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Abstract

The attitude dynamics of a rigid body can be used as a model for systems such
as multirotor aircraft, rockets and artificial satellites. Those systems are often
actively controlled. However, many control policies require to know the states
of the system. Estimates of those states can be obtained using an appropriately
designed observer.

This thesis considers the problem of estimating the states related to the atti-
tude dynamics of a rigid body with an observer. This dynamics is formulated in
three different ways, whose derivations are based on the available sensors. Two
different approaches of constructing observers is discussed for each formulation
of the dynamics. The first approach transforms the model of the dynamics into
a linear time varying model, for which known observers from the literature can
be used. The second approach starts with a Lyapunov function after which the
correction terms are chosen such the time derivative of this Lyapunov function
becomes negative semi-definite. Furthermore, it is also discussed how each ob-
server can be implemented in numerical simulations and how one could go about
assessing their performance in an objective way.
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Nomenclature

Abbreviations

CQLF Common quadratic Lyapunov function

LTV Linear time varying

UCO Uniformly completely observable

Operators

det(A) Function that returns the determinant of matrix A.

ẋ Time derivative of the variable x.

‖A‖ Norm of a matrix defined as the largest value for ‖Ax‖ given that
‖x‖ = 1.

diag(x) Function that returns a square matrix, whose diagonal elements are
equal to the elements of x.

A⊗ B Returns the Kronecker product between matrices A and B.

A � B Inequality between square matrices in R
n×n stating that

x�(A−B) x > 0, ∀ ‖x‖ �= 0.

A � B Inequality between square matrices in R
n×n stating that

x�(A−B) x ≥ 0, ∀ x ∈ R
n.

S(x) Function that returns the skew symmetric matrix of size 3× 3 corre-
sponding to the thee-dimensional vector x.

x� Returns the transpose of the vector or matrix x.

Number Sets

Z Integers

R Real numbers

C Complex Numbers

H Quaternions

iv



NOMENCLATURE v

R
n The n-dimensional Euclidean space

R
n×m Matrix of n by m populated with real numbers

SO(3) Special orthogonal group for three-dimensional space

Constants and variables

0n×m Zero matrix of n by m

In Identity matrix of n by n

va Coordinates of the vector v in Euclidean three-dimensional space ex-
pressed in Cartesian frame a.



Chapter 1

Introduction

Multirotor aircraft are a flying machines that uses multiple rotors to generate lift.
In 1907 one of the first flying machines that could be classified as such was already
constructed, called the Breguet-Richet Gyroplane No.I and only hovered 0.6 me-
ters above the ground [37]. One of the first multirotor aircraft that used variable
thrust of the main rotors to control its attitude is the Model A Quadrotor build
in 1956 [32]. Controlling the attitude with variable thrust allows for less moving
parts in multirotor aircraft compared to a helicopter, which uses a swash plate to
alter the pitch and thus lift of its main rotor blades while they rotate. Multirotor
aircraft gained a lot of popularity in roughly the last decade as unmanned aerial
vehicles (UAV). This could be explained by the relatively small amount of required
moving parts combined with the rise in popularity of smart phones. The small
amount of moving parts reduces manufacturing cost and the development of smart
phones stimulated battery technology and the production of inertial measurement
unit (IMU) chips. The rise in computation capabilities also allowed those UAV’s to
become more and more autonomous. Initially mainly linear control is used to save
on computation time. However, to make those autonomous UAV’s more robust
against disturbances and initial conditions one could use nonlinear control, since
linear control might become unstable if those disturbances or initial conditions
cause large deviations away from the linearization point. Most nonlinear control
theory uses state feedback [11], [21], [4], [12], [27], but the available sensors usu-
ally do not allow to recover full state information from measurements at a single
instance and are also perturbed by disturbances.

In order to recover the full state information of multirotor aircraft from sensor
measurements, one would need to use an algorithm that can combine the mea-
surements over time. The dynamics of a multirotor aircraft can be modeled as
a rigid body, which can be split into the dynamics related to its position and its
attitude. It can be noted that, when ignoring any kind of nonlinear friction, the
dynamics related to the attitude contains the majority of the nonlinear terms of
the combined dynamics of a rigid body model. To limit the scope of this thesis, it
is therefore chosen to only focus on finding such algorithms for the attitude part
of the state. It can also be noted that such rigid body attitude model can not only
be used for multirotor aircraft, but also for things like rockets and artificial satel-
lites. Furthermore, in this thesis it is assumed that the rigid body model does not
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2 CHAPTER 1. INTRODUCTION

contain any stochastic processes, in which case such algorithms can also be called
observers. For linear systems one can use certainty equivalence [1] to decouple
the observer and state feedback dynamics. However, for nonlinear systems this
can not be used in general. Therefore, both the observer and the state feedback,
whose combination is also called output feedback, have to be taken into consid-
eration simultaneously in order to show stability. This implies that the proposed
observers in this thesis do not guarantee that when combined with state feedback
the resulting output feedback is stable.

Before attempting to formulate observers for the considered dynamics, the lit-
erature is consulted about already existing observers for (parts) of the attitude
dynamics of a rigid body. From this it can be shown that the following observers
have been proposed for the angular velocity [22], [28] and for the attitude kine-
matics [5], [9], [24], [23], [25]. However, not many observers have been constructed
that consider the combined dynamics [8], [14].

In this thesis the following structure is used. In Chapter 2 three different
models are discussed which can be used the describe the attitude dynamics of a
rigid body. This is followed by Chapter 3 and 4 in which two different observer
structures are derived. The structure from Chapter 3 assumes that each model
can be formulated as linear time varying for which a known observer from the
literature can be used. The structure from Chapter 4 uses a Lyapunov function
at its basis to shape the observer dynamics. Both these observer structures are
applied to each of the three proposed models from Chapter 2 and analyzed in
more detail in Chapter 5, 6 and 7 respectively. In Chapter 8 it is discussed how
the proposed observers can be implemented numerically and how those numerical
results can be used to help choose an observer and its parameters.



Chapter 2

Rigid body models

The goal of this thesis is to construct observers which can estimate the states of
a rigid body related to its attitude dynamics using the applied torque, attitude
measurements and angular velocity measurements, if available. In order to do
this Section 2.1 first introduces the definitions used for the state of a rigid body.
This is followed by Section 2.2 in which the considered possible model outputs
are discussed. All this is combined in Section 2.3 into three different models for
describing the attitude dynamics of a rigid body.

2.1 Rigid body state description

In classical mechanics the motion of bodies takes place in three-dimensional Eu-
clidean space. To describe geometrical and mechanical relations a reference frame
is required. Commonly a Cartesian frame {O,�e} is used, which is characterized by
the location of its origin O and by the orientation of a set �e := {e1, e2, e3} of three
orthogonal unit vectors as shown in Figure 2.1. Furthermore, in this thesis only
right-handed frames are used, so e1×e2 = e3, e2×e3 = e1 and e3×e1 = e2 [29]. In

O

e1

e2

e3

Figure 2.1: Right handed Cartesian frame {O,�e}.

classical mechanics it is convenient to work with multiple Cartesian frames. Each
of these frames are denoted using a different symbol, for example {Oa,�a} and

3



4 CHAPTER 2. RIGID BODY MODELS

{Ob,�b} represent frame a and b respectively. A point and a vector in Euclidean
three-dimensional space can be defined relative to a given frame using three coordi-
nates. For a given frame, denoted with a, such coordinates for a vector are defined

as va :=
[
va1 va2 va3

]� ∈ R
3, which represents the vector va1 a1+va2 a2+va1 a2. Sim-

ilar coordinates could also be defined for a point, but this thesis only focuses on
the mechanics related to the attitude of a rigid body, which only requires vectors
and no positions.

One sufficient set of states that can be used to describe the attitude dynamics
of a rigid body is an attitude representation and a measure of the rate of rotation.
In order to represent those states with coordinates an inertial and body fixed
Cartesian reference frame are used, denoted with e and b respectively.

For the majority of this thesis rotation matrices are used as the attitude rep-
resentation. For local stability analysis and numerical implementation also other
representations are used, but those are introduced when they are used. Any rota-
tion matrix can formally be defined as a member of the third special orthogonal
group, or SO(3) for short, which can be defined as [16]

SO(3) :=
{
X ∈ R

3×3 |X�X = I3, detX = 1
}
. (2.1)

Rotation matrices function as linear transformations for vector coordinates be-
tween two frames. In the remainder of this thesis the notation Reb is used to
represent a rotation matrix which can transform coordinates expressed using the
body fixed reference frame b into coordinates expressed using the inertial reference
frame e according to ve = Rebvb.

Common ways of describing the rate of rotation of a rigid body is with the
angular velocity or angular momentum. Such an angular velocity is a vector which
defines the axis and magnitude of the instantaneous rate of rotation in radians
per second between two reference frames according to the right hand rule. In the
remainder of this thesis the notation beω is used to represent the rate of rotation of
the body frame relative to the inertial frame. The coordinates of such an angular
velocity in the body frame would thus be denoted with beωb. The coordinates of
the angular momentum of a rigid body in the inertial frame, denoted with Le, can
be related to the angular velocity coordinates beωb using [15, p. 134]

Le = RebJ beωb, (2.2)

with J = J� � 0 ∈ R
3×3 the body fixed mass moment of inertia matrix. The

assumption that J � 0 is only violated when the mass of the rigid body is concen-
trated onto a line. However, that would either require zero mass or infinite density,
both of which are in most cases not physically meaningful. Therefore, when the
angular momentum Le, rotation matrix Reb and moment of inertia matrix J are
known it is also possible to solve (2.2) for the angular velocity beωb using

beωb = J−1Reb�Le. (2.3)

This transformation from angular velocity to angular momentum is for example
also used for an angular velocity observer [28].
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Oe

e1

e2

e3

Obb1

b2

b3

beω

Figure 2.2: Illustration of inertial and body fixed frames e and b, and angular velocity
vector beω decomposed into body fixed coordinates.

An example of an inertial frame e, body fixed frame b and angular velocity is
given in Figure 2.2.

The time derivative of the attitude of a rigid body, expressed as a rotation
matrix, is also known as the Poisson equation and can be described with [29,
p. 81]

Ṙeb = Reb S(beωb), (2.4)

where S(x) is a function which transforms any x =
[
x1 x2 x3

]� ∈ R
3 into a

corresponding skew symmetric matrix

S(x) =

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ . (2.5)

The time derivative of the angular velocity coordinates beωb is given by [15, p. 143]

J beω̇b = S
(
J beωb

)
beωb + τ b, (2.6)

with τ b the sum of all torques acting on the body expressed using body fixed
coordinates. The time derivative of the angular momentum coordinates Le is
given by [15, p. 137]

L̇e = τ e, (2.7)

with τ e the sum of all torques acting on the body expressed as coordinates in the
inertial frame e, which is equivalent to τ e = Rebτ b with τ b the same as in (2.6).

2.2 Measurements

For all models it is assumed that the entire attitude can be measured as a rotation
matrix Reb. This can for example indirectly be obtained from multiple direction
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measurements, where the coordinates of those direction are measured in one frame
and are known in another frame. Examples of such directions are the directions
of gravity or Earth’s magnetic field. The attitude can be reconstructed from
these measured direction by solving Wahba’s problem, which can be formulated
as follows [36]

Reb = arg min
R∈SO(3)

N∑
n=1

λn

∥∥ven −Rvbn
∥∥2

, (2.8)

were N ≥ 2 and λn > 0 are weights depending on the relative confidence of each
vector pair. In order to always be able to have one unique solution to Wahba’s
problem it is required that there are at least two linearly independent directions
from which its coordinates are known and measured in both frames. So the direc-
tions of gravity or Earth’s magnetic field would not be sufficient at the magnetic
poles of the Earth.

It has been shown that Wahba’s problem can be solved using [26]

B =
N∑

n=1

λn v
e
n v

b
n

�
= U S V �, (2.9)

where U S V � is the singular value decomposition of B. The solution for Reb can
be found with

Reb = U diag
([
1 1 det(U) det(V )

])
V �. (2.10)

If the appropriate sensor would be available it is assumed that the angular
velocity can be measured in the body fixed frame. An example of such sensor
would be a gyroscope attached to the body. However, the measurements from
those gyroscopes are often subjected to a bias [23]. That bias is denoted with
bb ∈ R

3 and is assumed to be unknown but constant. Therefore, the biased
angular velocity measurement can be defined as

zb := beωb + bb. (2.11)

By substituting (2.3) in (2.11), it is also possible to express the biased angular
velocity measurement using the angular momentum

zb := J−1Reb�Le + bb. (2.12)

Besides the bias of the angular velocity measurements it is assumed that all
measurements are not subjected to other sources of noise or disturbance. This is
not a realistic assumption, but helps to limit the scope of this thesis.

2.3 System models

The combined system of differential equations that needs to be considered by an
observer for the attitude dynamics, as described in Section 2.1, differs depending
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on which measurements are used. Namely, if the biased angular velocity mea-
surement is used the constant but unknown bias bb should also be taken into
consideration. This can be included into the model of the system by adding bb as
part of the state and setting the time derivative of bb to zero. When the biased
angular velocity measurement is used it is also possible to only consider the at-
titude kinematics [23]. Together, this allows for three different ways of modeling
the system, each of which can be used to construct observers. The first model of
the system is discussed in Subsection 2.3.1 and considers the minimal dynamics
and uses the applied torque and attitude measurements. The second model of the
system is discussed in Subsection 2.3.2 and expands on the first model by addi-
tionally considering the bias and using the biased angular velocity measurement.
The third model of the system is discussed in Section 2.3.3 and considers the atti-
tude kinematics and uses the attitude measurements and biased angular velocity
measurements.

2.3.1 Model with minimal dynamics

For the model with minimal dynamics it is assumed that only the rotation matrix
Reb is measured and the input τ b is known. In order to fully define the state
of the attitude dynamics one could use Reb and either the angular velocity beωb

or angular momentum Le. However, when comparing their time derivatives from
(2.6) and (2.7) respectively it can be concluded that the resulting dynamics is
simpler when using Le. Therefore, the combined dynamics of this minimal model
can be obtained using (2.4), (2.3) and (2.7) yielding

Ṙeb = Reb S(J−1Reb�Le), (2.13a)

L̇e = Rebu, (2.13b)

u = τ b, (2.13c)

y = Reb, (2.13d)

with u the known input of the system and y the output of the system. Furthermore,
it is also assumed that J is known. Therefore, if an observer is able to estimate
Reb and Le then beωb could also be estimated using (2.3).

2.3.2 Model with biased dynamics

For the model with biased dynamics it is assumed that the rotation matrix Reb

and the biased angular velocity zb are measured and the input τ b is known. As
stated before, this model expands on the model from Section 2.3.1 by additionally
considering bb and using the measurement zb. The combined dynamics of this
model can be obtained using (2.13), (2.11), (2.3) and the assumption that bb is
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constant, yielding

Ṙeb = Reb S(J−1Reb�Le), (2.14a)

L̇e = Rebu, (2.14b)

ḃb = 0, (2.14c)

u = τ b, (2.14d)

y1 = Reb, (2.14e)

y2 = J−1Reb�Le + bb, (2.14f)

with u the known input of the system and, y1 and y2 the outputs of the system.

2.3.3 Model with kinematics

For the model with kinematics it is assumed that the rotation matrix Reb and the
biased angular velocity zb are measured. The input τ b and matrix J do not need
to be known. In order to transform the dynamics into kinematics zb can instead
be seen as the input to the system and the dynamics associated with the rate
of rotation can be omitted. The combined model can therefore be described by
solving (2.11) for beωb and using (2.4) and (2.14c) yielding

Ṙeb = Reb S(u− bb), (2.15a)

ḃb = 0, (2.15b)

u = zb, (2.15c)

y = Reb, (2.15d)

with u the effective known input and y the output of the system. An observer
could obtain an estimate for the angular velocity by subtracting the estimate for
the bias from the biased angular velocity measurement zb.

2.4 Outline of proposed observers

In each of the next two chapters a class of observers is proposed which are applied
to each of the models from Section 2.3 in Chapter 5, 6 and 7. In Chapter 3 it
is assumed that each model can be formulated as linear time varying for which a
known observer structure is used. In Chapter 4 a nonlinear observer structure is
proposed, with a Lyapunov function at its basis.



Chapter 3

Linear time varying observer
outline

This chapter discusses the derivation of the first structure of an observer outline
used in this thesis. This structure is applied to each of the three models from
Section 2.3 in Section 5.1, 6.1 and 7.1. This observer structure is based on de-
scribing the considered model as linear time varying (LTV). If such LTV model
can be shown to be uniformly completely observable (UCO) one can use a known
observer structure from the literature. The dynamical description of this observer
structure is discussed in Section 3.1. This is followed by a discussion of how each
model from Section 2.3 could be formulated as LTV. Lastly, in Section 3.3 it is
discussed how the UCO condition could be checked for each model.

3.1 Observer dynamics

The system matrices of each LTV model are assumed to be an implicit function of
time. Namely, it is assumed that each system matrix can be written as a function
of the rotation matrix Reb, which is measured as a function of time, yielding the
following LTV-like model

{
ẋ(t) = A(Reb) x(t) + B(Reb) u(t),
y(t) = C(Reb) x(t),

(3.1)

with x(t) ∈ R
n the state vector, A(Reb) : SO(3) → R

n×n, u(t) ∈ R
m the input

vector, B(Reb) : SO(3) → R
n×m, y(t) ∈ R

p the output vector and C(Reb) :
SO(3) → R

p×n.

If the considered LTV model has bounded system matrices and is shown to be
UCO one can use an observer of the form [6, pp. 16-17]

˙̂x(t) = A(Reb) x̂(t) + B(Reb) u(t)−K(t)
[
C(Reb) x̂(t)− y(t)

]
, (3.2)

9



10 CHAPTER 3. LINEAR TIME VARYING OBSERVER OUTLINE

with x̂(t) the estimate of x(t) from (3.1) and K(t) is given by⎧⎨
⎩
Ṁ(t) = A(Reb)M(t)+M(t)A�(Reb)−M(t)C�(Reb)W−1C(Reb)M(t)+V+δM(t),
M(t0) = M0 = M�

0 � 0, W = W� � 0,
K(t) = M(t)C�(Reb)W−1,

(3.3)
with K(t) ∈ R

n×p, M(t) = M�(t) ∈ R
n×n ∀ t ≥ t0, W ∈ R

p×p, V ∈ R
n×n and δ ∈

R. Furthermore, for general LTV models it is required that either δ > 2 ‖A(Reb)‖
for all Reb ∈ SO(3), or V = V � � 0.

The observer, defined by (3.2) and (3.3), can recover the full state information,
so that the estimated state x̂(t) has global exponential convergence to the true
state x(t). The rate of this convergence can be tuned by δ or the minimal eigen-
value of V [6, pp. 16-17]. It can be noted that scaling W , V and M0 from (3.3)
by the same positive scalar yields the same scaled solution for M(t). However, in
(3.2) only the observer gain K(t) is used, in which this scalar would cancels with
itself. Therefore, the performance of the observer is not affected by such scaling
and could be used to normalize W or V with respect to some measure, such as
the largest eigenvalue of W .

