small timetables
such as Timetable 1. Feasible solutions can be found for Timetable 1, after tuning the parameters of the
algorithm. The computational time is long and the results are often not feasible. It can be concluded
that the standard genetic algorithm of MATLAB is not a viable option.

Heuristics that are created to be able to solve a large set of problems often obtain a worse solution
for a problem than heuristics that are created for that problem specifically. Therefore, a genetic al-
gorithm has been made for this subproblem specifically. The main idea of creating a genetic algorithm
has been to check, if such an algorithm has the potential to solve the subproblem accurately. The al-
gorithm can be found in the Appendix B.3. The initial population of the genetic algorithm is the solution
of the greedy algorithm. Four chromosomes are used. Thus, each vehicle task is split in four parts. The
number of chromosomes per vehicle task has to be limited due to the chance of obtaining an infeasible
vehicle task. These can occur, because of violation of the maximum or minimum SoC allowed in the bus.

As selection method the tournament selection has been chosen, which works as follows: In a tourna-
ment a participant for the next generation is chosen based on choosing a random number between one
and zero. Each participant has an interval, which represents the percentage of negative reduced costs
of one participant compared to the sum of all the negative reduced costs of all the participants. The
participants are the vehicle tasks and the chromosomes. For the four different groups of chromosomes
and for the group of complete vehicle tasks a certain number of tournaments are held. In the last step of
the genetic algorithm only crossover actions are performed. Crossovers are done between the tournament
winners of the chromosomes parts and the tournament winners of the vehicle tasks. One of the chromo-
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somes of a vehicle task is deleted and replaced with a chromosome that won the tournament. Mutations
are not performed due to the complexity of implementing this. It is difficult to respect all constraints,
when applying a mutation to a chromosome or a vehicle task. The best columns of each generation are
stored.

The greedy algorithm has been used to create a decent initial solution. The genetic algorithm has
been simulated with a number of different values for the number of generations, the number of tourna-
ments and the number of participants. The genetic algorithm creates a lot of new columns each iteration.
More columns are created when the number of generations has been set to a higher number. The compu-
tational time increases with the number of generations. The number of tournaments and participants do
not have much influence on the quality of columns found. In general, the genetic algorithm is slow and
is not able to find much better columns than the greedy algorithm. The final costs barely reduce when
using the genetic algorithm. From the results it can be concluded that the current genetic algorithm
does not have the potential to solve the subproblem in CG model. A genetic algorithm can maybe still
be used to solve this subproblem, but it is a complex task to create an efficient genetic algorithm for this
subproblem, therefore it has been decided to look for a different method.

3.2.4 Diving heuristic

A diving heuristic is a heuristic that dives into a branch-and-bound tree. Instead of calculating the ob-
jective value of every branch it follows at each point in the tree one branch of all the possible branches.
The algorithm can be found in Appendix B.4, The first step is to relax the subproblem of Wijnheijmer [3].
This means that all integer variables are converted to continuous variables by relaxing their upper and
lower bounds. The subproblem can then be solved with the help of an LP solver. A fractional solution
is the result of solving the relaxed subproblem with an LP solver and has to be converted to an integer
solution. All variables that are equal to one in the fractional solution are fixed to one with help of
equality constraints. The variable with the largest fractional value is fixed to one, if there is no non-fixed
integer variables. The subproblem is then solved again. This cycle continues till all non-zero variables
are fixated to one.

The algorithm has been implemented and simulated. The problem is that the diving heuristic is very
slow for large problems. The simulation time is a few minutes per iteration for Timetable 7. The diving
heuristic often finds a good result, but it also often finds a poor result. Sometimes results become in-
feasible, when a variable up is rounded up. This variable then has to be set equal to zero. One of the
many problems is to determine if the trips or the charging sessions have to be fixated first. The best
result after a lot of tuning for Timetable 4 using all three the heuristics is a cost of 1480 euro and the
use of 10 buses, which is too high. It can be concluded that making heuristics manually is not the best
option to solve this problem.

3.3 Multiple step column generation

Finding the best type of heuristic to solve the subproblem accurately has been difficult, especially writing
an accurate heuristic for the subproblem has been a complex task. Therefore, another approach is taken,
where the idea is to make the subproblem smaller. This also leads to a lower computational time. The
subproblem can be made smaller by splitting the subproblem in multiple problems. It is one of the
requirements of VDL to have a minimum shift time, since a customer does not want to send a bus from
the depot to drive only one short trip. The subproblem of creating a vehicle task can be split into two
parts, because of this requirement. One part creates the shifts of trips and the other part creates the
vehicle tasks of shifts.

The size of the subproblem of creating vehicle tasks out of shifts is further reduced by taking the char-
ging constraints out of the subproblem. The subproblem of creating vehicle tasks only has to guarantee
that it is still possible to manage to respect the SoC constraints, when charging sessions are assigned to
the vehicle task. The objective of the new charging part is to create charger tasks for a charger. Each
vehicle task has charging intervals, which are the time intervals in-between two shifts. These charging
intervals can be assigned to a charger similar to the assignment of shifts to buses. There are however a
few differences compared to assigning shifts to vehicle tasks. The main difference is that charging does
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not happen during the complete charging interval, but the charging session can also only use a part
of the charging interval. This leads to that charging intervals may overlap in some cases in the same
charger task. Splitting the subproblem of creating a vehicle task in multiple problems, also means that
the RMP has to be changed. The model of Wijnheijmer [3] is not used anymore and therefore a new
model is formulated in this section.

The problem is now split in 4 parts. These problems are the assignment of trips to shifts, the as-
signment of shifts to vehicle tasks, the assignment of charging sessions to charger tasks and the RMP
that has to choose the vehicle task. The main idea is to create a column generation model with multiple
steps, where each step solves one of three steps described above. An overview of the model is given in
Figure 3.1 to give a more clear view on the model. The three subproblems are placed in series, because

Dual
variables
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Dual
variables
of RSP

Dual
variables
of RSSP Shift

Shift +
Vehicle

task

Shift +
Vehicle
task +

Charger
task

RMP:
Choose vehicle and charger

tasks and shift sets

SP: Create charging
task

SSP: Create vehicle
task

SSSP: Create shift

Figure 3.1: Overview of the multiple step column generation model

each subproblem depends on another subproblem. The new vehicle task depends on the creation of shifts
and the new charger task depends on the new vehicle task, since the charging intervals are obtained from
the interval between two shifts in the vehicle tasks. The main problem is connecting the three subprob-
lems. Each subproblem sends a part of the new column to the step above. The column consists of a
new shift, a new vehicle task and a new charger task. Each step has to give information of the relaxed
problem of that step to a step below in order to find a solution that can improve the relaxed problem.
A relaxed problem means that a MILP problem is converted to an LP problem by relaxing the integer
constraints. Information is transferred with the help of the dual variables. The main problem is creating
a correct formulation that can do this. Such a formulation has not been found. Another problem is that
at each step the relaxed problem is solved. This means that this is often a non-integer solution, while
an integer solution is needed. The formulation of the new RMP of this model is given in the Appendix B.5.

The main problem of this method is that new charging intervals can exist, when the SSP (subsub-
problem) creates a new vehicle task. These charging intervals are not yet taken into account in the RMP
and therefore no dual variables for these charging intervals are available in the SP. The new charging
interval cannot be used in the SP. It creates a new row in the RMP and in order to obtain the dual
variables of this new charging interval first the RMP has to be solved again. The same holds for when the
SSSP (subsubsubproblem) creates a new shift, then the SSP cannot use this shift since the dual variable
of this shift is now known. An in detail explanation is given in Appendix B.5. There are two other
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possible problems with using a multiple step CG model. The first problem is the unknown influence on
the optimality gap the rounding of the fractional relaxed subproblem and relaxed SSP solution to an
integer solution in each step has. The second problem is that it can be difficult to implement deadhead
trips without increasing complexity of the problem significantly. It can be concluded that a different
method is needed.

3.4 Create a graph to obtain a shortest path problem

The PhD theses of Adler [4] and van Kooten Niekerk [16] propose a method that includes a combination
of reducing the complexity of the subproblem and using a heuristic to solve the subproblem of creating a
vehicle task in a VSP. The method is to create a graph based on the timetable. The nodes in the graph
represent the trips and the arcs represent deadhead trips, since the arcs are the connection between two
nodes, i.e., between two trips. This makes the subproblem a shortest path problem (SPP). The idea
of rewriting a mixed integer subproblem to a well-known problem is advised in most literature on the
CG method. This makes it easier to find an algorithm to solve the problem properly, as there are many
alternatives. The shortest path can be found with the help of a labelling method, which makes use of
dynamic programming. A labelling method gives to every node labels, which contain the information
of paths from the start node to the labeled node. This information often includes the distance of the
path and the nodes or arcs that are visited in-between. The non-dominated labels are often stored,
while dominated paths, if any, are removed. A dominated path is a path that can never obtain a better
result than one of the non-dominated paths. These paths are not stored in order to reduce the running
time of an algorithm. Dominated paths are often determined on the basis of a dominance rule, which
varies per model. There are two labelling methods, namely label-setting algorithms and label-correcting
algorithms. The label-setting algorithms are based on that each label is only set once. The most well
known label-setting algorithm is the Dijkstra algorithm. In the label-correcting algorithms the labels can
be visited and updated multiple times. An example of a such an algorithm is the Bellman-Ford algorithm.

The problem with electric buses is that the buses are depended on their SoC. A standard SPP al-
gorithm does not work, since at some point the battery is empty and the bus needs to charge. Thus,
the energy constrains have to be taken into account. The problem with charging makes it a resource
constrained shortest path problem (RC-SPP). An overview and solutions of the RC-SPP’s are given
in [23].

The VSP problem does not revisit any nodes or edges in a solution due to that the graph is direc-
ted, therefore the problem is elementary. In other words one bus cannot drive the same trip twice. The
problem is rewritten to an elementary resource constrained shortest path algorithm (ERC-SSP). This
problem is solved in the paper [24] with a label-correcting algorithm, which is based on the Bellman-Ford
algorithm.

A simplified problem of VDL is introduced to show how an adjusted label-correcting algorithm based on
the one used in [16] can be used for the problem in this thesis. The example only includes scheduling
trips, where the SoC of the bus cannot fall below a certain minimum SoC. The RMP is as follows:

obj min
∑
v∈V ′

cvuv (3.3)

subject to
∑
v∈V ′

atvuv = 1 ∀t ∈ T (3.4a)

0 ≤ uv ≤ 1 ∀v ∈ V ′, (3.4b)

where cv are the costs per vehicle task, atv are all ingoing arcs to t in vehicle task v, uv is a decision
variable and is equal to one, if the corresponding vehicle task v is present in the optimal solution. The
matrix V ′ contains vehicle tasks and T are all the trips in the timetable. The objective function (3.3)
minimizes the number of vehicle tasks, the constraint (3.4a) constraints that every trip has to be present
in the final solution once and the lower and upper bound (3.4b) are respectively zero and one. The RMP
can be written to the following dual problem:

obj max
∑
t∈T

πt (3.5)
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subject to
∑
t∈T

AT
tvπt ≤ cv ∀v ∈ V ′, (3.6)

where πt is the dual variable for each trip. The reduced cost is defined as:

cv −
∑
t∈T

πtδt, (3.7)

where δt is a decision variable and is one if a trip is included in the new column. The subproblem has to
find at least one column that makes the reduced cost (3.7) negative. The new column represents a new
vehicle task. There is one constraint in this example which states that at every moment in time the SoC
of the bus cannot fall below the minimum SoC.

The start node and end node of the label-correcting algorithm are the depot, since every bus has to
start the day and end the day at the depot. The nodes in the graph consist of all the trips in the
timetable plus the previously mentioned two depot nodes. Each node has a label stored that refers to
paths starting from the start node to that specific node. These labels contain information on the reduced
costs of the non-dominated paths to the node, the current SoC of the paths and the paths itself. The
reduced costs replace the distance in a normal SPP algorithm. This means that the label-correcting
algorithm is searching for a path with the lowest reduced costs. Taking an arc to trip t increases the
reduced costs of the path by −δtπt and reduces the SoC by et, which are the energy costs for driving
trip t. The structure of the labels are is as follows:

label =

⎡
⎢⎢⎢⎢⎣

Reduced costs
SoC value

No. start node

No. current node

⎤
⎥⎥⎥⎥⎦, (3.8)

At the start node the SoC is 100% and the reduced costs are zero. At the start of the algorithm the other
nodes have labels with a high positive reduced costs and a very low SoC. These labels are dominated by
every path created from the start node. New labels are added to a node, when there is an ingoing arc
from a different node. For example node j receives an ingoing arc from node i. Then all labels from node
i are copied to node j and updated. Each label of i is updated by adding the dual variable from node j
to the reduced costs, by reducing the SoC by the SoC costs of driving trip j and by adding the number
of j to the path. For large problems the number of labels that need to be stored is huge, therefore often
a dominance rule is used which reduces the number of labels. The problem is an ERC-SPP, where the
recourse variable is in this case the SoC, which means that the dominance rule has to take into account
two variables. The dominance rule is as follows: a path in node i is dominated by another path in node i,
if the SoC is equal or lower and if the reduced costs is higher or equal. A path that is dominated can
never obtain a better result, since the graph is directed.

The arcs in the graph represent the deadhead trips, which are neglected in this example. All arcs
are stored in a list which is ordered on the start time of the arcs. So the arc with the lowest start time is
first in the list. The arcs represent all possible choices that can be made to create the vehicle task. The
list of arcs is to run through in the label-correcting algorithm in order to create the paths. Example 1 is
given to explain how it works. Example 1 has a timetable with two trips:

Trip Start time End time Energy consumption (SoC)
Trip 1 9:00 10:00 40
Trip 2 12:00 14:00 80

Table 3.1: Timetable of Example 1

The graph of Example 1 is shown in Figure 3.1, where the arcs are numbered according to the order in
the list of arcs. The first arc is taken from the list. This is arc 1 and it connects the depot node 1 (dp1)
to the trip node 1 (t1). A label is created in t1 and is as follows:

label node t1 =

⎡
⎢⎢⎣
cv − π1

60
dp1
t1

⎤
⎥⎥⎦. (3.9)

TU/e 23



Ouwerkerk, X.H.

Trip 1 Trip 2

Depot node 1 Depot node 2

1

2

3

4

5
6

Figure 3.1: The graph of Example 1

This label dominates the starting label in node t1 and the inferior label is removed. Then the next arc
is taken from the list, this is arc 2 and it leads to the following label:

label node t1 =

⎡
⎢⎢⎣
cv − π2

20
dp1
t2

⎤
⎥⎥⎦. (3.10)

The new label dominates again the label that is already present in t2. The next arc is arc 3. This leads
to the following label:

label node dp2 =

⎡
⎢⎢⎣

cv
100
dp1
dp2

⎤
⎥⎥⎦. (3.11)

Then arc 4 is chosen. This leads to the following label:

new label node t2 =

⎡
⎢⎢⎢⎢⎣

cv − π2 − π1

−20
dp1
t1
t2

⎤
⎥⎥⎥⎥⎦. (3.12)

The current SoC of the path is below the minimum SoC of 0. This means that this label is not feasible
and is deleted. Arc 5 is taken next, this leads to:

label 2 node dp2 =

⎡
⎢⎢⎢⎢⎣

cv − π1

60
dp1
t1
dp2

⎤
⎥⎥⎥⎥⎦. (3.13)

The label is not dominated in the case that πt > 0 and does not dominate the previously mentioned
label (3.11), since in one label the SoC is higher and in the other label the reduced costs are lower. This
means that node dp2 has two labels. The last arc is arc 6. This gives the new label:

label node dn2 =

⎡
⎢⎢⎢⎢⎣

cv − π2

20
dp1
t2
dp2

⎤
⎥⎥⎥⎥⎦. (3.14)

This label is dominated by the label in (3.13) in the case that π2 ≤ π1, otherwise it is added to the
two existing labels in node dp2. The new vehicle tasks can be chosen out of the labels in dp2. Every
label with negative reduced costs can be transmitted to the RMP and added to matrix of vehicle tasks
V . This example is only used to show how it works, but it is not used to show the efficiency of the
algorithm. This can mainly be shown in larger models, where an early domination of a label can lead
to a huge decrease in labels overall in the model and thus a huge reduction of the number of paths to
the end node. The number of steps in this algorithm is equal to the number of arcs in the graph, which
depends on the number of trips. The maximum number of steps is T 2−T , while the maximum number of
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steps in a MILP solver is 2T
2−T . Note that this label-correcting algorithm gives an exact solution to the

subproblem. A formulation for a scheduling subproblem for the label-correcting algorithm is as follows:

Algorithm 1: A label-correcting algorithm

ldp1(1) = 0
ldp1(2) = SoCmax

ldp2(1) = 10000
ldp2(2) = 0
for all t do

lt(1) = 10000
lt(2) = 0

end
for all aij ∈ Alist do

for all labels in Li do
for all labels in Lj do

if li(2)− ej ≥ min SoC then
if lj(1) > li(1)− πj OR lj(2) < li(2)− ej;
then

Add the newly updated label to Lj ;
end
if lj(1) ≥ li(1)− πj AND lj(2) ≤ li(2)− ej;
then

Delete lj ;
end

end

end

end

end

L are all the labels stored at a node, et are the energy costs for every trip expressed in SoC, πt are the
dual variables per trip, Alist is the list of arcs in the graph.

Rewriting the graph and solving the ERC-SPP on the graph with a label-correcting algorithm seems to
have potential. The problem can be reduced by a large amount by reducing the graph. For example:
An arc can be removed from the graph, if the interval between two trips is large, since a bus is not
allowed to be idle for a long period of time between trips. The problem is also reduced by the use of the
dominance rule. That is why this method has been applied in the VDL tool. In the next chapter the
implementation of the complete model is discussed.

3.5 Summary

In the first part of this chapter two lower bounds are created for determining the minimum number of
buses required to make a schedule. A lower bound for fast chargers has also been created. This lower
bound is conservative. Different algorithms have been written to solve the subproblem of Wijnheijmer [3]
or the complete problem faster. None of the algorithms implemented has the potential to solve the
electric vehicle scheduling problem (eVSP) of VDL. The greedy algorithm is not accurate enough, the
genetic algorithm is too slow and barely improved the solution and the diving heuristic is too slow and
infeasible solutions occur. A multiple step column generation method has been created, where multiple
subproblems are placed in series. The method fails due to that correct transmission of dual variables
between the subproblems is not possible. The last part of the chapter describes a method that uses a
graph and rewrites the subproblem of an eVSP to a shortest path problem (SPP). This method looks
promising, since there are algorithms available to solve the SPP and is implemented in the next chapter.
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Chapter 4

Implementation of the model

In this chapter the implementation of the model for creating a schedule for a given timetable is discussed.
The model is based on the column generation method, where the subproblem is rewritten to a shortest
path problem (SPP). The column generation model has been discussed in Chapter 2 and the method for
the subproblem has been discussed in Chapter 3. In this chapter the model is formulated. The master
problem and restricted master problem (RMP) are given. The dual problem is given of the RMP to show
which dual variables are used and to define a function to determine the reduced cost. The subproblem
is rewritten to a SPP with the help of a graph. The creation of the graph is explained, as well as an
explanation for the reduction of the number of arcs in the graph is given. The chapter concludes with
the implementation of a label-correcting algorithm, which is an extension of the algorithm discussed in
section 3.4. This label-correcting algorithm is used to solve the subproblem and thus to find the shortest
path.

4.1 The Master problem

The Master problem has two different variables that are included in the objective function. These are
the number of vehicle tasks and the number of chargers per location or per charger type. The use of
one vehicle task is equal to the use of one bus. The costs for each vehicle task is the same and the costs
for each charger location or charge type can change. For example the costs for slow chargers are zero,
since there are always as many slow chargers as buses. The Master problem has two sets of constraints,
where the first one assures that each trip has to be included at least once in the final solution and the
second one is used to determine the number of chargers in the system. The number of chargers has to be
at least as high as the chargers used in all chosen vehicle tasks per charging location. The lower bound
for the decision variables of the vehicle tasks is zero and the upper bound is one. A vehicle task cannot
be performed twice, since this is not useful. The lower bound for the number of chargers at a location
is zero and the upper bound is equal to the total number of trips, since this is the upper bound on the
total number of buses needed. The Master problem is formulated as follows:

obj min (
∑
v∈V

cvuv +
∑
cl∈Cl

cclncl) (4.1)

subject to
∑
v∈V

atvuv = 1 ∀t ∈ T (4.2)

−
∑
v∈V

rpcl
vuv + ncl ≥ 0 ∀pcl ∈ Pcl , cl ∈ Cl (4.3)

uv ∈ {0, 1} ∀v ∈ V

ncl ∈ {0...nt} ∀cl ∈ Cl,
(4.4)

where ccl are the costs per charger for a location, ncl are the number of chargers per location, nt is
the total number of trips in the schedule, atv are all the ingoing arcs to trip node t per vehicle, rpcl

is
percentage of a charging session used, Pcl are all charging sessions at charger location cl and Cl are all
the charger locations.
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The columns representing the vehicles tasks have the following structure:

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(cn1,t1)

a(cnend−1,tend)

a(t1,cn2)

a(tend,cn)

rpcl1

rpclend

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.5)

where cn are the charger nodes, a are the arcs in the graph and r is the percentage used of a charging
session. The vehicle task includes all the arcs present in the graph and it includes for every charging
session a variable r, which can only be zero or one in the MP, because ncl is an integer variable. To
solve the MP all possible vehicle tasks v are enumerated. The number of vehicle tasks to be enumerated
is huge. The idea behind CG is that not every vehicle task is used, but only a small subset of all vehicle
tasks is used to find the optimal solution. To accomplish this the RMP is introduced in the next section.

4.2 The Restricted Master problem

The RMP is derived from the MP. An inequality constraint is used for constraint (4.7), because it is
easier to find an integer solution from the fractional RMP solution. An in-depth explanation is given in
subsection 5.1.2. The upper and lower bound of variables ncl and uv are relaxed. The variables need
to be relaxed in order to perform a sensitivity analysis with help of the dual variables. The RMP is as
follows:

obj min (
∑
v∈V ′

cvuv +
∑
cl∈Cl

cclncl) (4.6)

subject to
∑
v∈V ′

atvuv ≥ 1 ∀t ∈ T (4.7)

−
∑
v∈V ′

rpcl
vuv + ncl ≥ 0 ∀pcl ∈ Pcl , cl ∈ Cl (4.8)

0 ≤ uv ≤ 1 ∀v ∈ V ′

0 ≤ ncl ≤ nt ∀cl ∈ Cl,
(4.9)

where V ′ is a subset of V and is a matrix with all vehicle task currently in the RMP.

4.3 The dual of the Restricted Master problem

The dual of the RMP is needed to determine the dual variables which can be used to determine the
reduced costs of each column. The dual of the RMP is as follows:

obj max
∑
t∈T

πt (4.10)

subject to
∑
t∈T

AT
tvπt −

∑
pcl

∈Pcl
,cl∈Cl

RT
pcl

vπpcl
≤ cv ∀v ∈ V ′ (4.11)

∑
pcl

∈Pcl
,cl∈Cl

πpcl
≤ ccl cl ∈ Cl (4.12)

πt ≥ 0 ∀t ∈ T (4.13)

πpcl
≥ 0 ∀pcl ∈ Pcl , cl ∈ Cl. (4.14)

There are two sorts of dual variables. The first one is πt and is associated with constraint (4.7). The
dual variable πt gives the value of the increase in objective function, if the constraint for trip t in the set
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of constraints (4.7) is changed such that trip t has to be driven at least twice. The second dual variable
πpcl

can be coupled to the variable rpcl, which determines whether a trip is included in the new column
or not. The dual variable is coupled to constraint (4.8) and gives the increase in objective function, if one
extra charger at charger session p at charger location cl is used. The equation to calculate the reduced
costs of this problem is as follows:

cv −
∑
t∈T

πtδt +
∑

pcl
∈Pcl

,cl∈Cl

πpcl
rpcl, (4.15)

where δt is one, if trip t is included in a column. The RMP is a minimization problem, therefore the
reduced cost has to be negative. The reduced cost (4.15) are used as an objective function in the
subproblem. In the case that the subproblem finds a column, which has negative reduced costs, the
column is added to V ′. The RMP is solved until optimality, in the case that only positive columns can
be found.

4.4 The subproblem

The RMP has been determined in the previous section and the equation for the reduced cost (4.15) has
been given. The objective of the subproblem is to find a column (i.e., vehicle tasks) that has negative
reduced costs. The subproblem consists of two parts: The graph and the label-correcting algorithm to
solve the graph. In general, the graph describes the subproblem, whereas the label-correcting algorithm
solves the subproblem. However, the label-correcting algorithm also enforces some constraints. In this
section first the creation of the graph is discussed and then the label-correcting algorithm is discussed.

4.4.1 Creation and reduction of the graph

This section explains how a subproblem can be created in such a way that it becomes a shortest path
problem. A graph is created that takes the dual variables into account.

In the previous chapter a simple example is given on creating a graph for a timetable with trips. There
are many more requirements for this subproblem model, which have to be taken into account when
making the graph. The requirements relevant for creating a graph are the possibility of charging, the
implementation of multiple charge locations/types, the inclusion of deadhead trips in the model and a
maximum idle time at every location, except for the depot (see section 1.2). In this section the creation
of the graph is explained by an example which is called Example 2. Two tables are given, the first one
states the information of the trips that need to be driven and the second one states the duration of the
deadhead trips.

Trip Start location End location Start time End time Energy consumption (SoC)
Trip 1 A A 9:00 10:00 50
Trip 2 A A 10:00 11:00 20
Trip 3 B A 10:30 11:00 20
Trip 4 A A 11:00 12:00 30
Trip 5 A A 12:00 13:00 30
Trip 6 A A 14:00 15:00 20

Table 4.1: Timetable Example 2

Time (min) Location A Location B Location Depot Location Charger 1
Location A 0 30 0 30
Location B 30 0 30 0
Location Depot 0 30 0 30
Location Charger 1 30 0 30 0

Table 4.2: Duration of deadhead trips Example 2

First, the implementation of charging at the depot is discussed. Charger location 1 is ignored. Charging
on the depot is implemented by creating for each trip two depot nodes. The first one is equal to the start
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of the trip minus the time of the deadhead trip and the second one is equal to the end time of the trip
plus the time of the deadhead trip. This means that a bus is not idle at any moment between going from
a charger node to a trip node. The graph is shown for the timetable in Table 4.1 with only the depot
nodes and the trip nodes in Figure 4.1. In Figure 4.1 the trip nodes represent every trip in Table 4.1.

Trip 1
9:00-10:00

Trip 2
10:00-11:00

Trip 5
12:00-13:00

Trip 4
11:00-12:00

Trip 3
10:30-11:00

Trip 6
14:00-15:00

Depot 2
10:00

Depot 3
11:00

Depot 4
12:00

Depot 5
13:00

Depot 6
14:00

Depot 1
9:00

Depot 7
15:00

Figure 4.1: Graph with depot nodes and trip nodes of Example 2

For each trip node two depot nodes are created, where one of the depot nodes is deleted, if there are two
depot nodes with the same time point. The arcs between the trip nodes and the depot nodes represent
the deadhead trips. For example the arc from depot node 2 to trip 3 takes 30 minutes to drive. The
pair of arcs between the depot nodes do not represent deadhead trips. On the depot a bus can be idle
or use a slow charger. These two actions are represented in the graph by two having arcs between the
depot nodes. One of the arcs between the depot nodes represents a charging session and the other arcs
represent an option for a bus to be idle. A charging session takes as long as the time interval between the
pair of depot nodes. For example the charging session between depot node 1 and depot node 2 takes one
hour. The first depot node is called the start node of the model, since all buses start in the beginning of
the day at the depot. The last depot node is called the end node, since all buses have to end at the depot.

Charger location 1 also has to be implemented in the graph. Fast chargers are used at charger loc-
ation 1. Charger nodes are placed for the start time and end time for each trip node, just as has been
done for the depot nodes. The time of the deadhead trips to and from charger location 1 are included.
There are two differences between depot nodes and charger nodes. The first difference is that it is not
allowed for a bus to be idle on a charger location. This means that there is only one arc between two
charger nodes, which represents a charging session. The second difference is that all charging nodes that
are placed before the start node of the first depot node and all charging nodes that are placed after the
end node are not implemented in the graph. These nodes are deleted, because they can never be reached
by a bus that starts and ends the day at the depot. Figure 4.2 shows the implementation of the charger
nodes of Example 2.

In some cases there are two types of chargers at a charger location. Each type is seen as a different
charger location (with the same deadhead trips to other nodes), where for each location a new line of
charger nodes is created. An important thing to note is that there are no arcs between charger nodes
from different locations or charger types. This can lead to a suboptimal solution of the subproblem.
Fast chargers on the depot are treated as a charger location, which means that a bus cannot be idle at
the depot after using a fast charger on the depot. To solve this problem an option is implemented to
choose between the use of one or two arcs in-between two nodes in the case that there are two different
chargers at the depot. This option is by default off in the model, since it increases the computational time.

