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Combined Longitudinal and Lateral Control of
Car-Like Vehicle Platooning With Extended

Look-Ahead
Anggera Bayuwindra , Jeroen Ploeg , Erjen Lefeber , and Henk Nijmeijer , Fellow, IEEE

Abstract— In this paper, we present a novel look-ahead concept
for combined longitudinal and lateral vehicle following control
for a car-like platoon. A nonlinear controller structure, which is
based on Cooperative Adaptive Cruise Control, is designed for
the lateral and longitudinal direction. For practical implementa-
tion and cost efficiency, a preceding vehicle look-ahead approach
is considered since it utilizes the already available information
(such as preceding vehicle position, orientation, and velocity)
from radar and vehicle-to-vehicle communication. However, due
to the position control in the look-ahead approach, the follower
vehicle may cut corners. To overcome this problem, the look-
ahead is extended to a point perpendicular to the direction of
the preceding vehicle, which can be viewed as a virtual preceding
vehicle tracking objective. To demonstrate the effectiveness of the
designed controller with the extended look-ahead approach, sim-
ulations are performed and further validated with experiments
on a mobile robot platform. The results prove the effectiveness
of the extended look-ahead approach.

Index Terms— Control algorithm, Cooperative Adaptive Cruise
Control (CACC), intelligent vehicle, nonlinear systems, vehicle
platooning.

I. INTRODUCTION

THE increasing needs of transportation that are not bal-
anced by the growth of highway capacity lead to traffic

congestion. Hence, vehicle platooning is developed as an
effective means to increase highway capacity by maintaining
the intervehicle distance [1]. The concept of maintaining a
desired intervehicle distance is first introduced by the invention
of Adaptive Cruise Control (ACC). By means of a radar and
lidar, ACC measures the distance and the relative speed of
the preceding vehicle and adapts the velocity of the following
vehicle in order to maintain a desired distance. As an extension
to ACC, Cooperative ACC (CACC) was developed by adding
vehicle-to-vehicle (V2V) communication. By providing the
following vehicle with more information about its preceding
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vehicle, the addition of V2V communication has been proven
to reduce the intervehicle distance while attenuating distur-
bances in upstream direction [2], [3]. In addition, by driving
closer behind one another, the aerodynamic drag force between
vehicles can be reduced, especially for heavy-duty vehicles,
thus resulting in lower emissions and fuel consumption of all
vehicles in a platoon [4], [5].
Vehicle platooning, which can be described as a “follow

the leader” strategy, is realized by exchanging information
about the longitudinal and lateral properties between vehi-
cles. To achieve a fully automated vehicle platooning, sev-
eral strategies have been introduced in the literature. In [6],
the longitudinal and lateral control system for automated
vehicles in a platoon is introduced as independent systems.
The longitudinal controller is based on CACC, with the
objective of maintaining constant spacing between vehicles,
while the lateral control is developed based on a lane-keeping
approach. In other literature, longitudinal and lateral con-
trollers are treated as coupled systems. The studies in [7]
and [8] show that the coupling compensation improves the
control performance. In general, the longitudinal controller
of vehicle platooning is designed based on CACC, with
an objective to maintain a desired longitudinal intervehicle
spacing. On the other hand, the lateral controller can be
designed either based on: lane-keeping (e.g., [6], [9], [10])
or vehicle following (e.g., [11], [12]). In [6], a lane-keeping
method with a magnetic marker system is used for the lateral
control system. The magnetic marker system uses magnetome-
ters mounted on the vehicles and senses the magnetic field
intensity from magnets embedded in the lane to measure the
lateral distance from the center of the lane, hence earns the
nickname “look-down” sensing system. Although the proposed
control system had been proven to be reliable and robust,
this approach is impractical because every lane needs to be
embedded with magnets. In another approach [9], the lateral
control is developed using a vision-based lane-keeping system.
Instead of embedding magnets in lanes, this vision-based
look-down system employs a camera-based image processing
algorithm for lane detection. This approach is analogous to
the path-tracking approach that has been widely adopted in
robot motion. From a platooning viewpoint, there are sev-
eral considerations in a lane-keeping method that should be
taken into account. First, when the vehicles in a platoon are
driving close together, it is not always possible to obtain an
accurate measurement of lane markings [11]. Second, the lane
markings also may be of bad quality, obstructed by dirt/snow,
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or even not present (e.g., on intersections or rural areas), upon
which vehicle following can serve as a fallback.
In the situation, when the lane markings are not available,

a more reliable approach is to track the preceding vehicle’s
lateral position based on the preceding vehicle’s position and
orientation (measured by the radar) and the preceding vehi-
cle’s velocity and acceleration (communicated through V2V).
Thus, a vehicle-following controller based on the look-ahead
approach is introduced [13]. However, the application of this
look-ahead approach for lateral behavior has some drawbacks
in the event of a cornering maneuver. The look-ahead control
can command the follower vehicle to turn when it senses
the difference between the orientation of the preceding and
the follower vehicle, causing the follower to turn too early,
thus cutting the corner. The deviation in the corner radius
escalates with the distance to the preceding vehicle [14].
To address the cutting-corner behavior, several approaches
have been proposed. The Control Using Trajectory algorithm,
introduced in [14], makes use of the time history associated
with the preceding vehicle. The position coordinates of the
preceding vehicle and the motion parameters of the follower
vehicle are stored to determine the previous trajectory of
the preceding vehicle. In [12] and [15], the cutting-corner
behavior is compensated by shifting the reference point from
the rear of the preceding vehicle to a static point behind it.
For a platoon consisting of two vehicles, the results show
that the cutting-corner behavior has been compensated for a
constant velocity scenario. Most of the controllers designed
in the existing research (e.g., [6], [11], [12]) heavily depend
on the assumption of constant or positive velocity for all
vehicles in a platoon, which results in a linear state-space
model that is controlled with pole placement or optimal state
feedback.
The main contribution of this paper consists of the design

