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Summary

The ever growing demand for mobility negatively affects road throughput, and thereby in-
creases economical costs. Cooperative Adaptive Cruise Control (CACC) employs wireless
inter-vehicle communication in combination with onboard sensors, such as radar and Inertial
Measurement Unit (IMU), and thereby achieving string stable vehicle following behaviour at
close inter-vehicle distances. String stability concerns the attenuation of signals upstream
a platoon of vehicles, and, in combination with short inter-vehicle distances, drastically im-
proves road throughput as well as driver comfort.
Due to the high potential of CACC, a large amount of contributions has been published in
literature. One relatively new approach, denoted as a-CACC, proposes to communicate ac-
tual acceleration rather than the commonly used desired acceleration, denoted as u-CACC.
Doing so eliminates the need for knowledge of the predecessor’s dynamical behaviour. Based
on this novel approach, this thesis contains the following three contributions.
String stability is known to be an important requirement for a CACC framework, but the
design is often performed by means of a trial-and-error process. This raises the desire for a
string stability condition which explicitly shows the effect of controller gains, communication
delay, and inter-vehicle distance. By re-evaluation of a string stability definition, this thesis
presents an elegant sufficient condition for string stability when employing a-CACC.
Secondly, u-CACC has a degraded version, denoted as u-dCACC, to cope with communi-
cation impairments. This thesis proposes such a fallback scenario for a-CACC, denoted as
a-dCACC. This allows the use of the same controller when communication is compromised,
and therefore eliminates the need for tuning another CACC controller.
Some literature proposes the use of observers, but this is predominantly focussed on how to
cope with a (temporary) loss of communication. Unavailability of (accurate) onboard mea-
surements therefore remains unstudied. Acceleration measurements, for example, are bound
to exhibit a low signal-to-noise ratio when platoons are converging to a constant velocity.
Additionally, current CACC controllers require relative velocity, which can not be obtained
when using a lidar. To solve this, observer-based CACC is proposed in this thesis. Initially, a
general observer-based framework is proposed, which can be used in situations varying from
the use of only a low-pass filter on measurements, up until a full-state observer. Afterwards,
this general framework is adopted to a special case in which only relative position and global
velocity are measured. Afterwards, a stepwise manual tuning procedure is presented.
Finally, the resulting observer-based CACC controller is verified within a complex simula-
tion environment, where it is implemented in discrete time, with sensor signals exhibiting
measurement noise, and vehicle actuators experience a delay.
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Chapter 1

Introduction

Five different levels of autonomous driving are defined by SAE International [6], ranging
from the baseline level 0 for no automation, up until level 5 for a full-time performing auto-
mated driving system. To climb the ladder of autonomous driving, different Advanced Driver
Assistance Systems (ADAS) have been designed. These ADAS all serve the common goals
summarized as: enhance traffic safety, decrease economical costs and environmental pollution,
and improve driver comfort [2].
Human failure, such as fatigue, inattention, drowsiness, or intoxication, is estimated to be
the cause of 90 percent of all traffic accidents [20]. Direct consequences of these accidents are
1.5 million yearly injuries just in Europe. Bluntly said, this directly costs 70 billion Euro on
medical treatment alone, where the cost of the resulting traffic congestions is estimated to be
a multiple of this number [2].
For the Paris Agreement [22], parties of the United Nations made an agreement to combat
climate change. Greenhouse gas emissions, such as carbondioxide, should be reduced to re-
strict global temperature rise within a maximum of 2� Celsius. Within the Netherlands, 19
percent of all greenhouse gas emissions are caused by inland mobility [4]. Moreover, traffic
congestions are shown to increase these emissions [8].
One specific ADAS, referred to as Cooperative Adaptive Cruise Control (CACC), possesses
large potential to increase traffic throughput, and thereby directly cutting economical costs.
The main idea and benefits of CACC are explained in Section 1.1, after which current chal-
lenges within the field of CACC are appointed in Section 1.2. Based on the stated challenges,
the research objectives and contributions of this thesis are introduced in Section 1.3. Finally,
Section 1.4 presents the outline of this thesis.

1.1 Cooperative Adaptive Cruise Control

In the year 1950, Ralph Teetor invented a longitudinal vehicle velocity controller [21], which is
nowadays commonly referred to as Cruise Control (CC). CC aims to enhance driver comfort
by regulating the vehicle velocity towards a desired value.

Its successor, Adaptive Cruise Control (ACC), maintains a desired distance to its predecessor
in addition [11]. To do so, ACC uses onboard sensors, such as a radar, to measure relative
distance and velocity. Since it is mainly focussed on comfort, safe following behaviour of ACC
is achieved only for large inter-vehicle distances [7]. For example, string stability, which is
the attenuation of signals in upstream direction within a vehicle platoon, is only achieved

1



for inter-vehicle time gaps larger than 3 s [12]. String unstable following behaviour is of-
ten observed for human drivers in the form of phantom traffic jams. An increase in traffic
throughput is achieved by string stable following behaviour in combination with short inter-
vehicle distances. To achieve shorter inter-vehicle distances, and thereby exploiting the above
mentioned benefits, CACC was proposed as a solution by the California Path program [18].
In addition to onboard measurements, CACC employs wireless inter-vehicle communication.
In [12], it was shown that CACC could achieve string stability for inter-vehicle time gaps of
less than 0.5 s in practical situations.

The design of a CACC controller is often specified by two control objectives. First, the
tracking error, defined as the difference between actual and desired inter-vehicle distance,
should be Globally Asymptotically Stable (GAS) when the predecessor vehicle follows a con-
stant velocity, i.e., zero acceleration.
The second control objective is string stability, which is elaborated upon in Section 2.2. A
commonly used string stability definition is Lp string stability [16], which basically states
that the Lp-norm of a signal must not increase over vehicle index i, see Appendix A.1 for the
definitions of norms.
Since string stability does not exclude the possibility of collisions, some literature extends this
control objective. For example in [17], where a model-based predictive controller is designed,
which guarantees the avoidance of rear end collisions.

1.2 Challenges in CACC

The CACC controller most common in literature uses the wireless communication link to
transfer desired acceleration, and is proposed in [14]. Throughout this thesis it is denoted as
u-CACC and it is elaborated upon in Section 2.3. By communicating the desired acceleration,
u-CACC requires the following vehicle to have information about the dynamical behaviour
of the predecessor [10]. These dynamics may include confidential manufacturer information,
from which it can be concluded that u-CACC is not directly adoptable to heterogeneous ve-
hicle platoon.
A different approach, denoted as a-CACC, is taken in [10]. With a-CACC, the actual ac-
celeration is communicated, and thereby the necessity to posses knowledge of the dynamical
behaviour of the predecessor is eliminated. Therefore, a-CACC is directly adoptable to het-
erogeneous vehicle platoons as is elaborated upon in Section 2.4.
In situations of wireless communication impairments, [15] proposes degraded CACC (dCACC)
as a fallback scenario for u-CACC. With respect to regular ACC, u-dCACC achieves string
stability at denser packed platoons [15]. Such a fallback scenario does not yet exist for a-
CACC, without requiring the switch to a completely different controller (e.g., u-dCACC).
Another challenge is the design of a CACC controller such that string stability is achieved.
A string stability definition, denoted as Lp string stability, is proposed in [16], and is pre-
sented in Section 2.2. Predominantly, string stability is achieved by numerically evaluating
the string stability criterion while increasing the inter-vehicle distance. No analytical relation
between inter-vehicle distance, communication delay, and controller gains is obtained. Tun-
ing controller gains, aiming for a desired inter-vehicle distance, therefore remains troublesome
and non-intuitive. Therefore, an analytical expression, directly stating the effect of controller
gains and communication delay on the minimal string stable inter-vehicle distance, is of large
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interest.
Finally, observers were used in the CACC controller in for example [15], and [23]. However,
observers in these cases were used to cope with a (temporary) loss in inter-vehicle com-
munication, while still assuming perfect full-state onboard measurements. Unavailability of
(accurate) measurements could therefore negatively affect current existing CACC frameworks.
The acceleration for example, was already stated to experience a rather low signal-to-noise
ratio when converging towards a constant velocity. Not to speak of the relative velocity, which
is not measured at all when using a lidar.

1.3 Research objectives and contributions

In line with the previously mentioned challenges within the field of CACC, the research ob-
jective of this thesis is defined as:

Design an observer-based CACC framework for platoons that are heterogeneous with respect to
their driveline dynamics, only requiring measurements of relative position and global velocity,
extended with a manual tuning procedure to achieve string stable following behaviour for a
predefined inter-vehicle time gap.

To accomplish this research objective, different contributions are contained within this thesis.
These are, in order:

1. An analytical sufficient string stability condition for a-CACC, directly stating the effect
of controller gains, communication delay, and inter-vehicle time gap.

2. A degraded form of a-CACC, denoted as a-dCACC, as a fallback scenario in the absence
of wireless communication.

3. An observer-based CACC control framework. Starting with a general framework, ex-
tended with a proposed observer and controller combination only requiring measure-
ments of relative position and global velocity. Afterwards, a manual tuning procedure
achieving string stability is presented.

1.4 Outline

Following the research objective and contributions defined above, this thesis is organized as
follows: Chapter 2 presents an overview of existing literature within the interest of this the-
sis. Contributions to a-CACC are presented in Chapter 3. More specifically, a sufficient
string stability condition is derived in Section 3.1, and Section 3.2 presents a-dCACC with
a comparison to u-dCACC. Based on these results, observer-based CACC is introduced in
Chapter 4. The newly derived CACC controllers are verified by means of discrete-time simu-
lations in Chapter 5. Finally, Chapter 6 summarizes the main conclusions and presents some
recommendations and directions for further research.
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Chapter 2

Literature review

The field of CACC encompasses numerous aspects, some of which are explicitly treated in
this project, and others are briefly discussed for completeness. Accordingly, Section 2.1 is
basically concerned with CACC in the widest sense, indicating otherwise implicitly made
assumptions. Afterwards, a more detailed investigation on important literature used in this
thesis is presented. More specifically, string stability is formalized in Section 2.2. Section 2.3
describes u-CACC, followed by a-CACC in Section 2.4. As a fallback scenario for u-CACC
in case of communication impairment, u-dCACC is presented in Section 2.5.

2.1 Background

As stated previously, CACC is a longitudinal vehicle controller, aiming to regulate the inter-
vehicle distance towards a desired value. The main aspects necessary to accomplish this goal
are mentioned in this section.

The longitudinal vehicle model describes the dynamical behaviour of individual vehicles in
longitudinal direction. The model used throughout this thesis is a linear, third order model⎡

⎣q̇iv̇i
ȧi

⎤
⎦ =

⎡
⎣ vi

ai
− 1

τi
ai +

1
τi
ui

⎤
⎦ , i ∈ SI , (2.1)

with rear bumper position qi ∈ R, velocity vi ∈ R, and acceleration ai ∈ R, of vehicle i.
The parameter τi ∈ R

+ is a time constant describing the, assumed to be, first order drive-
line dynamics. The vehicle input ui ∈ R can be seen as the desired acceleration. The set
SI = {i ∈ N | 1 ≤ i ≤ I} contains all vehicles within the platoon of length I. The linear vehi-
cle model (2.1) is sometimes obtained via a feedback linearization of a more general, nonlinear
model [9], whereas others identify it by means of measurements in a certain operational area
[12],[15]. Different vehicle models used throughout literature are summarized in [25], where
differences arise in model order and choice of states.

When all vehicles, including their platoon controllers, within the platoon SI are identical,
it is so-called homogeneous. Heterogeneity in the platoon can have numerous causes, such
as differences in vehicle driveline dynamics, maximal achievable acceleration, or platoon con-
trollers. An overview of causes for heterogeneity can be found in [9]. This thesis focusses on
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vehicle platoons that are heterogeneous with respect to their driveline time constant τi.

The communication topology describes the wireless information flow within the platoon. A
summary of different topologies is presented in [24]. This thesis follows the majority of liter-
ature and employs a predecessor-follower topology, such that information flows from vehicle
i to vehicle i+ 1, where the vehicle index increases in upstream direction.

The desired inter-vehicle distance is chosen as the constant time gap policy, such that

dri := ri + hivi, i ∈ SI , (2.2)

where ri ∈ R
+ is the standstill distance, and hi ∈ R

+ the inter-vehicle time gap. Most
literature uses the constant time gap policy, as it possesses better string stability properties
than the constant distance policy, i.e., hi = 0 [3]. Other choices concerning the formation
geometry are summarized in [5].

2.2 Lp string stability

An intuitive interpretation of string stability is formalized in [16]: “as opposed to conventional
stability notions for dynamical systems, that are basically concerned with the evolution of sys-
tem states over time, string stability focuses on the propagation of system responses along a
cascade of systems.”
Additionally, [16] introduces the Lp string stability definition. Consider the nonlinear cas-
caded state-space system

ẋ0 = fr(x0, ur),

ẋi = fi(xi, xi−1),

yi = hi(x), i ∈ SI ,

(2.3)

representing a general, possibly nonlinear, heterogeneous interconnected system. Here, ur ∈
R
q is the external input, xi ∈ R

n, i ∈ {0} ∪ {SI}, is the state vector, and yi ∈ R
l, i ∈ SI , is

the output. Moreover, fr : R
n × R

q �→ R
n, fi : R

n × R
n �→ R

n, i ∈ SI , and hi : R
nI �→ R

l.

Definition 2.1. (Lp string stability, [16]) Consider the interconnected system (2.3). Let the

lumped state vector be x =
[
xT0 xT1 . . . xTI

]T
and let x∗ =

[
x∗0

T x∗0
T . . . x∗0

T
]
denote

the constant equilibrium solution of (2.3) for ur = 0. The system (2.3) is Lp string stable if
there exist class K functions α and β such that, for any initial state x(0) ∈ R

(I+1)n and any
ur ∈ Lq

p

‖yi(t)− hi(x
∗)‖Lp ≤ α

(‖ur(t)‖Lp

)
+ β (‖x(0)− x∗‖) , i ∈ SI , and I ∈ N. (2.4)

If, in addition, with x(0) = x∗, it also holds that

‖yi(t)− hi(x
∗)‖Lp ≤ ‖yi−1(t)− hi−1(x

∗)‖Lp , i ∈ SI \ {1}, and I ∈ N, (2.5)

the system (2.3) is strictly Lp string stable with respect to its input ur(t).
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A special case is when the cascaded system (2.3) is linear

ẋ =

⎡
⎢⎢⎢⎣
ẋ0
ẋ1
...
ẋI

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Ar O
A1 A0

. . .
. . .

O A1 A0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x0
x1
...
xI

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Br

0
...
0

⎤
⎥⎥⎥⎦ur =: Ax+Bur,

yi = Cix, i ∈ SI ,

(2.6)

for which [16] defines L2 string stability using the frequency domain. After applying the
Laplace transformation, the linear cascaded system (2.6) can be rewritten to

yi(s) = Pi(s)ur(s) +Oi(s)x(0), i ∈ SI , (2.7)

with Pi(s) = Ci (sI −A)−1B and Oi(s) = Ci (sI −A)−1. Assumed is that the pair (Ci, A) is
such that unstable (including marginally stable) modes are unobservable by a specific choice
of Ci, such that the input-output behaviour is asymptotically stable. With initial condition
x(0) = 0, it directly follows that

yi(s) = Pi(s)P
−1
i−1(s)yi−1(s) =: Γi(s)yi−1(s), i ∈ SI , (2.8)

where Γi(s) is the String Stability Complementary Sensitivity (SSCS). Assuming functional
controllability of (2.8), essentially P−1

i−1(s) exisits, [16] states the following theorem regarding
the linear unidirectional cascade of systems (2.6).

Theorem 2.1. (L2 string stability, [16]) Let (2.6) represent a linear unidirectionally inter-
connected system for which the input-output behaviour is described in (2.7). Assume that the
pair (Ci, A) is such that unstable and marginally stable modes are unobservable and that Pi(s)
is square and nonsingular, for all i ∈ N. Then, the system (2.6) is L2 string stable if

1. ‖P1(jω)‖H∞ exists.

2. ‖Γi(jω)‖H∞ ≤ 1, i ∈ N \ {1}.

with Γi(s) as in (2.8). Moreover, the system is strictly L2 string stable if and only if conditions
1. and 2. hold.