For δ = 0 the observer becomes equivalent to the continuous time Kalman
filter without the stochastic terms [6]. The continuous time Kalman filter is also
known as the Kalman-Bucy filter, which can be shown to be exponentially stable
if
(
A(Reb), V

)
is uniformly completely controllable (dual of UCO) [10]. Therefore,

when δ = 0 does not require that V = V � � 0 as stated, only that
(
A(Reb), V

)
is

uniformly completely controllable. However, it is guaranteed that this condition
is satisfied when V = V � � 0. If stochastic terms where acting on the inputs and
outputs of the system then the covariance of the estimation error is minimized
when the values for W and V are chosen to be equal to the covariance of output
and input noises respectively. However, adding noise to the measured rotation
matrix also affects the matrices used for the LTV model in the observer, which
could affect what the optimal W and V would be.

The bound on δ when V = 0 is stated as δ > 2 ‖A(Reb)‖. That bound is
based on the inequality ‖Φ(t, t−T )‖ ≤ eσ T with σ = sup ‖A(Reb)‖ and Φ(t, t−T )
the state transition matrix from time t − T to time t [7]. Such state transition
matrix is defined as the map from the state at time t − T to the state at time
t while the system is subjected to an input of zero. However, the homogeneous
attitude dynamics is Lyapunov stable, since in that case the angular momentum
should remain constant and the rotation matrix is a member of SO(3) thus remains
bounded. Therefore, the norm of the state transition matrix can always be upper
bounded by a constant. This relaxes the lower bound on the observer parameter
to δ > 0.

3.2 Attitude representation in state vector

The LTV model considered in (3.1) uses one vector x(t) to represent the entire
state. Therefore, for each model from Section 2.3 all variables used to represent the
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state should be combined into one such vector in order to be able to transform each
model into the form of (3.1). All state variables of each model from Section 2.3,
besides the one used for the attitude representation, are vectors which can easily be
transformed into one larger vector by stacking them on top of each other. For the
attitude representation all three model formulations use a rotation matrix, which
cannot be incorporated into that larger vector by stacking, since it is a three
by three matrix and not a vector. This subsection discusses how those rotation
matrices can be turned into a vector, such that the entire state can be captured
by one state vector. Additionally, it is also discussed how the dynamics of that
vectorized attitude representation can be described and how the state vector can
be reduced in size, which can help reduce the computational cost of using the
proposed observer structure from (3.2) and (3.3).

By using the vectorization operator one can turn any rotation matrix Reb ∈
SO(3) ⊂ R

3×3 into a vector

ρ := vec(Reb) ∈ R
9, (3.4)

where vec(M) denotes the vectorization operator with as input a matrix M and
outputs the columns of matrix M stacked on top of each other into a single vector.
This vectorization operation is constant and linear. Therefore, the time derivative
of ρ can be obtained by also vectorizing the time derivative of Reb. The time
derivative of Reb for each considered model from Section 2.3 are all of the form

Ṙeb = RebS(ω), (3.5)

with ω = J−1Reb�Le for the minimal and biased model and ω = zb − bb for
the kinematic model. When vectorizing the product of matrices one can use the
Kronecker product, which for the product between matrices A = [aij] ∈ R

m×n and
B ∈ R

o×p is defined as [19, p. 303]

A⊗ B := [aij B] =

⎡
⎢⎣
a11 B · · · a1n B
...

...
am1 B · · · amn B

⎤
⎥⎦ ∈ R

mo×n p. (3.6)

The vectorization of the product of three matrices can also be written using the
Kronecker product as [19, p. 306]

vec(AC B) =
(
B� ⊗ A

)
vec(C). (3.7)

The general expression for the time derivative of Reb from (3.5) contains only a
product between two matrices. Thus, one of the matrices can be chosen to be
the identity matrix. This gives three ways of writing the vectorization, each of
which can be seen as part of a LTV state space model. For this model vec(C)
and B� ⊗ A can be interpreted as part of the state and a time varying matrix
respectively. However, it is assumed that each time varying matrix is only a
function of Reb and not ω. Therefore, the only the option with C = S(x) remains.
Therefore, the dynamics of ρ can be written as

ρ̇ = (I3 ⊗Reb) vec(S(ω)). (3.8)
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It can be noted that the ith column of S(ω) can also be written as ω×ei = S(ω) ei,
with ei the ith column of I3. By using that the cross product is anti-commutative,
this gives ω × ei = −ei × ω. Substituting this back in for the columns of S(ω)
gives ω × ei = −S(ei)ω. Therefore, the vectorization of S(ω) can also be written
as

vec(S(ω)) =

⎡
⎣−S(e1)ω
−S(e2)ω
−S(e3)ω

⎤
⎦ ,

which can be simplified to

vec(S(x)) = Γω, (3.9)

with

Γ = −

⎡
⎣S(e1)S(e2)
S(e3)

⎤
⎦ =

[
S(e1) S(e2) S(e3)

]�
. (3.10)

Substituting (3.9) in (3.8) therefore gives

ρ̇ = (I3 ⊗R) Γω. (3.11)

The vectorized rotation matrix ρ could in its current form be used as part of
the state vector x(t) ∈ R

n. However, the vector ρ contains redundant information
about the attitude [33] and the proposed observer contains a differential equation
in M(t) ∈ R

n×n, thus the computational resources required to use the observer
are roughly proportional to n2. Therefore, it would be desirable if ρ could be
condensed into an attitude representation which uses less coordinates. One way
to reduce the amount of coordinates used for the attitude would be to remove one
of the columns or rows of the rotation matrix, since that column or row can be
reconstructed by taking the cross product between the remaining columns or rows
respectively.

Instead of just omitting one of the columns or rows from the rotation matrix
Reb, the six parameters can more generally defined as a pair of linearly indepen-
dent vectors, which are rotated by the rotation matrix or the transpose of that
rotation matrix. The rotation matrix can be reconstructed from those initial and
rotated vectors by solving Wahba’s problem as defined by (2.8). Those two pairs
of possibly time-varying vectors are denoted in the body fixed frame and iner-
tial frame with V b(t) =

[
vb1(t) vb2(t)

]
∈ R

3×2 and V e(t) =
[
ve1(t) ve2(t)

]
∈ R

3×2

respectively, where vji (t) =
[
vji,1(t) vji,2(t) vji,3(t)

]� ∈ R
3, j ∈ {b, e}, i ∈ {1, 2}.

These pairs of vectors are related to each other using the rotation matrix Reb(t)
according to

V e(t) = Reb(t)V b(t). (3.12)

When V b(t) is given and known V e(t) can be used for the six parameters to
represent the attitude and vice versa. This reduced attitude representation can
be also be vectorized. Vectorizing both sides of (3.12) using (3.4) and (3.7) gives

vec(V e(t)) =
(
V b�(t)⊗ I3

)
ρ(t), (3.13)
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where vec(V e(t)) =
[
ve1,1(t) ve1,2(t) ve1,3(t) ve2,1(t) ve2,2(t) ve2,3(t)

]�
are the re-

duced coordinates for the attitude state vector. If V b(t) is constant in time the
matrix

H := V b� ⊗ I3, (3.14)

is also constant in time and would define a constant linear transformation from
the vectorized rotation matrix from (3.4) to the reduced coordinates from (3.13).

Solving (3.12) for V b(t) and taking the transpose gives

V b�(t) = V e�(t)Reb(t). (3.15)

If V e(t) instead of V b(t) is constant in time and vectorizing both sides of (3.15)
would, similar to (3.13) and (3.14), yield

H := I3 ⊗ V e�, (3.16)

where the reduced coordinates for the attitude state vector would now be given

by vec(V b�(t)) =
[
vb1,1(t) vb2,1(t) vb1,2(t) vb2,2(t) vb1,3(t) vb2,3(t)

]�
.

For both constant weighting matrices H defined in (3.14) and (3.16) the six-
dimensional attitude parameterization is written as

ρr := H vec(Reb). (3.17)

The dynamics of (3.17) can therefore be expressed by using (3.11) as

ρ̇r = H (I3 ⊗R) Γω. (3.18)

3.3 Sufficient condition verification

The proposed observer structure from (3.2) and (3.3) can only guarantee conver-
gence of the estimation error to zero if the considered LTV model satisfies two
conditions. The first condition requires that every matrix of the LTV model is
bounded for all times. The second condition requires that the LTV model is UCO.

In order to check the boundedness of each system matrix any norm could be
used, since for matrices of finite size all norms are equivalent when showing bound-
edness. Therefore, boundedness would be shown if every entry of the matrices is
bounded, which is equivalent to saying that each sub-matrix is bounded. It can
be noted that a finite product of bounded matrices should also yield a bounded
matrix. Furthermore, the rotation matrix Reb belongs to the bounded set SO(3).
Therefore, if every sub-matrix of each system matrix of the LTV model can be
written as a finite product of matrices and each of those matrices is bounded then
the boundedness condition would be satisfied.

The definition of UCO for a LTV model can be defined as that there exists
positive constants α, δ > 0 such that for all t ≥ t0 [2]

∫ t+δ

t

Φ�(τ, t)C�(τ)C(τ) Φ(τ, t) dτ � α In,
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where Φ(t1, t2) is the state transition matrix associated with A(t) from t1 to t2.
However, this condition is in general is not easy to check for LTV models whose
system matrices are explicit functions of time. This condition becomes even harder
to evaluate for implicit system matrices, as is assumed to be the case for (3.1). In-
stead, a relaxed condition for UCO can be used. That condition uses the following
generalized definition of an observability matrix, which for (3.1) can be defined as

Q(t) =

⎡
⎢⎢⎢⎣
L0(t)
L1(t)
...

Lq(t)

⎤
⎥⎥⎥⎦ , (3.19a)

{
L0(t) = C(Reb),

Lk(t) = Lk−1(t)A(R
eb) + L̇k−1(t), k = 1, . . . , q.

(3.19b)

The relaxed condition for UCO requires that bounded constants q ≥ 0, δ > 0 and
α > 0 exists such that [2]

‖Lq(t1)− Lq(t2)‖ ≤ cq |t1 − t2|, cq > 0, (3.20)

for all t1, t2 ≥ t0 and it is possible to choose τ ∈ [t, t+ δ] ∀ t ≥ t0 such that

Q�(τ)Q(τ) � α In, (3.21)

with Q(t) ∈ R
w×n and w ≥ n. However, the implicit time dependency of the

system matrices would require that (3.21) has to be satisfied at all times.
The inequality from (3.20) is violated either when Lq(t1)−Lq(t2) is unbounded

for bounded t1 − t2 or when the time derivative of Lq(t) is unbounded. For the
first condition it can be noted that if Lq(t) is bounded ∀ t ≥ t0 then Lq(t1)−Lq(t2)
should also remain bounded. The second condition can be obtained by dividing
both sides of (3.20) by |t1 − t2| and taking the limit of t1 − t2 to zero, which
effectively results in taking the derivative of Lq(t) with respect to time.

It is assumed that for each model q = 1 is sufficient to show UCO. This would
yield the following expression for generalized observability matrix from (3.19)

Q(t) =

[
C(Reb)

C(Reb)A(Reb) + Ċ(Reb)

]
, (3.22)

with the expression used in (3.20) given by Lq(t) = C(Reb)A(Reb) + Ċ(Reb). It is
proposed that for each model the left hand side of (3.21) contains

Ψ(Reb) = Γ�
(
I3 ⊗Reb�

)
H�H

(
I3 ⊗Reb

)
Γ (3.23)

and that it is key in verifying the inequality of (3.21) when using (3.22).
It can be shown that when using either (3.14) or (3.16) for H that (3.23) is

positive definite matrix. By using two Kronecker product properties, given by
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(A⊗ B) (C ⊗D) = (AC ⊗ BD) and (A⊗ B)� = A� ⊗ B�, one can combine all
Kronecker products of (3.23) into one [19, p. 306].

Substituting (3.16) for H in (3.23) and combining Kronecker products gives

Ψ(Reb) = Γ� (
I3 ⊗ U(Reb)U�(Reb)

)
Γ, (3.24)

with U(Reb) =
[
u1 u2

]
= Reb�V e ∈ R

3×2. From the definition of the Kronecker
product, given in (3.6), it follows that I3 ⊗ U(Reb)U�(Reb) is block diagonal, due
to I3. Using this block diagonal structure and (3.10) for Γ allows for (3.24) to also
be written as

Ψ(Reb) =
3∑

i=1

S(ei)U(Reb)
(
S(ei)U(Reb)

)�
. (3.25)

Using the anti-commutative property of the skew symmetric matrix in S(ei)U(Reb)
gives

S(ei)U(Reb) = −
[
S(u1) ei S(u2) ei

]
. (3.26)

Substituting (3.26) into the ith summation term of (3.25) gives

S(ei)U(Reb)
(
S(ei)U(Reb)

)�
= −S(u1) ei e

�
i S(u1)− S(u2) ei e

�
i S(u2). (3.27)

By using (3.27) and
∑3

i=1 ei e
�
i = I3 the summation in (3.25) can be simplified to

Ψ(Reb) = −S2(u1)− S2(u2). (3.28)

Each term −S2(ui) from (3.28) is positive semi-definite. Namely,

−x�S2(ui) x = ‖ui × x‖2,

which is only zero if x and ui are linearly dependent. However, it is assumed that
the columns of V e are linearly independent. The property of linear independence is
preserved under rotation, so the columns of U(Reb) are also linearly independent.
From this property of U(Reb) it follows that for ‖x‖ �= 0 whenever ‖u1 × x‖2 = 0
it has to be true that ‖u2×x‖2 > 0 and vice versa. Therefore, it can be concluded
that (3.23) is a positive definite matrix for all Reb ∈ SO(3) when using (3.16) for
H.

Substituting (3.14) instead of (3.16) in (3.23) and combining Kronecker prod-
ucts gives

Ψ(Reb) = Γ�
(
V bV b� ⊗ I3

)
Γ, (3.29)

which is independent of Reb. The term V bV b�⊗ I3 in (3.29) can be expanded into

V bV b� ⊗ I3 =
(
V b� ⊗ I3

)� (
V b� ⊗ I3

)
,

such that (3.29) can also be written as Ψ(Reb) = Ω�Ω with Ω = (V b� ⊗ I3) Γ.
It can be noted that the ith column of Γ can be written as Γ ei = vec(S(ei)).
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Therefore, the ith column of Ω can be written as Ω ei = (V b� ⊗ I3) vec(S(ei))
which according to (3.7) is equivalent to

Ω ei = vec
(
S(ei)V

b
)
. (3.30)

The element of (3.29) at the ith row and jth column can be obtained by using
e�i Ψ(Reb) ej. This element can also be obtained by multiplying the ith row of Ω�

with the jth column of Ω. Using (3.30) for those rows and columns gives

e�i Ψ(Reb) ej = vec
(
S(ei)V

b
)�

vec
(
S(ej)V

b
)
. (3.31)

By using that V b =
[
vb1 vb2

]
and the anti-commutative property of the skew

symmetric matrix it is possible to write (3.31) also as

e�i Ψ(Reb) ej = −e�i S
2(vb1) ej − e�i S

2(vb2) ej. (3.32)

By factoring out e�i and ej on the left and right side respectively of (3.32) gives

Ψ(Reb) = −S2(vb1)− S2(vb2), (3.33)

which, similar as for (3.28), can be shown to be positive definite given that the
columns of V b are linearly independent.

Instead of only showing that Ψ(Reb) is positive definite it is also possible to
calculate the lower bound of Ψ(Reb). This lower bound can be obtained from
rewriting (3.28) and (3.33) using S(x)S(y) = y x� − y�x I3 [16, p. 13], which
yields

Ψ(Reb) =
(
w�

1 w1 + w�
2 w2

)
I3 −

(
w1 w

�
1 + w2 w

�
2

)
, (3.34)

with {w1, w2} = {u1, u2} for (3.28) and {w1, w2} = {vb1, vb2} for (3.33). It can be
noted that (3.34) is symmetric, so the lower bound is equal to the smallest eigen-
value. The largest eigenvalue of (3.34) can be shown to be equal to w�

1 w1+w�
2 w2,

with corresponding eigenvector that is perpendicular to both w1 and w2. A sym-
metric matrix also has orthogonal eigenvectors. Therefore, given the eigenvector
of the largest eigenvalue yields that the remaining eigenvectors should be of the
form αw1 + β w2 with α, β ∈ R. This reduces the eigenvalue equation for the
remaining two eigenvalues to(

αw�
2 w2 − β w�

1 w2

)
w1 +

(
β w�

1 w1 − αw�
2 w1

)
w2 = λαw1 + λβ w2,

for which it can be shown that it has the following characteristic polynomial

λ2 − (w�
1 w1 + w�

2 w2)λ+ w�
1 w1 w

�
2 w2 − (w�

1 w2)
2 = 0. (3.35)

Solving (3.35) yields

λ =
w�

1 w1 + w�
2 w2 ±

√
(w�

1 w1 − w�
2 w2)2 + 4 (w�

1 w2)2

2
. (3.36)

When w1 and w2 are linearly independent they should satisfy the following in-
equality [19, p. 171]

(w�
1 w2)

2 < w�
1 w1 w

�
2 w2. (3.37)
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Substituting (3.37) into the expression inside the square root of (3.36) gives the
following inequality

0 ≤ (w�
1 w1 − w�

2 w2)
2 + 4 (w�

1 w2)
2 < (w�

1 w1 + w�
2 w2)

2. (3.38)

Therefore, under the assumption that w1 and w2 are linearly independent it can
be shown that the smallest eigenvalue of (3.34) should be positive. Since V e or V b

can be chosen one could also choose them to be orthogonal, such that w�
1 w2 = 0.