of an extended look-ahead approach that can compensate
cutting-corner behavior in vehicle platooning, with emphasis
on the cornering maneuver while maintaining a safe
intervehicle distance. This extended look-ahead approach
uses the velocity and heading direction information of
the preceding vehicle (which are already available from
radar and V2V), to create the “virtual” vehicle as a new
tracking objective. A formal stability analysis of the resulting
closed-loop model is provided using a Lyapunov-based
method. To guarantee the asymptotic stability and the
nonzero velocity of all vehicles, we define the maximum
bounds of lateral and longitudinal accelerations. Compared
to the existing results of other vehicle-following controllers,
our designed controllers do not depend on the assumption of
constant velocity and take the motion constraints of lateral
and longitudinal accelerations into account.
The remaining part of this paper is composed as fol-

lows. Section II describes the vehicle model and the look-
ahead-based controller design. In Section III, the extended
look-ahead approach is proposed. The system is simulated in
MATLAB and the results are presented in Section IV. For
further validation, the designed controller is also implemented
in a unicycle mobile robot platform, as presented in Section V.
Section VI summarizes the conclusions.

Fig. 1. Error definition in vector term for follower vehicles, where ei is the
spacing error and di is the actual distance between vehicle i and i − 1.

II. VEHICLE MODELING AND LOOK-AHEAD-BASED
CONTROLLER DESIGN

The vehicle in a platoon is modeled as a unicycle on a
Cartesian coordinate system. Consider a platoon of m ∈ N

vehicles, with Sm = {i ∈ N|1 ≤ i ≤ m} denoting the set of
all vehicles in the platoon. The unicycle kinematic model is
described by the following differential equations:

ẋi = vi cos θi (1a)

ẏi = vi sin θi (1b)

v̇i = ai (1c)

θ̇i = ωi (1d)

where (xi , yi ) are the Cartesian coordinates of the unicycle, θi

is the orientation of the unicycle with respect to the x axis, vi

is the longitudinal velocity, ai is the longitudinal acceleration
input, ωi is the angular velocity input, and i ∈ Sm is the
vehicle index, increasing in the upstream direction.
The main objective of vehicle i in a platoon is to follow

the preceding vehicle i − 1 at a desired distance dr,i . The
desired distance between vehicles can be chosen as: 1) a
constant spacing policy or 2) a constant time-gap spacing
policy, in which the spacing policy is velocity dependent. The
constant time gap spacing policy is adapted from [3] and [13],
which in this paper is formulated as

dr,i =
[

drx,i

dry,i

]
= (ri + hivi )

[
cos θi

sin θi

]
(2)

where dr,i is the desired distance vector between vehicle i
and vehicle i − 1, ri > 0 is the standstill distance, hi > 0
is the time gap, vi is the velocity of vehicle i , and θi is the
heading angle of vehicle i with respect to the x-axis. It should
be noted that in contrast to [3] and [13], in this formulation,
the standstill distance is defined as a vector with angle θi and
can be understood as a look-ahead in the same direction as
the vehicle’s orientation (see Fig. 1). The time gap hi can be
considered as the time needed by vehicle i to reach the current
position of its preceding vehicle when traveling at constant
velocity vi .
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It is assumed that each vehicle in the platoon can commu-
nicate and sense the movement of the neighboring vehicle,
as depicted in Fig. 1. Let pi := [xi , yi ]T be the position of
vehicle i . Since the main focus of vehicle platooning is to
maintain the intervehicle distance, it makes sense to derive
the error dynamics based on the difference between the desired
distance dr,i and the actual intervehicle distance. The spacing
error vector is defined as

ei = di − dr,i = (pi−1 − pi ) − dr,i (3)

with dr,i as in (2), and di = (dx,i , dy,i )
T is the actual distance

between vehicle i and vehicle i − 1. The spacing error (3)
is decomposed in a global Cartesian coordinate system as
follows:

ex,i = xi−1 − xi − (ri + hivi ) cos θi (4a)

ey,i = yi−1 − yi − (ri + hivi ) sin θi . (4b)

To proceed, we define the following state components:

z1,i = xi−1 − xi − (ri + hivi ) cos θi (5a)

z2,i = yi−1 − yi − (ri + hivi ) sin θi (5b)

z3,i = vi−1 cos θi−1 − vi cos θi (5c)

z4,i = vi−1 sin θi−1 − vi sin θi . (5d)

It can be observed that the first and second components of (5)
are identical to the position errors (4a, 4b), while the third and
fourth components represent the velocity error in the x- and y-
direction, respectively. The intervehicle dynamics is obtained
by differentiating (5) with respect to time, resulting in[

ż1,i
ż2,i

]
=

[
z3,i
z4,i

]
− Fi

[
ai

ωi

]
(6a)[

ż3,i
ż4,i

]
= Hi−1

[
ai−1
ωi−1

]
− Hi

[
ai

ωi

]
(6b)

with

Fi :=
[

hi cos θi −(ri + hivi ) sin θi

hi sin θi (ri + hivi ) cos θi

]
(7a)

H j :=
[
cos θ j −v j sin θ j

sin θ j v j cos θ j

]
, j ∈ {i − 1, i}. (7b)

The system (6) represents the dynamics of the intervehicle
error between vehicle i − 1 and i . The objective is now to
design a control input [ai , ωi ]T which asymptotically stabilizes
the system (6) at zero. Let ri > 0 and h > 0. By choosing the
control input as[

ai

ωi

]
= F−1

i

[
z3,i + k1,i z1,i
z4,i + k2,i z2,i

]

=
⎡
⎢⎣

1

hi
cos θi

1

hi
sin θi

− sin θi

ri + hivi

cos θi

ri + hivi

⎤
⎥⎦[

z3,i + k1,i z1,i
z4,i + k2,i z2,i

]
(8)

where ri+hivi > 0, the closed-loop error dynamics is obtained
by substituting (8) into (6), eventually resulting in[

