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Summary

As the interest in applications involving multiple cooperating agents continuously increases,
so does the need for a sophisticated collision avoidance strategy. Where collision avoidance is
already present abundantly in literature, it generally lacks proof that collisions will indeed be
avoided in the system. Most often, it only gives optimal reference trajectories as an indication
that collisions are avoided. Therefore, introducing a theoretical framework to prove absence of
collision opens up a promising direction for progression in multi-agent systems. Based on recent
stabilizing results for a network of quadrotor UAVs on SO(3) that apply almost globally, a notion
for collision avoidance is introduced. By introducing such a collision avoidance strategy, cost
and robustness benefits are expected, as the absence of collisions in the system will result in less
failures, increased robustness, and a reduced number of crashes of, most often, expensive UAVs.
To develop such a theoretical framework to prove absence of collisions in a network of quadcopter
UAVs, a network of single integrators in 1D is considered first. To prove absence of collisions in
the network, a control Lyapunov function is composed with which simultaneously a control law
is designed. With the resulting combination of control Lyapunov function and control input,
local exponential stability of both equilibria is proven, while also proving absence of collisions in
a network of two single integrators in 1D. This theoretical framework proves to be suitable for
expansion to a network of double integrators in arbitrary dimension and the resulting equilibria
are proven asymptotically stable with the designed control law, while proving the absence of
collisions in the network. As the dynamic model of a UAV can be considered as a cascade
of two double integrator systems, the obtained knowledge of the double integrator system is
eventually applied to a network of quadcopter UAVs. Next, a projection is used, in which both
equilibria of the position tracking subsystem are projected on the origin of the projected system.
This allows to prove global asymptotic stability and local exponential stability of the origin of
the projected system by following the constructed theoretical framework, while also proving
absence of collisions in the network, under certain assumptions on the reference trajectories.
Subsequently, the attitude tracking subsystem is proven uniformly locally exponentially stable
and uniformly almost globally asymptotically stable, under the same assumptions on the reference
trajectories, and additional assumptions on the initial conditions to compensate for the lack of
saturation in the control law. The total cascaded system of the quadcopter UAVs is proven
almost globally asymptotically stable, and locally exponentially stable, based on cascaded theory,
under the aforementioned assumptions. The obtained result is then expanded to a network with
an arbitrary number of drones, in which almost global asymptotic stability, and local exponential
stability, of the resulting cascaded system is also obtained. The effectiveness of the introduced
theoretical framework and the corresponding results is emphasized by execution of a series of
experiments with a network of two quadcopter UAVs, and a comparison of the obtained results
with the corresponding simulated situations.
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Nomenclature

Reference frames

Bi Right-handed orthonormal body-fixed coordinate frame of agent i
Di Right-handed orthonormal frame that describes the desired attitude of agent i
F Right-handed orthonormal virtual center of formation frame
I Right-handed orthonormal inertial frame in North-East-Down (NED) configuration
Ri Right-handed orthonormal reference frame of agent i

Number sets

H Quaternion space
N The set of natural numbers
Rn The n-dimensional Euclidian space
SE(3) The n-dimensional Euclidian group
SO(3) The n-dimensional Special Orthogonal group

Operators

eig(·) Function that provides the eigenvalues of its matrix argument
diag(·) Function that provides a row vector containing all diagonal elements of its argument
S(·) Function providing skew symmetric matrix of its vector argument
ẋ Time-derivative of a system state x
A� The transpose of a matrix
x� The transpose of a vector
⊗ Quaternion product
� Quaternion rotation
‖ · ‖ Function providing the two-norm of its argument

Acronyms

APF Artificial Potential Function
IMU Internal Measurement Unit
MPC Model Predictive Control
NAP Network Access Point
RMS Root Mean Square
UAV Unmanned Areal Vehicle
UGV Unmanned Ground Vehicle
VTOL Virtual Take-Off and Landing
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Constants and variables

θ Pitch angle of a body
λ Eigenvalue of considered system
ν Linear velocity with respect to body-fixed frame
ρ Position vector
τ Torque generated by the rotors
φ Roll angle of a body
ψ Yaw angle of a body
ω Angular velocity with respect to body-fixed frame
ei Unit vector i of a frame of reference
f Total force generated by the motors
g Gravitational acceleration constant
In Identity matrix of size n× n
J Inertia of a body
Ki Matrix controller gain
ki Scalar controller gain
m Mass of a body
R Rotation matrix of a body
u Control input or virtual input
v Velocity vector in nD or speed in 1D
q Attitude of a body expressed in quaternions
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Chapter 1

Introduction

Everybody has heard of drones, and while most people know them for their applications in
photography, they are becoming more common everyday in the current street scene. The interest
in drones, or quadrotors, a type of Unmanned Aerial Vehicle (UAV), is maybe even further
propelled by the current Covid-19 pandemic and the resulting social distancing measures. As
quadcopters currently appear, for example, to deliver books for students [1] or for police warnings
at crowded places [2]. The quadcopter belongs to the multirotor subclass of UAVs and is most
frequently used in practical applications as the four propellers can be aligned with the body-fixed
frame of a quadcopter, resulting in a more straightforward control with respect to multirotors
consisting of other numbers of propellers. Another major advantage of quadcopter UAVs is
their aerial agility and vertical take-off and landing (VTOL) capabilities, although this comes
at the expense of battery consumption. Besides the quadcopter UAV, the fixed-wing type is
most commonly used, which generally has longer battery life but is far less agile and most of the
time lacks the ability to vertically takeoff. To combine the advantages of both systems, even
hybrid models are being developed [3]. Other models, like flapping-wing models, exist but as
their dynamics becomes quite complicated, they are generally not preferred for application [4].

With drone applications sprouting left right and centre, interest in applications that require
combined effort of multiple drones also rises. Cooperating UAVs can together conduct tasks in a
shorter time period, or accomplish goals that are simply impossible to achieve for a single drone.
Think for example of the possibility of networks of UAVs to monitor and spray crops together
to reduce uncovered areas of crops or overlapping of sprayed areas [5]. Other examples include
the localization and prevention of wildfires [6] and rescue missions [7, 8], where a network of
drones can cover more area and could even be used to efficiently search for victims through
inter-robot communication. Similar UAV swarm technologies even receive interest for military
applications, as DARPA, a military agency of the USA, recently conducted field experiments
with swarms of UAVs [9]. A nice example of an application where a single drone is simply not
capable of executing the task would be lifting heavy objects with a multitude of drones [10].
Such an application could be interesting to realize Amazon’s Prime Air [11]. A last, well known,
example of the usage of swarms of drones is in light shows, as Intel broke the Guinness World
Record of having the “most unmanned aerial vehicles airborne simultaneously” by lighting up the
sky with 1218 drones [12]. Cooperation of quadrotors might even be used to balance the main
disadvantage of quadrotors with respect to fixed wing aircrafts, which is battery consumption,
by enabling faster execution of tasks and thus reducing necessary battery capacity.

The common factor in these applications is that certain tasks or processes, previously executed
by humans or some kind of machines, are automated. Therefore, autonomous flight is aspired,
which is most often formulated as a trajectory tracking problem in which the drones are to move
along a predefined path without any external interference. Recently, a controller is presented that
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2 CHAPTER 1. INTRODUCTION

achieves uniform almost global stability (UaGAS) of the error tracking dynamics for a quadrotor
UAV on SE(3) [13]. Subsequently, the controller is adjusted in order to achieve uniform almost
global asymptotic stability of the formation tracking error dynamics for multiple UAVs on SO(3)
[14]. Moreover, the designed controller in [14] allows to select whether the UAVs emphasize on
individual error tracking, or formation forming. By representing the UAV attitude on SO(3)
the ambiguities that arise by using quaternions or singularities that are induced by usage of
Euler angles are avoided and as a consequence, large angular maneuvers are allowed. As the
theoretical and numerical results of [14] look promising, it is desired to invigorate the results
with an experimental validation. However, where in numerical simulations the occurrence of
collisions is a mere inconvenience, collisions can actually damage or destroy an experimental
setup in practice. Therefore, to eventually execute experiments with the designed controller in
[14], this research aims to implement a collision avoidance strategy in the control law and prove
the absence of collisions in the resulting system.

1.1 Cooperation with collision avoidance

Research considering collision avoidance strategies is present abundantly and a motivation for
all this interest in the topic is presented. Subsequently, the state of the art of collision avoidance
strategies is illustrated by introducing some existing collision avoidance strategies and discussing
their effectiveness.

1.1.1 Motivation

Compared to a single, probably more complex, agent, a bevy of more simple agents can provide
cost and robustness benefits [15], as the system may still be able to operate when a single agent
fails. Moreover, one could state that usage of multiple drones is more efficient, as the number
of drones used could be scaled to the task’s requirements. An additional advantage of using
multi-agent systems is that they introduce parallelism [15] and therefore, smart charging or
smart maintenance protocols could be introduced to allow for continuous operation. Therefore,
a system of cooperating agents can be considered super-additive, as the cooperating agents’
performance surpasses that of the sum of the capabilities of individuals. This super-addivitiy
attribute originates from the fact that cooperating agents can together perform tasks that a
single agent simply cannot [16], like multiple people are required to lift heavy objects. Also, by
enabling mutual communication, the sensor data of the agents can be accessed by all agents in
the pack, allowing for more efficient behavior [17]. As cooperation is getting more important,
so is the capability of the network to avoid collisions. While in networks of unmanned ground
vehicles (UGV), a collision would result in mere a bump, colliding agents in a network of UAVs
will suffer mostly from the impact with the ground upon crashing. As stated before, an abundant
amount of research has been conducted investigating collision avoidance strategies, but previous
research generally lacks proof that collisions are indeed avoided, or only gives optimal collision
avoidance strategies, if it gives some substantiation at all. This stimulates the desire to extend
the approach of [14] to also incorporate a collision avoidance strategy and serve as a basis for
experimental implementation.

1.1.2 Collision avoidance strategies

Roughly three main types of collision avoidance strategies are distinguished; using model
predictive control (MPC) to continuously recompute reference trajectories, defining the system
as a switched system, and introduction of an artificial potential field (APF).
The MPC approach models obstacles as three dimensional ellipsoids and uses these as constraints
in an optimization problem to compute new reference trajectories [18], or can additionally be
used to address reference and attitude tracking [19]. An interesting feature of this method is
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that it allows to model ellipsoids tightly or loosely around an obstacle, depending on how well
the obstacle is observed. However, since MPC only gives an optimal solution, no guarantee that
collisions are indeed avoided can be given. Additionally, continuously recomputing reference
trajectories becomes computationally expensive, which is undesirable as the aim is autonomous
operation of agents which most often only provide limited processor capacity.
Another approach to incorporate collision avoidance is through defining the dynamics such that
the behavior of the agents switches from reference tracking to collision avoidance. In [20] the
behavior of the agents switches from reference tracking to collision avoidance when another
agent comes within a predefined range of the considered agent, and when a collision is avoided
the behavior of the systems switches back to reference tracking. While stability can be proven
using a common Lyapunov function for both systems, this approach becomes rather cumbersome
and complex, especially when it is additionally required to prove that collisions are avoided.
The collision avoidance strategy that seems to be most in line with [13, 14], is the introduction of
an artificial potential field (APF). While an APF can have multiple names like repelling vector
field [10, 21, 22] or bump function [23], the underlying method is equal. To implement an APF,
the control action is split up in multiple parts; a reference tracking part and a collision avoidance
part. In [22], this collision avoidance part is split up even further in a dedicated avoidance
strategy for obstacles, and one for other agents. The collision avoidance part then consists of
a potential placed at the other agents’ positions, i.e., at the collision points, and thus driving
the agents away from this collision point. This could be compared with artificially placing the
collision point on a hill and the reference position in a nadir, where the considered system is an
arbitrarily placed ball subject to gravity. But again, existing research lacks any proof of the
absence of collisions.

1.2 Problem definition

Previous research conducted at the Eindhoven University of Technology presents a control
strategy on SE(3) for a single quadcopter allowing large angular maneuvers [13, 24], and
extended this strategy to control a network of quadcopters [14, 25]. Since only [24] presents an
experimental validation, it is desired to also implement the results of [14] in an experimental
setup. As a first step towards the goal of autonomously flying a network of quadcopters, [26]
extends the standard state estimator to include also external influences and achieves omission of
external position data coming, for example, from an external camera system as OptiTrack [27].
According to [26], the newly designed state estimator is supposed to be sufficiently accurate
when reference trajectories in the horizontal plane are considered, in vertical direction a small
mismatch between simulation and experiment remains. Therefore, this research aims to provide
a basis for conduction of experiments with a network of quadcopters. A first step towards
conducting experiments with a network of quadcopters is to extend the current experimental
setup to support simultaneous flight of multiple quadcopters, as the software support package
of the experimental setup initially only supports control of a single drone. Before conducting
experiments with multiple live quadcopters, a collision avoidance strategy is to be implemented in
the dynamic framework of [14] to avoid unnecessary damage to the setup. When a theoretically
substantiated collision avoidance strategy is developed with promising results, the designed
control law is to be implemented in the adjusted experimental setup in order to evaluate its
performance. For successful execution of this research, the following objectives are to be achieved;

• Consider a one-dimensional kinematic model with multiple agents and design a control law
with which both reference tracking and collision avoidance can be simultaneously proven.
To stress the relevance of considering this situation, such a model can be crudely compared
with a platooning problem on a single lane.

• Extend the obtained result of a one-dimensional kinematic model to a network of double



4 CHAPTER 1. INTRODUCTION

integrators in arbitrary dimension. This is considered a relevant intermediate step as the
dynamic framework in [13, 14] is based on the assumption that the quadcopters are a
cascade of double integrators as in [28].

• Follow the analysis and dynamical framework of [13, 14] in order to find control laws with
which both reference tracking and collision avoidance can be proven.

• Validate the theoretical findings by combining a simulated environment with experimental
validation. This also includes preparing the experimental setup in order to support
simultaneous flight of multiple quadcopters.

1.3 Thesis outline

The remainder of this report kicks off by introducing some preliminary mathematical notions
which are used throughout the report. Chapter 3 presents the theoretical analyses of the different
considered systems and the corresponding proofs. To invigorate the theoretical analysis, the
findings are validated by comparison with simulations and experiments in Chapter 4. Finally, the
obtained results are contemplated in Chapter 5 in the form of conclusions and recommendations.



Chapter 2

Preliminaries

For notational and comprehensive efficiency later on in the report, some theorems, notations,
and definitions that are used extensively throughout this report, are presented here. The used
attitude representations are introduced and some theorems and proofs regarding stability are
given.

2.1 Attitude representation

As quadcopter UAVs are underactuated systems, the attitude of an agent plays a key role in the
dynamics. Since the attitude representation is this important, a significant amount of research
has been conducted in the different representations, each representation satisfying different needs
and requirements. When it is desired to represent attitude mathematically efficient, for example
when data (rate) or computational power is limited, quaternions can be used [29]. However,
attitude representation using quaternions introduces sign ambiguity, while it actually is quite
important to have the attitude uniquely defined. Therefore, it is chosen to represent the attitude
using rotation matrices of the special orthogonal group SO(3) of order 3. As one is entirely
free to convert the designed controller to quaternions for implementation, it is possible in to
exploit the advantages of both representations, being; unambiguous attitude representation and
computational and communication efficiency. Both representations are presented in this section,
some mathematical notions are stated and some complementary information on the motivation
of the chosen attitude representation is given.

2.1.1 Rotation matrices and Euler angles

First, a right-handed orthonormal world-fixed inertial frame I is introduced. Now the rotation
matrix Ri ∈ SO(3) is defined as the attitude of the right handed orthonormal body-fixed frame Bi

of agent i, with respect to the inertial frame I, where SO(3) = {R3×3
i | det(Ri) = 1, R�

i Ri = 0}
represents the 3-dimensional Special Orthogonal group. For any rotation matrix Ri ∈ SO(3) the
following should hold [30];

• The orthogonality property of the rotation matrix implies that RiR
�
i = I3, where I3 is the

3× 3 identity matrix, implying R�
i = R−1

i .

• Since Ri defines a pure rotation, i.e., no elongations are incorporated, det(Ri) = 1.

• Each column of Ri and R
�
i is mutually orthogonal since they are both rotation matrices.

• Each column of Ri and R
�
i is of unit length since they are both rotation matrices.

To describe a rotation from I to Bi in the three dimensional space, rotation matrices Ri ∈ SO(3)
are considered. Now, the rotation from I to Bi can be defined using different sequences of

5
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rotations. One could define a rotation by using the axis-angle convention, which defines a
rotation between two frames as an axis with a rotation angle around the defined axis. Yet, a
commonly used method in (aero)nautical applications to represent a rotation is by using Euler
angles [31], as

R = Rz,i(ψi)Ry,i(θi)Rx,i(φi), (2.1a)

=

⎡
⎣ cos ψi −sin ψi 0

sin ψi cos ψi 0
0 0 1

⎤
⎦

⎡
⎣ cos θi 0 sin θi

0 1 0
−sin θi 0 cos θi

⎤
⎦

⎡
⎣ 1 0 0

0 cos φi −sin φi
0 sin φi cos φi

⎤
⎦ , (2.1b)

which is the so called Roll-Pitch-Yaw angles (RPY) variant, as they correspond to the roll, pitch,
and yaw motion of the body i when aligned with the axes of the body fixed frame Bi. Note that
the same rotations in the reversed order generally not result in the same attitude [32]. The Euler
angles attitude representation is widely used for its ease of use and tangibleness. Note however,
that (2.1) emphasizes the occurrence of singularities when two axes are aligned. The inertial
frame is considered in North-East-Down (NED) configuration along the lines of [14, 26], as it
has proven useful for the modeling and control of aerial vehicles [33]. Since a dynamic system is
to be considered, the time-derivative of the attitude representation also deserves elaboration,
especially since the time-derivatives of rotation matrices in SO(n) come with some convenient
properties.

Definition 2.1.1. (cf. [30]) Consider a rotation matrix R ∈ SO(3) and define three generators
for SO(3) that correspond to the derivatives of rotation around each of the standard axes [34]

Gx =

⎡
⎣ 0 0 0

0 0 −1
0 1 0

⎤
⎦ , Gy =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , Gz =

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ , (2.2)

consider also the body-fixed angular velocity of the rotated frame ω ∈ R3 with which

S(ω) := ωxGx + ωyGy + ωzGz =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ ∈ SO(3), (2.3)

is defined.