2.3 u-CACC

In [14], u-CACC is introduced and it is used in [12] to develop a CACC framework, after
which it was implemented and tested on a homogeneous platoon consisting of Toyota Prius
III Executives. The constant time gap distance policy is employed, in combination with the
assumption of a homogeneous platoon, such that τi = τ ∀ i. Furthermore, the tracking error
ei is defined as the difference between realized di and desired dri bumper-to-bumper distance,
such that

ei :=di − dri ,

=qi−1 − qi − Li − dri , i ∈ SI ,
(2.9)
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Gi−1(s)
1
s2

Cc(s) H−1(s) Gi(s)
1
s2

H(s)

ai−1 qi−1 ei,1 ζi
ui

ai

qi−

D(s)
ui−1 ui

Figure 2.1: Block diagram of u-CACC (2.12) for a possibly heterogeneous vehicle platoon. Here
D(s) := e−θs is the communication delay, Cc(s) := kp + kds + kdds

2 the controller,
H(s) := hs+ 1 the spacing policy, and G(s) = 1

τs+1 the vehicle model.

with Li ∈ R
+ the length of vehicle i. Then, u-CACC uses the tracking error coordinates

ei,1 := qi−1 − qi − hvi,

ei,2 := ėi,1 = vi−1 − vi − hai,

ei,3 := ėi,2 = ai−1 −
(
1− h

τ

)
ai − h

τ
ui, i ∈ SI ,

(2.10)

where Li = r = 0 is taken without loss of generality, i.e., a coordinate transformation. Using
the error coordinates (2.10), and longitudinal vehicle model (2.1), gives the uncontrolled
dynamics ⎡

⎣ėi,1ėi,2
ėi,3

⎤
⎦ =

⎡
⎣ ei,2

ei,3
− 1

τ ei,3 +
1
τ ui−1 − 1

τ ui − h
τ u̇i

⎤
⎦ , i ∈ SI . (2.11)

Choose the control law

u̇i = −1

h
ui +

1

h

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦

︸ ︷︷ ︸
=:ζi

+
1

h
ui−1, i ∈ SI , (2.12)

where the desired acceleration ui−1 is obtained via wireless inter-vehicle communication.
Then, the closed loop platoon dynamics are given as

⎡
⎢⎢⎣
ėi,1
ėi,2
ėi,3
u̇i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0

−kp
τ −kd

τ −kdd+1
τ 0

kp
h

kd
h

kdd
h − 1

h

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:Au

⎡
⎢⎢⎣
ei,1
ei,2
ei,3
ui

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
0
0
1
h

⎤
⎥⎥⎦

︸︷︷︸
=:Bu

ui−1, i ∈ SI ,
(2.13)

which is Input-to-State Stable (ISS) with respect to ui−1 for kp > 0, kdd > −1, and kd >
kpτ

1+kdd
.

This approach can be extended to vehicle platoons that are heterogeneous with respect to
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their drivelines. Then, the error coordinates in which the system is presented are given as

ei,1 := qi−1 − qi − hvi,

ei,2 := vi−1 − vi − hai,

ei,3 := ai−1 −
(
1− h

τi

)
ai − h

τi
ui, i ∈ SI .

(2.14)

Using the error coordinates (2.14), and longitudinal vehicle model (2.1), gives the uncontrolled
dynamics⎡

⎣ėi,1ėi,2
ėi,3

⎤
⎦ =

⎡
⎢⎣ ei,2

ei,3

− 1
τi−1

(ai−1 − ui−1) +
1
τi

(
1− h

τi

)
(ai − ui))− h

τi
u̇i

⎤
⎥⎦ , i ∈ SI . (2.15)

To obtain closed loop dynamics similar to the homogeneous setting, choose the controller

u̇i = −1

h
ui +

1

h

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦

︸ ︷︷ ︸
=:ζi

+
1

h

(
1− τi

τi−1

)
ai−1 +

1

h

τi
τi−1

ui−1, i ∈ SI ,
(2.16)

which gives the closed loop dynamics

⎡
⎢⎢⎣
ėi,1
ėi,2
ėi,3
u̇i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0

−kp
τi

−kd
τi

−kdd+1
τi

0
kp
h

kd
h

kdd
h − 1

h

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
ei,1
ei,2
ei,3
ui

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0
0 0
0 0

1
h

(
1− τi

τi−1

)
1
h

τi
τi−1

⎤
⎥⎥⎥⎦
[
ai−1

ui−1

]
, i ∈ SI .

(2.17)

The heterogeneous controller (2.16) clearly depends on the driveline time constant of the
predecessor τi−1. This immediately raises the question whether τi−1 can be used in the con-
troller, since this parameter may contain classified information describing the predecessor
vehicle driveline. Furthermore, the platoon can comprise different vehicles in different orders,
causing varying τi−1 in different situations. Another implication of the heterogeneous con-
troller (2.16) is the need to communicate both ai−1 and ui−1. Appendix B derives a controller
that only requires ui−1 to be communicated. This is based on the idea that ui is chosen such
that ei,3 follows dynamics ėi,3 = − 1

τi−1
ei,3− 1

τi−1
ζi rather than ėi,3 = − 1

τi
ei,3− 1

τi
ζi, which was

achieved using controller (2.16).
The block diagram in Figure 2.1 visualizes u-CACC (2.12) for a heterogeneous vehicle platoon.
Here, D(s) := e−θs is added as a communication delay of θ ∈ R

+, Cc(s) := kp+ kds+ kdds
2 is

the controller, H(s) := hs+1 is the spacing policy with time gap h ∈ R
+, and Gi(s) :=

1
τis+1

is the vehicle model. From the block diagram it is possible to compute the SSCS

ΓCACC
u (s) :=

ai(s)

ai−1(s)
=

1

H(s)

Gi(s)

Gi−1(s)

D(s)s2 +Gi−1(s)Cc(s)

s2 +Gi(s)Cc(s)
. (2.18)

Basic simulation results of u-CACC, as visualized in the block diagram of Figure 2.1, for a
homogeneous platoon of length I = 6, are shown in Figure 2.2. This basic simulation uses
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Figure 2.2: Basic simulation results showing acceleration ai over time t for a platoon of I = 6
vehicles employing u-CACC (top) and a-CACC (bottom), using kp = 0.2, kd = 0.7,
kdd = 0, τ = 0.1 s, h = 0.5 s, θ = 0.02 s, and input u1(t) given in (2.19).

the parameters kp = 0.2, kd = 0.7, kdd = 0, τ = 0.1 s, θ = 0.02 s, h = 0.5 s, and input

u1(t) =

⎧⎪⎨
⎪⎩
1, if 5 ≤ t ≤ 10,

−1, if 15 ≤ t ≤ 20,

0, else.

(2.19)

The controller gains are tuned for minimal settling time while minimizing jerk, based on
practical experiments [14]. This basic simulation forms the basis for the verification of u-
CACC in the complex simulations presented in Chapter 5.

2.4 a-CACC

Recently, a-CACC is proposed in [10]. It starts by defining the error coordinates

ei,1 := qi−1 − qi − hvi,

ei,2 := ėi,1 = vi−1 − vi − hai,

εi := vi−1 − vi, i ∈ SI .

(2.20)

Choose the control law

ui =
τi
h

[
kp kd

] [ei,1
ei,2

]
︸ ︷︷ ︸

=:ξi

+
(
1− τi

h

)
ai +

τi
h
ai−1, i ∈ SI , (2.21)

9



1
s2
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τi
h Gi(s)

1
s2

1− τi
h

H(s)

qi−1

ai−1

ei,1 ξi ui
ai

qi
−

Figure 2.3: Block diagram of a-CACC (2.21) for a possibly heterogeneous platoon. Here D(s) :=
e−θs is the communcation delay, Ca(s) := kp + kds the controller, H(s) := hs + 1 the
spacing policy, and Gi(s) :=

1
τis+1 the vehicle model.

with acceleration ai−1 obtained via wireless inter-vehicle communication. Then, using the
linear vehicle model (2.1) gives the closed loop platoon dynamics⎡

⎣ėi,1ėi,2
ε̇i

⎤
⎦ =

⎡
⎣ 0 1 0
−kp −kd 0
0 1

h − 1
h

⎤
⎦

︸ ︷︷ ︸
=:Aa

⎡
⎣ei,1ei,2
εi

⎤
⎦+

⎡
⎣00
1

⎤
⎦

︸︷︷︸
=:Ba

ai−1, i ∈ SI ,
(2.22)

which is ISS with respect to ai−1 for kp > 0 and kd > 0. Important to see is the fact
that, for hetereogeneous platoons, u-CACC requires τi−1 in the control law (2.16), whereas
a-CACC (2.21) does not. Moreover, it was shown in [10] that a-CACC achieves dynamics of[
ei,1 ei,2 ei,3

]T
identical to u-CACC by choosing

ξ̇i = − 1

τi
ξi +

1

τi

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦ , i ∈ SI . (2.23)

Furthermore, the a-CACC controller (2.21) with ξi chosen as (2.23) does not require knowledge
of τi−1.
A block diagram of the platoon employing the a-CACC controller (2.21) is presented in
Figure 2.3, from which the SSCS can be determined as

ΓCACC
a (s) :=

ai(s)

ai−1(s)
=

1

H(s)

D(s)s2 + Ca(s)

s2 + Ca(s)
, (2.24)

with feedback controller Ca(s) := kp+kds. As a direct effect of the input-output linearisation,
and communication of ai−1 in controller (2.21), the SSCS (2.24) does no longer depend on
the predecessor as well as its own vehicle dynamics.
Basic simulation results of a-CACC, as visualized in the block diagram of Figure 2.3, for a
homogeneous platoon of I = 6 vehicles, are shown in Figure 2.2. This basic simulation uses
parameters kp = 0.2, kd = 0.7, τ = 0.1 s, θ = 0.02 s, h = 0.5 s, and again input

u1(t) =

⎧⎪⎨
⎪⎩
1, if 5 ≤ t ≤ 10,

−1, if 15 ≤ t ≤ 20,

0, else.

(2.25)
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It was shown in [10], that these controller gains resulted in similar settling time and maximal
jerk as u-CACC as a response to a step-input. The L2-norms of the acceleration signals for
both u-CACC and a-CACC are presented in Table 2.1. It can be seen that a-CACC performs
slightly better in terms of attenuation of the acceleration L2-norm. Even though the controller
gains are tuned to create a fair situation for the given τ , h, and θ, the comparison depends
on u1(t). The basic simulation forms the basis for the verification of a-CACC in the complex
simulation environment presented in Chapter 5.

Table 2.1: L2-norms of acceleration signals for u-CACC and a-CACC resulting from the basic sim-
ulation with input u1(t) (2.19), kp = 0.2, kd = 0.7, kdd = 0, τ = 0.1 s, h = 0.5 s, and
θ = 0.02 s.

Vehicle u-CACC a-CACC

i = 1 3.13 3.13
i = 2 3.00 2.99
i = 3 2.92 2.90
i = 4 2.86 2.84
i = 5 2.81 2.78
i = 6 2.76 2.73

2.5 Degraded CACC

Inherent to CACC is its vulnerability to communication impairments, in which case it would
effectively degrade to conventional ACC. To remain string stable in such a scenario, the
minimum required time gap h easily increases from 0.25 s to more than 3 s [15].
Rather than having ACC as a fallback scenario, [15] proposes degraded CACC for u-CACC,
from here on denoted as u-dCACC. Rather than relying on wireless communication, u-dCACC
uses onboard sensors, such as radar and IMU, to measure relative position qi−1 − qi, relative
velocity vi−1 − vi, and global acceleration ai. Now, u-dCACC uses the controller

u̇i = −1

h
ui +

1

h

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦+

1

h
âi−1, i ∈ SI , (2.26)

with âi−1 ∈ R the estimated predecessor acceleration. In order to estimate âi−1, it is assumed
for the predecessor to follow the Singer acceleration model

ȧi−1 = −αai−1 + ui−1, i ∈ SI , (2.27)

with α := 1
τm

, and τm the so-called maneuver time constant, essentially describing the time
period of an acceleration manoeuvre [19]. The input ui−1 is unknown within vehicle i. Pa-
rameter α is basically meant for tuning, and, as a rule of thump, should be taken in the range

11



−amax
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Pmax PmaxP0
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1−2Pmax−P0
2amax

Figure 2.4: Probability density function of the predecessor acceleration ai−1.

0.5 ≤ α ≤ 1.5 for road vehicles [15]. Finally, the estimate âi−1 is the output of the observer⎡
⎣ ˙̂qi−1
˙̂vi−1
˙̂ai−1

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 −α

⎤
⎦

︸ ︷︷ ︸
=:As

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦+

⎡
⎣l11 l12
l21 l22
l31 l32

⎤
⎦

︸ ︷︷ ︸
=:Ls

[
qi−1 − q̂i−1

vi−1 − v̂i−1

]
,

[
q̂i−1

v̂i−1

]
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=:Cs

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦ , i ∈ SI .

(2.28)

The observer (2.28) uses qi−1 and vi−1 to update the estimate, even though these are not
directly measured. In [15], this is solved by rewriting the observer (2.28) using the Laplace
transform to obtain

âi−1(s) =
[
0 0 1

]
(sI −As + LsCs)

−1 Ls︸ ︷︷ ︸
=:

[
Tqa(s) Tva(s)

]

[
qi−1(s)
vi−1(s)

]

=
[
Tqa(s) Tva(s)

]︸ ︷︷ ︸
=:T (s)

([
qi−1(s)− qi(s)
vi−1(s)− vi(s)

]
+

[
qi(s)
vi(s)

])

= T (s)

[
qi−1(s)− qi(s)
vi−1(s)− vi(s)

]
+

(
Tqa(s)

s2
+

Tva(s)

s

)
︸ ︷︷ ︸

=:Taa(s)

ai(s), i ∈ SI ,

(2.29)

showing that only qi−1 − qi, vi−1 − vi, and ai are required for measurement.
Additionally, [15] proposes the use of an optimal Kalman filter gain for Ls, assuming the
predecessor acceleration to be a zero mean uncorrelated random process (white noise), and to
have a probability density function p(a) as shown in Figure 2.4. Specifically, the predecessor
experiences a maximal acceleration of amax (or deceleration −amax) with probability Pmax,
zero acceleration with a probability P0, and is uniformly distributed in between. Results are
presented below, for the derivation the reader is referred to Appendix C. The observer gains
are computed as

L = PCTR−1, (2.30)
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where P is the solution of the continuous-time algebraic Riccati equation

AsP + PAT
s − PCT

s R
−1TCsP +Q = 0. (2.31)

The process noise covariance matrix Q, and measurement noise covariance matrix R, are
given as

Q =

⎡
⎣0 0 0
0 0 0
0 0 2

3αa
2
max (1 + 4Pmax − P0)

⎤
⎦ ,

R =

[
σ2
q 0

0 σ2
v

]
,

(2.32)

where σ2
q and σ2

v denote the variance of the measurement noise on the indirect measurements
of qi−1 and vi−1, respectively.
Finally, the SSCS of u-dCACC is given as

ΓdCACC
u (s) =

1

H(s)

Gi(s)
(
Taa(s)s

2 + Cc(s)
)

s2 +Gi(s)Cc(s)
, (2.33)

with Taa(s) given in (2.29), and Hi(s), Gi(s), and Cc(s) as given in (2.18). The SSCS of
u-dCACC (2.33) clearly shows that string stability is no longer affected by the predecessor
dynamics. Since τi−1 is not used in the u-dCACC controller (2.26), it is applicable to vehicle
platoons with heterogeneous driveline dynamics.

2.6 Summary

This chapter started with a broad exploration on the different aspects encompassed within
the field of CACC, indicating and explaining otherwise implicitly made assumptions. Briefly
summarized, this thesis assumes third order linear longitudinal vehicle dynamics, predecessor-
follower communication, and a constant time gap distance policy. Additionally, heterogeneity
with respect to drivelines is considered throughout this thesis.
Afterwards, important contributions were presented. More specifically, Section 2.2 introduced
Lp string stability, and Sections 2.3 and 2.4 introduced u-CACC and a-CACC, respectively.
Degraded CACC was formally introduced in Section 2.5.
Most importantly, the background presented here, forms a rigorous basis for the continuation
of this thesis.

13



Chapter 3

Contributions to a-CACC

It has been shown that a-CACC, introduced in [10], possesses large potential, especially
regarding heterogeneous vehicle platoons. Moreover, in [10] it was shown that the class of
u-CACC controllers is contained within the class of a-CACC controllers. Finally, it was
shown in [10] that similar performance is achieved when using u-CACC and a-CACC for
homogeneous vehicle platoons.
Since a-CACC appeared recently, it is not yet explored thoroughly and some additions can
be made. Correspondingly, this chapter presents two important contributions to a-CACC.
Section 3.1 derives an analytical sufficient string stability condition, directly stating the effect
of controller gains and communication delay on the minimal string stable inter-vehicle time
gap. Afterwards, Section 3.2 proposes a-dCACC as a fallback scenario of a-CACC in case
of communication impairments. Finally, a short summary of this chapter is presented in
Section 3.3.

3.1 Sufficient condition for string stability

The L2 string stability definition is presented in Theorem 2.1, and consists of two conditions.
The first condition is satisfied by assuming the platoon leader to employ (GAS) CC and
choosing acceleration output [16].
The second condition requires the H∞-norm of the SSCS to be less than or equal to one.
Analysis of this condition is more troublesome, and does not give a direct effect of the con-
troller gains on the minimal string stable time gap h for a given communication delay θ.
In literature, string stability is predominantly tested by means of iterations over either time
gap h or communication delay θ for fixed controller gains. Achieving string stability for a
desired time gap h therefore remains a process of trial-and-error. A sufficient string stability
condition, providing an intuitive feeling of tuning parameters as well as a method for tuning
controller gains, is derived in this section.

The remaining string stability condition, adopted to a-CACC, is given as

‖ΓCACC
a (jω)‖H∞ =

∥∥∥∥ ai(jω)

ai−1(jω)

∥∥∥∥
H∞

≤ 1, ∀ i ∈ SI , I ∈ N \ {1}, (3.1)

with ΓCACC
a (s) the a-CACC SSCS (2.24). Using the definition of the H∞-norm as given in

Appendix A.1, and the fact that Γ(s) is single-input single-output, makes it possible to rewrite
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condition (3.1) into ∣∣ΓCACC
a (jω)

∣∣ ≤ 1, ∀ ω ∈ R. (3.2)

The following proposition presents the sufficient string stability condition by using the rewrit-
ten string stability definition (3.2).