The second part of this section discusses the creation of arcs between trip nodes. One of the most
important parts of this method is to keep the graph as small as possible, while keeping the optimality
gap between the solution and the optimal solution of the subproblem as small as possible. The maximum
number of arcs between all trips is T 2 − T . The graph is too large for Timetable 7 (1096 trips) in the
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Trip 1
9:00-10:00

Trip 2
10:00-11:00

Trip 5
12:00-13:00

Trip 4
11:00-12:00

Trip 3
10:30-11:00

Trip 6
14:00-15:00

Depot 2
10:00

Depot 3
11:00

Depot 4
12:00

Depot 5
13:00

Depot 6
14:00

Depot 1
9:00

Depot 7
15:00

Charger 1
10:30

Charger 2
11:00

Charger 3
11:30

Charger 4
12:30

Charger 5
13:30

Figure 4.2: Graph with depot nodes, trip nodes and charger nodes of Example 2

case that all arcs are created between every combination of two trips. Therefore, not all trips are directly
connected with each other by arcs. The graph of Example 2, where all trips are connected with each
other is shown in Figure 4.3. All arcs that lead to time incompatibility (i.e., simultaneously driven trips)

Trip 1
9:00-10:00

Trip 2
10:00-11:00

Trip 5
12:00-13:00

Trip 4
11:00-12:00

Trip 3
10:30-11:00

Trip 6
14:00-15:00

Figure 4.3: Graph with arcs between all trips nodes of Example 2

between two trips are already deleted in the graph. There are two rules applied to delete additional trip
to trip arcs from Figure 4.3. The first rule states that the idle time between two trips cannot exceed a
certain threshold, which is expressed in minutes, i.e., the bus is not allowed to stand still for longer than
a certain period of time. This is also a requirement of the sales department of VDL Bus & Coach (see
section 1.2).

The second rule states that a deadhead trip to a trip can only take a certain amount of minutes. The
reason why this rule is used is because in general it is inefficient if a bus ends a trip in the north of the
city and then starts a next trip in the south of the city, because this costs time and energy. It is unlikely
that a vehicle task with long deadhead trips is used in the optimal solution for the subproblem. In some
cases this rule can lead to a suboptimal solution, but it is expected that this rarely happens. In this
example it is not allowed to be idle for longer than 10 minutes and deadhead trips cannot take longer
than 20 minutes. This leads to the graph in Figure 4.4. The number of arcs are reduced from 14 to 4.
The final graph is shown in Figure 4.5.
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Trip 1
9:00-10:00

Trip 2
10:00-11:00

Trip 5
12:00-13:00

Trip 4
11:00-12:00

Trip 3
10:30-11:00

Trip 6
14:00-15:00

Figure 4.4: The connection between the trip nodes of the reduced graph of Example 2

Trip 1
9:00-10:00

Trip 2
10:00-11:00

Trip 5
12:00-13:00

Trip 4
11:00-12:00

Trip 3
10:30-11:00

Trip 6
14:00-15:00

Depot 2
10:00

Depot 3
11:00

Depot 4
12:00

Depot 5
13:00

Depot 6
14:00

Depot 1
9:00

Depot 7
15:00

Charger 1
10:30

Charger 2
11:00

Charger 3
11:30

Charger 4
12:30

Charger 5
13:30

Figure 4.5: The final graph of Example 2

In this example no limit is set on the drive time of deadhead trips to charger location 1. In the model it
is possible to also set a limit on these deadhead trips. This also reduce the graph of large models a lot.
The motivation for implementing this option is the same as for the maximum drive time of deadhead
trips between two trips. It is advised that for each schedule every trip is directly connected by an arc to
at least one fast charger location. Slow chargers (i.e., the depot nodes) are always reachable from trip
nodes. There are no limits on the time of the deadhead trips to the depot, since the depot always has
to be reachable, because a bus has to be able to stand still at the depot. In one case it is still possible
to drive long deadhead trips, namely by going from a trip node to a depot node and then immediately
going to a new trip node.

4.4.2 Implementation of a label-correcting algorithm

On the graph a shortest path has to be found each time the RMP is solved. The subproblem is an
ERC-SPP which has been discussed in section 3.4. The section explains that such a problem can be
solved with a label-correcting algorithm which is beneficial as it can exclude a lot of paths by deleting
dominated paths early on. In this section the algorithm is extended with some requirements of VDL
(1.2) and is adjusted to the changes in the graph which are not yet taken into account in section 3.4.
These are the inclusion of deadhead trips, double arcs between depot nodes, multiple charger locations,
minimum shift time and minimum charge time. In this section first the influence of the changes in the
graph on the algorithm is explained and afterwards the implementation of minimum charge time and
minimum shift time is discussed. The implementation of the charger connection time and a non-linear
charge rate curve are discussed in Appendix C.
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4.4.2.1 Inclusion of the charging nodes

There are five different types of arcs in a graph. The differences between these arcs have to be taken into
account in the label-correcting algorithm and each one has to be treated differently. These five types of
arcs are the arc from trip to trip, the arc from trip to charger, the arc from charger to trip, the arc from
charger to charger and the arc from depot to depot, where in the latter one the bus is idle. Each type
of arc has a different set of constraints that have to be met and updates the label of a path differently.
The inclusion of the different arcs is explained on the basis of the following overview:

1.Initialize 

2.Pick the first arc of
the list

3.Update paths from starting node of
the arc according to the type of arc 

5.Determine
dominated paths  

7.Add non-dominated paths to the
end node of the arc

6.Delete paths

4.Remove updated
paths

For all paths that meet the
constraints for this arc type

For all paths that do not
meet the constraints for

this arc type

For all (new&old)
 dominated paths

8.Delete arc from the
list

9.Final paths are in
the end node

If list is empty

Figure 4.6: Overview of the label-correcting algorithm with multiple arc types

Step 1,2,3,7,8 and 9 are exactly the same as in section 3.4. In step 1 all arcs from the graph are ordered
based on the starting time of each arc and are placed in a list. The starting node label is created which
has a maximum SoC and the other labels have labels that can be dominated by any path. Step 2 picks
the first arc from the list. The main difference is in step 3.

In step 3 the paths of the starting node of the arc are updated depending on the arc type. Each
arc has a different influence on the labels of the paths. The charger to charger arc updates the reduced
costs with the dual variable πpcl

, since the arc represents a charging session. The duration of the charging
arc dtpcl−p−1cl times the charging rate of the charger echarge times the percentage of the charging arc
rpcl used determines how much SoC is added to the current SoC of the path. The variable rpcl is always
one, since the algorithm can only choose to use a charging session or not. Each πpcl

which is equal to
zero and linked to a fast charger is given a very small positive value to prevent unnecessary charging.
The reduced costs and the SoC of the paths are not updated, when taking a depot to depot arc, which
is the arc where the bus is idle for the duration of the arc. The reduced costs stay the same for a path,

TU/e 32



Ouwerkerk, X.H.

when the paths follow the trip to charger arc. The SoC decreases with the SoC costs for taking the
deadhead trip from the end of trip to charger location ehtcl

. The reduced costs is reduced with πt, when
a path takes the charger to trip arc. The SoC decreases with the SoC costs of trip et and the SoC costs
of taking the deadhead trip from the charger location to the start point of the trip ehclt

. Taking the trip
to trip arc reduces the reduced costs of a path with πt and decreases the SoC of a path with et. An
overview of the influence of taking an arc type on the variables in the labels of a path is shown in Table 4.3.

The updated paths are checked for meeting the SoC requirements after step 3. The second differ-
ence to the model in section 3.4 is that the paths are checked on different SoC constraints depending
on which arc is taken. For the charger to charger arcs, the new updated paths are checked for whether
the maximum SoC is exceeded. The percentage of the charging time rpcl used is decreased to meet the
constraint, when the maximum SoC is exceeded. The new updated paths are checked for whether the
SoC drops below minimum SoC for when the arc is a charger to trip arc, a trip to charger or a trip to
trip arc.

It cannot be guaranteed that the label-correcting algorithm always obtains an optimal solution, because
of the maximum SoC constraint of a charger to charger arc. It can happen that a path is dominated at a
charger node by a path with a maximum SoC value, which cannot take an arc to the next charger node,
since the battery is already full and thus the bus cannot be charged. The dominated path with a lower
SoC can take the charger arc which leads to a new charger node. It is possible that from this charger
node a trip can be reached, which the path with the maximum SoC cannot reach. This situation is
however not likely to often occur, because the battery is not often full. A second reason that the solution
is not always optimal is that rpcl

is always one. A large time interval between two charger nodes leads
to a long charging session. Sometimes a vehicle task does not need to charge the entire charging session.
It might be better to split this charging session between two buses, which is not possible at the moment.
This can be implemented by altering the vehicle task, after the label-correcting algorithm has created it.

Step 5 is again the same as in section 3.4. In this step the updated paths and the old paths in the
end node of the arc are compared with each other with the help of the dominance rule. All dominated
paths are deleted and all non-dominated paths are added in the form of labels to the end node of the
arc. Then the arc is deleted in step 8. If the list is not empty, a new arc is picked. When the list is
empty, the simulation ends and the shortest paths can be found in the last depot node.

4.4.2.2 Extension with minimum charge time and minimum shift time

The minimum charge time needs to be implemented to prevent short charging sessions of one minute,
which are not realistic to be implemented. The minimum shift time is needed to prevent that a bus has to
drive only one trip when leaving the depot, because sometimes customers do not accept such a solution.
The minimum charge time and minimum shift time can be enforced by changing the constraints after
step 3 in the overview in Figure 4.6. Two new variables are implemented in the labels of the paths which
are the current charge time and the current shift time. On a side note, on the contrary to section 3.4
the arcs are now stored instead of the nodes, since these are used to describe a vehicle task. The new
structure of a label of each path looks as follows:

label =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Reduced costs
SoC value

Current shift time
Current charge time
No. starting arc

No. current arc.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)

Introducing these new variables means that these variables have to be updated in step 3 of Figure 4.6.
The current charge time and the current shift time are influenced differently per arc type. The current
charge time is increased with the time between two charge nodes dtpcl−p−1cl, when the charger to charger
arc is taken. It is reset to zero, when a charger to trip arc is taken or a depot to depot arc is taken. The
current shift time is increased by the duration of a trip, when the charger to trip arc is taken or the trip
to trip arc. It is reset, when the trip to charger arc is taken. An overview is given in Table 4.3.
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Type of arc Event Change
in re-
duced
costs

Change in SoC [%] Change
in charge
time [min]

Change in
shift time
[min]

Charger to char-
ger arc

Charging session πpcl
rpclechargedtpcl−p−1cl dtpcl−p−1cl 0

Depot to Depot
arc

Stand still at the
depot

0 0 0 0

Trip to charger
arc

Deadhead trip 0 −ehtcl
0 0

Charger to trip
arc

Deadhead trip +
trip

−πt −et − ehclt
0 htend

−htstart

Trip to trip arc Deadhead trip +
trip

−πt −et − eht−1t 0 htend
−htstart

Table 4.3: Overview of the influence of taking arc types on the labels

The parameter htend
is the end time of a trip, htstart

is the start time of a trip, eh are the energy costs
for each deadhead trip, et are the energy costs per trip and echarge is the charge rate.

As previously mentioned, the minimum shift time and the minimum charge time can be enforced with
constraints. There are extra constraints for the trip to charger arc, the charger to trip arc and the depot
to depot arc. A trip to charger arc can only be taken, if the updated path has a current shift time which
is larger than the minimum shift time. A charger to trip arc can only be taken, if the updated path has
a current charge time which is larger than the minimum charge time. The depot to depot arc can only
be taken, when the current charge time of the updated path is zero or the current charge time is larger
than the minimum current charge time. These constraints enforce that a path always has long enough
charging sessions and long enough shifts.

The dominance rule also needs to be changed, when enforcing the minimum charge and shift time.
For example: Currently, there are two paths at the same charger node. One path meets the minimum
charge time requirement and one path does not meet the minimum charge time requirement. The path
that does meet the requirement can take charger to trip arcs, while the path that does not meet the
requirement can only take the charger to charger arc. This means that it is not known if the latter path
is for certain always a better path than the path that does meet the time requirements, even if it has
lower reduced costs and a higher SoC. The path that meets the requirement has the option to maybe
drive a trip with a very positive dual variable πt, which leads in the end to the path with the lowest
reduced costs. It does however not mean that the path with a longer current shift time or charge time
cannot be dominated. The current charge or shift time is irrelevant, if both paths exceed the minimum
charge or shift time. The addition of the two new variables leads to four different situations:

1. The current charge time of one of the paths is shorter than the minimum charge time. Then the
current charge time is taken into account in the dominance rule.

2. The current charge time of both paths is longer than the minimum charge time. Then the current
charge time is not taken into account in the dominance rule.

3. The current shift time of one of the paths is shorter than the minimum shift time. Then the current
shift time is taken into account in the dominance rule.

4. The current shift time of both paths is longer than the minimum shift time. Then the shift time
is not taken into account in the dominance rule.

Taking these situations into account the dominance rule is updated as follows: In the same node a path
i is dominated by another path j if the following conditions are true:

1. The reduced costs of path i are higher or equal to the reduced costs of path j.

2. The SoC of path i is lower or equal to the SoC of path j.
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3. The current charge time of path i is non-zero and shorter than the minimum charge time and the
current charge time of path j.

4. The current shift time of path i is shorter than the minimum shift time and the current shift time
of path j.

The minimum charge time and the minimum shift time are now fully implemented in the model.

4.5 Summary

In this chapter the master problem (MP) is formulated, which minimizes the number of vehicle tasks and
the number of chargers. The columns are the vehicle tasks, which describe the route a bus drives during
the day and describes when and where the bus has to charge. The restricted master problem (RMP) and
the subproblem are derived from the MP. The subproblem is written as a shortest path problem (SPP).
This is done by creating a graph, which takes into account the trips, the deadhead trips, the different
charger locations, charging sessions and the place where buses can have a break. The shortest path is
found with the help of a label-correcting algorithm, which takes the reduced costs and the SoC of a bus
into account. The algorithm also enforces a minimum shift time and a minimum charge time for each
path.
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Chapter 5

Obtaining an integer solution and
accelerating the model

In Chapter 4 a column generation (CG) model has been described to solve the electric vehicle scheduling
problem of VDL. The model only gives the optimal fractional result, which is because the lower bound
and upper bound of the variables have been relaxed in the RMP (see section 4.2). An integer solution
has to be found for the RMP without relaxed constraints. This has been done with a diving heuristic,
which has been described in section 2.2.2. The implementation and the problems of implementing this
diving heuristic are described in this chapter.

It is not trivial to implement the model of Chapter 4 in MATLAB. The main problem for implementing
this model is the computational time. For example: The implementation of constraints in the model can
have a huge influence on the computational time. In the second part of this chapter the essentials to
create a well working column generation method are described. These are: The choice of the LP solver,
the implementation of the constraints, the warm starts, column management and a method to cut-off
the column generation method.

5.1 Finding an integer solution

The column generation method described in Chapter 4 is only suited to find an optimal fractional solution
of the RMP. The number of vehicle tasks and the number of chargers used have to be expressed as an in-
teger value. There are multiple methods to accomplish this, which has been discussed in subsection 2.2.2.
The branch-and-price algorithm has not been implemented, since it is expected that the computational
time is too high for practical use. A primal heuristic is chosen and specifically a diving heuristic. The
reason for this choice is that it is expected that a diving heuristic gives a relatively good solution in a
short computational time. A diving heuristic is a heuristic that chooses only one option out of all options
at each node it passes in a branch-and-bound tree in order to obtain one solution in the branch-and-
bound tree in a fast way. Thus, it creates one path from the top of the branch-and-bound tree to the
bottom of the tree. The implemented diving heuristic is explained in-depth in the first subsection. In
the second subsection it is discussed why trips are allowed to be driven twice in a schedule instead of
only once and why it is difficult to limit the number of chargers at a location.

5.1.1 The rounding algorithm based on a diving heuristic

The diving heuristic consists of two parts. The first part consists of the standard diving heuristic and in
the second part this heuristic is implemented into the CG model. An overview is given in Figure 5.1 to
explain the standard diving heuristic used, after the CG model has found an optimal fractional solution
for the RMP. The decision variables uv from the fractional solution that are linked to the vehicle tasks
are rounded up one at a time and fixed to one by the diving heuristic. The corresponding vehicle tasks
are used in the final solution. The variables of the number of chargers per charger location ncl are not
rounded with the diving heuristic, but are rounded when the final solution of vehicle tasks is completed.

The diving heuristic starts with checking if there is already a (non-fixed and non-zero) integer vari-
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The optimal RMP
solution is found

Fix one of the new
integers to one

Round up the largest
fractional variable and
fix this variable to one

If there are new integer
variables If there are no new integers

Solve the new RMP
with the LP solver

Fix the previous fixed
variable to zero
instead of one

Solve the new RMP
with the LP solver

Return to the CG
model

If solution is
infeasible

If solution is
feasible

Figure 5.1: Overview of the diving heuristic

able present in the fractional RMP solution, when this is the case the variable is fixed to one. In case
that there are multiple integer variables only one of them is fixed. Simulations have shown that fixing
variables one by one can lead to a better result. The variable with the largest fractional result is fixed
to one, when there are no (non-fixed) integer variables available. The variables are temporary fixed by
adding equality constraints to the RMP in the diving heuristic. The new RMP is tested on feasibility in
the diving heuristic. The RMP is solved by an LP solver, which shows if the current RMP is solvable.
In the case that the RMP is not solvable, the previously rounded variable is set to zero. This leads again
to a change in the RMP and the RMP has to be solved again to identify the next variable that has to
be rounded up. Once the RMP is feasible, the first part of the diving heuristic is complete. Then the
second part of the diving heuristic needs to be used to implement the rounded variables in the CG model.

This test for feasibility is implemented, because early on in the creation of the diving heuristic the
constraint (4.7) has been an equality constraint, which means that trips can only be assigned once. A
higher bound has also been set on the number of chargers at each charger location by changing the set
of constraints (4.8). This is not the case anymore in the current RMP. The reason for the change in
constraints is discussed in the second section 5.1.2. In the current implemented RMP the rounded up
decision variables uv are always feasible.

At this point it is known how to determine which variable has to be rounded up, but it is not yet
discussed how the new value of the rounded up variable can be fixed in the RMP of the column gen-
eration model. The second part of the rounding model is used to implement the result of the diving
heuristic in the CG model. Variables cannot be constrained by adding equality constraints to the RMP
that constrain the rounded variables to one. The reason for this is that it influences the dual variables
and with this the objective function of the subproblem incorrectly. The following is an example of a
problem that can occur: At some point the fixed integers provide a worse result than the non-integer
solution in most models. It can happen that the columns with the lowest reduced costs are columns
with trips that are already fixed, because the combination of fixed variables are not present in the best
non-integer solution of the RMP. The rounded variable has to be fixed in another way to prevent this.
In [18] it is suggested to change the right-hand side of the constraints in the RMP, which are in other
words the b values in the Ax ≤ b structure for constraints. This can also be used in this CG model. The
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vehicle task associated with the new fixed variable is stored in the final solution matrix Vfinal, when the
associated variable is rounded up. The trips that are assigned to this vehicle task are subtracted from
the right-hand side of the associated constraints (4.7). This leads to the following constraint:

∑
v∈V ′

atvuv ≥ 0 ∀t ∈ Tfinal, (5.1)

where Tfinal is a set of trips that are currently present in the final solution. In the new RMP these trips
do not have to be driven. The previously created columns that have these trips can however be present
in the new solution of the RMP. The trip variables present in the final solution can also completely
be deleted from the problem. The constraints (5.1) have to be deleted from the problem. This means
that also all vehicle tasks that contain such a trip have to be deleted. The advantage of this is that
there are no trips driven twice in the schedule. The disadvantage is that after every rounding iteration
many columns have to be recreated. Deleting columns can also lead to infeasibility due to a still to
be assigned trip not being present in any of the remaining columns. Therefore, an initial solution that
contains every left over trip has to be added each rounding iteration to prevent an infeasible RMP. The
option is implemented in the MATLAB script, but is disabled by default. The reason for this is that the
computational time is long for large timetable, because a lot more columns have to be created. Another
option is implemented, which is that the trips that are already present in the final solution are forbidden
to be in the solution of the subproblem. Thus, the arcs that lead from and to these trips are deleted from
the list of the label-correcting algorithm. This leads to a decrease in computational time and a decrease
of trips driven twice in a schedule.

The constraint for the chargers also needs to be updated, after a variable uv has been rounded up.
The chargers used per charging session per charging location are counted in the newly fixed vehicle task
and are added to the right-hand side of the constraints in (4.8). The updated constraints look like this:

−
∑
v∈V ′

rpcl
vuv + ncl ≥ npclfinal

∀pcl ∈ Pcl , cl ∈ Cl. (5.2)

An overview of the second part of the rounding algorithm can be found in Figure 5.2. The second part of
the diving heuristic also determines when the simulation is complete, which is when all decision variables
uv are integer. This is the case when all constraints of (4.7) are transformed to the constraints (5.1), i.e.,
all trips are assigned to the buses. The number of chargers used are still fractional. These are rounded
upwards at the end of the complete simulation.

5.1.2 Explanation of the disadvantages of the rounding algorithm

The current diving heuristic gives an integer solution in a relatively short time. There are however a few
disadvantages of using the diving heuristic of Figure 5.1 as a rounding algorithm. These disadvantages
are discussed in this subsection.

The first disadvantage is that an inequality constraint has to be used for constraints (4.7) instead of
an equality constraint. The latter one is preferred, since driving trips twice is then impossible. Having
an equality constraint has led too often to an infeasible RMP, when rounding variables up in the diving
heuristic. An infeasible RMP can occur, because a trip can only be driven in a combination of different
vehicle tasks. For example, there are three trips and two vehicle tasks. The first vehicle task drives the
first two trips and the second vehicle task drives the second and third trip. An infeasible RMP occurs,
if the first vehicle task is rounded up, because the third trip cannot be driven. As discussed in the pre-
vious subsection, a method is built in to spot and fix variables that are rounded up and make the RMP
infeasible. The variable that leads to infeasibility is set to zero and the next largest fractional variable
gets chosen, until a feasible solution is obtained. Fixing a variable to zero creates a new RMP, which has
to be solved to optimality again. It is however difficult to fix a variable to zero in the RMP due to the
way the label-correcting algorithm works, because it cannot forbid to create one specific vehicle task. It
has been decided to not solve the new RMP to optimality, but only check the new RMP on feasibility
with an LP solver. Then the new largest fractional variable is chosen. This can lead to poor results,
especially in the case that a couple of infeasible rounded up variables occur in a row. To overcome this
problem it is chosen to use an inequality sign as in equation (4.7). The advantage of this is that no
infeasible RMP can occur. The disadvantage is that trips can be driven twice, which means that a trip
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A new variable is fixed in the diving
heuristic

Find all trips used in the new vehicle
task

Update the right-hand side of the
constraints for these trips:

Add the new vehicle task to the final
solution

Find all charging sessions used in the
new vehicle task

Update the right-hand side of the
constraints for these charging sessions:

The CG model has
finished

Continue with the CG model and find the
new optimal RMP solution

If all trips are
assigned at least

once 

If not all trips are
assigned at least

once

Figure 5.2: Overview of implementing the results of the diving heuristic in the CG model

can be assigned in the final solution to two vehicle tasks. The double trips can be seen as a deadhead
trip in the case that a trip is assigned twice. Driving a trip double in a schedule costs extra energy and
time, therefore it has been expected that few trips are driven double.

The same problem as for the equality constraint for the trips occur, when a low upper bound is placed
on the charger per location. Sometimes it can be of use for VDL to limit the number of chargers used
at a location. This can be implemented by changing the constraint (4.8) to the following constraint:

−
∑
v∈V ′

rpcl
vuv ≤ npcl

∀pcl ∈ Pcl , cl ∈ Cl, (5.3)

where npcl
is the number of chargers per charging session per charger location. It has an upper bound

ns, which is the maximum number of chargers available for charger location cl. The constraint in (5.3)
is deleted, when ns is reached in the interim final solution, which consists of the vehicle tasks which
decision variables have been set to one. The variable npcl

that reaches the limit of ns is removed from
the RMP. The problem is again that it can lead to infeasible solutions during the process of the diving
heuristic shown in Figure 5.1. This happens, when there are relatively few chargers allowed compared
to the trips that have to be driven, since then the upper bound of the chargers per charger location can
be met. Constraint (5.3) is not used in the model due to the previous mentioned problems.

The second disadvantage of using a diving heuristic is that it does not guarantee the optimal solution.
In general, it has to give a good solution, but the solution does not have to be optimal. The variable
with the largest fractional value is rounded up, but it is not sure that this is the best variable to round
up. The larger the fractional value is the higher the chance is that it is the best variable to round up and
that it has to be placed in the final solution. How large the fractional values of the optimal solution of
the RMP are depends on two factors. The first one is the most important one and is the integrality gap.
This is the gap between the optimal final solution of the RMP and the optimal integer solution. A larger
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integrality gap means generally that the largest fractional value of the variables is probably low. The
size of the integrality gap depends among other things on the formulation of the MP/RMP. The second
factor is in the case that there are multiple optimal solutions. It is better to have columns that differ
a lot from each other in V ′ than columns that are very similar. In the label-correcting algorithm only
one of very similar vehicle tasks is added to the RMP. How much the optimality gap increases between
the found solution and the optimal solution by using this diving heuristic is not known and has to be
estimated with help of the lower bounds, which are mentioned in section 3.1.

5.2 The tailing-off effect in the column generation model

A well-known problem in column generation is the so called tailing-off effect: The RMP solution con-
verges slower to the optimal solution each time the optimality gap between the current solution and
the optimal solution decreases. This problem is shown in Figure 5.1. The main reason for this effect is
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Figure 5.1: Timetable Bordeaux: The tailing-off effect

that the dual variables are unstable over the iterations, this is called the bang-bang effect. The primal
solution (i.e., The RMP solution) always improves, but the dual solution of the column generation model
does not always improve each iteration. This effect occurs due to that the simplex algorithm jumps
from one extreme vertex to another extreme vertex. This leads to oscillation in the dual variables of the
column generation model over the iterations, which leads to a slow convergence of the RMP. One of the
reasons for these oscillations in the values of the dual variables is that there are degenerate solutions in
the dual problem, i.e., there are multiple optimal dual solutions to choose from. One of these multiple
optimal dual solutions is randomly chosen. To see the bang-bang effect, a dual bound has to be created
for the RMP solution. The RMP solution is optimal, when the dual bound and the primal bound (the
RMP solution) are equal. Since no dual bound has been found and therefore no stabilization method
has been implemented, a reference is made to the papers of Desrosiers et al. [13] and Lübbecke [12] for
an in-depth explanation on the reasons for the tailing-off effect, stabilization of the dual variables and
finding a dual bound. Investigating the effects of stabilization on the dual variables in the current model
is a recommendation for further research. This can reduce the number of iterations needed to solve the
RMP optimally significantly.

To reduce the computational time the column generation method is often cut-off, before the optimal
solution is found. A trade-off has to be made between the computational time and the optimality gap,
which is the gap between the solution and the optimal solution. A common way to determine, when to
cut-off the column generation method, is to use a dual bound. Such a bound has not been found for this
problem as has been mentioned in previous paragraph. A different method is to track the improvement
of the objective values in the RMP in percentage over multiple iterations. The model is cut-off, when
the RMP does not improve 0.5% over 50 iterations. The number of iterations decreases to 20 iterations,
after the first variable is rounded up. The RMP is thus not solved till optimality every time, but this
most likely does not increase the optimality gap. This method has been implemented and a simulation
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has been done with the same conditions as in Figure 5.1. Timetable Bordeaux has been used. The costs
for a bus is 1 and the costs for the fast chargers is set to 0. The lower bound for the number of buses
is 33. The simulation without the cut-off method has taken 369 iterations to find the optimal RMP
solution, which has been 33. The simulation with the cut-off method has taken 323 iterations and the
RMP objective value has been 33.098.

5.3 Choice of LP solver

The choice of LP solver can be important when many columns are created. The RMP is namely difficult
to solve, when it contains many columns. There are multiple types of LP solvers that can be chosen to
solve the RMP. The most used solver is the solver that uses the (dual) simplex method. The interior-point
solver is one of the other options. (This solver gives benefits in the stabilization of the dual variables.)
A choice has been made to solve the RMP with a simplex solver, because this is the most common used
solver and thus most information can be found on using this solver. The standard LP solver of MATLAB
is the linprog solver. This is according to the website of Mittelman [22] not the fastest available solver.
The MDOPT and COPT solver are on average 20 times as fast as the linprog solver according to the
benchmark of Mittelman. These solvers are however not commercially free. The best commercial-free
solver is the CLP solver [25], which is almost up to five times as fast according to the benchmark of
Mittelman. Therefore, it has been decided to implement this LP solver. The CLP solver can be used
in MATLAB with the help of the OPTI toolbox [26]. The toolbox does not get updated anymore. The
current version of the CLP solver is v1.16.11. In the future it might be possible that linprog becomes a
faster solver. The model in MATLAB can be easily adjusted in order to implement a different solver.

5.4 Column management

At some point the number of columns in the RMP becomes too large to handle for the CLP solver.
Column management is introduced to limit the number of columns and to keep the RMP solvable within
a reasonable time. There are often a lot of columns that are not necessary to keep in the RMP and these
can be deleted. Most of the used methods are based on deleting columns with the largest reduced costs.
A limit is set on the maximum allowable number of columns in the RMP. Once this limit is exceeded,
the reduced costs for each column is calculated. The columns with the highest reduced costs are deleted.
The column management model implemented is based on this method.

