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Abstract: Road throughput can be increased by cooperative adaptive cruise control (CACC),
which allows vehicles to drive at short inter-vehicle distances without compromising string
stability by using wireless inter-vehicle communications. Practical application, however, may
involve vehicles with different driveline dynamics, thus forming a heterogeneous platoon. This
property potentially requires knowledge of other vehicle’s driveline dynamics for implementation
of CACC, which may not be available. As opposed to robust or adaptive approaches, the
heterogeneity problem is solved here by revisiting an existing, widely adopted controller for
homogeneous strings using an input-output linearization approach. As a result, a class of
controllers is obtained which allows for vehicle strings that are heterogeneous with respect
to driveline dynamics, without requiring knowledge of these dynamics. Furthermore, it is
shown that the new controller represents a class of controllers that encompasses the original
homogeneous controller. To illustrate the performance of the new controller, simulations of a
heterogeneous platoon are presented and the string stability properties are assessed. From this
analysis, it appears that the new controller performs at least as good as the original one, in
terms of minimum string-stable time gap, settling time, and maximum jerk.

Keywords: Cooperative adaptive cruise control (CACC), string stability, heterogeneous
platoons, input-output linearization, integrated vehicle highway systems (IVHS)

1. INTRODUCTION

Cooperative adaptive cruise control (CACC) aims to auto-
mate the longitudinal behavior of road vehicles by regulat-
ing the inter-vehicle distance to a desired value (Milanés
and Shladover, 2014). An important requirement for the
controller design is to realize string-stable behavior, which
refers to the attenuation of the effects of disturbances in
upstream direction. String stability contributes to safe ve-
hicle behavior and ensures scalability of the string with re-
spect to the number of vehicles; see Ploeg et al. (2014) and
the literature references contained therein. Like its non-
cooperative counterpart, known as adaptive cruise control
(ACC), CACC also uses a forward-looking sensor, e.g., a
radar, to measure distance and relative speed between the
CACC-equipped vehicle and its directly preceding vehicle.
In addition, however, CACC employs wireless inter-vehicle
communications to obtain information otherwise unavail-
able. As a result, the distance to the preceding vehicle,
commonly expressed in terms of time gap, at which still
string-stable behavior is obtained, can be greatly reduced.
Consequently, CACC has the ability to increase road ca-
pacity, particularly in case of highways.

Longitudinal vehicle dynamics, attributed to the vehicle
driveline, play an important role in the controller design
for CACC. To this end, the driveline may be modeled as
a second-order system (Milanés and Shladover, 2014), but

in the majority of literature, a linear first-order model is
adopted, having desired acceleration as input and actual
acceleration as output. It should be noted that such model
can be obtained through a lower-level controller which lin-
earizes the longitudinal dynamics involving engine charac-
teristics, friction, and air drag (Sheikholeslam and Desoer,
1993).

In practical application of CACC, it is likely that a vehicle
platoon will consist of vehicles with different driveline
characteristics, thus composing a heterogeneous vehicle
string. Although several publications exist regarding the
definition of string stability for heterogeneous strings, see,
e.g., the generic approach recently published by Rödönyi
(2019), literature concerning controller design for vehicle
strings that are heterogeneous with respect to the vehicle
driveline, is very limited. A notable example of the latter
is the publication by Shaw and Hedrick (2007), being one
of the first papers on this topic. They present a controller
design approach for heterogeneous vehicle strings based on
robustness principles, i.e., design for worst-case situations.
Along the same line of thought, Gao et al. (2016) model
heterogeneous driveline dynamics by means of a nominal
model with an additive dynamic uncertainty and subse-
quently design a robust controller adopting an H∞ ap-
proach. Another robustness-inspired approach is presented
by Al-Jhayyish and Schmidt (2018), who investigate ro-
bustness with respect to heterogeneous driveline dynam-
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Fig. 1. CACC-equipped string of vehicles.

ics subject to various feedforward strategies, implemented
through wireless inter-vehicle communication. An essen-
tially different approach is adopted by Tao et al. (2019)
and Harfouch et al. (2018), who present an adaptive con-
troller, applying model reference adaptive control, while
extending the scope with input saturation and robustness
against communication losses, respectively. Finally, Zhu
et al. (2019) also adopt an adaptive approach, based on
optimal control theory, to cope with unknown driveline
characteristics of the preceding vehicle in a CACC platoon.