Proposition 3.1. (Sufficient condition for string stability) Consider a vehicle platoon em-
ploying the a-CACC controller

ui =
τi
h

[
kp kd

] [ei,1
ei,2

]
+
(
1− τi

h

)
ai +

τi
h
ai−1, i ∈ SI , (3.3)

with kp, kd > 0. The SSCS is given as

ΓCACC
a (s) =

1

H(s)

s2D(s) + Ca(s)

s2 + Ca(s)
, (3.4)

with spacing policy H(s) := hs+1, communication delay D(s) := e−θs, and feedback controller
Ca(s) := kp + kds. Then, the platoon is string stable if

h ≥ 1

kd

√
θ (2kd + θkp). (3.5)

Proof. The complex magnitude in (3.2) is positive by definition. Therefore, the string stability
condition (3.2) can be rewritten as∣∣ΓCACC

a (jω)
∣∣2 ≤ 1, ∀ ω ∈ R. (3.6)

Substituting the a-CACC SSCS (3.4) in the condition (3.6) gives the necessary and sufficient
string stability condition

1

|hωj + 1|2
∣∣−ω2e−θωj + kp + kdωj

∣∣2
|−ω2 + kp + kdωj|2

≤ 1, ∀ ω ∈ R. (3.7)

Using Euler’s formula, i.e., e−θωj = cos(θω) − sin(θω)j, and rewriting condition (3.7) while

using f(ω)
g(ω) ≤ 1 ⇒ g(ω)− f(ω) ≥ 0 for positive f(ω), g(ω), gives

∣∣kp − ω2 cos(θω) +
(
kdω + ω2 sin(θω)

)
j
∣∣2 ≤ |hωj + 1|2 ∣∣kp − ω2 + kdωj

∣∣2 ,
⇒ h2ω4 + h2

(
k2d − 2kp

)
ω2 − 2kd sin(θω)ω + h2k2p + 2kp (cos(θω)− 1) ≥ 0, ∀ ω ∈ R.

(3.8)

Appendix A.2 presents polynomial bounds on both the sine and cosine functions using their
Taylor approximations. Accordingly, choose the first two terms of the Taylor approximation
to get ω sin(θω) ≤ θω2 and cos(θω) ≥ 1 − 1

2θ
2ω2. Substitute these bounds in (3.8), to

obtain the sufficient string stability condition

h2ω4 +
(
h2(k2d − 2kp)− 2kdθ − kpθ

2
)
ω2 + h2k2p ≥ 0, ∀ ω ∈ R. (3.9)

Define a := h2, b := h2
(
k2d − 2kp

) − 2kdθ − kpθ
2, c := h2k2p, and x := ω2. Then, sufficient

string stability condition (3.9) can be written as

ax2 + bx+ c ≥ 0, ∀ x ≥ 0. (3.10)

15



Inequality (3.10) is satisfied for a, b, c ≥ 0 or a, c ≥ 0 ∧ b2 − 4ac ≤ 0. This implies that
(3.10), which is a parabola opening upward for a ≥ 0, has no zero-crossings, such that it is
non-negative anywhere. Combining both conditions gives

a ≥ 0, ⇒ h2 ≥ 0,

∧ c ≥ 0, ⇒ h2k2p ≥ 0,

∧ b ≥ −2
√
ac ⇒ h2k2d − 2kdθ − kpθ

2 ≥ 0,

(3.11)

from which the sufficient string stability condition (3.5) directly follows.

Instead of using the bounds ω sin(θω) ≤ θω2, and cos(θω) ≥ 1− 1
2θ

2ω2, it is also possible to
use sin(θω) ≤ 1 and cos(θω) ≥ −1. This enables the derivation of a string stable time gap h
independent of communication delay θ, which is described in the following remark.

Remark 3.1. First, note that necessary string stability condition (3.8) is identical for positive
and negative ω (the function is even). Therefore, it is only required to evaluate condition (3.8)
for ω ≥ 0, and substitute the new bounds on the sine and cosine function, to get

h2︸︷︷︸
=:a

ω4 + h2(k2d − 2kp)︸ ︷︷ ︸
=:b

ω2−2kd︸ ︷︷ ︸
=:c

ω + h2k2p − 4kp︸ ︷︷ ︸
=:d

≥ 0, ∀ ω ≥ 0,

⇒ aω4 + bω2 + cω + d ≥ 0, ∀ ω ≥ 0.

(3.12)

Sufficient for condition (3.12) is a, b, d ≥ 0 ∧ c2 − 4bd ≤ 0. Then, string stability for all
possible θ is achieved when

a ≥ 0 ⇒ h2 ≥ 0,

∧ b ≥ 0 ⇒ k2d − 2kp ≥ 0,

∧ d ≥ 0 ⇒ h2 ≥ 4

kp
,

∧ c2 ≤ 4bd ⇒ h2
(
h2k2p − 4kp

)− k2d
k2d − 2kp

≥ 0

⇒ h2 ≥ 1

kp

(
2 +

√
4 +

k2d
k2d − 2kp

)
≥ 4

kp
.

(3.13)

Note that all conditions in (3.13) are satisfied when the second and last condition are met.

Conservatism of the sufficient string stability condition (3.5) is not yet examined. Therefore,
a comparison between the sufficient condition (3.5) and the time gap that is numerically
determined using

∥∥ΓCACC
a

∥∥
H∞

≤ 1, is presented in Figure 3.1 using the practical parameters
kp = 0.2 and kd = 0.7. For θ ≤ 1 s, the required time gap h for the sufficient condition (3.5)
remains within 2 percent from the numerically determined time gap h.
The resemblance between the sufficient string stability condition (3.5) and the numerical
results indicate its potential for manually tuning the controller gains. Remember that no
direct effect of kp, kd, θ, and h on string stability is obtained from the string stability definition.
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Figure 3.1: Minimal string stable time gap h for given communication delay θ, determined numeri-
cally using the string stability definition (3.1) and using the analytical sufficient string
stability condition (3.5) for kp = 0.2, and kd = 0.7.

Table 3.1: Parameter values for practical application of dCACC.

Parameter Value

h 0.5 s
τi 0.1 s
kp 0.2
kd 0.7
kdd 0
α 1.25 s−1

amax 3 m
s2

Pmax 0.01
P0 0.1
σ2
q 0.029 m2

σ2
v 0.017 m2

s2

3.2 Degraded a-CACC

In Section 2.5, u-dCACC [15] has been formerly introduced. This section introduces the
degraded version of a-CACC denoted with a-dCACC, after which it is compared to u-dCACC.
To do so, the problem statement of dCACC is presented in Section 3.2.1, followed by an
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explanation in Section 3.2.2 as to why u-dCACC solves this problem. Finally, Section 3.2.3
proposes a-dCACC, elaborated upon by a comparison with u-dCACC in Section 3.2.4.
Unless specifically stated otherwise, this section uses the parameters as presented in Table 3.1.

3.2.1 Problem statement

Inherent to CACC is its vulnerability to communication impairments, in which case it would
effectively degrade to conventional ACC, and thereby drastically increases the minimal string
stable inter-vehicle time gap h [15]. CACC can essentially be regarded as a feedback controller
(ACC) extended with a feedforward term obtained via wireless communication (C). Rather
than having ACC as a fallback scenario, onboard measurements can be used to estimate
the global acceleration of the predecessor ai−1, such that inter-verhicle communication is no
longer required.
To do so, the predecessor is assumed to follow the linear longitudinal vehicle dynamics⎡

⎣q̇i−1

v̇i−1

ȧi−1

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 − 1

τi−1

⎤
⎦
⎡
⎣qi−1

vi−1

ai−1

⎤
⎦+

⎡
⎣ 0

0
1

τi−1

⎤
⎦ui−1, i ∈ SI , (3.14)

where the predecessor driveline time constant τi−1 is unknown. From practical constraints,
the predecessor has bounded velocity vi−1, acceleration ai−1, and input ui−1, such that

|vi−1(t)| =

∣∣∣∣
∫ t

ai−1(t)dt

∣∣∣∣ ≤ vmax < ∞, ∀ t,

|ai−1(t)| ≤ amax < ∞, ∀ t,

|ui−1(t)| ≤ umax < ∞, ∀ t, i ∈ SI .

(3.15)

Onboard sensors provide measurements of relative position qi−1 − qi and velocity vi−1 − vi
(e.g., radar), global velocity vi (e.g., wheel encoder), and global acceleration ai (e.g., IMU).
Now, determine a controller, only relying on these measurements, achieving the following two
control objectives:

1. Stable tracking dynamics; the velocity vi, acceleration ai, and input ui should remain
bounded when vi−1, ai−1, and ui−1 are bounded. Additionally, when the predecessor
vehicle follows a constant velocity, i.e., ai−1 = 0, the tracking error should be GAS:
limt→∞ ei,1 = 0.

2. String stable following behaviour; acceleration signals should not increase over vehicle
index i in terms of their L2-norm. Therefore, the acceleration should satisfy ‖ai‖L2 ≤
‖ai−1‖L2 .

In order to improve over ACC, which only uses feedback and is known for its large minimal
string stable inter-vehicle time gap h, the designed controller should combine both feedback
as well as feedforward.

3.2.2 u-dCACC

This section elaborates upon u-dCACC [15] as introduced in Section 2.5, and shows that it
satisfies the problem statement presented in Section 3.2.1. To ease reading this section, the

18



tracking error coordinates

ei,1 := qi−1 − qi − hvi,

ei,2 := ėi,1 = vi−1 − vi − hai,

ei,3 := ėi,2 = ai−1 −
(
1− h

τi

)
ai − h

τi
ui, i ∈ SI ,

(3.16)

and the control law

u̇i = −1

h
ui +

1

h

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦+

1

h
âi−1, i ∈ SI , (3.17)

are restated. The predecessor acceleration ai−1 is estimated using the observer⎡
⎣ ˙̂qi−1
˙̂vi−1
˙̂ai−1

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 −α

⎤
⎦

︸ ︷︷ ︸
=:As

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦+

⎡
⎣l11 l12
l21 l22
l31 l33

⎤
⎦

︸ ︷︷ ︸
=:Ls

[
qi−1 − q̂i−1

vi−1 − v̂i−1

]
,

[
q̂i−1

v̂i−1

]
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=:Cs

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦ , i ∈ SI .

(3.18)

To overcome the need to measure qi−1 and vi−1, a trick is presented in Section 2.5 such that
only measurements of qi−1 − qi, vi−1 − vi, and ai are required.

Define the observer error variables q̃i−1 := qi−1 − q̂i−1, ṽi−1 := vi−1 − v̂i−1, and ãi−1 :=
ai−1 − âi−1. Then, the closed loop dynamics of u-dCACC can be derived using longitudinal
vehicle dynamics (3.14), tracking error coordinates (3.16), and controller (3.17) with observer
(3.18), resulting in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ėi,1
ėi,2
ėi,3
u̇i
˙̃qi−1
˙̃vi−1
˙̃ai−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:ẋi,c

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0

−kp
τ −kd

τ −kdd+1
τ 0 0 0 − 1

h
kp
h

kd
h

kdd
h − 1

h 0 0 1
h

0 0 0 0 −l11 1− l12 0
0 0 0 0 −l21 −l22 1
0 0 0 0 −l31 −l32 −α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei,1
ei,2
ei,3
ui
q̃i−1

ṽi−1

ãi−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
− 1

h
1
τ

− 1
h 0

0 0
0 0

α− 1
τ

1
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
ai−1

ui−1

]
.

(3.19)

The matrices Au and As − LsCs are recognized on the diagonal of the system matrix in
(3.19), such that it is Hurwitz for kp > 0, kdd > −1, kd >

kpτ
1+kdd

, and Ls chosen such that
As −LsCs has eigenvalues located in the left half-plane (separation principle). Since the pair
(As, Cs) is observable, the eigenvalues of As − LsCs can be placed in the complex left half-

plane by properly choosing Ls. Therefore, xi,c in (3.19) is ISS with respect to
[
ai−1 ui−1

]T
.
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In particular, bounded ai−1, and ui−1 give bounded xi,c, and ai−1 and ui−1 converging to zero
gives xi,c converging to zero. Using the inverse tracking error coordinate transformation

qi = −ei,1 + hei,2 +
h2τi
h− τi

ei,3 + qi−1 − hvi−1 − h2τi
h− τi

ai−1 +
h3

h− τi
ui,

vi = −ei,2 − hτi
h− τi

ei,3 + vi−1 +
hτi

h− τi
ai−1 − h2

h− τi
ui,

ai =
τi

h− τi
ei,3 − τi

h− τi
ai−1 +

h

h− τi
ui, i ∈ SI ,

(3.20)

and control law (3.17), it is possible to draw the same conclusion for vi, ai, and ui. Therefore,
control objective 1 is satisfied.

Numerically computing the H∞-norm of the u-dCACC SSCS

ΓdCACC
u (s) =

1

H(s)

Gi(s)
(
Taa(s)s

2 + Cc(s)
)

s2 +Gi(s) + Cc(s)
, (3.21)

with Taa(s) in (2.29), for the parameters in Table 3.1 yields string instability. Iteratively
increasing the time gap h appears to give string stability for a minimal time gap of h = 1.75
s, and thereby satisfying control objective 2.

3.2.3 a-dCACC

Instead of using u-dCACC, it is also possible to extend a-CACC with a degraded version
a-dCACC. To ease reading this section, the tracking error coordinates

ei,1 := qi−1 − qi − hvi,

ei,2 := vi−1 − vi − hai,

εi := vi−1 − vi, i ∈ SI ,

(3.22)

are restated. Now, a-dCACC uses the controller

ui =
τi
h

[
kp kd

] [ei,1
ei,2

]
+
(
1− τi

h

)
ai +

τi
h
âi−1, i ∈ SI , (3.23)

where âi−1 is generated from the observer (3.18). Then, a-dCACC is a solution to the prob-
lem statement in Section 3.2.1, as is elaborated upon in this section.

Define the observer error variables q̃i−1 := qi−1 − q̂i−1, ṽi−1 := vi−1 − v̂i−1, and ãi−1 :=
ai−1 − âi−1. Then, the closed loop dynamics of a-dCACC can be derived using the longi-
tudinal vehicle dynamics (3.14), tracking error coordinates (3.22), and controller (3.23) with
observer (3.18), resulting in⎡
⎢⎢⎢⎢⎢⎢⎣

ėi,1
ėi,2
ε̇i
˙̃qi−1
˙̃vi−1
˙̃ai−1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:ẋi,a

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−kp −kd 0 0 0 1
0 1

h − 1
h 0 0 0

0 0 0 −l11 1− l12 0
0 0 0 −l21 −l22 1
0 0 0 −l31 −l32 −α

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ei,1
ei,2
εi
q̃i−1

ṽi−1

ãi−1

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0

0 0
0 0

α− 1
τi−1

1
τi−1

⎤
⎥⎥⎥⎥⎥⎥⎦
[
ai−1

ui−1

]
.

(3.24)
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1− τi
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Δqi
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Δ̂ai âi
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−
−

Figure 3.2: Block diagram of the system employing a-dCACC (3.23). Here, H(s) := hs+1, C(s) :=
kp + kds, Gi(s) :=

1
τis+1 , and Tqa(s), Tva(s) and Taa(s) are given in (2.29).

The matrices Aa and As − LsCs are recognized on the diagonal of the system matrix, from
which follows that it is Hurwitz for kp, kd > 0, and Ls chosen such that As − LsCs has
eigenvalues located in the left half-plane (separation principle). Since the pair (As, Cs) is
observable, the eigenvalues of As − LsCs can be placed in the complex left half-plane by

properly choosing Ls. Therefore, xi,a in (3.24) is ISS with respect to
[
ai−1 ui−1

]T
. In

particular, bounded ai−1 and ui−1 give bounded xi,a, and ai−1 and ui−1 converging to zero
gives xi,a converging to zero. Using the inverse tracking error coordinate transformation

qi = −ei,1 + hεi + qi−1 − hvi−1,

vi = −εi + vi−1,

ai =
1

h
(εi − ei,2) , i ∈ SI .

(3.25)

and control law (3.23), it is possible to draw the same conclusion for vi, ai, and ui, and
thereby satisfying control objective 1.

A block diagram of the system employing a-dCACC is presented in Figure 3.2, from which
the a-dCACC SSCS can be determined as

ΓdCACC
a (s) =

1

H(s)

Taa(s)s
2 + Ca(s)

s2 + Ca(s)
, (3.26)

with observer transfer function Taa(s) given in (2.29), distance policy H(s) := hs + 1, and
controller Ca(s) := kp + kds. Note that, in comparison with the u-dCACC SSCS (3.21), the
a-dCACC SSCS (3.26) is not affected by the vehicle model Gi(s). This is caused by the
input-output linearisation in the controller (3.23).
Numerically computing the H∞-norm of the a-dCACC SSCS (3.26), while iteratively increas-
ing time gap h using the parameters in Table 3.1, appears to give string stability for h > 1.74
s, and thereby satisfying control objective 2.
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3.2.4 Comparison u-dCACC and a-dCACC

There are now two different approaches to cope with communication impairments; u-dCACC
and a-dCACC. Using the parameters given in Table 3.1, they are shown to achieve string
stable following behaviour for h > 1.75 s and h > 1.74 s, respectively. Intuitively, a-dCACC
seems more logical, since the acceleration ai−1 is replaced with an estimated acceleration âi−1,
whereas u-dCACC replaces the desired acceleration ui−1 with an estimated acceleration âi−1.
This section performs a comparison between u-dCACC and a-dCACC.