Two column pools are used, where one pool is active and one pool is inactive. Columns from the
active pool are transferred to the inactive pool, when the limit of maximum columns in V ′ is reached.
The limit of number of columns allowed is determined by tuning, i.e., by running models multiple times
with a different number of columns. This limit is 1500 columns in this model for all timetables in Ap-
pendix A. Using more than 1500 columns has led to an increasingly larger computational time. A check
is done if the limit is exceeded once in so many iterations. This number also has to be tuned and is
5 in this model and depends on the time it takes to calculate the reduced costs of all columns versus
the reduction in time of having a few columns less in the active pool. Columns are deleted from the
active column pool in the case that the number of columns exceeds the limit of the maximum allowed
number of columns in the active column pool. A list is created of vehicle tasks ordered on the current
reduced costs. The columns that are deleted are the columns with the highest positive reduced costs.
The columns that are present in the last solution of the RMP are excluded from this list, which is done
to assure a feasible solution of the RMP in the next iteration. The columns that are created in the
last few iterations are also excluded from the list. The columns that are deleted are transferred to the
inactive column pool. At the same time columns from the inactive pool are checked whether there are
any columns with negative reduced costs. The columns with negative reduced costs in the inactive pool
are transferred to the active pool. Columns are deleted from the inactive pool, when there are so many
columns in the inactive pool that storage of the columns becomes a problem or the calculation time for
the reduced costs for each column becomes a problem.
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5.5 Implementation of constraints

The implementation of constraints is at least as important as the choice of the LP solver and the imple-
mentation of column management, especially for large models. Efficient implementation of constraints
is crucial to the computational time. It is not uncommon that the CG model needs a thousand itera-
tions. The computational time is increased by a lot, if the creation of the RMP takes only a second per
iteration. The solver in the OPTI Toolbox [26] requires the constraints in the following structure:

Ax ≤ b (5.4a)

Ax = b, (5.4b)

where x are the decision variables in the objective function. The constraints in the script of Monhemius [2]
and Wijnheijemer [3] are created with the solver-based method in MATLAB. The fields of the A matrix
in Ax ≤ b is filled one by one, which makes it time-consuming to create the constraints for the RMP
iteratively for a large model. Therefore, a different method has to be found.

The standard form of writing constraints in most solvers is in the MPS format. It is difficult to write
constraints in MPS format and therefore it is not often used. A popular option is to write the constraints
in an algebraic constraint programming language, which writes the constraints in an algebraic form. This
makes it possible to create a set of constraints at once, which makes it a fast method to implement con-
straints. Common algebraic constraint programming languages are LP, GAMS and AMPL, which is the
most popular one. The problem with using this language is that the program AMPL is not commercially
free, which makes it difficult to use this language in the OPTI toolbox for MATLAB. This also holds for
using GAMS. The commercially-free program language ZIMPL can create code in LP and MPS. There
is one main problem. The main problem is that it is time-consuming to write constraints in ZIMPL and
then convert them to MPS (,because the CLP solver with the use of the OPTI toolbox is not compatible
with ZIMPL) and then send the constraints to the solver each iteration. It has been decided that an
external language outside MATLAB is not convenient to use. MATLAB also has another manner of
implementing constraint besides the solver-based method, which is called the model-based method. It
has been introduced in MATLAB 2017b.

The model-based method works the same as an algebraic constraint programming language. The method
looks promising, when it is implemented in the model of Wijnheijmer to test the speed. The constraints
in the subproblem for Timetable 7 are created in a few seconds, when previously it has taken at least
800 seconds. The RMP constraints of the model in Chapter 4 have been modelled with the model-based
method. The model-based method has at some point not been fast enough in implementing constraints
for the model, because it uses as data type optimization variables, which are slowly progressed in MAT-
LAB. The second problem has been that the LP solver only accepts the solver-based method as input.
Thus, the model-based constraints have to be converted to the solver-based method, which takes too
much time. Therefore, a switch has been made back to the solver-based method, after realizing that
using array indexing with the solver-based method is actually the same as using algebraic constraints
in the model-based method. The A matrix is now not filled field by field, but array by array with the
help of array indexing. This reduces the computational time significantly. The solver-based method is
implemented to create the constraints for the RMP each iteration. The advantage of the solver-based
method is that it is faster. The advantage of the model-based method is that it is more clear for usage,
which is useful for difficult constraints to implement. An improvement is maybe to use the sub2ind
function in MATLAB. This function makes it possible to fill in an entire matrix at once. This is not
necessary, since the time to create constraints is not the bottleneck.

5.6 Warm start

The last part that is implemented to accelerate the column generation method is the warm start. In the
first iteration an initial solution is needed to create a feasible RMP, which can be solved. The model
is initialized by creating columns for the RMP by planning one trip into one vehicle task, until each
different trip is assigned to one vehicle task. The initial solution is poor and also the dual variables
obtained from it are poor. The model takes a lot of time to be solved, when using only this initial
solution, since the solution is so far off the optimum solution. Therefore, a warm start can be added
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to the initial columns of the initialization. A warm start is a term for adding a decent solution at the
initialization of the CG model and it can be used to reduce the computational time. A good warm start
to implement is the concurrent scheduler of Wijnheijmer [4] or the greedy algorithm in section 3.2.2.
This has not been done, because the models and constraints changed a lot during this research project
and due to time constraints on the project the algorithms have not been adjusted to the current model.
The warm starts, which are easy to implement, have been created at the end of the project. These are
described in the following paragraph.

An easy warm start to implement is to create vehicle tasks which each consists of one shift. First,
the trip with the latest start time is assigned to a new shift. Then the shift is expanded with trips
that have the least time between the start time of the previous assigned trip to the shift and the end
of the new trip. Trips are assigned to the shifts until the SoC costs of the trips reaches the maximum
allowable value. Then the trip with the latest start time that has not been assigned to a shift is picked
and assigned to a new shift. This repeats itself until all trips are assigned to a shift. The vehicle tasks
have to be feasible columns, which means that a path has to be made from the start node of the depot
to the end node of the depot at the end of the day. This means that first depot to depot arcs have to be
taken until the arc is reached that goes to the first trip of the shift. Then trip to trip arcs are taken to
all trips in the shift. From the last trip node in the shift an arc is taken back to the depot. Then depot
to depot arcs are taken until the last depot node. For example trip 4 and trip 5 is a shift in Example
2 (see Figure 4.5). Then the path would be as follows: Depot node1, Depot node 2, Depot node 3, Trip
node 4, Trip node 5, Depot node 5, Depot node 6 and as last Depot node 7.

This warm start still leads to a relative poor schedule and can only be used once. It cannot be used
every time a variable is rounded up and a new RMP has to be solved. Another warm start can be easily
implemented by making use of the label-correcting algorithm in Chapter 4. A relatively good solution
can be found by changing the dominance rule of the label-correcting algorithm. The dominance rule
includes four variables, but the number of variables that are taken into account can also be reduced.
The idea is to only take the reduced costs into account. Thus, a path is dominated by another path
in the same node, if the reduced costs are lower or equal in value. The column generation method is
run with this adjusted dominance rule until the RMP does not improve with 1% in 10 iterations or no
column can be found that has negative reduced costs. These latter two values can be tuned. Then the
dominance rule is changed to that only the reduced costs and SoC are taken into account. This ends
again, when the RMP does not improve 1% in 10 iterations or no column can be found with negative
reduced costs. Then the label-correcting algorithm with the complete dominance rule is run. One of
the main advantages of using these two algorithms to warm start the full label-correcting algorithm is
that the algorithms can also be used when a new RMP is created after a variable is rounded up and fixed.

Using only the reduced costs in the dominance rule leads to a large increase in paths that are dom-
inated early on in the label-correcting algorithms, which leads to a large reduction in computational
time. The path with the most negative reduced costs is probably not found, but often a path is found
that has negative reduced costs. A decent solution can be found, before the complete dominance rule in
the label-correcting algorithm is used. Taking only reduced costs into account leads to that fast chargers
are not used, since these increase the reduced costs of the path. Slow chargers can be used, since the use
of the slow chargers has no influence on the reduced costs. The second dominance rule takes the reduced
costs and the SoC into account, which means that the paths created can contain charging sessions from
fast chargers. The second algorithm creates a good solution and is much faster than using the complete
dominance rule, if long charge times and shift times are required.

5.7 Summary

In this chapter the implementation of the diving heuristic for rounding the fractional solution of the
RMP to obtain an integer solution has been given. The problems of this rounding method have been
discussed. Then the tailing-off effect on the improvement of the RMP solution has been discussed. A
short explanation has been given with references to an in-depth explanation of this effect. A method has
been given to prevent long computational times, which are caused by this effect. Then the choice of the
LP solver has been substantiated. The LP solver that has been chosen is the CLP solver, which uses the
(dual) simplex method. The goal of column management has been explained. This method has been used
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to limit the number of columns in the column generation method to prevent the RMP from becoming
too difficult to solve. Next, an explanation has been given on how constraints can be created fast. This
has been done in MATLAB with the solver-based method and with the help of array indexing. Lastly,
an explanation on the warm starts has been given. The warm starts create good schedules which can be
used for the RMP to obtain good dual variables before the complete column generation algorithm is run.
The first warm start consists of shifts that set-partition the trips. Each shift is assigned to one bus. The
second warm start is created by running the column generation model with different dominance rules of
the label-correcting algorithm. All elements have been implemented to simulate the model successfully.
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Chapter 6

Results

In Chapter 4 the model to solve the eVSP of VDL has been explained. In Chapter 5 additional parts
of the model have been described that make the implementation of the model possible. In this chapter
the results of the implemented model are discussed. First, the results for scheduling the timetables of
different cities are discussed. Secondly, the performance of methods to reduce the double driven trips are
shown. Then a comparison is made between the results of Wijnheijmer [3] and the new results as far as
the different constraints of both models allow. In the next section the diving heuristic (see section 5.1) is
compared to the restricted master heuristic (see section 2.2.2). In section 6.5 the computational time of
the label-correcting algorithm is compared to the computational time of using a MILP in the subproblem.
The following section describes the influence of the number of deleted arcs from the graph. Lastly, the
performance of the warm starts are shown. The model is implemented in MATLAB. The MATLAB
scripts can be found in Appendix F. All simulations are done with a zbook 15 with an Intel core i7-4700
MQ with 8 GB RAM. Information on the timetables used in this chapter can be found in Appendix A.

6.1 Results for four cities

The model has been simulated for four timetables which can be found in Appendix A. The minimum
charge time is 5 minutes and the minimum shift time is 0 minutes. The reason for this is that a minimum
shift time increases the computational time a lot and is in most cases not necessary to use. The costs
for a bus is 1 and the costs for a fast charger is 0.2, which are based on the assumption that a bus costs
500,000 euro and a fast charger 100,000. It is assumed that every driven km costs 1.5 kWh. This number
is calculated based on the average speed of a bus in a city. The energy consumption of the trips as well
as for the deadhead trips is based on this assumption. The average speed for the deadhead trips in the
timetable of Eindhoven is assumed to be 25 km/h. The deadhead trips for the timetable Rotterdam are
mostly arbitrary chosen. There is no information available on these deadhead trips for this timetable.
The schedule is included for the sole purpose of showing that timetables with the size of the timetable
of Rotterdam can be solved in reasonable time. The results for different cities are shown below:

City Costs No.
buses

No.
fast
char-
gers

Lower
bound
no.
buses

Double
trips
[%]

Integrality
gap [%]

No.
Arcs

Computational
time

Le Havre 15.2 15 1 15 4.46 0.67 1491 00:16:30
Bordeaux 33.6 33 3 33 5.38 0.5 3829 00:51:41
Eindhoven 39.2 38 6 30 2.5 2.31 9451 06:57:48
Rotterdam 56.2 55 6 43 10.4 7.37 10717 10:57:18

Table 6.1: Results of the simulations for four cities

Double trips are trips that are assigned twice in a schedule to different buses. The integrality gap is
the gap between the minimum RMP solution found and the integer solution, i.e., the integrality gap
is calculated by the value of the integer solution divided by the value of the fractional solution minus
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1 times 100. The number of arcs is the total number of arcs in the graph. The Gantt chart for the
schedule of Bordeaux is shown in the Figure 6.1. The Gantt charts of the schedule of Le Havre and

Figure 6.1: Gantt chart: Timetable Bordeaux

the schedule of Eindhoven can be found in Appendix E. The number of buses used for Le Havre and
Bordeaux is equal to the lower bound. The number of buses used in Eindhoven and Rotterdam is above
the lower bound. The currently used schedule in Eindhoven consists of 40 buses and 6 fast chargers. The
model uses thus fewer buses, than currently are used. The schedule of the model cannot be completely
compared with the current schedule due to the assumptions, but it gives a good indication. The reason
why in Eindhoven the model cannot find a schedule close to the lower bound of the number of buses is
because the fast chargers are placed in an unfavourable place. All fast chargers are placed at the depot,
which is only in the neighbourhood of the central station. This means that only from the central station
a bus can go charging without losing a lot of time and energy for driving the deadhead trip to the depot.
It is more profitable to place fast chargers on multiple places around the city or directly at the central
station. The reason for the deviation to the lower bound for the number of buses in the case of Rot-
terdam is most likely, because of the arbitrary deadhead trips. Timetable Rotterdam without deadhead
trips is the same as Timetable 7. The lower bound for the number of buses used is reached for Timetable 7.

The lower bound for the number of fast chargers is always zero. This makes it difficult to estimate
whether the number of chargers used is close to the optimal solution. It is known that for the current
schedule for Le Havre 15 buses and two fast chargers are used. The real schedule cannot be compared
fully with the schedule made due to the assumptions, but it gives an indication that the number of fast
chargers used is acceptable. For Bordeaux the real schedule is not known, the max deviation from the
optimum solution is 33.6/33 = 1.8%.

The bottleneck of the computational time of the model is still the subproblem. For the simulation
of Eindhoven the label-correcting algorithm used 20303 seconds out of the 25068 seconds of the total
simulation, which is equal to 81.0% of the computational time. The LP solver of the RMP used 3025
seconds and takes 12.1% of the computational time. The column management took 315 seconds and
takes 1.2% of the computational time. The 1425 seconds left are mainly used for the creation of the
constraints. This is 5.7% of the computational time.

The number of trips that are driven twice in a schedule is large. The double driven trips exist be-
cause some charging sessions are free of costs. These are the charging sessions from the slow charger.
Thus, if there is enough time in a schedule a bus can take a slow charging session and then drive an extra
trip without influencing the costs of the objective function. One out of the pair of the double driven
trips can be seen as deadhead trip. In case that this is not allowed three other solutions can reduce the
double driven trips from occurring. The first one is by adding a small cost to the dual variables of the
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slow charging sessions each iteration. This means that charging is not free any more and therefore free
trips cannot be driven anymore. The second solution is to delete all columns that contain a trip that
is already in the final solution. The last option is to add energy costs to the objective function of the
RMP.

6.2 Reduction of the double trips driven

The timetable of Le Havre is used to study the difference in double trips driven for different methods.
In the first simulation no method is implemented to prevent the double trips. In the second simulation
the arcs from and to the trips that are already in the final solution are deleted from the subproblem.
(The default case of the model.) In the third simulation all columns are deleted that contain trips that
are already in the final solution. The trip variables are practically deleted from the RMP. In the last
simulation a small value is added to the dual variables for the charging sessions of the slow charger each
iteration to prevent unnecessary charging. The results are shown in the table below:

Method: Costs RMP
costs

Double
trips %

Computational
time

No method 33.8 33.37 11.39 00:48:14
Delete arcs in subproblem 33.6 33.4 5.38 00:51:41
Delete arcs and columns 34.6 33.47 0 02:49:33
Add small value to the dual
variables of each charging ses-
sions

33.8 33.64 6.65 03:20:44

Table 6.1: Results for multiple methods to reduce the number of double driven trips

The deletion of the arcs in the subproblem and the deletion of the columns which have those arcs included
leads to a higher computational time. This increases with the number of buses used, because multiple
times a lot of columns are deleted then. There are 0% double trips driven. This is as expected.

It has been expected that adding a small value to the dual variables that are linked to the charging
session would lead to 0% double driven trips, which is not the case. The reason for this is that there can
also be vehicle tasks made without the use of a charging session. The initial 100% SoC of a bus is seen
as free energy. This means that double trips can still be driven freely in some cases when not enough
trips are in the vehicle task to reach the minimum SoC.

The computational time when using no method to reduce the number of double driven trip is the
lowest for the schedule of Bordeaux. This is not as expected. The deletion of the arcs in the subproblem
makes the subproblem smaller, which makes it easier to solve. The two options are simulated for the
Timetable of Le Havre and Timetable 7 to see if this is also the case for other timetables.

Timetable Method: Costs RMP
costs

Double
trips %

Computational
time

Le Havre No method 15.2 15.072 8.91 00:19:19
Le Havre Delete arcs in subproblem 15.2 15.098 4.46 00:16:30
Timetable 7 No method 44 43 19.16 04:31:36
Timetable 7 Delete arcs in subproblem 43 43 5.84 02:18:39

Table 6.2: Results for Timetable Le Havre and Timetable 7

In both cases the method of deleting arcs in the subproblem is faster. For the large Timetable 7, it is
much faster. It might be that in the schedule of Bordeaux paths are earlier dominated, when no method
is used. This means that fewer paths are created, which can lead to a lower computational time.
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6.3 Comparison with the previously created models

In this section the current model is compared to the two previously created models of Wijnheijmer [3].
The previous created models are the Concurrent scheduler (CS) and a column generation model. The
same conditions are used as in the thesis of Wijnheijmer [3]. The minimum charger time used is 0.833
minute. There is a one-minute delay between two trips. An unlimited number of chargers can be used.
This is due to the difference in models. The model of Wijnheijmer constraints the number of chargers,
while the current model minimizes the number of chargers. The results are shown in the table below:

Timetable
name:

CS:
No.
buses

CS: Computa-
tional time

CG Wijn-
heijmer:
No.
buses

CG Wijnheijmer:
Computational
time

New
model:
No.
buses

New
model:
Compu-
tational
time

Timetable 1 5 00:00:16 5 00:00:30 3 00:00:09
Timetable 4 9 00:00:24 10 00:19:37 7 00:02:41
Timetable 7 52 00:02:03 - - 43 02:12:58
Timetable 10 2 00:00:11 2 00:00:22 1 00:00:08

Table 6.1: Comparison of the previous model versus the current model

From Table 6.1 it can be concluded that for these settings the current model is better. In all cases the
current model reaches the lower bound for the number of buses, while the other models do not reach the
minimum bound in any of the cases. The computational time of the concurrent scheduler is lower for
the larger timetables, but the computational time of the current model is in both cases still a reasonable
time. One of the reasons why the CG model of Wijnheijmer does not reach the same quality of solutions
is because a different rounding algorithm is used. Wijnheijmer uses the restricted master heuristic, while
the current model uses a diving heuristic.

6.4 Performance of the diving heuristic versus the restricted
master heuristic

In this section the performance of the diving heuristic compared to the restricted master heuristic is
shown. The maximum total of columns in the active column pool is 1500. The results are simulated
with the same assumptions as in section 6.1 and can be found below in Table 6.1:

Method: Timetable: Costs Double driven
trips [%]

Integrality gap
[%]

Computational
time

Restricted mas-
ter heuristic

Le Havre 20.4 44.55 35.27 00:07:07

Diving heuristic Le Havre 15.2 4.46 0.67 00:16:30
Restricted mas-
ter heuristic

Bordeaux 40.8 33.54 22.12 00:23:34

Diving heuristic Bordeaux 33.6 5.38 0.5 00:51:41

Table 6.1: Comparison of rounding methods

The conclusion that can be drawn from Table 6.1 is that rounding with the restricted master heuristic
gives worse results than rounding with the diving heuristic, because the integrality gap is larger. This
is also expected, since the restricted master heuristic assumes that the same columns are needed to
obtain the optimal fraction solution and the optimal integer solution, which is often not true. The diving
heuristic takes this fact into account by adapting the column pool based on which column is already
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in the final solution. The second disadvantage is that the restricted master heuristic contains a large
percentage of double driven trips.

6.5 Performance of the label-correcting algorithm compared to
a MILP solver

The subproblem can also be solved with a MILP solver. It is interesting to study the difference in
computational time compared to the label-correcting algorithm and the difference in costs of the solution.
The CBC MILP solver is used to solve the subproblem and is implemented with the help of the OPTI
toolbox [26]. The MILP formulation used to solve the subproblem with the MILP solver can be found
in Appendix D. There are a few constraints not implemented. The constraint for minimum charge time
and shift time are not implemented in MATLAB for the MILP solver. The MILP formulation does not
include deadhead trips, therefore Timetables 4 and 7 are used to estimate the performance of the MILP
solver compared to the label-correcting algorithm. The costs for the chargers are zero. Only fast chargers
are used, and they replace the slow chargers at the depot. The warm start from the varying dominance
rule is not used when simulating with the label-correcting algorithm. Arcs to and from trips that are
already in the final solution are not deleted from the subproblem. The other parameters are the same
as used in section 6.1. The result can be found in the table below:

Method Timetable
name:

Costs RMP
Costs

Computational
time

No. of
arcs

MILP Timetable 4 7 7 00:28:24 1242
MILP Timetable 7 - 43 11:55:09 16208
Label-correcting al-
gorithm

Timetable 4 8 7.0319 00:05:51 1242

Label-correcting al-
gorithm

Timetable 7 45 43 03:42:55 16208

Table 6.1: Comparison between the results of solving the subproblem with a MILP solver and solving the sub-
problem with a label-correcting algorithm

The simulation with the MILP solver has been stopped after 42909 seconds, since the simulation would
have taken too long. At that point 4 variables have been rounded and it still would have to round at least
39 others (since that is the lower bound for the number of buses for Timetable 7). The simulation for
the label-correcting algorithm has taken less time, it only has taken 13375 seconds. In both simulation
the label-correcting algorithm is faster. There are two reasons for this. The first reason is that the
label-correcting algorithm has to run through a number of steps equal to the number of arcs, while the
number of steps in a MILP solver is 2No. arcs. The second reason is that the dominance rule is effective
in deleting a large amount of possible paths.

The solution of the label-correcting algorithm does not reach the lower bound of 43 buses for Timetable 7.
The schedule uses 2 buses more. The RMP does however reach the lower bound of 43. It is known from
the previous section 6.3 that this lower bound is obtainable (note that in previous section there is a min-
imum charging time). This means that a suboptimal integer solution has been found due to rounding.
The same holds for the results for Timetable 4, where the costs for the RMP are different. The label-
correcting algorithm has been cut-off at a value of 7.03, which means that it converges slower than the
MILP solver in this case. A reason why the convergence is different is that the MILP solver can create
different columns. Although both the MILP solver and the label-correcting algorithm find a path with
the lowest reduced costs, the paths do not have to be the same. There can be multiple paths with the
same reduced costs. Another difference is that the label-correcting algorithm can add multiple columns
to the RMP in one iteration. To conclude the label-correcting algorithm is a better option than the
MILP solver. This is mainly because of the large difference in computational time. The label-correcting
algorithm can provide the same optimal solution in both cases for the RMP, when no cut-off method is
used.
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6.6 The influence of the number of deleted arcs

The reduction of the graph can have a large influence on the performance of the model. The graph is
reduced by implementing a maximum time for deadhead trips and a maximum idle time. In this section
the Timetable of Bordeaux is used to study the influence of the number of deleted arcs. The maximum
time for a deadhead trip and the maximum idle time is on default 10 minutes. The maximum deadhead
trip time to a charger is 11 minutes, because the fast chargers are 11 minutes away in the Timetable of
Bordeaux. In this section the three parameters are simultaneously varied to research the influence of the
deleted arcs by the restrictions of these parameters. The results can be found in the table below:

Max. time re-
strictions [min]:

Costs RMP costs No. arcs Computational
time

0 49 48.8 3177 00:12:26
5 37.8 37.51 3368 00:22:27
10/11 33.6 33.4 3829 00:51:41
20 34.4 33.25 4352 01:01:05
- 33.2 33.22 44714 04:10:29

Table 6.1: The influence of the number of deleted arcs on the resulting schedule for the Timetable of Bordeaux

From the results in Table 6.1 it can be concluded that the deletion of the arcs has a large impact on
results and computational results. The number of steps that must be gone through in the label-correcting
algorithm is equal to the number of arcs in the graph as explained earlier in Chapter 4. Someone may
think that therefore the relation between the computational time and the number of arcs has to be linear.
There are two reasons why this is not the case. The first one is that the number of steps is not the only
influence factor in the computational time. The labels of the paths are stored in matrices. The size
of the matrices has a large influence on the computational time in the MATLAB script. The second
reason is that in the current MATLAB script (Appendix F) all new updated paths are checked with the
dominance rule with the already existing paths in the node one by one. Thus, one new path is checked
with all other already existing paths in the node at once, if it is dominated or if it dominates one of
the existing paths in the node. Instead of that all new updated paths are checked at once with all the
already existing paths in the node. However, the storage is done for all paths at once. Concluding, the
computational time depends on the number of arcs, but also depends on the number of possible paths
created in the label-correcting algorithm. A recommendation is to check all updated paths at the same
time with the already existing paths in the node. This leads to a decrease in computational time.

The influence of the number of arcs on the costs can be explained as follows: The more arcs there
are in the graph the more possible paths can be created. This means that extra paths can be created
that can have high negative reduced costs, which can lead to a schedule with lower costs. At some point
this effect of more arcs leading to better paths does not hold anymore, since all paths that already have
high negative reduced costs can already be made in the graph. Then adding new arcs to the graph does
not create new paths with higher negative reduced costs. For example in Bordeaux the deadhead trip to
the fast chargers from a trip location is in a few places 11 minutes. Increasing the maximum deadhead
time from 5 minutes to 11 minutes has a large impact, while increasing it from 11 minutes to 20 minutes
has not much impact, since no new charger locations can be reached.

Looking at the RMP costs it can be concluded that at least one charger can be used less, when no
time restrictions are in place. However, from a practical point of view the schedules with no time re-
strictions are not executable. A long idle time is often not possible due to zero or limited parking space.
It also means that drivers are doing nothing for a long period of time. Long deadhead trips are often
also not appreciated. One of the disadvantages is that driving long deadhead trips leads to extra energy
consumption. The energy costs are not specifically taken into account in this model, but by limiting the
allowable deadhead trip duration it is partly taken into account.
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6.7 Performance of the warm starts

In this part the benefits of the implemented warm starts are shown. The warm starts have been discussed
in section 5.6. For the simulation the same parameters are used as described in section 6.1. In the first
simulation both warm starts are used. In the second simulation the warm start of assigning one shift
per bus is turned off. In the third simulation the warm start of varying the dominance rule is turned off.
The results are shown below in Table 6.1.

Timetable: Costs Computational
Warm start Le Havre 15.2 00:16:30
No shifts Le Havre 15.2 00:17:26
No varying dominance
rule

Le Havre 15.2 00:22:13

Warm start Bordeaux 33.6 00:51:41
No shifts Bordeaux 33.6 00:58:18
No varying dominance
rule

Bordeaux 33.6 01:09:27

Table 6.1: Influence of the warm starts on the computational time

From Table 6.1 it can be concluded that both warm starts reduce the computational time. The varying
dominance rule reduces the computational time the most.

6.8 Summary

In this chapter the results of the model have been given. First the results for different cities have been
shown. The schedules for the timetable of Le Havre and the timetable of Bordeaux give good results.
The lower bound for the number of buses is reached. The third schedule for the timetable of Eindhoven
uses more buses than the lower bound, but uses fewer buses than currently are used in real time. The
schedule of Rotterdam can be simulated within reasonable time. The results appear to be poor for
this schedule. The main reason for this is because the deadhead trips are chosen arbitrary. The best
method to prevent the double trips is to delete the trips from the problem that are already in the final
solution. This method is not the default setting, because the computational time is too high, especially
for larger schedules. Therefore, the method that deletes the trips that are in the final solution from the
subproblem is implemented. In section 6.3 the current model has been compared to the previous models
as far as possible. An unlimited amount of chargers can be used without any costs. The current model
performs for each timetable better than the previous methods [3]. The current model reaches the lower
bound for the number of buses in all cases. The Concurrent scheduler is faster in creating a schedule,
but the current model can also create all schedules in reasonable time. In section 6.4 the diving heuristic
has been compared to the restricted master heuristic. The maximum column pool is set to 1500. The
restricted master heuristic is faster, but performs worse. It has been concluded that the diving heuristic
is the better option to use.

In section 6.5 it has been shown that the label-correcting algorithm solves the subproblem more effi-
ciently than the MILP solver. The influence on the size of the graph has been discussed in section 6.6.
The number of deleted arcs has a large influence on the computational time. The relation between the
number of arcs and the computational time is not linear. The computational time also depends on the
number of paths created. The reasons for this are the increased size of the matrices and the checking of
updated paths one by one whether they are dominated or not. In the last section the influence of the
two warm starts have been shown, which both reduce the computational time. The varying dominance
rule decreases the computational time the most.

To conclude this chapter, the results look promising. The number of buses used are often equal to
the lower bound, but it is sometimes not reached for timetables where it is known that it is possible to
reach the lower bound. This is probably due to rounding errors from the diving heuristic. The results in
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such cases are one or two buses off the lower bound. The lower bound for number of fast chargers is too
conservative to draw conclusions from on the used number of fast chargers in the created schedules. The
number of fast chargers has to be compared to a real schedule to draw a conclusion. The number of fast
chargers used for Le Havre and Eindhoven are equal to the number used in real time. This comparison
is only an estimation, since some assumptions have been made in this model. The computational time
is not an issue for the currently created schedules. Solving the subproblem is still the bottleneck of the
current model.
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Chapter 7

Conclusion and recommendations

The goal of this project is to create a tool for VDL that can create schedules for electric buses based
on given timetables within a reasonable time. These schedules have to meet the requirements stated in
section 1.2 to create a schedule that can be used in practice. In this chapter a conclusion is drawn on
the created tool. At the end some recommendations are given to improve the current tool.