Substituting this in (3.36) gives that the two smaller eigenvalues are equal to w�
1 w1

and w�
2 w2.

All eigenvalues of (3.34) are only a function of w�
1 w1, w

�
1 w2 and w�

2 w2. For
(3.28) this is equivalent to the eigenvalues only being a function of u�

1 u1, u
�
1 u2

and u�
2 u2, all of which are invariant under rotation. Therefore, the eigenvalues

of (3.28) can instead also be calculated using ve1
�ve1, v

e
1
�ve2 and ve2

�ve2. Thus the
eigenvalues of both (3.28) and (3.33) are all positive and independent of Reb.

3.4 Remarks

This section discusses some remarks that can be made on the observer structure
from this chapter. It is discussed which alternatives to the proposed attitude
representation there are and why most of them are not suitable, and what a
downside might be to not constraining the estimated attitude representation.

Since a smaller parameterization of the attitude would reduce computational
cost, one might think that even smaller attitude representations such as unit
quaternion and exponential coordinates [33] might be better options. However,
those representations have singularities or do not have a unique mapping to and
from SO(3). Namely, a singularity would lead to unbounded matrices for the
LTV model and thus violate one of the conditions from Section 3.3. And if there
is no unique mapping either it is not possible to represent all attitudes, such as
for the Cayley parametrization [33]. Or there are multiple representations that
map to the same from attitude, such as for the unit quaternions where q and −q
represent the same attitude. When it is not possible to represent all attitudes
the observer cannot give a global result. When there are multiple mappings the
state x(t) and output y(t) are not uniquely defined, and the observer might not
converge to any of the valid state representations. There are unique and non-
singular five-dimensional parameterizations [33]. However, the dynamics of such
parameterizations are more complicated so might outweigh the benefit of a slightly
smaller state vector. The mapping of R5 to the ”nearest” five-dimensional param-
eterization is also not trivial. Therefore, it is chosen to use the six-dimensional
parameterization ρr, though the five-dimensional parameterization might be worth
investigating in future research.

An even better option might be to use a reduced order observer, such that
the attitude representation can be completely excluded from the observer state
[20] [30]. However, this approach cannot be used because the time dependency
of the matrices of the LTV model is only implicitly known, such that their time
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derivatives are not necessarily known. The implication of not knowing those time
derivatives is demonstrated in Appendix A.

Lastly, it can be noted that even though the proposed observer structure in this
chapter is exponentially stable, the obtained estimation for ρr has to be projected
to the nearest rotation matrix. This projected rotation matrix might not always
be continuous in time, even though the estimation for ρr should vary continuously
in time. Such discontinuity can be demonstrated by using

vb1 =

⎡
⎣10
0

⎤
⎦ , vb2 =

⎡
⎣01
0

⎤
⎦ , ve1(t) =

⎡
⎣10
0

⎤
⎦ , ve2(t) =

⎡
⎣1t
0

⎤
⎦ ,

with λ1 = λ2 = 1 in (2.8), which yields the following solution

B(t) =

⎡
⎣1 1 0
0 t 0
0 0 0

⎤
⎦ = U(t)S(t)V �(t), (3.39)

with

U(t) =

⎡
⎢⎢⎣

2−t2+
√
4+t4√

(2−t2+
√
4+t4)2+4 t2

2−t2−√
4+t4√

(2−t2−√
4+t4)2+4 t2

0

2 t√
(2−t2+

√
4+t4)2+4 t2

2 t√
(2−t2−√

4+t4)2+4 t2
0

0 0 1

⎤
⎥⎥⎦ , (3.40a)

S(t) =

⎡
⎢⎢⎣
√

2+t2+
√
4+t4

2
0 0

0
√

2+t2−√
4+t4

2
0

0 0 0

⎤
⎥⎥⎦ , (3.40b)

V (t) =

⎡
⎢⎢⎣

−t2+
√
4+t4√

(t2−√
4+t4)2+4

−t2−√
4+t4√

(t2+
√
4+t4)2+4

0

2√
(t2−√

4+t4)2+4

2√
(t2+

√
4+t4)2+4

0

0 0 1

⎤
⎥⎥⎦ . (3.40c)

The determinant of V (t) from (3.40c) can be shown to be always equal to one.
It can be noted that the limit of t → 0 of the element at the second row and
second column of U(t) from (3.40a), denoted with U2,2(t), is not well defined.
Namely, it can be shown that limt→0− U2,2(t) = −1 and limt→0+ U2,2(t) = 1. This
not well defined limit also causes the limit of t → 0 of the determinant of U(t)
to be not well defined. Namely, it can be shown that limt→0− det(U(t)) = −1
and limt→0+ det(U(t)) = 1. Substituting these values of the determinants together
with (3.40c) and (3.40a) in (2.10) also yields that the limit of t → 0 of the solution
to Wahba’s problem is not well defined. Namely, it can be shown that limits of
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that rotation matrix are given by

lim
t→0−

Ry(t) =
1

2

⎡
⎣
√
2

√
2 0√

2 −
√
2 0

0 0 −2

⎤
⎦ ,

lim
t→0+

Ry(t) =
1

2

⎡
⎣

√
2

√
2 0

−
√
2

√
2 0

0 0 2

⎤
⎦ .

Therefore, it does not immediately follow that the projected rotation matrix ex-
ponentially converges to the true rotation matrix. It is hypothesized that those
discontinuities only happen for large estimation errors in ρr and that after some
possible transient the projected rotation matrix eventually does continuously ex-
ponentially converge to the true rotation matrix. This hypothesis would have to
be investigated in future research.

3.5 Summary

In this chapter an observer structure is proposed for each of the three models from
Section 2.3. This observer structure relies on transforming each model to LTV, for
which the observer dynamics from (3.2) and (3.3) can be used. This transformation
requires that the state of the initial models is combined into a single vector. For
this state vector construction the attitude representation is reduced in size, which
also aid in lowering computation cost of the observer. Furthermore, it is discussed
under what assumptions each LTV model guarantees that the estimated states of
those observers would converge to the true states.



Chapter 4

Lyapunov based observer outline

This chapter discusses the derivation of the second structure of an observer outline
used in this thesis. In Section 5.2, 6.2 and 7.2 this structure is applied to each of the
three models from Section 2.3. This structure uses a Lyapunov function as starting
point. For the dynamics of the estimated states a copy of the original dynamics is
used to which correction terms are added. The value of those correction terms are
chosen such that negative semi-definite time derivatives of the Lyapunov function
is obtained. In Section 4.1 it is first discussed how the observer dynamics can be
defined. This is followed by Section 4.2 in which the proposed Lyapunov function
is introduced.

4.1 Observer dynamics

In contrast to the observers proposed in Chapter 3, the correction term used
in the dynamics of the attitude estimation for the observer structure from this
chapter are chosen such that no projection is needed. The dynamics of the attitude
representation for each model from Section 2.3 are all of the form

Ṙeb = RebS(ω), (4.1)

with ω = J−1Reb�Le for the minimal and biased model and ω = zb − bb for
the kinematic model. No projection of the estimated attitude representation R̂eb

is required if the correction term added to the dynamics of R̂eb ensures that R̂eb

remains a rotation matrix. The most general way one can be written the dynamics
of R̂eb would be using

˙̂
Reb = R̂ebS(ω̂) + Δ, (4.2)

with ω̂ the estimate of ω and Δ ∈ R
3×3 is a function of the measured outputs and

estimated states.
This form of the correction term does not in general assure that R̂eb also

remains a rotation matrix. The set of all rotation matrices is called SO(3) and is
in (2.1) defined as:

SO(3) :=
{
X ∈ R

3×3 |X�X = I3, detX = 1
}

20
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A sufficient condition, which assures that R̂eb remains a rotation matrix, is that

the time derivative of R̂eb�R̂eb is equal to zero. Namely, if the initial condition of

R̂eb is a rotation matrix then the sufficient condition assures that R̂eb�R̂eb = I3 is
always satisfied. That relation also guarantees that the determinant of R̂eb is equal
to plus or minus one. In order for that determinant to switch from plus one to
minus one requires that R̂eb is discontinuous. However, if (4.2) is bounded would
assure that R̂eb is continuous. Therefore, the stated sufficient condition guarantees
that R̂eb remains a member of SO(3). Substituting (4.2) into that condition, while
using that S(ω̂) is a skew symmetric matrix, yields

d

dt
R̂eb�R̂eb =

˙̂
Reb

�
R̂eb + R̂eb� ˙̂

Reb, (4.3a)

=
(
Δ� − S(ω̂)R̂eb�

)
R̂eb + R̂eb�

(
R̂ebS(ω̂) + Δ

)
, (4.3b)

= Δ�R̂eb + R̂eb�Δ. (4.3c)

In order for (4.3) to be equal to zero for all possible R̂eb requires Δ = R̂ebΛ with
Λ� = −Λ ∈ R

3×3. However, this constraint on Λ is equivalent to using Λ = S(δR)
with δR ∈ R

3 in which case (4.2) can be simplified to

˙̂
Reb = R̂ebS(ω̂ + δR). (4.4)

The representations used for the rotation rate in Section 2.3 are the angular
momentum and subtracting the bias from the biased angular velocity measure-
ment. Therefore, in general the estimated angular velocity can be written as

ω̂ = W J−1Reb�L̂e + (I3 −W ) (zb − b̂b) (4.5)

with W ∈ R
3×3 a weighting matrix, L̂e the estimate of the angular momentum

Le, zb = J−1Reb�Le+ bb the measured biased angular velocity and b̂b the estimate
of the bias bb. It can be noted that for the minimal model zb is not measured so
W = I3 would be the only option for that model. Similarly, for the kinematic
model Le is not considered to be part of the state, such that W = 03×3 would be
the only option for that model. This same weighing matrix can also be used to
define the true angular velocity, which can thus also be written as

ω = W J−1Reb�Le + (I3 −W ) (zb − bb). (4.6)

The angular momentum and angular velocity measurement bias are not sub-
jected to any constraints. Therefore, the correction terms added to the dynamics
of their associated estimated states can be of the same size as those states them-
selves. The dynamics of the angular momentum is given by (2.7) and τ e = Rebτ b

and the bias is assumed constant. Therefore, the general dynamics of those two
estimated states can be written as

˙̂
Le = Rebτ b + δL, (4.7)

˙̂
bb = δb, (4.8)
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with δL, δb ∈ R
3 their correction terms.

The errors of the estimated states are defined as R̃eb := R̂ebReb� ∈ SO(3),
L̃e := L̂e − Le ∈ R

3 and b̃b := b̂b − bb ∈ R
3. By using (4.1), (4.4) and the rotation

invariance of the cross product the dynamics of R̃eb can be written as

˙̃Reb = R̃ebS(Rebω̃ +RebδR), (4.9)

with ω̃ := ω̂ − ω using (4.5) and (4.6). When using the definitions of L̃e and b̃b

the expression for ω̃ can also be written as

ω̃ = W J−1Reb�L̃e + (W − I3) b̃
b. (4.10)

Similarly, the dynamics of L̃e and b̃b are given by

˙̃Le = δL, (4.11)

˙̃bb = δb. (4.12)

The observer would have a zero estimation error between the true and estimated
state if R̃eb = I3, L̃

e = 0 and b̃b = 0. Not all three models from Section 2.3 use all
three states. Therefore, the observer for each model should only have to drive the
estimation error to zero of the states relevant for that model.

4.2 Proposed Lyapunov functions

The proposed Lyapunov functions for each model from Section 2.3 should be
positive definite in the relevant error coordinates, and only equal to zero when
there is zero estimation error. In order to satisfy this it is chosen to use the
same structure used for the Lyapunov function for the minimal model proposed
by A.A.J. (Erjen) Lefeber in internal personal correspondence, resulting in

V = P +
1

2
x̃�Γ−1x̃, (4.13)

with x̃ containing L̃e and b̃b depending on whether the considered model uses those
states, Γ = Γ� � 0 a square matrix matching the size of x̃ and

P =
n∑

i=1

ki
2

(
R̃eb vi − vi

)� (
R̃eb vi − vi

)
, (4.14)

with n ≥ 2, vi ∈ R
3 unit vectors and ki > 0.

The correction terms need to be chosen such that the time derivative of the
Lyapunov function from (4.13) is at most negative semi-definite. When evaluating
this time derivative one can evaluate the time derivative of P separate from the
quadratic term in x̃. The time derivative of P from (4.14) can be obtained using
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the product rule and the general dynamics of R̃eb defined in (4.9) yielding

Ṗ =
n∑

i=1

ki

(
R̃ebS(Rebω̃ +RebδR) vi

)� (
R̃eb vi − vi

)
, (4.15a)

=
n∑

i=1

ki

(
−R̃ebS(vi) (R

ebω̃ +RebδR)
)� (

R̃eb vi − vi

)
, (4.15b)

=
n∑

i=1

ki
(
Rebω̃ +RebδR

)�
S(vi)

(
vi − R̃eb�vi

)
, (4.15c)

=
(
Rebω̃ +RebδR

)� n∑
i=1

−ki S(vi)R̃
eb�vi, (4.15d)

= (ω̃ + δR)
� Reb�

n∑
i=1

ki S(R̃
eb�vi) vi. (4.15e)

By defining an intermediate variable it is also possible to write (4.15) as

Ṗ = (ω̃ + δR)
� Π, (4.16)

with ω̃ as defined in (4.10) and

Π = Reb�
n∑

i=1

ki S(R̃
eb�vi) vi, (4.17a)

=
n∑

i=1

ki

(
R̂eb�vi

)
×

(
Reb�vi

)
. (4.17b)

The time derivative of the quadratic term in x̃ can be obtained by using the
product rule and using (4.11) and (4.12) to construct the time derivative of x̃.
Therefore, the time derivative of the proposed Lyapunov function from (4.13) can
be written as

V̇ = (ω̃ + δR)
� Π+ x̃�Γ−1δx, (4.18)

with δx containing the corresponding corrections terms associated with error states
used to construct x̃.

In order to be able to use the estimated dynamics for an observer it is required
that the correction terms δR, δL and δb are only a function of known variables.
These known variables are the inputs and outputs of the model and the estimated
states. Furthermore, the correction terms should vanish whenever all estimated
states are equal to the true states. Therefore, it is proposed that each correction
term is a linear combination of Π as defined by (4.17) and the estimation error of
the biased angular velocity measurement, which is defined as

z̃b := J−1Reb�L̂e + b̂b − zb = J−1Reb�L̃e + b̃b. (4.19)

The minimal model does not measure the biased angular velocity zb and the kine-
matic model does not use the state L̂e. Therefore, the correction terms for the
observers of those models would reduce to only being a linear function of Π.
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4.3 Equilibria of the observer

The equilibria of the error dynamics from (4.9), (4.11) and (4.12) can be obtained
by equating all time derivatives to zero. For (4.9) this is equivalent to equating
the term inside the skew-symmetric matrix to zero. Therefore, the combined set
of equations that have to be solved in order to find the equilibria are

W J−1Reb�L̃e + (W − I3) b̃
b + δR = 03×1, (4.20a)

δL = 03×1, (4.20b)

δb = 03×1. (4.20c)

It is assumed that all equilibria require Π = L̃e = b̃b = 03×1. Thus for each
equilibrium there would be a zero estimation error in Le and bb. For the attitude
estimation error at each equilibrium it would only be guaranteed that Π = 03×1.

In 1776 Leonard Euler first showed that the group of all three-dimensional ro-
tations is a three-dimensional manifold [33]. Therefore, if one would use a three-
dimensional parameterization to represent the attitude no constraints, such as
Reb ∈ SO(3) ⊂ R

3×3, are required when solving Π = 03×1. However, is has
been shown that it is impossible to have three variables that globally parame-
terize such rotation without singularities [33]. A well known example of such
three-dimensional parameterization are the Euler/Tait-Bryan angles, whose sin-
gularities are often referred to as gimbal lock [16, p. 43]. Another example of such
three-dimensional parameterization is the exponentiation of a skew symmetric
matrix [33]. This attitude representation is from now on referred to as the expo-
nential coordinates. The singularities of the exponential coordinates are located
at less inconvenient locations then those of the Euler angles with respect to the
application of a three-dimensional parameterization in this thesis and are therefore
chosen to be used for solving for the equilibria. Additionally, a three-dimensional
parameterization for the attitude also simplifies the local stability analysis of the
obtained equilibria, since the local dynamics would also be unconstrained.