In this paper, a different approach is taken for CACC
design in case of vehicle strings that are heterogeneous
with respect to the driveline dynamics. To this end,
the homogeneous one-vehicle look-ahead controller (i.e.,
a predecessor-follower topology) from Ploeg et al. (2011)
is revisited by proposing an alternative transformation of
coordinates using an input-output linearization approach.
It is shown that this approach yields a class of controllers
that is suitable for heterogeneous strings without requiring
knowledge of the driveline dynamics of the preceding
vehicle. For a given set of controller parameters, the
controlled vehicle string appears to have nearly identical
string stability properties as the original homogeneous
string, in the sense of minimum string-stable time gap.
Finally, the original homogeneous controller appears to be
a special case of this new class of controllers.

This paper is outlined as follows. First, Section 2 presents
the problem statement in more detail by applying the orig-
inal homogeneous controller in a heterogeneous setting.
Next, Section 3 describes an alternative controller design,
suitable for heterogeneous vehicle strings, and shows that
this controller actually encompasses the structure of the
original controller. The dynamic behavior of the controlled
system is analyzed in Section 4, involving time responses
and determination of the minimum string-stable time gap
as a function of communication delay. Moreover, the re-
sults are compared with those obtained by a simplified
controller applied in the new framework. Finally, Section 5
summarizes the heterogeneous controller design approach
and proposes directions for further research.

2. PROBLEM SETTING

The CACC-controller design as introduced in Ploeg et al.
(2011) for homogeneous platoons has been adopted in
several publications, see, e.g., Aramrattana et al. (2019);
Tao et al. (2019); Wu et al. (2019); Al-Jhayyish and
Schmidt (2018); Harfouch et al. (2018) for recent ones.
In this section, this approach is extended to platoons that
are heterogeneous with respect to the driveline dynamics.

Consider to this end a string of m vehicles, see Fig. 1,
where the vehicle dynamics are described by
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Fig. 2. Block diagram of controller (6).

q̇i = vi
v̇i = ai

ȧi = − 1
τi
ai +

1
τi
ui

i = 1, 2, . . . ,m, (1)

with qi, vi, and ai denoting the position, velocity, and
acceleration of vehicle i, respectively, and m ∈ N+ the
number of follower vehicles in the platoon. The desired
acceleration ui is considered as input, and τi > 0 denotes
a time constant which represents the driveline dynamics
of vehicle i. The model (1) can be obtained after feedback
linearization of a more detailed model, cf. Sheikholeslam
and Desoer (1993). Contrary to Ploeg et al. (2011), we
allow for τi �= τj .

The control objective is that each vehicle follows its
predecessor at a desired distance dr,i using a constant time-
gap policy:

dr,i = ri + hivi, 2 ≤ i ≤ m, (2)

where hi > 0 and ri denote the time gap and the standstill
distance, respectively. The spacing error ei is then given
by

ei = (qi−1 − qi − Li)− (ri + hivi), (3)

where Li denotes the length of vehicle i; see also Fig. 1.