In order to create a fair comparison, the parameters as presented in Table 3.1 are chosen. In
[10], it was shown that these parameters resulted in comparable settling time and maximal
jerk as a response to a step input for u-CACC and a-CACC. A similar result is observed for
u-dCACC and a-dCACC, as is summarized in Table 3.2. Correspondingly, this section retains
the same parameters. Tree main differences between u-dCACC and a-dCACC are observed,
which are elaborated upon below.

Table 3.2: Settling time and maximal jerk as a response to a step input, using the parameters in
Table 3.1.

Approach Settling time Maximal jerk

u-CACC 1.85 s 1.35 m
s3

a-CACC 1.82 s 1.35 m
s3

u-dCACC 6.5 s 1.19 m
s3

a-dCACC 6.9 s 1.19 m
s3

Proposition 3.2. (Frequency domain comparison) Consider the u-dCACC SSCS (3.21) and
a-dCACC SSCS (3.26), where both use the same predecessor acceleration observer, i.e., Taa(s)
is identical in both methods. Then, for:

� 0 <| ω |<
√
2kd
τi
; a-dCACC outperforms u-dCACC in terms of acceleration attenuation.

� | ω |>
√
2kd
τi
; u-dCACC outperforms a-dCACC in terms of acceleration attenuation.

Proof. The above can be proven by computation of the squared complex magnitudes of the
SSCS functions. First, the a-dCACC SSCS (3.26) gives

| ΓdCACC
a (jω) |2 = | −Taa(jω)ω

2 + kp + kdωj |2
| hωj + 1 |2 | −ω2 + kp + kdωj |2︸ ︷︷ ︸

=:f(ω)

, (3.27)

with f(ω) := ω4 +
(
k2d − 2kp

)
+ k2p. The u-dCACC SSCS (3.21) gives

| ΓdCACC
u (jω) |2 = | −Taa(jω)ω

2 + kp + kdωj |2
| hωj + 1 |2 | −ω2 + kp −

(
τiω

3 − kdω
)
j |2︸ ︷︷ ︸

=:f(ω)+Δ(ω)

, (3.28)

with

Δ(ω) := τ2i ω
6 − 2τikdω

4 = τ2i ω
4

(
ω +

√
2 +

kd
τi

)(
ω −

√
2
kd
τi

)
. (3.29)
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Figure 3.3: Simulation results of u-dCACC (2.26) and a-dCACC (3.23) with input u1(t) = sin(ωt)
where ω = 0.8 rad

s (left) and ω = 20 rad
s (right), with parameters as presented in Table

3.1.

Besides the term Δ(ω), both squared complex magnitudes are identical. Correspondingly, for

Δ(ω) < 0 (or similarly 0 <| ω |<
√
2kd
τi
) it can be seen that | ΓdCACC

a (jω) | < | ΓdCACC
u (jω) |.

Moreover, for Δ(ω) > 0 (or similarly | ω |>
√
2kd
τi
) it can be seen that | ΓdCACC

u (jω) | <
| ΓdCACC

a (jω) |. Then, since ai(s) = Γ(s)ai−1(s), the above proposition is proven.

With an eye on driver comfort and fuel consumption, more attenuation is better. Depending
on the dominant frequencies of disturbances, either one approach is preferred as is illustrated

in Figure 3.3 for the harmonic input signal u1(t) = sin(ωt) with ω = 0.8 rad
s <

√
2kd
τi

and

ω = 20 rad
s >

√
2kd
τi
. Vehicle indices i = 10 and i = 2 are chosen such that the difference in

attenuation is shown clearly. Since high frequencies are highly damped compared to the lower
frequences (note the difference in vehicle index i and the y-scale in Figure 3.3), the a-dCACC
is preferred over u-dCACC.

Even though the above investigates signal attenuation, it does not provide any information re-
garding string stability. Therefore, a comparison is desired between u-dCACC and a-dCACC
in terms of their minimal required string stable time gap. To do so, the controller gains
are fixed to the values presented in Table 3.1, since it was stated that these specific values
contributed to a fair comparison. Additionally, the effect of the tuning parameters α, amax,
Pmax, and P0 on the minimal required string stable time gap h is examined.

A comparison of the minimal string stable time gap h for different values of tuning parameter
α is shown in Figure 3.4. A significant difference in the advantage of a-dCACC is seen for
α < 0.5 s−1. However, α should be chosen in the range 0.5 ≤ α ≤ 1.5 as a rule of thumb [15],
for which no significant difference is observed. Changing other observer tuning parameters
amax ∈ [0, 5], Pmax ∈ [

0, 1−P0
2

]
, or P0 ∈ [0, 1− 2Pmax] does not show a significant difference

either.

A significant difference in minimal string stable time gap h is observed for changing driveline
time constant τi, and visualized in Figure 3.5. This clearly shows that a-dCACC, in contrast
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Figure 3.4: Minimal required string stable time gap h as a function of α, for u-dCACC (2.26) and
a-dCACC (3.23), using parameters presented in Table 3.1.

to u-dCACC, does not lose performance for increasing driveline time constant τi. Actually,
this is not a fair comparison, since controller gains for u-dCACC should be tuned accordingly.
However, it does indicate that a-dCACC is wider applicable, since controller gains can be
tuned completely independent on vehicle dynamics.

Combining the above three remarks concludes a preference in using a-dCACC rather than u-
dCACC. Despite only minor differences, each difference is beneficial for a-dCACC. Moreover,
a-dCACC provides a method to cope with communication impairments when employing a-
CACC without requiring the need to change to a completely different controller.

3.3 Summary

As a reaction to the newly proposed a-CACC, two contributions were proposed in this chap-
ter. The first major contribution is an analytical sufficient string stability condition enabling
manual controller gain tuning guaranteeing string stability. Usefulness of this condition is
shown later when it also appears in the string stability analysis of the observer-based CACC
framework.
Secondly, a degraded version of a-CACC is proposed as a fallback scenario in case of com-
munication impairments. This a-dCACC provided minor benefits compared to u-dCACC in
terms of signal attenuation, string stability, and adaptability. However, it does eliminate the
necessity to switch to a completely different controller in case of communication impairments
when employing a-CACC.
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Figure 3.5: Minimal required string stable time gap h as a function of τi, for both u-dCACC (2.26)
as well as a-dCACC (2.21) using the parameters presented in Table 3.1.
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Chapter 4

CACC using observer-based control

In [10], it was shown that u-CACC is a specific class of a-CACC. Additionally, Section 3.2
presented a-dCACC to cope with communication impairments. Most important however, was
the analytical sufficient string stability condition presented in Section 3.1, enabling manual
controller tuning for a-CACC. Therefore, a-CACC is used within this section as a basis for
the design of observer-based CACC.

Section 2.4 introduced a-CACC. Briefly restating, it defines the tracking error variables

ei,1 := qi−1 − qi − hvi,

ei,2 := vi−1 − vi − hai,

εi := vi−1 − vi, i ∈ SI ,

(4.1)

and controller

ui =
τi
h

[
kp kd

] [ei,1
ei,2

]
︸ ︷︷ ︸

=:ξi

+
(
1− τi

h

)
ai +

τi
h
ai−1, ∀ i ∈ SI , (4.2)

where ai−1 is obtained via wireless inter-vehicle communication.
The control law (4.2) clearly uses the states ei,1, ei,2, ai, and ai−1 in the determination of the
desired input. However, a vehicle might not be able to measure ei,1, ei,2, or ai. Furthermore,
situations exist in which ei,1, ei,2, ai or ai−1 exhibit a rather low signal-to-noise ratio. Cer-
tainly, when reaching an equilibrium velocity for the entire platoon, essentially ai = 0, the
acceleration signals ai and ai−1 are bound to be dominated by measurement noise. When
using a lidar, and therefore not measuring relative velocity, it is even impossible to obtain ei,2.

The above problem is solved in this chapter by proposing observer-based CACC. Note that
observer-based CACC is inherently different to dCACC, which uses an observer to cope with
communication impairments, whereas observer-based CACC uses observers to cope with in-
accuracy or unavailability of onboard measurements while still employing inter-vehicle com-
munication. To do so, Section 4.1 describes the problem statement, after which a general
observer-based control framework is described in Section 4.2. A specific observer and con-
troller combination is proposed in Section 4.3 for the scenario in which only relative position
qi−1−qi and global velocity vi are measured. A thorough analysis on string stability, featuring
a relation with a-CACC and a stepwise manual tuning procedure is presented in Section 4.4.
Finally, Section 4.5 summarizes the main results of this chapter.
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4.1 Problem statement

Essential to a-CACC are the (indirect) measurements of the variables ei,1, ei,2, ai, and com-
munication of ai−1. Additionally, u-CACC requires knowledge of ei,3 and ui−1. Situations
exist in which one is unable to (accurately) measure these states, for example a low signal-
to-noise ratio of the acceleration when the platoon is at constant velocity, such that ai = 0.
Moreover, some vehicles do not feature the required sensors at all. A lidar for example is
unable to directly measure relative velocity.
To solve this problem, it is assumed for all vehicles within the platoon to follow the linear
longitudinal vehicle dynamics⎡

⎣q̇iv̇i
ȧi

⎤
⎦ =

⎡
⎣ vi

ai
− 1

τi
ai +

1
τi
ui

⎤
⎦ , i ∈ SI , (4.3)

where parameter τi is unknown within vehicles other than i.
Additionally, from practical constraints it is known that the predecessor velocity vi−1, accel-
eration ai−1, and input ui−1 are bounded, thus

|vi−1(t)| ≤ vmax < ∞, ∀ t,

|ai−1(t)| ≤ amax < ∞, ∀ t,

|ui−1(t)| ≤ umax < ∞, ∀ t, i ∈ SI .

(4.4)

Due to the possible inaccuracy or unavailability of other measurements, only the onboard
sensors providing measurements of relative position qi−1 − qi (e.g., lidar) and global velocity
vi (e.g., wheel encoder) can be used. The input ui is perfectly known within vehicle i. In
addition, wireless inter-vehicle communication subject to a communication delay θ is available.
Now, determine a controller achieving the following two control objectives:

1. Stable tracking dynamics; the velocity vi, acceleration ai, and input ui should remain
bounded when vi−1, ai−1, and ui−1 are bounded. Additionally, when the predecessor
vehicle follows a constant velocity, i.e., ai−1 = 0, the tracking error should be GAS:
limt→∞ ei,1 = 0.

2. String stable following behaviour; acceleration signals should not increase over vehicle
index i in terms of their L2-norm. Therefore, the acceleration should satisfy ‖ai‖L2 ≤
‖ai−1‖L2 .

4.2 General framework

The first step is made by changing the controller (4.2) such that it only requires estimated
states, i.e.,

ui =
τi
h
ξi +

(
1− τi

h

)
âi +

τi
h
âi−1, i ∈ SI . (4.5)

A block diagram of a vehicle employing the observer-based controller (4.5) is shown in Fig-
ure 4.1. The acceleration ai is estimated using âi(s) = Oi(s)ui(s), with Oi(s) the accel-
eration observer transfer function. Similarly, the predecessor i − 1 estimates its acceler-
ation as âi−1(s) = Oi−1(s)ui−1(s), and sends it to vehicle i with a delay of θ. Finally,
an observer-based feedback controller Co(s) is introduced, such that ξi(s) = Co(s)ei,1(s) =
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Figure 4.1: Block diagram of the general observer-based CACC framework (4.5) for a possibly het-
erogeneous vehicle platoon. Here, Oi(s) is the acceleration observer transfer function,
and C0(s) the observer-based feedback controller.

Co(s) (qi−1(s)− qi(s)− hvi(s)). Specific observers for Oi(s), Oi−1(s), and Co(s) are proposed
in Section 4.3, requiring measurements of only relative position and global velocity.

Generality of the block diagram in Figure 4.1 can be seen by substituting specific choices
for Oi−1(s), Oi(s), and Co(s). Two examples are:

� Perfect full-state measurements; then Oi−1(s) = Gi−1(s), Oi(s) = Gi(s), and Co(s) =
Ca(s). Correspondingly, the general observer-based CACC block diagram in Figure 4.1
reduces to the block diagram of a-CACC in Figure 2.3.

� Filtered measurements; rather than using an observer, use for example a low-pass filter
Flp(s) =

1
1
ωc

s+1
with cutoff frequency ωc to attenuate high frequent measurement noise.

For example, to filter acceleration measurements choose Oi(s) = Flp(s)Gi(s), such that
âi(s) = Flp(s)Gi(s)ui(s) = Flp(s)ai(s) is the filtered acceleration measurement.

When using observers for Oi−1(s), Oi(s), and Co(s), it is no longer necessary to filter the
measurements.
The SSCS of this general observer-based CACC can be derived from the block diagram in
Figure 4.1 and is given as

Γo(s) =
Gi(s)

Gi−1(s)

s2D(s)Oi−1(s) + Co(s)Gi−1(s)

s2
(

h
τi
+Oi(s)(1− h

τi
)
)
+H(s)Co(s)Gi(s)

. (4.6)

A downside to this general framework is the required knowledge of both the predecessor vehicle
dynamics Gi−1(s), and the predecessor acceleration observer Oi−1(s) in order to analyse string
stability using the SSCS (4.6).
For now, due to the absence of specific choices for Oi−1(s), Oi(s), and Co(s), no string stability
analysis can be performed. However, the SSCS (4.6) does provide a rigorous basis for analysis
on further work, as becomes clear in the next section.
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4.3 Specific application

Where Section 4.2 showed a general observer-based control structure, this section proposes
specific choices forOi−1(s), Oi(s), and Co(s) based purely on measurements of relative position
qi−1 − qi, and global velocity vi.
For completeness, the linear vehicle model⎡

⎣q̇iv̇i
ȧi

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 − 1

τi

⎤
⎦
⎡
⎣qivi
ai

⎤
⎦+

⎡
⎣ 0
0
1
τi

⎤
⎦ui, i ∈ SI , (4.7)

the a-CACC tracking error coordinates

ei,1 := qi−1 − qi − hvi,

ei,2 := vi−1 − vi − hai,

εi := vi−1 − vi, i ∈ SI ,

(4.8)

and the tracking error dynamics⎡
⎣ėi,1ėi,2
ε̇i

⎤
⎦ =

⎡
⎣0 1 0
0 0 0
0 1

h − 1
h

⎤
⎦
⎡
⎣ei,1ei,2
εi

⎤
⎦+

⎡
⎣ 0
−1
0

⎤
⎦ ξi +

⎡
⎣00
1

⎤
⎦ ai−1, i ∈ SI , (4.9)

are restated. A practical choice of auxiliary input ξi is for example the PD controller ξi :=
kpei,1 + kdei,2, such that the closed loop tracking error dynamics are⎡

⎣ėi,1ėi,2
ε̇i

⎤
⎦ =

⎡
⎣ 0 1 0
−kp −kd 0
0 1

h − 1
h

⎤
⎦

︸ ︷︷ ︸
=:Aa

⎡
⎣ei,1ei,2
εi

⎤
⎦+

⎡
⎣00
1

⎤
⎦ ai−1, ∈ SI .

(4.10)

The general observer-based CACC controller (4.5) is used as a basis. In order to obtain
estimated accelerations âi, and âi−1, and estimated tracking errors êi,1, and êi,2, two observers
are proposed.

Proposition 4.1. (Acceleration observer) Consider the linear vehicle model (4.7) with mea-
surements of vi. The input ui is perfectly known, and the driveline time constant τi is deter-
mined a priori. Then, estimate the acceleration using the linear observer

âi =
[
0 1

] [v̂i
âi

]
,[

˙̂vi
˙̂ai

]
=

[
0 1
0 − 1

τi

] [
v̂i
âi

]
+

[
0
1
τi

]
ui +

[
la1
la2

]
(vi − v̂i) , i ∈ SI ,

(4.11)

with la1, and la2 the observer gains. Combining the acceleration observer (4.11) with the linear
vehicle model (4.7), and defining the observer error variables ṽi := vi − v̂i, and ãi := ai − âi
gives observer error dynamics[

˙̃vi
˙̃ai

]
=

[−la1 1
−la2 − 1

τi

]
︸ ︷︷ ︸

=:Aa

[
ṽi
ãi

]
, i ∈ SI .

(4.12)
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Computing the eigenvalues λa of the system matrix Aa gives λa =
−la1− 1

τi
±
√

(l1+
1
τi
)2−4(l2+

l1
τi
)

2 ,
from which it can be concluded that the acceleration observer error dynamics (4.12) are GAS

for la1 > − 1
τi
, and la2 > − la1

τi
.

The acceleration observer (4.11) can be rewritten using the Laplace transform

âi(s) =
[
0 1

](
sI −

[−la1 1
−la2 − 1

τi

])−1([
0
1
τi

]
ui(s) +

[
la1
la2

]
vi(s)

)

=
1

τis2 + (1 + la1τi)s+ la1 + la2τi

(
(la1 + s)ui(s) + (la2τis)vi(s)

)
=

1

τis2 + (1 + la1τi)s+ la1 + la2τi

(
(la1 + s) + (la2τis)

Gi(s)

s

)
ui(s) =

1

τis+ 1
ui(s), i ∈ SI .