7.1 Conclusion

There are three main problems in this projects. The first main problem is to create a schedule from a
timetable that can be used in practice. The second main problem is to minimize the number of buses
and fast chargers used in the schedule. The third main problem is to create a schedule in a reasonable
time. The project has as a starting point the column generation model of Wijnheijmer [2]. In Chapter 3
multiple algorithms have been introduced to accelerate the subproblem of the model of Wijnheijmer [2].
These are a greedy algorithm, a genetic algorithm and a diving heuristic. The greedy algorithm is not
accurate enough. The genetic algorithm is too slow and does not give an accurate solution. One of
the main problems is that a lot of infeasible solutions are created. The diving heuristic is also too slow
and infeasible solutions occurred. The conclusion has been drawn that a different approach is needed.
Therefore, the multiple step column generation method has been introduced. This method subdivides
the subproblem in multiple subproblems and places the subproblems in series. The problem with this
method is that the subproblems can not be solved in series. Each time a subproblem is solved, the RMP
has to be solved first to update the dual variables correctly before the next subproblem can be solved.
The method cannot be formulated correctly and again a new approach is taken.

The successful and final approach is based on describing the subproblem with the help of a graph.
The size of the graph is reduced by applying time constraints on deadhead trips and idle time of a bus.
The subproblem is transformed to a shortest path problem (SPP), whereby the reduced costs are seen
as the distance. The subproblem is in specific an elementary resource constrained shortest path problem
(ERC-SSP). The shortest path can be found by a label-correcting algorithm. This new method has been
implemented in the new model, which has been described in Chapter 4. The new model has the objective
to create a schedule from a timetable with a minimum amount of buses and a minimum amount of fast
chargers. The new model is based on a column generation method, whereby the subproblem is rewritten
to an SPP. It includes most of the requirements of VDL given in section 1.2. Two requirements are
missing. Currently, the charge rate follows a linear curve, while the charge curve is in reality non-linear.
The second requirement is that the number of chargers are not restricted at a location. This has been ex-
plained in section 5.1. Restricting the number of chargers at a location leads to many infeasible rounded
up variables by the diving heuristic, which leads to poor results. For the same reason it is not restricted
that trips can only be assigned once in the schedule. Schedules can contain between 0% and 10% of
trips that are been driven twice. One of the pair of trips can be seen as a deadhead trip. An option is
implemented that restricts that trips can be assigned more than once. This option is disabled by default
because it leads to longer computational time. In the other sections of Chapter 5 additional parts are
described on how to successfully implement the model.

In section 6.1 the results of the new model have been shown for different cities. One important as-
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sumption has been made for all the schedules and that is that the energy consumption per kilometre is
1.5 kWh/km. The schedules for the cities of Le Havre meet the lower bound for the number of buses.
The lower bound for the number of fast chargers is too conservative to obtain a good estimation for
the minimum number of fast chargers needed. A better estimation can be obtained by comparing the
created schedules with schedules that are used in practice. The schedule for Eindhoven uses 38 buses
and 6 fast chargers. Although the number of buses is a bit off the lower bound for the number of buses,
it uses fewer buses than the current schedule used in Eindhoven, which uses 40 buses and 6 fast chargers.
The goal of the project is to be able to simulate the schedule of Rotterdam within reasonable time. It is
shown that this schedule can be created within reasonable time. In general, the results of most schedules
look promising. The quality of the solution is often good. Sometimes more buses than needed are used.
This is mainly due to rounding the wrong decision variable with the diving heuristic.

7.2 Recommendations

The recommendations are divided in two parts. The first part has as topic the reduction of the compu-
tational time of the model. The second part describes recommendations for the implementation of the
missing two requirements and improvements in the quality of the solution.

The bottleneck of the model is solving the subproblem. Therefore, the recommendations are based
on improving the computational time of the subproblem. The graph can be improved. Currently, two
lines of charger nodes are created, when there are two types of chargers at one location. This can be
improved by only using one line of charger nodes with in-between the nodes multiple arcs. One arc
describes the use of one of the charger types, while the other describes the use of another charger type.
This reduces the number of arcs. The second recommendation is to create a more efficient script for
the label-correcting algorithm, which has been originally written to be understandable instead of im-
mediately focussing on computational efficiency. A possible improvement is to check all newly updated
paths with the already existing paths in a node at once. This now happens one by one as is described
in section 6.6. The second possible improvement is to use for loops that are solved in parallel with the
help of the Parallel computing toolbox of MATLAB. In the current script it is not possible to implement
parallel computing efficiently. The third improvement is to improve the storage of paths in the matrices.
The last recommendation is to check whether the current model suffers a lot from unstable dual variables
as mentioned in section 5.2. It is very likely that the model does suffer from this due to that the columns
contain a lot of rows. A recommendation is to implement stabilization methods on the dual variables.
This leads to a faster convergence of the RMP solution and thus fewer iterations are needed to solve the
RMP to optimality.

The second part of recommendations is about the implementation of the missing requirements and
improving the quality of the solution. There are two requirements that are missing. The first require-
ment is to use a non-linear charge curve to determine the charge rate, which can be easily implemented
in the current model. In the label-correcting algorithm the SoC of a path is known, before a charging
session. The charge rate echarge can be changed based on the current SoC of the path. This can be
done by approximating the non-linear curve with piecewise linear functions. The charge rate can be
constant throughout a charging session due to the fact that the charging sessions are often in steps of
one minute. This is an accurate approximation of the non-linear charge curve. The second requirement
is that it is sometimes handy for the sales department of VDL Bus & Coach to restrict the number of
chargers at a certain location. The diving heuristic performs poorly with such a constraint. It might be
an option to use a branch-and-price method. This method finds the optimal integer solution, which is
thus also sometimes better than the solution from the diving heuristic. A constraint that restricts the
chargers can be implemented, because there are no rounding errors. The sign in the constraint (4.7) can
be an equal sign for the same reason. The main question is whether the branch-and-price algorithm is
fast enough. It is recommended that first the computational time is reduced of the subproblem, before
a branch-and-price algorithm is implemented. The last recommendation is to find a solution for long
charging sessions (i.e., a long time interval between charger nodes). For small problems a solution can
lead to the use of fewer chargers. The problem currently is that the label-correcting algorithm can only
choose to use the full charging session or not use the charging session at all. For long charging sessions

TU/e 54



Ouwerkerk, X.H.

this is not ideal. A solution is to create more charger nodes to split the long charging session in multiple
small charging sessions. A second option is to adjust the percentage of the charging session rpcl in a
column, after the column has been created by the label-correcting algorithm.
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[13] Lübbecke, M.E. & Desrosiers, J., (2005). Selected topics in column generation. Operations research,
53(6), 1007–1023. Retrieved from: https://doi.org/10.1287/opre.1050.0234

[14] Li, J.Q., (2014). Transit bus scheduling with limited energy. Transportation Science, 48(4), 521–539.
Retrieved from: https://doi.org/10.1287/trsc.2013.0468

56



Ouwerkerk, X.H.

[15] Sundin, D., (2018). Scheduling of Electric Buses with Column Generation. Linköping University,
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Appendix A

Timetables

In this section of the appendix the information of the timetables used in this thesis are given. Timetables
4 and 7 are used in Chapter 3 and all the timetables are used in Chapter 6. Each timetable has one
depot, where there are as many slow chargers as there are buses.

Name No.
Trips

No.
Loca-
tions

No. fast
Charger
locations

Charge
rate
slow
char-
gers
(kW)

Charge
rate
fast
char-
gers
(kW)

Battery
capa-
city
(kWh)

Max.
SoC
(%)

Min.
SoC
(%)

Deadhead
trips

Timetable
1

14 1 0 230 - 216 90 10 -

Timetable
4

203 1 0 230 - 216 90 10 -

Timetable
7

1096 1 0 230 - 216 90 10 -

Timetable
10

13 1 0 230 - 216 90 10 -

Timetable
Le Havre

202 4 1 50 420 288 90 10 Accurate

Timetable
Bordeaux

316 7 3 50 330 420 90 20 Accurate

Timetable
Eind-
hoven

977 9 1 50 270 180 90 20 Assumed
buses
drive 25
km/h

Timetable
Rotter-
dam

1096 21 1 50 230 216 90 10 Partly
arbitrary
chosen

Table A.1: Information on the timetables used in this thesis
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Name Lower bound
buses

Lower bound
fast chargers

Max. dead-
head trip
time

Max. dead-
head trip
time to
charge

Max. idle
time

Timetable
1

3 1 - - -

Timetable
4

7 1 - - -

Timetable
7

43 2 - - -

Timetable
10

1 1 - - -

Timetable
Le Havre

15 0 10 10 10

Timetable
Bordeaux

33 0 10 11 10

Timetable
Eind-
hoven

30 0 17 27 10

Timetable
Rotter-
dam

43 0 10 10 10

Table A.2: Information on the timetables used in this thesis

The deadhead trips for the Timetable of Rotterdam are arbitrary chosen, since the length of the deadhead
trips are unknown. The main reason to use the timetable of Rotterdam is to show that the model can
simulate such large models in a reasonable time.
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Appendix B

Explanations of different failed
attempts to solve the eVSP

In this Appendix the attempts that were unsuccessful to solve the eVSP of VDL are explained. The
first algorithm explained is an algorithm based on an energy lower bound. The other methods in this
appendix were already partly addressed in Chapter 3, but are explained in depth in this appendix.
These are the greedy algorithm, the genetic algorithm, the diving heuristic and the multi-step column
generation model.

B.1 Algorithm based on an energy lower bound

The combination of both lower bounds on the number of buses in section 3.1 can give information on
when it is profitable to let a bus charge. The number of chargers used at each time point can be found
with the help of the model for creating the lower bound based on energy. In the model it is calculated
how many of the fixed number of chargers are used each minute. The model starts with the minimum
number of buses needed according to the lower bound of simultaneously driven trips, when the lower
bound of simultaneously driven trips has a higher value. All charging sessions are at the moment one
minute long, but the duration can be changed. The following figures can be found for timetable 4:
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(a) Timetable 4: Number of chargers used in the system per
minute
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(b) Timetable 4: Number of chargers used in the system per
minute with charging sessions of 25 minutes

Figure B.1: Number of chargers used as function of time in the combined model of the two lower bounds for the
number of buses

This information can be used to create a schedule with the help of an algorithm. In Figure B.1a every
minute that a charger is used can be seen as a charging session. The charging sessions can be assigned to
buses just as trips can be assigned. The trips and charging sessions are ordered in a list based on start
time. The algorithm starts with one bus. Then the first item of the list is taken. The trip is assigned to
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the bus, if that is possible. In the case that it is not possible, a new bus is added to the problem and the
trip is added to this bus. Then the next item is taken from the list. In case that it is a trip, it is again
assigned to bus one, if possible or otherwise it assigned to bus two. In case that both options are not
possible the trip is assigned to a new bus. This process continues till all trips are assigned. Charging
sessions are assigned to an idle bus with the lowest SoC.

An option is also to assign trips to the bus with the highest SoC at the moment instead of assign-
ing trips to buses in a fixed order. This method of assigning trips works better, when there are no
charging sessions, but it performs worse, when charging sessions are taken into account. Another prob-
lem is that it creates a long break time between two trips, which is not preferable. Therefore, this method
of assigning trips to buses is not implemented.

The results of the new algorithm are shown in two Gantt graphs in Figure B.2. The solution in Figure
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Figure B.2: Results of the Algorithm based on an energy lower bound

B.2a reaches the lower bound of timetable 4 of the minimum number of buses that should be used. This
means an optimal solution is found. The problem with the solution is that charging sessions are used of
one minute. This is not a feasible result. Therefore, a simulation has ben done with charging sessions of
25 minutes. The result can be found in Figure B.2b. The results are poor. Better results were found,
when using timetable 7 instead of timetable 4. The lower bound of 43 buses is reached, when charging
sessions of one minute are used. In total 47 buses were used, when the charging session is 25 minutes,
which is still a very good result. There are a couple of problems with the algorithm. The first problem
is that the algorithm needs to work for every schedule. The second problem is that implementing and
making efficient choices for deadhead trips is difficult to implement in this algorithm. It can be concluded
that this algorithm is not sufficient to use due to the mixed results and has not enough potential to be
extended.

B.2 Greedy algorithm

In this section the greedy algorithm of section 3.2.2 is presented. The greedy algorithm consists of 3
parts as explained in the main body of the report. The goal of this section is to make clear how the
greedy algorithm works. In this section each step of the greedy algorithm is given.

TU/e 61



Ouwerkerk, X.H.

Algorithm 2: A greedy algorithm

[vnew ] = function Greedy algorithm(π, θ,σ and ε);
%% Part 1 choose trips based on max reduced costs;
Find first trip with πt > 0;
while there are still trips after the latest chosen trip, which are compatible with the latest chosen
trip do

if ecurrent + et(new) < e min then
ecurrent = e max;
Update σ and ε;

else
Find the trips that are not compatible with the current trip;
Compare πt and choose the trip with the highest πt ;
Add the trip with with the highest πt to v;
Adjust SoC of the bus;
Find the next trip, which is compatible with the previously assigned trip with πt > 0;
if there is no trip with πt > 0 that starts after the previous assigned trip then

break
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%% Part 2 minimize charging and replace charge spots in between a gap to two trips;
while the SoC is above SoCmin at the end of the v do

Find last charging spot by finding σ = 1;
Empty ε in the current time-block ;
if ε = 0 then

σ = 0 for this the current time-block;

Update the SoC of the v;

% Relocate charging sessions if there is any σ = 1 AND θ > 0 then
while there are any σ = 1 AND θ > 0 do

Make a list Lσ of all indexes of σ = 1 AND θ > 0 ordered from a high value for θ to a low
value of θ;
for lσ ∈ Lσ do

Find all σ = 0 inbetween two assigned trips, which are before the charging session of lσ ;
for all σ = 0 inbetween two assigned trips do

if σnew < σlσ then
if the energy level does not exceed e b max of the bus then

σnew = σlσ ;
εnew = εlσ ;
σlσ = 0;
εlσ = 0;
break ;

%% Part 3 Place charging session back on more favourable positions and delete the trips planned
on these positions ;

if there is any σ = 1 AND θ > 0 then
while there is any σ = 1 AND θ > 0 do

Make a list Lσ of all indexes of σ = 1 AND θ > 0 ordered from a high value for θ to a low
value oof θ;

for lσ ∈ Lσ do
i = 1; while there are assigned trips that are driven before the charging session lσ do

Determine the time interval of the assigned i number of trips before the charging
session lσ ;

if the time interval of i trips is larger than the charging session then
if deleting these trips and placing the charging session on that spot is cheaper than
the current solution then

Delete the i trips;
Delete the old charging session;
Add the new charging session;
break;

i = i+ 1 ;

In the algorithm is πt the dual variable associated with a trip, σ is whether a time-block is used for
charging or not, ε is the amount of energy charged in a time-block, θ is the dual variable associated with
the costs for σ and lσ is a list that contains all σ, which are equal to one.

B.3 Genetic algorithm

In this section the genetic algorithm of Chapter 3 is given. The algorithm is explained in section 3.2.3.
In this section the genetic algorithm is presented.
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Algorithm 3: Genetic Algorithm

[Vnew ] = function Genetic Algorithm(V ′,πt,θ and ρ);
Choose number of generations g;
Choose number of tournaments ts;
Choose number of participants ps;
for 1:g do

Choose a certain number of vehicle tasks v from V ′;
Split each chosen v in 4 chromosomes;
Calculate reduced costs for all chromosomes;
% selection
for each of the 4 chromosomes and the chose v do

for 1:ts do
for 1:ps do

Assign a chromosome or a v depending on the tournament to participant ptsps ;
end
for 1:ps do

Create intervals for each participant with the following equation;
ptsps = sum(reduced costptsps−1

+ reduced costptsps
)/

∑
reduced costspts

;

Choose a random number between 0 and 1;
Choose ptsps which is linked to the interval that captures the random number;

end

end

end
% start of crossover
for each of the chromosomes do

for each ptswin do
Pick randomly a vehicle task from all tournament winners ;
Combine the tournament winner of the chromosome of ptswin

with the vehicle task to
create vnew;

end

end
Save all vnew to use for the new generations ;
Save the best vnew to use as final columns ;
if this is the last generation then

Calculate the reduced costs ;
Save all vnew with reduced costs;
Add the columns Vnew to the RMP

end

end
if two trips are planned, while they are not compatible at the border of transition from chromosome
to chromsome then

Delete one trip from the schedule
end
if the SoC of the bus does not meet the constraints then

Delete the v
end

In the algorithm is v a vehicle task, ptsps is a participant of tournament number ts with participant
number ps, g is generation number. This genetic algorithm could be improved significantly, but the
main reason for this algorithm is to test the potential of a genetic algorithm. The algorithm appeared to
have not much potential, therefore the algorithm has not been improved. The algorithm did not work for
two reasons: There are too many infeasible columns and the columns did not have high enough negative
reduced costs.
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B.4 Diving heuristic

The diving heuristic is the last of three heuristics implemented to solve the subproblem of Wijnheijmer
[3]. The results are explained in section 3.2.4. The algorithm is presented below:

Algorithm 4: Diving heuristic for the subproblem

[vnew] = function Diving heuristic subproblem(πt,θ,ρ);
Relax the integer constraints in the subproblem. Solve the subproblem with a LP solver ;
while not all δt variables have an integer value do

Find all the integer variables equal to one if there are no new integer variables then
Find all variables below one ;
Find the indexes of the variable with the highest value ;
Fix this variable δt to one with constraints in the subproblem ;

end
Fix all previous fixed variables δt with help of equality constraints;
Solve the subproblem;
if solution is infeasible then

Constraint the previous fixed variable δt to zero ;
end

end
while not all σζ have an integer value do

Find all σζ equal to one if there are no new integer variables then
Find all variables below one ;
Find the indexes of the variable with the highest value ;
Fix this variable σζ to one with constraints ;

end
Fix all fixed variables with help of equality constraints;
Solve the subproblem;
if solution is infeasible then

Constraint the previous fixed variable σζ to zero ;
end

end

B.5 The formulation of the multiple step column generation
method

In section 3.3 the method of using a multiple step column generation model is explained. It is stated
that the model could not work. In this section an explanation is given why the model does not work.
First, the formulation of the RMP of the model is given. The formulation of the RMP is based on the
paper of Vance et al. [27]. The formulation is as follows:

obj min
∑
d∈D

cDd uD
d +

∑
v∈V

cVv u
V
v +

∑
s∈S

cSc u
S
s (B.1)

subject to
∑
d:t∈d

uD
d = 1 ∀t ∈ T (B.2)

∑
v:d∈v

uV
v = uD

d ∀d ∈ D (B.3)

uLci

lci
= uV

v ∀lci : v ∈ Lci (B.4)
∑

s:lci∈s

uS
s = uLci

lci
∀lci ∈ Lci, v ∈ V (B.5)

ud ∈ {0, 1} ∀d ∈ D (B.6a)

uv ∈ {0, 1} ∀v ∈ V (B.6b)
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ulci ∈ {0, 1} ∀lci ∈ Lci (B.6c)

us ∈ {0, 1} ∀s ∈ S, (B.6d)

where cd are the costs for a shift, ud is 0 or 1 depending on if shift d is used, cv are the costs for a
vehicle task, uv is 0 or 1 depending on, if vehicle task v is used, cc are the costs per charger, us is 0 or 1
depending on if the charger task s is used or not and lci are the charger intervals.

The objective function is to minimize the costs of the shifts, the costs of the vehicle tasks and the
costs of the charger tasks. A vehicle task is a day task for a bus and a charger task is a day task for a
charger. The first constraint (B.1) states that each trip has to be present once in a chosen shift. The
second constraint (B.2) states that each duty has to be assigned to one vehicle task. The third constraint
(B.3) couples every charge interval to a vehicle task interval. Charge intervals are time intervals between
two shifts in a vehicle task. The fourth constraint (B.4) states that each charge interval has to present
one in a charger task.

To simplify the model the costs for the shifts can be left out for now. Constraints (B.1) and (B.2)
can be combined. Constraint (B.3) and constraint (B.4) can also be combined. To reduce the size of the
formulation a block structure is used. The constraint can be written as follows:⎡

⎢⎢⎣
ATD 0 0 0
−ID ADV 0 0
0 ALV −IL 0
0 0 −IL ALS

⎤
⎥⎥⎦

⎡
⎢⎢⎣
uD
d

uV
v

uLci

l

uS
s

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
0
0
0.

⎤
⎥⎥⎦ (B.7)

The formulation can be made smaller by substitution:

[
ATDADV 0

ALV −ALS

][
uV
v

uS
s

]
=

[
1
0.

]
(B.8)

The new RMP would be as follows:

obj min
∑
v∈V

cVv u
V +

∑
s∈S

csu
S (B.9)

subject to ATDADV iu
V = 1 ∀t ∈ T (B.10)

ALV u
V = ALSu

s ∀lci ∈ Lci (B.11)

0 ≤ uV
v ≤ 1 ∀v ∈ V (B.12a)

0 ≤ uS
s ≤ 1 ∀s ∈ S. (B.12b)

The dual is created to find the dual variables:

obj max πt (B.13)

∑
t∈T

(ATD
ADV )

Tπt −
∑

lci∈Lci

AT
LV πlci ≤ cv v ∈ V (B.14)

−
∑

lci∈Lci

ALSπlci ≤ cs s ∈ S (B.15)

πt ≥ 0 ∀t ∈ T (B.16a)

πlci ≥ 0 ∀lci ∈ Lci, (B.16b)

where πt is the dual variable of constraint B.9, πlci is the dual variable of constraint (B.10). There is
a dual variable πt for each trip, where πlci gives a dual variable per charge interval. The new column
would include a vehicle task and a charger task. The reduced costs for such a column is as follows:

cv −
∑
t∈T

δtπt +
∑

lci∈Lci

δcπlci , (B.17)
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where δc is 1 if a charging interval is taken in the new charging task and δt is 1 if a trip is assigned to
the new vehicle task. The objective should be less than zero, to obtain a new column that improves
the objective function. The first subproblem has the reduced costs (B.17) as objective function. In the
subproblem a vehicle task and charger task is chosen to be sent as a column to the RMP. The charger
task should be created on the basis of the vehicle tasks already present in the RMP and the newly chosen
vehicle task in the subsubproblem. Vehicle tasks contain namely the charger intervals that have to be
assigned to a charger task. A dual variable πlci is connected to each charger interval. The newly chosen
vehicle task however has been made in the subsubproblem and can contain a new charging interval lci,
which has not been priced yet by the RMP. The new vehicle task can thus not be taken into account
in the new charger task. The new vehicle task first has to be added to the RMP before a dual variable
πlci can be found for to the new charging interval lci. This is one of the problems this model had, next
to the other problems. The problem could be solved by creating the vehicle tasks and charger tasks in
parallel instead of in series. Thus, one subproblem creates a vehicle task and another subproblem creates
the charger task. It has been however decided to not implement this option. The main reason is the
complexity of the model, the possible large loss in quality of the solution due to using multiple (relaxed)
subproblems and it is difficult to implement deadhead trips.
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Appendix C

Charger connection time and
Non-linear charging

This section describes the implementation of the charger connection time in the label-correcting algorithm
explained in section 3.4 and section 4.4.2. The second part of the section explains how a non-linear char-
ging rate can be implemented. At the moment the charging rate is still linear.

It takes time to connect the charger to the bus. In most cases this takes one minute. This has to
be taken into account. This constraint is difficult to implement in the label-correcting algorithm. It can
be easy implemented by adding one extra minute to the time of all deadhead trips from trip nodes to
charger nodes.

One of the requirements of VDL (1.2) that is not implemented is the requirement that the charging
rate of the chargers should follow a non-linear charging curve instead of a linear arc. At the moment
echarge is a constant value per charger location and thus follows a linear charging curve. The non-linear
charging curve can be approximated by piecewise linear functions. Each piecewise linear function de-
scribes echarge per interval, where the interval is determined based on the % SoC in the battery. For
example from 5% SoC until 10% SoC the value for echarge is 1% SoC per minute and for 10% SoC until
15% SoC the value for echarge is 1.1% SoC per minute. The SoC of a path is known before it takes a
charger to charger arc (i.e., a charging session). The SoC at the beginning of a charging sessions can
determine, which linear charging curve has to be used to determine echarge. echarge can stay constant
during a charging session, since most charging sessions are small. In this way an approximation can
be made from the non-linear charging curve. An approximation of the non-linear charge curve is not
implemented in the current model due to limited time.
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Appendix D

MILP formulation for the
subproblem

The subproblem of the RMP is solved in section 6.5 with a MILP solver. The subproblem has to be
written in a MILP formulation. This MILP formulation is shown here:

obj min cv −
∑
t∈T

πtai,j +
∑

pcl
∈Pcl

,cl∈Cl

πpcl
rpcl, (D.1)

∑
aNstartj = 1 (D.2)

∑
ajNend

= 1 (D.3)

∑
i∈I

ai,j =
∑
I∈I

aj,i ∀j ∈ Nt + 1, j ∈ Npcl
− 1 (D.4)

SoCNstart = SoCmax (D.5)

SoCNt ≤ SoCNqt
− etaNqt ,Nt + 100(1− aNqt ,Nt) ∀t ∈ T, qt ∈ Qt (D.6)

SoCNpcl
≤ SoCNmt

+ 100(1− aNmpcl
,Npcl

) ∀pcl ∈ pcl, cl ∈ Cl,mpcl ∈ Mpcl (D.7)

SoCNpcl
≤ SoCNp−1cl

+ rpclechargecldtpcl−p−1cl ∀pcl ∈ Pcl, cl ∈ Cl (D.8)

ap−1cl,cl ≥ rpcl ∀pcl ∈ Pcl, cl ∈ Cl (D.9)

ai,j = {0, 1} ∀i ∈ Nt, i ∈ Npcl
, j ∈ 1 +Nt, j ∈ Npcl

(D.10a)

SoCmin ≤ SoCi ≤ SoCmax ∀i ∈ N (D.10b)

0 ≤ rpcl ≤ 1 ∀pcl ∈ Pcl, cl ∈ Cl, (D.10c)

where SoCi keeps track of the SoC of a path at node i, N are all nodes, Qt are all nodes that an outgoing
arc towards trip t, Mpcl are all trips nodes that have an outgoing arc to cl.

The objective function (D.1) is the reduced costs function (4.15). The first constraint (D.2) states
that only one outgoing arc is allowed from the starting node of the model. The second constraint (D.3)
states that only one ingoing arc is allowed from the end node of the model. The third constraint (D.4)
states that all other arcs must have one ingoing and one outgoing arc. The next constraint (D.5) states
that the SoC of the path at the starting node is equal to the maximum SoC. The fifth constraint (D.6)
states that the SoC at a trip node has to be lower than the energy costs of the trip plus the SoC of
the node m which has an outgoing arc to that node. Constraint (D.7) states that the SoC at a charger
node has to be lower than the SoC of all trip nodes it has an ingoing arc from. Constraint (D.8) states
that the SoC of a charger node is lower or equal to the SoC in the previous charger node plus the SoC
added by the charging session. Constraint (D.9) states that a charging session can only be used, when
the linked charger to charger arc is one. Constraint (D.10a) states that an arc can only be one or zero.
The constraint (D.10b) states that the SoC of at each node has to be higher or equal than the minimum
SoC and lower or equal to the maximum SoC. The last constraint states that 0% until 100% can be used
of a charging session.
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Appendix E

Gantt charts of schedules of Le
Havre and Eindhoven

In this appendix the Gantt charts are shown of the schedules simulated in section 6.1. First the graph
of Le Havre is given in Figure E.1. The blue dots are the depot nodes, the red nodes are the charger

Figure E.1: Graph: Timetable Le Havre

nodes and the green nodes are the trip nodes. The lowest line of blue dots are the depot nodes. The
Gantt chart of Le Havre is given in Figure E.2. The Gantt chart of Eindhoven is shown in Figure E.3.
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Figure E.2: Gantt chart: Timetable Le Havre

Figure E.3: Gantt chart: Timetable Eindhoven
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Appendix F

MATLAB scripts

In this appendix the code is provided that is used to obtain the results in Chapter 6. The code is based
on the model described in Chapter 4 and Chapter 5. For each file a short explanation is given on what
the file does.

Main file

The main file is the file, where the input has to be given. This is done with a excel sheet and partly by
manually filling in the input. The goal of the main file is to transfer information between the different
functions. These functions are creation of the graph, the initiation of the model (i.e., the warm start for
shifts), (the creation of the constraints for the subproblem for the MILP solver) the column generation
method and the results.