If we define the error state

εi =

[
εi,1
εi,2
εi,3

]
:=

[
ei
ėi
ëi

]
, (4)

we obtain

ε̇i =

⎡
⎣0 1 0
0 0 1
0 0 − 1

τi

⎤
⎦ εi +

⎡
⎣ 0

0
− 1

τi

⎤
⎦ ζi (5a)

ζi := hiu̇i + ui −
(
1− τi

τi−1

)
ai−1 − τi

τi−1
ui−1, (5b)

where ζi can be regarded as the external input of the
system (5a). Hence, the control law ζi = [kp kd kdd] εi,
or

u̇i = − 1
hi
ui +

[
kp

hi

kd

hi

kdd

hi

]
εi +

τi−1−τi
hiτi−1

ai−1 +
τi

hiτi−1
ui−1,

(6)
stabilizes the ε dynamics, provided that kp > 0, kdd > −1,

and kd >
kpτi

1+kdd
. Fig. 2 shows a block diagram of vehicle

i with controller (6), with C(s) = kp + kds + kdds
2,

acceleration transfer function Gi(s) = 1
τis+1 , following

from the third equation of (1), and spacing policy transfer
function Hi(s) = his + 1 according to (3). This figure
clearly illustrates that both ui−1 and ai−1 are inputs of the
controller and that τi−1 must be available for the controller
implementation.



Remark 1. The input ui−1 is actually the main reason for
the application of wireless inter-vehicle communication,
since ui−1 cannot be measured by on-board sensors, e.g.,
a radar, of the follower vehicle i.

Remark 2. Note that for τi = τi−1 = τ , the controller (6)
reduces to

u̇i = − 1
hi
ui +

1
hi

[kp kd kdd] εi +
1
hi
ui−1, (7)

as presented in Ploeg et al. (2011).

Remark 3. The system (5), (6) is input-to-state stable
(ISS) with respect to the input [ai−1 ui−1]

T
. In particular,

for bounded ai−1 and ui−1 we have that ai and ui are
bounded, and for ai−1 and ui−1 converging to zero we
have that ai and ui converge to zero.

Comparing (6) with (7), we can see some clear differences
between the homogeneous and heterogeneous case. For the
heterogeneous case we not only need ui−1, but also ai−1

and τi−1. The former is not much of a problem as ai−1

can be communicated through the same wireless link as
ui−1. Knowledge of τi−1, however, may pose a problem, as
this describes the preceding vehicle’s driveline dynamics,
which car manufacturers are not eager to disclose and/or
which may not be exactly known.

Therefore, the problem we address in this paper is to
determine (a class of) controllers that can be used for pla-
toons that are heterogeneous with respect to the driveline
dynamics. A possible way to address this problem is to
use an adaptive controller which estimates the unknown
τi−1, as done in Zhu et al. (2019). However, in this pa-
per we take a different approach by revisiting the CACC
controller design using a (static) input-output linearization
approach. This results in a larger class of CACC controllers
and it turns out that the controller (6) can be implemented
without knowledge of the parameter τi−1.

3. ALTERNATIVE CONTROLLER DESIGN

One could interpret the derivation in Section 2 as a
dynamic input-output linearizing approach with input u̇i

and output ei. To this end, we view (5b) as a change of
input:

u̇i = − 1
hi
ui+

1
hi
ζi+

1
hi

(
1− τi

τi−1

)
ai−1+

1
hi

τi
τi−1

ui−1, (8)

resulting in the linear system (5a), which should be sta-
bilized by properly selecting the input ζi. Taking ζi =
[kp kd kdd] εi yields the controller (6), whereas the result-
ing zero dynamics are given by

u̇i = − 1
hi
ui +

τi−1−τi
hiτi−1

ai−1 +
τi

hiτi−1
ui−1, (9)

which are stable for ai−1 and ui−1 converging to zero, as
mentioned in Remark 3.

However, instead of using a dynamic input-output lin-
earizing approach, one can also apply static input-output
linearization. Notice that the output ei has relative de-
gree r = 2 with respect to the input ui. So, instead of
differentiating the output three times, as was done to
obtain (5a), we can also differentiate the output twice
and investigate the resulting internal dynamics. To that
end, it is also convenient to select a state describing these
internal dynamics independently of the new input. These
observations lead to the following alternative approach.
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Fig. 3. Block diagram of controller (11) with PD imple-
mentation (13).