ż1,i
ż2,i

]
= −

[
k1,i 0
0 k2,i

] [
z1,i
z2,i

]
(9a)[

ż3,i
ż4,i

]
= −Gi

[
z3,i
z4,i

]
+

[
ξ1,i
ξ2,i

]
(9b)

with [
ξ1,i
ξ2,i

]
:= Hi−1

[
ai−1
ωi−1

]
− Gi

[
k1,i z1,i
k2,i z2,i

]
(10)

Gi :=

⎡
⎢⎢⎣

hivi + ri cos2 θi

hi (ri + hivi )

ri sin θi cos θi

hi (ri + hivi )
ri sin θi cos θi

hi (ri + hivi )

hivi + ri sin2 θi

hi (ri + hivi )

⎤
⎥⎥⎦ (11)

and Hi−1 as in (7b). With the controller (8), we obtained a
linear system (9a) of which the poles can be place anywhere.
Since the identical behavior for the x- and y-direction is
desired, we can choose the same value for k1,i = k1 and
k2,i = k2 for all vehicles. Note that the input (8) requires the
distance error (z1,i , z2,i ) that can be obtained using a radar,
and also the preceding vehicle velocity vi−1 and heading angle
θi−1, which can be obtained through wireless communication.
By choosing k1, k2 > 0, the first subsystem (9a) is globally
asymptotically stable. Consequently, (z1,i , z2,i ) converges to
zero. It should also be noted that the condition of ri +hivi > 0,
which is sufficiently fulfiled by vi > 0 (forward driving),
is necessary to determine the input (8). Thus, we establish
the stability of the overall system (9) and the condition of
vi > 0 by the following result.

Proposition 1: Let zi = [z1,i , z2,i , z3,i , z4,i ]T , z12,i =
[z1,i , z2,i ]T , and z34,i = [z3,i , z4,i ]T . Consider the system (6)
in closed loop with the control input (8). Assume that 0 <
vmini−1 ≤ vi−1(t) ≤ vmaxi−1 and let some ε > 0 be given satisfying
ε < vmini−1. If∥∥∥∥Hi−1

[
ai−1
ωi−1

]∥∥∥∥
2

=
∥∥∥∥
[

ẍi−1
ÿi−1

]∥∥∥∥
2

<
vmini−1 − ε

ri
ε + hi

(12)

then for sufficiently small initial conditions zi (0) we have that
vi (t) > 0 and the input (8) is well defined. Furthermore,
we have limt→∞ ‖z12,i (t)‖ = 0, and z34,i(t) remains bounded.
Additionally, if

lim
t→∞ Hi−1

[
ai−1
ωi−1

]
= lim

t→∞

[
ẍi−1(t)
ÿi−1(t)

]
= 0, (13)

then we have also limt→∞ ‖z34,i (t)‖ = 0, i.e., the closed-loop
system (6) and (8) is asymptotically stable.

Proof: See Appendix A.
Note that the conditions (12) and (13) are related to the

constraints of accelerations in x and y, which can also be
translated as constraints of longitudinal and lateral accelera-
tions of the preceding vehicle in the platoon.

III. EXTENDED LOOK-AHEAD CONTROLLER DESIGN

From (3), we can observe that the look-ahead design is
based on the spacing policy as commonly used for CACC.
From a platooning perspective, the disadvantage of this
look-ahead strategy is that the follower vehicle’s lateral posi-
tion is only without error on a straight line. At a cornering
maneuver, this disadvantage leads to a common problem,
known as cutting-corner behavior [16]. Without prior knowl-
edge of the reference trajectory, the position controller in
the conventional look-ahead design can make the follower
vehicles turn too early at a cornering maneuver. In the event of
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Fig. 2. Error definition for the extended look-ahead approach, where ei is
the spacing error.

cornering, vehicle i senses a position error due to the spacing
policy in the conventional look-ahead approach and will turn
sooner to correct errors, rather than wait until it arrives at the
point of cornering. In order to make the vehicle i turn at the
point of the corner, the look-ahead point of the vehicle i has
to be extended, thus creating a “virtual” vehicle as the new
tracking point for vehicle i . The purpose of this extension
vector is to compensate the unintended lateral error due to
the desired spacing distance. By using this extension vector,
vehicle i tracks the virtual point on vehicle i −1, thus allowing
it to turn at the point of cornering.
Let si−1 = [sx,i−1, sy,i−1]T denote the look-ahead point

extending from the base of vehicle i − 1 (Fig. 2), that can be
viewed as a virtual vehicle acting as a position tracking point
objective for vehicle i . In this approach, the look-ahead point
is extended perpendicular to the heading direction of vehicle
i − 1. This extended look-ahead is applied during cornering
maneuvers, i.e., when ωi−1 �= 0. Using the new tracking point
objective, the spacing error for the extended look-ahead CACC
is defined as

ei = (pi−1 + si−1) − (pi + ri + hivi ). (14)

The components of si−1 in Cartesian coordinates are derived
as follows:

sx,i−1 = s̄i−1 sin θi−1 (15)

sy,i−1 = −s̄i−1 cos θi−1 (16)

where s̄i−1 is the magnitude of the extension vector si−1.
To prevent cutting corners, our aim is to formulate the exten-
sion vector si−1 such that the vehicle i has the same turning
radius as its preceding vehicle i − 1. Since the direction
of si−1 is always perpendicular to the heading direction of
vehicle i − 1, only the magnitude (denoted by s̄i−1) needs
to be determined [16]. The definition of s̄i−1 can be made
by analyzing the steady-state behavior of the platoon on the
circular movement, i.e., when errors ex,i and ey,i equal zero.
In this approach, it is assumed that the heading angle differ-
ence between the preceding and follower vehicle is always
smaller than π/2 such that the extension vector can always
be defined. When vehicle i − 1 turns to the positive y-axis,
it will have a turning radius Ri−1 and the new tracking point
of vehicle i is extended to the point S (see Fig. 3). It therefore
follows that:

Fig. 3. Magnitude of the extension vector s̄i−1, where di is the actual
distance between vehicle i and i − 1.