It has been shown that any rotation matrix Reb ∈ SO(3) is the matrix expo-
nential of a three by three skew symmetric matrix [33]. Such a skew symmetric
matrix can be parameterized with the exponential coordinates, which is a vector of

length three denoted with u :=
[
u1 u2 u3

]�
. These exponential coordinates can

also be interpreted as an axis-angle representation, where the normalized vector
represents the axis and the norm of the vector the angle [16, p. 40]. The exponen-
tial coordinates u are used to represent the attitude estimation error. The error of
the estimated rotation matrix corresponding to the exponential coordinates u can
be obtained by taking the matrix exponential of S(u), which can be simplified to
the following expression [33]

R̃eb = eS(u) = I3 +
sin ‖u‖
‖u‖ S(u) +

1− cos ‖u‖
‖u‖2 S(u)2. (4.21)

The exponential coordinates do not give a unique attitude representation. There-
fore, the exponential coordinates are limited to ‖u‖ ≤ π in order to avoid as many
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non-unique attitude representations as possible. For this interval the zero attitude
estimation error R̃eb = I3 is equivalent to u = 03×1. However, for ‖u‖ = π both
u and −u represent to same attitude, which should be taken into account when
considering unique solutions for the attitude equilibria. Substituting (4.21) into
the expression for Π from (4.17a) gives

Π = Reb�
n∑

i=1

ki S

([
I3 +

sin ‖u‖
‖u‖ S(u) +

1− cos ‖u‖
‖u‖2 S(u)2

]�
vi

)
vi, (4.22a)

= −Reb�
n∑

i=1

ki

(
sin ‖u‖
‖u‖ S(vi)

2 +
1− cos ‖u‖

‖u‖2 S(vi v
�
i u)

)
u. (4.22b)

Substituting (4.22) in Π = 03×1 and factoring out Reb� is equivalent to

1− cos ‖u‖
‖u‖2

(
n∑

i=1

ki S(vi v
�
i u)

)
u = −sin ‖u‖

‖u‖

(
n∑

i=1

ki S(vi)
2

)
u. (4.23)

The trivial solution to (4.23) would be u = 03×1, which is equivalent to the rotation
matrix R̃eb = I3. It can be noted that for both the left and right hand side of
(4.23) the limit of ‖u‖ to zero exists and is finite. When solving for all other
equilibria from (4.23) one can factor out u. From the remaining expressions it
can be deduced that the left hand and right hand side of (4.23) can only be equal
to each other when both sides are equal to zero. Namely, the left hand side of
(4.23) with u factored out contains a summation of only skew symmetric matrices,
which is always equal to a skew symmetric matrix as well, while the right hand side
of (4.23) with u factored contains a summation of ki S(vi)

2, which is shown to be
negative definite in Section 3.3 if the vectors

√
ki vi span at least a two dimensional

subspace. The product of a skew symmetric matrix with u is always perpendicular
to u. However, the product with a negative definite matrix and u should always
point partially in the opposite direction of u. Therefore, it can be concluded that
both sides should be equal to zero. Since the right hand side contains a negative
definite matrix it can only be zero for ‖u‖ �= 0 when sin ‖u‖ = 0. In the considered
interval this has the solution ‖u‖ = π. The left hand side of (4.23) can only be
equal to zero when the resulting skew symmetric matrix is equal to a vector which
is parallel to u converted into a skew symmetric matrix, which can also be written
as

n∑
i=1

ki vi v
�
i u = αu, (4.24)

with α ∈ R. It can be noted that (4.24) is an eigenvalue problem for the matrix

M :=
n∑

i=1

ki vi v
�
i , (4.25)

with α one of the eigenvalues ofM and u the corresponding eigenvector. Therefore,
the remaining values of u that solve (4.23) are the eigenvectors of M normalized
to a length of π. It can be noted that negating such normalized eigenvector also
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solves (4.23), however such solution represents the same attitude and thus can be
omitted. The matrix from (4.25) is a three by three positive (semi)-definite matrix,
which has three orthogonal eigenvectors. Therefore, there should be at least three
solutions to (4.23) with ‖u‖ = π. However, if M has repeated eigenvalues then
any combination of its corresponding eigenvectors would also be a solution. This
can be avoided when M has three distinct eigenvalues. A similar result was also
obtained [23] when using rotation matrices instead of the exponential coordinates
for the attitude representation. It can be noted that one would still also have
three solutions with ‖u‖ = π when one of the eigenvalues of M is zero (and the
other eigenvalues are positive and distinct). This could be the case when using
n = 2 and appropriately chosen ki and vi.

4.4 Stability of equilibria

If the time derivative of the proposed Lyapunov function, given in (4.18), can
only be made negative semi-definite by appropriately choosing expressions for the
correction terms then one can initially only guarantee Lyapunov stability of the
estimation error of the observer. However, negative semi-definiteness might enable
one to show that the error dynamics cannot have limit cycles, in which case the
error should eventually settle at one of the equilibria of the error dynamics. By
analyzing the local dynamics of these equilibria one can say more about at which
equilibrium the error dynamics is most likely to settle.

A common method of analyzing the local stability of equilibria of a dynamical
model is by looking at the linearized dynamics of that model at each equilibrium.
In Section 4.1 the error dynamics is given by (4.9), (4.11) and (4.12). However,
in Section 4.3 it is proposed to use exponential coordinates instead of a rotation
matrix for the attitude representation, thus a transformation of attitude dynamics
is also required.

The time derivative of the attitude of a rigid body, expressed as exponential
coordinates v ∈ R

3×1, equivalent to (4.1) such that Reb = eS(v) is given by [33]

Ẋ = Ω− 1

2
(ΩX −X Ω) +

2− θ cot(θ/2)

2 θ2
(
X2 Ω + ΩX2 − 2X ΩX

)
,

with X = S(v), Ω = S(ω) and θ = ‖v‖, which can also be written as

v̇ = F (v)ω, (4.26)

F (v) = I3 +
1

2
S(v) +

2− θ cot(θ/2)

2 θ2
S(v)2. (4.27)

It can be noted that the limit of (4.27) as θ → 0 does exists. However, the limit
of (4.27) does not exist for {θ ∈ R | θ = 2 k π, k ∈ Z, k �= 0}. Those singularities
can be explained by the fact that a rotation of a multiple of 2 π is equivalent to
no rotation and the axis of rotation of no rotation is not well defined. Therefore,
by combining (4.9) with (4.26) the time derivative of u is given by

u̇ = F (u)Reb(ω̃ + δR). (4.28)
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The remaining dynamics is given by (4.11) and (4.12):

˙̃Le = δL,

˙̃bb = δb.

By using (4.10), (4.27), (4.22), (4.19) and the assumption that each correction term
is expressed as a linear combination of Π and z̃b, the corresponding intermediate
variables used in the considered dynamics can in general be written as

F (u) = I3 +
1

2
S(u) +

2− ‖u‖ cot(‖u‖/2)
2 ‖u‖2 S(u)2, (4.29a)

ω̃ = W J−1Reb�L̃e + (W − I3) b̃
b, (4.29b)

Π = −Reb�
n∑

i=1

ki

(
sin ‖u‖
‖u‖ S(vi)

2 +
1− cos ‖u‖

‖u‖2 S(vi v
�
i u)

)
u, (4.29c)

z̃b = J−1Reb�L̃e + b̃b, (4.29d)

δR = AR Π+ BR z̃b, (4.29e)

δL = AL Π+ BL z̃
b, (4.29f)

δb = Ab Π+ Bb z̃
b, (4.29g)

with Ai and Bi for i ∈ {R,L, b} matrices which are independent of u, L̃e and b̃b

but can vary with time. Furthermore, in Section 4.3 it is assumed that this error
dynamics has four equilibria. Each equilibrium has L̃e = b̃b = 03×1 and either
u = 03×1 or u is equal to one of the three eigenvectors of the matrix from (4.25)
normalized to a length of π. It can be noted that Π = 03×1 when using the value
for u at each equilibrium.

The combined error dynamics from (4.28), (4.11) and (4.12) can be approxi-
mated near the equilibria using a linearization

˙̃x = A (x̃− x∗) + h.o.t., (4.30)

with x̃ =
[
u� L̃e� b̃b

�
]�

and x∗ the equilibrium around which the model is

linearized. This linearization matrix A, which might be time varying, can be ob-
tained by evaluating the partial derivatives of the right hand sides of the combined
error dynamics with respect to x̃ at the equilibria. The expression for A is broken
down for convenience into

A =

⎡
⎣Auu AuL Aub

ALu ALL ALb

Abu AbL Abb

⎤
⎦ , (4.31)

where Axy, with x, y ∈ {u, L, b} where u, L and b are referring to u, L̃e and b̃b

respectively, is defined as

Axy = lim
x̃→x∗

∂ ẋ

∂y
. (4.32)
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By using (4.28) and the product rule the first sub-matrix from (4.31) is given
by

Auu = lim
x̃→x∗

∂ F (u)

∂u
Reb(ω̃ + δR) + F (u)Reb∂ (ω̃ + δR)

∂u
. (4.33)

It can be noted that ω̃+ δR = 03×1 when taking the limit of x̃ to any of the x∗. By
combining this with (4.29b) and (4.29e) gives the following equivalent expression
for (4.33)

Auu = lim
x̃→x∗ F (u)RebAR

∂ Π

∂u
. (4.34)

The expression for Π, as defined in (4.29c), can be simplified by using the
intermediate variable θ := ‖u‖, the matrix M from (4.25) and define another
matrix as

N :=
n∑

i=1

ki S(vi)
2, (4.35)

resulting in the following equivalent expression

Π = −Reb�
(
sin θ

θ
N +

1− cos θ

θ2
S(M u)

)
u. (4.36)

The partial derivative of Π, as defined in (4.36), with respect to u can be obtained
by using the product and chain rule together with the anti-commutative property
S(x) y = −S(y) x, resulting in

∂ Π

∂u
= −Reb�

(
sin θ

θ
N +

1− cos θ

θ2
(S(M u)− S(u)M)

)
+

∂ Π

∂θ

∂ θ

∂u
. (4.37)

The partial derivative of Π with respect to θ can be shown to be equal to

∂ Π

∂θ
= −Reb�

(
θ cos θ − sin θ

θ2
N +

θ sin θ − 2 (1− cos θ)

θ4
S(Mu)

)
u. (4.38)

The intermediate variable θ can also be expressed as
√
u�u, for which it can be

shown that it has the following partial derivative with respect to u

∂ θ

∂u
=

u�

θ
. (4.39)

Evaluating the combined expression for (4.37) by substituting in (4.38) and (4.39)
at the equilibria gives

lim
x̃→x∗

∂ Π

∂u
= −Reb�N, (4.40)

at the equilibrium with ‖u‖ = 0 and

lim
x̃→x∗

∂ Π

∂u
=

Reb�

π2

(
2S(ū) (M − σ I3) +N ū ū�) (4.41)

at the equilibria where u is equal to one of the eigenvectors of M normalized to a
length of π, for which this normalized eigenvector is denoted with ū and σ is the
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corresponding eigenvalue. Evaluating the expression for F (u), defined in (4.29a),
at the same limit values as (4.40) and (4.41) yields

lim
x̃→x∗ F (u) = I3, (4.42)

lim
x̃→x∗ F (u) = I3 +

1

2
S(ū) +

1

π2
ū ū� =

1

2
S(ū) +

ū ū�

π2
, (4.43)

respectively for ‖u‖ = 0 and u = ū.
The remaining sub-matrices related to the dynamics of u can be obtained by

substituting (4.29b) and (4.29e) in (4.28), resulting in

AuL = lim
x̃→x∗

∂ F (u)Reb
(
(W +BR) J

−1Reb�L̃e + (W +BR − I3) b̃
b + AR Π

)
∂L̃e

,

(4.44a)

= lim
x̃→x∗ F (u)Reb(W +BR) J

−1Reb�, (4.44b)

Aub = lim
x̃→x∗

∂ F (u)Reb
(
(W +BR) J

−1Reb�L̃e + (W +BR − I3) b̃
b + AR Π

)
∂b̃b

,

(4.45a)

= lim
x̃→x∗ F (u)Reb(W +BR − I3). (4.45b)

Similarly, the sub-matrices related to the dynamics of L̃e and b̃b in (4.31) can be
obtained by substituting (4.29f) and (4.29g) into (4.11) and (4.12) respectively,
resulting in

ALu = lim
x̃→x∗

∂
(
AL Π+ BL (J

−1Reb�L̃e + b̃b)
)

∂u
= AL lim

x̃→x∗

∂ Π

∂u
, (4.46)

ALL = lim
x̃→x∗

∂
(
AL Π+ BL (J

−1Reb�L̃e + b̃b)
)

∂L̃e
= BL J

−1Reb�, (4.47)

ALb = lim
x̃→x∗

∂
(
AL Π+ BL (J

−1Reb�L̃e + b̃b)
)

∂b̃b
= BL, (4.48)

Abu = lim
x̃→x∗

∂
(
Ab Π+ Bb (J

−1Reb�L̃e + b̃b)
)

∂u
= Ab lim

x̃→x∗

∂ Π

∂u
, (4.49)

AbL = lim
x̃→x∗

∂
(
Ab Π+ Bb (J

−1Reb�L̃e + b̃b)
)

∂L̃e
= Bb J

−1Reb�, (4.50)

Abb = lim
x̃→x∗

∂
(
Ab Π+ Bb (J

−1Reb�L̃e + b̃b)
)

∂b̃b
= Bb. (4.51)
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The resulting matrix from (4.31) linearized at the equilibrium with ‖u‖ = 0,
denoted with A0, can therefore be obtained by substituting in (4.40) and (4.42)
in (4.34) and (4.44) through (4.44), resulting in

A0 =

⎡
⎢⎣−RebARR

eb�N Reb(W +BR) J
−1Reb� Reb(W +BR − I3)

−AL R
eb�N BL J

−1Reb� BL

−Ab R
eb�N Bb J

−1Reb� Bb

⎤
⎥⎦ . (4.52)

Similarly, the resulting matrix from (4.31) linearized at one of the equilibria with
u = ū, denoted with Aπ, can be obtained by substituting in (4.41) and (4.43) in
(4.34) and (4.44) through (4.44), resulting in

Aπ =

⎡
⎢⎣QRebAR T QReb(W +BR) J

−1Reb� QReb(W +BR − I3)

AL T BL J
−1Reb� BL

Ab T Bb J
−1Reb� Bb

⎤
⎥⎦ , (4.53)

with Q := 1
2
S(ū) + ū ū�

π2 and T := Reb�

π2

(
2S(ū) (M − σ I3) +N ū ū�).

The matrix M , from (4.25), is symmetric and positive (semi-)definite, which
guarantees that it can also be written as M = U ΩU� with U ∈ SO(3) and
Ω = diag(λ1, λ2, λ3), where λ1 > λ2 > λ3 ≥ 0 are the eigenvalues of M . Using this
decomposition it is also possible to define the values of the exponential coordinates
at the non-zero equilibria as ū = π U ei, with ei the ith column of I3 and α = λi the
corresponding eigenvalue. By using S(x)S(y) = y x� − y�x I3 it is also possible
to write the matrix from (4.35) as N = M − κ I3, with κ =

∑n
i=1 ki =

∑3
i=1 λi.

By using all this it is also possible to write Q and T as

Q := U
(π
2
S(ei) + ei e

�
i

)
U�, (4.54a)

T := Reb�U
(
2

π
S(ei)(Ω− λi I3) + (λi − κ) ei e

�
i

)
U�. (4.54b)

The linearizations obtained from (4.30) using (4.52) or (4.53) can be used to
assess the local stability or instability of the relevant equilibria. Though, depend-
ing on which model from Section 2.3 is used, some of the sub-matrices from (4.52)
and (4.53) might need to be removed if the associated state variables are not used
in that model. The matrices from (4.52) and (4.53) are a function of the rotation
matrix Reb. Thus local stability cannot be concluded by simply calculating the
their eigenvalues. Instead the local stability analysis is done by searching for a
common quadratic Lyapunov function (CQLF) of the form

Vi(x̃− x∗
i ) = (x̃− x∗)�Pi(x̃− x∗

i ), (4.55)

with x∗
i the considered equilibrium point, i = 0 for the equilibrium with ‖u‖ = 0

and i = π for the equilibria with ‖u‖ = π. For the initial guess for each Pi in
(4.55) the Hessian of initial Lyapunov function as defined in (4.13) evaluated at
x∗
i is used. It can be noted that the Lyapunov function from (4.13) needs to be
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expressed using u instead of R̃eb by substituting in (4.22). By using the dynamics
of the linearization the time derivative of (4.55) can be written as

V̇i(x̃− x∗
i ) = (x̃− x∗

i )
� (

PiAi + A�
i Pi

)
(x̃− x∗

i ), (4.56)

which is thus characterized by the matrix PiAi + A�
i Pi.

For each equilibrium with ‖u‖ = 0 one can show exponential stability if one can
find a CQLF with P0 � 0 such that the time derivative of the CQLF is negative
definite, which is the case if

A�
0 P0 + P0 A0 ≺ 0 ∀Reb ∈ SO(3). (4.57)

The starting guess for P0 is the Hessian and can if necessary be perturbed such
that (4.57) is satisfied. Evaluating this Hessian yields the following starting guess
for each model

P0 =

[
−N 0
0 Γ−1

]
, (4.58)

with the zero matrices and Γ of the appropriate sizes. The perturbations to
this initial guess can be aided by spotting patterns in P0 when solving a set of
linear matrix inequalities containing P0 � 0 and (4.57) in which ∀Reb ∈ SO(3) is
replaced with a large but finite number rotation matrices.

The remaining equilibria with ‖u‖ = π can be shown to be unstable by using
Chetaev’s theorem [18]. This theorem considers the equilibrium point x = 0 of an
autonomous system ẋ = f(x) and is defined as:

Theorem 1. Let V : D → R be a continuously differentiable function on a domain
D ⊂ R

n such that V (0) = 0 and V (x0) > 0 for some x0 with arbitrarily small
‖x0‖. Choose r > 0 such that the ball Br = {x ∈ R

n | ‖x‖ ≤ r} is contained in D
and let U = {x ∈ Br |V (x) > 0} and suppose that V̇ (x) > 0 in U . Then, x = 0 is
unstable.

Applying Theorem 1 to the equilibria with ‖u‖ = π using the CQLF from
(4.55) for the continuously differentiable function thus requires that V̇π(x) > 0 for
all x ∈ {y ∈ R

n | ‖y‖ ≤ r |Vπ(y) > 0} with r > 0 but sufficiently small such that
the linearization holds. The starting guess for Pπ is in these cases the Hessian
multiplied by minus one. Evaluating this Hessian yields the following starting
guess for each model

Pπ =

[
U
(
(κ− λi) ei e

�
i + 4

π2 (Ω− λi I3)
)
U� 0

0 −Γ−1

]
, (4.59)

with the zero matrices and Γ of the appropriate sizes. By using that Ω =
diag(λ1, λ2, λ3), λ1 > λ2 > λ3 ≥ 0 and κ =

∑3
i=1 λi it follows that the upper left

three by three block of the matrix in (4.59) is diagonalizable by pre-multiplying
and post-multiplied it by U� and U respectively. This diagonal matrix contains
the elements {λj+λk,

4
π2 (λj−λi),

4
π2 (λk−λi)} where {i, j, k} are some permutation

of {1, 2, 3}. It can be noted that the term λj + λk is always positive, while zero,
one or two of the other two diagonal elements are also positive when i = 1, i = 2
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and i = 3 respectively. Therefore, the matrix from (4.59) should have at least
one positive eigenvalue and thus set U = {x ∈ R

n | ‖x‖ ≤ r |V (x) > 0} should be
nonempty.

Besides equilibria a dynamical model can also have limit cycles, which are a
closed trajectories. In order for such trajectories to exist for the error dynamics
of the proposed observer in this chapter it is requires that the integral of the time
derivative of the Lyapunov function along such closed trajectory should be zero.
Namely, a closed trajectory returns to its starting state, which means that the
Lyapunov function should return to its starting value. If the time derivative of
the Lyapunov function is negative semi-definite this can only be the case if this
time derivative is zero along the entire trajectory.