1 %% VDL ETS - Electric fleet Scheduler
2 % Author: Xander Ouwerkerk
3 % Date: 1-02-2021
4

5

6

7 clear all; close all; clc;
8

9 %% Input Excel file
10 TimeTable name = ['b']; % Abbreviation of the name
11 excelfile = ['TimeTable ',TimeTable name,'.xlsx']; % excel file
12 [TimeTable, headers t] = xlsread(excelfile,'TimeTable');
13 [All Locations, headers l] = xlsread(excelfile,'All Locations');
14 %% Extract information from Excel file
15 idx1 = find(strcmpi(headers t(1,:),'Dist'))-1;
16 Dist t = TimeTable(:,idx1); %Distence driven trip
17 idx2 = find(strcmpi(headers t(1,:),'Start'))-1;
18 ht start = TimeTable(:,idx2); %Begin time of a trip
19 idx3 = find(strcmpi(headers t(1,:),'End'))-1;
20 ht end = TimeTable(:,idx3); %End time of trip
21 l start2 = headers t(2:end,1); %Name start location
22 l end2 = headers t(2:end,4); %Name end location
23 Dist d = xlsread(excelfile,'d'); % distance deadhead trip
24 h = xlsread(excelfile,'t'); % Deadhead trip tme
25

26 % Convert time
27 ht start = ceil(ht start*24*60);
28 ht end = ceil(ht end*24*60);
29 h = ceil(h); % Already in minutes
30

31 % Determine number of trips
32 n t = size(ht start,1);
33

34 % From location name to a number
35 loc start = zeros(1,n t);
36 loc end = zeros(1,n t);
37 for ii = 1:n t
38 loc start(ii) = find(strcmp(strtrim(l start2{ii}),strtrim(headers l(2:end,1))) �= 0);
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39 loc end(ii) = find(strcmp(strtrim(l end2{ii}),strtrim(headers l(2:end,1))) �= 0);
40 end
41

42 % Determine number of charging locations
43 nr loc charg = size(h,1) - max(loc start);
44 % Assumed that every location is used
45 % Give location numbers to charging locations
46 if isempty(nr loc charg) == 0
47 for xx = 1:nr loc charg
48 loc charge(xx) = max(loc start) + xx;
49 end
50 end
51 %% Manual Input
52 % energy variables
53 e max = 420; % Battery capacity (kWh)
54 e charge(1) = 50/60/(e max/100); % Charge rate Depot (SoC %)
55 for xx = 2:nr loc charg % For each fast charging location
56 e charge(xx) = 330/60/(e max/100);
57 end
58 SoC min = 20; % Minumum allowable (SoC %)
59 SoC max = 90; % Maximum allowable (SoC %)
60 C cl(1) = 0; % Costs slow charger (0≤c≤1)
61 for xx = 2:nr loc charg
62 C cl(xx) = 0.2; % Costs fast chargers(0≤c1≤1)
63 end
64 c v = 1; % Costs per bus (0<c b ≤1)
65 min s t = 0; % minimum shift time (min)
66 min c t = 5; % minimum charge time (min)
67 depot = 1; % number of chargers types at depot
68 %1 is for the slow charger (default and recommended for computational purposes)
69 %2 would mean a fast charger on the depot
70 % Simulation parameters
71 max columns = 1500; % Maximum allowable columns in the active column ...

pool (default 1500)
72 max deadhead time = 10; % Maximum deadhead trip time to trips (default 10 min)
73 max idle time = 10; % Maximum allowable idle time (default 10 min)
74 max deadhead time charger = 10; % Maximum allowable deadhead trip to charger ...

(default 10 min)
75 maxiter = 350000; % Maximum iterations for RMP (default infinite)
76 nr prev val = 50; % Number of increase in obj function over an x ...

amount of iterations
77 opts = optiset('solver','clp','maxiter',1000000,'maxtime',100000); % Settings LP solver
78 opts2 = optiset('solver','cbc','maxiter',1000000,'maxtime',100000); % Settings MILP solver
79

80

81 %% Information red out of the excel file
82 % Energy consumption
83 e d = 1.5; % Energy consumption [kWh/km]
84 e t = (Dist t/1000)*e d; % Energy consumption trips[kWh]
85 e h = (Dist d/1000)*e d; % Energy consumption deadhead trips[kWh]
86 e t = e t/(e max/100); % SoC consumption per trip
87 e h = e h/(e max/100); % Soc consumption per deadhead trip
88

89

90 %% Create graph + obtaing information of the graph + create list
91 [x,A list c,A list r,comp,charge line all,h s,h e,charge line 2,pcl...
92 ,dt 2,dt all,x loc,x loc trip,x loc charger...
93 ,x loc2,x loc size,all loc,all loc2,s loc,s loc trip,s loc charger...
94 ,s loc2,s loc size,s loc c tot,x loc tot,...
95 time nodes,A list c sub,A list r sub,G,loc X,...
96 loc Y,n d,n lc,I,graphplot]...
97 = Graph(n t,ht start,ht end,loc start,...
98 loc end,h,nr loc charg,loc charge...
99 ,max deadhead time,max idle time,max deadhead time charger);

100

101 %% Inital solution + warm start of shifts
102 [V] = Initialization(n d,n t,A list c,A list r,pcl,...
103 SoC max,SoC min,e t,graphplot...
104 ,comp,ht start,ht end,loc end,loc start,h,e h,loc charge,time nodes);
105

106 %% Column generation
107 % Inital variables needed
108 rounding = 1;

TU/e 73



Ouwerkerk, X.H.

109 rounding sub = 1;
110 fxd variables cg = []; % array to fix variables to one
111 Obj val prev(1:nr prev val) = 0; % nr prev val previous iterations
112 V prev = 0; % previous column created
113 V Store = zeros(size(V,1),1); % V back up storage
114 V final =[]; % final solution
115 no column management = 1; % after rounding no column management
116 R nr = 1;
117 iter(R nr) = 0;
118

119

120 %% Initialization for using the Diving heuristic
121

122 left t final(1:n t) = 0;
123 left d final(1:pcl(2)) = 0;
124 left npcl final(1:pcl(end)) = 0;% left c is the number of chargers used
125 b2 fix(1:pcl(end),1) = 0; % initialize b2 fix
126 b1 fix(1:n t,1) = 1;
127

128 A sub = [];b sub =[];Aeq sub = [];beq sub=[];lb sub=[];ub sub=[];prob2=[];
129 % Constraints subproblem LP solver
130 % [A sub,b sub,beq sub,Aeq sub,lb sub,ub sub,prob2]...
131 % = ConstraintsSubproblem(n t,...
132 % n lc,n d,all loc,all loc2,x loc,A list r,...
133 % A list c,e t,s loc trip,s loc charger,...
134 % dt 2,e charge,min c t,pcl,SoC max,SoC min,nr loc charg);
135

136 %% CG + Rounding
137 [V final, iter, RMP Obj val,b2 fix,V,uv] = ...
138 Column generation(x,A list c,A list r,pcl...
139 ,dt 2,x loc,A list c sub,A list r sub,n d,n lc,V,...
140 opts,opts2,rounding,rounding sub,fxd variables cg,nr prev val,...
141 min c t,min s t,Obj val prev,maxiter,V Store,max columns,...
142 V final,e h,I,no column management,left npcl final,...
143 left d final,left t final,R nr,iter,...
144 n t,nr loc charg,A sub,b sub,beq sub,Aeq sub,lb sub,ub sub...
145 ,c v,C cl,b1 fix,b2 fix,e t,ht start,ht end,SoC min,SoC max,...
146 e charge,loc charge,loc start,loc end,prob2,depot);
147

148 %% Save variables
149 name = ['TimeTable ',TimeTable name];
150 save(name ,'V final','x loc','h e','h s','charge line 2',...
151 'dt 2','A list c','A list r','ht end','ht start','n t',...
152 'pcl','h','loc charge','loc start','loc end','nr loc charg','iter',...
153 'e h','SoC max','SoC min','c v','C cl','RMP Obj val','b2 fix',...
154 'n d','charge line all','e t',...
155 'e charge','e max','graphplot','time nodes');
156 %% Results
157 [buses used,Costs,percentage double,trips double,...
158 total energy,double deadhead,integrality gap,bus min]...
159 = Results(V final,x loc,h e,h s,charge line 2,...
160 dt 2,A list c,A list r,ht end,ht start,n t,...
161 pcl,h,loc charge,loc start,loc end,nr loc charg, iter,...
162 e h,SoC max,SoC min,c v,C cl,RMP Obj val,b2 fix,...
163 n d,charge line all,e t,e charge,e max,graphplot,time nodes);

Creation of the graph

In this function the graph is created. First the compatibility matrix is created to determine, if trips can
be driven by the same bus or not. Then the charger nodes are determined, based on the start and end
times of the trips. The arcs between the nodes are created after this step. All arcs are stored in a matrix
x. A list is created from this matrix. The list is ordered based on start time. The list is split into two
lists: A list r and A list c. A list r contains all nodes with the outgoing arcs to the nodes in A list c.
As last the graph is plotted.

1 function [x,A list c,A list r,comp,...
2 charge line all,h s,h e,charge line 2,pcl...
3 ,dt line 2,dt all,x loc,x loc trip,x loc charger...

TU/e 74



Ouwerkerk, X.H.

4 ,x loc2,x loc size,all loc,all loc2,s loc,s loc trip,s loc charger...
5 ,s loc2,s loc size,s loc c tot,x loc tot,...
6 time nodes,A list c sub,A list r sub,G,loc X,...
7 loc Y,n d,n lc,I,graphplot]...
8 = Graph(n t,ht start,ht end,...
9 loc start,loc end,h,nr loc charg,l charge...

10 ,max deadhead time,max idle time,max deadhead time charger)
11 %% Create graph
12 %% Compatibility matrix -> if two trips can be driven in sequence
13 comp = zeros(n t);
14 comp(1:n t,1:n t) = 1;
15 for i = 1:n t
16 for j = i+1:n t
17 if ht end(i) + h(loc end(i),loc start(j)) ≤ ht start(j) % time between two ...

trips + h(l end(i),l start(j))
18 if h(loc end(i),loc start(j)) < max deadhead time % if the deadhead trip ...

is smaller than 15 minutes
19 if ht end(i)+ h(loc end(i),loc start(j)) + max idle time ≥ ht start(j) ...

% + h(l end(i),l start(j)) no longer than standing still 5min
20 comp(i,j) = 0;
21 end
22 end
23 end
24 end
25 end
26 comp = comp - tril(comp);
27

28 %% create charge nodes
29 charge line all = []; % time of charge nodes
30 for xx = 1:nr loc charg
31 % update start time charge nodes with deadhead trips fo each charger
32 ind = sub2ind(size(h),repmat(l charge(xx),1,numel(loc start)),loc start);
33 h s{xx} = ht start-h(ind)'; % start time with deadhead trip taken into account
34 ind2 = sub2ind(size(h),loc end,repmat(l charge(xx),1,numel(loc end)));
35 h e{xx} = ht end+h(ind2)'; % end time with deadhead trip taken into account
36 charge line 2{xx} = sort(unique([h s{xx} h e{xx}]))'; % Sort time, only unique values
37 % only unique charge nodes, so no charge nodes with same time
38 if xx > 1 % for non depot chargers
39 del1 = find(charge line 2{xx}≤charge line 2{1}(1)); % find all nodes before ...

the first depot node
40 del2 = find(charge line 2{xx}≥charge line 2{1}(end)); % find all nodes before ...

the first depot node
41 delh e1 = find(h e{xx}≥h e{1}(end))'; % find every end point after last depot node
42 delh s1 = find(h s{xx}≤h s{1}(1))';% find every point before first depot node
43 delete = [del1 del2];
44 delete h = [delh e1 delh s1];
45 charge line 2{xx}(delete) = []; % delete all nodes before start end time of ...

depot nodes
46 h e{xx}(delete h) = []; % delete these nodes also from the time list
47 h s{xx}(delete h) = [];
48 end
49 % note that start and end node are not needed sometimes, due to the max deadhead time
50 % these nodes are not deleted due to time
51 end
52 charge line = charge line 2{1}; %unique charging nodes
53

54

55 %% Create matrix A to describe graph
56 x = zeros(n t+size(charge line,2)); % create A matrix
57

58 % Arcs between trip
59 for ii = 1:n t
60 for jj = ii+1:n t
61 if comp(ii,jj) == 0 % if trips are time compatible
62 x(ii,jj) = 1;
63 end
64 end
65 end
66 % Create lines chargers
67 cc = 0;
68 for jj = 2:nr loc charg+1
69 for ii = 1:size(charge line 2{jj-1},2)
70 x(n t+cc+1,n t+cc+2) = 1;
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71 cc = cc + 1;
72 pcl(jj) = cc; % Number of charging sessions
73 end
74 x(n t+cc+1-1,n t+cc+2-1) = 0; % to get subdivision between charger locs
75 end
76 x(:,end) =[]; % delete last column
77 % create lines chargers trips
78

79 % from chargers to trips arcs
80 for ii = n t:-1:1
81 for kk = 2:nr loc charg+1
82 for jj = n t+pcl(kk)-pcl(kk-1):-1:n t+1
83 if charge line 2{kk-1}(jj-(n t)) + h(l charge(kk-1),loc start(ii)) ≤ ...

ht start(ii)
84 % Determine which charger node one arc is drawn to a trip node
85 if kk == 2 % for depot
86 x(jj,ii) = 1;
87 break % Break to prevent multiple arcs to the trip node
88 else
89 if h(l charge(kk-1),loc start(ii)) ≤ max deadhead time charger
90 % Limit max deadhead trip time implied
91 x(jj+pcl(kk-1),ii) = 1;
92 break
93 else
94 break
95 end
96 end
97 end
98 end
99 end

100 end
101 % to chargers from trips
102 for ii = 1:n t
103 for kk = 2:nr loc charg+1
104 for jj = n t+1:n t+pcl(kk)-pcl(kk-1)
105 if ht end(ii) + h(loc end(ii),l charge(kk-1)) ≤ ...

charge line 2{kk-1}(jj-(n t)) % needs to be changed ≤ -> <
106 % Determine from which charger node an arc is drawn to a
107 % trip node
108 if kk == 2
109 x(ii,jj) = 1;
110 break; % prevent multiple arcs to one trip node
111 else
112 if h(loc end(ii),l charge(kk-1)) ≤ max deadhead time charger
113 x(ii,jj+pcl(kk-1)) = 1; %-1
114 break; % prevent multiple arcs to one trip node
115 else
116 break
117 end
118 end
119 end
120 end
121 end
122 end
123 % all charge nodes that are not connected to one end point and one start
124 % point delete
125 charge line all = [charge line 2{1}];
126 for kk = 3:nr loc charg+1 % For all fast charger locations
127 idx del = 0;
128 % Start Sweep (begin of the schedule)
129 for jj = n t+1:n t+pcl(kk)-pcl(kk-1)
130 jj = jj - idx del;
131 if isempty(find(x(:,jj+pcl(kk-1)))) | | isempty(find(x(jj+pcl(kk-1),:)))
132 % if one row is completely empty is completely empty in the
133 % matrix A list
134 x(jj+pcl(kk-1),:) = []; % delete this charger node
135 x(:,jj+pcl(kk-1)) = []; % delete this charger node
136 charge line 2{kk-1}(jj-(n t)) = []; % delete charger node
137 pcl(kk:end) = pcl(kk:end) - 1; % update c t
138 idx del = idx del+1; % to determine deleted rows columns
139

140 end
141 end
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142

143 %sweep the otherway around (end of the schedule)
144 for jj = n t+pcl(kk)-pcl(kk-1):-1:n t+1
145 if isempty(find(x(:,jj+pcl(kk-1)))) | | isempty(find(x(jj+pcl(kk-1),:)))
146 % if one row is completely empty
147 x(jj+pcl(kk-1),:) = [];
148 x(:,jj+pcl(kk-1)) = [];
149 charge line 2{kk-1}(jj-(n t)) = []; % delete charger node
150 pcl(kk:end) = pcl(kk:end) - 1; % update c t
151

152 end
153 end
154 charge line all = [charge line all charge line 2{xx}];
155 end
156

157

158

159 %% Collect information of the graph
160

161 %% Important: List used throughout the script
162 [A list r,A list c] = find(x);
163 % Create two arrays, one with all starting nodes and one with all ending
164 % nodes
165

166 n lc = pcl(end)-nr loc charg; % number of charging intervals
167 for ii = 2:size(charge line,2)
168 dt line 2{1}(ii-1) = charge line(ii) - charge line(ii-1);
169 end % charge intervals
170 diff charge line = dt line 2{1}(1:end);
171 dt all = dt line 2{1}(1:end)';
172 for ii = 2:nr loc charg
173 for jj = 2:size(charge line 2{ii},2)
174 dt line 2{ii}(jj-1) = charge line 2{ii}(jj) - charge line 2{ii}(jj-1);
175 % adjusted for non depot
176 end
177 dt all = [dt all;dt line 2{ii}(1:end)'];
178 end
179

180

181 n d = size(find(x),1);
182 x loc size = 0;
183 for ii = 1:n t
184 x loc{ii} = find(A list c == ii); % find all location to a trip node
185 x loc trip{ii} = x loc{ii}(A list r(x loc{ii})≤ n t);% find trip to trip
186 x loc charger{ii} = x loc{ii}(A list r(x loc{ii}) > n t); % find charger to trip
187 x loc2{ii} = find(A list r == ii); % find all location from a trip node
188 x loc size = x loc size+numel(x loc{ii});
189 all loc{ii} = x loc{ii}; % all locations to a node
190 all loc2{ii} = x loc2{ii}; % all location from a node;
191 end
192 s loc size = 0;
193 for ii = n t+1:pcl(end)+n t
194 s loc{ii} = find(A list c == ii); % find all location to a charge node
195 s loc trip{ii} = s loc{ii}(A list r(s loc{ii})≤ n t); % find trip to charger
196 s loc charger{ii} = s loc{ii}(A list r(s loc{ii}) > n t); % find charger to ...

charger 9->10
197 s loc2{ii} = find(A list r == ii); % find all location from a charge node
198 s loc size = s loc size+numel(s loc{ii});
199 all loc{ii} = s loc{ii}; % all locations to a node
200 all loc2{ii} = s loc2{ii}; % all location from a node;
201 end
202 s loc c tot = find(A list r > n t & A list c > n t); % find all locations charger to ...

charger
203 x loc tot = find(A list c ≤ n t); % find all locations to a trip node
204

205 %% Create list for label-correcting algorithm
206 time nodes = [ht end];
207 for xx = 1: nr loc charg
208 time nodes = [time nodes;charge line 2{xx}']; % all possible time nodes
209 end
210

211 % Create list for subproblem
212 % list is ordered here
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213 t1 = A list r ≤ n t; % trips
214 t2 = A list r > n t & A list r ≤ pcl(2); % depot
215 t3 = A list r > pcl(2); % charger
216 xx(t1,1) = 1; % determine secondary order
217 xx(t2,1) = 3;
218 xx(t3,1) = 2;
219 yy = [time nodes(A list r)];
220 S = [xx, yy];
221 [¬, I] = sortrows(S, [2 1]);
222

223 A list c sub = A list c(I);
224 %in the subproblem a different list is used than in the rest of the model
225 A list r sub = A list r(I);
226

227 %% plot the Graph
228 [s,t] = find(x);
229 G = digraph(s,t);
230 figure;
231 loc Y = [];
232 r = 0;
233 loc X = [ht start'];
234 for xx = 1:nr loc charg
235 loc X = [loc X charge line 2{xx}];
236 end
237 for ii = 1:n t
238 loc Y = [loc Y loc start(ii)];
239 end
240 loc Y = [loc Y repmat(-1,1,pcl(2))];
241 for xx = 2:nr loc charg
242 loc Y = [loc Y repmat(l charge(xx-1),1,pcl(xx+1)-pcl(xx))];
243 end
244

245 graphplot = plot(G,'XDATA',loc X/60,'YDATA',loc Y,'LineWidth',3);
246 highlight(graphplot,1:n t,'NodeColor',[0 0.5 0],'MarkerSize',7)
247 highlight(graphplot,n t+1:n t+numel(charge line 2{1}),...
248 'NodeColor','b','MarkerSize',5)
249 highlight(graphplot,n t+numel(charge line 2{1})+1:size(loc X,2),...
250 'NodeColor','r','MarkerSize',5)
251 xlabel('Time [h]','fontweight','bold','fontsize',18)
252 ylabel('Location number [-]','fontweight','bold','fontsize',18)
253 axis([floor(min(loc X)/60) ceil(max(loc X)/60) -2 max(loc Y)+1])
254

255

256 set(gca,'xtick',floor(min(loc X)/60)...
257 :1:ceil(max(loc X)/60),'ytick',1:max(loc Y))
258 end

Initial solution

The initial solution of one trip per one vehicle task, where every trip is part of one vehicle task each, is
created. Then the warm start based on one shift per vehicle task is created. The shifts are created in
the function warm start shift.

1 function [V] = Initialization(n d,n t,A list c,A list r,pcl,...
2 SoC max,SoC min,e t,graphplot...
3 ,comp,ht start,hr end,loc end,loc start,h,e h,loc charge,time nodes)
4

5 %% Create inital solution
6 % option one assign one trip to one bus
7 V = zeros(n d,n t); % Create V' matrix
8 for ii = 1:n t % for each tripnode
9 for jj = [find(ii == A list c)]'

10 % find charger node that has an outgoing arc to the trip node
11 if n t ≤ A list r(jj) && n t+pcl(2) > A list r(jj)
12 % The starting node has to be a depot node
13 V(jj,ii) = 1; % add arc to V
14 loc back = [find(ii == A list r)]'; % find location back to depot node
15 for zz = loc back % Find arc back to depot line
16 if A list c(zz) > n t && n t+pcl(2) ≥ A list c(zz)
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17 V(zz,ii) = 1; % add arc
18 break;
19 end
20 end
21 for yy = [find((A list c > n t) & (n t+pcl(2) ≥ A list c))]'
22 % use depot line to complete vehicle task
23 if A list c(yy) �= [(A list r(jj)+1):A list c(zz)]
24 % depot nodes in the interval of the trip cannot be
25 % taken
26 if A list r(yy) �= [1:n t]
27 if A list c(yy) �= [1:n t]
28 V(yy,ii) = 1;
29 end
30 end
31 end
32 end
33 end
34 end
35

36 end
37

38

39 V w2 =[]; % if option two is off
40 %% option two: one shift per bus
41 [Shift] = Warm start shift(SoC max,SoC min,e t,n t,...
42 comp,ht start,hr end,loc end,loc start,h,e h,loc charge);
43 % function to set-partition all trips in shifts
44 V w2 = zeros(n d,size(Shift,2));
45 % Create initial matrix
46 for ii = 1:size(Shift,2) % for each tripnode
47 Shift{ii} = sort(Shift{ii}); % sort the shifts on time
48 for kk = 1:size(Shift{ii},2) % for every trip
49 if kk == 1 % if it is the first trip
50 for jj = [find(Shift{ii}(kk) == A list c)]'
51 % find arc from depot line to trip
52 if n t ≤ A list r(jj)&& A list r(jj) ≤ n t+pcl(2)
53 % if arc is to a depot node
54 V w2(jj,ii) = 1; %% ii is vehicle task indexing
55 loc begin = A list r(jj); % remember depot node
56 break
57 end
58 end
59 end
60 if kk < size(Shift{ii},2) % from trip to trip
61 loc next = [find(Shift{ii}(kk) == A list r)]';
62 % find trip to trip arc
63 for bb = loc next
64 if A list c(bb) == Shift{ii}(kk+1)
65 if A list c(bb) ≤ n t
66 V w2(bb,ii) = 1;
67 end
68 end
69 end
70 end
71

72

73 if kk == size(Shift{ii},2) % from last trip node back to depot line
74 loc back = [find(Shift{ii}(kk) == A list r)]';
75 % find arcs from last trip node
76 for zz = loc back
77 if A list c(zz) > n t && A list c(zz) ≤ n t+pcl(2)
78 % if depot node
79 V w2(zz,ii) = 1;
80 loc end = A list c(zz); % return depot node
81 end
82 end
83 end
84 end
85 % create depot line
86 for yy = [find(A list c > n t)]'
87 % for all arcs to charger nodes
88 if A list c(yy) �= [loc begin+1:loc end]
89 % if the arcs are not within the shift interval
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90 if A list c(yy) > n t && A list c(yy) ≤ n t+pcl(2)
91 if A list r(yy) > n t && A list r(yy) ≤ n t+pcl(2)
92 % if the arcs are on the depot line
93 V w2(yy,ii) = 1;
94 end
95 end
96 end
97 end
98 end
99

100 V = [V V w2]; % Add warm start to initial solution
101 V(end+1:end+pcl(end),:) = 0; % add rpcl for chargers that are not used
102

103 % plot warm start
104 % Do not use for large models !
105 % for jj = 1:size(V w2,2)
106 % [c,r] = find(V w2(1:n d,jj));
107 %
108 % [s c,I] = sort(time nodes(A list c(c)));
109 % c = d var c(c(I));
110 % c(2:end+1) = c;
111 % c(1) = n t+1;
112 %
113 % highlight(graphplot,c,'edgecolor',[rand(1) rand(1) rand(1)],...
114 % 'LineWidth',3)
115 % end

Creation of shifts

1 function [Shift] = Warm start shift(SoC max,SoC min,e t,n t,...
2 comp,h start,h end,l end,l start,h,e h,l charge)
3 %% input minimum shift size
4 min usage = SoC max - SoC min-20;
5 % SoC consumption per shift
6 comp = triu(comp)'+comp; % mirror
7 E = SoC max-SoC min-min usage;
8 % SoC of the bus should stay above E
9 %% start

10 Chosen = 0; % already assigned trips
11 Shift count = 0; % number of shifts
12 ft not chosen = 0; % while not every trip is assigned
13 ii = 0;
14

15 % Start algorithm
16 while Shift count == 0
17 ii = ii + 1; % Add new shift
18 energy(ii) = SoC max - SoC min; % energy to be used
19 Select ft s = n t+1; % Selection first trip new shift
20 %Start at last trip
21 while ft not chosen == 0 % While new trip is not chosen in new shift
22 Select ft s = Select ft s - 1 ; % Update selection trip
23 [¬,I] = sort(h end); % sort of trips list to h end
24 Select ft = I(Select ft s); % Select latest trip
25 if Select ft �= Chosen % if trip has not been assigned
26 Shift{ii} = [Select ft]; % create new shift
27 Chosen = [Chosen Select ft]; % Update assigned trip list
28 energy(ii) = energy(ii) - e t(Select ft)...
29 - e h(l end(Select ft),l charge(1)); % energy update
30 break % New trip is assigned to a new shift
31 end
32 end
33 while energy(ii) > E % while energy limit is not reached
34 Select = find(h end + ...

h(l end(1:n t),l start(Shift{ii}(end)))<h start(Shift{ii}(end)));
35 % possbile trips start later than current trip in shift
36 if isempty(Select) == 1 % if no trips are available anymore
37 break % End
38 end
39 [¬,I] = sort(h end(Select),'descend'); % order trips on end time
40 Select nt = Select(I); % select new trip
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41 for new trip = [Select nt]'
42 if new trip �= Chosen
43 % if trip is already assigned to another bus
44 if comp(new trip,Shift{ii}(end)) == 0
45 % compatibility check
46 if energy(ii) - e t(new trip)...
47 - e h(l end(new trip),l start(Shift{ii}(end)))...
48 - e h(l charge(1),l start(new trip))> 1
49 % - energy trip - deadhead trip - deadhead trip
50 % from depot
51 % energy feasibility check
52 Shift{ii} = [Shift{ii} new trip]; % Update shift
53 Chosen = [Chosen new trip]; % Update assigned trips
54 energy(ii) = energy(ii) - e t(new trip)...
55 - e h(l end(new trip),l start(Shift{ii}(end)));
56 % Update energy of shift
57 break
58 end
59 end
60 end
61 end
62 if ismember(new trip,Shift{ii}) == 0
63 break
64 end
65 if new trip == Select nt(end)
66 break
67 end
68 end
69 if size(Chosen,2) > n t
70 break
71 end
72

73

74

75 end

Constraint for the MILP subproblem

In this function the constraints for the MILP subproblem are created. The model-based method of
MATLAB is used, since this method is easier to implement code for difficult constraints. This function
is only used, when the subproblem is solved with a MILP solver.

1 function [A sub,b sub,beq sub,Aeq sub,lb sub,ub sub,prob2] = ...
2 ConstraintsSubproblem(n t,...
3 n lc,n d,all loc,all loc2,x loc,A list r,...
4 A list c,e t,s loc trip,s loc Charger,...
5 dt 2,e charge,min c t,pcl,SoC max,SoC min,nr loc charg);
6 %% Constraint problem-based sub problem
7 % create optimalization problem
8 prob2 = optimproblem('ObjectiveSense','minimize');
9

10 % variables
11 a = optimvar('Ax',n d,1,'Type','continuous','LowerBound',0,'UpperBound',1);
12 S = optimvar('S',n t+pcl(end),1,'Type','continuous','LowerBound',0,'UpperBound',SoC max);
13 r pcl = optimvar('XC',pcl(end),1,'Type','continuous','LowerBound',0,'UpperBound',1);
14

15 % initial matrices
16 prob2.Constraints.A1 sub = optimconstr(size(n t,2));
17 prob2.Constraints.A2 sub = optimconstr(size(n t,2));
18 A3 sub = sparse(1,n d+n t+pcl(end)+pcl(end));
19 prob2.Constraints.A4 sub = optimconstr(size(n t,2));
20 prob2.Constraints.A5 sub = optimconstr(size(n t,2));
21 prob2.Constraints.A6 sub = optimconstr(size(n t,2));
22

23 % constraint 1 inflow = outflow
24 for ii = 1:n t+pcl(end)
25 prob2.Constraints.A1 sub(ii) = ...
26 sum(a(all loc{ii})) == sum(a(all loc2{ii}));
27 end
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28

29 % Constraint 2 start node has SoC = SoC max
30 A3 sub(1,n d+1+n t) = 1;
31 b3 sub(1,1) = SoC max;
32

33 % Constraint 3 SoC of trips
34 counter = 0;
35 % all to trip
36 for ii = 1:n t
37 rr = [];
38 jj = size(x loc{ii},1);
39 rr(1:jj,1) = ii; % to get the appropiate size
40 dd = counter+1:counter+jj;
41 counter = counter + jj;
42 prob2.Constraints.A2 sub(dd) = ...
43 S(rr) ≤ S(A list r(x loc{ii}))-(e t(rr).*a(x loc{ii})) + 100*(1-a(x loc{ii}));
44 end
45

46 % Constraint 4+5 S for charging spots
47 counter = 0;
48 counter2 = 0;
49 for kk = 2:nr loc charg+1 % for all charger locations
50 for ii = n t+pcl(kk-1)+1:n t+pcl(kk) % for all charging sessions
51 % trip to charger
52 rr = [];
53 jj = size(s loc trip{ii},1);
54 rr(1:jj,1) = ii; % obtain the appropiate size
55 dd = counter+1:counter+jj;
56 counter = counter + jj;
57 if isempty(rr) == 0 % S end < S t
58 prob2.Constraints.A4 sub(dd) = ...
59 S(rr) ≤ S(A list r(s loc trip{ii})) + 100*(1-a(s loc trip{ii}));
60 end
61

62

63 % charger to charger
64 rr = [];
65 jj = size(s loc Charger{ii},1);
66 rr(1:jj,1) = ii; % obtain the appropiate size
67 dd = counter+1:counter+jj;
68 counter = counter + jj;
69 if isempty(rr) == 0 % S end < S start + e*x for charging spots
70 prob2.Constraints.A4 sub(dd) = ...
71 S(rr) ≤ S(A list r(s loc Charger{ii})) + ...