(Ri−1 + s̄i−1)2 = R2i−1 + (ri + hivi )
2, (17)

with Ri−1 as the turning radius of vehicle i − 1, s̄i−1 as
the magnitude of the extension vector, and (ri + hivi ) as
the magnitude of the spacing policy. Let us define κi−1 as
the path curvature of vehicle i − 1. By noting the fact that
κi−1 = 1/Ri−1 = ωi−1/vi−1 and by rearranging terms in (17),
we define the magnitude of the extension vector s̄i−1 as

s̄i−1 =

⎧⎪⎨
⎪⎩
0 for κi−1 = 0

−1+
√
1+ κ2i−1(ri + hivi )2

κi−1
for κi−1 �= 0.

(18)

For the case of κi−1 = 0, which implies that ωi−1 = 0,
we have the condition in which the vehicle i − 1 drives on
a straight line. Thus, s̄i−1 is zero and the definition of spacing
error in (14) will be identical to (1). To show that s̄i−1 is
continuous at κi−1 = 0, we can use a Taylor expansion and
take the limit as κi−1 → 0, such that

lim
κi−1→0

s̄i−1 = lim
κi−1→0

(
1

2
κi−1(ri + hivi )

2 + · · ·
)

= 0.

In Section II, the new coordinates z3,i and z4,i can be regarded
as differences between the velocity of the preceding and
follower vehicle in the x- and y-direction, respectively, and it
has been proven that the designed controller (8) asymptotically
stabilizes the dynamics of z3,i and z4,i . The convergence of
z3,i and z4,i to zero has been shown in Section II, under the
condition that [ai−1, ωi−1]T also converges to zero. However,
if a platoon maneuvers on a curved path (i.e., ωi−1 is nonzero),
z3,i and z4,i will not converge to zero according to (9b).
Therefore, we redefine the coordinate transformation of z3,i
and z4,i such that the convergence of z3,i and z4,i to zero
on a curved path is also guaranteed, i.e., the velocity of the
follower vehicle converges to the velocity of its preceding
vehicle. To proceed, we define the new state components as

z1,i = xi−1 + sx,i−1 − xi − (ri + hivi ) cos θi (19a)

z2,i = yi−1 + sy,i−1 − yi − (ri + hivi ) sin θi (19b)

z3,i = vi−1 cos θi−1 − vi cos(θi + αi ) (19c)

z4,i = vi−1 sin θi−1 − vi sin(θi + αi ). (19d)
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With this new choice of state components, the control objective
can be formulated such that [z1,i , z2,i ]T converges to zero.
From Fig. 3, we can define αi , the angle of the arc between
the vehicle i and vehicle i − 1, as a function of κi−1 and vi

satisfying

αi = arctan[κi−1(ri + hivi )], −π

2
< αi <

π

2
. (20)

Note that the definition of αi only applies when αi ∈
(−π/2, π/2), i.e., the orientation difference between the fol-
lower and its preceding vehicle has to be smaller than π/2.
By noting that

sin αi = κi−1(ri + hivi )√
1+ κ2i−1(ri + hivi )2

(21)

cosαi = 1√
1+ κ2i−1(ri + hivi )2

(22)

derivatives of αi and s̄i−1 with respect to time are given as

α̇i = ακ,i κ̇i−1 + αa,i ai (23)
˙̄si−1 = sκ,i κ̇i−1 + sa,i ai (24)

with

ακ,i := (ri + hivi ) cos
2 αi , αa,i := hiκi−1 cos2 αi (25)

sκ,i := 1

κ2i−1
(1− cosαi ), sa,i := hi sin αi . (26)

To obtain the intervehicle dynamics in the new coordinates
(24), we first define a rotation matrix

R(αi ) =
[
cosαi − sin αi

sin αi cosαi

]
(27)

such that the term [z3,i , z4,i ]T can be rewritten as

1

cosαi

[
z3,i
z4,i

]
=

[
cos θi−1
sin θi−1

]
vi−1
cosαi

− R(αi )

cosαi

[
cos θi

sin θi

]
vi

=
[
cos θi−1
sin θi−1

]
vi−1
cosαi

−
[
cos θi

sin θi

]
vi

−
[− sin θi

cos θi

]
vi tan αi . (28)

By differentiating (19) with respect to time and taking equa-
tions (23), (24), and (28) into account, we eventually obtain
the intervehicle dynamics as follows:

[
ż1,i
ż2,i

]
= 1

cosαi

[
z3,i
z4,i

]
− 	12,i

[
ai

ωi

]
+ β1,i (29a)[

ż3,i
ż4,i

]
= Hi−1

[
ai−1
ωi−1

]
− 	34,i

[
ai

ωi

]
+ β2,i (29b)

with

	12,i =
[

hi cos θi − sa,i sin θi−1 −(ri + hivi ) sin θi

hi sin θi + sa,i cos θi−1 (ri + hivi ) cos θi

]
(30)

	34.i =
[
cos(θi + αi ) − δi sin(θi +αi ) −vi sin(θi +αi )
sin(θi +αi )+δi cos(θi +αi ) vi cos(θi +αi )

]
(31)

β1,i =
[− sin θi

cos θi

]
vi tan αi + R(θi−1)

[
s̄i−1ωi−1
−sκ,i κ̇i−1

]

+
(
1− 1

cosαi

) [
cos θi−1
sin θi−1

]
vi−1 (32)

β2,i = vi (ri + hivi ) cos
2 αi

[
sin(θi + αi )

− cos(θi + αi )

]
κ̇i−1 (33)

δi = vi hiκi−1 cos2 αi (34)

si−1 as in (18) and H j , with j ∈ {i − 1, i}, as in (7b).
The objective is to design control inputs [ai , ωi ]T which
asymptotically stabilize the states [z1,i , z2,i , z3,i , z4,i ]T at zero.
By taking the feedback as[

ai

ωi

]
= 	−1

12,i

([
k1z1,i
k2z2,i

]
+ 1

cosαi

[
z3,i
z4,i

]
+ β1,i

)
(35)