2.1.2 Quaternions

As an alternative to rotation matrices, quaternions can be used for attitude representation.
Both rotation matrices and quaternions are well suited for integrating angular velocities of
bodies over time, nonetheless, a benefit of using quaternions is that no singularities occur in the
involved functions. Though this comes at the cost of ambiguity, implying that an equal positive
and negative quaternion describe the same rotation [35]. When designing the controller using
rotation matrices and converting to quaternions before implementation, this disadvantage can
be effectively bypassed. Moreover, a quaternion has the feature that it can describe a rotation
using only four parameters,

q = qw + qxi+ qyj + qzk, (2.4)

making it a preferred choice over rotation matrices when computational effort, storage capacity
or data rates are limited [29], for example when implementing in an experimental setup or when
communication channels are used. Consider a quaternion q ∈ H, with H the quaternion space,
which can be considered as a number system that extends the complex numbers [36]. Besides
(2.4), quaternions can be represented as

q = (qw, q̃), q = [qw qx qy qz]
� , (2.5)
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which includes a vector notation consisting of a scalar and an imaginary vector. The imaginary
units i, j, and k satisfy

i2 = j2 = k2 = ijk = −1. (2.6)

Additionally, the norm ‖q‖ and conjugate q̄ of a quaternion are computed as

‖q‖ =
√
q2w + q2x + q2y + q2z , (2.7)

q̄ = [qw − qx − qy − qz]
� = (qw, −q̃). (2.8)

Now using (2.6), a quaternion multiplication is denoted by the ⊗ operator, and is defined as

p⊗ q =

⎡
⎢⎢⎣
pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw

⎤
⎥⎥⎦ , (2.9)

which alternatively can be written as the inner product of a skew-symmetric matrix Q(p) and a
quaternion q as

p⊗ q = Q(p)q =

[
pw −p̃�
p̃ pwI3 + S(p̃)

]
q =

⎡
⎢⎢⎣
pw −px −py −pz
px pw −pz py
py pz pw −px
pz −py px pw

⎤
⎥⎥⎦

⎡
⎢⎢⎣
qw
qx
qy
qz

⎤
⎥⎥⎦ , (2.10a)

= Q̄(q)p =

[
qw −q̃�
q̃ qwI3 + S(q̃)

]
p =

⎡
⎢⎢⎣
qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

⎤
⎥⎥⎦

⎡
⎢⎢⎣
pw
px
py
pz

⎤
⎥⎥⎦ . (2.10b)

Using the axis-angle method [35], every rotation can be described by defining an axis and a
clockwise rotation around the defined axis. This clearly holds for a sequence of multiple rotations
as well, and consequently, a sequence of rotations can be expressed using a single quaternion
[37] as

qw = cos

(
θ

2

)
, q̃ = sin

(
θ

2

)
ē, (2.11)

with ē ∈ R3 a unit vector representing the rotation axis and θ ∈ R denoting the clockwise
rotation angle. Thus, a quaternion, actually a unit quaternion, i.e., {q | ‖q‖ = 1}, can be
used to describe a rotation. To express a rotation in quaternions, the vector ρ to be rotated
is first converted to a quaternion qρ by setting qρ = (qρ,w, q̃ρ) with qρ,w = 0 and q̃ρ = ρ. The
resulting quaternion is called a pure quaternion since qρ,w = 0. Next, the rotated vector ρ′

is obtained by pre- and post-multiplying ρ with the rotation quaternion q = (qw, q̃) and its
conjugate q̄ = (qw,−q̃), respectively, as[

0
ρ′

]
= q ⊗

[
0
ρ

]
⊗ q̄, (2.12)

which can be computed more efficiently [29] as

ρ′ = ρ+ 2q̃ × (q̃ × ρ+ qwρ), (2.13)

which for simplicity is denoted compactly as ρ′ = q�ρ, where it is noted that the inverse rotation
is given by ρ = q̄ � ρ′. Now, a quaternion describing a rotation describes a full Euler rotation
[38] as

q =

⎡
⎢⎢⎣

cos(φ/2)cos(θ/2)cos(ψ/2) + sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)− cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2) + sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)

⎤
⎥⎥⎦ , (2.14)
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of which the inverse conversion is given as⎡
⎣ φ
θ
ψ

⎤
⎦ =

⎡
⎣ arctan 2( 2(qwqx + qyqz), 1− 2(q2x + q2y) )

arcsin( 2(qwqy − qzqx) )
arctan 2( 2(qwqz + qxqy), (1− 2(q2y + q2z)) )

⎤
⎦ , (2.15)

with φ, θ, and ψ representing again the roll, pitch, and yaw angle, respectively. Finally, the
derivative of a quaternion is computed using

q̇ =
1

2
q ⊗

[
0
ω

]
=

1

2
Q(q)

[
0
ω

]
. (2.16)

2.2 Stability results

Stability of dynamic systems is a widely studied subject, and some results regarding stability
are recalled here for notation efficiency further in the report.

Proposition 2.2.1. (cf. [39], Theorem 4.3) Let xeq = 0 be an equilibrium point of

ẋ = f(x). (2.17)

Let V : D → R be a continuously differentiable function such that V (0) = 0 and V (x0) > 0 for
some x0 with arbitrary small ‖x0‖. Define a set U = {x ∈ Br | V (x) > 0} with Br = {x ∈
Rn | ‖x‖ ≤ r} a ball contained in D, with r > 0 and suppose that V̇ (x) > 0 in U . Then, x = 0
is unstable.

Proposition 2.2.2. (cf. [39], Theorem 4.14) Let x = 0 be an equilibrium point for the nonlinear
system

ẋ = f(t, x), (2.18)

where f : [0,∞) ×D → Rn is continuously differentiable, D = {x ∈ Rn | ‖x‖ < r}, and the
Jacobian matrix [∂f/∂x] is bounded on D, uniformly in t. Let k, λ, and r0 be positive constants
with r0 < r/k. Let D0 = {x ∈ Rn | ‖x‖ < r0}. Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀ x(t0) ∈ D0, ∀ t ≥ t0 ≥ 0, (2.19)

then, there is a function V : [0,∞)×D0 → R that satisfies the inequalities

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2, (2.20a)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −c3‖x‖2, (2.20b)∥∥∥∥∂V∂x

∥∥∥∥ ≤ c4‖x‖, (2.20c)

for some positive constants c1, c2, c3, and c4. Moreover, if r = ∞ and the origin is globally
exponentially stable, then V (t, x) is defined and satisfies the aforementioned inequalities on Rn.
Furthermore, if the system (2.18) is autonomous, V can be chosen independent of t.

Proposition 2.2.3. (cf. [39], Theorem 4.15) Let x = 0 be an equilibrium point for the nonlinear
system (2.18) where f : [0,∞)×D → Rn is continuously differentiable, D = {x ∈ Rn | ‖x‖2 <
r}, and the Jacobian matrix [∂f/∂x] is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

∣∣∣∣
x=0

, (2.21)

then, x = 0 is an exponentially stable equilibrium point for the nonlinear system if and only if it
is an exponentially stable equilibrium point for the linear system

ẋ = A(t)x. (2.22)
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Proposition 2.2.4. (cf. [39], Theorem 4.1) Consider the autonomous system

ẋ = f(x), (2.23)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Let x = 0 be an
equilibrium point for (2.23) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a
continuously differentiable function such that

V (0) = 0, V (x) > 0 in D\{0}, V̇ (x) ≤ 0 in D, (2.24)

then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D\{0}, (2.25)

then, x = 0 is asymptotically stable.

Theorem 2.1. (adopted from [39], Theorem 4.1, see Proposition 2.2.4) Consider the autonomous
system (2.23), let x = 0 be an equilibrium point of (2.23) on a domain D ⊂ Rn, and x = γ be an
arbitrary point satisfying γ ∈ D\{0}. Let V : D → R be a continuously differentiable function
such that

V (0) = 0, V (x) > 0 in D\{0}, V̇ (x) ≤ 0 in D, (2.26)

now, if additionally

V (γ) → ∞ for x→ γ, x0 �= γ, and V̇ < 0 in Bγ (2.27)

with Bγ = {x ∈ Rn | ‖x − γ‖ < r} a ball of radius r > 0 around γ, contained in D, then, for
every solution x to (2.23) with initial conditions satisfying x(t0) �= γ, there exists ε > 0 such
that ‖x(t)− γ‖ ≥ ε ∀ t.
Proposition 2.2.5. (cf. [25, 40]) Consider the system

˙̃R = R̃S(ω̃), J ˙̃ω = −Kωω̃ +KR

3∑
i=1

ki(ei × R̃�ei), (2.28)

with R̃ ∈ SO(3) = {R̃ ∈ R3×3
i | det(R̃) = 1, R̃�R̃ = 0}, ω̃ ∈ R3, J = J� > 0 and S(ω̃)

the operator defined in (2.3). If Kω = K�
ω > 0, KR = K�

R > 0, and ki > 0 distinct, i.e.,
k1 �= k2 �= k3 �= k1, it can be concluded that the resulting equilibrium point (R̃, ω̃) = (I, 0) is
ULES and UaGAS, i.e., let Ec = {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)}, then R̃
converges to Ec and ω̃ converges to zero. The equilibria (R̃, 0) where R̃ ∈ Ec\{I} are unstable
and the set of al initial conditions converging to the equilibrium (R̃, 0), where R̃ ∈ Ec\{I} form
a lower dimensional manifold.

Theorem 2.2. (cf. [14, 41]) Consider the cascaded system ẋ = f(t, x), with f(t, 0) = 0, that
can be written as

ẋ1 = f1(t, x) + g(t, x1, x2)x2, (2.29a)

ẋ2 = f2(t, x2), (2.29b)

where x1 ∈ Rn, x2 ∈ Rm, f1(t, x1) is continuously differentiable in (t, x1) and f2(t, x2), g(t, x1, x2)
are continuous in their arguments, and locally Lipschitz in x2 and (x1, x2), respectively. This
system is a cascade of the system

ẋ1 = f1(t, x1), (2.30)

and (2.29b). If the origins of the systems (2.30) and (2.29b) are uniform globally asymptotically
stable (UGAS) and solutions of (2.29) remain bounded, then the origin of the system (2.29) is
UGAS. In addition, if the systems (2.30) and (2.29b) are uniformly locally exponentially stable
(ULES), then the system (2.29) is ULES.





Chapter 3

Stability analysis

This chapter aims to give a theoretical framework to be used when a collision avoidance strategy
is required and it is desired to actually prove the absence of collisions in the network. The
complexity of the considered dynamics is gradually increased from a system of single integrators
in 1D, to a system of double integrators in arbitrary dimension and finally, quadcopter dynamics
are considered to implement a collision avoidance strategy. This increasing complexity helps in
understanding the functioning of the introduced framework, while considering some interesting
situations. A system of single integrators in the one dimensional space could for example
represent a simplified model of a platoon of autonomously driving cars on a single lane highway,
for which one would like to guarantee that no collisions occur when overtaking is not allowed.
Considering a system of double integrators in arbitrary dimension proves to be useful as the
analysis uses vectors instead of scalars. Moreover, it gives some valuable insights already for the
analysis of a network of quadcopter UAVs, as these systems can be considered a cascade of two
double integrator systems.

3.1 Single integrators in 1D

As a first step towards stability in a network of UAVs with obstacle avoidance, a system of two
single integrators in 1D is considered. The considered system in 1D can give valuable insights
for the final analysis of a system of UAVs, but is also a relevant system as it can represent a
model of autonomously driving cars on a single lane. For the considered system it is desired to
show stability of the tracking behavior while proving also that no collisions occur in the system.
A first challenge is therefore to design a controller which achieves reference tracking and collision
avoidance simultaneously. Additionally, an interesting situation is analyzed which occurs when
the two agents are initialized in such a way that the agents will have to collide before reaching
their respective references.

The considered system of a single integrator is given as

ẋi = ui, (3.1)

where i ∈ {1, 2}, and xi ∈ R, and ui ∈ R denote, respectively, the position and input of agent i.
Next, the reference trajectory xi,r is introduced which is also subject to (3.1), implying ẋi,r = ui,r.
Now, the tracking error for node i is defined as x̃i = xi − xi,r, the position of node i with respect
to node j is denoted by dij = −dji = xi − xj , and the referenced relative position of node i with
respect to node j is defined as dij,r = −dji,r = xi,r − xj,r, which are scalars as a one-dimensional
system is considered. Note that it is assumed that xi,r(t) �= xj,r(t), i.e., dij,r(t) �= 0 ∀ t, since
xi,r(t) = xj,r(t) implies a collision for the reference trajectory. The reference tracking dynamics
is now given as

˙̃xi = ẋi − ẋi,r = ui − ui,r, (3.2)

11
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and the relative position dynamics is given as

ḋij = ẋi − ẋj = ui − uj . (3.3)

With the system properly defined, the control objectives can be stated as the following problem.

Problem 3.1. Consider the reference tracking dynamics (3.2) with i ∈ {1, 2}. Find an appro-
priate control law

ui = ui(t, x̃1, x̃2), (3.4)

such that the resulting closed-loop system yields

lim
t→∞ x̃1 = 0, lim

t→∞ x̃2 = 0, d12(t) �= 0 ∀ t. (3.5)

As a possible solution to the stated objectives, a controller is designed which combines the
tracking controller used in [28] and a collision avoidance strategy based on [42], resulting in the
combined control input

ui = ui,r − k1x̃i + k2

(
1

dij
− 1

dij,r

)
= ui,r − k1x̃i + (−1)ik2

x̃1 − x̃2
(x̃1 − x̃2 + d12,r)d12,r

, (3.6)

where the gains k1 and k2 are to be chosen freely, and the term k2

(
1
dij

− 1
dij,r

)
represents the

collision avoidance strategy and results from usage of an artificial potential field (APF) in
[42]. The reference tracking subsystem (3.2) is considered in closed-loop with control law (3.6),
yielding

˙̃xi = ui − ui,r = −k1x̃i + k2

(
1

dij
− 1

dij,r

)
, (3.7)

with k1, k2 > 0, which can be rewritten as

˙̃x1 = −k1x̃1 − k2
x̃1 − x̃2

(x̃1 − x̃2 + d12,r)d12,r
, (3.8a)

˙̃x2 = −k1x̃2 + k2
x̃1 − x̃2

(x̃1 − x̃2 + d12,r)d12,r
. (3.8b)

3.1.1 Instability of collision point

Before analyzing stability of the reference tracking subsystem (3.8), it is desired to show that no
collisions occur in the system, i.e., d12(t) �= 0 ∀ t. Therefore, consider the following proposition.

Proposition 3.1.1. Consider the dynamics (3.3) in closed-loop with input (3.6) where k1, k2 > 0.
If the reference signals |d12,r|, |d−1

12,r|, and |u1,r − u2,r| are bounded, then for every solution to
(3.3) in closed loop with (3.6), with initial conditions satisfying d12(t0) �= 0, there exists ε > 0
such that |d12(t)| ≥ ε ∀ t.
Proof. Differentiating the candidate Lyapunov function

V (d12) =
1

2
d212, (3.9)

along solutions of the system (3.3) in closed-loop with (3.6) yields

V̇ (d12) = 2k2 − k1d
2
12 +

(
k1d12,r − 2k2

d12,r
+ u1,r − u2,r

)
d12, (3.10)

with d12 = x1 − x2 = x̃1 − x̃2 + d12,r, and d12(t0) �= 0, as ḋ12 is undefined for d12 = 0. Since it is
assumed that |d12,r|, |d−1

12,r|, and |u1,r − u2,r| are bounded;

|d12,r(t)| ≤M1, |d−1
12,r(t)| ≤M2, |u1,r(t)− u2,r(t)| ≤M3, (3.11)
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where it can be assumed that d12,r > 0, without loss of generality, as d12,r(t) �= 0 ∀ t, resulting in

V̇ (d12) ≥ 2k2 − k1d
2
12 −

(
k1M1 + 2k2M2 +M3

)
d12, (3.12)

which is used to give some bounds on the domain for which V̇ (d12) > 0 by computing the roots
of the right hand side as

0 < ε1 <
−(k1M1 + 2k2M2 +M3) +

√
(k1M1 + 2k2M2 +M3)2 + 8k1k2
2k1

, (3.13)

and

0 > ε2 >
−(k1M1 + 2k2M2 +M3)−

√
(k1M1 + 2k2M2 +M3)2 + 8k1k2
2k1

. (3.14)

Thus, there always exists a domain δ = {d12 | ε2 < d12 < ε1} = {x̃ | ε2 < x̃1− x̃2+ d12,r(t) < ε1}
where V̇ (d12) ≥ f(d12) > 0 ∀ d12 ∈ δ, see Figure 3.1 for a visual indication of the situation. From
Figure 3.1 it can be seen that V̇ (d12) > 0 ∀ d12 ∈ δ, and there always exists such a domain δ as
2k2 > 0. Applying Chetaev’s theorem, as in Proposition 2.2.1, indicates that the collision point

-6 -4 -2 0 2 4

-20
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10

20

Figure 3.1: Visual indication of V̇ (d12) and its lower bound given by 2k2 − k1d
2
12 −

(
k1M1 +

2k2M2 +M3

)
d12.

is unstable, and thus for every solution to the closed-loop system (3.8), with initial conditions
satisfying d12(t0) �= 0, there exists ε > 0 such that |d12(t)| ≥ ε ∀ t.

3.1.2 Stability analysis

As Proposition 3.1.1 provides a solution to the part of Problem 3.1 requiring d12(t) �= 0 ∀ t,
the remaining two requirements still need to be proven. In order to provide a solution to the
remaining requirements, it is desired to prove stability of the origin of the closed-loop system
(3.8). Note that it can be assumed that d12,r(t) > 0 without loss of generality (w.l.o.g.), since
d12(t) = x̃1(t)− x̃2(t) + d12,r(t) �= 0 ∀ t according to Proposition 3.1.1. To this end, consider the
following proposition.

Proposition 3.1.2. Consider the closed-loop reference tracking dynamics (3.8). If the con-
troller gains satisfy k1, k2 > 0, the origin of the closed-loop system (3.8) is uniformly globally
asymptotically stable (UGAS) on an invariant domain D1(t) = {x̃(t) | d12(t) > 0}, i.e., x̃(t) → 0
for t→ ∞ with x̃(t) ∈ D1.
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Proof. Define domain D1(t) = {x̃(t) | d12(t) > 0} and note that this domain is invariant
according to Proposition 3.1.1. Next, w.l.o.g. it is assumed that d12,r(t) > 0, with which it is
apparent that x̃ = [0, 0]� ∈ D1, when using d12 = x̃1 − x̃2 + d12,r. Now consider the Lyapunov
function V given by

V =
1

2
x̃21 +

1

2
x̃22, (3.15)

differentiating along solutions of (3.8) yields

V̇ = −k1x̃21 − k1x̃
2
2 −

k2(x̃1 − x̃2)
2

(x̃1 − x̃2 + d12,r)d12,r
≤ 0 for x̃ ∈ D1. (3.16)

Now, by using the definition of the domain D1 and the assumption that d12,r(t) > 0, it can
be concluded that for x̃ ∈ D1 it holds that V > 0 ∀ x̃ �= 0 and V̇ < 0 ∀ x̃ �= 0. Applying
Proposition 2.2.4 renders the equilibrium point x̃eq = [0, 0]� uniformly globally asymptotically
stable (UGAS) on D1, completing the proof.

Additionally, in order to analyse stability for x̃1 − x̃2 + d12,r = d12 < 0, i.e., when d12 /∈ D1,
consider the following proposition.

Proposition 3.1.3. Consider a projection of the closed-loop reference tracking dynamics (3.8)
defined by

z1 = x̃1 + x̃2, (3.17)

differentiating yields the projected dynamics

ż1 = ˙̃x1 + ˙̃x2 = −k1z1. (3.18)

If the controller gains are chosen as k1, k2 > 0, the origin of (3.18) is uniformly globally
asymptotically stable (UGAS), i.e., z1(t) → 0 for t→ ∞, and x̃1 − x̃2 stays bounded.

Proof. Consider candidate Lypaunov function

V (z1) =
1

2
k1z

2
1 , (3.19)

differentiating along solutions (3.18) yields

V̇ (z1) = −k1z21 ≤ 0, (3.20)

and it can be seen that V > 0 ∀ z1 �= 0 and V̇ < 0 ∀ z1 �= 0. Applying Proposition 2.2.4 renders
the origin of (3.18) UGAS. To additionally show that limt→∞ x̃1(t)− x̃2(t) is bounded, consider
the additional projected variable

z2 = x̃1 − x̃2, (3.21)

differentiating yields the projected dynamics

ż2 = ˙̃x1 − ˙̃x2 = −k1z2 − 2k2
z2

(z2 + d12,r)d12,r
. (3.22)

Now consider candidate Lyapunov function

V (z2) =
1

2
k1z

2
2 , (3.23)

differentiating along solutions (3.22) yields

V̇ (z2) = −
(
k1 +

2k2
(z2 + d12,r)d12,r

)
z22 , (3.24)

and note that when z2 + d12,r = d12 > 0, it can be seen that V̇ ≤ 0 and the result of Proposition
3.1.2 is obtained. From (3.24) it can be seen that V̇ ≤ 0 for z2 ≤ −d12,r − 2k2

k1d12,r
when

z2 + d12,r = d12 < 0, and thus z2 is bounded as long as d12,r is bounded. This completes the
proof.
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Note that Proposition 3.1.3 can be used to obtain the result of Proposition 3.1.2, but it also
proves limt→∞ (x̃1(t) + x̃2(t)) = 0 for x̃ ∈ D2 = {x̃ | d12 < 0}, while showing that x̃1(t)− x̃2(t)
remains bounded.