The assumption that M from (4.25) has distinct eigenvalues is used to show
that each observer has unstable equilibria and no periodic trajectories. This as-
sumptions puts constraints on the possible values for ki and vi. When using n = 2
one of the eigenvalues is zero and the non-zero eigenvalues can be shown to satisfy

λi =
k1 + k2 ±

√
(k1 − k2)2 + 4 k1k2

(
v�1 v2

)2
2

.

Therefore, in order for M to have distinct eigenvalues would require that at least
one of the inequalities v�1 v2 �= 0 and k1 �= k2 is satisfied.

4.5 Summary

In this chapter an observer structure is proposed for each of the three models from
Section 2.3, whose design is derived from a Lyapunov function. For this observer
structure it is assumed that it has multiple equilibria. However, by linearizing the
error dynamics it is possible to analyze the stability of each equilibrium, for which
it is postulated that all but one can be shown to be unstable.



Chapter 5

Minimal observers

In this chapter the observer structures from Chapter 3 and 4 are applied to the
minimal model for the attitude dynamics from Section 2.3.1. First, the observer
structure from Chapter 3 is applied to this model in Section 5.1, in which it is
shown how the model can be formulated as linear time varying (LTV) and when
it satisfies the sufficient conditions. This is followed by Section 5.2, in which the
observer structure from Chapter 4 is applied to the minimal model and is the local
dynamics of its equilibria analyzed.

The minimal model that is considered in this chapter is defined in (2.13) as:

Ṙeb = Reb S(J−1Reb�Le), (5.1a)

L̇e = Rebu, (5.1b)

u = τ b, (5.1c)

y = Reb, (5.1d)

with u the known input of the system, y the output of the system and J the known
mass moment of inertia matrix.

5.1 Minimal linear time varying observer

In this section the observer structure from Chapter 3 is applied to the minimal
model from (5.1). The transformation of the minimal model to a LTV model and
the resulting observer dynamics are first discussed in Subsection 5.1.1. This is
followed by Subsection 5.1.2, in which it is shown under which assumptions the
sufficient conditions of the used observer structure are satisfied.

5.1.1 Observer dynamics

In order to use the observer structure from Chapter 3 it is required that the
considered model can be formulated to fit the LTV model from (3.1):{

ẋ(t) = A(Reb) x(t) +B(Reb) u(t),
y(t) = C(Reb) x(t).

33



34 CHAPTER 5. MINIMAL OBSERVERS

This can be done by defining the state vector x(t) and equivalent output y(t) as

x(t) :=

[
ρr
Le

]
∈ R

9, y(t) := ρr ∈ R
6,

with ρr as defined in (3.17). By combining (3.18), (2.13b) and ω = J−1Reb�Le it
can be shown that using the following matrices for the LTV model yield a model
that is equivalent to the minimal model⎧⎨

⎩ A(Reb) :=

[
06×6 H (I3 ⊗Reb) Γ J−1Reb�

03×6 03×3

]
, B(Reb) :=

[
06×3

Reb

]
,

C(Reb) :=
[
I6 06×3

]
.

(5.2)

By using (5.2) the observer structure from Chapter 3 can be expressed using (3.2)
and (3.3):

˙̂x(t) = A(Reb) x̂(t) +B(Reb) u(t)−K(t)
[
C(Reb) x̂(t)− y(t)

]
,⎧⎨

⎩
Ṁ(t) = A(Reb)M(t)+M(t)A�(Reb)−M(t)C�(Reb)W−1C(Reb)M(t)+V+δM(t),
M(t0) = M0 = M�

0 � 0, W = W� � 0,
K(t) = M(t)C�(Reb)W−1,

with x̂(t) the estimate of x(t), M0, V ∈ R
9×9 and W ∈ R

6×6.

5.1.2 Sufficient condition verification

The given observer dynamics in the previous subsection would yield that x̂(t)
globally converges to x(t) if the matrices, that are defined in (5.2), can be shown to
be bounded and that the associated LTV model is uniformly completely observable
(UCO). All sub-matrices from each matrix from (5.2) consists of a product of
bounded matrices. Therefore, by using the argumentation from Section 3.3, it can
be concluded that the obtained LTV model has bounded matrices. The obtained
LTV model can be shown to be UCO if (3.20) and (3.21) are satisfied. Those two
conditions can be evaluated for the obtained LTV model by using the generalized
observability matrix obtained by substituting (5.2) in (3.22), which yields

Q(t) =

[
I6 06×3

06×6 H (I3 ⊗Reb) Γ J−1Reb�

]
, (5.3)

with
Lq(t) =

[
06×6 H (I3 ⊗Reb) Γ J−1Reb�

]
. (5.4)

It can be noted that (3.20) is equivalent to showing that Lq(t) from (5.4) and its
time derivative are bounded. The expression for (5.4) is essentially a sub-matrix
of A(Reb) from (5.2), which has been shown to be bounded. This implies that
Lq(t) is also always bounded. The only variable in (5.4) that is not necessarily

constant in time is Reb. Therefore, by using Ṙeb = Reb S(J−1Reb�Le) the time
derivative of (5.4) can be shown to be

L̇q(t) =
[
06×6 H

[
(I3 ⊗Reb S(ω)) Γ J−1 − (I3 ⊗Reb) Γ J−1S(ω)

]
Reb�

]
, (5.5)
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with ω = J−1Reb�Le. The expression from (5.5) can only be guaranteed to be
bounded if one assumes that ω or equivalently Le is also bounded.

Substituting (5.3) in (3.21) yields

[
I6 06×3

03×6 RebJ−1Ψ(Reb) J−1Reb�

]
� α I9, (5.6)

with Ψ(Reb) as defined in (3.23):

Ψ(Reb) = Γ�
(
I3 ⊗Reb�

)
H�H

(
I3 ⊗Reb

)
Γ.

The matrix from (5.6) is block diagonal. Such block diagonal matrix is positive
definite if and only if each diagonal block is positive definite. The upper diagonal
six by six block is an identity matrix, which is positive definite. The matrix
Ψ(Reb) is symmetric, thus that matrix can be determined to be positive definite if
the smallest eigenvalue is positive. In Section 3.3 it is shown that Ψ(Reb is positive
definite with eigenvalues independent of Reb both when using (3.16) or (3.14) for
H. In the lower three by three block of (5.6) the positive definite matrix Ψ(Reb)
is pre- and post-multiplied by RebJ−1 and the transpose of RebJ−1 respectively.
It can be noted that Reb acts as a similarity transformation, which does not alter
the eigenvalues. The matrix J−1 can change the eigenvalues and thus can affect
the lower bound of the lower three by three block. A lower bound of the lower
three by three block can be given as the smallest eigenvalue of J−2 times the
smallest eigenvalue of Ψ(Reb). This lower bound should be positive since J and
thus J−2 are positive definite matrices. Therefore, there has to exist an α > 0
which satisfies (5.6).

The two sufficient requirements to show UCO are thus satisfied under the as-
sumption that Le is always bounded. This assumption might seem reasonable
from physical perspective. However, this required assumption could pose stability
issues when this observer is combined with a state feedback controller into output
feedback. Namely, due to this assumption the combination of the observer pro-
posed in this section with a stabilizing state feedback, which uses the estimated
state instead of the true state, does not completely decouple their dynamics as
with certainty equivalence. Such interactions could then cause that L̃e diverges,
which subsequently could cause Le to diverge or vice versa.

5.2 Minimal Lyapunov based observer

In this section the observer structure from Chapter 4 is applied to the minimal
model from (5.1). The proposed correction terms and the resulting observer dy-
namics are derived in Subsection 5.2.1. The equilibria resulting from this dynamics
are analyzed in Subsection 5.2.2.
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5.2.1 Observer dynamics

Adapting the the proposed observer dynamics from Section 4.1 to the minimal
model from (5.1) using (4.4), (4.5), W = I3 and (4.7) yields

˙̂
Reb = R̂ebS(J−1Reb�L̂e + δR), (5.7a)

˙̂
Le = Rebτ b + δL, (5.7b)

with δR, δL R
3 the not yet defined correction terms. Expressions for these correc-

tion terms can be derived when considering the proposed Lyapunov function and
its time derivative. Applying the proposed Lyapunov function from Section (4.2)
to the minimal model, using x̃ = L̃e, gives

V =
n∑

i=1

ki
2

(
R̃eb vi − vi

)� (
R̃eb vi − vi

)
+

1

2
L̃e�Γ−1L̃e, (5.8)

with Γ ∈ R
3×3. The corresponding time derivative of (5.8) can be obtained by

substituting (4.10) with W = I3 and δx = δL in (4.18)

V̇ =
(
J−1Reb�L̃e + δR

)�
Π+ L̃e�Γ−1δL, (5.9)

with Π as defined in (4.17):

Π =
n∑

i=1

ki

(
R̂eb�vi

)
×

(
Reb�vi

)
.

The minimal model only has the rotation matrix Reb as output and therefore it is
not be possible to use L̃e in the expressions for the correction terms. Under this
constraint (5.9) can only be made negative semi-definite, where δR and δL can at
best be chosen such that the terms linear in L̃e cancel and that (5.9) is negative
definite in Π, resulting in

δR = −ΔΠ, (5.10a)

δL = −ΓReb J−1Π, (5.10b)

with Δ ∈ R
3×3 and Δ = Δ� � 0. Substituting (5.10) in (5.9) gives

V̇ = −Π�ΔΠ, (5.11)

which is negative semi-definite in the entire error state and thus shows that the
error dynamics is Lyapunov stable. Substituting (5.10) into (5.7a) and (5.7b)
therefore gives the following proposed observer dynamics for the minimal model
from (5.1)

˙̂
Reb = R̂ebS(J−1Reb�L̂e −ΔΠ), (5.12a)

˙̂
Le = Rebτ b − ΓReb J−1Π. (5.12b)
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5.2.2 Analysis of the equilibria

The equilibria of the error dynamics of this observer can be found by solving the
relevant equations from (4.20) using (5.10) and W = I3, yielding

J−1Reb�L̃e −ΔΠ = 03×1, (5.13a)

−ΓReb J−1Π = 03×1. (5.13b)

By using the assumption that Γ � 0 it follows from (5.13b) that Π = 03×1.
Substituting this in (5.13a) yields L̃e = 03×1. Therefore, the assumptions on
the equilibria from Section 4.3 are satisfied and the attitude at the equilibria in
exponential coordinates u are the origin ‖u‖ = 0 and the eigenvectors ofM defined
in (4.25) normalized to the length of π.

Besides equilibria the error dynamics could also have limit cycles. As discussed
in Section 4.4 this would require that the time derivative of the Lyapunov function
from (5.11) is equal to zero along the entire trajectory of the limit cycle. Solving
for when (5.11) is equal to zero yields Π = 03×1, which as shown for the equilibria
implies that attitude error is constant which in turn also requires L̃e = 03×1.
However, this is equivalent to the equilibria and therefore no limit cycles in the
error dynamics can exist.

The linearization matrices of the equilibria can be obtained by substituting
(5.10) and W = I3 in (4.29), such that for this observer (4.52) and (4.53), while
leaving out the sub-matrices related to the unused states, can be written as

A0 =

[
RebΔReb�N RebJ−1Reb�

ΓReb J−1 Reb�N 03×3

]
, (5.14)

with N = M − κ I3 and

Aπ =

[
−QRebΔT QRebJ−1Reb�

−ΓReb J−1 T 03×3

]
, (5.15)

with Q and T as defined in (4.54) and (4.54b) respectively.
Local exponential stability of the equilibrium point with ‖u‖ = 0 can be shown

by using the following matrix P0 in the quadratic function from (4.56)

P0 =

[
−N −β I3
−β I3 Γ−1

]
, (5.16)

where the two three by three diagonal blocks −N and Γ−1 are from the initial
guess given in (4.58). In order for (4.56) to be a common quadratic Lyapunov
function (CQLF) it is required that (5.16) is positive definite. It can be noted
that Γ and −N = κ I3−M are positive definite. When using Schur’s complement
formula, which states that the following statements are equivalent: [31]{[

Φ11 Φ12

Φ�
12 Φ22

]
≺ 0,

{
Φ22 ≺ 0,

Φ11 − Φ12Φ
−1
22 Φ

�
12 ≺ 0,
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it can be shown that P0 � 0 using (5.16) is equivalent to showing that −N−β2 Γ �
0. Since Γ is positive definite there should exist a full rank Λ such that ΛΓΛ = I3.
By pre- and post-multiplying the equivalent inequality with Λ yields Z−β2 I3 � 0,
with Z = −ΛN Λ a positive definite matrix. Therefore, the equivalent inequality
is satisfied when −√

μ < β <
√
μ, with μ the smallest eigenvalue of Z which

should be greater than zero.
The time derivative of the CQLF from (4.56) is negative definite when (4.57)

is satisfied:
A�

0 P0 + P0 A0 ≺ 0 ∀Reb ∈ SO(3).

Evaluating the left hand side of that inequality when using (5.14) and (5.16) yields

A�
0 P0 + P0 A0 = −

[
2N ΔRN + β (Γ JRN +N JRΓ) β N ΔR

βΔRN 2 β JR

]
, (5.17)

with ΔR = RebΔReb�, JR = RebJ−1 Reb� and ΔR, JR � 0 ∀Reb ∈ SO(3). The
bottom right three by three block of (5.17) is negative definite if β > 0. Therefore,
by applying Schur’s complement again it can be shown that the inequality from
(4.57) using (5.17) is equivalent to β > 0 and

4N ΔRN + β
(
2 Γ JRN + 2N JRΓ−N ΔRJ

−1
R ΔRN

)
� 0 ∀Reb ∈ SO(3). (5.18)

It can be noted that there should exist an ε > 0 such that N ΔRN � ε I3 ∀Reb ∈
SO(3). The matrix in (5.18) multiplied by β might be negative definite ∀Reb ∈
SO(3), for example when Γ = −N , but should remain bounded. Therefore, there
should exist a β∗ > 0 such that for 0 < β < β∗ (5.18) is satisfied ∀Reb ∈ SO(3).

The values for β for which both P0 � 0 using (5.16) and (4.57) using (5.14) and
(5.16) are satisfied can thus be written as 0 < β < η, with η = min(

√
μ, β∗) > 0.

Therefore, the CQLF can be made positive definite, while its time derivative is
negative definite, whose bounds can be used to show local exponential stability.
It might be worth investigating in future research which value for β maximizes
the predicted local exponential convergence rate, since this might also give some
insights into which observer parameters affect this convergence rate the most.

The other equilibria with ‖u‖ = π can be shown to be unstable by using
Theorem 1 with the quadratic function from (4.56) with (4.59) for the continuously
differentiable function

V (x) = x�
[
U
(
(κ− λi) ei e

�
i + 4

π2 (Ω− λi I3)
)
U� 03×3

03×3 −Γ−1

]
x, (5.19)

with x =
[
(u− ū)� L̃e�

]�
and ū the value of u at each of the considered equilibria

with ‖u‖ = π. In Section 4.4 it is shown that the upper left three by three
block of the matrix in (5.19) has at least one positive eigenvalue and thus set
U = {x ∈ R

6 | ‖x‖ ≤ r |V (x) > 0} should be nonempty.
The time derivative of (5.19) can be obtained by using (5.15) and (4.59) in

(4.56), resulting in

V̇ (x) = 2x�
[
T�ΔT 03×3

03×3 03×3

]
x, (5.20)
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with T as defined in (4.54b). It can be shown that T is a full rank matrix, so the
upper left three by three matrix from (5.20) is positive definite. It can be noted
that any point in the set U requires that ‖u − ū‖ > 0. Therefore, by combining
this with the positive definiteness of the upper left three by three matrix from
(5.20) it follows that V̇ (x) > 0 ∀ x ∈ U and according to Theorem 1 this implies
that each nonzero equilibrium of the minimal model is unstable.

The error dynamics for the observer dynamics from (5.12a) and (5.12b) have
thus been shown to be Lyapunov stable, have no limit cycles, the equilibrium
with ‖u‖ = 0 is locally exponentially stable and the equilibria with ‖u‖ = π
are unstable. This suggests that nearly all initial conditions should eventually
converge to the equilibrium with ‖u‖ = 0, at which the estimation error is zero.
The basins of attraction of the unstable equilibria are not empty, but are of a lower
dimension than the entire state space. This implies that the basin of attraction of
the stable equilibrium spans nearly the entire state space. This nearly global result
is similar to that of a damped pendulum, for which the downward and upward
positions are a stable and unstable equilibrium respectively.

5.3 Summary

In Section 5.1 it is shown how the observer structure from Chapter 3 can be
adapted to minimal model from (5.1). However, when verifying the sufficient con-
ditions, which would show global exponential stability, it is required to assume
that rate of rotation, so the angular velocity or angular momentum, are bounded.
For the resulting observer in Section 5.2, obtained by applying the observer struc-
ture from Chapter 4 to the minimal model, no such assumption is required but
only a nearly global result is obtained.



Chapter 6

Biased observers

In this chapter the observer structures from Chapter 3 and 4 are applied to the
biased model for the attitude dynamics from Section 2.3.2. Similar to the previous
chapter, the observer structure from Chapter 3 is first applied to this model in Sec-
tion 6.1 and in Section 6.2 the observer structure from Chapter 4. In Section 2.3.2
it is shown how the model can be formulated as linear time varying (LTV) and
shown under what condition it satisfies the sufficient conditions. In Section 6.2
the Lyapunov based observer correction terms are derived and analyzed.

The biased model that is considered in this chapter is defined in (2.14) as:

Ṙeb = Reb S(J−1Reb�Le), (6.1a)

L̇e = Rebu, (6.1b)

ḃb = 0, (6.1c)

u = τ b, (6.1d)

y1 = Reb, (6.1e)

y2 = J−1Reb�Le + bb, (6.1f)

with u the known input of the system and, y1 and y2 the outputs of the system
and J the known mass moment of inertia matrix.

6.1 Biased linear time varying observer

In this section the observer structure from Chapter 3 is applied to the biased
model from (6.1). The transformation of the biased model to a LTV model and
the resulting observer dynamics are first discussed in Subsection 6.1.1. This is
followed by Subsection 6.1.2, in which it is shown under which assumptions the
sufficient conditions of the used observer structure are satisfied.