(4.13)

Then, Oi(s) is given as

Oi(s) :=
âi(s)

ui(s)
=

1

τis+ 1
=: Ĝi(s), i ∈ SI . (4.14)

Note that Ĝi(s) = Gi(s), because it is assumed that both τi and the vehicle model Gi(s) are
perfectly known. The choice however, is made to keep the notation of Ĝi(s), such that it can
be used to test the effect of a difference in τi or Gi(s) later.

Proposition 4.2. (Observer-based PD controller) Consider the tracking error dynamics (4.9)
with measurements of qi−1 − qi and vi, such that ei,1 := qi−1 − qi −hvi is measured indirectly.
Instead of the previously used PD controller ξi = kpei,1 + kdei,2, generate ξi with the observer

ξi =
[
kp kd

] [êi,1
êi,2

]
,[

˙̂ei,1
˙̂ei,2

]
=

[
0 1
0 0

] [
êi,1
êi,2

]
+

[
0
−1

]
ξi +

[
le1
le2

]
(ei,1 − êi,1) , i ∈ SI ,

(4.15)

where le1, and le2 are the observer gains. Combining the observer (4.15) with the tracking error
dynamics (4.9), and defining the observer error variables ẽi,1 := ei,1−êi,1, and ẽi,2 := ei,2−êi,2
gives observer error dynamics[

˙̃ei,1
˙̃ei,2

]
=

[−le1 1
−le2 0

]
︸ ︷︷ ︸

=:Ae

[
ẽi,1
ẽi,2

]
, i ∈ SI . (4.16)

Computing the eigenvalues λe of the system matrix Ae gives λe =
−le1±

√
le1

2−4le2
2 , from which

it can be concluded that the tracking observer error dynamics (4.12) are GAS for le1 > 0, and
le2 > 0.
Laplace transformation of the observer-based PD controller (4.15) gives

Co(s) :=
ξi(s)

ei,1(s)
=

kpl
e
2 + (kpl

e
1 + kdl

e
2) s

s2 + (kd + le1)s+ le1kd + le2 + kp
=:

kp + kds+ kpc2s

1 + c1s2 + (kdc1 + c2)s+ kdc2 + kpc1
,

(4.17)
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Gi−1(s)
1
s2

Ĝi−1(s) D(s)

Co(s)
τi
h Gi(s)

1
s2

Ĝi(s)

1− τi
h

H(s)

qi−1

ui−1 âi−1

ai−1 ei,1 ξi
ui ai

qi

âi

−

Figure 4.2: Block diagram of observer-based CACC (4.18), with acceleration observer (4.11), and
observer-based PD controller Co(s) (4.15) for a possibly heterogeneous platoon. Here,
D(s) := e−θs, H(s) := hs+ 1, Ĝi(s) = Gi(s) :=

1
τis+1 the vehicle model.

with c1 := 1
le2

and c2 :=
le1
le2
. Clearly, for c1, c2 = 0, Co(s) in (4.17) reduces to the regular PD

controller Ca(s) = kp + kds. Note however, that it is impossible to achieve c1, c2 = 0 using a
bounded observer gain le2.

Combining both observers, results in the proposition of the use of controller

ui =
τi
h

[
kp kd

] [êi,1
êi,2

]
︸ ︷︷ ︸

=:ξi

+
(
1− τi

h

)
âi +

τi
h
âi−1(t− θ), ∀ i ∈ SI . (4.18)

where âi and âi−1 are generated onboard with observer (4.11) by vehicles i and i− 1, respec-
tively. The estimation âi−1 is achieved by wireless inter-vehicle communication experiencing
a communication delay of θ. Additionally ξi is the output of observer (4.15), which estimates
êi,1 and êi,2.
The observer-based CACC system using the acceleration observer (4.11), and observer-based
PD controller (4.15) is schematically depicted with the block diagram in Figure 4.2. Using
the block diagram, it is possible to derive the SSCS

Γo(s) :=
ai(s)

ai−1(s)
=

1

H(s)

s2D(s) + Co(s)

s2 + Co(s)
, (4.19)

with observer-based PD controller Co(s) given in (4.17), spacing policy H(s) := hs+ 1, and
communication delay D(s) := e−θs. Here it is used that Ĝi−1(s) = Gi−1(s), and Ĝi(s) =
Gi(s) when vehicles i − 1, and i both use acceleration observer (4.11) to estimate their own
acceleration.

The goal is now to show as to why the observer-based CACC controller (4.18) is a solution to
the problem statement in Section 4.1. To do so, control objective 1 is proven below. Control
objective 2 is relocated to the dedicated Section 4.4.
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The control law (4.18) can be rewritten to

ui =
τi
h

[
kp kd

] [êi,1
êi,2

]
+
(
1− τi

h

)
âi +

τi
h
âi−1(t− θ), i ∈ SI

=
τi
h

[
kp kd

]([ei,1
ei,2

]
−
[
ẽi,1
ẽi,2

])
+
(
1− τi

h

)
(ai − ãi) +

τi
h
(ai−1(t− θ)− ãi−1(t− θ)) .

(4.20)

Using the observer-based CACC controller (4.20), in combination with acceleration observer
(4.11), tracking error observer (4.15), tracking error coordinates (4.1), and vehicle dynamics
(4.7), results in the closed loop dynamics⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ėi,1
ėi,2
ε̇i
˙̃ei,1
˙̃ei,2
˙̃vi
˙̃ai

˙̃vi−1(t− θ)
˙̃ai−1(t− θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:ẋi

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
−kp −kd 0 kp kd 0 1− τi

h 0 1
0 1

h − 1
h 0 0 0 0 0 0

0 0 0 −le1 1 0 0 0 0
0 0 0 −le2 0 0 1− τi

h 0 1

0 0 0 0 0 −la1 1 0 0
0 0 0 0 0 −la2 − 1

τi
0 0

0 0 0 0 0 0 0 −la1 1
0 0 0 0 0 0 0 −la2 − 1

τi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei,1
ei,2
εi
ẽi,1
ẽi,2
ṽi
ãi

ṽi−1(t− θ)
ãi−1(t− θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

[
0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0

]T [
ai−1

ai−1 − ai−1(t− θ)

]
.

(4.21)

Here, Aa, A
e, and Aa (twice) are recognized on the diagonal of system matrix, concluding it

to be Hurwitz for kp, kd, l
e
1, l

e
2 > 0 la1 > − 1

τi
, and l22 > − la1

τi
(separation principle). Then, xi

is ISS with respect to wi−1 :=
[
ai−1 ai−1 − ai−1(t− θ)

]T
. In particular, bounded wi−1 give

bounded xi, and wi−1 converging to zero gives xi converging to zero. Note that the assumed
boundedness of ai−1 and ui−1 implies bounded wi. Additionally, |ai−1 − ai−1(t− θ)| ≤ |ai−1|+
|ai−1(t− θ)|, which converges to zero when ai−1 converges to zero.
Using the coordinate transformation (4.8), in combination with the control law (4.18) shows
that vi, ai, and ui remain bounded as well, and therefore objective 1 is satisfied.

Table 4.1: L2-norms of acceleration signals for different CACC controllers resulting from the basic
simulation, using the parameters kp = 0.2, kd = 0.7, la1 = la2 = 0, le1 = 2.8, le2 = 2.0,
τ = 0.1 s, θ = 0.02 s, h = 0.5 s, and input u1(t) as given in (4.22).

Vehicle u-CACC a-CACC Observer-based

i = 1 3.13 3.13 3.13
i = 2 3.00 2.99 3.00
i = 3 2.92 2.90 2.93
i = 4 2.86 2.84 2.88
i = 5 2.81 2.78 2.84
i = 6 2.76 2.73 2.80
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Figure 4.3: Basic simulation results showing acceleration ai over time t for a platoon of I = 6 vehicles
employing observer-based CACC, using kp = 0.2, kd = 0.7, kdd = 0, la1 = la2 = 0, le1 = 2.8,
le2 = 2.0, h = 0.5 s, and θ = 0.02 s.

Basic simulation results of observer-based CACC, as visualized in the block diagram of Fig-
ure 4.2, for a homogeneous platoon of I = 6 vehicles, are shown in Figure 4.3. This basic
simulation uses the parameters kp = 0.2, kd = 0.7, la1 = la2 = 0, le1 = 2.8, le2 = 2.0, τ = 0.1 s,
θ = 0.02 s, h = 0.5 s, and input

u1(t) =

⎧⎪⎨
⎪⎩
1, if 5 ≤ t ≤ 10,

−1, if 15 ≤ t ≤ 20,

0, else.

(4.22)

Moreover, Table 4.1 shows the L2-norms of the acceleration using different CACC controllers.
These controller gains achieve similar settling time and maximal jerk as a response to a step
input for the different CACC controllers. As expected, observer-based CACC performs worse
than u-CACC and a-CACC in terms of attenuation of the acceleration L2-norms. However,
it does only require measurements of relative position qi−1 − qi and global velocity vi. Note
that, for the choice of la1 = la2 = 0, the acceleration observer (4.11) reduces to

˙̂ai = − 1

τi
âi +

1

τi
ui, i ∈ SI . (4.23)

The observer (4.23) in combination with the vehicle dynamics (4.7) gives the GAS observer
error dynamics

˙̃ai := ȧi − ˙̂ai = − 1

τi
ãi, i ∈ SI . (4.24)

Important to note here is that the choice of la1 = la2 = 0 causes the observer to be vulnerable to
model inaccuracies. The reason for this choice becomes clear in Chapter 5, where observer-
based CACC is implemented in a more complex simulation environment, which includes
actuator delays.

4.4 String stability analysis

This section analyses string stability of observer-based CACC (4.18) using the string stability
condition

|Γ(jω)| ≤ 1, ∀ ω ∈ R. (4.25)
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Figure 4.4: Iteratively determined minimal string stable time gap h as a function of communication
delay θ, for a-CACC and observer-based CACC using kp = 0.2 and kd = 0.7. Observer

gains are tuned to achieve Re{λo}
Re{λa} = c, and Im{λo}

Im{λa} = 1.

The observer-based CACC SSCS (4.19) gives the observer-based string stability condition

∣∣∣∣ 1

H(ωj)

−ω2D(ωj) + Co(ωj)

−ω2 + Co(ωj)

∣∣∣∣2 ≤ 1, ∀ ω ∈ R, (4.26)

with H(s) := hs+ 1, D(s) := e−θs, and Co(s) the observer-based PD controller (4.17).

Figure 4.4 shows the iteratively determined minimal string stable time gap h using a-CACC
and observer-based CACC with kp = 0.2 and kd = 0.7. Observer gains le1 and le2 are chosen
such that the real part of the eigenvalues of the observer error dynamics (4.16) are a factor c
of the a-CACC tracking error dynamics (4.9) eigenvalues. The computation of the observer
gains le1 and le2 as a function of factor c is derived in the following remark.

Remark 4.1. (Observer tuning) The eigenvalues λa of the tracking error dynamics (4.9) are

det

([
0 1

−kp −kd

]
− λaI

)
= 0,

⇒ λa = −1

2
kd ± 1

2

√
k2d − 4kp.

(4.27)

For the specific choices kp = 0.2, and kd = 0.7, k2d − 4kp < 0 resulting in complex eigenvalues
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λa. The eigenvalues λo of the observer error dynamics (4.16) are given as

det

([−le1 1
−le2 0

]
− λoI

)
= 0,

⇒ λo = −1

2
le1 ±

1

2

√
le1

2 − 4le2,

(4.28)

and should satisfy Re{λo} = c Re{λa} and Im{λo} = Im{λa}, with c > 0, and Re{·} and
Im{·} indicating the real and imaginary parts, respectively. Therefore, the observer gains are
computed as

Re{λo} = cRe{λa} ⇒ le1 = ckd,

Im{λo} = Im{λa} ⇒ le2 = kp − 1

4

(
1− c2

)
k2d.

(4.29)

Figure 4.4 shows a loss in performance, i.e., a larger minimal string stable time gap h when
employing observer-based CACC. However, this loss in performance reduces when placing the
eigenvalues λo further in the complex left half-plane, or, similarly, choosing c larger. This
immediately raises the question whether observer-based CACC can be tuned to achieve string
stability for a comparable time gap h with respect to a-CACC. The following proposition
provides an answer to this question.

Proposition 4.3. (Sufficient string stability) Define hnecmin as the minimum value of h for
which

∥∥ΓCACC
a (jω)

∥∥
H∞

≤ 1 is satisfied. Assume that kp and kd are chosen such that k2d−2kp >

0. Additionally, choose h such that h2 = hnecmin
2 + h2saf, with h2saf a safety margin (or similarly

choose h = hnecmin+ δ, with margin δ > 0, such that h2saf = 2δhnecmin+ δ2). Choose a safety factor
csaf ≥ 1, and choose the observer gains

le1 = csaf

(
c1,1 + c1,2

√
le2

)
,

le2 ≥ max
n∈[2,3]

⎛
⎝csafc1,2cn,2 +

√
c2safc

2
1,2c

2
n,2 + 4 (cn,1 + csafc1,1cn,2)

2

⎞
⎠

2

,

(4.30)

with the coefficients defined as

c1,1 :=
1

3
kp

θ3

h2
,

c1,2 :=

√
2 +

1

3
kd

θ3

h2
,

c2,1 :=
2h2

(
k2d − 2kp

)
+ k2dθ

2

h2saf
,

c2,2 :=
kdθ

2 + hsaf

√
kp + 3kd

h2

θ3
θ

h2saf
,

c3,1 :=

(
2h2 + θ2

)
k2p(

k2d − 2kp
)
h2saf

,

c3,2 :=

2k2dθ + kpkdθ
2 + hsaf

√
2
(
k2d − 2kp

) (
kpkd + 3kp

h2

θ3

)
θ(

k2d − 2kp
)
h2saf

.

(4.31)
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Then, for the chosen h, string stability is achieved using observer-based CACC.

The proof of Proposition 4.3 is relocated to Appendix D.

From Proposition 4.3 it can be seen that a platoon employing observer-based CACC can be
made string stable, if it is string stable when employing a-CACC with a (possibly small)
margin δ. The observer gains le1 and le2 approach infinity when δ approaches zero when
using the conditions in Proposition 4.3. This might be due to the conservatism of the con-
ditions in Proposition 4.3. Note that, for le1 = 0, and le2 → ∞, it was shown in (4.17) that
Co(s) = Ca(s), and therefore Γo(s) = Γa(s), such that observer-based CACC and a-CACC
have identical string stable behaviour.

In the next part, a method is derived that uses Proposition 4.3 indirectly to manually tune
controller and observer gains. Currently, it requires knowledge of hnecmin, which cannot be
determined analytically from the controller gains and communication delay. As a first step,
it is shown that, when satisfying the string stability sufficient condition for a-CACC

h ≥ 1

kd

√
θ (2kd + θkp), (4.32)

it is possible to remain string stable using observer-based CACC with bounded observer
gains. To do so, define hsufmin as the minimal time gap h for which the sufficient string stability
condition (4.32) is satisfied, i.e., hsufmin := 1

kd

√
θ (2kd + θkp). Now define ε := hsufmin − hnecmin, for

which it is known that ε ≥ 0 due to conservatism of the sufficient string stability condition
(4.32). If it can be shown that ε > 0, it is possible to choose δ = ε > 0 in Proposition 4.3,
such that observer-based CACC (4.18) is string stable for hsufmin in combination with bounded
gains. Below follows the proof that ε > 0.

Proof. The sufficient string stability condition for a-CACC (4.32) was derived from inequality

h2ω4 +
[
h2(k2d − 2kp)− 2kdθ − kpθ

2
]
ω2 + h2k2p︸ ︷︷ ︸

=:Psuf (ω)

≥ 0, ∀ ω ∈ R. (4.33)

Therefore, hsufmin is the minimal value of h for which (4.33) is satisfied. Additionally, hnecmin is
the minimal value of h for which the necessary and sufficient string stability condition

h2ω4 + h2
(
k2d − 2kp

)
ω2 − 2kd sin(θω)ω + h2k2p + 2kp (cos(θω)− 1)︸ ︷︷ ︸

=:Pnec(ω)

≥ 0, ∀ ω ∈ R,

(4.34)
is satisfied. For ω, θ �= 0, strict inequalities cos(θω) > 1 − 1

2θ
2ω2 and ω sin(θω) < θω2 are

obtained, and therefore

Pnec(ω) > Psuf (ω), ∀ ω ∈ R \ {0}, θ > 0. (4.35)

From the strict inequality (4.35), and the facts that θ > 0 and Γo(j0) = ΓCACC
a (j0) = 1, it

directly follows that hnecmin < hsufmin, and, correspondingly, ε = hnecmin − hsufmin > 0.

Straightforwardly, it is also possible to choose δ > ε, such that string stability is achieved for
h = hnecmin + δ > hnecmin + ε = hsufmin. Based on this idea, a stepwise manual tuning procedure is
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proposed, which does not require numerically determined parameters, i.e., hnecmin and ε. The
tuning procedure is presented in the following remark, and substantiated with a visualization
in Figure 4.5.

In order to achieve a string stable observer-based CACC controller (4.18), follow the manual
stepwise tuning procedure:

1. Desired time gap hdes (yellow line, Figure 4.5); choose a desired time gap hdes for which
string stability should be achieved using observer-based CACC. This can, for example,
be done based on system requirements.