Collision before reaching reference

When x̃ ∈ D2 = {x̃ | x̃1 − x̃2 + d12,r < 0} it might be interesting to require d12(t) = −d12,r(t) for
t→ ∞, since the resulting formation shape would be the desired formation shape. To achieve
this, (3.24) is set equal to zero and consider z2 + d12,r = d12 < 0 to obtain

z2 + d12,r = d12 = − 2k2
k1d12,r

, (3.25)

from which it can be seen that limt→∞ d12(t) = − limt→∞ d12,r(t) for controller gains k1 and k2
chosen according to

lim
t→∞ d12,r =

√
2k2
k1

, (3.26)

as only time-independent controller gains are considered. This indicates that when limt→∞ d12,r
is a constant, the formation shape in steady-state will always be the desired formation shape,
irrespective of initial conditions, albeit that agent one might be at the position of agent two.

Concluding remarks

Combining Propositions 3.1.1 and 3.1.2 provides a solution to Problem 3.1, proving stability of
the reference tracking subsystem, while simultaneously proving the absence of collisions in the
entire system. Additionally, Proposition 3.1.3 shows that limt→∞ x̃1(t) + x̃2(t) = 0 is UGAS for
solutions with d12(t0) < 0, which will never reach d12 = d12,r, while showing that x̃1(t)− x̃2(t) is
bounded. Finally, a special situation is considered where limt→∞ d12(t) = − limt→∞ d12,r(t) is
required when d12 ∈ D2, and the corresponding controller gains are given.

3.2 Double integrators in 1D

Now that the system of single integrators in 1D is fully analyzed with respect to tracking behavior
and instability of the collision point, the system dynamics (3.1) is extended from a kinematic
model to a dynamic model as

ẋi = vi, (3.27a)

v̇i = ui, (3.27b)

where i ∈ {1, 2}, and xi ∈ R, vi ∈ R and ui ∈ R denote, respectively, the position, velocity
and input of agent i. Again, the reference trajectory xi,r is introduced which is also subject
to (3.27), implicating ẋi,r = vi,r, v̇i,r = ui,r. The tracking and velocity error for node i are,
respectively, defined as x̃i = xi − xi,r and ṽi = vi − vj , the position of node i with respect to
node j is denoted by dij = −dji = xi − xj , the referenced relative position of node i with respect
to node j is defined as dij,r = −dji,r = xi,r − xj,r, the relative velocity of node i with respect to
node j is denoted as vij = vi − vj , and the reference relative velocity is given as vij,r = vi,r − vj,r,
which are all scalars as a one-dimensional system is considered. Note that it is assumed that
xi,r(t) �= xj,r(t), i.e., dij,r(t) �= 0 ∀ t �= 0, since xi,r(t) = xj,r(t) would result in a collision. The
reference tracking dynamics is now given as

˙̃xi = ẋi − ẋi,r = vi − vi,r = ṽi, (3.28a)

˙̃vi = v̇i − v̇i,r = ui − ui,r, (3.28b)
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and the relative position dynamics is given as

ḋij = ẋi − ẋj = vi − vj = vij , (3.29a)

v̇ij = v̇i − v̇j = ui − uj . (3.29b)

Problem 3.2. Consider the reference tracking dynamics (3.28) with i ∈ {1, 2}. Find an
appropriate control law

ui = ui(t, x̃1, x̃2, ṽ1, ṽ2), (3.30)

such that the resulting closed-loop system yields

lim
t→∞ x̃1 = 0, lim

t→∞ x̃2 = 0, lim
t→∞ ṽ1 = 0, lim

t→∞ ṽ2 = 0, d12(t) �= 0 ∀ t. (3.31)

3.2.1 Converse Lyapunov theorem

Since a double, rather than a single integrator system is considered, composition of a Lyapunov
function as a function of d12, similar to (3.9), becomes quite cumbersome. To get an idea of what
a suitable Lyapunov function would look like, a numerical Lyapunov function is composed using
converse Lyapunov theory. To compose a numerical Lyapunov function of a nonlinear system of
which the origin is exponentially stable, Proposition 2.2.2 and Proposition 2.2.3 are combined.
First, in order to apply this theorem, a coordinate transformation is applied to (3.29) as

[
z1
z2

]
=

[ 1
d12

− 1
2

v12
d12

]
,

[
d12
v12

]
=

[ 1
z1+

1
2

z2
z1+

1
2

]
, (3.32)

and the dynamics (3.27) is considered in closed-loop with the control input

ui = ui,r − k1x̃i − k2ṽi − k3(vij − vij,r) + k4

(
1

dij
− 1

dij,r

)
. (3.33)

An extension of (3.6) with controller gains k1, k2, k3, and k4 to be chosen freely. The resulting
closed-loop dynamics is given as

ż1 = −
(
z1 +

1

2

)
z2, (3.34a)

ż2 = (u1,r − u2,r)

(
z1 +

1

2

)
− k1 + k1d12,r

(
z1 +

1

2

)
(3.34b)

− (k2 + 2k3)

(
z2 − v12,r

(
z1 +

1

2

))
+ 2k4

(
z1 +

1

2

)2

− 2k4
d12,r

(
z1 +

1

2

)
− z22 .

With the stated transformation the aim is to show stability of a certain domain in the (z1, z2)-
space and with that, prove both stability of the two equilibria in the defined region, and absence
of collisions in solutions starting in the considered domain. It should be noted that with the
coordinate transformation (3.32), the collision point is conveniently shifted to ±∞ and d12 = ±∞
is shifted to the z1 = −0.5 axis. Next, the system (3.34) is to be linearized around the equilibria
in order to investigate local stability and eventually apply the converse Lyapunov theorem along
the lines of Proposition 2.2.2 and Proposition 2.2.3. Before this can be done, certain parameters
need to be explicitly defined, and in this case d12,r(t) = 2, v12,r(t) = 0 and u1,r(t) = u2,r(t) = 0
are considered, with which (3.34) reduces to

ż1 = −
(
z1 +

1

2

)
z2, (3.35a)

ż2 = 2k4z
2
1 − z22 + (2k1 + k4)z1 − (k2 + 2k3)z2, (3.35b)
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of which the equilibria are computed as zeq = [0, 0] and zeq = [−2k1+k4
2k4

, 0], where the equilibria

at z1 = −1
2 are deemed irrelevant as they represent the situation for which d12 = ±∞. Now the

Jacobian of (3.35) is computed to be

J(z1, z2) =

[ −z2 −(z1 +
1
2)

4k4z1 + 2k1 + k4 −2z2 − k2 − 2k3

]
, (3.36)

and evaluating at the equilibrium points gives

J(0, 0) =

[
0 −1

2
2k1 + k4 −k2 − 2k3

]
= A1. (3.37)

and

J

(
−2k1 + k4

2k4
, 0

)
=

[
0 2k1+k4

2k4
− 1

2

−2(2k1 + k4) + 2k1 + k4 −k2 − 2k3

]
= A2, (3.38)

from which it can be seen that Re(eig(Ai)) < 0 ∀ k1, k2, k3, k4 > 0 with i ∈ {1, 2} and thus
both equilibria of both linearizations are locally exponentially stable (LES), and according to
Proposition 2.2.3 they are LES equilibrium points for the nonlinear system (3.35). Lyapunov
functions for both equilibria in the linearized dynamics can now be composed using controller
gains k1 = 2k2 = 2k3 = 2k4 = 2 according to

Vlin,i = w�
i Piwi, V̇lin,i = −w�

i Qwi, PiAi +A�
i Pi = −Q, (3.39)

with w1 = z = [z1, z2]
� and w2 = z+ [2.5, 0]�. Simply using Q = I2 yields P1 and P2 according

to

P1 =

[
73
30

−1
10−1

10
11
60

]
, P2 =

[
11
15

−1
10−1

10
7
30

]
. (3.40)

The proof of Proposition 2.2.2, see [39], uses a Lyapunov function as

Vconv(z) =

∫ ∞

0
φ�(τ)φ(τ)dτ, (3.41)

where φ(τ) denotes the solution of the nonlinear system on time τ , as the system (3.34) is
autonomous. Now, since solutions converge to the equilibria, and thus only reach the equilibria for
t→ ∞, computing the integral (3.41) can become cumbersome and time consuming. Therefore,
the total numeric Lyapunov function is computed by assuming that close to the equilibria, the
behavior can be approached by using the linearized dynamics of the respective equilibrium, i.e.,
it is assumed that the system is linear for wi = {wi | Vlin,i ≤ 0.01}. Finally, the total converse
numeric Lyapunov function is composed as

Vi(z) =

⎧⎪⎨
⎪⎩
Vlin,i for wi = {wi | Vlin,i ≤ 0.01},∫ te

0
φ�(wi(t0), τ)φ(wi(t0), τ)dτ else,

(3.42)

where t0 is the time corresponding to the chosen initial conditions wi(t0), te the time corresponding
to Vlin,i = 0.01, and φ(wi(t0), τ) denotes the solution starting at initial conditions wi(t0). In
Figure 3.2, Vi is plotted with i = 1 ∀ z1 > −0.5 and i = 2 ∀ z1 < −0.5, note that Vi is undefined
at z1 = −0.5 since this would be d12 = ±∞. From this figure it can be seen that V = 0 only at
the two equilibrium points and V > 0 elsewhere in the considered domain, similarly, V̇ is also
computed to be V̇ = 0 at the equilibrium points and V̇ < 0 elsewhere in the considered domain.
Since the resulting numeric converse Lyapunov function only holds for a very specific situation,
i.e., d12,r, v12,r, u1,r, u2,r and all the controller gains are to be specifically chosen, the converse
Lyapunov method is deemed not suitable to provide a solution to Problem 3.2. However, the
shape of the resulting numeric Lyapunov function inspires a different approach which proves to
be more fruitful.
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Figure 3.2: Level sets of composed numeric manifold Vi with two solution paths.

3.3 Stability with control Lyapunov function

From Figure 3.2 it can be seen that Vi → ∞ for z1 → −1
2 , and since it is computed that V̇i < 0

for z1 values close to z1 = −1
2 , this indicates that solutions starting close to z1 = −1

2 will diverge
from z1 = −1

2 , i.e., solutions diverge from d12 = ±∞. This observation is used in an approach
to prove solutions diverging from the collision point d12 = 0. A first analysis using a control
Lyapunov function to prove stability of a system of single integrators in 1D, while achieving
collision avoidance, is executed to compare with the previously obtained results. Next, the
considered system is gradually expanded to a system of double integrators in arbitrary dimension,
and finally a system of UAVs in 3D is analyzed.

3.3.1 Single integrators in 1D with constant reference

To verify whether usage of a control Lyapunov function satisfying V → ∞ for d12 → 0 can
indeed give the contemplated results, a system of two single integrators in 1D is considered again.
Therefore, the kinematics (3.1) is considered again with i ∈ {1, 2} in 1D, of which the tracking
behavior is given according to (3.2), and Problem 3.1 is slightly adjusted to the following control
problem.

Problem 3.3. Consider the reference tracking dynamics (3.2) with i ∈ {1, 2} and a constant
reference trajectory, i.e., ẋi,r = 0, implying ḋ12,r(t) = 0. Find an appropriate control law

ui = ui(x̃1, x̃2), (3.43)

such that the resulting closed-loop system yields

lim
t→∞ x̃1 = 0, lim

t→∞ x̃2 = 0, d12(t) �= 0 ∀ t. (3.44)

In order to provide a solution to Problem 3.3 using a control Lyapunov function, consider the
following proposition.
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Proposition 3.3.1. Consider the kinematic system (3.2) in 1D with i ∈ {1, 2} and a constant
reference signal, i.e., ẋi,r(t) = 0. Choosing the control law

ui = −kix̃i − (−1)ik3

(
1

d12
− 1

d12,r

)(
1

d212

)
, (3.45)

with k1, k2, k3 > 0 control parameters, yields the time-invariant closed-loop system

˙̃x1 = −k1x̃1 + k3

(
1

d12
− 1

d12,r

)(
1

d212

)
= −k1x̃1 + k3

x̃2 − x̃1
d12,r(x̃1 − x̃2 + d12,r)3

, (3.46a)

˙̃x2 = −k2x̃2 − k3

(
1

d12
− 1

d12,r

)(
1

d212

)
= −k2x̃2 − k3

x̃2 − x̃1
d12,r(x̃1 − x̃2 + d12,r)3

, (3.46b)

of which the equilibria are asymptotically stable and locally exponentially stable (LES). Moreover,
no collisions between agents occur in the system, i.e., for every solution to (3.46) with initial
conditions satisfying d12(t0) �= 0, there exists ε > 0 such that |d12(t)| ≥ ε ∀ t.
Proof. Consider the kinematic system (3.2) in 1D and define x̃ = [x̃1 x̃2]

�. Subsequently,
consider the candidate control Lyapunov function

V (x̃) =
k1
2
x̃21 +

k2
2
x̃22 +

k3
2

(
1

d12
− 1

d12,r

)2

, (3.47)

where k1, k2, k3 > 0 are gains which are free to choose, and an artificial potential field is
introduced by the term k3

2 (
1
d12

− 1
d12,r

)2. Next, since the reference signal is restricted to a

constant reference signal, i.e., ẋi,r = ui,r = 0, the derivative of the control Lyapunov function
(3.47) along solutions of (3.2) is given as

V̇ (x̃) = k1x̃1u1 + k2x̃2u2 + k3

(
1

d12
− 1

d12,r

)(
− 1

d212

)
(u1 − u2), (3.48)

=

[
k1x̃1 − k3

(
1

d12
− 1

d12,r

)(
1

d212

)]
u1 +

[
k2x̃2 + k3

(
1

d12
− 1

d12,r

)(
1

d212

)]
u2,

from which it can be seen that V̇ ≤ 0 when the control inputs are chosen as

u1 = −k1x̃1 + k3

(
1

d12
− 1

d12,r

)(
1

d212

)
= −k1x̃1 + k3

d12,r − d12
d12,rd312

, (3.49a)

u2 = −k2x̃2 − k3

(
1

d12
− 1

d12,r

)(
1

d212

)
= −k2x̃2 − k3

d12,r − d12
d12,rd312

, (3.49b)

resulting in

V̇ (x̃) = −
[
k1x̃1 − k3

(
1

d12
− 1

d12,r

)(
1

d212

)]2
−

[
k2x̃2 + k3

(
1

d12
− 1

d12,r

)(
1

d212

)]2
≤ 0.

(3.50)
Since the closed-loop system (3.46) is a time-invariant system, LaSalle’s invariance principle tells
us that the system converges to the largest invariant subset of {x̃ | V̇ (x̃) = 0}. This invariant
subset is defined by

k1x̃1 = k3

(
1

d12
− 1

d12,r

)(
1

d212

)
= −k2x̃2, (3.51)

and note that this set defines the equilibria of the closed loop system (3.46). By using d12 =
x̃1 − x̃2 + d12,r it can be seen that (3.51) has two (real) solutions; x̃1 = x̃2 = 0, and

x̃1 =

(
3

√
−k3
k1d12,r

(
1 +

k1
k2

)
− d12,r

)(
1 +

k1
k2

)−1

, (3.52a)

x̃2 = −k1
k2

(
3

√
−k3
k1d12,r

(
1 +

k1
k2

)
− d12,r

)(
1 +

k1
k2

)−1

, (3.52b)



20 CHAPTER 3. STABILITY ANALYSIS

which are the equilibrium points, x̃eq, of (3.46). Following Theorem 2.1, it can now be concluded
that the equilibria of (3.46) with the considered group of reference trajectories, are asymptotically
stable. Moreover, according to Theorem 2.1, (3.50) indicates that 1

d12
is bounded, implicating

that d12 is bounded away from zero and therefore, for each initial condition d12(t0) �= 0, there
exists ε > 0 such that |d12(t)| ≥ ε ∀ t and thus collisions will never occur for d12(t0) �= 0. Next, to
analyze local stability of the equilibria of (3.46), given by (3.51), the Jacobian of the closed-loop
system is computed to be

J(x̃1, x̃2) =

[ −k1 +B(x̃1, x̃2) −B(x̃1, x̃2)
−B(x̃1, x̃2) −k2 +B(x̃1, x̃2)

]
, (3.53)

with

B(x̃1, x̃2) = k3
2(x̃1 − x̃2)− d12,r

(x̃1 − x̃2 + d12,r)4d12,r
. (3.54)

Evaluating J at the equilibrium (x̃1, x̃2) = (0, 0) gives B(0, 0) = −k3/d412,r and

J(0, 0) =

⎡
⎣ −k1 − k3

d412,r

k3
d412,r

k3
d412,r

−k2 − k3
d412,r

⎤
⎦ , (3.55)

of which the eigenvalues are computed to be

λJ(0,0) =
−

(
2k3 + (k1 + k2)d

4
12,r ±

√
(k1 − k2)2d812,r + 4k23

)
2d412,r

, (3.56)

and by using

2k3 + (k1 + k2)d
4
12,r >

√
(k1 − k2)2d812,r + 4k23, (3.57a)

(2k3 + (k1 + k2)d
4
12,r)

2 > (k1 − k2)
2d812,r + 4k23, (3.57b)

(k1 − k2)
2d812,r + 4k1k2d

8
12,r + 4k3(k1 + k2)d

4
12,r + 4k23 > (k1 − k2)

2d812,r + 4k23, (3.57c)

4k1k2d
8
12,r + 4k3(k1 + k2)d

4
12,r > 0, (3.57d)

and recalling k1, k2, k3, d12,r > 0, it can be seen that both eigenvalues λJ(0,0) are strictly negative.
A similar analysis of the equilibrium point given in (3.52) is given in Appendix A, also giving
two strictly negative eigenvalues, and applying Proposition 2.2.3 renders both equilibria of (3.46)
locally exponentially stable (LES). This completes the proof.

Concluding remarks

Using a control Lyapunov function and simultaneously choosing a control input ui, both equilibria
are proven LES, while also proving the absence of possible collisions, thus providing a solution
to Problem 3.3. Note that this section only provides a solution to Problem 3.3, as only constant
reference signals are considered, in contrast to the approach in Section 3.1. However, using a
control Lyapunov function turns out to be a promising approach to now analyze a system of
double integrators and to complete the analysis of Section 3.2.