	−1
12,i = 1

μi

[
(ri +hivi ) cos θi (ri +hivi ) sin θi

−hi sin θi −sa,i cos θi−1 hi cos θi −sa,i sin θi−1

]
(36)

μi = hi (ri + hivi )(1− sin αi sin(θi−1 − θi )) (37)

where ri +hivi > 0, and substituting (35) into (29a) and (29b),
we obtain the closed-loop system as follows:[

ż1,i
ż2,i

]
= −

[
k1z1,i
k2z2,i

]
(38a)[

ż3,i
ż4,i

]
= Hi−1

[
ai−1
ωi−1

]
+ β2,i − 	34,i	

−1
12,i

[
k1z1,i
k2z2,i

]

−	34,i	
−1
12,i

(
1

cosαi

[
z3,i
z4,i

]
+ β1,i

)
. (38b)

Using controller (35), we obtain a linear system (38a),
of which the desired behavior can be obtained through pole
placement and many other controller design methods. It can
be observed that (38a) describes the controlled dynamics
and (38b) represents the internal dynamics of the system.
By the choice of k1, k2 > 0, the dynamics (38a) is expo-
nentially stable. Thus, we establish the stability of the overall
system (38) by the following proposition, which can be
regarded as the main result of this paper.

Proposition 2: Consider the system (29) in closed loop with
the control input (35). Assume that 0 < vmini−1 ≤ vi−1(t) ≤ vmaxi−1
and let some ε > 0 be given such that ε < vmini−1. If

|κi−1| ≤ 1

ri + hi
√
2
(
vmaxi−1 + vmini−1 − ε

) (39)

and

hmaxκ,i |κ̇i−1| + |ai−1| ≤ vmini−1 − ε

2
( ri

ε + hi
) (40)

with hmaxκ,i = (r2i /hi ) + hi
√
2(vmaxi−1 + vmini−1 − ε), then for

sufficiently small initial conditions zi (0) we have that vi (t) >
0 such that input (35) is well defined. Furthermore, we have
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Fig. 4. Trajectory of vehicle i (black-light gray: i = 1, 2, 3, 4) for the circular
path scenario: conventional look-ahead (top) versus extended look-ahead
(bottom).

limt→∞ ‖z12,i (t)‖ = 0, and z34,i(t) remains bounded. In addi-
tion, if limt→∞ ai−1(t) = 0 and κ̇i−1 converges to zero as
t → ∞, then we have also limt→∞ ‖z34,i (t)‖ = 0, i.e., the
closed-loop system (29) and (35) is asymptotically stable.

Proof: See Appendix B.
Therefore, we can conclude that the system (38) is internally

stable as long as the curvature is not too large [bounded
by (39)], and (40) is satisfied. It should be noted that con-
dition (39) is related to the bound of longitudinal and lateral
velocity of the preceding vehicle, while the condition (40) is
related to the lateral jerk and longitudinal acceleration of the
preceding vehicle.

IV. SIMULATION RESULTS

To illustrate the effectiveness of the extended look-ahead
controller, we conduct several simulations in MATLAB for a
platoon of four vehicles under two scenarios: a circular path
and an eight-shaped path. The spacing policy parameters are
chosen as ri = 1 m and hi = 0.2 s, and the control parameters
k1 = 3.5 and k2 = 3.5 are selected. The gains k1 and k2 for
the controllers are determined by an iterative manner. High
value gains result in a faster convergence toward a reference
path, but a higher sensitivity to curvature changes. A trajectory
tracking controller is applied in the first vehicle to track the
predefined trajectory, while the extended look-ahead controller
is applied in other vehicles to track their preceding vehicle.
It is assumed that the position, velocity, and acceleration of the
preceding vehicle can be obtained without any delay involved.
Both the conventional and the extended look-ahead approach
are simulated for comparison.

A. Circular Path Trajectory

In this scenario, the first vehicle drives on a straight path
along the x-axis with a constant initial velocity v1 = 5 m/s.

Fig. 5. Velocity of vehicle i (black-light gray: i = 1, 2, 3, 4) for the circular
path scenario: conventional look-ahead (left) versus extended look-ahead
(right).

Fig. 6. Longitudinal spacing distance of vehicle i − 1 and vehicle i (black-
light gray: i = 2, 3, 4) for the circular path scenario: conventional look-ahead
(left) versus extended look-ahead (right).

At time t = 6 s, it turns with yaw rate ω1 = 0.5 rad/s and
moves in a circular motion. The initial positions (xi (0), yi (0))
are (0, 0), (−2, 2), (−4, 4), and (−6, 6) for vehicle 1, 2, 3,
and 4, respectively, while the initial heading angle is θi (0) = 0
for all i . As depicted in Fig. 4, both look-ahead controllers
perform well in the straight path, driving all follower vehicles
to track their preceding vehicle without lateral error. However,
the conventional look-ahead controller shows its shortcoming
when the platoon enters a circular path. The vehicle with the
conventional look-ahead cruises in a smaller radius than its
preceding vehicle, as shown in Fig. 4. This behavior occurs
because at the moment the preceding vehicle turns, the con-
troller senses a position error and then adjusts the position of
follower instantaneously. As a result, the follower vehicle turns
too early and cuts the corner. From Fig. 4 (left), which shows
a close-up of the circular part of the track, it can be observed
that vehicles 2–4 do not travel on the path with the same radii
as vehicle 1. The difference of curvatures results in a lower
longitudinal velocity of the follower vehicle than the one of
the preceding vehicle, as depicted in Fig. 5. This difference in
velocity also affects the longitudinal spacing distance between
vehicles (Fig. 6). On the other hand, the extended look-ahead
controllers successfully compensated the lateral deviation, thus
keeping the follower vehicles to drive with the same radii as
their preceding vehicle. By maintaining the same velocity for
all vehicles, the extended look-ahead controllers manage to
keep the same longitudinal spacing distance between vehicles
[Fig. 6 (right)]. It is also worth noting that the velocity of all
vehicles is always positive and never reaches zero for both
look-ahead approaches (see Fig. 5).
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Fig. 7. Trajectory of vehicle i (black-light gray: i = 1, 2, 3, 4) for
the eight-shaped scenario: conventional look-ahead (top) versus extended
look-ahead (bottom).