40
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6.1.1 Observer dynamics

Similar to Section 5.1.1 it is required that the considered model can be formulated
to fit the LTV model from (3.1):{

ẋ(t) = A(Reb) x(t) +B(Reb) u(t),
y(t) = C(Reb) x(t).

This can be done by defining the state vector x(t) and equivalent output y(t) as

x(t) :=

⎡
⎣ρrLe

bb

⎤
⎦ ∈ R

12, y(t) :=

[
ρr

J−1Reb�Le + bb

]
∈ R

9,

with ρr as defined in (3.17). By combining (3.18), (2.14b), (2.14c) and ω =

J−1Reb�Le it can be shown that using the following matrices for the LTV model
yield a model that is equivalent to the biased model⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
A(Reb) :=

⎡
⎣06×6 H (I3 ⊗Reb) Γ J−1Reb� 06×3

03×6 03×3 03×3

03×6 03×3 03×3

⎤
⎦ , B(Reb) :=

⎡
⎣06×3

Reb

03×3

⎤
⎦ ,

C(Reb) :=

[
I6 06×3 06×3

03×6 J−1Reb� I3

]
.

(6.2)
By using (6.2) the observer structure from Chapter 3 can be expressed using (3.2)
and (3.3):

˙̂x(t) = A(Reb) x̂(t) + B(Reb) u(t)−K(t)
[
C(Reb) x̂(t)− y(t)

]
,⎧⎨

⎩
Ṁ(t) = A(Reb)M(t)+M(t)A�(Reb)−M(t)C�(Reb)W−1C(Reb)M(t)+V+δM(t),
M(t0) = M0 = M�

0 � 0, W = W� � 0,
K(t) = M(t)C�(Reb)W−1,

with x̂(t) the estimate of x(t), M0, V ∈ R
12×12 and W ∈ R

9×9.

6.1.2 Sufficient condition verification

Similar to Subsection 5.1.2 global converges of the observer dynamics is shown if
the matrices defined in (6.2) can be shown to be bounded and that the associated
LTV model is uniformly completely observable (UCO). By using the same rea-
soning as in Subsection 5.1.2 it can be concluded that the obtained LTV model
has bounded matrices. As discussed in Section 5.1.2 the obtained LTV model
can be shown to be UCO using the generalized observability matrix obtained by
substituting (6.2) in (3.22), which yields

Q(t) =

⎡
⎢⎢⎢⎣

I6 06×3 06×3

03×6 J−1Reb� I3
06×6 H (I3 ⊗Reb) Γ J−1Reb� 06×3

03×6 −J−1S(J−1Reb�Le)Reb� 03×3

⎤
⎥⎥⎥⎦ , (6.3)
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with

Lq(t) =

[
06×6 H (I3 ⊗Reb) Γ J−1Reb� 06×3

03×6 −J−1S(J−1Reb�Le)Reb� 03×3

]
. (6.4)

From (6.3) and (6.4) it can be concluded that the obtained LTV model is UCO
if (3.21) using (6.3) is satisfied and if Lq(t) from (6.4) and its time derivative are
bounded.

The first six rows of Lq(t) from (6.4) are a sub-matrix of A(Reb) from (6.2),
which has been shown to be bounded. When showing that the last three rows and
the time derivative the first six rows of (6.4) are also bounded one can use a similar
argument as for the boundedness of the time derivative of Lq(t) in Section 5.1.2,
which thus requires the assumption that Le is bounded. The time derivative of
the last three rows of (6.4) also requires to take the time derivative of Le, which
also adds τ b to the resulting expression. Therefore, in order for Lq(t) from (6.4)
and its time derivative to be bounded requires the assumptions that Le and τ b are
bounded.

Substituting (5.3) in (3.21) yields⎡
⎣ I6 06×3 06×3

03×6 RebJ−1(I3 +Ψ(Reb)) J−1Reb� + Ω�Ω RebJ−1

03×6 J−1Reb� I3

⎤
⎦ � α I12, (6.5)

with Ω = J−1S(J−1Reb�Le)Reb� and Ψ(Reb) as defined in (3.23):

Ψ(Reb) = Γ�
(
I3 ⊗Reb�

)
H�H

(
I3 ⊗Reb

)
Γ.

The matrix on the left hand side of the inequality of (6.5) is block diagonal, with
the first block the upper six by six matrix on the diagonal and the second and
last block the lower six by six matrix on the diagonal. Therefore, the inequality of
(6.5) is satisfied if both blocks are positive definite. The upper six by six diagonal
block is an identity matrix, which is positive definite. The lower six by six diagonal
matrix can also be written as[

RebJ−1(I3 +Ψ(Reb)) J−1Reb� + Ω�Ω RebJ−1

J−1Reb� I3

]
= Σ+ Λ, (6.6)

with

Σ =

[
Ω�Ω 03×3

03×3 03×3

]
, (6.7a)

Λ = T Ξ�ΘΞT�, (6.7b)

T =

[
Reb 03×3

03×3 I3

]
, (6.7c)

Ξ =

[
J−1 03×3

J−1 I3

]
, (6.7d)

Θ =

[
Ψ(Reb) 03×3

03×3 I3

]
. (6.7e)
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For the matrix from (6.7c) it holds that T� = T−1, thus in (6.7b) T can be seen as
a similarity transformation. The matrix Ξ from (6.7d) is constant, square and full
rank. In Section 3.3 it is shown that Ψ(Reb is positive definite with eigenvalues
independent of Reb both when using (3.16) or (3.14) for H. Therefore, Θ from
(6.7e) should also be positive definite with constant eigenvalues. By combining
the properties of T , Ξ and Θ yields that a lower bound for Λ from (6.7b) can be
given as minimum of one and the smallest eigenvalue of J−2, times the minimum of
one and smallest eigenvalue of Ψ(Reb). Similar to Section 5.1.2 it follows that this
lower bound should be positive. The matrix Σ from (6.7a) is positive semi-definite.
Therefore, the lower six by six block from (6.5), which can also be expressed using
(6.6), is a summation of a positive definite and a positive semi-definite matrix,
which should also be positive definite. Additionally, the lower bound of Λ should
also be a lower bound of the lower six by six block from (6.5). Therefore, both
diagonal blocks of (6.5) have been shown to be positive definite, so there should
exists a positive constant α such that α I is a lower bound for (6.5).

The two sufficient requirements to show UCO are thus satisfied under the
assumption that Le and τ b are always bounded. It might be possible to show
that the assumption, that τ b is bounded, can be omitted. Namely, if the last
three rows of (6.3) are omitted the resulting inequality equivalent to (6.5) would
still always be satisfied. The removal of these rows would then also remove the
part of that part of the time derivative of Lq(t) from (6.4) which would contain
τ b. However, more research would be required in order to determine if this is
allowed. Even if the assumption on τ b could be omitted the assumption on Le

would still remain. As discussed at the end of Subsection 5.1.2 this assumption
could have stability implications on when combining the observer from this section
into output feedback.

6.2 Biased Lyapunov based observer

In this section the observer structure from Chapter 4 is applied to the biased model
from (6.1). The proposed correction terms and the resulting observer dynamics
are derived in Subsection 6.2.1. The equilibria resulting from this dynamics are
analyzed in Subsection 6.2.2.

6.2.1 Observer dynamics

Adapting the the proposed observer dynamics from Section 4.1 to the biased model
from (6.1) using (4.4), (4.5), (4.7) and (4.8) yields

˙̂
Reb = R̂ebS(W J−1Reb�L̂e + (I3 −W ) (zb − b̂b) + δR), (6.8a)

˙̂
Le = Rebτ b + δL, (6.8b)

˙̂
bb = δb, (6.8c)

with W any matrix in R
3×3 and δR, δL, δb R

3 the not yet defined correction terms.
The proposed Lyapunov function and its time derivative can be used to help choose
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expressions for these correction terms. Applying the proposed Lyapunov function

from Section (4.2) to the biased model, using x̃ =
[
L̃e� b̃b

�
]�

, gives

V =
n∑

i=1

ki
2

(
R̃eb vi − vi

)� (
R̃eb vi − vi

)
+

1

2

[
L̃e

b̃b

]�
Γ−1

[
L̃e

b̃b

]
, (6.9)

with Γ ∈ R
6×6. The corresponding time derivative of (6.9) can be obtained by

substituting (4.10), (4.19) solved for L̃e and δx =
[
δ�L δ�b

]�
in (4.18)

V̇ =
(
W z̃b − b̃b + δR

)�
Π+

[
z̃b

b̃b

]� [
J Reb� 03×3

−J Reb� I3

]
Γ−1

[
δL
δb

]
, (6.10)

with Π as defined in (4.17):

Π =
n∑

i=1

ki

(
R̂eb�vi

)
×

(
Reb�vi

)
.

The biased model has the rotation matrix Reb and biased angular velocity mea-
surement zb as outputs. Therefore, it is not be possible to use b̃b in any of the
expressions for the correction terms and thus the remaining linear terms in b̃b from
(6.10) could make the time derivative indefinite. However, the correction terms
can be chosen such that the time derivative of the Lyapunov function becomes
negative definite in Π and z̃b and thus negative semi-definite in the entire error
state. Such choice for the correction terms is given by

δR = −
[
Φ11 2Φ12 +W +X�] [Π

z̃b

]
, (6.11a)[

δL
δb

]
= Γ

[
RebJ−1 0

I3 I3

] [
X −Φ22

I3 03×3

] [
Π
z̃b

]
, (6.11b)

with X any matrix in R
3×3 and the matrix[

Φ11 Φ12

Φ21 Φ22

]
= Θ ∈ R

6×6,

such that Θ = Θ� � 0. Substituting (6.11) in (6.10) gives

V̇ = −
[
Π
z̃b

]�
Θ

[
Π
z̃b

]
, (6.12)

which is negative semi-definite in the entire error state independent of X and
thus shows that the error dynamics is Lyapunov stable. It can be noted that an
equivalent result can be obtained when using (4.19) to solve for b̃b instead of L̃e

in (6.10). Although both the Lyapunov function and the final expression for its
derivative are not a function of X it can be noted that the error dynamics does
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depend on X. Substituting (6.11) in (6.13a), (6.8b) and (6.8c) therefore gives the
following proposed observer dynamics for the biased model from (6.1)

˙̂
Reb = R̂ebS(zb − b̂b − Φ11 Π− (2Φ12 +X�) z̃b), (6.13a)[
˙̂
Le

˙̂
bb

]
=

[
Rebτ b

03×1

]
+ Γ

[
RebJ−1 03×3

I3 I3

] [
X −Φ22

I3 03×3

] [
Π
z̃b

]
, (6.13b)

with z̃b = J−1Reb�L̂e + b̂b − zb and for which it can be noted that the weighting
matrix W has disappeared. However, the value of the weighting matrix W does
still affect the value given by this observer for the estimated angular velocity from
(4.5).

6.2.2 Analysis of the equilibria

The equilibria of the error dynamics of this observer can be found by solving the
relevant equations from (4.20) using (6.11), yielding

b̃b + Φ11Π+ (2Φ12 +X�) z̃b = 03×1, (6.14a)

Γ

[
RebJ−1 03×3

I3 I3

] [
X −Φ22

I3 03×3

] [
Π
z̃b

]
= 06×1. (6.14b)

By using the assumption that Γ � 0 and that the next matrix from (6.14b)
containing Reb is always square and full rank implies that (6.14b) is equivalent to
X Π−Φ22z̃

b = 03×1 and Π = 03×1. The assumption that Θ = Θ� � 0 also implies
that Φ22 needs to be full rank, thus solving (6.14b) yields Π = 03×1 and z̃b = 03×1.
Substituting this solution to (6.14b) in (6.14a) yields b̃b = 03×1. Substituting
z̃b = b̃b = 03×1 in (4.19) also yields L̃e = 03×1. Therefore, the assumptions on
the equilibria from Section 4.3 are satisfied and the attitude at the equilibria in
exponential coordinates u are the origin ‖u‖ = 0 and the eigenvectors ofM defined
in (4.25) normalized to the length of π.

By using the same arguments as in Subsection 5.2.2 the existence of limit cycles
in the error dynamics would for this observer require Π = z̃b = 03×1, which would
also make such limit cycles equivalent to the equilibria.

By substituting (6.11) in (4.29) yields that AR = −Φ11, BR = −2Φ12−W−X�

and [
AL BL

Ab Bb

]
= Γ

[
RebJ−1 03×3

I3 I3

] [
X −Φ22

I3 03×3

]
.

Therefore, the resulting expressions for the linearizations at the equilibria from
(4.52) and (4.53) for the observer considered in this section can be written as

A0 =

⎡
⎢⎣R

ebΦ11R
eb�N −Reb(2Φ12 +X�) J−1Reb� −Reb(2Φ12 +X� + I3)

−AL R
eb�N BL J

−1Reb� BL

−Ab R
eb�N Bb J

−1Reb� Bb

⎤
⎥⎦ ,

(6.15)
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with N = M − κ I3 and

Aπ =

⎡
⎢⎣−QRebΦ11T −QReb(2Φ12 +X�) J−1Reb� −QReb(2Φ12 +X� + I3)

AL T BL J
−1Reb� BL

Ab T Bb J
−1Reb� Bb

⎤
⎥⎦ ,

(6.16)
with Q and T as defined in (4.54) and (4.54b) respectively.

When using P0 from (4.58) for the initial guess for the common quadratic
Lyapunov function (CQLF) together with (6.15) yields the following expression
for the left hand side of (4.57)

A�
0 P0 + P0 A0 = −2

⎡
⎣N Reb 03×3

03×3 −RebJ−1

03×3 −I3

⎤
⎦Θ

⎡
⎣N Reb 03×3

03×3 −RebJ−1

03×3 −I3

⎤
⎦
�

, (6.17)

which is only negative semi-definite because Θ ∈ R
6×6, while A�

0 P0+P0 A0 ∈ R
9×9.

The candidate CQLF obtained from solving a set of linear matrix inequalities, as
described in Section 4.4, yielded a valid solution every attempt. However, it was
not possible to deduce a pattern in those solutions. The numerical results shown
in Chapter 8 also reinforces the hypothesis that the equilibrium with ‖u‖ = 0 of
the observer considered in this section is locally exponentially stable. Therefore,
finding a CQLF in order to show local exponential stability near the equilibrium
with ‖u‖ = 0 of the observer from this section could be a topic in future research.

Similar to Subsection 5.2.2 the other equilibria with ‖u‖ = π can be shown to
be unstable by using Theorem 1, (4.56) and (4.59) resulting in

V (x) = x�
[
U
(
(κ− λi) ei e

�
i + 4

π2 (Ω− λi I3)
)
U� 03×6

06×3 −Γ−1

]
x, (6.18)

as the continuously differentiable function with x =
[
(u− ū)� L̃e� b̃b

�
]�

and

ū the value of u at each of the considered equilibria with ‖u‖ = π. In Section 4.4
it is shown that the upper left three by three block of the matrix in (6.18) has at
least one positive eigenvalue and thus the set U = {x ∈ R

9 | ‖x‖ ≤ r |V (x) > 0}
should be nonempty, with all elements in U satisfying that ‖u− ū‖ > 0.

The time derivative of (6.18) can be obtained by using

U

(
(κ− λi) ei e

�
i +

4

π2
(Ω− λi I3)

)
U�Q = −T�Reb�,

(6.16) and (4.59) in (4.56), resulting in

V̇ (x) = 2 x�M�ΘMx, (6.19)

M =

[
T 03×3 03×3

03×3 J−1Reb� I3

]
. (6.20)

The null space of (6.20), such that M x = 06×1, is the set of all point such

that u = ū and J−1Reb�L̃e + b̃b = z̃b = 03×1. Therefore, V̇ (x) > 0 whenever
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‖u − ū‖ > 0 or ‖z̃b‖ > 0. Combining this with the non-empty set U it follows
that V̇ (x) > 0 ∀ x ∈ U and according to Theorem 1 this implies that each nonzero
equilibrium of the biased model is unstable.

The error dynamics for the observer dynamics from (6.13a) and (6.13b) have
thus been shown to be Lyapunov stable, have no limit cycles and the equilibria
with ‖u‖ = π are unstable. Therefore, if it could also be shown that the equi-
librium with ‖u‖ = 0 is locally exponentially stable a similar conclusion could
be drawn about the basin of attraction of the equilibrium with ‖u‖ = 0 as in
Subsection 5.2.2.

6.3 Summary

In Section 6.1 it is shown how the observer structure from Chapter 3 can be
adapted to biased model from (6.1). However, when verifying the sufficient con-
ditions, which would show global exponential stability, it is required to assume
that rate of rotation, so the angular velocity or angular momentum, and the ap-
plied torque are bounded. For the resulting observer in Section 6.2, obtained by
applying the observer structure from Chapter 4 to the biased model, no such as-
sumption is required. However, the attempts to show that the equilibrium of the
error dynamics with zero estimation error is locally exponentially stable have not
yet succeeded. And thus one can also not yet draw the same conclusion as in
Section 5.2 that there is a nearly global basin of attraction.



Chapter 7

Kinematic observers

In this chapter the observer structures from Chapter 3 and 4 are applied to the
kinematic model for the attitude dynamics from Section 2.3.3. First, the observer
structure from Chapter 3 is applied to this model in Section 7.1, in which it is
shown how the model can be formulated as linear time varying and shown under
what condition it satisfied the sufficient conditions. This is followed by Section 7.2,
in which the observer structure from Chapter 4 is applied to the kinematic model
and analyzed.

The kinematic model that is considered in this chapter is defined in (2.15) as:

Ṙeb = Reb S(u− bb), (7.1a)

ḃb = 0, (7.1b)

u = zb, (7.1c)

y = Reb, (7.1d)

where the biased angular velocity measurement u is seen as the known input of
the system and y the output of the system.

7.1 Kinematic linear time varying observer

In this section the observer structure from Chapter 3 is applied to the kinematic
model from (7.1). The transformation of the kinematic model to a LTV model
and the resulting observer dynamics are first discussed in Subsection 7.1.1. This
is followed by Subsection 7.1.2, in which it is shown under which assumptions the
sufficient conditions of the used observer structure are satisfied.

7.1.1 Observer dynamics

Similar to Section 5.1.1 and 6.1.1 it is required that the considered model can be
formulated to fit the LTV model from (3.1):{

ẋ(t) = A(Reb) x(t) + B(Reb) u(t),
y(t) = C(Reb) x(t).