3.3.2 Double integrators in arbitrary dimension with constant reference

Now that a system of two single integrators in 1D is analyzed using a control Lyapunov function
in order to prove stability of equilibria and avoidance of collisions, the system is expanded to
that of two double integrators in nD with n ∈ N+. Consider therefore the dynamic system

ρ̇i = vi, (3.58a)

v̇i = ui, (3.58b)
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where i ∈ {1, 2}, and ρi ∈ Rn, vi ∈ Rn and ui ∈ Rn denote, respectively, the position, velocity,
and input of agent i in inertial frame I. The reference trajectory ρi,r is introduced which
is also subject to (3.58), implicating ρ̇i,r = vi,r and v̇i,r = ui,r. The tracking and velocity
error for node i are now, respectively, defined as ρ̃i = ρi − ρi,r and ṽi = vi − vi,r. The
relative position of node i with respect to node j is defined as ρij = ρi − ρj and the relative
distance between node i and j is defined as dij = ‖ρij‖, where ‖ρij‖ denotes the two-norm of

vector ρij , i.e., ‖ρij‖ = ‖ρij‖2 =
√
ρ�ijρij . Similarly, the reference relative distance is defined as

dij,r = ‖ρij,r‖ = ‖ρi,r−ρj,r‖, and it should be noted that dij = dji > 0, as well as dij,r = dji,r > 0.
Note that it is assumed that ρi,r(t) �= ρj,r(t), i.e., dij,r(t) �= 0 ∀ t, since ρi,r(t) = ρj,r(t) would
result in a collision. Finally, the state vector is denoted as xi = [ρi vi]

� ∈ R2n and accordingly
xi,r = [ρi,r vi,r]

�, with which x̃i = xi − xi,r is defined. The reference tracking dynamics is now
given as

˙̃ρi = ρ̇i − ρ̇i,r = vi − vi,r = ṽi, (3.59a)

˙̃vi = v̇i − v̇i,r = ui − ui,r, (3.59b)

with the relative speed between node i and j expressed as

ḋij =
v�ijρij
‖ρij‖ , (3.60)

for ρij �= 0, where vij = vi − vj denotes the relative velocity. Control Problem 3.2, aiming to
achieve reference tracking and collision avoidance in a system of double integrators in 1D where
time-varying reference signals are allowed, is now slightly adjusted and stated as follows.

Problem 3.4. Consider the reference tracking dynamics (3.59) with i ∈ {1, 2} and a constant
reference trajectory, i.e., ρ̇i,r = 0, v̇i,r = 0. Find an appropriate control law

ui = ui(ρ̃1, ρ̃2, ṽ1, ṽ2), (3.61)

such that the resulting closed-loop system yields

lim
t→∞ ρ̃1 = 0, lim

t→∞ ρ̃2 = 0, lim
t→∞ ṽ1 = 0, lim

t→∞ ṽ2 = 0, d12(t) �= 0 ∀ t. (3.62)

In order to provide a solution to Problem 3.4 using a control Lyapunov function, let us consider
the following proposition.

Proposition 3.3.2. Consider the reference tracking dynamics (3.59) in nD with n ∈ N+,
i ∈ {1, 2}, and a constant reference signal, i.e., ρ̇i,r(t) = 0, v̇i,r(t) = 0. Choosing the control law

ui = −ki+(i−1)ρ̃i − k2iṽi − (−1)ik5
d12,r − d12
d12,rd412

(ρ̃1 − ρ̃2 + ρ12,r), (3.63)

with k1, k2, k3, k4, k5 > 0, yields the time-invariant closed-loop system

˙̃ρ1 = ṽ1, (3.64a)

˙̃v1 = −k1ρ̃1 − k2ṽ1 + k5
d12,r − d12
d12,rd412

(ρ̃1 − ρ̃2 + ρ12,r) , (3.64b)

˙̃ρ2 = ṽ2, (3.64c)

˙̃v2 = −k3ρ̃2 − k4ṽ2 − k5
d12,r − d12
d12,rd412

(ρ̃1 − ρ̃2 + ρ12,r) , (3.64d)

of which the equilibria are asymptotically stable. Moreover, no collisions between agents occur in
the system, i.e., for every solution to (3.64) with initial conditions satisfying d12(t0) �= 0, there
exists ε > 0 such that |d12(t)| ≥ ε ∀ t.
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Proof. Consider the reference tracking dynamics (3.59) with ρi ∈ Rn, vi ∈ Rn, ui ∈ Rn, and
n ∈ N+. Subsequently, consider the candidate control Lyapunov function, based on (3.47), as

V (x̃1, x̃2) =
k1
2
ρ̃�1 ρ̃1 +

1

2
ṽ�1 ṽ1 +

k3
2
ρ̃�2 ρ̃2 +

1

2
ṽ�2 ṽ2 +

k5
2

(
1

d12
− 1

d12,r

)2

, (3.65)

with k1, k3, k5 > 0. Differentiating along solutions yields

V̇ (x̃1, x̃2) = k1ρ̃
�
1 ṽ1+ṽ

�
1 (u1−u1,r)+k3ρ̃�2 ṽ2+ṽ�2 (u2−u2,r)−k5

(
1

d12
− 1

d12,r

)(
v�12ρ12
d312

)
, (3.66)

where the assumption ḋ12,r = 0 is used. When further restricting the reference signal to a
constant reference position in the inertial frame I, i.e., ρ̇i,r(t) = 0 and v̇i,r(t) = 0, (3.66) can be
rewritten as

V̇ (x̃1, x̃2) = ṽ�1

[
k1ρ̃1 + u1 − k5

d12,r − d12
d12,rd412

ρ12

]
+ ṽ�2

[
k3ρ̃2 + u2 + k5

d12,r − d12
d12,rd412

ρ12

]
, (3.67)

and when the inputs u1 and u2 are chosen as

u1 = −k1ρ̃1 − k2ṽ1 + k5
d12,r − d12
d12,rd412

(ρ̃1 − ρ̃2 + ρ12,r) , (3.68a)

u2 = −k3ρ̃2 − k4ṽ2 − k5
d12,r − d12
d12,rd412

(ρ̃1 − ρ̃2 + ρ12,r) , (3.68b)

where ρ12 = ρ̃1 − ρ̃2 + ρ12,r, and k2, k4 > 0 is used and it is noted that d12 = ‖ρ12‖ =
‖ρ̃1 − ρ̃2 + ρ12,r‖, it can be seen that

V̇ (x̃) = −k2ṽ�1 ṽ1 − k̃4v
�
2 ṽ2 ≤ 0. (3.69)

Since the closed-loop system (3.64) is a time-invariant system, LaSalle’s invariance principle tells
us that the system converges to the largest invariant subset of {(x̃1, x̃2) | V̇ (x̃1, x̃2) = 0}. This
invariant subset is defined by

ṽ1 = 0, ṽ2 = 0, k1ρ̃1 = k5
d12,r − d12
d12,rd412

ρ12 = −k3ρ̃2, (3.70)

as V̇ = 0 gives ṽ1 = ṽ2 = 0, and substitution of ṽ1 = ṽ2 = 0 in (3.64) and setting ρ̇1 = v̇1 = ρ̇2 =

v̇2 = 0 gives k1ρ̃1 = k5
d12,r−d12
d12,rd412

ρ12 = −k3ρ̃2. Now using d12 = ‖ρ12‖ and ρ12 = ρ̃1 − ρ̃2 + ρ12,r,

gives

ρ12,r = ρ12 − ρ̃1 + ρ̃2 =

[
1− (k1 + k3)k5

k1k3

(d12,r − d12)

d12,rd412

]
ρ12, (3.71)

and therefore

d212,r =

[
1− (k1 + k3)k5

k1k3

(d12,r − d12)

d12,rd412

]2
d212, (3.72)

resulting in the two solutions

± d12,r
d12

= 1− (k1 + k3)k5
k1k3

(d12,r − d12)

d12,rd412
, (3.73)

also denoted as [
k1k3d12,rd

3
12 + (k1 + k3)k5

]
(d12 − d12,r) = 0, (3.74a)

k1k3d12,rd
4
12 + k1k3d

2
12,rd

3
12 + (k1 + k3)k5d12 − (k1 + k3)k5d12,r = 0. (3.74b)
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Using d12 =
√
ρ�12ρ12 ≥ 0, (3.74a) gives only one feasible solution; d12 = d12,r. The second

equation, (3.74b), is negative for d12 = 0, while its derivative is strictly positive for d12 > 0,
indicating that the function is increasing in d12. Combining this with the fact (3.74b) is positive
for d12 = d12,r, indicates that there is also only one feasible solution for d12 to (3.74b), which
satisfies 0 < d12 < d12,r and which can be computed conveniently using, for example, bisection.
Finally, (3.70) and (3.71) are combined to get

ρ̃1 =
k3k5(d12,r − d12)

k1k3d12,rd412 − (k1 + k3)k5(d12,r − d12)
ρ12,r, (3.75a)

ρ̃2 =
k1k5(d12 − d12,r)

k1k3d12,rd412 − (k1 + k3)k5(d12,r − d12)
ρ12,r, (3.75b)

which gives ρ̃1 = ρ̃2 = 0 for d12 = d12,r, and in the particular case that ρ̃1 and ρ̃2 are on the line
through ρ1,r and ρ2,r, ρ̃1 and ρ̃2 relate according to k1ρ̃1 = −k3ρ̃2.
Following Theorem 2.1, it can now be concluded that the equilibria of (3.64) with the considered
group of reference trajectories, are asymptotically stable. Moreover, according to Theorem
2.1, (3.50) indicates that 1

d12
is bounded, implicating that d12 is bounded away from zero and

therefore, for each initial condition d12 �= 0, there exists ε > 0 such that |d12(t)| ≥ ε ∀ t and thus
collisions will never occur for d12(t0) �= 0. This completes the proof.

Concluding remarks

Using a control Lyapunov function and simultaneously designing a control input ui, asymptotic
stability of the equilibria is proven. Moreover, the absence of possible collisions in a system of
two double integrators in arbitrary dimension is proven, and thus a solution to Problem 3.4
is provided. Note that this section now achieves the contemplated result of Section 3.2 for a
constant reference signal and, on top of that, the proof is generalized to arbitrary dimension.

3.4 Stability of quadcopters in 3D with constant reference

After successful analysis, with respect to tracking behavior and collision avoidance, of a system
of double integrators in the n-dimensional space with a constant reference signal, the step
to a system of quadcopters in 3D is made. Now, let ρi ∈ R3 denote the position of the
center of mass of a quadrotor UAV relative to a North-East-Down (NED) inertial frame I,
with i ∈ {1, 2} and where the quadrotor is assumed to be axisymmetric, implying that the
distance from the center of mass to each of the four rotors is identical. Fixed to the center of
mass at ρi, a body-fixed, right-handed coordinate frame Bi is considered with relative rotation
Ri ∈ SO(3) = {R ∈ R3×3|R�R = I, detR = 1} with respect to inertial frame I. The linear
velocity of quadrotor UAV i relative to its body-fixed frame Bi is denoted as νi ∈ R3 and angular
velocities relative to the body-fixed frame Bi are defined as ωi ∈ R3. The quadrotor is considered
in ×-configuration in order to have a dedicated forward direction. The dynamical model of a
quadrotor UAV is now given by following the Newton-Euler modelling approach [32] as

ρ̇i = Riνi, (3.76a)

ν̇i = −S(ωi)νi + gR�
i e3 −

fi
mi
e3, (3.76b)

Ṙi = RiS(ωi), (3.76c)

Jiω̇i = S(Jiωi)ωi + τi, (3.76d)

where mi denotes the total mass of UAV i, Ji = J�
i > 0 the inertia matrix of UAV i with respect

to its body-fixed frame, ei for i ∈ {1, 2, 3} denotes the standard unit vector, fi ∈ R and τi ∈ R3
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are assumed to be the inputs which denote the total thrust magnitude and the total moment
vector in the body fixed frames, and finally, the skew symmetric operator S(·) is defined along
the lines of Definition 2.1.1, as

S(a) = −S(a)� =

⎡
⎣ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎤
⎦ ∈ SO(3). (3.77)

Next, consider a reference trajectory for these two UAVs that is also subject to (3.76), i.e., for
each UAV of the system a feasible reference trajectory is given satisfying

ρ̇i,r = Ri,rνi,r, (3.78a)

ν̇i,r = −S(ωi,r)νi,r + gR�
i,re3 −

fi,r
mi

e3, (3.78b)

Ṙi,r = Ri,rS(ωi,r), (3.78c)

Jiω̇i,r = S(Jiωi,r)ωi,r + τi,r, (3.78d)

where 0 < fmin
i,r ≤ fi,r(t) for i ∈ {1, 2}. Next, let a formation frame F be located at a fixed, but

free to choose virtual center of the formation, along the lines of [43]. Let ρf ∈ R3 denote the
position of this frame relative to the NED inertial frame I, and Rf ∈ SO(3) the rotation matrix
from the frame F to I and both are assumed to be twice continuously differentiable. With this,
the reference position and velocity of each UAV can be, respectively, expressed in the formation
frame F [43] as

pi,r = R�
f (ρi,r − ρf ), vi,r = R�

f Ri,rνi,r. (3.79)

Similarly, the position pi and velocity vi of UAV i can be expressed in the formation frame as
pi = R�

f (ρi − ρf ) and vi = R�
f Riνi, respectively. The relative position of UAV i with respect

to j is then denoted in the formation frame as pij = pi − pj = R�
f (ρi − ρj) and the relative

distance is defined as dij = ‖pij‖. Since only rotation matrices in SO(3) are considered, one can

write dij = ‖ρi − ρj‖ = ‖ρij‖ =
√
ρ�ijρij , and accordingly d12,r =

√
ρ�ij,rρij,r, where it should be

noted that the relative distances are equal in every frame of reference. Furthermore, the relative
velocity between UAV i and j expressed in the inertial frame is defined as vij = (Riνi −Rjνj)
and with that, the relative speed is computed to be

ḋij =
v�ijρij√
ρ�ijρij

, (3.80)

for ρij �= 0, which likewise is equal in every frame of reference. Finally, this allows to express the
individual position and velocity tracking errors in the mutually known formation frame as

pi,e = pi,r − pi = R�
f (ρi,r − ρi), (3.81a)

vi,e = vi,r − vi = R�
f (Ri,rνi,r −Riνi), (3.81b)

which are to satisfy
lim
t→∞ pi,e = 0, lim

t→∞ vi,e = 0, (3.82)

in order for position tracking to be achieved. Since it is also desired to obtain tracking of the
reference attitude, the attitude errors on SO(3) expressed in the reference frame are defined as

Ri,e = R�
i Ri,r, ωi,e = ωi,r −R�

i,eωi, (3.83)

which are required to satisfy

lim
t→∞Ri,e = I3, lim

t→∞ωi,e = 0, (3.84)
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for tracking to be achieved. The total corresponding error measure for agent i is denoted by

εi(pi,e, vi,e, Ri,e, ωi,e) = ‖pi,e‖+ ‖vi,e‖+ log ‖Ri,e‖+ ‖ωi,e‖ (3.85)

with which the tracking and collision avoiding control problem is stated as follows.

Problem 3.5. (cf. [25]) Given a feasible reference trajectory (ρi,r, νi,r, Ri,r, ωi,r, fi,r, τi,r) for
UAV i, find control laws

fi = fi(ρi, νi, Ri, ωi, ρi,r, νi,r, Ri,r, ωi,r), (3.86a)

τi = τi(ρi, νi, Ri, ωi, ρi,r, νi,r, Ri,r, ωi,r), (3.86b)

such that the resulting closed-loop (3.76), (3.78) and (3.86) yields

lim
t→∞ εi(pi,e(t), vi,e(t), Ri,e(t), ωi,e(t)) = 0 and d12(t) �= 0 ∀ t. (3.87)

The position and attitude tracking part of Problem 3.5 are now analyzed separately in the
following sections, before eventually considering the cascaded system.

3.4.1 Position tracking control with collision avoidance

Differentiating tracking errors (3.81) along (3.76) results in the position tracking dynamics as

ṗi,e = −S(ωf )pi,e + vi,e, (3.88a)

v̇i,e = −S(ωf )vi,e + ui,e, (3.88b)

where ui,e is considered a virtual input satisfying

ui,e = R�
f

(
Ri

fi
mi
e3 −Ri,r

fi,r
mi

e3

)
, (3.89)

to be achieved by the attitude tracking subsystem. Note that this virtual input couples the
two tracking subsystems, indicating the cascaded structure. As stabilizing the system (3.88)
accommodates a solution to Problem 3.5, consider the following proposition as a possible solution.

Proposition 3.4.1. Consider the reference tracking dynamics (3.88) with i ∈ {1, 2} and time-
independent reference trajectories satisfying ṗi,r(t) = 0, v̇i,r(t) = 0, and v1,r = v2,r. Choosing the
control law

ui,e = −ki+(i−1)pi,e − k2ivi,e − (−1)ik5
d12,r − d12
d12,rd412

(p1,e − p2,e + p12,r), (3.90)

with k1, k2, k3, k4, k5 > 0, control parameters, yields the time-invariant closed-loop system

ṗ1,e = −S(ωf )p1,e + v1,e, (3.91a)

v̇1,e = −S(ωf )v1,e − k1p1,e − k2v1,e − k5
d12,r − d12
d12,rd412

p12, (3.91b)

ṗ2,e = −S(ωf )p2,e + v2,e, (3.91c)

v̇2,e = −S(ωf )v2,e − k3p2,e − k4v2,e + k5
d12,r − d12
d12,rd412

p12, (3.91d)

of which the equilibria are asymptotically stable. Moreover, no collisions between agents occur in
the system, i.e., for every solution to (3.91) with initial conditions satisfying d12(t0) �= 0, there
exists ε > 0 such that |d12(t)| ≥ ε ∀ t.
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Proof. Consider the reference tracking dynamics (3.88). Subsequently, consider the candidate
control Lyapunov function, based on (3.47), as

V =
k1
2
p�1,ep1,e +

1

2
v�1,ev1,e +

k3
2
p�2,ep2,e +

1

2
v�2,ev2,e +

k5
2

(
1

d12
− 1

d12,r

)2

, (3.92)

with k1, k3, k5 > 0. Differentiating (3.92) along solutions yields

V̇ = k1v
�
1,ep1,e + v�1,eu1,e + k3v

�
2,ep2,e + v�2,eu2,e − k5

(
1

d12
− 1

d12,r

)
v�12ρ12
d312

, (3.93)

where the property b�S(a)b = 0 of a skew-symmetric matrix is used and it is assumed that
ḋ12,r(t) = 0, implying ṗ12,r(t) = 0. Next, the analysis is further restricted to time-independent
reference trajectories satisfying ṗi,r(t) = 0, v̇i,r(t) = 0, and v1,r = v2,r, in order to have

v�12 = (v�2,e − v�1,e)R
�
f + ν�1,rR

�
1,r − ν�2,rR

�
2,r = (v�2,e − v�1,e)R

�
f . (3.94)

Note that this definition allows nonzero ωf in specific situations, as ṗi,r(t) = 0 allows constant
vi,r = S(ωf )pi,r. With this restriction on the reference signal, (3.93) is written as

V̇ = v�1,e

[
k1p1,e + u1,e + k5

d12,r − d12
d412d12,r

p12

]
+ v�2,e

[
k3p2,e + u2,e − k5

d12,r − d12
d412d12,r

p12

]
, (3.95)

and when the virtual control inputs u1,e and u2,e are now chosen as

u1,e = −k1p1,e − k2v1,e − k5
d12,r − d12
d12,rd412

p12, (3.96a)

u2,e = −k3p2,e − k4v2,e + k5
d12,r − d12
d12,rd412

p12, (3.96b)

it can be seen that
V̇ = −k2v�1,ev1,e − k4v

�
2,ev2,e ≤ 0. (3.97)

Since the closed-loop system (3.91) with the considered restrictions on the reference signals is
time-invariant, LaSalle’s invariance principle states that the system converges to the largest
invariant subset, defined for the considered system as

v1,e = 0, v2,e = 0, k1p1,e = k5
d12,r − d12
d12,rd412

p12 = −k3p2,e, (3.98)

similar to (3.70), and note that this set defines the equilibria of the closed loop system (3.91).
Now, using p12,r = p12 + p1,e − p2,e, one can write

p12,r = p12 − p1,e + p2,e =

[
1− (k1 + k3)k5

k1k3

(d12,r − d12)

d12,rd412

]
p12, (3.99)

which is equal to (3.72), whereby it can be concluded that two suitable solutions for d12 in (3.99)
are obtained, of which one is d12 = d12,r and the other can be swiftly found numerically by using,
for example, bisection. With d12 known, the corresponding solutions, p1,e and p2,e, to (3.98) are
given as

p1,e =
k3k5(d12,r − d12)

k1k3d12,rd412 − (k1 + k3)k5(d12,r − d12)
p12,r, (3.100a)

p2,e =
k1k5(d12 − d12,r)

k1k3d12,rd412 − (k1 + k3)k5(d12,r − d12)
p12,r, (3.100b)
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which gives p1,e = p2,e = 0 for d12 = d12,r, and in the particular case that p1,e and p2,e are on
the line through p1,r and p2,r, p1,e and p2,e relate according to k1p1,e = −k3p2,e and can be
defined by (3.100). Following Theorem 2.1, it can now be concluded that the equilibria of the
closed-loop system (3.91) with the mentioned reference trajectories, are asymptotically stable.
Moreover, according to Theorem 2.1, (3.97) indicates that 1

d12
is bounded, implicating that d12

is bounded away from zero and therefore, for every solution to (3.91) with initial conditions
satisfying d12(t0) �= 0, there exists ε > 0 such that |d12(t)| ≥ ε ∀ t.
As Proposition 3.4.1 only shows that the closed-loop equilibria are asymptotically stable, and
p1,e and p2,e are bounded for bounded d12,r according to (3.100), it is desired to expand the
obtained local results to a global result. In order to do so it is desired to prove that the origin of
the dynamics of the projection

z1 = p1,e + p2,e, (3.101a)

z2 = v1,e + v2,e, (3.101b)

given by

ż1 =− S(ωf )z1 + z2, (3.102a)

ż2 =− S(ωf )z2 + u1,e + u2,e, (3.102b)

which is also time-invariant, is GAS and LES, and therefore prove the following theorem.