Fig. 8. Velocity of vehicle i (black-light gray: i = 1, 2, 3, 4) for
the eight-shaped path scenario: conventional look-ahead (left) vs extended
look-ahead (right).

Fig. 9. Longitudinal spacing distance of vehicle i − 1 and vehicle i (black-
light gray: i = 2, 3, 4) for the eight-shaped circular path scenario: conventional
look-ahead (left) versus extended look-ahead (right).

B. Eight-Shaped Path Scenario

In this scenario, the robustness of the proposed controller
against varying yaw rate ω is evaluated. The first vehicle starts
at initial position (30, 15), cruises along the eight-shaped path
with a constant velocity v1 = 5 m/s (equal to 18 km/h).
The eight-shaped path is generated by half circles and quintic
polynomial functions (see Fig. 7). The initial positions of the
other vehicles are (28, 15), (26, 15), and (24, 15) for vehicle 2,

Fig. 10. E-puck mobile robot (left) and markers used for identification (right).

Fig. 11. Experimental setup.

3, and 4, respectively. The initial heading angle is θi (0) =
0.7854 rad for all i . It can be observed that the initial position
errors are handled equally good by both types of look-ahead
controllers. However, the difference in performance can be
seen in a curve path. Analogously to the simulation results of
the circular path, the extended look-ahead controller delivers
better tracking performance than the conventional look-ahead
controller, as shown in Fig. 7. Vehicles with the conven-
tional look-ahead drive with smaller radii than their preceding
vehicle, while ones with the extended look-ahead drive with
relatively equal radii with their preceding vehicle. It can also
be observed from Fig. 9 (right) that the extended look-ahead
controllers are capable to maintain the longitudinal spacing
distance, and proven to be robust against varying yaw rate.
From Fig. 8, we can observe that velocities for all vehicles
are always positive and never reach zero, which is a necessary
condition for the designed controllers.

V. EXPERIMENTS

In this section, the error dynamics and the controllers
that have been derived previously are implemented using the
mobile robot E-puck. E-puck is used because the implemen-
tation is straightforward, using the camera localization system
developed in [17] that acquires the accurate position of uni-
cycles. E-puck is a differential-wheeled nonholonomic mobile
robot, designed by the ASL Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland [18]. The main
specifications of the E-puck robot are given in Table I.
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Fig. 12. Trajectory of E-puck i (black-light gray: i = 1, 2, 3, 4) on a circular
path with conventional look-ahead.

TABLE I

E-PUCK SPECIFICATION

A. Experiment Setup

The experimental setup is shown in Fig. 11. Each wheel of
the E-puck robot is driven by a stepper motor, and the velocity
control commands are sent to both stepper motors from an
external PC through Bluetooth. To be able to communicate via
Bluetooth, the E-puck has to be flashed through the Bluetooth
Serial Communication (SerCom) protocol that allows it to
read and parse commands that are sent from the external
PC. Since an E-puck is equipped with an open Bluetooth
protocol, a variety of programing languages can be used
to control the robot, such as through the hyperterminal of
Windows, MATLAB, or Python. An external PC is used to
generate a reference trajectory and to determine the absolute
coordinates and orientations of the robots from a measure-
ment device (a Firewire camera AVT Guppy F-080b b/w
combined with reacTIVision software) placed above the arena
of 175 cm × 128 cm. The position and orientation accuracy
of these position measurements are ±0.0019 m for x and y
position and ±0.0524 rad in θ direction, with a sample rate
of 25 Hz [19]. The PC then uses the obtained information to
implement the control algorithm for each E-puck. Each E-puck
is attached with a unique marker (2-D barcode) consisting of
3× 3 blocks. The color of the blocks in the corners is chosen
such that the orientation of the marker (thus, the orientation of
the E-puck) can be determined [17], [20]. An example of the
barcode used in the E-puck is shown in Fig. 10 (right). In our
approach, we need to be able to measure the position of the
preceding vehicle with respect to the coordinate frame of the
ego vehicle. In the E-puck setup, all measurement regarding
the position and orientation are done by a central camera

Fig. 13. Trajectory of E-puck i (black-light gray: i = 1, 2, 3, 4) on a circular
path with extended look-ahead.

Fig. 14. Longitudinal spacing distance for the circular path scenario:
conventional look-ahead (left) versus extended look-ahead (right).

placed above the arena. However, this central camera would
not be available for the practical implementation in a real
vehicle platooning. To address this issue, we could replace the
central camera by a radar (to measure the longitudinal position
of the preceding vehicle), and a forward-looking camera (to
measure the lateral position), both attached on every vehicle
in the platoon.
Since an E-puck is a differential-drive mobile robot,

the direction of motion is controlled by separately controlling
the speed of the left and right wheels, denoted by vl,i and
vr,i , respectively. The transformation of the individual wheels
speed to the linear velocity vi and angular velocity ωi can be
determined using the following relation:

ωi = vr,i − vl,i

L
, vi = vr,i + vl,i

2
(41)

where L is the length between the left and right wheels.
In order to support the simulation results presented in the

previous section, for this experiment, we define two kinds of
reference trajectories: a circular trajectory and an eight-shaped
trajectory. Given the size of the arena, an appropriate selection
of the radius of the circular path is 0.4 m with the center point
at (0.7, 0.5), so that the reference trajectory stays within the
arena. The eight-shaped trajectory is composed of half circles
with a radius of 0.3 m and straight sections. The reference
linear velocity is chosen as 0.04 m/s, and the controlled
velocities vi and ωi of all E-pucks are physically limited by
their respective maximum value as in Table I. First, the ref-
erence trajectory for the first E-puck is defined. Afterward,
the positions of all E-pucks are measured and recorded in
the PC through the camera. The decentralized controllers then
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Fig. 15. Velocities of E-pucks for circular path scenario: conventional
look-ahead (left) versus extended look-ahead (right).