48
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This can be done by defining the state vector x(t) and equivalent output y(t) as

x(t) :=

[
ρr
bb

]
∈ R

9, y(t) := ρr ∈ R
6,

with ρr as defined in (3.17). By combining (3.18), (2.15b) and ω = u − bb it can
be shown that using the following matrices for the LTV model yield a model that
is equivalent to the kinematic model⎧⎨

⎩ A(Reb) :=

[
06×6 −H (I3 ⊗Reb) Γ
03×6 03×3

]
, B(Reb) :=

[
H (I3 ⊗Reb) Γ

03×3

]
,

C(Reb) :=
[
I6 06×3

]
.

(7.2)

By using (7.2) the observer structure from Chapter 3 can be expressed using (3.2)
and (3.3):

˙̂x(t) = A(Reb) x̂(t) +B(Reb) u(t)−K(t)
[
C(Reb) x̂(t)− y(t)

]
,

⎧⎨
⎩
Ṁ(t) = A(Reb)M(t)+M(t)A�(Reb)−M(t)C�(Reb)W−1C(Reb)M(t)+V+δM(t),
M(t0) = M0 = M�

0 � 0, W = W� � 0,
K(t) = M(t)C�(Reb)W−1,

with x̂(t) the estimate of x(t), M0, V ∈ R
9×9 and W ∈ R

6×6.

7.1.2 Sufficient condition verification

Similar to Subsection 5.1.2 and 6.1.2, global converges of the observer dynamics
is shown if the matrices defined in (7.2) can be shown to be bounded and that the
associated LTV model is uniformly completely observable (UCO). By using the
same reasoning as in Subsection 5.1.2 it can be concluded that the obtained LTV
model has bounded matrices. As discussed in more detail in Subsection 5.1.2 the
obtained LTV model can be shown to be UCO using the generalized observability
matrix obtained by substituting (7.2) in (3.22), which yields

Q(t) =

[
I6 06×3

06×6 −H (I3 ⊗Reb) Γ

]
, (7.3)

with
Lq(t) =

[
06×6 −H (I3 ⊗Reb) Γ

]
. (7.4)

From (7.3) and (7.4) it can be concluded that the obtained LTV model is UCO
if (3.21) using (7.3) is satisfied and if Lq(t) from (7.4) and its time derivative are
bounded.

The entirety of Lq(t) from (7.4) is a sub-matrix of A(Reb) from (7.2), which
has been shown to be bounded. However, similar to Subsection 5.1.2 the time
derivative of Lq(t) is a function of the rate of rotation ω = zb − bb. Therefore, in
order for the time derivative of Lq(t) from (7.4) to also be bounded requires the
assumptions that ω is bounded.
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Substituting (7.3) in (3.21) yields[
I6 06×3

03×6 Ψ(Reb)

]
� α I9, (7.5)

with Ψ(Reb) as defined in (3.23):

Ψ(Reb) = Γ�
(
I3 ⊗Reb�

)
H�H

(
I3 ⊗Reb

)
Γ.

Similar to Subsection 5.1.2 and 6.1.2 the matrix from (7.5) is block diagonal, with
the first block the upper six by six matrix on the diagonal and the second and last
block the lower three by three matrix on the diagonal. Therefore, the inequality
of (7.5) is satisfied if both blocks are positive definite. The upper diagonal six
by six block is an identity matrix, which is positive definite. In Section 3.3 it is
shown that Ψ(Reb) is positive definite with eigenvalues independent of Reb both
when using (3.16) or (3.14) for H. Therefore, there has to exist an α > 0 which
satisfies (7.5).

The two sufficient requirements to show UCO are thus satisfied under the
assumption that ω = zb − bb is always bounded. As discussed at the end of
Subsection 5.1.2 this assumption could have stability implications when combining
the observer from this section into output feedback.

7.2 Kinematic Lyapunov based observer

In this section the observer structure from Chapter 4 is applied to the kinematic
model from (7.1). The proposed correction terms and the resulting observer dy-
namics are derived in Subsection 7.2.1. The equilibria resulting from this dynamics
are analyzed in Subsection 7.2.2.

7.2.1 Observer dynamics

Adapting the proposed observer dynamics from Section 4.1 to the kinematic model
from (7.1) using (4.4), (4.5), W = 03×3 and (4.8) yields

˙̂
Reb = R̂ebS(zb − b̂b + δR), (7.6a)

˙̂
bb = δb, (7.6b)

with δR, δb R
3 the not yet defined correction terms. The proposed Lyapunov func-

tion and its time derivative can be used to help choose expressions for these cor-
rection terms. Applying the proposed Lyapunov function from Section (4.2) to
the kinematic model, using x̃ = b̃b, gives

V =
n∑

i=1

ki
2

(
R̃eb vi − vi

)� (
R̃eb vi − vi

)
+

1

2
b̃b

�
Γ−1b̃b, (7.7)
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with Γ ∈ R
3×3. The corresponding time derivative of (7.7) can be obtained by

substituting (4.10) with W = 03×3 and δx = δb in (4.18)

V̇ =
(
δR − b̃b

)�
Π+ b̃b

�
Γ−1δL, (7.8)

with Π as defined in (4.17):

Π =
n∑

i=1

ki

(
R̂eb�vi

)
×

(
Reb�vi

)
.

The kinematic model only has the rotation matrix Reb as output, since the biased
angular velocity measurement is interpreted as the input. Therefore, it is not
be possible to use b̃b in the expressions for the correction terms and thus the
remaining linear terms in b̃b from (7.8) could make the time derivative indefinite.
However, the correction terms can be chosen such that the time derivative of the
Lyapunov function becomes negative definite in Π and thus negative semi-definite
in the entire error state. Such choice for the correction terms is given by

δR = −ΔΠ, (7.9a)

δb = ΓΠ, (7.9b)

with Δ ∈ R
3×3 and Δ = Δ� � 0. Substituting (7.9) in (7.8) gives

V̇ = −Π�ΔΠ, (7.10)

which is negative semi-definite in the entire error state and thus shows that the
error dynamics is Lyapunov stable. Substituting (7.9) into (7.6a) and (7.6b) there-
fore gives the following proposed observer dynamics for the kinematic model from
(7.1)

˙̂
Reb = R̂ebS(zb − b̂b −ΔΠ), (7.11a)

˙̂
bb = ΓΠ. (7.11b)

7.2.2 Analysis of the equilibria

The equilibria of the error dynamics of this observer can be found by solving the
relevant equations from (4.20) using (7.9) and W = 03×3, yielding

b̃b +ΔΠ = 03×1, (7.12a)

ΓΠ = 03×1. (7.12b)

By using the assumption that Γ � 0 it follows from (7.12b) that Π = 03×1. Substi-
tuting this in (7.12a) yields b̃b = 03×1. Therefore, the assumptions on the equilibria
from Section 4.3 are satisfied and the attitude at the equilibria in exponential co-
ordinates u are the origin ‖u‖ = 0 and the eigenvectors of M defined in (4.25)
normalized to the length of π.
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By using the same arguments as in Subsection 5.2.2 the existence of limit cycles
in the error dynamics would for this observer require Π = 03×1, which would also
make such limit cycles equivalent to the equilibria.

By substituting (7.9) in (4.29) yields that AR = −Δ, BR = 03×3, Ab = Γ
and Bb = 03×3. Therefore, the resulting expressions for the linearizations at the
equilibria from (4.52) and (4.53) for the observer considered in this section can be
written as

A0 =

[
RebΔReb�N −Reb

−ΓReb�N 03×3

]
, (7.13)

with N = M − κ I3 and

Aπ =

[
−QRebΔT −QReb

ΓT 03×3

]
, (7.14)

with Q and T as defined in (4.54) and (4.54b) respectively.
When using P0 from (4.58) for the initial guess for the common quadratic

Lyapunov function (CQLF) together with (7.13) yields the following expression
for the left hand side of (4.57)

A�
0 P0 + P0 A0 = −2

[
N RebΔReb�N 03×3

03×3 03×3

]
, (7.15)

which is only negative semi-definite. In order for a matrix to be positive definite
it is required that any sub-matrix on its diagonal is also positive definite. When
using a different constant matrix for P0 the resulting lower right three by three sub-

matrix on the diagonal of A�
0 P0+P0 A0 is always of the form Q = W�Reb+Reb�W

with W a sub-matrix from P0. However, for every W �= 03×3 this matrix is not
negative definite when considering all Reb ∈ SO(3), since y�Q y = 2 (W y) · (Reby)
and there always exists a Reb ∈ SO(3) such that for ‖y‖ �= 0 the vector Reby
points partially in the same direction as the vector W y.

An important difference between the linearizations of the minimal model from
Subsection 5.2.2, for which local exponential stability is shown, and the kinematic
model is that in linearizations of the minimal model the rotation matrix always

appears in pairs, such as RebΔReb� and RebJ−1Reb�, while for the kinematic
model the rotation matrix also appears alone. Therefore, it is attempted to use a
time varying coordinate transformation x̃′ = T x̃, with

T =

[
I3 03×3

03×3 Reb

]
(7.16)

such that the transformed linearization is characterized with

A′
0 =

[
RebΔReb�N −I3
−RebΓReb�N S(beωe)

]
, (7.17)

which introduces a potentially unbounded term beωe. Therefore, it might require
assuming some upper bound on beωe, similar to the local stability analysis of the
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explicit complementary filter with bias correction [23]. Using this time varying
coordinate transformation does mean that one no longer can use the initial guess
for a CQLF. Therefore, similar to Subsection 6.2.2 it is also attempted to find
a candidate CQLF by solving a set of linear matrix inequalities using bounded
values for beωe. These sets of linear matrix inequalities yielded a valid solution
every attempt. However, it was not possible to deduce a pattern in those solutions.
The numerical results shown in Chapter 8 also reinforces the hypothesis that the
equilibrium with ‖u‖ = 0 of the observer considered in this section is locally
exponentially stable. Therefore, finding a CQLF in order to show local exponential
stability near the equilibrium with ‖u‖ = 0 could also be a topic in future research
for the observer considered in this section.

The other equilibria of the kinematic model can be shown to be unstable
using Theorem 1 and (5.19) as the continuously differentiable function with x =[
(u− ū)� b̃b

�
]�

. Similar to Subsection 5.2.2 and 6.2.2 it holds that the set

U = {x ∈ R
9 | ‖x‖ ≤ r |V (x) > 0} should be nonempty, with all elements in U

satisfying that ‖u− ū‖ > 0. The corresponding time derivative of the continuously
differentiable function can be obtained by using (7.14) in (4.56), which results
in the same expression as (5.20). Therefore, it also follows that each nonzero
equilibrium of the kinematic model is unstable.

The error dynamics for the observer dynamics from (7.11a) and (7.6b) have
thus been shown to be Lyapunov stable, have no limit cycles and the equilibria
with ‖u‖ = π are unstable. Therefore, if it could also be shown that the equi-
librium with ‖u‖ = 0 is locally exponentially stable a similar conclusion could
be drawn about the basin of attraction of the equilibrium with ‖u‖ = 0 as in
Subsection 5.2.2.

7.3 Summary

In Section 7.1 it is shown how the observer structure from Chapter 3 can be
adapted to kinematic model from (7.1). However, when verifying the sufficient
conditions, which would show global exponential stability, it is required to assume
that rate of rotation, so the angular velocity or angular momentum, is bounded.
For the resulting observer in Section 7.2, obtained by applying the observer struc-
ture from Chapter 4 to the kinematic model, no such assumption is required.
However, the attempts to show that the equilibrium of the error dynamics with
zero estimation error is locally exponentially stable have not yet succeeded. And
thus one can also not yet draw the same conclusion as in Section 5.2 that there is
a nearly global basin of attraction.



Chapter 8

Numerical analysis

In this chapter the numerical side of the the ordinary differential equations from
the models from Chapter 2 and the observers from Chapter 5, 6 and 7 is discussed.
Firstly, in Section 8.1 it is discussed how the attitude part of the dynamics can
be modified, such that it can be assured that coordinates used to represent the
attitude remain well behaved. Secondly, in Section 8.2 a performance measure, in
the form of a cost function, for the observers is proposed. That cost function can be
used to choose the observer parameters and as a performance measure between the
different observers. And lastly, in Section 8.3 some numerical simulation results
are shown and discussed to demonstrate convergence of the estimation error to
zero of the proposed observers.

8.1 Numerical implementation

It is difficult to ensure that rotation matrices remain in or close to SO(3) when
performing numerical simulations with rotation matrices for the attitude repre-
sentation, whose dynamics is given in (2.4). Instead unit quaternions can be used.
A quaternion is defined as q := qw + qx i + qy j + qz k ∈ H with qw, qx, qy, qz ∈ R,
i, j, k the generalized imaginary numbers, such that i2 = j2 = k2 = i j k = −1,
and H the set of all quaternions [16, p. 22]. It can be noted that i, j and k do
not commute with each other, so in general q1 q2 �= q2 q1. A unit quaternion is a
quaternion of unit length, where the length is defined as

√
q2w + q2x + q2y + q2z . A

quaternion can also be represented as a scalar-vector pair (r, v), with r = qw ∈ R

and v =
[
qx qy qz

]� ∈ R
3.

Vector coordinates x ∈ R
3 can be rotated using a quaternion q by taking

the vector component of the quaternion resulting from q (0, x) q−1, with q−1 =
(r,−�v)/‖q‖ [16, p. 45]. For convenience this vector rotation is denoted with q(x).
From this definition of rotating x using unit quaternions it can be observed that
both q and −q yield the same rotated vector. So there is a double mapping from
an attitude representation to a unit quaternion. However, there always is a unique
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mapping from a unit quaternion to a rotation matrix and is defined as [16, p. 45]

R =

⎡
⎣q2w + q2x − q2y − q2z 2(qx qy − qw qz) 2(qx qz + qw qy)

2(qx qy + qw qz) q2w − q2x + q2y − q2z 2(qy qz − qw qx)
2(qx qz − qw qy) 2(qy qz + qw qx) q2w − q2x − q2y + q2z

⎤
⎦ . (8.1)

The notation qeb is used to represent a unit quaternion which is equivalent to
the rotation matrix Reb and thus can transform vector coordinates expressed in
the body frame b into vector coordinates expressed using the inertial frame e,
according to ve = qeb(vb). The time derivative of the attitude of a rigid body,
expressed as a unit quaternion, is given by [33]

q̇eb =
1

2
qeb

(
0, beωb

)
. (8.2)

When implementing the product between quaternions, used for rotating vector
coordinates and when evaluating (8.2), it is more convenient to treat each quater-
nion as a vector of four real numbers instead of generalized imaginary numbers.

The real vector representation is denoted with qeb =
[
qebw qebx qeby qebz

]� ∈ R
4.

The product of two quaternions, q1 q2, can be shown to be equivalent to [16, p. 23]

q1 q2 =

[
r1 −�v�1
�v1 r1 I3 + S(�v1)

]
q2 =

[
r2 −�v�2
�v2 r2 I3 − S(�v2)

]
q1. (8.3)

Therefore, the time derivative of qeb can be obtained by combining (8.2) with (8.3),
resulting in

˙
qeb = H(beωb) qeb, (8.4)

with

H(x) =
1

2

[
0 −x�

x −S(x)

]
. (8.5)

Numerically solving the dynamics of unit quaternions using (8.4) does not en-
sure that the quaternions remain of unit length. Instead, each quaternion could be
normalized whenever it is used in other calculations. To ensure that the simulated
quaternion remains close to unit length, in order to prevent the singularity at the
origin, one could use specialized integration methods [34]. However, this would
require a custom ordinary differential equations solver, which is hard to combine
with common variable-time-step solvers, such as ode45 from Matlab. Instead a
correction term can be added of the form f(ρ) qeb with ρ = ‖qeb‖2, similar to
Baumgarte stabilization of dynamical systems with constraints [3]. By combining
this with (8.4) the modified dynamics of the quaternion can be written as

˙
qeb =

(
H(beωb) + f(ρ) I4

)
qeb. (8.6)

By using (8.6) it can be shown that time derivative of ρ can be written as

ρ̇ = 2 qeb
� ˙
qeb, (8.7a)

= 2 qeb
� (

H(beωb) + f(ρ) I4
)
qeb, (8.7b)

= 2 qeb
�H(beωb) qeb + 2 f(ρ) ρ. (8.7c)



56 CHAPTER 8. NUMERICAL ANALYSIS

Combining (8.7c) with the fact that qeb
�H(beωb) qeb = 0, it can be shown that

(8.7) can be simplified to
ρ̇ = 2 ρ f(ρ). (8.8)

By defining the error from unit length as e := ρ − 1 and choosing the correction
term as one of the following expressions with k > 0

f(ρ) = −k ρ (ρ− 1), (8.9a)

f(ρ) = −k (ρ− 1), (8.9b)

f(ρ) = −k (ρ− 1)/ρ, (8.9c)

it can be shown that when combining each expression from (8.9) with (8.8) yields

ė = −2 k (e+ 1)2 e, (8.10a)

ė = −2 k (e+ 1) e, (8.10b)

ė = −2 k e, (8.10c)

respectively. For each error dynamics from (8.10) it can be shown that it has
an equilibrium at e = 0, which is locally exponentially stable with the same
linearization ė = −2 k e. The first two error dynamics from (8.10) also have
another equilibrium at e = −1, which can be shown to be unstable, while the
third has a singularity at e = −1. The third proposed correction term (8.9c) has
been proposed before [13].

The normalized quaternion, defined by qn := qeb/
√
ρ, can be shown, by using

(8.6) and (8.8), to have the following dynamics

q̇n =
q̇√
ρ
− q

2 ρ
√
ρ
ρ̇ = H(ω) qn,

as long as ρ �= 0, which is equal to the attitude dynamics with qn as unit quater-
nion. Therefore, the normalized quaternion qn can be used for all calculations
requiring the unit quaternion instead of qeb.

8.2 Measuring observer performance

In order to quantify the performance of an observer one could use a cost function.
Such cost function can be defined as the integral of some positive definite function
of the estimation error over some time interval. This cost function can also be used
to choose the observer parameters, by minimizing the cost with respect to the pa-
rameters. However, when only penalizing the estimation error such minimization
might not be well defined, since the estimation error might always go faster to
zero the bigger some observer parameters are. In order to make the minimization
of the cost function well defined one could also include the time derivative of the
estimation error or the observer parameter directly in the cost function.