Proposition 3.4.2. Consider the projected dynamics of (3.91), given by (3.102), with time-
independent reference trajectories satisfying ṗi,r(t) = 0, v̇i,r(t) = 0, and v1,r = v2,r. Choosing the
control law as in Proposition 3.4.1 yields the closed-loop system

ż1 =− S(ωf )z1 + z2, (3.103a)

ż2 =− S(ωf )v1,e − k1p1,e − k2v1,e − k5
d12,r − d12
d12,rd412

p12 (3.103b)

− S(ωf )v2,e − k1p2,e − k2v2,e + k5
d12,r − d12
d12,rd412

p12,

=− S(ωf )z2 − k1z1 − k2z2,

where the analysis is restricted to k3 = k1 and k4 = k2, and of which the origin is globally
asymptotically stable (GAS) and locally exponentially stable (LES).

Proof. Consider the closed-loop projected dynamics (3.102) and consider the candidate Lyapunov
function

V =
k1
2
z�1 z1 +

1

2
z�2 z2, (3.104)

and differentiating along solutions of (3.103) yields

V̇ = −k2z�2 z2 ≤ 0, (3.105)

and it can be seen that V̇ < 0 ∀ z2 �= 0. Next, LaSalle’s invariance principle tells us that the
solutions converge to the largest invariant subset, which in this case is given by

z1 = 0, z2 = 0, (3.106)

and the equilibrium (z1, z2) = (0, 0) is found to be globally asymptotically stable (GAS). The
found projected equilibrium is now expressed in the initial coordinates in order to express the
found GAS equilibrium of (3.103) in the dynamics of the time-invariant system (3.91). This
gives global asymptotic stability (GAS) of the equilibrium point satisfying p1,e = −p2,e and
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v1,e = −v2,e, for controller gains chosen as k3 = k1 and k4 = k2. Note that the equilibria found
before satisfy these conditions.
Next, in order to analyze the local stability of the origin of (3.103), the Jacobian of (3.103) at
the equilibrium point at the origin is computed to be

J =

[ −S(ωf ) I3
−k1I3 −S(ωf )− k2I3

]
, (3.107)

of which the eigenvalues are given according to

λ1,2 =
−k2 ±

√
k22 − 4k1
2

, (3.108a)

λ3,4 =
−k2
2

± 1

2

√
k22 − 4

(
ω�
f ωf +

√
(4k1 − k22)ω

�
f ωf + k1

)
, (3.108b)

λ5,6 =
−k2
2

± 1

2

√
k22 − 4

(
ω�
f ωf −

√
(4k1 − k22)ω

�
f ωf + k1

)
, (3.108c)

which are all proven to have a strictly negative real part for k1, k2 > 0 and time-independent
ωf ∈ R3 in Appendix B and by applying Proposition 2.2.3 it can be concluded that the origin of
(3.103) is LES.

It should be noted that the presented proof of Proposition 3.4.1 only proves that the collision
point, where the center of mass of both drones is located at the exact same point, will never be
reached when the system is initialized elsewhere. In practice, naturally the drones have certain
dimensions and as these are not taken into account in the analysis, it is not fully guaranteed
that all collisions are avoided. However, the control action is repelling whenever d12 < d12,r, as a
result of the introduced APF in (3.92), and when this is combined with carefully selected initial
conditions, it can be assumed that no collisions occur when the presented analysis is followed.

3.4.2 Attitude control

The proof of Proposition 3.4.2 shows global asymptotic stability (GAS) and local exponential
stability (LES) of the origin of the time-invariant closed-loop projected reference tracking
dynamics (3.103) when the designed virtual input ui,e, as in (3.96), is achieved by control inputs
fi and τi according to (3.89), where Ri is controlled by τi. Thus, control laws need to be designed
for fi and τi such that fiR

�
i,rRie3 converges to fi,re3 +miR

�
i,rRfui,e, in order to achieve the

virtual input with the actual control inputs. Using (3.89) gives

R�
i,rRifie3 = fi,re3 +miR

�
i,rRfui,e, (3.109)

and using Ri,r, Ri ∈ SO(3), the force magnitude is obtained as

fi = ‖fi,re3 +miR
�
i,rRfui,e‖. (3.110)

As one would actually want to guarantee a strictly positive total thrust, i.e., it is desired to have
0 < εi ≤ fi(t), a convenient solution would be to set

‖ui,e‖ ≤ fmin
i,r − εi

mi
, (3.111)

as reference trajectories satisfying 0 < fmin
i,r ≤ fi,r(t) are considered. Now using that (3.102) is

LES, we can write V (t)− V (t0) ≤ ci,1(t0) for V as in (3.104), where the initial conditions for
V (t0) are chosen such that (3.111) is satisfied. Note however, that although this is a convenient
solution to guarantee 0 < εi ≤ fi(t), it is rather restrictive. Consider for example R�

i,rRf = I3,
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ωf = 0 and assume that the reference positions are chosen in the same horizontal plane, and
the initial conditions are also chosen in one horizontal plane. Then the x, y, z-directions of the
system (3.103) are uncoupled and what remains is to guarantee that the mi(ui,e)z > εi − fmin

i,r ,
making restriction on the upper bound of (ui,e)z redundant, as well as restrictions on ui,e in
x, y-direction. Although it would be favorable to account also for actuator saturation. Note
however, that this second method is also quite restrictive.

With a properly defined fi, the desired thrust direction can be defined as

Ri,de3 =
fi,re3 +miR

�
i,rRfui,e

‖fi,re3 +miR�
i,rRfui,e‖

:= fi,d =

⎡
⎣ fi1,d
fi2,d
fi3,d

⎤
⎦ , (3.112)

with

fi,d = [fi1,d fi2,d fi3,d]
�, (3.113)

and as a result it can be assumed that fi3,d > 0. Note that (3.112) underlines the importance
of having 0 < εi ≤ fi(t), and it is actually desired to have a saturated fi and therefore ui,e,
to justify the definition of fi,d. Next, the rotation matrix Ri,d, that rotates the desired thrust
vector to the thrust vector of the reference in the plane containing both vectors, consists of a
rotation around an axis perpendicular to this plane, given by

ni =
fi,d × e3

‖fi,d × e3‖ , (3.114)

which is of unit length for all fi,d × e3 �= 0, and ni is the zero vector otherwise. The rotation
angle θi,d is now computed using the definition of the dot product as

cos(θi,d) =
e3 · fi,d

‖fi,d‖ ‖e3‖ = fi3,d, (3.115)

and with Pythagoras in the unit disc and the property of rotation matrices that any column is
of unit length, this also gives

sin(θi,d) =
√

1− cos2(θi,d) =
√

1− f2i3,d. (3.116)

Now (3.114), (3.115), and (3.116) are combined in Rodrigues’ rotation formula in order to obtain
the rotation to the desired attitude as

Ri,d = I3 + sin(θi,d)S(ni) + [1− cos(θi,d)]S(ni)
2, (3.117)

to finally define the desired rotation matrix as

Ri,d =

⎡
⎢⎢⎣

1− f2
i1,d

1+fi3,d
−fi1,dfi2,d

1+fi3,d
fi1,d

−fi1,dfi2,d
1+fi3,d

1− f2
i2,d

1+fi3,d
fi2,d

−fi1,d −fi2,d fi3,d

⎤
⎥⎥⎦ ∈ SO(3), (3.118)

which, using Ṙi,d = Ri,dS(ωi,d), gives

ωi,d =

⎡
⎢⎢⎢⎣

−ḟi2,d +
fi2,dḟi3,d
1+fi3,d

ḟi1,d −
fi1,dḟi3,d
1+fi3,d

fi2,dḟi1,d−fi1,dḟi2,d
1+fi3,d

⎤
⎥⎥⎥⎦ . (3.119)
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Combining (3.89), (3.110), and (3.118) one obtains

[fi,re3 +miR
�
i,rRfui,e] = Ri,dfie3, (3.120)

and in order to have R�
i,rRifie3 = [fi,re3 +miR

�
i,rRfui,e], an input τi needs to be found in order

to let Ri,dfie3 converge to R�
i,rRifie3. In order to do so, the attitude and angular velocity errors

expressed in the body-fixed frames Bi are defined as

R̃i = R�
i,d(R

�
i,rRi), ω̃i = ωi −R�

i Ri,rωi,r − R̃�
i ωi,d, (3.121)

where it should be noted that expressing the attitude errors in the body-fixed frame Bi of agent
i introduces the control input τi plainly in the error dynamics, which are given by differentiating
(3.121) along their solutions as

˙̃Ri = R̃iS(ω̃i), (3.122a)

Ji ˙̃ωi = S(Jiωi)ωi + τi − JiR
�
i Ri,rω̇i,r + JiS(ω̃i) [ωi − ω̃i] (3.122b)

+ JiR̃
�
i

[
S(ωi,d)R

�
i,dωi,r − ω̇i,d

]
,

with which the attitude tracking control problem is stated as follows.

Problem 3.6. (cf. [25]) Consider the attitude tracking dynamics (3.122) of which the desired
equilibrium is given as (I, 0) ∈ SO(3)×R3. Find an appropriate control law

τi = τi(t, R̃, ω̃i), (3.123)

such that the resulting closed-loop system yields

lim
t→∞ R̃i = I3, lim

t→∞ ω̃i = 0. (3.124)

Noting the similarities between the system (3.122) and the system considered in Proposition
2.2.5 a possible solution can be proposed along the lines of Proposition 2.2.5.

Proposition 3.4.3. (adopted from [14], cf. [40]) Consider the attitude tracking dynamics
(3.122). Choosing the control input τi as

τi = −S(Jiωi)ωi + JiR
�
i Ri,rω̇i,r − JiS(ω̃i) [ωi − ω̃i]− JiR̃

�
i

[
S(ωi,d)R

�
i,dωi,r − ω̇i,d

]
. . . (3.125)

−Kωiω̃i +KRi

3∑
j=1

kji

(
ej × R̃�

i ej

)
,

with Kωi = K�
ωi
> 0, KRi = K�

Ri
> 0, and kji > 0 distinct, i.e., k1i �= k2i �= k3i �= k1i, provides a

closed-loop system that is equivalent [25] to

˙̃Ri = R̃iS(ω̃i), (3.126a)

Ji ˙̃ωi = −Kωiω̃i +KRi

3∑
j=1

kji

(
ej × R̃�

i ej

)
, (3.126b)

for which the equilibrium (I, 0) is uniformly locally exponentially stable (ULES) and uniformly
almost globally asymptotically stable (UaGAS) (cf. Proposition 2.2.5, of which the proof is
included [40]), under the assumption that 0 < εi ≤ fi(t) in order to have fi,d, and thus ωi,d

and ω̇i,d well defined. Note that this assumption can be satisfied by properly selecting initial
conditions, when fi is not saturated by the control input ui,e.
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Concluding remarks

The analysis of the position tracking subsystem with the considered group of reference trajecto-
ries and the designed virtual input, renders the equilibria of the resulting closed-loop system
asymptotically stable. Moreover, with the designed virtual input, it is shown that no collisions
occur in the system as long as the virtual input is attained by the attitude tracking dynamics.
Additionally, it has been shown that the projection of the reference tracking subsystem yields
a closed-loop system of which the origin is globally asymptotically stable (GAS) and locally
exponentially stable (LES). The analysis of the attitude tracking subsystem renders the de-
sired equilibrium uniformly locally exponentially stable (ULES) and uniformly almost globally
asymptotically stable (UaGAS) under the assumptions on the total thrust. As the designed
control law lacks a form of saturation, manually bounding the virtual input by selecting initial
conditions close to the reference trajectories is necessary to have feasible fi and fi,d. This also
strokes with the need to manually bound initial conditions in order to have collision avoidance
in a network of drones with dimensions larger than a point mass. Lastly, it should be noted that
when v�12 = (v�2,e − v�1,e)R�

f and d12 = ‖p12‖ are combined with p12 = p12,r − p1,e + p2,e, it can
be seen from (3.96) that no attitude information of agent j is necessary to compute the input of
agent i when reference trajectories of both drones are known to both agents. Additionally, the
derivative of the virtual input of agent i, u̇i,e, necessary to compute ωi,d among others, neither
uses the orientation of agent j, as the necessary ṗj,e can be computed by drone i using only
pj,e, vj,e and ωf . This is convenient with respect to the necessary communication between two
agents.

3.4.3 Cascaded system analysis

In preceding sections, a virtual control input ui,e is designed for the position tracking subsystem
and a control law for fi and τi is designed that asymptotically attains this virtual input. A
final step in the analysis of a system of two quadcopter UAVs is to analyse stability of the
cascaded system, consisting of the attitude controller and the desired position controller, similar
to [14]. Now that the origin of (3.102) is proven to be GAS and LES, consider the dynamics
(3.102) subject to reference trajectories (3.78), satisfying ṗi,r(t) = 0, v̇i,r(t) = 0, and v1,r = v2,r,
with i ∈ {1, 2}, in closed-loop with control laws (3.96), (3.110) and (3.125) with controller gains
k1 = k3, k2 = k4. The resulting closed-loop system expressed in (projected) error coordinates is
denoted by

ż1 = −S(ωf )z1 + z2, (3.127a)

ż2 = −S(ωf )z2 − k1z1 − k2z2 +
f1
m1

(I3 − R̃�
1 )e3 +

f2
m2

(I3 − R̃�
2 )e3, (3.127b)

˙̃Ri = R̃iS(ω̃i), (3.127c)

Ji ˙̃ωi = −Kωiω̃i +KRi

3∑
j=1

kji

(
ej × R̃�

i ej

)
, (3.127d)

where the cascaded terms fi
mi

(I3 − R̃�
i )e3 =

fi
mi

(R�
i,rRi −Ri,d)e3 can be regarded a disturbance

on the projected position tracking subsystem as a result of a not yet converged attitude error,
i.e., virtual input ui,e is not yet fully achieved by fi and τi. If it can now be guaranteed that

lim
t→∞ z1 = 0, lim

t→∞ z2 = 0, lim
t→∞ R̃i = I3, lim

t→∞ ω̃i = 0, and d12(t) �= 0 ∀ t, (3.128)

hold, the conditions of Problem 3.5 hold when solutions stay away from the situation where p1,e
and p2,e are exactly on the line through p1,r and p2,r, which forms a lower dimensional manifold
when considering pi,e(t0) and vi,e(t0) to be well away from infinity. In order to do so, let us
consider the following proposition.
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Proposition 3.4.4. (cf. [25]) Consider the closed-loop cascaded system (3.127). The origin of
(3.127) with i ∈ {1, 2} is uniformly almost globally asymptotically stable (UaGAS) and uniformly
locally exponentially stable (ULES), i.e., for all pi,e ∈ R3, vi,e ∈ R3, and (Ri,e, ωi,e) ∈ G with
G ⊂ SO(3)×R3 and M = (SO(3)×R3) \G a set with measure zero.

Proof. Identify the cascaded nature of (3.127) as ((3.127a),(3.127b)) and ((3.127c),(3.127d)).
Let G denote the almost global region of attraction of ((3.127c),(3.127d)), under the conditions
mentioned in Section 3.4.2. Furthermore, (3.102) is GAS and LES, and combining both results
provides the first two assumptions of Theorem 2.2. What remains to prove is that the cascaded
term fi

mi
(I3 − R̃�

i )e3 is bounded, providing that stability is maintained for the two subsystems

in cascade. To prove that fi
mi

(I3 − R̃�
i )e3 is bounded, similarly to [25], (3.104) is differentiated

along solutions (3.127), yielding

V̇ = −k2z�2 z2 + z�2

(
f1
m1

(I3 − R̃�
1 )e3 +

f2
m2

(I3 − R̃�
2 )e3

)
(3.129)

≤ z�2

(
f1
m1

(I3 − R̃�
1 )e3 +

f2
m2

(I3 − R̃�
2 )e3

)
≤ c1

√
V (z1, z2)

(
‖I3 − R̃�

1 ‖+ ‖I3 − R̃�
2 ‖

)
.

Now, since ((3.127c),(3.127d)) is ULES, we have√
V (z1(t), z2(t))−

√
V (z1(t0), z2(t0)) ≤ c2(t0), (3.130)

implying that V (z1, z2) is bounded, and therefore solutions of ((3.127a),(3.127b)) are bounded,
ensuring that the coupling term is bounded. Therefore, it can be concluded that the last
assumption of Theorem 2.2 holds, and it is concluded that the cascaded system (3.127) is
UGAS and ULES on R6n ×G and UaGAS and ULES on R6n × SO(3)3n ×R3n, both under the
assumptions stated in Section 3.4.2.

3.5 Expansion to network of arbitrary number of UAVs

Now that absence of collisions in a network of two quadcopter UAVs has been shown, and the
origin of the closed loop cascaded system (3.127) is proven UaGAS and ULES, it is desired to
expand the proof to a network of an arbitrary number of quadcopter UAVs. In order to do so,
the position tracking dynamics expressed in the formation frame

ṗi,e = −S(ωf )pi,e + vi,e, (3.131a)

v̇i,e = −S(ωf )vi,e + ui,e, (3.131b)

is considered again, where now i ∈ {1, 2, . . . , n}, n an arbitrary number, and the same group of
reference trajectories as before is considered. Subsequently, it is desired to prove the following
proposition.