(dt 2{kk-1}(ii-n t-pcl(kk-1)-1)*e charge(kk-1))....
72 *r pcl(A list c(s loc Charger{ii})-n t);
73

74

75 counter2 = counter2 + jj;
76 dd = counter2+1:counter2+jj;
77 prob2.Constraints.A6 sub(dd) = S(A list r(s loc Charger{ii})) +...
78 (dt 2{kk-1}(ii-n t-pcl(kk-1)-1)*e charge(kk-1))....
79 *r pcl(A list c(s loc Charger{ii})-n t) ≤ SoC max ;
80 % not 100% necessary constraint
81 end
82 end
83 end
84

85 %% Constraints 6 only charging allowed when the linked arc is taken
86 for ii = n t+1:n t+pcl(end) % only for one charger location capable/ can be changed
87 if isempty(s loc Charger{ii}) == 0
88 prob2.Constraints.A5 sub(ii-n t) = a(s loc Charger{ii}) ≥ r pcl(ii-n t);
89 end
90 end
91

92

93 %% Storing constraints
94 % transfer model-based -> problem based
95 problem = prob2struct(prob2);
96 Aineq sub = problem.Aineq;
97 Aeq sub = problem.Aeq;
98 bineq sub = problem.bineq;
99 beq sub = problem.beq;
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100 beq sub(n t+1,1) = -1; %inflow one arc allowed
101 beq sub(n t+pcl(2),1) = 1; % outflow one arc allowed
102

103 % lower/upperbound
104 lb1 sub(1:n d,1) = 0;
105 ub1 sub(1:n d,1) = 1;
106 lb2 sub(1:n t+pcl(end),1) = SoC min;%SoC min-1e-3; % error margin
107 ub2 sub(1:n t+pcl(end),1) = SoC max; % of label correcting algorithm
108 lb3 sub(1:pcl(end),1) = 0;
109 ub3 sub(1:pcl(end),1) = 1;
110 % merge
111 Aeq sub = [Aeq sub; A3 sub;];
112 beq sub = [beq sub;b3 sub;];
113

114 A sub = [Aineq sub;];
115 b sub = [bineq sub;];
116

117 lb sub = [lb1 sub;lb2 sub;lb3 sub];
118 ub sub = [ub1 sub;ub2 sub;ub3 sub];
119 end

Column generation model

In this function the column generation model is run and the diving heuristic is run. The column genera-
tion model consists of multiple parts. The first part is the Rounding fix arc.m function, which fixes the
rounded up variables in the column generation model. The second part is the column management. This
part is run every 5 iterations. It reduces the active column pool. The third part creates the two sets of
constraints for the RMP. These are made with the help of array indexing in the solver-based method of
MATLAB. The next part consists of solving the LP and writing the dual variables to the correct values.
Then the subproblem has to be solved. First, the parameters for the subproblem are changed based
on which of the dominance rules are currently active. Then the function Label correcting algorithm.m
is run, which gives as output the columns created in the label-correcting algorithm and their reduced
costs. Then the columns are added to the active column pool, if they meet the conditions. In case
none of the columns meet the conditions the for loop is stopped and the function Diving heuristic.m
is run, which rounds a variable. The model is finished, when it has spotted that all trips are assigned
to at least one bus. This check is performed after the Rounding fix arc.m function has run. Then the
Column generation.m function returns to the main file.

1 function [V final, iter, RMP Obj val,b2 fix,V,uv] = ...
2 Column generation(x,A list c,A list r,pcl...
3 ,diff charge line 2,x loc,A list c sub,A list r sub,n d,n lc,V,...
4 opts,opts2,rounding,rounding sub,fxd variables cg,nr prev val,...
5 min c t,min s t,Obj val prev,maxiter,V Store,max columns,...
6 V final,e h,I,no column management,left npcl final,...
7 left d final,left t final,R nr,iter,...
8 n t,nr loc charg,A sub,b sub,beq sub,Aeq sub,lb sub,ub sub...
9 ,c v,C cl,b1 fix,b2 fix,e t,ht start,ht end,SoC min,SoC max,...

10 e charge,loc charge,loc start,loc end,prob2,depot)
11 iterations method1 = 10000; % Number iterations used first dominance rule
12 iterations method2 = 10000; % Number iterations used second dominance rule
13 method = 1; % starting method
14 del trips = []; % initial variable to delete arcs from subproblem
15

16 %% Start Column generation model + Diving heuristic
17 while rounding == 1
18 % Start column generation
19 for i = 1:maxiter
20 iter(R nr) = iter(R nr) + 1; % Iterations every rounding round
21

22 n v = size(V,2); % Number of vehicle tasks in V
23 n end = size(V,1); % Number of variables in V
24

25 %% Implement results diving heuristic in Column generation model
26 if rounding == 1
27 fxd = fxd variables cg; % Transmit index new fixed variable
28 if rounding sub == 1 % To determine if new variable is fixed
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29 else
30 if isempty(fxd) == 0 % if there is a fixed variable
31 [V,V Store,b2 fix,fxd...
32 ,x,A list r,A list c,n d,n t...
33 ,left npcl final,left d final,...
34 left t final,b1 fix,V final,del trips]...
35 = Rounding fix arcs(...
36 V,V Store,n t,n d,fxd,...
37 A list c,A list r,b2 fix,x,...
38 left npcl final,left d final,left t final,...
39 pcl,b1 fix,V final,...
40 A list c sub,A list r sub);
41 % Function to implement diving heurstics results
42 no column management = 3;
43 % No column management before RMP is solved again
44 rounding sub = 1; % no new fixed variable anymore
45 n v = size(V,2); % update number of columns
46 % Determine if simulation if finished
47 if b1 fix == 0
48 %if there are no more non-assigned trips
49 disp('rounding finished') % model is done
50 rounding = 0; % end while loop
51 break
52 end
53 disp('out')
54

55 end
56 end
57 fxd variables cg = []; % Delete fixed variable
58 end
59

60 %% Column management
61

62 if i > 5 && no column management == 1
63 % Not for the first 5 iterations and not after a variable has been
64 % rounded, you want to use column management one iteration after rounding
65 % because of the possible warm start
66 if rem(i,5)==0 && no column management == 1
67 % Each 5th iteration column management is used
68 if size(V,2) > size(V new,2)*5
69 % if V is larger than the columns created
70 % in the last 5 iterations
71 V changed = V(:,1:end-size(V new,2)*5);
72 % Columns of the last 5 iterations are left out
73 [V changed,V Store] = column mangement(V changed,...
74 V Store,c v,pi tau,pi pcl,...
75 n lc,max columns,n d,x loc,n t,uv(1:size(V changed,2)),pcl);
76 % Readd the columns
77 V = [V changed V(:,end-size(V new,2)*5+1:end)];
78 end
79 V = [V V final];
80 n v = size(V,2); % update number of columns
81 no column management = 1;
82 disp('in')
83

84 end
85 end
86

87 if no column management > 1
88 % if no column management is allowed this iteration
89 no column management = no column management - 1;
90 end
91 %% Constraints RMP
92 % Constraint 1
93 A1 = zeros(n t,n v+nr loc charg);
94 % Number of columns + charger locations
95 % Create inital matrix constraints
96 for ii = 1:n t % every trip is driven once
97 if size(x loc{ii},1) > 1
98 % if there are more than one arcs to drive the trip
99 pp = find(any(V(x loc{ii},:) == 1));

100 % find arcs to trip t
101 else
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102 pp = find(V(x loc{ii},:) == 1);
103 end
104 A1(ii,pp) = 1; % update matrix
105 %b is updated with b1 fix
106 end
107

108 % constraint 2 number of chargers at each charging session
109 A2 = zeros(pcl(end),n v+nr loc charg);
110 % Create inital matrix
111 counter = 0;
112 for ii = 2:nr loc charg+1 % for each charger location
113 for jj = pcl(ii-1)+1:pcl(ii) % for each charging session
114 pp = (1:n v)'; % for all columns
115 kk = ones(size(pp,1),1).*pp;
116 idx v = find(V(n d+jj,kk) �= 0);
117 % find charger used for each column
118 if isempty(idx v) == 0
119 A2(jj,idx v) = -V(n d+jj,idx v); % update chargers used
120 A2(jj,n v+ii-1) = 1;
121 % Number of chargers at charger location
122 % b is updated by b2 fix
123 end
124 end
125

126 end
127

128

129 % lowerbound/upperbound
130 lb1 = zeros(n v,1);
131 ub1 = zeros(n v,1);
132 lb1(1:n v,1) = 0; % lower bound vehicle tasks
133 ub1(1:n v,1) = 1; % upper bound vehicle tasks
134 for ii = 1:nr loc charg % nr of charger locations
135 lb2(ii,1) = 0; % min number of chargers at a locaiton
136 ub2(ii,1) = 1000000;% maxa number of chargers at a certain location
137 end
138

139 % Costs
140 f1 = zeros(n v,1);
141 f1(1:n v,1) = c v; % costs for a vehicle tasks
142 for xx = 1:nr loc charg
143 f2(xx,1) = C cl(xx); % costs for a charger
144 end
145

146 % Combine matrices
147 A = [-A1;
148 -A2;
149 ];
150 b = [-b1 fix;
151 -b2 fix;
152 ]; %%% NOTE orders matters, because of the dual variables
153 lb = [lb1;lb2;];
154 ub = [ub1;ub2;];
155 f = [f1;f2];
156 Aeq = [];
157 beq = [];
158

159 %% Solve RMP with the CLP solver
160 OPTLP = opti('f',f,'ineq',A,b,'eq',Aeq,...
161 beq,'bounds',lb,ub,'options',opts);
162 [uv,Obj val,ef,lambda RMP] = solve(OPTLP);
163

164 % Infeasible solution check
165 if ef < 1
166 disp('Error: Infeasibile RMP')
167 end
168 % dual variables
169 pi tau = lambda RMP.Lambda.ineqlin(1:n t); % trips
170 pi pcl = -lambda RMP.Lambda.ineqlin(end-pcl(end)+1:end);% depot
171 pi pcl(pcl(2)+1:pcl(end)) = pi pcl(pcl(2)+1:pcl(end))+1e-4;
172 % fast charging sessions
173 % 1e-4 added to minimize charging sessions fast chargers
174
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175

176 % primal upper bound or the current objective value of the RMP
177 disp(Obj val)
178 RMP Obj val(iter(R nr),R nr) = Obj val;
179

180

181

182 %% Solve subproblem
183

184 % turn off/on dominance rules
185 if i < iterations method1 && method == 1 % Dominance rule 1
186 min c t opt = 0;
187 min s t opt = 0;
188 c c2 = [1;]; % only reduced costs
189 elseif method == 1
190 method = 2;
191 elseif i < iterations method2 && method == 2 % Dominance rule 2
192 c c2 = [1;2;]; % reduced costs + SoC
193 min c t opt = 0;
194 min s t opt = 0;
195 elseif method == 2
196 method = 3;
197 else % Dominance rule 3
198 min c t opt = min c t;
199 min s t opt = min s t; % all variables
200 c c2 = [1;2;];
201 method = 3;
202 end
203 % The Label-correcting algorithm
204 tic
205

206 [V new, obj val sub] = Label correcting algorithm(...
207 A list r,A list c,...
208 n t,pi tau,pi pcl,e t,ht start,ht end,...
209 A list c sub,A list r sub,SoC min,SoC max,e charge,n d...
210 ,pcl,loc charge,loc start,loc end,e h,diff charge line 2,min c t...
211 ,min s t,min c t opt,min s t opt,c c2,I,depot,del trips);
212

213 toc
214

215

216 % % Solve the subproblem with a MILP solver
217 % % function ConstraintsSubproblem has to on
218 % tic
219 % % costs
220 % f sub = zeros(n d+n t+pcl(end)+pcl(end),1);
221 % for ii = 1:n t
222 % for yy = 1:size(x loc{ii},1) % for every arc to node
223 % f sub(x loc{ii}(yy)) = pi tau(ii);
224 % end
225 % end
226 % % SoC at each node
227 % for ii = n d+n t+pcl(end)+1:n d+n t+pcl(end)+pcl(end)
228 % f sub(ii) = -1e-5; % prevent random values
229 % end
230 % f sub(n d+n t+pcl(end)+1:n d+n t+pcl(end)+pcl(end)) = pi pcl;
231 % xtype(1:n d) = [1:n d];
232 % OPTLP = opti('f',f sub,'ineq',A sub,b sub,'eq',Aeq sub,...
233 % beq sub,'bounds',lb sub,ub sub,'xtype',xtype,'options',opts2);
234 % [V new, obj val sub,ef sub] = solve(OPTLP);
235 % if ef sub < 1
236 % disp('Error: MILP subproblem')
237 % end
238 % toc
239

240

241

242 % Determine column with the highest negative reduced costs
243 obj val sub max = min(obj val sub);
244 % take the best column from all created columns
245

246 %% Add new columns
247 if i == 1
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248 % for first iteration update the previous objective function to
249 % have a large enough decrease in the objective value
250 Obj val prev(1:nr prev val) = 2*Obj val;
251 end
252

253 % Determine if the best column has negative reduced costs and the
254 % RMP is improved enough for dominance rule 1 and dominance rule 2
255 if -c v-obj val sub max>0.01*Obj val && ...
256 (Obj val prev(nr prev val-10)/Obj val) > 1.01...
257 && (method == 1 | | method ==2)
258 disp('reduced costs =')
259 disp(-c v-obj val sub max)
260 for xx = 1:size(V new,2) % for every new column
261 if -c v-obj val sub(xx)>0.01*Obj val
262 % check for each individual column if it has reduced
263 % costs
264

265 V(1:n d,end+1) = round(V new(1:n d,xx));
266 % add arcs and fix storage errors
267 V(n d+1:end,end) = V new(end-pcl(end)+1:end,xx);
268 % Add rcpl percentage of charging sessions used
269 end
270 end
271 % Update improvement in RMP objective value
272 Obj val prev(nr prev val) = Obj val;
273 Obj val prev(1:nr prev val-1) = Obj val prev(2:nr prev val);
274

275 % For method 3, more strict conditions
276 elseif -c v-obj val sub max > 0.001*Obj val &&...
277 (Obj val prev(1)/Obj val) > 1.005...
278 && method == 3
279 disp('reduced costs =')
280 disp(-c v-obj val sub max)
281 for xx = 1:size(V new,2) % for every new column
282 if -c v-obj val sub(xx)>0
283 % check for each individual column on negative
284 % reduced costs
285 V(1:n d,end+1) = round(V new(1:n d,xx));
286 % add arcs and fix storage errors
287 V(n d+1:end,end) = V new(end-pcl(end)+1:end,xx);
288 % Add rcpl percentage of charging sessions used
289

290 end
291 end
292 % Update RMP objective function improvement
293 Obj val prev(nr prev val) = Obj val;
294 Obj val prev(1:nr prev val-1) = Obj val prev(2:nr prev val);
295

296 else % if conditions do not hold
297

298 rounding sub = 1; % for rounding, no new column;
299 if method < 3 % if not all dominance rules are used
300 % use the next one
301 method = method + 1;
302 rounding = -1; % no rounding
303 break
304 else
305 rounding = 1; % round variable
306 break
307 end
308

309

310 end
311 disp('Iterations:')
312 disp(iter(R nr))
313

314 end
315

316 %% MILP rounding
317 % Rounding with a MILP solver, not advised to use
318 % if rounding == 1
319 % x type(1:n v+nr loc charg) = 1:n v+nr loc charg;
320 % % x type(size(uv,1)-1) = size(uv,1)-1;
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321 % OPTLP = opti('f',f,'ineq',A,b,'eq',Aeq,...
322 % beq,'bounds',lb,ub,'xtype', x type,'options',opts2);
323 % [uv,Obj val,ef] = solve(OPTLP);
324 % V final = V(:,uv(1:n v)==1);
325 % break
326 % end
327

328 %% Rounding with the diving heuristic
329 if rounding == 1 % if rounding should happen
330 [uv,obj val sub,ef,lambda RMP,fxd variables cg] ...
331 = Diving heuristic(f,A,b,lb,ub,Aeq,beq, ...
332 n v,uv,opts);
333 R nr = R nr + 1; % New Rounding Round
334 iter(R nr) = 0; % zero iterations
335 V new = 0;
336 disp('new round rounding')
337 maxiter = maxiter;
338 % Maximum number of extra columns rounded
339 rounding sub = 0;
340 % Column has been round and should be implemented in the CG
341 method = 1; % reset Dominance rules
342 nr prev val = 20;
343 % after first rounding session number of steps to keep track of
344 % improvent
345 end
346 Obj val prev(1:nr prev val) = 10000;
347 % reset RMP objective value tracking
348 if rounding == -1 % if methods are changed no rounding
349 rounding = 1;
350 end
351

352 end

Fixing the rounded variables

1 function [V,V Store,b2 fix,fxd...
2 ,x,A list r,A list c,n d,n t...
3 ,left npcl final,left d final,...
4 left t final,b1 fix,V final,del trips]...
5 = Rounding fix arcs(...
6 V,V Store,n t,n d,fxd,A list c,A list r,b2 fix,x,...
7 left npcl final,left d final,left t final,pcl,b1 fix,V final,...
8 A list c sub,A list r sub)
9 %% Update constraint auv ≥ 1

10 % fxd is the idx of the fixed variable
11 % Extract all arcs and transform them to which nodes are vissited
12 delete var = A list c(find(V(1:n d,fxd)>0));
13 % determine nodes used
14 delete var2 = delete var ≤ n t; % for only trips
15 delete var3 = unique(delete var(delete var2));
16 for xx = 1:delete var3 % for all trips that are driven
17 left t final(delete var3) = 1; % update left t auv ≥ 1-left t
18 end
19 % Update the b for constraint for trips
20 b1 fix(delete var3) = 1 - left t final(delete var3);
21

22 %% Update charger constraints
23

24 % charger rounding
25 delete var d = find(V(n d+1:n d+pcl(2),fxd)>0);
26 % find depot slow charger arcs used
27 delete var c = find(V(n d+pcl(2)+1:end,fxd)>0)...
28 +pcl(2);
29 % find faast charger used
30

31 % for charger depots
32 if isempty(delete var d) == 0
33 for xx = delete var d'
34 left d final(xx) = left d final(xx) + V(n d+xx,fxd); % Arc charged
35 % update slow chargers used
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36 end
37 end
38 % charger locs
39 if isempty(delete var c) == 0
40 for xx = delete var c'
41 left npcl final(xx) = left npcl final(xx) + V(n d+xx,fxd);% Arc charged
42 % update fast chagers used at charging session xx
43 end
44 end
45 b2 fix(1:pcl(2)) = left d final;
46 % change number of slow charger used in b value of constraints
47 b2 fix(pcl(2)+1:pcl(end)) =...
48 left npcl final(pcl(2)+1:pcl(end));
49 % update fast chargers used in b value of the constraints
50

51 V final = [V final V(:,fxd)];
52 % Add new column to the final solution V final
53

54 fxd = []; % delete fxd index
55

56

57 %% Option delete trips from the subproblem
58 % Update Trips deleted from subproblem
59 del trips1 = find(left t final == 1); % find trips used
60 del trips = unique([find(ismember(A list c sub,del trips1));...
61 find(ismember(A list r sub,del trips1))]);
62 % find index arcs used, transport to label-correcting algorithm
63

64

65 %% Option two, delete all columns with trips in V final
66 % % Delete columns and add new initial solution to make RMP feasible
67 V(:,logical(sum(V(del trips,:)==1))) = [];
68 % delete columns that have the same trips
69 V Store(:,logical(sum(V Store(del trips,:)==1))) = [];
70 % delete columns that have the same trips
71 V start = zeros(n d,n t);
72 for ii = 1:n t
73 for jj = [find(ii == A list c)]'
74

75 if n t ≤ A list r(jj) && n t+pcl(2) > A list r(jj)
76 V start(jj,ii) = 1;
77 loc back = [find(ii == A list r)]';
78 for zz = loc back
79 if A list c(zz) > n t && n t+pcl(2) ≥ A list c(zz)
80 V start(zz,ii) = 1;
81 break;
82 end
83 end
84 for yy = [find((A list c > n t) & (n t+pcl(2) ≥ A list c))]'
85 if A list c(yy) �= [(A list r(jj)+1):A list c(zz)]
86 if A list r(yy) �= [1:n t]
87 if A list c(yy) �= [1:n t]
88 V start(yy,ii) = 1;
89 end
90 end
91 end
92 end
93 end
94 end
95

96 end
97 V start(end+1:end+pcl(end),:) = 0;
98 V = [V V final V start];
99

100

101

102

103 end

Column management

TU/e 89



Ouwerkerk, X.H.

1 function [V,V Store] = column mangement(V,V Store,c v,pi tau,pi pcl,...
2 n lc,max columns,n d,x loc,n t,uv,pcl)
3 new reduced costs = 0;
4 re store = [];% from V Store to V
5 stored = []; % from V to V store
6

7

8

9 %% Active column ppol
10 if size(V,2) > max columns
11 % max number of columns threshold
12

13 % Calculation of the reduced costs for every column
14 ii = 1:size(V,2);
15 rc c(ii) = 0;
16 rc t(ii) = 0;
17 for jj = 1:n t
18 for yy = 1:size(x loc{jj},1)
19 rc t(ii) = rc t(ii) + V(x loc{jj}(yy),ii)*pi tau(jj); % trips
20 end
21 end
22 for jj = 1:pcl(end)
23 rc c(ii) = rc c(ii) + V(n d+jj,ii)*pi pcl(jj); % Chargers
24 end
25

26 new reduced costs(ii) = rc c(ii)+rc t(ii);
27 % combined reduced costs from both dual variables without cv
28 [sorted nrc,I] = sort(new reduced costs,'descend');
29 % sort from low to high negative reduced costs
30 nr stored = size(V,2)-max columns; % determine columns too many
31 idx not stored2 = find(uv(I)); % Find columns used in last RMP solution
32 idx not stored = unique([idx not stored2;]);
33 % columns that are used in final solution
34

35 I(idx not stored) = []; % delete columns that are in the RMP solution
36 if nr stored < numel(I)
37 stored = I(1:nr stored); % Store columns
38 else
39 stored = I; % Store all columns
40 end
41

42

43 %% restore from V store to V
44 % Determine reduced costs
45 ii = 1:size(V Store,2);
46 rc c2(ii) = 0;
47 rc t2(ii) = 0;
48 for jj = 1:n t
49 for yy = 1:size(x loc{jj},1)
50 rc t2(ii) = rc t2(ii) + V Store(x loc{jj}(yy),ii)*pi tau(jj);
51 end
52 end
53 for jj = 1:n lc
54 rc c2(ii) = rc c2(ii) + V Store(n d+jj,ii)*pi pcl(jj);
55 end
56

57 new reduced costs2(ii) = rc c2(ii)+rc t2(ii);
58

59 re store = find(new reduced costs2 < -c v); % send columns to second pool
60 if numel(re store) > ceil(max columns/100)
61 % limit the number of columns added back to one percent
62 re store = re store(1:ceil(max columns/100));
63 end
64

65

66 end
67

68

69

70 %% delete columns
71 if isempty(stored) == 0
72 V Store = [V Store V(:,stored)]; % replace columns
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73 V(:,stored) = []; % delete columns
74 end
75 %% restore columns
76 if isempty(re store) == 0 % cannot be empty
77 V = [V V Store(:,re store)]; % update V store
78 V Store(:,re store) = []; % delete replaced columns
79 end
80

81

82 %% delete columns V store when full
83 if size(V Store,2) > ceil(n t/2)
84 % threshold cannot become too high
85 ii = 1:size(V Store,2);
86 rc c2(ii) = 0;
87 rc t2(ii) = 0;
88 for jj = 1:n t
89 for yy = 1:size(x loc{jj},1)
90 rc t2(ii) = rc t2(ii) + V Store(x loc{jj}(yy),ii)*pi tau(jj);
91 end
92 end
93 for jj = 1:n lc
94 rc c2(ii) = rc c2(ii) + V Store(n d+jj,ii)*pi pcl(jj);
95 end
96

97 new reduced costs2(ii) = rc c2(ii)+rc t2(ii);
98 [¬,II] = sort(new reduced costs2,'descend');
99 % sort from low to high all reduced costs

100 V Store(:,II(1:ceil(n t/2))) = []; %Delete columns
101 end
102 end

Label-correcting algorithm

1 function [V new, obj val sub] =...
2 Label correcting algorithm(A list r,A list c,...
3 n t,pi tau,pi pcl,e t,ht start,ht end,...
4 A list c sub,A list r sub,SoC min,SoC max,e charge,n d...
5 ,pcl,loc charge,loc start,loc end,e h,dt 2,min c t...
6 ,min s t,min c t opt,min s t opt,c c2,I,depot,del trips);
7 %% Initialization
8 count = 0; % Number of paths deleted
9 label= cell(1,n t+pcl(end)); % Number of cells = Number of nodes

10 for xx = 1:n t+pcl(end) % For each node. Starting label should always be dominated
11 label{xx}(1,1) = -100000; % Reduced costs
12 label{xx}(2,1) = 0; % SoC (%)
13 label{xx}(3,1) = 0; % Shift time (s)
14 label{xx}(4,1) = 0; % Charging time (s)
15 label{xx}(5,1) = 0; % Start of the path
16 end
17

18 % Start node
19 label{n t+1}(1,1) = 0;
20 label{n t+1}(2,1) = 100; % Starting SoC of the bus
21 label{n t+1}(3,1) = 0;
22 label{n t+1}(4,1) = 0;
23 label{n t+1}(5,1) = 0;
24

25 c c = [1;2]; % variable to reference to index of reduced costs and soc
26 start node = A list r sub(1); % The starting node, is always n t+1
27 end node = A list c sub(end); % End node of the depot
28 SoC max slow = 100; % Maximum SoC for slow chargers
29

30 if min s t == 0 % cannot be used with min shift time
31 A list r sub(del trips) = []; % delete trips already in the final solution
32 A list c sub(del trips) = []; % delete trips already in the final solution
33 I(del trips) = []; % update the transformation array -> See Graph for I
34 end
35

36

37
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38

39

40 % Domination rules used in this algorithm
41 % A numbering is used to determine when a path is dominated or dominates
42 % Each domination rule can give a number when is true or not, in the
43 % case of minimum shift time or minimum charge time a third option is added
44 % , namely irrelevant
45 % The combination of the three number determines if a path is dominated or
46 % not
47 % 1+1+5 = 7; 1+1 = 2 jj dominates ii
48 % 1+2+5 = 8 2+1+5 = 8 1+2+0 = 3 2+1+0= 3 2+1+10 = 13 1+2+10
49 % = 13 1+1+10 = 12; 2+2+5 = 9; % no domination at all
50 % 2+2+0 = 4 2+2 + 10 = 14 1 ii dominates jj
51

52

53 %% Start of the label-correcting algrotihm
54 for kk = 1:size(A list r sub,1) % For every arc ordered on starting time nodes with ...

outgoing arcs
55 if rem(kk,750) == 0 % Each x iteration, delete empty rows in the matrices
56 for mm = 1:n t+pcl(end) % For each cell
57 label{mm} = label{mm}(logical([ones(5,1);¬all(label{mm}(6:end,:) == 0,2)]),:);
58 % delete empty rows
59 end
60 end
61 % The row and columns change in size in the matrices of cell label
62 % The columns need to change most likely in size, the change in rows is a
63 % choice, either the number of rows is around equal to the number of
64 % arcs or varies with the length of total arcs taken. From early
65 % simulation varying rows appeared to be faster, but there is probably
66 % a better way to store the labels
67

68

69 ii = A list r sub(kk); % New Node outgoing arc
70 jj = A list c sub(kk); % New Node ingoing arc
71