2. Controller gains kp, kd (red line, Figure 4.5); choose a margin Δ > 0, such that Δ :=
hdes − hsufmin. Substitute hsufmin in sufficient string stability condition for a-CACC (4.32),
and choose kp and kd, such that it is satisfied with equality. The larger the margin Δ
is chosen, the smaller the observer gains can be.

3. Observer gains le1, l
e
2 (blue line, Figure 4.5); tune the observer gains using conditions

(4.30) with h2saf = 2Δhsafmin +Δ2.

Then, string stability is guaranteed, because δ = Δ+ ε > Δ. Essentially, the chosen margin

h2saf = 2Δhsufmin +Δ2

= 2 (δ − ε) (hnecmin + ε) + (δ − ε)2

= 2δhnecmin + δ2 − ε (ε+ 2hnecmin) < 2δhnecmin + δ2,

(4.36)

is taken restrictive, since string stability was proven for the smaller h2saf = 2δhnecminh
nec
min + δ2

in Proposition 4.3. Conservatism of both Proposition 4.3 and the choice of h2saf causes string
stability to be achieved for smaller values than hdes. The minimal time gap hnecmin, observer which
achieves string stability using observer-based CACC, is numerically determined and shown
with the purple line in Figure 4.5.

4.5 Summary

This chapter introduced observer-based CACC. First, the problem statement was presented
in Section 4.1, followed by the introduction of a general observer-based CACC framework.
This general framework can be used in situations varying from the use of a low-pass filter for
noisy measurements, up until complete observer-based control. As a solution to the problem
statement, a specific observer-controller combination was proposed in Section 4.3, which only
required measurements of relative position and global velocity. A thorough analysis on string
stability for observer-based CACC, recapitulating on a-CACC, was presented in Section 4.4.
Noteworthy was the method to split the string stability definition in two separate parts; a-
CACC, and an extra part induced by observer-based CACC. This enabled the derivation of
a manual tuning procedure based on the sufficient string stability condition for a-CACC in
combination with some additional conditions.
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Figure 4.5: Visualization of the manual tuning procedure for observer-based CACC (4.18).
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Chapter 5

Discrete-time CACC verification

Basic simulation results were previously shown in this report, u-CACC and a-CACC were pre-
sented in Figure 2.2, and Table 2.1, and observer-based CACC in Figure 4.3, and Table 4.1. In
practical situations, the CACC controllers are implemented in discrete time, measurements
are subject to noise, and vehicles exhibit an actuator delay. To test the usefulness of the
CACC controllers under these conditions, u-CACC, a-CACC, and observer-based CACC are
implemented in a more complex simulation environment, for a homogeneous platoon SI of
length I = 6.

This chapter focusses on the results of the complex simulation environment. More specif-
ically, Section 5.1 introduces the complex simulation environment. Afterwards, simulation
results are presented for vehicles with and without an actuator delay in Sections 5.2, and 5.3,
respectively.

5.1 Simulation environment

Within the complex simulation environment, each vehicle is divided in different submodules,
which are schematically depicted in Figure 5.1.

The Platooning Control System (PCS) contains the CACC controllers, and determines the
desired acceleration ui based on vehicle data, radar measurements, and predecessor vehicle
data obtained via wireless communication. A clustering algorithm is implemented in the
PCS, which couples the Vehicle-to-Vehicle (V2V) communication and radar measurements to
a specific vehicle.

The V2V communication is mimicked in the V2V submodule, and experiences a commu-
nication delay θ. Both the desired acceleration ui−1, and actual acceleration ai−1 can be
communicated.

Radar measurements are mimicked in the Radar submodule, and exhibit measurement noise
with variances σ2

Δq, and σ2
Δv for relative position qi−1 − qi, and relative velocity vi−1 − vi,

respectively. Moreover, the radar is able to run at a maximum frequency of 14 Hz.

The Vehicle submodule mimics the vehicle dynamics, and generates measurements of the
velocity vi, and acceleration ai, which are subject to measurement noise with a variance of
σ2
v , and σ2

a, respectively. The length of the vehicle is denoted with Li. Moreover, the vehicle
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Vehicle

PCS RadarV2V

ui vi, ai, Li

qi−1 − qi, vi−1 − vi
ui−1, ai−1

ui, ai

Figure 5.1: Overview of the complex simulation environment, with PCS the implementation of the
CACC controller, and the modules V2V, Vehicle, and Radar mimicking the wireless
communication, vehicle, and radar.

experiences an actuator delay φ, such that its dynamics are given as

ȧi(t) = − 1

τi
ai(t) +

1

τi
ui(t− φ), i ∈ SI . (5.1)

Parameter values used within the simulations are summarized in Table 5.1, where Ts indicates
the sampling time for each submodule. Since the actuator delay appears to drastically affect
string stability, simulations are performed both with and without this actuator delay.

Table 5.1: Parameter values used within the complex simulation environment.

Submodule Parameter Value

PCS kp 0.2
kd 0.7
kdd 0
la1 0
la2 0
le1 2.8
le2 2.0
h 0.5 s
Ts 0.02 s

V2V θ 0.02 s
Ts 0.02 s

Radar σ2
Δq 0.1 m2

σ2
Δv 0.15 m2

Ts 0.08 s

Vehicle τ 0.1 s
φ 0.2 s
Li 6 m
Ts 0.02 s
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Time simulations do not give a conclusive answer regarding string stability, because all pos-
sible input signals should be simulated to do so. This can be seen from the string stability
Theorem 2.1, which requires that

‖Γ(jω)‖H∞ ≤ 1. (5.2)

Note that the H∞-norm is induced by the L2-norm of the input and output, such that

‖Γ(jω)‖H∞ := max
ai−1

‖ai(t)‖L2

‖ai−1(t)‖L2

. (5.3)

Assuming that acceleration signals are converged to zero when the simulation stops, it is
possible to compute their L2-norms. To compute ‖Γ(jω)‖H∞ , all possible signals ai−1(t)
must be simulated, which is impossible. Therefore, if ‖ai(t)‖L2

< ‖ai−1(t)‖L2
, it does not

follow from (5.3) that ‖Γ(jω)‖H∞ ≤ 1, and the system is not necessarily string stable.

Conversely, when ‖ai(t)‖L2
> ‖ai−1(t)‖L2

, it follows from (5.3) that ‖Γ(jω)‖H∞ > 1, and the
system is string unstable. However, measurement noise is not taken into account in (5.3),
such that it might hold that ‖Γ(jω)‖H∞ ≤ 1 even though ‖ai(t)‖L2

> ‖ai−1(t)‖L2
.

Since no concrete statements can be made regarding string stability based on time-domain
simulations, performance of the CACC controllers is discussed based on acceleration attenu-
ation in terms of the L2-norm.

5.2 Without actuator delay

Simulation results for vehicles without actuator delay, i.e., φ = 0 s, are presented in Figure 5.2
for u-CACC and a-CACC (Figure 2.2 for the basic simulation), and in Figure 5.3 for observer-
based CACC (Figure 4.3 for the basic simulation). Similar to the basic simulations, the
platoon leader is subject to the input

u1(t) =

⎧⎪⎨
⎪⎩
1, if 5 ≤ t ≤ 10,

−1, if 15 ≤ t ≤ 20,

0, else.

(5.4)

The transient behaviour of u-CACC, and a-CACC in Figure 5.2 is almost identical. For
observer-based CACC, relatively large oscillations in the acceleration profiles in Figure 5.3
are observed. Jerk, essentially the differences of acceleration, is known cause driver discomfort
[1], from which it can be stated that observer-based CACC is the least comfortable of the
three. Ofcourse, it is unrealistic to expect observer-based CACC to outperform u-CACC and
a-CACC while not using the same amount of measurements.

The L2-norms of the acceleration of all vehicles within the platoon SI are computed and
summarized in Table 5.2. The acceleration L2-norms resulting from the basic simulation
presented in Table 4.1 are restated for comparison.

No large differences are seen when comparing the basic simulation results with the complex
simulation results in Table 5.2.
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Figure 5.2: Complex simulation results showing acceleration ai over time t for a platoon of I = 6
vehicles employing u-CACC (top) and a-CACC (bottom), without actuator delay, i.e.,
φ = 0 s, and other parameters summarized in Table 5.1.
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Figure 5.3: Complex simulation results showing acceleration ai over time t for a platoon of I = 6
vehicles employing observer-based CACC, without actuator delay, i.e., φ = 0 s, and other
parameters summarized in Table 5.1.

It seems that u-CACC is the least affected by the discrete-time implementation with mea-
surement noise, see Table 5.2. This is partly caused by the fact that measurement noise is
filtered by the dynamic u-CACC controller, which is, in Laplace domain, given as

ui(s) =
1

hs+ 1

⎛
⎝[

kp kd kdd
] ⎡⎣ei,1(s)ei,2(s)

ei,3(s)

⎤
⎦+ ui−1(s)

⎞
⎠ , i ∈ SI . (5.5)

Note that the term 1
hs+1 can be regarded as a low-pass filter with cut-off frequency ωc =

1
h .

This filtering of high frequencies explains the relative insensitivity to measurement noise of
u-CACC.
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In comparison to u-CACC, less attenuation of acceleration L2-norms is achieved using a-
CACC, see Table 5.2. This is caused by the fact that a-CACC passes measurement noise
directly through to the desired acceleration ui.

Observer-based CACC is the only CACC controller for which an amplification in acceleration
L2-norm can be observed, see ‖a6(t)‖L2

> ‖a5(t)‖L2
in Table 5.2.

Table 5.2: L2-norms of acceleration signals for different CACC controllers resulting from the basic
and complex simulations without actuator delay, i.e., φ = 0 s, and other parameters
summarized in Table 5.1.

u-CACC a-CACC Observer-based

Vehicle Basic Complex Basic Complex Basic Complex

i = 1 3.13 3.13 3.13 3.13 3.13 3.13
i = 2 3.00 2.96 2.99 3.02 3.00 3.04
i = 3 2.92 2.91 2.90 2.99 2.93 3.00
i = 4 2.86 2.87 2.84 2.96 2.88 2.98
i = 5 2.81 2.82 2.78 2.92 2.84 2.95
i = 6 2.76 2.78 2.73 2.89 2.80 2.96

5.3 With actuator delay

In contrast to the previous section, this section focusses on vehicles experiencing an actuator
delay φ. Because all other conditions are identical, differences with the previous section are
caused by the actuator delay.

Acceleration responses to the input u1(t) (5.4) for a platoon of I = 6 homogeneous vehicles
are presented in Figure 5.4 for u-CACC and a-CACC, and in Figure 5.5 for observer-based
CACC. Again, the parameters summarized in Table 5.1 are used. From these acceleration
responses, it can be seen that a-CACC is drastically affected by the actuator delay (Figure 5.4
with actuator delay, Figure 5.2 without actuator delay). Even though it was stated that no
conclusions could be made regarding string stability, the extreme amplifications in upstream
direction indicates that the actuator delay causes string instability when using a-CACC.
However, u-CACC and observer-bsed CACC are not visibly affected by the communication
delay (Figures 5.4 and 5.5 with actuator delay, and Figures 5.2 and 5.3 without actuator
delay).

The L2-norms of the acceleration signals for platoons employing u-CACC, a-CACC, and
observer-based CACC are summarized in Table 5.3. It can again be seen that u-CACC and
observer-based CACC are barely affected by the actuator delay. Furthermore, the amplifica-
tion of acceleration signals using a-CACC is emphasized in Table 5.3.
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Figure 5.4: Complex simulation results showing acceleration ai over time t for a platoon of I = 6
vehicles employing u-CACC (top) and a-CACC (bottom), using the parameters summa-
rized in Table 5.1.
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Figure 5.5: Complex simulation results showing acceleration ai over time t for a platoon of I = 6
vehicles employing observer-based CACC, using the parameters summarized in Table 5.1.

The amplification of the L2-norm for a-CACC can be explained intuitively. Consider the
predecessor vehicle to experience an input ui−1(t), which causes vehicle i− 1 to accelerate at
time t+ φ. This acceleration is communicated to vehicle i with delay θ, such that it is used
in the input on time t+φ+ θ. Correspondingly, ui−1(t+φ+ θ) causes the vehicle i to exhibit
an acceleration at time t + 2φ + θ. Then, the acceleration of vehicle i lags φ + θ behind the
acceleration of vehicle i− 1.

Since u-CACC communicates the input of vehicle i−1, it can be used in the input of vehicle i
at time t+ θ. Correspondingly, vehicle i− 1 starts accelerating at time t+φ, whereas vehicle
i starts accelerating at time t + φ + θ. The acceleration of vehicle i now only lags θ behind
the acceleration of vehicle i− 1.

Note however that this explanation only focusses on the effect of the feedforward term ob-
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Table 5.3: L2-norms of acceleration signals for different CACC controllers resulting from the complex
simulation with an actuator delay of φ = 0.2 s, and other parameters summarized in
Table 5.1.

u-CACC a-CACC Observer-based

Actuator delay φ = 0 φ = 0.2 φ = 0 φ = 0.2 φ = 0 φ = 0.2

i = 1 3.13 3.13 3.13 3.13 3.13 3.13
i = 2 2.96 2.98 3.02 3.47 3.04 3.04
i = 3 2.91 2.94 2.99 4.69 3.00 3.01
i = 4 2.87 2.90 2.96 5.86 2.98 2.98
i = 5 2.82 2.84 2.92 7.12 2.95 2.96
i = 6 2.78 2.80 2.89 8.93 2.96 2.97

tained via wireless communication, and does not take feedback into account. A more thorough
understanding of the effect of an actuator delay can be achieved by deriving the closed loop
dynamics. The results are presented below, for the derivation the reader is referred to Ap-
pendix E.

The closed loop dynamics of u-CACC are given as

ėi,1(t) = ei,2(t),

ėi,2(t) = ei,3(t),

ėi,3(t) = −1

τ
ei,3(t)− 1

τ

[
kp kd kdd

] ⎡⎣ei,1(t− φ)
ei,2(t− φ)
ei,3(t− φ)

⎤
⎦+

1

τ
(ui−1(t− φ)− ui−1(t− φ− θ)) ,

u̇i(t) = −1

h
ui(t) +

1

h

[
kp kd kdd

] ⎡⎣ei,1(t)ei,2(t)
ei,3(t)

⎤
⎦+

1

h
ui−1(t− θ), i ∈ SI .

(5.6)

Secondly, a-CACC has closed loop dynamics

ėi,1(t) = ei,2(t),

ėi,2(t) = − [
kp kd

] [ei,1(t− φ)
ei,2(t− φ)

]
+ ai−1(t)− ai−1(t− φ− θ)−

(
1− h

τ

)
(ai(t)− ai(t− φ)) ,

ε̇i(t) =
1

h
ei,2(t)− 1

h
εi(t) + ai−1(t), i ∈ SI .

(5.7)

Finally, the closed loop dynamics of observer-based CACC are given as

ėi,1(t) = ei,2(t),

ėi,2(t) = − [
kp kd

] [êi,1(t− φ)
êi,2(t− φ)

]
+ ai−1(t)− âi−1(t− φ− θ)−

(
1− h

τ

)
(ai(t)− âi(t− φ)) ,

ε̇i(t) =
1

h
ei,2(t)− 1

h
εi(t) + ai−1(t), i ∈ SI ,

(5.8)
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where estimated tracking errors êi,1, and êi,2 are generated by the observer

ξi =
[
kp kd

] [êi,1
êi,2

]
,[

˙̂ei,1
˙̂ei,2

]
=

[
0 1
0 0

] [
êi,1
êi,2

]
+

[
0
−1

]
ξi +

[
le1
le2

]
(ei,1 − êi,1) , i ∈ SI ,

(5.9)

and estimated accelerations âi, and âi−1 generated by the observer

âi =
[
0 1

] [v̂i
âi

]
,[

˙̂vi
˙̂ai

]
=

[
0 1
0 − 1

τi

] [
v̂i
âi

]
+

[
0
1
τi

]
ui +

[
la1
la2

]
(vi − v̂i) , i ∈ SI ,

(5.10)

onboard of vehicles i, and i− 1, respectively.

All three CACC controllers experience a delay of φ in the feedback loop. The main difference
between the controllers is the disturbance acting on the closed loop. For u-CACC (5.6) this
disturbance is ui−1(t− φ)− ui−1(t− φ− θ), which are θ out of phase. For a-CACC (5.7), the
disturbances are ai−1(t)− ai−1(t− φ− θ), and ai(t)− ai(t− φ), which are φ+ θ and φ out of
phase, respectively. This explains as to why a-CACC experiences significantly more trouble
in the presence of actuator delays.
Observer-based CACC (5.8) experiences disturbances ai−1(t) − âi−1(t − φ − θ), and ai(t) −
âi(t − φ). From the complex simulation results in Table 5.3, it was seen that the actuator
delay φ barely affects the attenuation of its acceleration L2-norm. This is explained by the
fact that the acceleration observer uses the non-delayed vehicle model without updating based
on measurements, such that âi(t−φ) actually estimates ai(t). In Appendix E.3 it was proven
that

ai(t)− âi(t− φ) = e−
1
τ
tai(0),

ai−1(t)− âi−1(t− φ− θ) = e−
1
τ
tai−1(0) + âi−1(t− φ)− âi−1(t− φ− θ), i ∈ SI ,

(5.11)

in which e−
1
τ
t converges to zero exponentially. The remaining disturbance âi−1(t − φ) −

âi−1(t− φ− θ), lags just θ behind âi−1(t− φ).
The above is a result of the choice la1 = la2 = 0 for the acceleration observer gains. This choice
however, implies that the observer relies completely on the vehicle model. Therefore, inaccu-
racies in the parameter τ or the vehicle model G(s) can negatively affect the performance.
A short investigation on the effect of a parameter inaccuracy is performed, by assuming that
τ is not perfectly known. To do so, both the observer-based CACC controller, and the accel-
eration observer use τ̂ as an approximation of τ . Simulation results are presented in Table 5.4
for an inaccuracy of 10 percent in the approximation of τ̂ . Remarkably, τ̂ = 0.11 s seems to
result in more attenuation than using the correct value τ = 0.1 s.