Proposition 3.5.1. Consider the reference tracking dynamics (3.131) with i ∈ {1, 2, . . . , n}, n
an arbitrary number, and time-independent reference trajectories satisfying ṗi,r(t) = 0, v̇i,r(t) = 0,
and vi,r = vj,r. Choosing the control law

ui,e = −k1pi,e − k2vi,e − k3

n∑
j=1,j �=i

[
dij,r − dij
dij,rd4ij

pij

]
, (3.132)

with k1, k2, k3 > 0, control parameters, yields a time-invariant closed-loop system

ṗi,e = −S(ωf )pi,e + vi,e, (3.133a)

v̇i,e = −S(ωf )vi,e − k1pi,e − k2vi,e − k3

n∑
j=1,j �=i

[
dij,r − dij
dij,rd4ij

pij

]
, (3.133b)



3.5. EXPANSION TO NETWORK OF ARBITRARY NUMBER OF UAVS 33

of which the equilibria are asymptotically stable. Moreover, no collisions between agents occur in
the system, i.e., for every solution to (3.133) with initial conditions satisfying d12(t0) �= 0, there
exists ε > 0 such that |d12(t)| ≥ ε ∀ t.
Proof. Consider the position tracking dynamics (3.131). Subsequently, consider the candidate
control Lyapunov function, based on (3.92), as

V =
1

2

n∑
i=1

⎛
⎝k1p�i,epi,e + v�i,evi,e + k3

n∑
j=i+1

[(
1

dij
− 1

dij,r

)2
]⎞⎠ , (3.134)

with k1, k3 > 0. Differentiating (3.134) along solutions yields

V̇ =
n∑

i=1

⎛
⎝v�i,e (k1pi,e + ui,e)− k3

n∑
j=i+1

[
dij,r − dij
dij,rd4ij

(v�j,e − v�i,e)pij

]⎞⎠ , (3.135)

where the property b�S(a)b = 0 of a skew-symmetric matrix is used and it is assumed that
ḋ12,r(t) = 0, implying ṗ12,r(t) = 0. Furthermore, to get (3.135) the analysis is further restricted
to time-independent reference trajectories satisfying ṗi,r(t) = 0, v̇i,r(t) = 0, and vi,r = vj,r, in
order to have

v�ij = (v�j,e − v�i,e)R
�
f + ν�i,rR

�
i,r − ν�j,rR

�
j,r = (v�j,e − v�i,e)R

�
f , (3.136)

and accordingly

ḋij =
(v�j,e − v�i,e)pij√

p�ijpij
=

(v�j,e − v�i,e)pij
dij

, (3.137)

for p�ijpij �= 0. Note that this definition of constant reference trajectories allows nonzero ωf in
specific situations, as ṗi,r(t) = 0 allows constant vi,r = S(ωf )pi,r. When the virtual inputs ui,e
are now chosen as

ui,e = −k1pi,e − k2vi,e − k3

n∑
j=1,j �=i

[
dij,r − dij
dij,rd4ij

pij

]
, (3.138)

with k2 > 0, it can be seen that (3.135) becomes

V̇ = −k2
n∑

i=1

v�i,evi,e ≤ 0, (3.139)

where pij = −pji, pij,r = −pji,r is used, and as a result dij = dji and dij,r = dji,r. Since the
closed-loop system (3.133) with the considered restrictions on the reference signals is time-
invariant, LaSalle’s invariance principle tells us that the system converges to the largest invariant
subset, defined for the considered system as

vi,e = 0, k1pi,e = −k3
n∑

j=1,j �=i

[
dij,r − dij
dij,rd4ij

pij

]
, (3.140)

for all i, and note that this set defines the equilibria of the closed loop system (3.133). Note
that the trivial solution to (3.140) is easily distilled as dij = dij,r ∀ i, j �= i ∈ {1, 2, . . . , n}, giving
pi,e = 0. Following Theorem 2.1, it can now be concluded that the equilibria of the closed-loop
system (3.133) with the mentioned reference trajectories, are asymptotically stable. Moreover,
according to Theorem 2.1, (3.97) indicates that 1

dij
is bounded, implying that dij is bounded

away from zero and therefore, for every solution to (3.133) with initial conditions satisfying
dij(t0) �= 0, there exists ε > 0 such that |dij(t)| ≥ ε ∀ t, for all i, j �= i ∈ {1, 2, . . . , n}.
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As Proposition 3.5.1 only shows that the closed-loop equilibria are asymptotically stable, it is
desired to expand the obtained local results to a global result. In order to do so, it is desired to
prove that the origin of the dynamics of the projection

z1 =

n∑
i=1

pi,e, z2 =

n∑
i=1

vi,e, (3.141)

given by

ż1 =− S(ωf )z1 + z2, (3.142a)

ż2 =− S(ωf )z2 +
n∑

i=1

ui,e = −S(ωf )z2 − k1z1 − k2z2, (3.142b)

which is also time-invariant, is GAS and LES. By noting the similarity between (3.142) and
(3.103), Proposition 3.4.2 can be immediately applied in order to obtain the contemplated results.
Assuming that the initial conditions are chosen along the lines of Section 3.4.2 in order to
guarantee 0 < εi ≤ fi(t), what remains is to prove stability of the projected dynamics in cascade
with the attitude tracking dynamics. The cascaded dynamics is now given along the lines of
(3.127), but now with i ∈ {1, 2, . . . , n} and n an arbitrary number, as

ż1 = −S(ωf )z1 + z2, (3.143a)

ż2 = −S(ωf )z2 − k1z1 − k2z2 +
n∑

i=1

fi
mi

(I3 − R̃�
i )e3, (3.143b)

˙̃Ri = R̃iS(ω̃i), (3.143c)

Ji ˙̃ωi = −Kωiω̃i +KRi

3∑
j=1

kji

(
ej × R̃�

i ej

)
, (3.143d)

Noting the similarities between (3.143) and (3.127) it is now desired to prove the slightly adjusted
Proposition 3.4.4, stated as follows.

Proposition 3.5.2. (cf. [25]) Consider the closed-loop cascaded system (3.143). The origin
of (3.143) is uniformly almost globally asymptotically stable (UaGAS) and uniformly locally
exponentially stable (ULES), i.e., for all pi,e ∈ R3, vi,e ∈ R3, and (Ri,e, ωi,e) ∈ G with G ⊂
SO(3)×R3 and M = (SO(3)×R3) \G a set with measure zero.

Proof. Identify the cascaded nature of (3.143) as ((3.143a),(3.143b)) and ((3.143c),(3.143d)).
Let G denote the almost global region of attraction of ((3.143c),(3.143d)), under the conditions
mentioned in Section 3.4.2. Furthermore, (3.142) is GAS and LES, and combining both
results provides the first two assumptions of Theorem 2.2. What remains to prove is that the
cascaded term

∑n
i=1

fi
mi

(I3 − R̃�
i )e3 is bounded, providing that stability is maintained for the

two subsystems in cascade. To prove that
∑n

i=1
fi
mi

(I3 − R̃�
i )e3 is bounded, similarly to [25],

(3.104) is differentiated along solutions (3.143), yielding

V̇ = −k2z�2 z2 + z�2
n∑

i=1

(
fi
mi

(I3 − R̃�
i )e3

)
(3.144)

≤ z�2
n∑

i=1

(
fi
mi

(I3 − R̃�
i )e3

)
≤ c1

√
V (z1, z2)

n∑
i=1

‖I3 − R̃�
i ‖.

Now, since ((3.143c),(3.143d)) is ULES, we have√
V (z1(t), z2(t))−

√
V (z1(t0), z2(t0)) ≤ c2(t0), (3.145)
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implying that V (z1, z2) is bounded, and therefore solutions of ((3.143a),(3.143b)) are bounded,
ensuring that the coupling term is bounded. Therefore, it can be concluded that the last
assumption of Theorem 2.2 holds, and it is concluded that the cascaded system (3.143) is
UGAS and ULES on R6n ×G and UaGAS and ULES on R6n × SO(3)3n ×R3n, both under the
assumptions stated in Section 3.4.2.

Although the origin of (3.142), given by
∑n

i=1 pi,e = 0 and
∑n

i=1 vi,e = 0, is proven GAS and
LES, it is not yet guaranteed that pi,e stays bounded. However, the conjecture is that the only
stable equilibrium is pi,e = 0, and that the remaining equilibria are saddle points.

3.6 Concluding remarks

This chapter considers two methods to achieve reference tracking, while collision avoidance is
guaranteed for the controlled system. An initial method considers a kinematic model in 1D
and exploits a control law resulting from an artificial potential field (APF) as based on [42], a
projection of the reference tracking is considered, where the resulting equilibria are projected on
the origin of the projected system. Using Lyapunov stability, the origin of the projected system is
proven uniformly globally asymptotically stable (UGAS), while Chetaev’s instability theorem is
used to prove that the collision point is an unstable node. This method fails to scale conveniently
to a network of double integrators, and applying converse Lyapunov theorem in Section 3.2
inspires the use of a control Lyapunov function incorporating an APF to achieve the control
objectives of reference tracking and collision avoidance. A kinematic system in 1D is again
considered in Section 3.3 to verify the effectiveness of the control Lyapunov function approach,
under the restriction of only using constant reference signals in order to have a time-invariant
closed-loop system. The equilibria of the resulting system are proven to be asymptotically stable
and locally exponentially stable (LES), while collisions are successfully avoided again. This
theoretical framework proves to scale conveniently to a network of double integrators in nD,
and eventually to a network of quadcopter UAVs in 3D, both assuming appropriate definitions
of constant reference signals. The analysis of a network of two quadcopter UAVs in 3D, as in
Section 3.4, is split up in a position tracking subsystem and an attitude tracking subsystem which
are analyzed separately. The position tracking dynamics is considered first and the origin of the
projected z-dynamics is proven globally asymptotically stable (GAS) and LES, while collisions
are successfully avoided under the stated restrictions on the reference trajectories. Although
this analysis only proves that the centers of mass of two quadcopter UAVs will never coincide, a
convenient base is provided to incorporate agent dimensions in future work. Subsequently, the
attitude tracking dynamics is proven uniformly almost globally asymptotically stable (UaGAS)
and uniformly locally exponentially stable (ULES). Finally, UaGAS and ULES of the total
system is proven using cascaded system theory, and the combined results provide a solution to
the stated control Problem 3.5, indicating successful reference tracking and collision avoidance
in the network. Additionally, the results are expanded to a network with an arbitrary number of
drones, in which UaGAS and ULES of the total cascaded system has also been proven.





Chapter 4

Numerical and experimental
validation

As theory and practice can be worlds apart, especially in the field of nonlinear control where
accurate state information is often required, a numerical and experimental validation of the
theoretical findings is aspired. The numerical simulation model considers the system dynamics
for UAV i, with a specific group of reference trajectories, and the designed control laws as
designed in Section 3.4. This section compares the numerical results with experiments. To
this end, the experimental setup is introduced, the necessary preparations for experimental
implementation are elucidated and the experimental results are presented and compared to
numerical simulations throughout the upcoming pages.

4.1 Experimental setup

To test the theoretical results, the designed controller is implemented in an experimental setup
and compared with a simulation model. The experimental setup consists of multiple Parrot
Mambo Fly drones, a host computer running Matlab version R2019b with the provided Simulink
Support Package for Parrot Minidrones for communication with the drones and execution of
models on the drones, and the drone test area at the Mechanical Engineering department of
the Eindhoven University of Technology. The drone test area can be found in Figure 4.1a and

(a) Drone test area at the TU/e. (b) Parrot Mambo Fly on cardboard carrier.

Figure 4.1: The experimental setup.

is located at the Robocup soccer-field. The drone test area is actually just a large open space
shielded with nets to prevent the drones from flying out. The Parrot Mambo Fly, see Figure
4.1b, and the supplementary Simulink support package are commercially available. Although
Parrot has stopped production and recently removed the official support page for the Parrot
Mambo Fly of their website. The Parrot Mambo Fly is a compact, lightweight minidrone with

37
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dimensions about 0.18 × 0.18 meters, inertia given by Ji = diag([0.069 0.0775 0.150]) · 10−3

[26], and a mass of about mi = 0.068 kilograms, including the weight of propeller bumpers to
reduce impact upon crashing, resulting in a flight time of about ten minutes after a half hour
charge. The Simulink support package of the host computer can communicate with the drone
using its Bluetooth Low Energy adapter, combining large range and low energy usage. All the
sensor data of the internal measurement unit (IMU), consisting of a three-axis accelerometer,
three-axis gyroscope, air pressure sensor, ultrasonic distance sensor and downward facing camera
with optical flow sensor, is accessible with the Simulink support package. The sensor data is
combined in the model to internally determine the states of the drones using a state estimator
developed in [26]. As the aim is autonomous operation of a network of drones, the usage of
an external camera system, like OptiTrack [27], to determine positions or velocities is deemed
superfluous as the state estimator is assumed to give sufficiently accurate state estimates. Before
the experimental setup can be used to conduct the desired experiments, some modifications need
to be made to the Simulink support package, including modifying the implemented controller to
our needs and enabling connection of multiple drones.

4.2 Towards experimental validation

Now the experimental setup is introduced, the steps taken towards experimental validation are
presented. A first step towards experimental validation of the controller designed in Chapter
3, is adjusting the Simulink support package. Initially, the support package only supports
communication with a single Parrot Mambo Fly drone. In fact, it is found that using a Windows
operating system it is not even possible to simply connect two drones to one host computer
using the Network Access Point (NAP) connection that is required to connect with the drones.
Therefore, the switch to an Ubuntu operating system is made, since an Ubuntu operating
system can connect multiple NAP connections simultaneously. The Simulink support package
is completely analyzed and the necessary adjustments to fly multiple drones are summarized
in Appendix C. The current adjusted Simulink support package allows simultaneous flight of
two drones, this number can be increased by following the steps mentioned also in Appendix C.
Subsequently, the controller designed in Chapter 3 is converted to quaternions for computational
efficiency. To reduce chance of collisions and therewith damaging the experimental setup, the
overshoot of a step reference is analyzed, collision avoidance with a single real drone and a virtual
drone is implemented and tested, and as a final step before implementation of the designed
controller in the full experimental setup, a communication channel between drones is set up and
analyzed.

4.2.1 Conversion of controller to quaternions

To implement the designed controller in the experimental setup, it is first converted to quaternions
to attain the advantages stated in Section 2.1.2. Exploiting the characteristics of rotation
quaternions, the dynamics of a quadcopter (3.76) is expressed using quaternions as

ρ̇i = qi � νi, (4.1a)

ν̇i = −S(ωi)νi + gq̄i � e3 − fi
mi
e3, (4.1b)

q̇i =
1

2
qi ⊗

[
0
ωi

]
=

1

2
Q(qi)

[
0
ωi

]
(4.1c)

Jiω̇i = S(Jiωi)ωi + τi, (4.1d)
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and the considered reference trajectory (3.78) is denoted along the same lines as

ρ̇i,r = qi,r � νi,r, (4.2a)

ν̇i,r = −S(ωi,r)νi,r + gq̄i,r � e3 − fi,r
mi

e3, (4.2b)

q̇i,r =
1

2
qi,r ⊗

[
0
ωi,r

]
=

1

2
Q(qi,r)

[
0
ωi,r

]
(4.2c)

Jiω̇i,r = S(Jiωi,r)ωi,r + τi,r, (4.2d)

resulting in individual position and velocity tracking errors expressed in the formation frame F
as

pi,e = pi,r − pi = q̄f � (ρi,r − ρi), (4.3a)

vi,e = q̄f � (qi,r � νi,r − qi � νi), (4.3b)

which give the tracking error dynamics in the formation frame according to

ṗi,e = −S(ωf )pi,e + vi,e, (4.4a)

v̇i,e = −S(ωf )vi,e + ui,e, (4.4b)

where ui,e is considered the virtual input given as

ui,e = −q̄f �
(
qi,r � fi,r

mi
e3 − qi � fi

mi
e3

)
, (4.5)

to be achieved by the attitude tracking subsystem. The control inputs are selected as in (3.96)
where p12 = q̄f � ρ12 is used, and with which reference tracking and collision avoidance is
achieved, see Section 3.4.1. Now the total force magnitude is represented using quaternions as

fi = ‖fi,re3 +miq̄i,r � (qf � ui,e)‖, (4.6)

with which the desired force direction is given according

fi,d =
fi,re3 +mi(q̄i,r ⊗ qf )� ui,e
‖fi,re3 +mi(q̄i,r ⊗ qf )� ui,e‖ . (4.7)

According to [26, 35] the conversion of Ri,d to a unit quaternion is given as

qi,d =
1

2

⎡
⎢⎢⎣

2 cos(12 arccos(
1
2(Ri,d[1, 1] +Ri,d[2, 2] +Ri,d[3, 3]− 1)))

sign(Ri,d[3, 2]−Ri,d[2, 3])|
√

1 +Ri,d[1, 1]−Ri,d[2, 2]−Ri,d[3, 3]|
sign(Ri,d[1, 3]−Ri,d[3, 1])|

√
1−Ri,d[1, 1] +Ri,d[2, 2]−Ri,d[3, 3]|

sign(Ri,d[2, 1]−Ri,d[1, 2])|
√

1−Ri,d[1, 1]−Ri,d[2, 2] +Ri,d[3, 3]|

⎤
⎥⎥⎦ , (4.8)

where Ri,d[j, k] represents the (j, k)th entry of matrix Ri,d. And after using f2i1,d+f
2
i2,d

+f2i3,d = 1
(as fi,d is of unit length), and substituting the values for Rij in (4.8), the resulting rotation
quaternion is given as

qi,d =
1

2

⎡
⎢⎢⎢⎢⎣

2 cos(12 arccos(fi3,d))

−fi2,d
√

2
1+fi3,d

fi1,d
√

2
1+fi3,d

0

⎤
⎥⎥⎥⎥⎦ , (4.9)

which can be rewritten as

qi,d =

⎡
⎢⎢⎢⎢⎣

1
2

√
2 + 2fi3,d

− fi2,d√
2+2fi3,d
fi1,d√
2+2fi3,d

0

⎤
⎥⎥⎥⎥⎦ . (4.10)
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Furthermore, the attitude and angular velocity errors are defined as

qi,e = q̄i,d ⊗ (q̄i,r ⊗ qi), (4.11a)

ωi,e = ωi − (q̄i ⊗ qi,r)� ωi,r − q̄i,e � ωi,d, (4.11b)

which define the attitude error dynamics as

q̇i,e =
1

2
qi,e ⊗

[
0
ωi,e

]
, (4.12a)

Jiω̇i,e = S(Jiωi)ωi + τi − Ji(q̄i ⊗ qi,r)� ω̇i,r (4.12b)

+ JiS(ωi,e) [ωi − ωi,e] + Ji(q̄i,e � [S(ωi,d)(q̄i,d � ωi,r)− ω̇i,d]),

and the selected input τi of (3.125) is written in quaternions as

τi = −S(Jiωi)ωi + Ji(q̄i ⊗ qi,r)� ω̇i,r − JiS(ωi,e) [ωi − ωi,e] (4.13)

− Ji(q̄i,e � [S(ωi,d)(q̄i,d � ωi,r)− ω̇i,d])−Kωiωi,e +KRi

3∑
j=1

kji (ej × (q̄i,e � ej)),

with Kωi = K�
ωi
> 0, KRi = K�

Ri
> 0, and kji > 0 distinct, i.e., k1i �= k2i �= k3i �= k1i.

Concluding remarks

In this section, the system dynamics (3.76) and the designed controller (3.96) are rewritten using
quaternions for computational and communication efficiency. With the control inputs defined by
(4.5), (4.6) and (4.13), the designed controller is ready to be implemented in the experimental
setup.