72 if jj > n t %% to charger
73 if ii > n t %% from charger
74 % Determine Charger location
75 for xx = 2:size(pcl,2)
76 if jj ≤ pcl(xx)+n t
77 jj c = jj - n t - xx+1;
78 jj r = jj - n t - pcl(xx-1)-1;
79 % jj - trips-sum of charging sessions - 1 because
80 % c t is in nodes instead of arcs
81 break; % break when charger location found
82 end
83 end
84 %% if current c time reaches min c t
85 %% path needs to be rechecked on domination at the same node
86 loc dom = []; % var to determine location of dominated paths
87 if numel(c c2)>1 % if dominance rule uses SoC
88 if any(label{ii}(4,1:end) ≥ min c t) == 1
89 % if any path has a higher current charge time than the min charge ...

time
90 f p = find(label{ii}(4,1:end) ≥ min c t); % find paths above min c t
91 for hh = 1:numel(f p) % for each path
92 idx = 1:size(label{ii},2); % All other paths in the cell
93 idx(f p(hh)) = []; % Delete chosen path from this array
94 if isempty(idx) == 0
95 loc= (label{ii}(c c2(1),idx) ≤ label{ii}(c c2(1),f p(hh)))+1;
96 % if reduced costs is equal or higher
97 loc(2,:) = (label{ii}(c c2(2),idx) ≤ ...

label{ii}(c c2(2),f p(hh)))+1;
98 % if SoC is equal or higher
99 equal = find(abs(label{ii}(c c2(1),idx) - ...

label{ii}(c c2(1),f p(hh))) < 1e-5);
100 % if reduced costs is equal with error margin
101 equal2 = find(abs(label{ii}(c c2(2),idx) - ...

label{ii}(c c2(2),f p(hh))) < 1e-2);
102 % if SoC is equal with error margin
103 if isempty(equal) == 0 % if reduced costs is equal
104 loc(1,equal) = loc(2,equal);
105 % change based on result of SoC comparison
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106 end
107 if isempty(equal2) == 0 % if SoC is equal
108 loc(2,equal2) = loc(1,equal2);
109 % change based on result of reduced costs comparison
110 end
111 loc(3,:) = (label{ii}(4,idx) < min c t opt)*10;
112 % if path has lower current c time than the
113 % minimum
114 zero = label{ii}(4,idx)==0;
115 % zero values are not dominated
116 if isempty(zero) == 0
117 loc(3,zero) = 0;
118 end
119 Dom = sum(loc,1); % Sum loc to determine domination
120 if Dom �= c c2(end) & Dom �= c c2(end)+5 % if not dominated
121 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...

c c2(end)*2+10| Dom == 1)];
122 % find paths that are dominated
123 elseif Dom == c c2(end) & Dom == c c2(end)+5 % if dominated
124 loc dom = [loc dom f p(hh)];
125 end
126 end
127 end
128 end
129 end
130 if isempty(loc dom) == 0 % if paths are dominated
131 label{ii}(:,loc dom) = []; % delete label
132 count = count + size(loc dom,2); % count dominated paths
133 end
134

135

136

137 %% Idle arc at depot
138 Dom =[];
139 loc dom = [];
140 update2 = []; % when a updated path is added to the label set of the node
141 for hh = 1:size(label{ii},2) % for each path in node ii
142 if xx == depot+1 % only for the depot
143 if label{ii}(4,hh) ≥ min c t | | label{ii}(4,hh) == 0 ...

| | label{ii}(2,hh) > SoC max slow-1
144 % if charge time is zero or larger than the minimum
145 % charge time
146 % assumption minim charge time doese not count when max SoC is ...

reached on the depot
147 % charge limits
148 loc= (label{jj}(c c2(1),1:end) ≤ label{ii}(c c2(1),hh))+1;
149 if numel(c c2)>1
150 loc(2,:) = (label{jj}(c c2(2),1:end) ≤ ...

label{ii}(c c2(2),hh))+1;
151 equal = find(abs(label{jj}(c c2(1),1:end) - ...

label{ii}(c c2(1),hh)) < 1e-5);
152 equal2 = find(abs(label{jj}(c c2(2),1:end) - ...

label{ii}(c c2(2),hh)) < 1e-2);
153 if isempty(equal) == 0
154 loc(1,equal) = loc(2,equal);
155 end
156 if isempty(equal2) == 0
157 loc(2,equal2) = loc(1,equal2);
158 end
159 loc(3,:) = (label{jj}(4,1:end) < min c t opt)*10;
160 zero = label{jj}(4,1:end)==0;
161 if isempty(zero) == 0
162 loc(3,zero) = 0;
163 end
164

165 end
166

167

168 % determine if dominated
169 Dom = sum(loc,1);
170 if Dom �= c c2(end) & Dom �= c c2(end)+5 % if not dominated
171 update2 = [update2 hh]; % add updated path to the list ...

that is added to node jj
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172 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...
c c2(end)*2+10| Dom == 1)];

173 % find label that is dominated
174 end
175 end
176 end
177 end
178 % Update matrix of label jj
179 if isempty(loc dom) == 0
180 label{jj}(:,loc dom) = []; % delete dominated paths
181 count = count + size(loc dom,2);
182 end
183 if isempty(update2)==0 % Add updated paths
184 label{jj}(c c,end+1:end+numel(update2)) = label{ii}(c c,update2);
185 % Add reduced costs and SoC to new column
186 label{jj}(5:max(size(label{ii}(5:end,update2)),1)+5,...
187 end+1-numel(update2):end) = ...
188 [label{ii}(5:end,update2); I(kk)*ones(1,numel(update2))];
189 % Add path + new taken arc to the new column
190 label{jj}(3,end+1-numel(update2):end) = 0; % update current shift time
191 label{jj}(4,end+1-numel(update2):end) = 0; % update current charging time
192 end
193

194

195

196

197

198 %% Charging sessions Arc
199 loc dom = [];
200 update = []; % Updated paths added to the node
201 r pcl = []; % To remember percentage charged
202 for hh = 1:size(label{ii},2)
203 % For each path in node ii compare to all path in node jj at once
204 loc = (label{jj}(c c2(1),1:end) ≤ label{ii}(c c2(1),hh)...
205 - pi pcl(jj-n t))+1; % Dominance reduced costs
206

207 % SoC domination rule
208 energy u = label{ii}(2,hh)...
209 +dt 2{xx-1}(jj r)*e charge(xx-1);
210

211 if xx == 2 % For depot slow chargers
212 if energy u ≥ SoC max slow
213 % if charge exceed max SoC slow chargers
214 energy u1 = SoC max slow;
215 else
216 energy u1 = energy u;
217 end
218 else % For fast chargers
219 if energy u ≥ SoC max
220 % if updated exceed max SoC for fast chargers
221 if label{ii}(2,hh) > SoC max
222 % if SoC was already larger than maximum SoC
223 energy u1 = label{ii}(2,hh);
224 else
225 energy u1 = SoC max;
226 end
227 else
228 energy u1 = energy u;
229 end
230 end
231 % energy u1 is used to determine dominance rule for SoC
232 % energy u had to be adjusted to get realistic values
233

234 if numel(c c2)>1 % if dominance rule 2 is active
235 loc(2,:) = (label{jj}(c c2(2),1:end) < energy u1) +1;
236 equal = find(abs(label{jj}(c c2(1),1:end) - ...

label{ii}(c c2(1),hh)+pi pcl(jj-n t)) < 1e-5);
237 equal2 = find(abs(label{jj}(c c2(2),1:end) - energy u1) < 1e-2);
238 if isempty(equal) == 0 % if reduced costs is equal
239 loc(1,equal) = loc(2,equal);
240 end
241 if isempty(equal2) == 0
242 loc(2,equal2) = loc(1,equal2);
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243 end
244

245 if label{ii}(4,hh) + dt 2{xx-1}(jj r) < min c t opt
246 % if constraint is active for new label
247 loc(3,:) = (label{jj}(4,1:end) ≤ label{ii}(4,hh)+ ...

dt 2{xx-1}(jj r))*2+5;
248 % it is better to finish earlier with the min charge time ...

constraint
249 if xx == depot +1% if depot charger
250 zero = label{jj}(4,1:end)==0;
251 % zero values dominate
252 loc(3,zero) = 5;
253

254 end
255 else
256 loc(3,:) = (label{jj}(4,1:end) < min c t opt)*10;
257 if xx == depot+1 % if depot charger
258 zero = label{jj}(4,1:end)==0;
259 % zero values are not dominated
260 loc(3,zero) = 0;
261 end
262 end
263

264 end
265

266

267

268 % Determine which labels are dominated or not not dominated
269 Dom = sum(loc,1);
270 if Dom �= c c2(end) & Dom �= c c2(end)+5
271 % determine if new label is not dominated
272

273 % Check if full charging arc can be used!
274 SoC charged = -1;
275 % The SoC charging is stored with a minus sign
276 % For the reason that no node number is negative
277 % -1 means 100% of the charger arc is used.
278 % if SoC max is exceeded, it is made equal to SoC max
279 % By adjusting SoC charged
280 if xx == 2 % if slow charger at depot
281 if energy u > SoC max slow % if max charging limit is exceed
282 SoC charged = ...
283 -1 + (energy u - ...

SoC max slow)/(dt 2{xx-1}(jj r)*e charge(xx-1));
284 % determine new SoC charged, based on how much
285 % energy u exceedes SoC max slow
286 if SoC charged > 0
287 SoC charged = 0;
288 end
289 end
290 elseif energy u > SoC max % For fast chargers
291 if label{ii}(2,hh) > SoC max
292 SoC charged = 0;
293 else
294 SoC charged = ...
295 -1 + (energy u - ...

SoC max)/(dt 2{xx-1}(jj r)*e charge(xx-1));
296 % Similair rule, only now for SoC max
297 if SoC charged > 0
298 SoC charged = 0;
299 end
300 end
301

302 end
303

304 % Update which paths needs to added or deleted in the
305 % node
306 if SoC charged < -1e-1 % error margin
307 update = [update hh]; % Add path hh from node ii to node jj
308 r pcl = [r pcl SoC charged]; % Which percentage charging is used
309 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...

c c2(end)*2+10| Dom == 1)];
310 % find label that is dominated in node jj by path
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311 % ii
312 end
313

314 end
315

316 end
317

318 % update outside of loop, so all paths are updated in two steps
319 % First all dominated paths in jj are deleted, then all new
320 % updated paths from node ii are added to node jj
321 % Charging
322 if isempty(loc dom) == 0
323 label{jj}(:,loc dom) = []; % delete label
324 count = count + size(loc dom,2);
325 end
326 if isempty(update) == 0
327 label{jj}(c c,end+1:end+numel(update)) = ...
328 [label{ii}(c c(1),update);label{ii}(2,update)]...
329 - [pi pcl(jj-n t)*ones(1,numel(update));r pcl*...
330 dt 2{xx-1}(jj r)*e charge(xx-1);];
331 % Update first two variables
332 label{jj}(5:max(size(label{ii}(5:end,update)),1)+4 ...
333 ,end-numel(update)+1:end)...
334 = label{ii}(5:end,update);
335 % add path to new label
336 label{jj}(size(label{ii}(1:end,update),1)+1,end-numel(update)+1:end) = ...

I(kk); % add new node to old path
337 label{jj}(size(label{ii}(1:end,update),1)+2,end-numel(update)+1:end) = ...

r pcl(1:numel(update)); % energy charged
338 label{jj}(size(label{ii}(1:end,update),1)+3,end-numel(update)+1:end) = ...

I(kk); % there has been charged
339 % The above three lines add to which node the path has gone
340 % and how much percentage of the charging arc is needed
341

342 % Update last 2 parameters
343 label{jj}(3,end-numel(update)+1:end) = 0;
344 label{jj}(4,end-numel(update)+1:end) = label{ii}(4,update) - ...

r pcl(1:numel(update)) *dt 2{xx-1}(jj r);
345 % Update current charging time
346 end
347 %% From trip to charger node
348 else
349 for xx = 2:size(pcl,2)
350 if jj ≤ pcl(xx)+n t
351 % Determine which charger location is travelled to
352 % for deadhead trip
353 break;
354 end
355 end
356 update = [];
357 loc dom = [];
358 for hh = 1:size(label{ii},2)
359 if label{ii}(3,hh) ≥ min s t | | label{ii}(3,hh) == 0
360 % min shift constraint
361 if label{ii}(2,hh) - e h(loc end(ii),loc charge(xx-1)) ≥ SoC min
362 % Minimum SoC constraint
363 loc = (label{jj}(c c2(1),1:end) ≤ label{ii}(c c2(1),hh))+1;
364 if numel(c c2) > 1 % if SoC variable rule is active
365 loc(2,:) = (label{jj}(c c2(2),1:end) ≤ ...

label{ii}(c c2(2),hh)...
366 - e h(loc end(ii),loc charge(xx-1)))+1;
367 equal = find(abs(label{jj}(c c2(1),1:end) - ...

label{ii}(c c2(1),hh)) < 1e-5);
368 equal2 = find(abs(label{jj}(c c2(2),1:end) - ...

label{ii}(c c2(2),hh)...
369 + e h(loc end(ii),loc charge(xx-1))) < 1e-2);
370 if isempty(equal) == 0 % if reduced costs is equal
371 loc(1,equal) = loc(2,equal);
372 end
373 if isempty(equal2) == 0
374 loc(2,equal2) = loc(1,equal2);
375 end
376 if min c t opt > 0
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377 loc(3,:) = (label{jj}(4,1:end) ≤ 0)+5;
378 equal3 = find(label{jj}(4,1:end) == 0);
379 if isempty(equal3) == 0
380 loc(3,equal3) = 0;
381 end
382 else
383 loc(3,:) = 0;
384 end
385 end
386

387 % determine if dominated
388 Dom = sum(loc,1);
389 if Dom �= c c2(end) & Dom �= c c2(end)+5 % determine if ...

new label is not dominated
390 update = [update hh]; % add new label to the list
391 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...

c c2(end)*2+10| Dom == 1)]; % find label that is dominated
392 end
393 end
394 end
395 end
396

397 if isempty(loc dom) == 0
398 label{jj}(:,loc dom) = []; % delete label
399 end
400 if isempty(update) == 0
401 label{jj}(c c,end+1:end+numel(update)) = label{ii}(c c,update)...
402 - [0;e h(loc end(ii),loc charge(xx-1))]; % Update first two variables
403 label{jj}(5:size(label{ii}(5:end,update),1)+5,end+1-numel(update):end) ...

= ...
404 [label{ii}(5:end,update);I(kk)*ones(1,numel(update))];% Update path
405 label{jj}(3,end+1-numel(update):end) = 0;
406 label{jj}(4,end+1-numel(update):end) = 0;
407 end
408 end
409 %% to trip
410 else
411 %% to trip from charger
412 if ii > n t
413

414 for xx = 2:size(pcl,2)
415 if ii ≤ pcl(xx)+n t
416 % Determine charger location for deadhead trip
417 break;
418 end
419 end
420 update = [];
421 loc dom = [];
422 for hh = 1:size(label{ii},2)
423 if label{ii}(4,hh) ≥ min c t | | label{ii}(4,hh) == 0
424 % Minimum charge time should be met or be zero
425 if label{ii}(2,hh) - e t(jj)- e h(loc charge(xx-1),loc start(jj)) ≥...

SoC min
426 % Minimum SoC constraint
427 loc = (label{jj}(c c2(1),1:end) ≤ label{ii}(c c2(1),hh)...
428 - pi tau(jj))+1;
429 if numel(c c2) > 1
430 loc(2,:) = (label{jj}(c c2(2),1:end) ≤ ...

label{ii}(c c2(2),hh)...
431 -e t(jj) - e h(loc charge(xx-1),loc start(jj)))+1;
432 equal = find(abs(label{jj}(c c2(1),1:end) - ...

label{ii}(c c2(1),hh)+pi tau(jj)) < 1e-5);
433 equal2 = find(abs(label{jj}(c c2(2),1:end) - ...
434 label{ii}(c c2(2),hh)+e t(jj) + ...

e h(loc charge(xx-1),loc start(jj))) < 1e-2);
435 if isempty(equal) == 0 % if reduced costs is equal
436 loc(1,equal) = loc(2,equal);
437 end
438 if isempty(equal2) == 0
439 loc(2,equal2) = loc(1,equal2);
440 end
441 if min s t opt > 0
442 loc(3,:) = (label{jj}(3,1:end) ≤ 0)+5;
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443 equal3 = find(label{jj}(3,1:end) == 0);
444 if isempty(equal3) == 0 %
445 loc(3,equal3) = 0;
446 end
447 else
448 loc(3,:) = 0;
449 end
450 end
451 % min s t is zero at the moment
452 Dom = sum(loc,1);
453 % determine if dominated
454 if Dom �= c c2(end) & Dom �= c c2(end)+5 % determine if ...

new label is not dominated
455 update = [update hh];
456 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...

c c2(end)*2+10| Dom == 1)]; % find label that is dominated
457 end
458 end
459 end
460 end
461 if isempty(loc dom) == 0
462 label{jj}(:,loc dom) = []; % delete label
463 count = count + size(loc dom,2);
464 end
465 if isempty(update) == 0
466 label{jj}(c c,end+1:end+numel(update)) = label{ii}(c c,update)...
467 - [pi tau(jj);e t(jj)+e h(loc charge(xx-1),loc start(jj))];
468 label{jj}(5:size(label{ii}(5:end,update),1)+5,end+1-numel(update):end) ...

=...
469 [label{ii}(5:end,update); I(kk)*ones(1,numel(update))];
470 label{jj}(3,end+1-numel(update):end) = ht end(jj)-ht start(jj);
471 % update current shift time
472 label{jj}(4,end+1-numel(update):end) = 0;
473

474 end
475

476 %% from trip
477 else
478 e = - e t(jj) - e h(loc end(ii),loc start(jj)) - SoC min;
479 % to reduce computational time precalculation energy
480 loc dom = [];
481 update = [];
482 for hh = 1:size(label{ii},2) % for each path in ii to path in node jj
483 if label{ii}(2,hh) ≥ -e % SoC constraint
484 loc = (label{jj}(c c2(1),1:end) ≤ label{ii}(c c2(1),hh)...
485 - [pi tau(jj)])+1;
486 if numel(c c2) > 1 % if SoC constraint is active
487 loc(2,:) = (label{jj}(c c2(2),1:end) ≤ label{ii}(c c2(2),hh) - ...

e t(jj)...
488 - e h(loc end(ii),loc start(jj)))+1 ;
489 equal = find(abs(label{jj}(c c2(1),1:end) - ...

label{ii}(c c2(1),hh)+ [pi tau(jj)]) < 1e-5);
490 equal2 = find(abs(label{jj}(c c2(2),1:end)...
491 - label{ii}(c c2(2),hh)+ e t(jj) ...

+e h(loc end(ii),loc start(jj))) < 1e-2);
492 if isempty(equal) == 0 % if reduced costs is equal
493 loc(1,equal) = loc(2,equal);
494 end
495 if isempty(equal2) == 0
496 loc(2,equal2) = loc(1,equal2);
497 end
498 if label{ii}(3,hh) + ht end(jj)-ht start(jj) < min s t opt
499 % if constraint is active for new label
500 loc(3,:) = (label{jj}(3,1:end) ≤ label{ii}(4,hh))*2+5;
501 % it is better to finish earlier with the min shift time ...

constraint
502 else
503 loc(3,:) = (label{jj}(3,1:end) < min s t opt)*10;
504 end
505 end
506 Dom = sum(loc,1);
507

508 % determine if dominated
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509 if Dom �= c c2(end) & Dom �= c c2(end)+5 % determine if new label is ...
not dominated

510 update = [update hh];
511 loc dom = [loc dom find(Dom == c c2(end)*2| Dom == ...

c c2(end)*2+10|Dom == 1)];
512

513 end
514 end
515 end
516 % update for trip trip outside loop
517 if isempty(loc dom) == 0
518 label{jj}(:,loc dom) = []; % delete label
519 count = count + size(loc dom,2);
520 end
521 if isempty(update) == 0
522 label{jj}(c c,end+1:end+numel(update)) = label{ii}(c c,update)...
523 - [pi tau(jj);e t(jj)+e h(loc end(ii),loc start(jj));];
524 label{jj}(5:max(size(label{ii}(5:end,update),1))+5 ...
525 ,end+1-numel(update):end)...
526 = [label{ii}(5:end,update); I(kk)*ones(1,numel(update))];
527 label{jj}(3,end+1-numel(update):end) = label{ii}(3,update) + ...

ht end(jj)-ht start(jj);
528 % Update shift time
529 label{jj}(4,end+1-numel(update):end) = 0;
530 end
531 end
532

533 end
534 end
535

536

537 %% Process results
538 dele = [];
539 yy = 0;
540 xxx = 0;
541 while size(label{end node}(1,:),2)>0
542 % while there are still paths in the end node
543 yy = yy + 1;
544 new path = find(label{end node}(1,:) == max(label{end node}(1,:)),1);
545 % Find path with highest reduced costs
546 new arcs = nonzeros(label{end node}(5:end,new path));
547 % Find all arcs in the the new path (negative r pcl is still included)
548

549 % Option to Delete charging sessions after last trip in the path
550 % last arc = find(label{end node}(5:end,new path)≤n t...
551 % &label{end node}(5:end,new path)>0,1,'last')+4; % find last driven trip
552 % if isempty(last arc) == 0
553 % loc c end = find(label{end node}(last arc(end)+1:end,new path) < ...

0)+last arc(end);
554 % % find charging sesssions (C) after last trip
555 % label{end node}(loc c end,new path) = 0;
556 % % equal charging to zero
557 % end
558

559 % Initial matrix
560 tt = zeros(n d+pcl(end),1); % nr of variables, nr of arcs in chosen path
561 % Matrix to rewrite the path to the form of vehicle tasks v
562

563 % Storage of arcs in v
564 tt(ceil(new arcs(new arcs>0))) = 1; % Add all arcs in the path to v
565 % Ceil used for rounding errors
566 % Storage of rpcl in v
567 for ii = 1:size(new arcs,1)-1 % for all arcs
568 if ii + 2 < size(new arcs,1) % to not exceed index
569 % check for charger double numbers within the charge percentage used
570 if new arcs(ii) == new arcs(ii+2)
571 % if two arcs are the same with a distance of 2
572 tt(A list c(new arcs(ii))-n t+n d) = -new arcs(ii+1);
573 % percentage of charging session that is that is used
574 end
575 end
576 end
577
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578 V new(:,yy) = sum(tt,2); % add tt to V new
579 obj val sub(yy) = -label{end node}(1,new path);
580 % Determine objective function without cv
581

582 % Find similair columns, delete those
583 for nn = 1:size(label{end node}(1,:),2) % for every path in the end node
584 diff{nn} = setdiff(label{end node}(5:end,nn),label{end node}(5:end,new path));
585 delete 1 = numel(diff{nn}(diff{nn}>0))/(numel(new arcs(new arcs>0))) ≤ 0.05;
586 % if path does not differ 5% from the previously added path
587 if delete 1 == 1
588 dele = [dele nn]; % Add path to delete list
589 xxx = xxx + 1;
590 end
591 end
592

593 label{end node}(:,dele) = []; % delete similair paths
594 dele = [];
595 % break % if only one column is chosen, the one with the highest negative
596 % costs
597 end
598

599

600 end

Diving heuristic

1 function [uv,obj val sub,ef,lambda RMP,fxd variables] ...
2 = Diving heuristic(f,A,b,lb,ub,Aeq,beq, ...
3 n v,uv,opts)
4 % fxd variables == fxd variables cg in this function
5

6 % Initial variables
7 ii = 0; % initally needed
8 fxd variables prev = []; % Old variable, now empty variable
9 % Could probably be removed, but this function was always very error prone

10 % Therefore the variable is not deleted, since it does not influence the
11 % performance
12 fxd variables = []; % new fixed variables
13 error present = 1; % to make while loop, rounding will end when new RMP is feasible
14 count errors = 0; % number of errors allowed per iteration
15 Dlt array = [];
16 % Variable that determines which columns are infeasbile to round up
17

18

19

20 while error present == 1 % loop to secure feasbility for roundng
21

22

23

24 fxd variables2 = find(abs(uv(1:n v)-1)≤1e-3);
25 % Determine variables that are equal to one in the current RMP solution
26 for rr = 1:size(fxd variables2,1) % for every new variable
27 if isempty(fxd variables prev) == 1 % if no prev variables are fixed
28 rr = 1; % Determine which one is fixed
29 break % Only one new variable fixed, then stop
30 end
31 if ismember(fxd variables2(rr),fxd variables prev) == 0
32 break
33 end
34 end
35 if isempty(fxd variables2) == 0 % if there are no new integer variables fixed
36 if ismember(fxd variables2(rr),fxd variables prev) == 1 && rr == ...

size(fxd variables2,1)
37 fxd variables = fxd variables prev;
38 else
39 fxd variables = [fxd variables prev; fxd variables2(rr)];
40 % New fixed variable
41 end
42 end
43

TU/e 100



Ouwerkerk, X.H.

44

45 %% Round new variable with highest fractional value
46 % to integer if no new integer is already found
47 if numel(fxd variables2) ≤ numel(fxd variables prev)
48 % for first iteration needed, either there are previous fixed
49 % variables or there are no new integer variables
50 if numel(fxd variables) == numel(fxd variables prev)
51 % to prevent fixing to many variables at once, last sentence is for
52

53 lctn b rnd ntgr = find(uv(1:n v)<0.9999&uv(1:n v)>0); % find continious ...
variables

54 % find all variable lower than 1, 0.9999 because of error % margin
55 vl b rnd ntgr = max(uv(lctn b rnd ntgr));
56 % find variable with the highest fractional value
57 lctn b rnd ntgr2 = find(uv(1:n v)== vl b rnd ntgr,1,'last');
58 % find the location of one of the variables that has the maximum value.
59 % find indexes max variable
60 fxd variables = [lctn b rnd ntgr2; fxd variables];
61 % new fixed variable
62

63 end
64

65 end
66

67 %% Feasibility test
68

69 % Create constraints with sub2ind method
70 if isempty(fxd variables) == 0
71 % Indexing
72 fxd c2 = find(fxd variables > n v); % find fixed variables for chargers
73 fxd c = fxd variables(fxd c2); % find right index
74 fxd t2 = find(fxd variables ≤ n v); % find idx fixed for trips
75 fxd t = fxd variables(fxd t2); % find fxdvariables
76 % Creation of matrices
77 Aeq fix = sparse(numel(fxd variables)+numel(Dlt array),size(A,2));
78 beq fix = zeros(numel(fxd variables)+numel(Dlt array),1);
79 % Aeq needs to be predefined to use sub2ind
80 if isempty(fxd c) == 0 % if there are no chargers yet fixed
81 ii = [];
82 ii(1:size(fxd c,1),1) = 1:size(fxd c,1);
83 index c = sub2ind(size(Aeq fix), ii, fxd c(ii));
84 Aeq fix(index c) = 1/ceil(uv(fxd c(ii)));
85 beq fix(ii,1) = 1;
86 else
87 ii = [];
88 end
89 jj = [];
90 jj(1:size(fxd t,1),1) = 1:size(fxd t,1); % there are always trips fixed
91 index t = sub2ind(size(Aeq fix), numel(ii)+jj, fxd t(jj));
92 % index to linear index Aeq needs to be predefined
93 Aeq fix(index t) = 1; % fixed trip variables
94 beq fix(numel(ii)+jj,1) = 1; % equal to one
95

96 end
97 if isempty(Dlt array) == 0 % if infeasible variables are present
98 xx = [];
99 xx(1:size(Dlt array,1),1) = 1:size(Dlt array,1);

100 index d = sub2ind(size(Aeq fix), numel(ii)+numel(jj)+xx, Dlt array(xx));
101 Aeq fix(index d) = 1; % fixed variables to zero
102 beq fix(numel(ii)+numel(jj)+xx,1) = 0;
103 end
104

105 %combine Aeq and Aeqfix
106 Aeq2 = [Aeq;
107 Aeq fix];
108 beq2 = [beq;
109 beq fix];
110

111 % LP solver
112 % solve to find errors
113 OPT sub1 = opti('f',f,'ineq',A,...
114 b,'eq',Aeq2,beq2,'bounds',lb,ub,...
115 'options', opts);
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116 [uv,obj val sub,ef,lambda RMP] = solve(OPT sub1); % solve sub
117

118

119 %% Find infeasible variable and fix to zero
120 if ef < 1 && size(fxd variables,1) �= size(fxd variables prev,1)
121 % If there is an error
122 change = setdiff(fxd variables,fxd variables prev)';
123 % find newly fixed fxd variable
124 count errors = count errors + 1; % count errors
125 % Round with MILP if so many errors occur
126 % if count errors > 1500 % number of errors allowed
127 % %use MILP rounding
128 % x type(1:n v) = 1:n v;
129 % x type(size(uv,1)-1) = size(uv,1)-1;
130 % OPTLP = opti('f',f,'ineq',A,b,'eq',Aeq,...
131 % beq,'bounds',lb,ub,'xtype', x type,'options',opts2);
132 % [uv,Obj val,ef] = solve(OPTLP);
133 % disp('diving heuristic does not work, MILP used')
134

135 % Limit on allowable errors
136 if count errors == 5
137 fxd variables = [];
138 disp('ERROR: RMP Rounding infeasible')
139 break % Stop rounding due to too many erros
140 else
141 xx = [];
142 for ii = size(change,1)
143 xx(ii) = find(change(ii) == fxd variables);
144 % find indexes of fixed variables
145 end
146 del = find(change > n v);% find all chargers
147 change(del) = []; % charging variables are not fixed.
148 Dlt array = [Dlt array; change];
149 % add prev fxd variables to delete list, so equal to zero
150 if isempty(xx) == 0 % if xx is empty, which should not happen
151 fxd variables(xx) = [];
152 % delete new fixed variable from the list with fixed variables
153 end
154

155 %% recalculate uv with new fixed variable set to zero with LP Solver
156 if isempty(fxd variables) == 0
157 fxd c2 = find(fxd variables > n v); % find idx fixed for chargers
158 fxd c = fxd variables(fxd c2); % find fxdvariables
159 fxd t2 = find(fxd variables ≤ n v); % find idx fixed for trips
160 fxd t = fxd variables(fxd t2); % find fxdvariables
161 % Initial empty matrices
162 Aeq fix = sparse(numel(fxd variables)+numel(Dlt array),size(A,2));
163 beq fix = zeros(numel(fxd variables)+numel(Dlt array),1);
164 % Aeq needs to be predefined to use sub2ind
165 if isempty(fxd c) == 0 % if there are no chargers yet fixed
166 ii = [];
167 ii(1:size(fxd c,1),1) = 1:size(fxd c,1);
168 index c = sub2ind(size(Aeq fix), ii, fxd c(ii));
169 Aeq fix(index c) = 1/ceil(uv(fxd c(ii)));
170 beq fix(ii,1) = 1;
171 else
172 ii = [];
173 end
174 jj = [];
175 jj(1:size(fxd t,1),1) = 1:size(fxd t,1);
176 % Fix trips
177 index t = sub2ind(size(Aeq fix), numel(ii)+jj, fxd t(jj));
178 % index to linear index Aeq needs to be predefined
179 Aeq fix(index t) = 1; % fix trips to one
180 beq fix(numel(ii)+jj,1) = 1;
181

182 end
183 if isempty(Dlt array) == 0
184 % created constraints for infeasible variables which need to be set to zero
185 if isempty(fxd variables) == 1
186 ii = [];
187 jj = [];
188 end
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189 xx = [];
190 xx(1:size(Dlt array,1),1) = 1:size(Dlt array,1);
191 index d = sub2ind(size(Aeq fix), numel(ii)+numel(jj)+xx, Dlt array(xx));
192 Aeq fix(index d) = 1; % fixed variables to zero
193 beq fix(numel(ii)+numel(jj)+xx,1) = 0;
194 end
195 % Resolve LP solver
196 Aeq2 = [Aeq;
197 Aeq fix];
198 beq2 = [beq;
199 beq fix];
200 OPT sub1 = opti('f',f,'ineq',A,...
201 b,'eq',Aeq2,beq2,'bounds',lb,ub,...
202 'options', opts);
203 [uv,obj val sub,ef,lambda RMP] = solve(OPT sub1);
204 end
205 %% Feasible RMP
206

207 else
208 error present = 0; % to break while loop, if there is no error;
209 end
210

211 end
212

213 end

Results

This function creates all plots based on the results of the column generation model. It contains a Gantt
chart, which is created in a similar way as in the previous projects, a progress of the SoC during the day
plot, a plot which shows the number of chargers used during the day and the progress of the objective
function of the RMP plot. It also contains a function Lower bound.m that creates the lower bounds for
the problem.