Important to note is that the homogeneity assumption, made in the beginning of this chapter,
also implies that the actuator delay φ is constant for all vehicles. When vehicles experience
differences in actuator delay, u-CACC and observer-based CACC are negatively affected as
well.
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Even though a-CACC is at its current form negatively affected by the actuator delay, this
is not unsolvable. Usage of the acceleration observer (5.10) with la1 = la2 = 0, onboard
of vehicles i − 1, and i for example, drastically improves the results already. Additionally,
robustness can be improved by using a Smith predictor, which includes an update based on
past measurements.

Table 5.4: L2-norms of acceleration signals for observer-based CACC using different values of τ̂ in
the observer-based CACC controller (4.18), and acceleration observer (4.11).

Vehicle τ̂ = 0.1 s τ̂ = 0.09 s τ̂ = 0.11 s

i = 1 3.13 3.13 3.13
i = 2 3.04 3.04 3.04
i = 3 3.01 3.01 3.00
i = 4 2.98 2.99 2.98
i = 5 2.96 2.97 2.95
i = 6 2.97 2.99 2.96

5.4 Summary

In order to validate u-CACC, a-CACC, and observer-based CACC, simulations were per-
formed which closely resemble practical applications. The main reason for verification of the
CACC controllers was to investigate the effect of discrete-time implementation, measurement
noise, and actuator delays.
A brief introduction to the simulation environment was given in Section 5.1. Afterwards,
discrete-time implementation of the CACC controllers, in combination with sensor signals
exhibiting measurement noise, was shown to be possible in Section 5.2.
Section 5.3 showed that adding an actuator delay φ resulted in large amplifications of ac-
celeration in upstream direction when using a-CACC. Observer-based CACC was merely
affected by the actuator delays, even though it was derived from a-CACC. This was shown to
be caused by a trick in the acceleration observer, which used the non-delayed vehicle model
without using measurements to update the estimation. Additionally, it was shown that, when
parameter τ is not perfectly known, CACC is still possible.
Finally, in order for a-CACC to cope with actuator delays, it can be extended by using, for
example, a Smith predictor to compensate the actuator delay on a low level.
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Chapter 6

Conclusion and recommendations

The main conclusions of this thesis are presented in Section 6.1, followed up by a discussion
on these conclusions and possible directions for further research in Section 6.2.

6.1 Conclusions

Cooperative Adaptive Cruise Control is basically a longitudinal vehicle controller using on-
board measurements in combination with wireless inter-vehicle communication. As it allows
for short inter-vehicle distances, a decrease in economical costs and environmental pollution
can be achieved. Moreover, by excluding the need for a human driver, safety as well as pas-
senger comfort can be improved.
For vehicle platoons that are heterogeneous with respect to their driveline dynamics, a-CACC
enables platooning without requiring knowledge of these dynamics describing the preceding
vehicle. An analytical sufficient string stability condition is derived, which directly states the
effect of controller gains, communication delay, and time gap on string stability. By compar-
ison with iteratively determined results, conservatism of this sufficient conditions was shown
to be almost negligible
In order to cope with communication impairments, a-dCACC is proposed, such that string
stable vehicle following behaviour is achieved for inter-vehicle time gaps significantly smaller
than for ACC. The performance of a-dCACC has been shown to be at least comparable to
u-dCACC. In contrast with u-dCACC, controller gains using a-dCACC can be tuned inde-
pendent of the vehicle dynamics.
To enable platooning for vehicles that do not (accurately) measure relative position, relative
velocity, global velocity, or global acceleration, observer-based CACC is proposed. String sta-
ble vehicle following behaviour using only relative position and global velocity while employing
observer-based CACC, has been shown to be possible for short inter-vehicle distances.
Finally, simulation results showed that a-CACC drastically loses performance in the pres-
ence of actuator delays. These actuator delays barely affect observer-based CACC. This was
caused by choosing the observer gains zero, and completely relying on the vehicle model for
acceleration estimation. Inaccuracies, in terms of an incorrect approximation of the driveline
dynamics, have been shown to barely affect observer-based CACC.
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6.2 Recommendations

This thesis proposes two new CACC controllers, a-dCACC and observer-based CACC, which
are analysed mathematically and tested using discrete-time simulations. Practical experi-
ments however, have not been performed. The first direction for further research is therefore
a real-time implementation and verification of the controllers. Since the complex simulation
environment allows real-time implementation, observer-based CACC can be directly used
within practical settings. Therefore, a test case should be devised, after which observer-based
CACC can be tested. Even though not mentioned in this report, a-dCACC is also imple-
mented in the complex simulation environment, such that it is ready for testing as well.
Moreover, a comparison between observer-based CACC and a-CACC would be a great addi-
tion. What is the effect of measurement noise, and what is the actual loss in string stability
performance for practical situations? Increasing observer gains directly causes noise ampli-
fication resulting in driver discomfort. A balance should be found between driver comfort
and string stability performance. Since driver comfort heavily depends on the actual vehicle,
observer gains need to be tuned based on practical experience.
More importantly, simulations showed that actuator delays drastically affect CACC be-
haviour. The precise effect of actuator delays however, remains unstudied and is a possible
topic for further research. A start can be made by re-evaluating the CACC controller design,
and examining where the actuator delay enters the system. Also, the SSCS can be deter-
mined for vehicles subject to an actuator delay, such that its effect on string stability can be
investigated numerically.
Even though observer-based CACC barely suffers from these actuator delays, robustness is
not yet investigated thoroughly. The analysis on robustness of observer-based CACC against
model and parameter inaccuracies deserves more attention. A start can be made analysing
the observer-based CACC controller with a parameter inaccuracy. Since ISS can be compro-
mised by this inaccuracy, both ISS and string stability should be considered.
Another direction for further research is the combination between observer-based CACC and
degraded CACC. The resulting controller is then able to cope with communication impair-
ments, as well as a defect, unavailable, or inaccurate sensor. Rather than relying on the
communication of the estimated acceleration by the predecessor, the predecessor acceleration
observer used within u-dCACC, and a-dCACC can be implemented.
Finally, in order to make the proposed CACC controllers practically adaptable, other consid-
erations need to be taken into account. For example, gap closing manoeuvres while taking
actuator limits and velocity regulations into account. Moreover, collision avoidance measures
need to be taken, since string stability does not inherently exclude the possibility of collisions.
The ultimate step is the application of CACC within existing traffic, which introduces nu-
merous other challenges, such as merging traffic, non-cooperative vehicles, pedestrians, and
for example traffic lights.
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Appendix A

Preliminaries

Preliminaries, used throughout the entirety of this thesis are summarized in this appendix.

A.1 Norms

The norm definitions as presented in [13] are used throughout this thesis.

Definition A.1. (Lp-norm, [13]) Let u(t) be a time-dependent vector signal according to

u(t) =
[
u1(t) u2(t) . . . un(t)

]T
. Then, the signal p-norm, or Lp-norm, of u(t) is defined

as

‖u(t)‖Lp :=

(∫ ∞

−∞

∑
i

| ui(t) |p dt
) 1

p

. (A.1)

Definition A.2. (H∞-norm, [13]) Consider a transfer function matrix G(s) of a linear
system. Then, the system infinity-norm, or H∞-norm, of G(s) is defined as

‖G(jω)‖H∞ := sup
ω

max
u�=0

‖G(jω)u(jω)‖L2

‖u(jω)‖L2

, (A.2)

with input ui, and the L2-norm as in (A.1) for p = 2.
Note that for Single-Input Single-Output (SISO) systems, (A.2) reduces to

‖G(jω)‖H∞ = sup
ω

| G(jω) | . (A.3)

A.2 Polynomial bounds on sinusoids

Theorem A.1. (Polynomial bounds on cosine) The cosine function can be described by its
Taylor approximation

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n, (A.4)

which is an alternating convergent series. Therefore, the cosine function can be bounded by

2N+1∑
n=0

(−1)n

(2n)!
x2n ≤ cos(x) ≤

2N∑
n=0

(−1)n

(2n)!
x2n, ∀ N ∈ N

+. (A.5)
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Theorem A.2. (Polynomial bounds on sine) The sine function can be described by its Taylor
approximation

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, (A.6)

which can be written as an alternating convergent series by multiplying with x, such that

x sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+2. (A.7)

Therefore, the sine function can be bounded by

x

2N+1∑
n=0

(−1)n

(2n+ 1)!
x2n+1 ≤ x sin(x) ≤ x

2N∑
n=0

(−1)n

(2n+ 1)!
x2n+1, ∀ N ∈ N

+. (A.8)

A.3 Miscellaneous

Theorem A.3. (Square root of sum) For non-negative x, y, the sum of square roots is larger
than or equal to the square root of the sum, mathematically

√
x+ y ≤ √

x+
√
y, ∀ x, y ≥ 0. (A.9)

This directly follows by writing(√
x+

√
y
)2

= x+ y + 2
√
xy ≥ x+ y, ∀ x, y ≥ 0,

⇒ √
x+

√
y ≥ √

x+ y, ∀ x, y ≥ 0.
(A.10)
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Appendix B

u-CACC in heterogeneous platoon

This appendix presents the derivation of the u-CACC control law for vehicle platoons that
are heterogeneous with respect to driveline time constant τi, such that τi �= τi−1. The derived
controller only requires ui−1 to be communicated, whereas the controller (2.16) requires both
ai−1, and ui−1 to be communicated.

To derive this control law, the tracking error coordinates (2.10), and longitudinal vehicle
model (2.1) with τi �= τi−1 are used. Combining both results in the uncontrolled dynamics

⎡
⎣ėi,1ėi,2
ėi,3

⎤
⎦ =

⎡
⎢⎣ ei,2

ei,3

− 1
τi−1

(ai−1 − ui−1) +
1
τi

(
1− h

τi

)
(ai − ui)− h

τi
u̇i

⎤
⎥⎦ , i ∈ SI . (B.1)

Following a method similar to the one presented in Section 2.3, it is desired that ei,3 follows

ėi,3 =: − 1

τi−1
ei,3 − 1

τi−1
ζi, i ∈ SI , (B.2)

rather than the previously achieved ėi,3 =: − 1
τi
ei,3− 1

τi
ζi. Again using the same controller for

the auxiliary input

ζi :=
[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦ , i ∈ SI , (B.3)

gives the controller

u̇i =−
(
1

h
− 1

τi
+

1

τi−1

)
ui +

1

h

(
1− τi−1

τi

)(
1− h

τi

)
ai

+
1

h

τi
τi−1

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦+

1

h

τi
τi−1

ui−1, i ∈ SI ,

(B.4)
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which only requires ui−1 to be communicated. The resulting closed loop dynamics are then
given as

⎡
⎢⎢⎣
ėi,1
ėi,2
ėi,3
u̇i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0

− kp
τi−1

− kd
τi−1

−kdd+1
τi−1

0
kpτi
hτi−1

kdτi
hτi−1

kddτi
hτi−1

− 1
h + τi−1

hτi
− 1

h − 1
τi−1

+ τi−1

τ2i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
ei,1
ei,2
ei,3
ui

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
0 0
0 0

τi−τi−1

hτi
τi

hτi−1

⎤
⎥⎥⎦
[
ai−1

ui−1

]
, i ∈ SI .

(B.5)

A disadvantage of this approach however, is the dependency of the closed loop dynamics on
the unknown parameter τi−1.
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Appendix C

Degraded CACC observer tuning

This appendix presents the derivation of the continuous time Kalman filter gains, used for
the u-dCACC predecessor acceleration observer. Most information is directly deducted from
[19].

The controller used by u-dCACC is given as

u̇i = −1

h
ui +

1

h

[
kp kd kdd

] ⎡⎣ei,1ei,2
ei,3

⎤
⎦+

1

h
âi−1, i ∈ SI , (C.1)

with estimated state âi−1 as output from the observer

⎡
⎣ ˙̂qi−1
˙̂vi−1
˙̂ai−1

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 −α

⎤
⎦

︸ ︷︷ ︸
=:As

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦+

⎡
⎣l11 l12
l21 l22
l31 l32

⎤
⎦

︸ ︷︷ ︸
=:Ls

[
qi−1 − q̂i−1

vi−1 − v̂i−1

]
,

[
q̂i−1

v̂i−1

]
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=:Cs

⎡
⎣q̂i−1

v̂i−1

âi−1

⎤
⎦ , i ∈ SI .

(C.2)

The observer gains are in [15] proposed as continuous time Kalman filter gains. This is done
by following [19], starting with the statement that the predecessor acceleration is correlated
in time, such that, when it is accelerating at time t, it is likely to be accelerating at time t+ τ
for sufficiently small τ [19]. A typical correlation function r(τ) associated with the target
acceleration is

r(τ) = E{ai−1(t)ai−1(t+ τ)} = σ2
ae

−α|τ |, α > 0, (C.3)

with σ2
a the variance of ai−1, and α the reciprocal of the maneuver time constant τm. Es-

sentially, a larger α implies a more agile predecessor. The predecessor acceleration ai−1 is
assumed to have a probability density function p(ai−1) as presented in Figure C.1. In particu-
lar, the predecessor vehicle experiences a maximal acceleration amax (or decelleration −amax)
with probability Pmax, zero acceleration with probability P0, and is uniformly distributed in
between. From Figure C.1 it is possible to compute the mean μa = E{ai−1} and variance

57



−amax

a
amax

Pmax PmaxP0

p(a)

1−2Pmax−P0
2amax

Figure C.1: Probability density function of the predecessor acceleration ai−1.

σ2
a = E{(ai−1 − μa)

2} as

μa = E{ai−1} =

∫ ∞

−∞
ai−1p(ai−1)dai−1

= −amaxPmax + amaxPmax +
1− 2Pmax − P0

2amax

∫ amax

−amax

ai−1dai−1 = 0,

σ2
a = E{(ai−1 − μa)

2} =

∫ ∞

−∞
a2i−1p(ai−1)dai−1

= a2maxPmax + a2maxPmax +
1− 2Pmax − P0

2amax

∫ amax

−amax

a2i−1dai−1

=
a2max

3
(1 + 4Pmax − P0) .

(C.4)

From the correlation function r(τ), it is possible to describe the acceleration ai−1 in terms of
white noise by the Wiener-Kolmogorov whitening procedure. The Laplace transform of r(τ)
can be found in standardized lists and is given as

r(s) = L{r(t)} = − 2ασ2
a

s2 − α2
=: H(s)H(−s)wi−1(s), (C.5)

with H(s) = 1
s+α the transform of the whitening filter, and wi−1(s) = 2ασ2

a the transform
of the white noise wi−1 causing ai−1. This yields dynamics ȧi−1 = −αai−1 + wi−1, or,
correspondingly

⎡
⎣q̇i−1

v̇i−1

ȧi−1

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 0 −α

⎤
⎦

︸ ︷︷ ︸
=:As

⎡
⎣qi−1

vi−1

ai−1

⎤
⎦

︸ ︷︷ ︸
=:xi−1

+

⎡
⎣00
1

⎤
⎦

︸︷︷︸
=:Bs

wi−1,

[
qi−1

vi−1

]
︸ ︷︷ ︸
=:yi−1

=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=:Cs

⎡
⎣qi−1

vi−1

ai−1

⎤
⎦ , i ∈ SI ,

(C.6)
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where yi−1 are the measurements. Note that both qi−1 and vi−1 are measured indirectly as
was explained in Section 2.5. Finally, writing the dynamics (C.6) as

ẋi−1 = Asxi−1 +Bswi−1,

yi−1 = Csxi−1 + ηi−1, i ∈ SI ,
(C.7)

with measurement noise ηi−1, and the observer as

˙̂xi−1 = Asx̂i−1 + LCs (xi−1 − x̂i−1)

ŷi−1 = Csx̂i−1, i ∈ SI ,
(C.8)

allows the derivation of the process noise covariance matrix Q and measurement noise covari-
ance matrix R as

Q = BsE{wi−1w
T
i−1}BT

s =

⎡
⎣0 0 0
0 0 0
0 0 2ασ2

a

⎤
⎦ ,

R = E{ηi−1η
T
i−1} =

[
σ2
q 0

0 σ2
v

]
.

(C.9)

Here, σ2
q and σ2

v the variance on the indirect measurements qi−1 and vi−1, respectively. The
continuous time constant Kalman gain is then computed as

L = PCT
s R

−1, (C.10)

where P is the solution of the continuous-time algebraic Riccati equation

AsP + PAT
s − PCT

s R
−1TCsP +Q = 0. (C.11)
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Appendix D

observer-based CACC

This appendix presents the proof of the sufficient string stability condition using observer-
based CACC, as was presented in Proposition 4.3. To do so, the string stability condition

|Γ(jω)| ≤ 1, ∀ ω ∈ R, (D.1)

is used. Furthermore, the a-CACC SSCS is given as

ΓCACC
a (s) =

1

H(s)

D(s)s2 + Ca(s)

s2 + Ca(s)
=

1

hs+ 1

e−θss2 + kp + kds

s2 + kp + kds
, (D.2)

and the “observer-based CACC“ SSCS is given as

Γo(s) =
1

H(s)

D(s)s2 + Co(s)

s2 + Co(s)

=
1

hs+ 1

e−θss2
(
1 + c2s

2 + (kdc1 + c2)s+ kdc2 + kpc1
)
+ kp + (kd + kpc2)s

s2 (1 + c2s2 + (kdc1 + c2)s+ kdc2 + kpc1) + kp + (kd + kp)c2s
,

(D.3)

where c1 :=
1
le2
, and c2 :=

le1
le2
.