If we define the error state

εi =

[
εi,1
εi,2

]
:=

[
ei
ėi

]
(10a)

and the internal dynamics state

z := vi−1 − vi, (10b)

while introducing the following change of input

ui =
τi
hi
ξi +

τi
hi
ai−1 +

(
1− τi

hi

)
ai, (11)

we obtain

ε̇i =

[
0 1
0 0

]
εi +

[
0
−1

]
ξi (12a)

ż = − 1
hi
z + 1

hi
εi,2 + ai−1. (12b)

For the new input ξi we can use any controller which
stabilizes (12a), such as the PD controller

ξi = kpεi,1 + kdεi,2, (13)

which yields the block diagram as depicted in Fig. 3, with
Gi(s) and Hi(s) defined as in Fig. 2, and C(s) = kp+kds.

Note that, due to the choice of (10b), the internal dynam-
ics (12b) are independent of the choice for this input ξi.
In particular, we have that the zero dynamics become

ż = − 1
hi
z + ai−1, (14)

which is ISS with respect to the input ai−1, i.e., for
bounded ai−1 we have that z remains bounded, and for
ai−1 converging to zero we have that z converges to zero.
Since hiai = z− εi,2, we can draw the same conclusion for
ai with respect to the input ai−1.

Remark 4. The change of input (11) does not depend on
τi−1 and also the system (12a) can be stabilized without
knowledge of τi−1. Therefore, this new approach can
also be used for platoons with heterogeneous driveline
dynamics. Note that this result is the essential reason as
to why the predictive controller developed by van Nunen
et al. (2019) was suitable for heterogeneous platoons.

Remark 5. Any controller which stabilizes (12a) can be
used for ξi. In particular, also a dynamic controller can be
used, including the controller (6). To illustrate the latter,
we write (6) as

hiu̇i + ui =

[kp kd kdd] εi︸ ︷︷ ︸
ζi

+
(
1− τi

τi−1

)
ai−1 +

τi
τi−1

ui−1. (15)

Substituting (11), using the dynamics (1), and again
substituting (11) results in

ξ̇i = − 1
τi
ξi +

1
τi
ζi

= − 1
τi
ξi +

1
τi
[kp kd kdd] εi. (16)
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Fig. 4. Block diagram of controller (7) in an heterogeneous
setting.

Consequently, instead of implementing (6), which requires
knowledge of ui−1, ai−1, and τi−1, we can also implement
(11), (16), which only requires knowledge of ai−1 (instead
of ui−1). In particular, this alternative implementation
achieves the same dynamic behavior of εi as with the
controller (6), but without requiring knowledge of τi−1.

In summary, the class of controllers (11) with ξi such that
(12a) is stabilized, contains the class of controllers (6) with
ζi such that (5a) is stabilized. However, the new class of
controllers is richer, since other choices for ξi can also be
made, such as the PD controller (13).

4. PERFORMANCE ANALYSIS

To illustrate the benefits of the newly proposed controller,
we first consider the controller (7) as introduced in Ploeg
et al. (2011). In addition, we also include latency of the
wireless vehicle-to-vehicle communication which is induced
by queueing, contention, transmission, and propagation.
This latency plays an important role in the quality of the
CACC performance. In particular, as will be shown in this
section, the latency puts a bound on the time gap hi below
which the vehicle platoon becomes string unstable. Note
that this latency can be taken into account in the controller
design, see, e.g., Gao et al. (2016) and Zhang et al. (2018).
This is, however, considered out of scope for this paper.

As in Ploeg et al. (2011), we let τi = 0.1 s, hi = 0.5 s,
kp = 0.2, kd = 0.7, and kdd = 0. In addition, we consider
a communication delay θi = 0.02 s between vehicles i − 1
and i. These parameter values are adopted throughout
this section, unless explicitly stated otherwise. Contrary
to Ploeg et al. (2011), we allow τi−1 �= τi.