4.2.2 Performance of a single drone

Before immediately flying two drones simultaneously, it is desired to get an indication of how
vigorous the drones move when tracking a constant reference, in order to avoid unnecessary
damage to the setup. To this end, numerical simulations are conducted to evaluate the reference
tracking performance of a single drone and the results are compared with the experimental
situation. Subsequently, the obstacle avoidance capability of the controller is analyzed by
introducing a virtual drone in both simulations and experiments. The control gains Kωi , KRi ,
and kji, for the control input τi of the attitude tracking subsystem, are chosen as

Kωi = 30 · Ji, (4.14a)

KRi = 70 · Ji, (4.14b)

k1i = 0.9, (4.14c)

k2i = 1.0, (4.14d)

k3i = 1.1, (4.14e)

as this choice provides favorable tracking behavior [26]. The chosen control gains of the position
tracking subsystem are varied and motivated with each executed experiment.

Reference tracking analysis

First, the overshoot of a single drone with a step reference is analyzed when using controller (3.96),
(4.6) and (4.13) with k1 = 3k2 = 3, k3 = k4 = k5 = 0 and reference position ρ1,r = [1 0 1.5]�

of which the numeric result can be found in Figure 4.2, where a small offset in y-direction is
introduced, as there will also be a disturbance present in the experimental setup up to a certain
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level. As only a single drone is used in this experiment, the controller gains are selected as
k3 = k4 = k5 = 0. The remaining control parameters are chosen to prevent a steady state error
in z-position that is observed in experiments, for example, when k1 = k2 = 1 is selected, while
limiting the occurring overshoot. Note that the stability analysis indeed indicates stability of the
system when the controller gains are chosen as in this situation. The corresponding experimental
result can be found in Figure 4.3. When Figure 4.3 is compared with the simulated situation
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Figure 4.2: Overshoot in x, y, z-position of a step for a single drone in simulations.
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Figure 4.3: Estimated x, y, z-position a single drone subject to a step function in experiments.

of Figure 4.2, it seems that there is quite a disturbance present in the horizontal plane, while
tracking of the z-position actually is comparable and quite smooth. To compare the performance
of the position tracking of a single drone, the slightly modified root mean square (RMS) of the
estimated pi,e in k-direction is computed according

pRMS
i,e,k =

1

Δt

√(
p2i,e,k(1) + p2i,e,k(2) + . . .+ p2i,e,k(n)

)
, (4.15)

where Δt represents the time duration of the experiment or simulation, and n = 200Δt is the
number of samples, and is presented for experiments and simulations in Table 4.1. From Table

Table 4.1: RMS value of estimated or simulated pi,e in x, y, z-direction as a result of a step
function for a single drone.

pRMS
1,e,x pRMS

1,e,y pRMS
1,e,z Δt

Position tracking simulation 0.5709 0.0057 0.7807 27.995
Position tracking experiment 0.7242 0.2962 0.7713 27.995

4.1 it can be seen that the RMS in z-direction is almost identical in simulations and experiments.
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The observed disturbance present in the horizontal plane is also visible in the RMS values, where
the disturbance in y-direction appears to be more influential than the disturbance in x-direction.
The disturbance can be partly accounted for by the strong winds present at the drone test area
caused by the air treatment system running at full power. Furthermore, it should also be noted
that the behavior in the experiments is almost separated in a vertical tracking motion followed
by a horizontal tracking motion, while in simulations vertical and horizontal tracking is executed
simultaneously. This is underlined by analyzing the time it takes for the drone to first reach
their referenced position in x, y and z position, respectively, see Table 4.2.

Table 4.2: Time it takes the drone to first reach the referenced value in seconds, in the considered
directions in simulations and experiments.

x-direction y-direction z-direction

Position tracking simulation 1.37 1.38 1.1
Position tracking experiment 2.52 0 1.26
Virtual drone with k5 = 0 simulation 1.37 1.38 1.1
Virtual drone with k5 = 0 experiment 3.16 0 0.77
Virtual drone with k5 = 1 simulation 1.07 2.31 1.59
Virtual drone with k5 = 1 experiment 1.5 0 2.27

From Table 4.2 it can be seen that, while the time it takes to reach the referenced z-position
for the first time is comparable in simulations and experiments, the time it takes to reach the
referenced x-position for the first time differs considerably more. Note also that it takes quite
long for the simulated drone to reach the referenced y-position for the first time, it even takes
longer than reaching the referenced x-position for the first time, although that can be explained
by the fact that the (1,1) and (2,2) elements of Ji are not equal. Altogether, the position tracking
performance is deemed to be in line with the simulations, although naturally some differences
exist.

Obstacle avoidance with virtual drone

Now that the overshoot of a single, reference tracking, drone is deemed to be within acceptable
bounds, a virtual drone is introduced to test the collision avoidance behavior with low risk of
damaging the setup. To this end, a virtual drone is placed at its reference position exactly above
the initial position of the real drone at ρv = [0 0 1.5]� and the reference position for the real
drone is set to ρ1,r = [1 0 1.5]�. In the simulated situation, the drone is placed at ρv = [0 0 1]�

since the takeoff behavior is observed to differ from experiments in the simulated situation, and
with ρv = [0 0 1]� the situations are found to be more similar. Now the controller gains are
selected as k1 = 3k2 = k3 = 3k4 = 3, as this choice seemed to provide good position tracking
behavior, and in order to have a reference situation k5 = 0 is first selected. The resulting behavior
can be found in Figure 4.4, with the corresponding action sequence depicted in Figure 4.10a, and
it is observed that the centers of mass of the virtual drone and the real drone pass each-other
closely in both simulation and experiments. In the simulated situation it is computed that
min(d12) = 0.3360 which in experiments is only min(d12) = 0.13, see Figure 4.5 and 4.6. This
difference is explained by the fact that takeoff behavior between simulations and experiments is
not corresponding, and in experiments. The considered situation would have definitely resulted
in a collision since the drones are some nine centimeters in radius around their center of mass.
The time it takes the drone to first reach its referenced positions can also be found in Table
4.2, which underlines the difference in take-off behavior. Additionally, the RMS values of the
resulting behavior in x, y, z-direction are again computed and can be found in Table 4.3, from
which it can be seen that the RMS values correspond quite well, apart from a large disturbance
in y-direction. In fact, in the x and z-direction, the experimental data even seems to outperform
the simulation data with respect to tracking behavior.
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Figure 4.4: Collision avoidance with a virtual drone and k5 = 0.
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Figure 4.5: Behavior of a single drone and a virtual drone with k5 = 0 in a simulated environment.

Next, we slightly deviate from the analysis as presented in Section 3.4 by setting k5 = 1, while
keeping the virtual drone fixed in space, implying k5 = 0 in the control law of the virtual drone,
i.e., k5 = 1 is used in (3.91b) and k5 = 0 is used in (3.91d). Although we deviate from the
analysis as in Section 3.4, this experiment can still give valuable insights as it allows to test the
collision avoidance capabilities of a single drone without risk of damaging the experimental setup.
Furthermore, setting k5 = 1 activates the collision avoidance strategy of the control law, and
ensures a balance between the amount of collision avoidance and the vehemence of the resulting
behavior.

With k5 now set as k5 = 1, it can be seen in Figure 4.7b, that the virtual drone is avoided
nicely, with min(d12) = 0.4629 in simulations and min(d12) = 0.28 in experiments, and no
collision would have occurred, see Figures 4.8 and 4.9. The corresponding action sequence is
depicted in Figure 4.10b. And it should be noted that an increase in min(d12) is observed in
both simulations and experiments as a consequence of activating the collision avoidance strategy.
From the experiment it is observed that the evasion maneuver is rather aggressive while the
drone still manages to end up close to its reference position. This also implies that the situation
for which min(d12) = 0.28 is only of very short duration, indicating that the collision avoidance
strategy is rather fast, see Figure 4.9. Furthermore, the evasive maneuver is rather aggressive
and the drone rotates up to about 90 degrees around its y-axis in the experimental situation.
This could explain why the position estimation seems rather noisy, especially in y-direction.
This is underlined by the fact that state estimation largely depends on optical flow and sonar



44 CHAPTER 4. NUMERICAL AND EXPERIMENTAL VALIDATION

0 5 10 15

0

0.5

1

(a) x-Position.

0 5 10 15

-0.4

-0.2

0

(b) y-Position.

0 5 10 15
0

0.5

1

1.5

2

2.5

(c) z-Position.

Figure 4.6: Estimated behavior of a single drone and a virtual drone with k5 = 0 in experiments.

Table 4.3: RMS value of estimated or simulated pi,e in x, y, z-direction as a result of a step
function for a single drone and a virtual drone.

pRMS
1,e,x pRMS

1,e,y pRMS
1,e,z Δt

Virtual drone with k5 = 0 simulation 0.9371 0.0093 1.2815 17.055
Virtual drone with k5 = 0 experiment 0.8813 0.9497 1.1280 17.055
Virtual drone with k5 = 1 simulation 0.8321 0.0119 1.0315 22.73
Virtual drone with k5 = 1 experiment 2.7898 0.9202 1.4056 22.73

data, which both become unreliable when the bottom of the drone is perpendicular with the
horizontal plane [26]. This can also be seen from the computed RMS values pRMS

1,e,k in Table 4.3,
where especially the difference in x-direction stands out, which is in line with the observed fierce
rotation around the drones y-axis.

Concluding remarks

The reference tracking and collision avoidance capabilities of a single drone are tested, where first
simulations and experiments show favorable position tracking behavior. A subsequent experiment
introducing obstacle avoidance with a virtual drone shows that introducing a collision avoidance
strategy (k5 = 1) successfully avoids collisions, unlike a control law that does not include a
collision avoidance strategy (k5 = 0), in both simulation and experiment, as demonstrated in
Figures 4.4 and 4.7. A side note should be made here that we slightly deviated from the approach
as in Section 3.4, as the virtual drone is kept fixed in space. Furthermore, it is observed that
influential disturbances are present at the drone test area caused by the air treatment system,
which become obvious when the simulations are compared with experiments. Additionally, a
difference in take-off behavior is observed. Nevertheless, the controller is deemed ready for
implementation in a system of two drones with active collision avoidance and reference tracking.

4.2.3 Setting up the communication channel

As the Simulink support package is not created to control multiple Parrot minidrones simul-
taneously, a means to implement a form of communication also has to be introduced. Luckily,
the support package contains blocks to communicate with the host computer [44] and example
models exist to control the motor speed of a minidrone using the host computer [45]. This is
exploited by connecting to the NAP of multiple drones and bridging the connected interfaces on
the host computer, implying that the signals from one drone to another, all pass by the host
computer. The support package comes with two types of communication blocks, one exploits the
TCP/IP protocol and the other makes use of the UDP protocol. The most significant difference
between these two well known communication protocols is that one incorporates an acknowledge
message when a message is received (TCP/IP), and the other does not (UDP). Therefore, the
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(a) Numerical result. (b) Estimated experimental result.

Figure 4.7: Collision avoidance with a virtual drone and k5 = 1.
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Figure 4.8: Behavior of a single drone and a virtual drone with k5 = 1 in a simulated environment.

UDP protocol is most used in real-time applications where connection speed is preferred over
data accuracy, like phone or video calls, while the TCP/IP protocol is preferred when a reliable
data stream is required, for example for email or file transfer [46]. Along these lines, experiments
are first conducted using the UDP communication protocol.

Communication with UDP protocol

To test the quality of the communication channel, two drones are placed on a cardboard carrier,
see Figure 4.1b, and the UDP Send and UDP Receive blocks are incorporated in the Simulink
project to send the z-direction of the accelerometer data over the communication channel.
When the carrier is now moved up and down, a pattern will appear in the accelerometer data,
introducing a means of indicating time delay over the communication channel. The resulting
sent and received data is found in Figure 4.11 from which it becomes immediately clear that the
obtained data is rather poor. It is observed that the shape of the received data is similar to the
shape of the sent data but the data seems to be stretched over a significantly longer time period,
which would indicate a time-varying time delay.

Communication with TCP/IP protocol

As the data stream communicated using a UDP communication protocol seems rather poor,
experiments are conducted using the TCP/IP protocol in the quest to improve data quality.
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Figure 4.9: Estimated behavior of a single drone and a virtual drone with k5 = 1 in experiments.

(a) With k5 = 0. (b) With k5 = 1.

Figure 4.10: Action sequence of a collision avoidance experiment with a virtual drone.

The drones are again placed on a cardboard carrier and moved up and down while sending
accelerometer data back and forth. The results of the initial experiment can be found in Figure
4.12. From this figure, it is observed that the communication delay of the sent signal by drone
two is an acceptable 0.2 – 0.3 seconds, while the delay of the sent signal by drone one is about
ten times as large; two full seconds. An explanation for this probably lies in the fact that the
Simulink support package initially only supports a single drone, because of which they cannot
start simultaneously. The hypothesis is that this causes information packets to queue up while
waiting for a connection to be established with the second drone, which takes approximately ten
seconds. Now, when a connection is finally set up with the second drone, it will start processing
the oldest packets first, resulting in a major delay. It is noted however, that the drones are
capable of processing packages sent with the TCP/IP protocol at the same rate as the processor
frequency, at 200Hz.

To reduce the delay of the signal sent by drone one, the TCP/IP send block of drone one is
placed inside a so called ‘Enabled Subsystem’ which is enabled only after receiving a first status
message of the second drone. An example of this can be found in Figure 4.13. The Enabled
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Figure 4.11: Communication test with UDP communication protocol.
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Figure 4.12: Communication test with TCP/IP communication protocol.

Subsystem, containing only a TCP/IP send block sending p1,e and v1,e, is now enabled when
the value entering the so called ‘Enable Port’ is larger than one. Note that this also enables
simultaneous takeoff while the drones are initiated non-synchronously. For simultaneous takeoff
it is found that the performance of the state estimator significantly increases when also placed
in an enabled subsystem, instead of using the status signal of the connection as a gain of the
actuator inputs. The resulting communication signal is found in Figure 4.14, where the sent
signal is of the int16 data type, instead of the double data type, to save even more bandwidth.
Figure 4.14 shows that the delay of the signal sent to drone two is reduced with a factor ten,
to about 200 milliseconds. This is reckoned to be satisfactory as a simple ping signal from
the host computer to a drone usually takes about 50 milliseconds, with outliers just above
200 milliseconds. And the time delay of 200 milliseconds even incorporates the fact that the
connected drones communicate through the host computer’s interfaces. To even further decrease
the communication delay, one could change the nature of the Bluetooth communication network
in such a way that the drones could directly communicate with each-other, rather than utilizing
the bridged interfaces of the host computer. Notice that for some time instants, the connection
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Figure 4.13: Implementation of TCP/IP send block in enabled subsystem
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Figure 4.14: Communication test with TCP/IP communication protocol.

is poor or lost, resulting in a received value equal to zero, for example around t = 22 in the
signal received by drone one from drone two in Figure 4.14a. It is also observed that the stability
of the connection can be poor when just initiated, an example of which can be found in Figure
4.15. From this figure it can be seen that the connection is extremely poor when just initiated,
however, the stability of the signal seems to vary with each experiment and this figure is chosen
as it illustrates the phenomenon quite well. The poor connection during the initial moments
of an experiment becomes especially problematic when the drones are initiated in such a way
that an evasion maneuver is to be executed in these initial moments in order to avoid a collision.
Since the values of pi,e and vi,e are to be communicated, a failure in communication will signify
that the receiving drone observes the sending drone in its respective reference position pi,e = 0,
vi,e = 0, most probably being further away from the receiving drone than the sending drone
actually is.

Concluding remarks

A final comparison is made to evaluate the quality of the signal, to be found in Figure 4.16. To
get this result, both drones are again placed on the cardboard carrier and moved up and down.
This time, estimated z-positions are sent back and forth rather than accelerometer data and
drone 1 receives the estimated z-position of drone two using the TCP/IP protocol, while sending
its estimated z-position to drone two using the UDP protocol. From Figure 4.16 it becomes clear
that the time delay, while using the UDP protocol, is not constant. Moreover, it is observed that
the received signal also differs in shape with respect to the corresponding sent signal. Therefore,
the choice for using the TCP/IP protocol seems a trivial one as the time delay is constant and
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Figure 4.15: Estimated z-position of drone one and two as observed by drone one to illustrate
stability of connection when just established.

small, and the received signal fully corresponds to the sent signal, apart for some time instants
where the connection is flawed or lost. However, it should be noted that the UDP protocol
should be faster in theory, and investigating implementation of a communication channel using
the UDP protocol in the current experimental setup could be interesting to further reduce the
communication delay for future research.

4.3 Results

After analyzing the tracking behavior and setting up and testing the communication channel, the
final controller can be implemented in a system of two drones with collision avoidance. For this,
the formation frame is positioned 1.5 meters above the origin, ρf = [0 0 1.5]�, and the reference
positions of the drones expressed in the formation frame are p1,r = −p2,r = [−0.5 0 0]�. The
drones are initiated at ρ1(t0) = −ρ2(t0) = [0.1375 0 0]�, and the controller gains are first chosen as
k1 = 3k2 = k3 = 3k4 = 3 with k5 = 0, to see whether indeed a collision occurs when the obstacle
avoidance strategy is inactive. A small disturbance in initial y-position is introduced in the
simulated situation to resemble the experimental situation: ρ1(t0) = −ρ2(t0) = [0.1375 − .01 0]�.
The resulting simulated situation is found in Figure 4.17a and the minimal inter-agent distance
is computed to be min(d12) = 0.0156, clearly resulting in a collision when implemented in
experiments. To increase quality and reliability of the final experiments, the air treatment
system is turned off and the results of the controller with inactive collision avoidance strategy can
be found in Figure 4.17b, where the straight lines represent a short instability of the connection.
The estimated positions look rather unexpected but this is because the two drones indeed
fly into each-other and crash, losing their connection. The minimal inter-agent distance that
occurred during this experiment is min(d12) = 0.240 which seems pretty large, but appears to be
sufficiently small to make the two drones crash. The estimated position is not compensated for
the present time delay so the real min(d12) is most likely smaller than the estimated min(d12).

Now that a reference situation is obtained, the collision avoidance strategy is now activated
by setting k5 = 0.5. Setting k5 = 0.5 activates the collision avoidance strategy of the control
law, and ensures a balance between the amount of collision avoidance and the vehemence of the
resulting behavior, as it is found that ferocious evasion maneuvers degrade estimator performance,
and thus tracking capability. When the reference positions and initial conditions are chosen
identical to the experiment depicted in Figure 4.17, with as only difference choosing k5 = 0.5
instead of k5 = 0, the minimal inter-agent distance is obtained to be min(d12) = 0.2757 and
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Figure 4.16: Communication test comparing UDP and TCP/IP communication protocols where
the sent and received values are superimposed and for the UDP protocol the peaks at about
t = 52 are used for superimposing.

min(d12) = 0.275 for, respectively, the simulated and experimental situation. Note that both
these values of min(d12) are equal to d12(t0) and the corresponding behavior is found in Figure
4.18a and 4.18b for, respectively, the simulated and experimental situation, and the experimental
action sequence is found in Figure 4.19. Furthermore, it should be noted that an interesting
difference in behavior is observed when the two drones are just initiated. Where the quadcopters
immediately create more inter-agent distance in the simulated situation, the drones almost seem
to move closer during the initial moments of the experiment. This difference can be accounted
for by the fact that the communication channel is not yet stable at these initial moments, causing
agent i to think that agent j is already at its reference position as it receives pj,e = vj,e = 0 over
the communication channel. However, the observed behavior indicates the overall ability of the
drones to avoid collisions with evasion maneuvers resulting from the collision avoidance strategy,
even under challenging circumstances where the drones already are very close together, and
while the connection is most unstable when just initiated. Note that the tracking behavior is not
perfect, see Table 4.4, as the drones converge respectively to about ρ1(tend) = [−1 0.4 1.5]� and
ρ2(tend) = [0.9 − 0.4 1.5]�, however, the offset seems to be constant and in opposite direction
for the drones, which is probably related to the ferociousness of the maneuver as mentioned
before. Note also that the RMS values of the position estimates of drone 1, in all directions, is
closer to simulations than that of drone 2. Although the observed difference between in position
between drone 1 and 2 in experiments seems to be less than the estimated difference, as can be
seen in Figure 4.19. Furthermore, as also mentioned in [26], the estimated state becomes less
reliable when movement in the horizontal and vertical plane simultaneously is required, which
also partly accounts for degradation of the performance. To eliminate this degradation, it would
be desired to have ρ1(t0) = [a b 1.5]�, ρ2(t0) = [c d 1.5]�, with arbitrary constants a, b, c, d ∈ R,
and the respective reference positions in the horizontal plane containing a, b, c, d. This would
also be favorable with respect to the stability of the connection that can be poor when just
initiated, as mentioned before. Since the communication would in this case be well established
after takeoff already, before the maneuvering in the horizontal plane will occur. However, as it
is not possible to synchronize two drones’ internal clocks, and thereby their reference signals, in
the current setup, the mismatched d12,r results in asynchronous behavior and faulty pi,e and vi,e
values being communicated, which eventually could lead to collisions.
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(a) Numerical result (b) Estimated experimental result.