Proof. (Proposition 4.3) Since hnecmin is the smallest h for which a-CACC is string stable,
substituting hnecmin in the SSCS (D.2) must fulfill the string stability criterion (D.1), from
which follows

hnecmin
2ω4+hnecmin

2
(
k2d − 2kp

)
ω2−2kd sin(θω)ω+hnecmin

2k2p+2kp (cos(θω)− 1) ≥ 0, ∀ ω ∈ R.
(D.4)

Similarly, using the observer-based CACC SSCS (D.3) in the rewritten string stability con-
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dition (D.1), gives[
c21h

2
]
ω8 +

[
h2

(
c21(k

2
d − 2kp) + c22 − 2c1

)]
ω6

+
[
h2

(
c21k

2
p + (c22 − 2c1)(k

2
d − 2kp)

)]
ω4 + [2c1(kd + c2kp) sin(θω)]ω

3

+
[
h2k2p(c

2
2 − 2c1) + 2

(
c1kp − c2kd − c1k

2
d − c22kp − c1c2kpkd

)
(1− cos(θω))

]
ω2

−2
[
(c22kpkd + c2k

2
d + c1c2k

2
p) sin(θω)

]
ω − 2

(
c1k

2
p + c2kpkd

)
(1− cos(θω))︸ ︷︷ ︸

Additional part caused by observer

+ h2ω4 + h2(k2d − 2kp)ω
2 − 2kd sin(θω)ω + h2k2p − 2kp (1− cos(θω))︸ ︷︷ ︸

Part of a-CACC

≥ 0, ∀ ω ∈ R,

(D.5)

as a necessary and sufficient condition for string stability. Note that the last line is identified
to be caused by a-CACC, as it is similar to the inequality (D.4) for h = hnecmin. Substituting
h2 = hnecmin

2 + h2saf in this part gives the necessary and sufficient condition for observer-based
CACC string stability[

c21h
2
]
ω8 +

[
h2

(
c21(k

2
d − 2kp) + c22 − 2c1

)]
ω6 +

[
h2saf + h2

(
c21k

2
p + (c22 − 2c1)(k

2
d − 2kp)

) ]
ω4

+ [2c1(kd + c2kp) sin(θω)]ω
3 +

[
h2saf(k

2
d − 2kp)

]
ω2 +

[
h2k2p(c

2
2 − 2c1) . . .

+ 2
(
c1kp − c2kd − c1k

2
d − c22kp − c1c2kpkd

)
(1− cos(θω))

]
ω2

− 2
[
(c22kpkd + c2k

2
d + c1c2k

2
p) sin(θω)

]
ω + h2safk

2
p − 2

(
c1k

2
p + c2kpkd

)
(1− cos(θω))

+ hnecmin
2ω4 + hnecmin

2(k2d − 2kp)ω
2 − 2kd sin(θω)ω + hnecmin

2k2p − 2kp (1− cos(θω))︸ ︷︷ ︸
≥0, see (D.4)

≥ 0, ∀ ω ∈ R,

(D.6)

where the last line is positive due to the definition of hnecmin, see inequality (D.4). Bounding
the sine and cosine functions in the remaining part using 1 − 1

2θ
2ω2 ≤ cos(θω) ≤ 1 and

ω
(
θω − 1

6θ
3ω3

) ≤ ω sin(θω) ≤ θω2 (see Appendix A.2 with N = 0), gives

[
c21h

2
]
ω8 +

[
h2

(
c21(k

2
d − 2kp) + c22 − 2c1

)− 1

3
(kpc1c2 + kdc1) θ

3

]
ω6 +

[
h2saf . . .

+ h2
(
c21k

2
p + (c22 − 2c1)(k

2
d − 2kp)

)
+ 2c1(kd + c2kp)θ −

(
c2kd + c1k

2
d + c22kp

)
θ2 . . .

+ c1c2kpkdθ
2
]
ω4 +

[
h2saf

(
k2d − 2kp

)
+ h2k2p

(
c22 − 2c1

)− 2
(
c22kpkd + c2k

2
d + c1c2k

2
p

)
θ . . .

− (
k2pc1 + c2kpkd

)
θ2
]
ω2 + h2safk

2
p

+ hnecmin
2ω4 + hnecmin

2(k2d − 2kp)ω
2 − 2kd sin(θω)ω + hnecmin

2k2p − 2kp (1− cos(θω))

=: aω8 + bω6 + cω4 + dω2 + e

+ hnecmin
2ω4 + hnecmin

2(k2d − 2kp)ω
2 − 2kd sin(θω)ω + hnecmin

2k2p − 2kp (1− cos(θω))︸ ︷︷ ︸
≥0, see (D.4)

≥ 0 ∀ ω,∈ R,

(D.7)

as a sufficient condition for the string stability definition (D.1). In the continuation of this
proof, it is shown that, for the observer gains chosen as in Proposition 4.3, the coefficients
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a, b, c, d, and e are non-negative, such that aω8 + bω6 + cω4 + dω2 + e ≥ 0, ∀ ω ∈ R, and
therefore condition (D.7) is satisfied.
It is trivial to see that a, e > 0 (squares of real numbers), so continue with b, c, and d.
First, b ≥ 0 if

h2
(
c21(k

2
d − 2kp) + c22 − 2c1

)− 1

3
(kpc1c2 + kdc1) θ

3 ≥ 0,

⇔ h2
(
k2d − 2kp + le1

2 − 2le2
)− 1

3
(kpl

e
1 + kdl

e
2) θ

3 ≥ 0,

⇔ le1

(
le1 −

1

3
kp

θ3

h2

)
− le2

(
2 +

1

3
kd

θ3

h2

)
+ k2d − 2kp ≥ 0.

(D.8)

Neglecting the term k2d − 2kp, which is assumed to be positive, gives

le1 ≥
1
3kp

θ3

h2 +

√
1
9k

2
p
θ6

h4 + 4
(
2 + 1

3kd
θ3

h2

)
le2

2
. (D.9)

Using
√
x+ y ≤ √

x+
√
y for non-negative x, y (see Appendix A.3), gives

le1 ≥ 1

3
kp

θ3

h2︸ ︷︷ ︸
=:c1,1

+

√
2 +

1

3
kd

θ3

h2︸ ︷︷ ︸
=:c1,2

√
le2, (D.10)

as a sufficient condition for le1 to achieve b ≥ 0.
Second, c ≥ 0 if

h2saf + h2
(
c21k

2
p + (c22 − 2c1)(k

2
d − 2kp)

)
+ 2c1(kd + c2kp)θ

− (
c2kd + c1k

2
d + c22kp + c1c2kpkd

)
θ2 ≥ 0,

⇔ le2
2h2saf + le2

(−2h2(k2d − 2kp) + 2kdθ −
(
le1kd + k2d

)
θ2
)

+ h2
(
k2p + le1

2(k2d − 2kp)
)
+ 2le1kpθ −

(
le1

2kp + le1kpkd
)
θ2 ≥ 0.

(D.11)

Neglecting the positive terms 2le1kpθ, 2le2kdθ, and h2
(
k2p + le1

2(k2d − 2kd)
)
, and again using√

x+ y ≤ √
x+

√
y for non-negative x, y, gives

le2 ≥
2h2

(
k2d − 2kp

)
+ k2dθ

2

h2saf︸ ︷︷ ︸
=:c2,1

+
le1kdθ

2 + hsaf

√
le1

2kp + l1kpkdθ

h2saf

= c2,1 + le1

kdθ
2 + hsaf

√
kp +

kpkd
le1

θ

h2saf
,

(D.12)

as a sufficient condition for (D.11). Using the knowledge that le1 ≥ c1,1 + c1,2
√
l2 ≥ c1,1 to

achieve b ≥ 0, see condition (D.10), gives

le2 ≥ c2,1 + le1
kdθ

2 + hsaf

√
kp + 3kd

h2

θ3
θ

h2saf︸ ︷︷ ︸
=:c2,2

, (D.13)
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as a sufficient condition for (D.12), and therefore c ≥ 0.
Third, similar to the derivation of the bound on le2 to achieve c ≥ 0, a bound is posed on le2
such that d ≥ 0. To do so, multiply d with le2

2 and get

le2
2
(
k2d − 2kp

)
h2saf− le2

(
2h2k2p + 2le1k

2
dθ + (k2p + le1kpkd)θ

2
)
+h2k2pl

e
1
2−2

(
le1

2kpkd + le1k
2
p

)
θ ≥ 0.
(D.14)

Neglecting the positive term h2k2pl
e
1
2, using

√
x+ y ≤ √

x +
√
y for non-negative x, y, and

using le1 ≥ c1,1 + c1,2
√
le2 ≥ c1,1 gives

le2 ≥
(
2h2 + θ2

)
k2p(

k2d − 2kp
)
h2saf︸ ︷︷ ︸

=:c3,1

+le1

2k2dθ + kpkdθ
2 + hsaf

√
2
(
k2d − 2kp

) (
kpkd + 3kp

h2

θ3

)
θ(

k2d − 2kp
)
h2saf︸ ︷︷ ︸

=:c3,2

, (D.15)

as a sufficient condition for (D.14), and therefore d ≥ 0.
Combining b ≥ 0 (D.10), c ≥ 0 (D.13), and d ≥ 0 (D.15), gives the observer gain string
stability conditions

le1 ≥ c1,1 + c1,2
√

le2 ⇒ b ≥ 0,

∧ le2 ≥ c2,1 + c2,2l
e
1 ⇒ c ≥ 0,

∧ le2 ≥ c3,1 + c3,2l
e
1 ⇒ d ≥ 0.

(D.16)

In order to make conditions (D.16) useful, choose le1 = csaf
(
c1,1 + c1,2

√
le2
)
, with a safety

factor csaf ≥ 1, and substitute le1 in the last two lines of (D.16). Solving the resulting second
order polynomial inequalities in

√
le2 for le2, gives the observer gain conditions as presented in

Proposition 4.3.
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Appendix E

closed loop dynamics with actuator
delay

This appendix presents the derivation of the closed loop dynamics using different CACC con-
trollers for vehicles experiencing an actuator delay. The delayed longitudinal vehicle dynamics
are given as

⎡
⎣q̇i(t)v̇i(t)
ȧi(t)

⎤
⎦
⎡
⎣0 1 0
0 0 1
0 0 − 1

τi

⎤
⎦
⎡
⎣qi(t)vi(t)
ai(t)

⎤
⎦+

⎡
⎣ 0
0
1
τi

⎤
⎦ui(t− φ), i ∈ SI . (E.1)

The closed loop dynamics using u-CACC, a-CACC, and observer-based CACC are derived in
the upcoming sections. For simplicity, a homogeneous vehicle platoon is assumed.

E.1 u-CACC

The coordinate transformation used within u-CACC is given as

ei,1(t) := qi−1(t)− qi(t)− hvi(t),

ei,2(t) := ėi,1(t) = vi−1(t)− vi(t)− hai(t),

ei,3(t) := ėi,2(t) = ai−1(t)−
(
1− h

τ

)
ai(t)− h

τ
ui(t− φ), i ∈ SI .

(E.2)

Combining the coordinate transformation (E.2) with the longitudinal vehicle dynamics (E.1),
and using the u-CACC controller

u̇i(t) = −1

h
ui(t) +

1

h

[
kp kd kdd

] ⎡⎣ei,1(t)ei,2(t)
ei,3(t)

⎤
⎦+

1

h
ui−1(t− θ), i ∈ SI , (E.3)
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gives the closed loop dynamics

ėi,1(t) = ei,2(t),

ėi,2(t) = ei,3(t),

ėi,3(t) = −1

τ
ei,3(t)− 1

τ

[
kp kd kdd

] ⎡⎣ei,1(t− φ)
ei,2(t− φ)
ei,3(t− φ)

⎤
⎦+

1

τ
(ui−1(t− φ)− ui−1(t− φ− θ)) ,

u̇i(t) = −1

h
ui(t) +

1

h

[
kp kd kdd

] ⎡⎣ei,1(t)ei,2(t)
ei,3(t)

⎤
⎦+

1

h
ui−1(t− θ), i ∈ SI .

(E.4)

From (E.4), it directly follows that the closed loop dynamics of u-CACC is disturbed by the
external inputs ui−1(t − φ) − ui−1(t − φ − θ), and ui−1(t − φ). Moreover, the feedback is
delayed with φ.

E.2 a-CACC

The coordinate transformation used within a-CACC is given as

ei,1(t) := qi−1(t)− qi(t)− hvi(t),

ei,2(t) := ėi,1(t) = vi−1(t)− vi(t)− hai(t),

εi(t) := vi−1(t)− vi(t), i ∈ SI .

(E.5)

Combining the coordinate transformation (E.5) with longitudinal vehicle dynamics (E.1), and
using the “alterntive CACC” controller

ui(t) =
τ

h

[
kp kd

] [ei,1(t)
ei,2(t)

]
+
(
1− τ

h

)
ai(t) +

τ

h
ai−1(t− θ), i ∈ SI . (E.6)

gives the closed loop dynamics

ėi,1(t) = ei,2(t),

ėi,2(t) = − [
kp kd

] [ei,1(t− φ)
ei,2(t− φ)

]
+ ai−1(t)− ai−1(t− φ− θ)−

(
1− h

τ

)
(ai(t)− ai(t− φ)) ,

ε̇i(t) =
1

h
ei,2(t)− 1

h
εi(t) + ai−1(t), i ∈ SI .

(E.7)

Again, the feedback is delayed with φ. Additionally, the disturbance acting on the closed
loop of a-CACC is less synchronized. Note that for a-CACC ai−1(t−φ− θ) lags φ+ θ behind
ai−1(t), whereas for u-CACC ui−1(t − φ − θ) lags only θ behind ui−1(t − θ). Finally, due to
the actuator delay φ, it is not possible to perfectly compensate ai(t).

E.3 observer-based CACC

Observer-based CACC uses the same tracking error coordinates (E.5) as a-CACC. Addition-
ally, the controller is given as

ui(t) =
τ

h

[
kp kd

] [êi,1(t)
êi,2(t)

]
+
(
1− τ

h

)
âi(t) +

τ

h
âi−1(t− θ), i ∈ SI , (E.8)
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where êi,1, and êi,2 are generated by the observer

˙̂ei,1(t) = êi,2(t) + le1 (ei,1(t)− êi,1(t)) ,

˙̂ei,2(t) = −kpêi,1(t)− kdêi,2 + le2 (ei,1(t)− êi,1(t)) , i ∈ SI ,
(E.9)

and âi by the observer

˙̂ai(t) = −1

τ
ai(t) +

1

τ
ui(t), i ∈ SI . (E.10)

The predecessor estimated acceleration âi−1 is obtained via wireless inter-vehicle communi-
cation, and estimated onboard vehicle i− 1.
Combining the tracking error coordinates (E.5), longitudinal vehicle dynamics (E.1), and
controller (E.8), gives the closed loop tracking error dynamics

ėi,1(t) = ei,2(t),

ėi,2(t) = − [
kp kd

] [êi,1(t− φ)
êi,2(t− φ)

]
+ ai−1(t)− âi−1(t− φ− θ)−

(
1− h

τ

)
(ai(t)− âi(t− φ)) ,

ε̇i(t) =
1

h
ei,2(t)− 1

h
εi(t) + ai−1(t), i ∈ SI .

(E.11)

The disturbances ai−1(t)− âi−1(t−φ− θ), and ai(t)− âi(t−φ) are smaller than for a-CACC,
because the estimated acceleration stays ahead of the actual acceleration. To see this, use
the Laplace transform of the vehicle dynamics (E.1), and acceleration observer (E.10), and
choose âi(0) = 0, such that

ai(s) = e−φs 1

τs+ 1
ui(s) +

τ

τs+ 1
ai(0),

âi(s) =
1

τs+ 1
ui(s), i ∈ SI .

(E.12)

Using (E.12), it is possible to compute L{ai(t)− âi(t− φ)}

x̃i(s) : = L{ai(t)− âi(t− φ)} =
τ

τs+ 1
ai(0), i ∈ SI . (E.13)

Then, using the inverse Laplace-transformation gives

x̃i(t) = ai(t)− âi(t− φ) = L−1

{
τ

τs+ 1
ai(0)

}
,

= e−
1
τ
tai(0), i ∈ SI .

(E.14)

Due to homogeneity of the platoon, it is possible to write

ai−1(t)− âi−1(t− φ− θ) = ai−1(t)− âi−1(t− φ) + âi−1(t− φ)− âi−1(t− φ− θ)

= e−
1
τ
tai−1(0) + âi−1(t− φ)− âi−1(t− φ− θ), i ∈ SI ,

(E.15)

where the first term converges to zero, and the other terms describe the difference of estimated
acceleration at times t− φ and t− φ− θ, which are only θ apart.
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