In Fig. 4, a block diagram is given of the controller
(7) in this heterogeneous setting with communication
delay. Here, Gi(s) and Hi(s) are defined as before, and
C(s) = kp + kds + kdds

2. The resulting string stability
complementary sensitivity Γi(s), which is the transfer
function from “input velocity” vi−1 to “output velocity”
vi, or, equivalently, from “input acceleration” ai−1 to
“output acceleration” ai, is given by

Γi(s) =
1

his+ 1

e−θiss2(τi−1s+ 1) + kdds
2 + kds+ kp

s2(τis+ 1) + kdds2 + kds+ kp
.

(17)
For (strict) string stability, we need ‖Γi(s)‖H∞ ≤ 1 (Ploeg
et al., 2014), where ‖ · ‖H∞ denotes the H∞ norm.

First, we consider the case without communication delay,
i.e., θi = 0. Then, for string stability we need
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Fig. 5. Time response of controller (7) in homogeneous
setting, i.e., τi = τi−1 = 0.1.
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Fig. 6. Time response of controller (7) in heterogeneous
setting, i.e., τi = 0.1, τi−1 = 0.6.

‖Γi(jω)‖H∞ = sup
ω∈R

√
(kpkd − τi−1ω2)2 + ω2

(1+h2
iω

2)
(
(kpkd −τiω2)2+ ω2

) ≤ 1,

(18)
taking into account that kdd = 0. Notice that for given
kp, kd, hi, τi, and ω in (18), the expression under the
square-root becomes an increasing function of τi−1 for
τi−1 ≥ kpkd/ω

2. In particular, we have that by increasing
τi−1, we can make the H∞ norm of Γi arbitrarily large,
ultimately resulting in string instability, already in the
case without communication delay. For instance, for the
parameters given above and θi = 0, we obtain for τi−1 =
0.6 that ‖Γi(jω‖H∞ = 1.8 > 1.

To illustrate that the homogeneous controller (7) becomes
sting unstable, we consider the response of vehicle i to a
step change in the input ui−1 of vehicle i−1 at times t = 5 s
and t = 25 s, while including the communication delay
θi = 0.02 s again. The time responses for the homogeneous
case, with τi = τi−1 = 0.1, and for a heterogeneous case,
with τi = 0.1 and τi−1 = 0.6, are depicted in figures 5 and
6, respectively. We see that for the heterogeneous case, the
response of vehicle i has a larger settling time and exhibits
overshoot. Therefore, we can conclude that the controller
(7) is not suitable for heterogeneous platoons.
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Fig. 7. Block diagram of controller (11), (16).
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θmax(h) for the controller (11), (16) with τi = 0.1.
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Fig. 9. Time response of controller (11), (16) in a hetero-
geneous setting (τi = 0.1, τi−1 = 0.6).

Instead of (7), we could implement the controller (11),
(16), for which a block diagram is depicted in Fig. 7, with
C(s) = kp + kds + kdds

2. Recall that this controller is
equivalent to the controller (6), as shown in Fig. 2, but only
needs ai−1 as input and does not need knowledge of τi−1.
The resulting string stability complementary sensitivity
Γi(s) is given by

Γi(s) =
1

his+ 1

e−θiss2(τis+ 1) + kdds
2 + kds+ kp

s2(τis+ 1) + kdds2 + kds+ kp
.

(19)
Without delay, i.e., θi = 0, we have that ‖Γi(jω)‖H∞ = 1
and therefore string-stable behavior. However, by increas-
ing the delay θi, string stability will be compromised at a
certain point. This can be seen in Fig. 8, which shows the
maximum communication delay θmax as a function of the
time gap h for which string stability is still guaranteed,
determined using (19) with τi = 0.1 s. Note that this is
the exact same graph as obtained for controller (6), since
the latter also has Γi as in (19). Equivalently, controller
(7), with Γi as in (17), yields the same result when using
the homogeneous setting τi−1 = τi = 0.1.