Figure 4.17: Test with position tracking active but collision avoidance inactive, i.e., k5 = 0.

(a) Numerical result. (b) Estimated experimental result.

Figure 4.18: Test with position tracking active but collision avoidance inactive, i.e., k5 = 0.5.

4.4 Concluding remarks

After introducing the experimental setup, a first step towards experimental validation is adjusting
the available Simulink support package in such a way that the software supports multiple drones
instead of a single one. Next, the considered system and the corresponding control inputs
are converted to quaternions enabling computationally efficient experimental implementation.
Thereafter, performance of a single drone is analyzed in both simulations and experiments, before
introducing a communication channel in the experimental setup. Despite the general use of the
UDP protocol in real-time applications, it is found that the TCP/IP communication protocol
functions significantly better, both in terms of time delay and signal quality. Finally, a reduced
time delay of only 200 milliseconds is effectuated, equal even to some of the slower ping signals
from the host computer to the drone. Before finally implementing the designed controller in the
experimental setup, the collision avoidance is successfully tested by introducing a virtual drone
to be avoided. Although differences are found between simulation and experiments, experimental
results seem to be in line with simulations. Finally, the designed controller is tested and it is
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Figure 4.19: Action sequence of a collision avoidance experiment with two drones and k5 = 0.5.

Table 4.4: RMS value of estimated or simulated pi,e in x, y, z-direction in a network of two
drones with obstacle avoidance and position tracking.

pRMS
i,e,x pRMS

i,e,y pRMS
i,e,z Δt

Final controller simulated p1,e,k 0.6540 0.2413 0.8788 23.82
Final controller simulated p2,e,k 0.5881 0.2170 0.7902 26.49
Final controller experiment p1,e,k 1.7374 1.2310 0.9700 23.82
Final controller experiment p2,e,k 0.9278 0.7301 0.8016 26.49

found that collisions are indeed avoided when the collision avoidance strategy is online, while
collisions are not avoided in the same situation with the collision avoidance strategy offline.
Even in challenging situations, like closely initialized agents, and under disturbances in the
form of an unstable connection, the collision avoidance strategy shows to be capable of avoiding
collisions. In the final experiments, external disturbances are accounted for as much as possible
by turning off all air treatment systems and closing all doors of the drone test area. To even
further decrease the time delay the network structure could be altered by making the drones
able to connect with each-other directly instead of through the host computer, this could even
enable omitting the host computer completely in the future.



Chapter 5

Conclusions and recommendations

As existing control strategies fail to prove the avoidance of collisions and mostly provide only
an optimal strategy, this thesis aims to deliver a theoretical framework that can actually prove
avoidance of collisions in a network. The main results from theory and validation are highlighted
after which the report is concluded with encountered limitations, promises and future work.

5.1 Conclusions

This section first presents a reflection on the used theoretical methods to prove that no collisions
occur in the system. Subsequently, the conclusions on the theoretical results obtained in the
different considered systems are presented. And finally, the experimental setup and the obtained
experimental and numerical results are contemplated and concluded upon.

Proof of collision avoidance

Initially, a kinematic model of point masses with time-varying reference signals is considered in
1D, which could be considered as an autonomously driving platoon on a single lane in which it
is desired to implement collision avoidance. This situation provides useful information in the
process of finding a control law that simultaneously achieves position tracking and collision
avoidance in the network. The initial approach exploits the usage of a collision avoidance strategy
based on an artificial potential field (APF) found in literature and proves to be successful in
the considered system. The origin of a projection of the resulting closed-loop reference tracking
dynamics is proven uniformly globally asymptotically stable (UGAS), while absence of collisions
in the system is proven by showing instability of the collision point.

The initially used approach in a system of single integrators in 1D fails to conveniently scale to
a network of double integrators. As the contemplated results regarding stability and collision
avoidance stayed off, converse Lyapunov theory is used on the system to numerically determine
a Lyapunov function. Examining the resulting numerical Lyapunov function sparked the idea to
use a control Lyapunov function which tends to infinity when approaching the collision point.
This approach constructs a Lyapunov function jointly with a control law to simultaneously prove
stability of the reference tracking dynamics, and absence of collisions.

The resulting theory turned out to supply a convenient framework to prove stability in networks of
cooperating single integrator systems, cooperating double integrator systems and even networks
of cooperating quadcopters. In the approach to apply the developed theoretical framework, a
step back is taken and a system of single integrators in 1D is considered again in order to compare
with the previously obtained results. Where it should be noted that the considered reference
signals are now restricted in such a way that only time-invariant closed-loop systems result.
With this restriction taken into account, a Lyapunov function is constructed incorporating an
APF, which induces the collision avoidance strategy in the jointly designed control law. With
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this approach it has been shown that the equilibria of the resulting closed-loop system are locally
exponentially stable (LES), and in a network of double integrators in arbitrary dimension it
has been proven that both resulting equilibria are asymptotically stable. Moreover, it has been
proven that no collisions occur in both considered systems.
As no saturation is present in the designed control law, one further assumption is made in order
to have the resulting analysis feasible when considering a system of cooperating quadcopter
UAVs in 3D. The total thrust magnitude control input has to be larger than zero, as a negative
thrust cannot be achieved because of actuator limitations, and a total thrust magnitude equal
to zero would result in an undefined desired thrust vector. Under the assumption that initial
conditions are chosen relatively close to the reference trajectory, the total thrust magnitude is
manually bounded, and the remainder of the analysis is deemed feasible. The designed control
law proves, under the mentioned assumptions, the origin of a projection of the position tracking
dynamics to be globally asymptotically stable (GAS) and locally exponentially stable (LES), the
desired equilibrium point of the attitude tracking subsystem to be uniformly locally exponentially
stable (ULES) and uniformly almost globally asymptotically stable (UaGAS), and proves the
avoidance of collisions in the system. Finally, by using cascaded theory, the total cascaded
system is proven UaGAS and ULES. Additionally, the results obtained in a network of two
quadcopter UAVs is extended to a network of an arbitrary number of UAVs and the origin of
the resulting system is again proven UaGAS and ULES.

Validation of collision avoidance strategy

The designed control law implementing a collision avoidance strategy is validated using both a
simulation model and an experimental setup. Before the experimental setup could be used, the
provided Simulink support package is adjusted so that it supports multiple drones. To this end,
the complete support package is analyzed and adjusted such that it now supports two drones. If
desired, the support package can be extended fairly easily by following the steps attached in
Appendix C. With the improved setup prepared for implementation, the control law is expressed
using quaternions to represent rotations for computational efficiency.
To prevent unnecessary damage to the experimental setup, a simulation study is used to indicate
the behavior to expect. To further decrease the chances of damaging the experimental setup,
the reference tracking and collision avoidance capabilities of a single drone are tested before
flying two quadcopters simultaneously. Reference tracking turned out to be along the lines of
simulations, except for the drift in y-direction which is partly explained by the strong gusts of
wind present at the drone test area as a result of the air treatment system being operated at full
power. A subsequent experiment introduced obstacle avoidance with a virtual drone and showed
that introducing a collision avoidance strategy successfully avoids collisions. The experimental
results of the same situation even outperformed the simulation results as the takeoff behavior in
experiments is observed to somewhat differ from the takeoff behavior in simulations.
As the performance of a single drone is deemed favorable, both in reference tracking and collision
avoidance capabilities, a communication channel is constructed to enable implementation of the
designed controller in a system of two quadcopters. Surprisingly, the TCP/IP communication
protocol outperformed the UDP communication protocol in both communication speed and
data quality, and it is decided to construct the communication channel using the TCP/IP
communication protocol. The initial experienced time delay over the communication channel,
which could take as long as two full seconds, is reduced to only a tenth of that. The residual
time delay over the communication channel of about 200 milliseconds is deemed sufficient as
it even approaches the time delay corresponding to a ping signal from the host computer to
the drone. The instability of the connection when the communication is just initiated is the
main remaining inconvenience, but this problem is overcome for now by repeatedly executing
experiments as the instability varies with every experiment.
Finally, the designed controller is successfully implemented in the full experimental setup.
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Challenging initial conditions are selected and it is shown that a collision is indeed avoided with
active collision avoidance strategy, while the collision is not avoided when the strategy is inactive.
The occurrence of a collision when no collision avoidance strategy is present, is especially well
illustrated in simulations. From simulations it is observed that the drones’ center of masses
would pass each-other with a minimum distance of about 1.5 centimeters, clearly resulting
in a collision when implemented in the experimental setup. The performance of the collision
avoidance strategy is best illustrated by the achieved minimal inter-agent distances, and as the
minimal inter-agent distances never drop below the initial inter-agent distance when collision
avoidance is active, it is concluded that the initial inter-agent distance is indeed challenging.
Overall it can be concluded that the designed control strategy, including collision avoidance,
performs quite well. Even though assumptions are made with respect to saturation, it is shown
that the designed controller satisfies hopes and expectations in both a simulated environment,
and in an experimental setup. Successful implementation in the experimental setup also indicates
robustness of the designed control law as the nonlinear control law requires precise state estimates,
particularly for the attitude tracking controller and the collision avoidance part.

5.2 Recommendations

Although the main objective of the research is generally achieved, improvements can still be
made to both theory and numerical or experimental implementation. Regarding theory, a main
improvement would be to incorporate saturation in the designed control law. Without saturation
of the control law, it cannot be guaranteed that total thrust magnitude, desired thrust vector,
and desired attitude are well defined without introducing assumptions on initial conditions
and reference trajectories. When considering only constant reference trajectories, a guarantee
that the control law is well defined can be given up to a certain extend. However, considering
only constant reference trajectories is rather restrictive and it would be desirable to extend the
presented proofs to systems that allow for time-varying reference trajectories. After all, most
applications presented in the introduction utilize time varying trajectories. Also, the analysis
presented in this research considers a network of only two quadcopters and an extension of the
analysis to allow expanding the network to make the number of drones in the network i arbitrary
large is desirable. A final improvement regarding the performed theoretical analysis, would be to
incorporate social distancing and give the agents some personal space to account for dimensions
of the drone, as the presented theory only proves that the centers of mass of two quadcopters
will never coincide. Although the APF incorporated in the designed control law is repelling
whenever the two drones are closer together than their reference relative distance, no drones
exist with the dimensions of a point mass, and thus collisions can still occur in practice.
Although the designed control law with collision avoidance proves to be robust, as implementation
in experiments is quite successful, it is always desirable to have more accurate tracking and
behavior. Therefore, future research could focus on improving the internal state estimator even
further. As the aim is autonomous flight, this research has chosen to only make use of this
internal state estimator and not use an external localization technique. This choice prevents
additional communication delays with an external localization system, but comes at the cost of
lower quality state estimates.
Lastly, improvements to the experimental setup can be made. The air treatment system was
only turned off during final experiments, as it turned out to be rather difficult to have the air
treatment turned off. A major shortcoming of the current setup is that it is not possible to
initiate two drones simultaneously. Although placing state estimator and communication blocks
inside Enabled Subsystems enables simultaneous takeoff, time dependent reference trajectories
will be asynchronous as it is not yet achieved to synchronize internal clocks. This could be
overcome by communicating also reference trajectory information but this would come at the
cost of communication bandwidth and would also be subject to time delays.





Appendix A

Local stability analysis of
equilibrium of 1D kinematic model

Consider the closed-loop reference tracking system of two single integrators in 1D
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where x̃i represents the position error, d12 = x̃1 − x̃2 + d12,r the inter-agent distance, d12,r the
referenced inter-agent distance, and with control parameters k1, k2, k3 > 0, of which the Jacobian
is computed to be
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Evaluating J on the equilibria
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gives
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with which the eigenvalues of the corresponding J(x̃1, x̃2) are computed as

λJ(x̃1,x̃2) =
− (

c3 + c4 + c5 + c6 + c7 + c8 + c9 ±√
c2

)
c1

, (A.6)
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with the constants c1, c2, c3, c4, c5, c6, c7, c8, c9 given according to
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where it is noted that c1, c2, c3, c4, c5, c6, c7, c8, c9 > 0. Now, after some elaborate computations
and simplifications, it is found that the inequality

c3 + c4 + c5 + c6 + c7 + c8 + c9 >
√
c2 (A.8)

holds for k1, k2, k3, d12,r > 0, and thus, both eigenvalues given in (A.6) are strictly negative.



Appendix B

Local stability analysis in projected
position tracking dynamics in 3D

Consider the closed-loop (z1, z2) dynamics in 3D

ż1 =− S(ωf )z1 + z2, (B.1a)

ż2 =− S(ωf )z2 − k1z1 − k2z2, (B.1b)

with k1, k2 > 0 and time-independent ωf ∈ R3, of which the Jacobian is computed to be
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First we set k22 − 4k1 ≤ 0 and evaluate the real part of the eigenvalues of (B.3). For λ1,2 this
gives

λ1,2 =
−k2 ±

√
4k1 − k22i

2
, (B.4)

where i is the imaginary number satisfying i2 = −1, with which it becomes obvious that
Re(λ1,2) > 0 for k22 − 4k1 ≤ 0. Next, for k22 − 4k1 < 0 we can have
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Which leaves us to prove
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To show that (B.8a) holds we can write
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and by combining k1, k2 > 0 and ωf ∈ R3 with the fact it is assumed that 4k1 − k22 ≥ 0, λ4 < 0
is obtained in the considered case. To finally prove that (B.8b) holds, we write
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and using again k1, k2 > 0 and ωf ∈ R3, λ6 < 0 is obtained.

As it has been shown that the real part of all eigenvalues is strictly negative for all time-
independent ωf ∈ R3, and k1, k2 satisfying k22 − 4k1 ≤ 0, the sign of the real part of the
eigenvalues when k22 − 4k1 > 0 is now investigated. Now, in the case that k22 − 4k1 > 0, λ1 =
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now noting k1, k2 > 0, we can conclude that indeed λ2 < 0 for k22 > 4k1. Next, using k22−4k1 > 0
in (B.3b) and (B.3c), we can write
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where i is again the imaginary number satisfying i2 = −1. Note that a square root of a complex
number can be written as √

a+ bi = x+ yi, (B.15)

with a, b, x, y ∈ R, where the real part x and the imaginary part y are computed according to
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with the signs of x and y determined according

sign(x) = sign(y), for b < 0, (B.17a)

sign(x) = −sign(y), for b > 0, (B.17b)
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indicating that Re(λ3,5) = −1
2(
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k22 − 4k1 + k2) < 0 and using the result of (B.13) we can

conclude that Re(λ4,6) = 1
2(
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k22 − 4k1 − k2) < 0. And thus, all eigenvalues of (B.3) of the

Jacobian (B.2) are proven strictly negative for all k1, k2 > 0 and time-independent ωf ∈ R3, and
thus the origin of (B.1) is locally exponentially stable (LES).





Appendix C

Modification of Simulink Support
Package for Parrot Minidrones

Before implementing the control law designed in Section 3.4 in the experimental setup as
described in Section 4.1, the Simulink Support Package for Parrot Minidrones needs some
adjustments, as it is not suitable to communicate with two drones simultaneously in the form
in which it is provided by Parrot. The used software version of the Simulink Support Package
for Parrot Minidrones is 19.2.0, which is run on an Ubuntu 18.04.3 LTS operated PC with
MATLAB 9.7 (released under the name R2019b) installed. The files of this support package
version that need adjustment are stated below and are located in the folder /root/Documents/
MATLAB/SupportPackages/R2019b/toolbox/target/supportpackages/parrot. For most .m
files, there exists a .p file with the same name which should be deleted.

/parrot

• /+codertarget/+parrot/+internal

– /@parrotio/parrotio.m

– loadAndRun.m

– onAfterCodeGenHook.m

– ParrotConstants.m

– PostFlightAnalysis.m

– Utility.m

• /+parrot/+util

– ConnectDroneToBlueTooth.m

• /registry

– /attributes/parrotMambo2_AttributeInfo.xml

– /parameters/parrotMambo2_ParameterInfo.xml

– /targethardware/parrotMambo2_TargetHardwareInfo.xml

Then, in the file /usr/local/MATLAB/R2019b/rtw/c/ert/ert.tlc, the last three lines should
be commented out. And in order to regenerate or recompile certain parts of the code, the target
hardware selected in the Simulink project should be changed once before selecting the desired
target hardware. This is in order to reload the file ert.tlc.

When all adjustments are made, the following approach should be taken in order to successfully
communicate with multiple drones simultaneously.
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Connect the first drone and set up a telnet connection with it using the terminal command
telnet 192.168.2.1 when the drone is connected using USB, or telnet 192.168.3.1 when
the drone is only connected over Bluetooth (in the last case the telnet connection will be lost
since the IP address is changed). When a telnet connection with the drone is established and
access to the drone is acquired, the command ifconfig bnep 192.168.3.X up is executed to
change the Bluetooth IP address of the drone to the desired value X. The whole process can
now be repeated for every additional drone, attention is required to ensure that every drone
has its own IP address assigned to it correctly. Note that the adjustments made to the support
package for the experiments executed for this report use the IP addresses 192.168.3.91 and
192.168.3.91 for the 'Mambo' and 'Mambo 2' target hardware board.
Next, the Bluetooth interfaces of the Ground Station (GS) which are connected to the drones
need to be bridged. Make sure that both drones are connected using the same Bluetooth adapter,
a choice should be made between an external Bluetooth dongle or the built-in Bluetooth adapter.
A bridge br0 is then created by using the command sudo brctl addbr br0 and the adapters
can be added to it using the command sudo brctl addif br0 bnepX, where X represents the
respective adapter numbers starting at zero. When all adapters are added to the the bridge, it
can be initiated by using the command sudo ifconfig br0 192.168.3.2 up. Now all connected
drones can be pinged and when a telnet connection with a drone is established it can also ping
the other drones. Note that pinging the drones is a good measure to check whether the bridging
of the two adapters is executed correctly.
Now, a Matlab client should be opened from its own terminal for every drone. In the file
Utility.m lines 31 and 33 need to be adjusted with the desired IP address (as '192.168.3.X')
and name (as 'Mambo' or 'Mambo X'), respectively, every time a drone is going to be used to
build and deploy a model on. When the Flight Interface appears, the next model can be built
and deployed on the subsequent drone. When all models are built and deployed, the models can
be initiated by pressing the start button in the flight control interface. Make sure that whenever
a communication with the drone is required, e.g. to build and deploy a model, to download
the MAT-file or to start a built model on the drone, the Utility.m file should be adjusted
to communicate with the corresponding drone. Note that the package is now able to support
a maximum of two drones, if this number is to be increased, all files stated above should be
adjusted accordingly.
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