Fig. 16. Trajectory of E-puck i (black-light gray: i = 1, 2, 3, 4) on an
eight-shaped path with conventional look-ahead.

calculate the inputs needed for each E-puck simultaneously
and send the input velocity commands via Bluetooth. It should
be noted that the controllers are executed in the main PC, not in
the E-pucks themselves. The control parameters are selected
as k1 = 2 and k2 = 2 for all E-pucks, while the spacing
policy parameters are selected as ri = 0.1 m and hi = 0.05 s.
The gains are selected in an iterative manner. Identical to the
simulations, higher gains result in a faster convergence to the
reference path, but a higher sensitivity to curvature changes.
In the experiment, this is undesirable since a slight change in
measurements, due to noise and sensor inaccuracy, could result
in overcompensation. Both systems with the conventional and
extended look-ahead are implemented, and the experiment
results are presented in the next section to verify the simulation
results. Since the E-puck has a velocity limitation (13 cm/s),
all experiments were performed at low velocity.

B. Circular Path Scenario

In this scenario, we define the initial position of the ref-
erence trajectory at (0.5, 0.1). Four E-pucks that are already
in a platoon order are placed behind that initial position to
ensure that they move forward. The reference trajectory itself
acts as a reference only for the first E-puck, while the others
use their preceding E-puck as a reference, i.e., E-puck 2
follows E-puck 1, E-puck 3 follows E-puck 2, and so on.
The reference vehicle cruises in a straight trajectory with
the velocity of 0.04 m/s along global x-axis until it reaches
x = 0.8 m, and then maneuvers into a circular trajectory.
The trajectories of all E-pucks with the conventional and
extended look-ahead controllers are shown in Figs. 12 and 13,

Fig. 17. Trajectory of E-puck i (black-light gray: i = 1, 2, 3, 4) on an
eight-shaped path with extended look-ahead.

Fig. 18. Longitudinal spacing distance for the circular path scenario:
conventional look-ahead (left) versus extended look-ahead (right).

respectively. As observed in both figures, on the straight trajec-
tory all robots directly move to their desired position, subject
to the spacing distance between robots. However, on the cir-
cular trajectory, the platoon with the conventional look-ahead
approach suffers from the cutting-corner behavior, indicated by
a smaller turning radius for each robot upstream. In contrast,
the extended look-ahead controller shows satisfactory results,
with all E-pucks driving closely to the reference trajectory.
Moreover, the extended look-ahead controller also successfully
maintains the longitudinal spacing distance between each
E-puck at 0.1 m (see Fig. 14). It can be observed from Fig. 15
that the velocities of all E-pucks are nonzero. It should be
noted that the differences between simulations and experiment
regarding spacing distances and velocities at the start of the
simulation and the experiment exist due to the different initial
condition in simulation versus experiment. Moreover, there
are also several factors that can affect the variation in the
errors in experiment results: the stick-slip effects in the E-puck
drive line, actuator delay, and the nondeterministic delay in the
Bluetooth communication. In spite of these differences, it can
be observed that our approach performs equally well in both
simulations and experiments.

C. Eight-Shaped Path Scenario

For the second experiment, an eight-shaped path is used
to confirm the robustness of the controller against a varying
yaw rate. The reference trajectory starts at (0.7, 0.5) and
the E-pucks are placed behind the reference’s initial position
to ensure that they move forward, i.e., vi > 0 for all i .
The platoon moves with the same topology as the previous

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:59:02 UTC from IEEE Xplore.  Restrictions apply. 



BAYUWINDRA et al.: COMBINED LONGITUDINAL AND LATERAL CONTROL OF CAR-LIKE VEHICLE PLATOONING 799

Fig. 19. Velocities of E-pucks for eight-shaped path: conventional look-ahead
(left) versus extended look-ahead (right).

experiment. The first E-puck tracks the reference trajectory,
while the others follow their preceding robot. As expected,
the platoon with the conventional look-ahead controller tends
to cut the corner, and the deviation in radius with the reference
escalates in upstream direction (Fig. 16). The effectiveness
of the extended look-ahead controller for the eight-shaped
trajectory can be observed directly from Fig. 17. The radius
deviation has been successfully compensated, thus resulting
in a better tracking performance than the conventional look-
ahead. Due to the additional terms β1,i and sa,i in the extended
look-ahead controller (35), the variation in the errors for
the extended look-ahead is larger than the variation for the
conventional look-ahead (see Fig. 18). Nevertheless, the mea-
surement noise in the extended look-ahead is still small enough
(less than 0.02 m) such that the longitudinal spacing distance
between each E-puck can still be maintained at 0.1 m. It can
also be observed that velocities of all E-pucks in this scenario
are nonzero (Fig. 19).

VI. CONCLUSION

Cooperative driving for a platoon of unicycles has been
studied with the emphasis on cornering maneuvers. By using
only the current position information of the preceding vehicle,
the platoon suffers from a cutting-corner behavior, in which
the follower vehicle has a smaller radius than the preceding
vehicle. The difference in radius with respect to the first
vehicle escalates upstream, thus affecting the tracking perfor-
mance at cornering. To ensure a better performance, the error
dynamics at cornering have been redefined. The redefined error
dynamics involve the follower vehicle tracking the end of a
vector extending from the preceding vehicle. This point can be
viewed as a virtual vehicle which acts as the tracking objective
for the follower vehicle. The effectiveness of the proposed
approach has been successfully demonstrated in simulation,
and validated by an experiment with a platoon consisting of
four E-pucks. In this experiment, a vehicle following maneuver
has been demonstrated on a circular path and an eight-shaped
path. The designed extended look-ahead approach has been
proven to compensate the cutting-corner behavior, while sat-
isfying the spacing policy requirement between vehicles.