If the parameters of each observer from Chapter 5, 6 and 7 are found by
minimizing the same cost function, then that cost function could also be used to
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compare the performance of each observer with each other. All these observers
are defined for the three different models of the attitude dynamics from Chapter 2
and each model uses different states, so in order to be able to use the same cost
function for each observer it would be required that the used estimation error can
be defined for each observer. One way the same combined estimation error could be

defined for each observer is by using the attitude estimation error R̃eb = R̂ebReb�

and the angular velocity estimation error ω̃ as defined by (4.10). The positive
definite function of this estimation error could for example be defined as

g(R̃eb, ω̃) = Φ(R̃eb) + ω̃�Λ ω̃, (8.11)

with Λ = Λ� � 0 and Φ(R̃eb) a metric for 3D rotations [17]. One example of
such a metric would be ‖ log(R̃eb)‖ which is equivalent to ‖u‖, with u the attitude
estimation error expressed in exponential coordinates defined in Section 4.3.

The time derivative of the attitude estimation error can in general not be
defined for the observers that use the structure from Chapter 3. Namely, the
attitude estimation for those observers might be discontinuous and thus the time
derivative of the attitude estimation error might not be well defined. Therefore,
if this time derivative is included in the cost function its corresponding metric
should be chosen such that the integral of this metric is always well defined. Each
observer has a set of different parameters, so including those in the cost function
would yield a different cost function for each observer. Therefore, in order to
have the same cost function for all observers which can be minimized, one could
include the time derivative of the estimation error in the cost function and use an
appropriately chosen metric or assume that estimation error is sufficiently small
such that the projected attitude estimations remains continuous for the observers
that use the structure from Chapter 3.

The initial conditions of the models from Chapter 2 and observers from Chap-
ter 5, 6 and 7 also affect the resulting values of the cost function and thus the
optimized observer parameters. In practice all initial conditions are not known
before hand and it is desired that an observer has certain performance guarantees
regardless of the actual initial conditions. Therefore, it would be a bad idea to
optimize the parameters of the observer with respect to only one initial condition.
Ideally the parameters would be obtained by minimizing the cost function for all
initial conditions such that estimation error is sufficiently small. However, this is
difficult to do, especially when considering nonlinear dynamics. Instead, a finite
number of initial conditions could be used, such that the cost function could be
defined using ⎧⎪⎨

⎪⎩
J(θ) =

1

N

N∑
i=1

∫ T

0

g(t, xi(t)) dt,

s.t. ẋi(t) = f(t, xi(t), θ), xi(0) = xi
0,

(8.12)

with θ the parameters of the considered observer, N the number of used initial
conditions, T the integral horizon, f(t, xi(t), θ) the dynamics of the considered
model and observer, g(t, xi(t)) the positive definite function of the estimation
error and its derivative, and xi

0 the ith considered initial condition of the model
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and observer. However, very different θ are obtained when numerically solving for
θ by minimizing (8.12), while using different randomly sampled initial conditions
with N = 100. Due to increasing computation time it is not practical to use even
larger N . Instead, it might be possible to solve the minimization analytically, with
potentially additional assumptions and simplifications such as only considering
the performance close to zero estimation error, such that the linearization of each
observer can be used. However, this would have to be investigated further in
future research.

The necessity of the addition of the time derivative of the estimation error or
the observer parameters directly in the cost function, in order to make the min-
imization of (8.12) well defined, might disappear when stochastic noise is acting
on the inputs and outputs of the system. Namely, those noises might make it
impossible to maintain zero estimation error, even if certain observer parameters
become very large. However, this would make solving the minimization problem
even harder. This would therefore also have to be investigated further in future
research.

8.3 Numerical results

In Figure 8.1 the norm of the estimation error of the attitude and angular velocity
of a numerical simulation of all proposed observers are shown. It can be noted that
the estimation error of the attitude is represented in exponential coordinates, such
that ‖u‖ is equivalent to the angle in radians of the smallest rotation, such that
‖u‖ = 0 represents zero attitude estimation error. For the simulation the observer
parameters are chosen such that the error dynamics of each observer has roughly
the same rate of convergence. Both y-axes in Figure 8.1 have a logarithmic scale
and all errors eventually seem to follow a linear line until they hit the limits of the
machine precision. This suggests that all observers are locally exponentially stable.
This was already shown to be true for the observers that use the structure from
Chapter 3 and the observer for the minimal model from Section 5.2. However, this
does strengthen the hypothesis that the remaining two observers from Section 6.2
and 7.2 are also locally exponentially stable.

It is worth pointing out that both the attitude and angular velocity errors
from the observer for the minimal model from Section 5.2 in Figure 8.1 do take
significantly longer before they seem to follow a linear downward trend, which for
the logarithmic axis implies exponential decay. This behavior can be explained
by looking at its Lyapunov function and corresponding time derivative from (5.8)
and (5.11) respectively, which when substituting in (4.17a) can be written as

V =
n∑

i=1

ki
2

(
R̃eb vi − vi

)� (
R̃eb vi − vi

)
+

1

2
L̃e�Γ−1L̃e,

V̇ = −
(

n∑
i=1

ki S(R̃
eb�vi) vi

)�

RebΔReb�
(

n∑
i=1

ki S(R̃
eb�vi) vi

)
.
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Figure 8.1: Estimation errors of each of the proposed observers, with large ‖ω̃(0)‖.

Namely, in the limit of ‖L̃e‖ → ∞ the value of that Lyapunov function also goes
to infinity, while the time derivative of that Lyapunov function is only a function
of rotation matrices, which belong to the bounded set SO(3), and thus there exists
a positive constant γ > 0 such that V̇ ≥ −γ. Therefore, if the initial condition of
L̃e(0) is such that the value of ‖L̃e(0)‖ and V (0) are sufficiently large then V (t)
can at best decrease in time at a constant rate. This bound on the rate at which
V (t) decreases should initially limit the exponential decay of the estimation errors
and thus give a possible explanation for the delayed linear downward trend in
Figure 8.1.

The Lyapunov function and corresponding time derivative of observer for the
kinematic model from Section 7.2 from (7.7) and (7.10) respectively also have a
similar property as the minimal model from Section 5.2. However, instead of a
large ‖L̃e(0)‖ the observer for the kinematic model from Section 7.2 has initially
a slow decay if ‖b̃b(0)‖ is sufficiently large. This is demonstrated by the numerical
simulation results from Figure 8.2, for which the same observer parameters are
used as for the numerical simulation from Figure 8.1 and only the initial conditions
are altered. The code used to generate figures 8.1 and 8.2 can be found in [35].

Lastly, it can be noted that the results from the observers for the minimal model
from Section 5.1 and the kinematic model from Section 7.1 in Figure 8.1 and 8.2
respectively also have a delayed linear downward trend. However, those delays
are not as big as those of the observers that use the structure from Chapter 4.
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Figure 8.2: Estimation errors of each of the proposed observers, with large ‖b̃b(0)‖.

This behavior of the observers from Section 5.1 and 7.1 cannot be explained in a
similar way as for the observers based on Chapter 4, and might be worth exploring
in future research.



Chapter 9

Conclusions and
recommendations

In this chapter the conclusions that can be drawn from this thesis and recommen-
dations for future research are discussed. First, a brief summary together with
the main conclusions of this thesis are given in Section 9.1. Lastly, the sugges-
tions for future research made throughout this thesis together with a discussion
of additional suggestions are given in Section 9.2.

9.1 Conclusions

In this thesis two different structures of constructing observers for three different
models of the nonlinear attitude dynamics of a rigid body are explored. The
three model representations of the attitude dynamics described in Chapter 2 are
a combination of known approaches from the literature and these models differ
mainly in which sensor information is used.

The first observer structure is discussed in Chapter 3, in which it is assumed
that the considered model can be transformed to fit a linear time varying (LTV)
state space model, for which a known observer structure from the literature can
be used if the LTV model is uniformly completely observable. Each of the three
models from Chapter 2 are transformed into such LTV model in Section 5.1,
6.1 and 7.1 respectively. Additionally, for each obtained LTV model it is also
shown that they satisfy the sufficient conditions for uniform complete observability.
However, these sufficient conditions are only satisfied under the assumption that
the angular velocity remains bounded. Additionally, the observer for the biased
model also requires the assumption that the applied torque remains bounded.
If those assumptions are satisfied it is guaranteed that the proposed observer
structure yields an exponential convergence of the estimated state to the true state.
The part of this estimated state associated with the attitude is not guaranteed
to represent the intended attitude representation. Therefore, that part of the
estimated state need to be projected to the nearest attitude representation, which
should always be possible. However, it is shown that this projection might be
discontinuous in time.
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The second observer structure is discussed in Chapter 4, which uses a Lyapunov
function as starting point. Each of the three models from Chapter 2 are adapted
to this observer structure and in Section 5.2, 6.2 and 7.2 it is shown that the time
derivative of a proposed Lyapunov function can be made negative semi-definite.
All three resulting observers are shown to have three additional equilibria, besides
the one with zero estimation error. By linearizing the error dynamics of each of
those proposed observers at the equilibria it is shown that each of the additional
equilibria is unstable. The linearization at the equilibrium with zero estimation
error can be used to show that the observer for the minimal model is locally
exponentially stable around that equilibrium. A similar result of local exponential
stability has not been obtained for the other two observers, but it is hypothesized
that such results do exist. Furthermore, it is also shown that no limit cycles can
exist in the remainder of the state space of the error dynamics of each observer.

Lastly, in Chapter 8 it is discussed how the constrained attitude dynamics can
be implemented in numerical simulations, how the performance of observers can
be quantified by a cost function and what behavior of the error dynamics can be
observed from numerical simulations. The proposed class of cost functions, if cho-
sen appropriately, can also be used to compare observers with each other, provided
that the parameters of each observer are chosen such that the cost function is min-
imized. The numerical simulations suggest that all of the proposed observers are
locally exponentially stable. However, for certain initial conditions the observers
for the minimal and kinematic models could take much longer before they start
converging exponentially. Though, the minimal and kinematic observers using
the structure from Chapter 3 do not take as long as the minimal and kinematic
observers using the structure from Chapter 4.

9.2 Recommendations

For the observers using the structure from Chapter 3 the attitude is represented
by two linearly independent vectors in order to reduce the size of the combined
state vector, while still ensuring a unique attitude representation. It can be noted
that from these vectors a rotation matrix can be recovered using the projection
obtained when solving Wahba’s problem. Even though the estimated values of
these vectors by the observers vary continuously in time, the projection of the
estimated vectors to a rotation matrix might not always vary continuously in
time. It is hypothesized that the discontinuities only happen when there is a large
difference between the true and estimated values of these vectors, such that the
attitude estimation error is also exponentially stable. However, this hypothesis
would have to be investigated in future research.

These two vectors use six coordinates to represent the attitude. However,
there exist also five-dimensional attitude parametrizations, which are unique and
non-singular. Using such a five-dimensional parametrization instead of the two
vectors would reduce the size of the total state of each observers that use the
structure from Chapter 3, lowering the computational resources required to use
them. Similar to the two vectors, the estimated five-dimensional parametrization
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would have to be projected. However, such projection is not trivial and would
require more research.

In Subsection 6.1.2 it is shown that the linear time varying model for the bi-
ased model is uniformly completely observable if both the angular velocity and
torque are bounded. It is hypothesized that this assumption on the torque could
be omitted. However, additional research would be required to validate this hy-
pothesis.

In Subsection 5.2.2 it is shown that the Lyapunov based observer for the min-
imal model is locally exponentially stable with the aid of a common quadratic
Lyapunov function (CQLF). This CQLF is parameterized by the variable β, for
which a range of possible values exists. The value used for β does affect the decay
rate of the upper bound of local exponential stability. Therefore, choosing β such
that the decay rate of this upper bound is maximized might also give more insights
into the influence each observer parameter has on this exponential decay rate.

For the Lyapunov based observers for biased and kinematic model no CQLFs
have been found which would prove their local exponential stability. However, the
numerical results of the linear matrix inequalities, as discussed in Subsection 6.2.2
and 7.2.2, and the simulations from Section 8.3 do suggest that both models
are locally exponentially stable. However, proving this might require a different
approach than trying to find a CQLF.

For the Lyapunov based observer for the minimal model the only local dif-
ference between the proposed Lyapunov function from (5.8) and its CQLF using
(5.16) is a cross term between the attitude and angular momentum estimation
errors. Therefore, it might also be possible to achieve (local) negative definite
instead of just negative semi-definite time derivatives of the Lyapunov functions
for all three observers using the structure from Chapter 4 by also including cross
terms. This could for example be achieved by instead of (4.13) to use

V =
1

2
z̃�Γ−1z̃, (9.1)

with Γ = Γ� � 0 and the vector z̃ containing each R̃ebvi − vi and x̃. Some
numerical testing does seem to suggest that (9.1) could cause an increase in the
number equilibria compared to using (4.13). However, the potential benefits or
downsides of using (9.1) could be explored further in future research.

A locally stable equilibrium near zero estimation error, instability of the other
equilibria and lack of limit cycles does not yet define the size of the basin of
attraction of the stable equilibrium. Showing what those basins of attractions
are for the observers using the structure from Chapter 4 would therefore require
additional research.

Instead of having to deal with unstable equilibria in the observers using the
structure from Chapter 4 it might be possible to vary some of the observer parame-
ter with time. For example by changing the values of ki and vi once the estimation
error gets close to any of the corresponding unstable equilibria. However, it would
have to be assured that the corresponding Laypunov function remains piecewise
continuously differentiable in time and positive definite.
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It is proposed that the cost function, described in Section 8.2, could be min-
imized to find observer parameters, which are optimal with respect to that cost
function. However, defining such a cost function, which is not biased towards ini-
tial conditions and has a well defined minimum, is not straightforward. Therefore,
it might be good to try to simplify this problem, for example by linearizing the
error dynamics.

In practice most systems are also subjected to stochastic disturbances on their
inputs and outputs. Furthermore, the model of the dynamics might also have
uncertainties. Therefore, it would be worth researching how robust each of the
proposed observers are regarding those disturbances and uncertainties. The pro-
posed observers using the structure from Chapter 3 are similar to a Kalman filter,
which might help with analysis regarding the stochastic disturbances. However,
that analysis is not equivalent to that of a Kalman filter if the measured rotation
is subjected to a disturbance. It can be noted that the only sources of determin-
istic modeling errors for the proposed models in this thesis are uncertainties in
the mass moment of inertia matrix and applied torque. Both uncertainties do not
affect the observers for the kinematic model. Though, the kinematic model might
be more susceptible to stochastic disturbances.

The sensors, that are assumed to be available, can in practice not continuously
provide measurement information and instead only provide that information at
discrete moments in time. Therefore, one could also investigate how the proposed
observers could be modified such that they can handle such discrete measurements.
Additionally, it could also be investigated how the continuous dynamics of the
observers could be discretized, instead of having to rely on solvers for ordinary
differential equations.

Besides the attitude dynamics discussed in this thesis, rigid bodies also have
translational dynamics. Therefore, future research could also consider observers
for the combined dynamics. A potential application of the proposed observers
or the observers for the combined dynamics would be output feedback control.
For linear systems the state estimation and state feedback can be decoupled from
each other due to certainty equivalence. However, the dynamics considered by the
observer in this thesis is nonlinear and thus the stability analysis of such output
feedback would have to consider the combined dynamics.
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Appendix A

Reduced order observer

The following linear time varying model is considered for a reduced order observer

ẋ1 = A11 x1 + A12 x2 +B1 u, (A.1a)

ẋ2 = A21 x1 + A22 x2 +B2 u, (A.1b)

y = x1, (A.1c)

where A11, A12, A21, A22, B1 and B2 are possibly time-varying matrices. The
reduced order observer only has to find an estimate for x2, since x1 is already di-
rectly measured. The general structure for a reduced order observer for estimating
x2 from (A.1) is given by

x̂2 = z +K y, (A.2a)

ż = Qz +Ry + S u, (A.2b)

with K, Q, R and S also potentially time-varying matrices. By combining (A.1a)
and (A.2) the time derivative of x̂2 can be shown to be

˙̂x2 = Qz +Rx1 + S u+ K̇ x1 +K (A11 x1 + A12 x2 +B1 u) . (A.3)

By defining the error as e := x2 − x̂2, using (A.1b), (A.3) and z = x̂2 −K x1 the
time derivative of e can be written as

ė=(A21+QK−R−K̇−KA11)x1+(A22−KA12)x2+(B2−S−KB1)u−Q x̂2. (A.4)

The dynamics of the error in (A.4) can be made only linearly dependent on e by
choosing

Q = A22 −K A12, (A.5a)

R = A21 +QK − K̇ −K A11, (A.5b)

S = B2 −K B1, (A.5c)

which simplifies (A.4) to ė = Qe = (A22 −K A12) e. If there always exists a left
inverse A−1

12,L, such that A−1
12,LA12 = I, the error can be driven to zero by using

K = (A22 −Q)A−1
12,L, (A.6)
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with Q some constant Hurwitz matrix. Another option for assuring that the error
can be driven to zero would be to use the observer dynamics from Section 3.1,
with A(t) = A22 and C(t) = A12 such that

K = M(t)A�
12W

−1, (A.7)

with M(t) and W as defined for (3.2) and (3.3). This observer dynamics does
require that (A22, A12) is UCO, but this should be true if (A.1) is UCO. Combining
(A.5) with either (A.6) or (A.7) would define all matrices for the reduced order
observer defined in (A.2). However, the expression for R in (A.5b) also requires
knowing K̇. For (A.6) and (A.7) this means that the time derivatives of A22, A12

and A12 need to be known respectively.
The first problem formulation, defined in (2.13), using (3.11) gives

ρ̇ = (I3 ⊗Reb) Γ J−1Reb�Le, (A.8a)

L̇e = Rebτ b. (A.8b)

Applying the reduced order observer to (A.8) with y = ρ and u = τ b means that
the matrices from (A.1) can be defined as A11, A21, A22, B1 = 0, A12 = (I3 ⊗
Reb) Γ J−1Reb� and B2 = Reb. Since A22 is constant, its derivative is known. The
matrix A12 is a function of the rotation matrix Reb. Therefore, the time derivative
of A12 would also require knowing the time derivative of Reb. However, the time
derivative of Reb is a function of Le, which is not known. So this method of reduced
order observer cannot be applied to (A.8).