As opposed to the controller (7), however, the controller
(11), (16) can also be used in the heterogeneous case.
This is illustrated in Fig. 9, which shows the response of
this controller for the heterogeneous case where τi = 0.1
and τi−1 = 0.6 (with θi = 0.02 s). We see a behavior
of the follower vehicle i which is comparable to that in
Fig. 5. This shows that the newly proposed controller is
able to deal with heterogeneous platoons, even without
requiring knowledge of τi−1, and achieves the same level of
performance in the heterogeneous setting as the controller
(7) in the homogeneous setting. Moreover, the class of new
controllers is richer: Instead of the dynamic controller (11),

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

h [s]

θ m
a
x
(h

)
[s
]

dynamic

PD

Fig. 10. The maximum string-stable communication delay
θmax(h) for the dynamic controller (11), (16), with
τi = 0.1, and for the PD controller (11), (13).
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Fig. 11. Time response of controller (11), (13) in a hetero-
geneous setting (τi = 0.1, τi−1 = 0.6).

(16), we can also use the static controller (11), (13) with
suitably selected kp and kd.

The dynamic controller (11), (16), with parameters as
described at the start of this section, was tuned for
homogeneous platoons to have minimal jerk and settling
time. After a step on ui−1, this controller achieves a
settling time of 1.81 s with a maximum jerk of 1.35m/s3.
Taking the same controller gains for the PD controller (11),
(13), i.e., kp = 0.2 and kd = 0.7, appears to result in very
similar performance, namely a settling time of 1.82 s with
a maximum jerk of 1.35m/s3.

The PD controller (11), (13) corresponds to replacing the
two blocks in Fig. 7 containing C(s) = kp+kds+kdds

2 and
Gi(s) =

1
τis+1 , respectively, by a single block, containing

only the PD controller C(s) = kp + kds. This yields the
following string stability complementary sensitivity:

Γi(s) =
1

his+ 1

e−θiss2 + kds+ kp
s2 + kds+ kp

. (20)

As before, we can determine the maximum string-stable
communication delay θmax(h). This relation is shown in
Fig. 10, from which we conclude that the PD controller
(11), (13) allows for a slightly larger communication delay
than the dynamic controller (11), (16), thus yielding
comparable string stability properties. The time response
of the PD controller (11), (13) is depicted in Fig. 11 for the
heterogeneous setting, i.e., τi = 0.1, τi−1 = 0.6. Clearly,
the response is almost identical as with the dynamic
controller (see Fig. 9), even though we do not know τi−1.

In summary, we can see that the PD controller (13) is
simpler than the dynamic controller (16), while achieving
very similar performance in terms of maximal jerk, settling
time, and maximum string-stable communication delay.



5. CONCLUSION

The presented one-vehicle look-ahead controller for CACC
allows for vehicle platoons that are heterogeneous with
respect to the vehicle driveline, without requiring knowl-
edge about the driveline dynamics of the preceding vehicle.
Moreover, the new controller structure was shown to en-
compass the baseline controller for homogeneous systems,
thus providing a larger class of controllers. In addition,
a specific implementation of the new controller illustrated
that it is possible to retain the performance of the baseline
controller in terms of settling time, maximum jerk, and
maximum string-stable communication delay.

Inherent to the heterogeneity property of the new con-
troller is that it relies on communication of the actual
acceleration of the preceding vehicle, i.e., an output, as
opposed to communication of the vehicle’s input, which
was required in the baseline controller. Obviously, this
requires measurement of the longitudinal acceleration, lo-
cally in the transmitting vehicle, which generally suffers
from a rather low signal-to-noise ratio. Hence, a direc-
tion of further investigation concerns the application of
an acceleration filter or observer and the consequences
thereof for CACC performance. Another line of research
concerns graceful degradation of CACC under persistent
communication loss. Estimation of the preceding vehicle’s
acceleration using on-board sensors, instead of using wire-
less communication, would then provide a degraded mode,
without the need to switch to a different type of controller.
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