1 function [nr bus,Costs,percentage double,trips double,...
2 total energy,double deadhead,integrality gap,bus min]...
3 = Results(V final,x loc,h e,h s,charge line 2,...
4 dt 2,A list c,A list r,ht end,ht start,n t,...
5 pcl,h,loc charge,loc start,loc end,nr loc charg, iter,...
6 e h,SoC max,SoC min,c v,C cl,RMP Obj val,b2 fix,...
7 n d,charge line all,e t,e charge,e max,graphplot,time nodes)
8

9

10 nr bus = size(V final,2);
11 % Determine number of buses used from V final
12 buses loc = 1:size(V final,2);
13 % Create array from the total of buses used
14 %% Determine costs
15 Costs = nr bus*c v;
16 for xx = 2:nr loc charg+1 % for each charging location
17 Costs = Costs + ceil(max(b2 fix(pcl(xx-1)+2:pcl(xx))))* C cl(xx-1);
18 % Round up no of chargers used, the highest value is the number of chargers used
19 end
20 %% Plots
21 % Plot path on graphs
22 % Advice to not use, due to plotting takes very long
23 % figure;
24 % for jj = 1:size(V final,2)
25 % [c,r] = find(V final(1:n d,jj));
26 %
27 % [s c,I] = sort(time nodes(A list c(c)));
28 % c = A list c(c(I));
29 % c(2:end+1) = c;
30 % c(1) = n t+1;
31 %
32 % highlight(graphplot,c,'edgecolor',[rand(1) rand(1) rand(1)],'LineWidth',3)
33 % hold on;
34 % end
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35

36 % Plot the Gantt chart for the schedule
37 trips double(1:n t) = 0; % Determine the number of trips driven double
38

39 figure
40 hold on
41 grid on
42

43 set(gcf,'position',[10,10,550,550]); % Increase size
44 set(gca,'LooseInset',get(gca,'TightInset'),'fontweight','bold', 'fontsize',18)
45 % Eliminate white space around figure
46

47 axis([floor(min(h s{1})/60) ceil(max(h e{1})/60) 0 nr bus+1])
48 xlabel('Time [h]','fontweight','bold')
49 xticks(floor(min(h s{1})/60):1:ceil((max(h e{1})/60)))
50

51 ylabel('Vehicle number [-]','fontweight','bold')
52 yticks(0:1:nr bus)
53

54

55 for ii = 1:nr bus
56 for kk = 1:n t % For each trip
57 for jj = [x loc{kk}]' % For all arcs that go to trip kk
58 if V final(jj,buses loc(ii)) == 1 % if bus drives trip
59 start tr = ht start(kk)/60;
60 end tr = ht end(kk)/60;
61 trips double(kk) = trips double(kk) + 1;
62 % Update double driven trips
63 trip plot = plot([start tr end tr],[ii ii],...
64 '-','Color',[0 0.6196 0.0431],'DisplayName','Trip','LineWidth',16);
65 % text((start tr),ii,...
66 % num2str(kk),'FontSize',16); % user friendly number of all
67 % trips
68 break
69 end
70 end
71 end
72 end
73

74 percentage double = sum(trips double)/n t;
75 % Calculate the percentage of trips that are driven double
76

77 %Plotting depot slow charging sessions
78 for ii = 1:nr bus
79 for xx = 2 % depot
80 for kk = 2:pcl(xx)-pcl(xx-1) % for each charging sessions
81 pp = kk+pcl(xx-1)+n d; % the rpcl index number
82 if V final(pp,buses loc(ii)) > 0
83 start d = charge line 2{xx-1}(kk-1)/60;
84 end d = (charge line 2{xx-1}(kk)-(dt 2{xx-1}(kk-1)* ...
85 (1-V final(pp,buses loc(ii)))))/60;
86 depot plot = plot([start d end d],[ii ii],...
87 '-','Color',[0.2549 0.7255 0.9098],'DisplayName','Depot Charging ...

session','LineWidth',9);
88 end
89 end
90 end
91

92 % Plotting fast charging sessions
93 sequence = 0; % for writing text (location charger used) on the correct place
94 for xx = 3:nr loc charg+1 % for fast charger locations
95 for kk = 1:pcl(xx)-pcl(xx-1) % for all charging sessions
96 pp = kk+pcl(xx-1)+n d; % the rpcl index number
97 if V final(pp,buses loc(ii)) > 0 % if is in the final solution
98 start c = charge line 2{xx-1}(kk-1)/60;
99 end c = (charge line 2{xx-1}(kk)-(dt 2{xx-1}(kk-1)* ...

100 (1-V final(pp,buses loc(ii)))))/60;
101 charge plot = plot([start c end c],[ii ii],...
102 '-','Color',[0.64 0 0],'DisplayName','Fast charging ...

session','LineWidth',9);
103 sequence = sequence+1;
104 elseif sequence > 0
105 % text((beginning(1)+ending(end))/2-1/60,ii,...
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106 % num2str(xx-2)); % text for location fast charging sessions
107 sequence = 0;
108 end
109 if sequence > 0 % for text writing and placing in the middle of a
110 % sequence of charging sessions
111 % beginning(sequence) = start c;
112 % ending(sequence) = end c;
113 end
114 end
115 end
116 end
117

118 % Plot deadhead trips
119 double deadhead(1:n d) = 0; % Determine double deadhead trips
120 for ii = 1:nr bus % for each bus
121 for kk = 1:n d % for each arcs
122 if V final(kk,buses loc(ii)) == 1 % if bus drives arc
123 loc1 = A list c(kk); % end location
124 loc2 = A list r(kk); % start location
125 if loc1 > n t
126 if loc2 > n t
127 % from charger to charger
128 for xx = 2:nr loc charg+1 % find correct loc charger
129 if loc1 ≤ pcl(xx)+n t
130 loc3 = xx-1;
131 loc5 = loc1 - n t - pcl(xx-1);
132 break
133 end
134 end
135 for xx = 2:nr loc charg+1 % find correct loc charger
136 if loc2 ≤ pcl(xx)+n t
137 loc4 = xx-1;
138 loc6 = loc2 - n t - pcl(xx-1);
139 break
140 end
141 end
142 start t = charge line 2{loc4}(loc6)/60;
143 end t = start t + (h(loc charge(loc4),loc charge(loc3)))/60;
144 else % trip to charger
145 for xx = 2:nr loc charg+1 % find correct charger location
146 if loc1 ≤ pcl(xx)+n t
147 loc3 = xx-1;
148 loc5 = loc1 - n t - pcl(xx-1);
149 break
150 end
151 end
152 start t = ht end(loc2)/60;
153 end t = start t + h(loc end(loc2),loc charge(loc3))/60;
154 end
155 else % for charger to trip
156 if loc2 > n t
157 for xx = 2:nr loc charg+1 % find correct location
158 if loc2 ≤ pcl(xx)+n t
159 loc4 = xx-1;
160 loc6 = loc2 - n t - pcl(xx-1);
161 break
162 end
163 end
164 start t = charge line 2{loc4}(loc6)/60;
165 end t = start t + h(loc charge(loc4),loc start(loc1))/60;
166 else % for trip to trip arc
167 start t = ht end(loc2)/60;
168 end t = start t + h(loc end(loc2),loc start(loc1))/60;
169 end
170 end
171 hold on;
172 double deadhead(kk) = double deadhead(kk)+1;
173 % calculate double deadhead trips
174 deadhead plot = plot([start t end t],[ii ii],...
175 '-','Color',[0.9020 0.8196 ...

0.5059],'DisplayName','Deadheadtrip','LineWidth',9);
176 end
177 end
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178 end
179 % legend([trip plot depot plot charge plot deadhead plot]...
180 % ,{'Trip','Depot charging session','Fast charging session','Deadhead trip'},...
181 % 'Location', 'northeastoutside','fontweight','bold','fontsize',18)
182

183

184

185 %% The progress of the SoC during the day plot
186 x all = find(A list c ≤ n t);
187 figure
188 for pp = 1:nr bus % for all buses used
189 t e = 0; % trip energy
190 eta = 0; % charge energy
191 d e = 0; % deadhead trip energy
192

193 % variables for deadhead trips
194 c1 = 1;
195 c2 = 1;
196 c3 = 1;
197 c4 = 1;
198 out dead1 = [];
199 in dead1 = [];
200 out dead2 = [];
201 in dead2 = [];
202 out dead3 = [];
203 in dead3 = [];
204 out dead4 = [];
205 in dead4 = [];
206

207 % Find deadhead trips
208 loc = find(V final(1:n d,buses loc(pp)));
209 for ii = 1:numel(loc)
210 if A list c(loc(ii)) > n t
211 if A list r(loc(ii)) > n t % out charger in charger
212 out dead1(c1,1) = A list r(loc(ii))-n t;
213 for xx = 2:nr loc charg+1 % find correct loc
214 if out dead1(c1,1) ≤ pcl(xx)
215 out dead1(c1,2) = xx-1;
216 break
217 end
218 end
219 in dead1(c1,1) = A list c(loc(ii))-n t;
220 for xx = 2:nr loc charg+1 % find correct loc
221 if in dead1(c1,1) ≤ pcl(xx)
222 in dead1(c1,2) = xx-1;
223 break
224 end
225 end
226 c1 = c1 + 1;
227 else %out trip in charger
228 out dead2(c2) = A list r(loc(ii));
229 in dead2(c2,1) = A list c(loc(ii))-n t;
230 for xx = 2:nr loc charg+1 % find correct loc
231 if in dead2(c2,1) ≤ pcl(xx)
232 in dead2(c2,2) = xx-1;
233 break
234 end
235 end
236 c2 = c2 + 1;
237 end
238 else
239 if A list r(loc(ii)) > n t %out charger in trip
240 out dead3(c3,1)= A list r(loc(ii))-n t;
241 for xx = 2:nr loc charg+1 % find correct loc
242 if out dead3(c3,1) ≤ pcl(xx)
243 out dead3(c3,2) = xx-1;
244 break
245 end
246 end
247 in dead3(c3) = A list c(loc(ii));
248 c3 = c3 + 1;
249 else %out trip in trip
250 out dead4(c4) = A list r(loc(ii));
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251 in dead4(c4) = A list c(loc(ii));
252 c4 = c4 + 1;
253 end
254 end
255 end
256

257

258

259 for xx = 2:nr loc charg+1 % for each charger locations
260 chargers2{xx} = [];
261 end
262 trips = find(V final(x all,buses loc(pp)) == 1);
263 % find arcs driven to trips
264 trips2 = A list c(trips);
265 chargers = find(V final(n d+1:end-1,buses loc(pp)) > 0);
266 % find chargers used
267 for yy = 1:numel(chargers)
268 for xx = 2:nr loc charg+1
269 if chargers(yy) ≤ pcl(xx)
270 chargers2{xx} = [chargers2{xx} chargers(yy)-pcl(xx-1)];
271 break
272 end
273 end
274 end
275

276 for hh = min(h s{1}):max(h e{1}) % for every minute of the day
277 % deadhead trips SoC consumption
278 if isempty(out dead1) == 0
279 d1 = find(charge line all(out dead1(:,1)) == hh);
280 if isempty(d1) == 0
281 for ii = 1:numel(d1)
282 d e = d e + e h(loc charge(out dead1(d1(ii),2)), ...
283 loc charge(in dead1(d1(ii),2)));
284 end
285 end
286 end
287 if isempty(out dead2) == 0
288 d2 = find(ht end(out dead2) == hh);
289 if isempty(d2) == 0
290 for ii = 1:numel(d2)
291 d e = d e + ...

e h(loc end(out dead2(d2(ii))),loc charge(in dead2(d2(ii),2)));
292 end
293 end
294 end
295 if isempty(out dead3) == 0
296 d3 = find(charge line all(out dead3(:,1)) == hh);
297 if isempty(d3) == 0
298 for ii = 1:numel(d3)
299 d e = d e + ...

e h(loc charge(out dead3(d3(ii),2)),loc start(in dead3(d3(ii))));
300 end
301 end
302 end
303 if isempty(out dead4) == 0
304 d4 = find(ht end(out dead4) == hh);
305 if isempty(d4) == 0
306 for ii = 1:numel(d4)
307 d e = d e + ...

e h(loc end(out dead4(d4(ii))),loc start(in dead4(d4(ii))));
308 end
309 end
310 end
311

312

313 % trips SoC consumption
314 trips3 = find(ht start(trips2) == hh);
315 if isempty(trips3) == 0
316 for ii = 1:numel(trips3)
317 t e = t e + e t(trips2(trips3(ii))); % SoC consumption update trips
318 end
319 end
320
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321 % chargers SoC charged
322 for xx = 2:nr loc charg+1
323 chargers3{xx} = find(charge line 2{xx-1}(chargers2{xx}-1) == hh); % start ...

of charge session
324 if isempty(chargers3{xx}) == 0
325 eta = eta + dt 2{xx-1}(chargers2{xx}(chargers3{xx})-1)...
326 *e charge(xx-1)*...
327 V final(end-pcl(end)+pcl(xx-1)+chargers2{xx} ...
328 (chargers3{xx}),buses loc(pp));
329 end
330 end
331 SoC level(pp,hh) = 100 - t e - d e + eta; % bus starts with 100 % SoC
332 end
333 total energy(pp) = t e+d e; % Total energy charged
334 xx = (h s{1}(1):h e{1}(end))/60;
335 plot(xx,SoC level(pp,h s{1}(1):h e{1}(end)),'LineWidth',2)
336 grid on
337 hold on
338 end
339 set(gca,'FontSize',16)
340 xlabel('Time [h]','FontWeight','bold')
341 ylabel('SoC of bus [%]','FontWeight','bold')
342 %% No. of chargers used plot
343 figure
344 for xx = 2:nr loc charg+1
345 counter = 0;
346 for ii = pcl(xx-1) + 2: pcl(xx)
347 c p m(xx-1,charge line 2{xx-1}(ii-pcl(xx-1)-1)+1:...
348 charge line 2{xx-1}(ii-pcl(xx-1))) ...
349 = b2 fix(ii)*ones(dt 2{xx-1}(ii-pcl(xx-1)-1),1)...
350 +zeros(dt 2{xx-1}(ii-pcl(xx-1)-1),1); % charger per minute
351

352

353 end
354 plot((charge line 2{xx-1}(1):charge line 2{xx-1}(end))/60,...
355 c p m(xx-1,charge line 2{xx-1}(1):charge line 2{xx-1}(end))...
356 ,'LineWidth',2)
357 grid on;
358 hold on;
359 end
360 set(gca,'FontSize',16,'FontWeight','bold')
361 xlabel('Time [h]')
362 ylabel('Number of chargers')
363

364 %% plot RMP
365 figure
366 plot(1:iter(1),RMP Obj val(1:iter(1),1),'LineWidth',3);
367 grid on;
368 hold on;
369 set(gca,'FontSize',18)
370 xlabel('Iterations [-]','FontSize',16,'FontWeight','bold')
371 ylabel('RMP value','FontSize',16,'FontWeight','bold')
372 %%
373 integrality gap = Costs/min(RMP Obj val(:,1));
374 %% plot lowerbound
375 [bus min,trips per time cont] = Lower bound(n t,ht start,...
376 ht end,nr bus,SoC max,SoC min,e t,e charge,e max,c p m,nr loc charg);

Lower bounds

1 function [bus min,trips per time cont] = Lower bound(n t,ht start,...
2 ht end,nr bus,SoC max,SoC min,e t,e charge,e max,c p m,nr loc charg)
3

4 %% lower bound for buses based on trips per time continious
5 trips per time cont = zeros(ht end(end),1); % create zero matrix
6 for nr t = 1:n t % for each trip
7 for pp = ht start(nr t):ht end(nr t)-1 % for each time interval of a trip
8 trips per time cont(pp) = trips per time cont(pp) + 1;
9 % +1 trip in this time interval if a trip is driven during this

10 % time
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11 end
12 end
13

14

15 bus min = max(trips per time cont); % determine min buses needed to drive all trips
16

17 %% lower bound based on energy in the system for chargers
18 nr bus = nr bus; % Number of buses used in final schedule
19 n s = -1; % Starting chargers = 0, if -1 is filled in
20 energy error = 1; % Variable that determines if lower bound is complete
21 while energy error == 1 % While algorithm is not finished
22 n s = n s + 1; % + 1 new fast charger
23 energy(ht start(1)) = SoC max * nr bus; % calculate max energy at the start of the day
24 Chargers used = zeros(ht end(end),1); % Number of chargers used
25 minu = 0; % minutes of duration charging session min 0 = 1 minute
26 for ii = min(ht start):1:max(ht end) % for each minute of the schedule
27 exceed = 0;
28 hh = find(ht start ≤ ii);
29 trips = find(ht end(hh) ≥ ii)'; % find trips that are driving at the moment
30 tripss = find(ht start == ii); % equal so the trip is finished
31 e = 0;
32 for uu = tripss(1:end) % determine energy lost
33 e(uu) = e t(uu); % energy loss
34 end
35 energy(ii) = energy(ii) - sum(e); % update total energy
36

37 if ii > ht start(1)
38 % if charging time is shorter than already passed time
39 if energy(ii) < SoC max*nr bus
40 % if the current energy is lower than the maximum energy
41 if nr bus > size(trips,2)
42 % if there are more buses then trips driven at the tmoment
43 if n s > 0 % if there are fast chargers
44 if nr bus > size(trips,2)
45 energy(ii) = energy(ii) + n s * (max(e charge)); % update ...

energy
46 Chargers used(ii) = n s; % determine chargers used
47 else % if not all chargers can be used but only a part
48 nr charge = nr bus - size(trips,2); % Determine how many ...

chargers are used
49 energy(ii) = energy(ii) + nr charge * (max(e charge)); % ...

update energy
50 Chargers used(ii) = nr charge; % update chargers used
51 end
52 if energy(ii) > e max* nr bus % energy exceed max SoC
53 Energy exceeded = energy(ii) - e max* nr bus; % calculate ...

energy exceeded
54 Chargers exceeded = Energy exceeded/(max(e charge));
55 % rewrite the energy to chargers
56 Chargers used(ii) = Chargers used(ii) - ...

floor(Chargers exceeded+1e-3); % error factor
57 energy(ii) = e max* nr bus; % update energy
58 exceed = 1; % if exceeded no slow chargers needed
59 end
60 end
61 if exceed == 0 % if energy is not exceed by fast chargers
62 if nr bus > size(trips,2) + n s % if all fast chargers can be used
63 nr charge = nr bus - n s - size(trips,2); % determine no. ...

of slow chargers used
64 energy(ii) = energy(ii) + nr charge * (e charge(1)); % ...

update energy
65 Chargers used2(ii) = nr charge; % Number of slow chargers used
66 end
67 end
68 if energy(ii) > e max* nr bus % energy exceed max SoC
69 Energy exceeded = energy(ii) - e max* nr bus; % calculate ...

energy exceeded
70 Chargers exceeded = Energy exceeded/(e charge(1));
71 % rewrite the energy to chargers
72 Chargers used2(ii) = Chargers used2(ii) - ...

floor(Chargers exceeded+1e-3); % error factor
73 energy(ii) = e max* nr bus; % update energy
74 end
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75 end
76 end
77 end
78 if energy(ii) < SoC min*nr bus % if energy is lower then min then new bus needed
79 energy error = 1; % Rerun algorithm with one extra charger
80 break
81 end
82 energy(ii+1) = energy(ii);
83 end
84 if energy(ii) > SoC min*nr bus
85 % if at the end of the day enough energy is left in the schedule
86 break % end algorithm n s is the lower bound for the number of chargers
87 end
88 end
89

90

91

92 %% plots
93 % Plot lower bound for the number of buses
94 figure
95 hold on
96 grid on
97 xlabel('Time [h]')
98 ylabel('Vehicle number [-]')
99 plot((1:numel(trips per time cont))/60,trips per time cont)

100 axis([floor(min(ht start)/60) ceil(max(ht end)/60) 0 max(trips per time cont)])
101 xticks(floor(min(ht start)/60):1:ceil((max(ht end)/60)))
102 yticks(0:1:max(trips per time cont))
103

104 % Plot energy plot
105 figure
106 hold on
107 grid on
108 title(['kWh left at each time point for ',num2str(nr bus),' buses'])
109 xlabel('Time [h]')
110 ylabel('Energy [kWh]')
111 plot((1:numel(energy))/60,energy,'LineWidth',1)
112 axis([floor(min(ht start)/60) ceil(max(ht end)/60) 0 ...
113 ceil(max(energy)/10ˆfloor(log10(max(energy))))*10ˆfloor(log10(max(energy)))])
114 % round to order of maginitude on the y axis
115 xticks(floor(min(ht start)/60):1:ceil((max(ht end)/60)))
116

117 % Plot lower bound number of chargers used
118 figure
119 hold on
120 grid on
121 title(['Chargers used for ',num2str(nr bus),' buses'])
122 xlabel('Time [h]')
123 ylabel('Chargers used [-]')
124 if any(Chargers used) > 0 % if chargers are used
125 plot((1:numel(Chargers used))/60,Chargers used,'LineWidth',1) % to hours
126 hold on
127 end
128 % Plot number of slow charger used
129 % if any(Chargers used2) > 0 % if chargers are used
130 % plot((1:numel(Chargers used2))/60,Chargers used2,'LineWidth',1) % to hours
131 % axis([min(ht start)/60 max(ht end)/60 0 max(Chargers used2)])
132 % xticks(floor(min(ht start)/60):1:ceil((max(ht end)/60)))% to hours
133 % yticks(0:1:max(Chargers used2))
134 % end
135

136

137

138

139 % %% lower bound buses based on energy for buses based on chargers
140 % available
141 % %%lower bound chargers
142 % n s = 0;
143 % nr bus = buses used-1;
144 % for xx = 2:nr loc charg
145 % n s = n s + max(c p m(xx-1)); % Used chargers
146 % end
147 % n slow = nr bus; % number of slow chargers
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148 % energy error = 1; % determine if enough busses are available
149 % exceed = 0;
150 % while energy error == 1 % while the energy is not below the min energy
151 % nr bus = nr bus + 1; % + new charger
152 % energy(ht start(1)) = SoC max * nr bus; % calculate max energy
153 % Chargers used = zeros(ht end(end),1); % chargers used
154 % minu = 0; % minutes of duration charging session min 0 = 1 minute
155 % for ii = ht start(1):1:ht end(end) % for each minutes
156 % exceed = 0;
157 % hh = find(ht start ≤ ii);
158 % trips = find(ht end(hh) ≥ ii)';
159 % tripss = find(ht start == ii); % equal so the trip is finished
160 % e = 0;
161 % for uu = tripss(1:end) % determine energy lost per trip per time unit
162 % e(uu) = e t(uu); % energy loss
163 % end
164 % energy(ii) = energy(ii) - sum(e); % update energy
165 %
166 % if ii > ht start(1)
167 % % if charging time is shorter than already passed time
168 % if energy(ii) < SoC max*nr bus
169 % % if the current energy is lower than the maximum energy
170 % if nr bus > size(trips,2)
171 % % if there are more buses then trips driven at the tmoment
172 % if n s > 0 % if there are fast chargers
173 % if nr bus > size(trips,2)
174 % energy(ii) = energy(ii) + n s * (max(e charge)); % ...

update energy
175 % Chargers used(ii) = n s; % determine chargers used
176 % else % if not all chargers can be used but only a part
177 % nr charge = nr bus - size(trips,2);
178 % energy(ii) = energy(ii) + nr charge * (max(e charge)); % ...

update energy
179 % Chargers used(ii) = nr charge;
180 % end
181 % if energy(ii) > e max* nr bus % energy exceed max SoC
182 % Energy exceeded = energy(ii) - e max* nr bus; % ...

calculate energy exceeded
183 % Chargers exceeded = Energy exceeded/(max(e charge));
184 % % rewrite the energy to chargers
185 % Chargers used(ii) = Chargers used(ii) - ...

floor(Chargers exceeded+1e-3); % error factor
186 % energy(ii) = e max* nr bus; % update energy
187 % exceed = 1; % if exceeded no slow chargers needed
188 % end
189 % end
190 % if exceed == 0 % if energy is not exceed by fast chargers
191 % if nr bus > size(trips,2) + n s % if all n s chargers can be ...

used
192 % nr charge = nr bus - n s - size(trips,2);
193 % energy(ii) = energy(ii) + nr charge * (e charge(1)); ...

% update energy
194 % Chargers used2(ii) = nr charge;
195 % end
196 % end
197 % if energy(ii) > e max* nr bus % energy exceed max SoC
198 % Energy exceeded = energy(ii) - e max* nr bus; % calculate ...

energy exceeded
199 % Chargers exceeded = Energy exceeded/(e charge(1));
200 % % rewrite the energy to chargers
201 % Chargers used2(ii) = Chargers used2(ii) - ...

floor(Chargers exceeded+1e-3); % error factor
202 % energy(ii) = e max* nr bus; % update energy
203 % end
204 % end
205 % end
206 % end
207 % if energy(ii) < SoC min*nr bus % if energy is lower then min then new bus needed
208 % energy error = 0; % variable that new bus is neded
209 % break
210 % end
211 % energy(ii+1) = energy(ii);
212 % end
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213 % break
214 % end
215 %
216 %
217 %
218 % %% plots
219 % figure
220 % hold on
221 % grid on
222 % title(['kWh left at each time point for ',num2str(nr bus),' buses'])
223 % xlabel('Time [h]')
224 % ylabel('Energy [kWh]')
225 % plot((1:numel(energy))/60,energy,'LineWidth',1)
226 % axis([floor(min(ht start)/60) ceil(max(ht end)/60) 0 ...
227 % ceil(max(energy)/10ˆfloor(log10(max(energy))))*10ˆfloor(log10(max(energy)))])
228 % % round to order of maginitude on the y axis
229 % xticks(floor(min(ht start)/60):1:ceil((max(ht end)/60)))
230 %
231 % figure
232 % hold on
233 % grid on
234 % title(['Chargers used for ',num2str(nr bus),' buses'])
235 % xlabel('Time [h]')
236 % ylabel('Chargers used [-]')
237 % if any(Chargers used) > 0 % if chargers are used
238 % plot((1:numel(Chargers used))/60,Chargers used,'LineWidth',1) % to hours
239 % hold on
240 % end
241 % if any(Chargers used2) > 0 % if chargers are used
242 % plot((1:numel(Chargers used2))/60,Chargers used2,'LineWidth',1) % to hours
243 % axis([min(ht start)/60 max(ht end)/60 0 max(Chargers used2)])
244 % xticks(floor(min(ht start)/60):1:ceil((max(ht end)/60)))% to hours
245 % yticks(0:1:max(Chargers used2))
246 % end

TU/e 112