APPENDIX A

To prove Proposition 1, we first have to show that given the
condition (12), the input (8) is well defined such that z34,i (t)
remains bounded, using the following lemma.

Lemma 3: Let z34,i = [z3,i , z4,i ]T , ξi = [ξ1,i , ξ2,i ]T , and
consider the dynamics

ż34,i = −

⎡
⎢⎢⎣

hivi + ri cos2 θi

hi (ri + hivi )

ri sin θi cos θi

hi (ri + hivi )
ri sin θi cos θi

hi (ri + hivi )

hivi +ri sin2 θi

hi (ri + hivi )

⎤
⎥⎥⎦ z34,i + ξi (42)

with vi and θi as in (1), and input ξi as a piecewise continuous
function, bounded by ‖ξi‖ ≤ ξmaxi . Let ε > 0 be given, and
assume that 0 < ε < vmini−1 ≤ vi−1(t) ≤ vmaxi−1 .
1) If

‖z34,i (0)‖ ≤
(ri

ε
+ hi

)
ξmaxi ≤ vmini−1 − ε (43)

then vi (t) ≥ ε.
2) If, additionally,

lim
t→∞ ‖ξi (t)‖ = 0 (44)

then limt→∞ ‖z34,i (t)‖ = 0.

Proof: Consider the set �c = {‖z34,i‖ ≤ vmini−1−ε}. In �c,
we have

ε2 ≤ (
vmini−1 − ‖z34,i‖

)2 ≤ (
vi−1 −

√
z23,i + z24,i

)2
= v2i−1 − 2vi−1

√
z23,i + z24,i + z23,i + z24,i . (45)

Define c := [cos θi−1, sin θi−1]T . With this particular defini-
tion of c, while using the Cauchy–Schwarz inequality, we have

2‖z34,i‖‖c‖ ≥ ‖z34,i + c‖2 − ‖z34,i‖2 − ‖c‖2
2
√

z23,i + z24,i ≥ 2z3,i cos θi−1 + 2z4,i sin θi−1.
(46)

Substituting (46) into (45), while using (5c) and (5d), yields

ε2 ≤ (vi−1 cos θi−1 − z3,i )
2 + (vi−1 sin θi−1 − z4,i )

2

≤ v2i (47)

which implies that inside �c we have vi (t) ≥ ε > 0.
Now we have to show that when a trajectory starts in �c,
i.e., ‖z34,i (0)‖ ≤ vmini−1 − ε, it will stay in �c for all t > 0.
Consider to this end a Lyapunov function V = z23,i + z24,i . The
derivative of V along the trajectory of the system (42) is then
given by

V̇ = φ + 2ξ1,i z3,i + 2ξ2,i z4,i (48)

with

φ := − 2vi

ri + hivi

(
z23,i + z24,i + ri

hi
(z3,i cos θi + z4,i sin θi )

2
)

.

Note that, since vi ≥ ε > 0, in the set �c,

φ ≤ − 2vi

ri + hivi

(
z23,i + z24,i

) = − 2vi

ri + hivi
‖z34,i‖2.

Moreover, by the Cauchy–Schwarz inequality, we have

‖ξi + z34,i‖2 − ‖ξi‖2 − ‖z34,i‖2
≤ 2‖z34,i‖‖ξi ‖

2ξ1,i z3,i + 2ξ2,i z4,i ≤ 2‖z34,i‖‖ξi ‖.
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Consequently,

V̇ ≤ − 2vi

ri + hivi
‖z34,i‖2 + 2‖z34,i‖‖ξi ‖

= − vi

ri + hivi
‖z34,i‖2 − vi

ri + hivi

×
(

‖z34,i‖ − ri + hivi

vi
‖ξi‖

)2

+ri + hivi

vi
‖ξi ‖2

≤ − vi

ri + hivi

(
‖z34,i‖2 −

(
ri + hivi

vi
ξmaxi

)2)
(49)

and it follows that the negative definiteness of V̇ is determined
by vi and ‖z34,i‖. Note that by (43) and by the fact that vi ≥ ε,
we have (ri/vi + hi )ξ

max
i ≤ (ri/ε + hi )ξ

max
i ≤ vmini−1 − ε. Now

let us consider two sets, �u = {‖z34,i‖ < (ri/vi + hi )ξ
max
i }

and �s = {(ri/vi + hi )ξ
max
i ≤ ‖z34,i‖ ≤ vmini−1 − ε}. Inside

�u [which is a subset of �c, according to condition (43)],
we have vi ≥ ε > 0 and V̇ > 0. Consequently, a trajectory
starting in �u will move in a direction of increasing V until
it reaches the lower bound (ri/vi + hi )ξ

max
i of �s . Inside �s

(which is also a subset of �c), vi ≥ ε > 0 and it follows
from (49) that V̇ is negative in �s . Hence, a trajectory that
starts in �s will also converge to the lower bound of �s . Since
vi ≥ ε implies that (ri/vi +hi )ξ

max
i ≤ (ri/ε+hi )ξ

max
i , we can

conclude that for ‖z34,i (0)‖ ≤ (ri/ε + hi )ξ
max
i ≤ vmini−1 − ε we

have ‖z34,i (t)‖ ≤ (ri/ε + hi )ξ
max
i ≤ vmini−1 − ε.

Now we want to prove the second statement of Lemma 3.
Let limt→∞ ‖ξi (t)‖ = 0. Since ‖z34,i (t)‖ converges to (ri/vi+
hi )ξi (which follows from (49) in the previous analysis),
we have limt→∞ ‖z34,i (t)‖ = 0.
To conclude the proof, we have to show that ξi is bounded

and converges to zero, given the condition (13). From (10),
it can be observed that the boundedness of ξi depends
on the boundedness of Hi−1[ai−1, ωi−1]T [which is given
by (12)], boundedness of Gi , and the initial condition z12,i(0).
From (11), it can be observed that the Frobenius norm of Gi

is bounded by ‖Gi‖F ≤ 1/hi . By having sufficiently small
initial velocity error z34,i (0), we can guarantee that all the
future trajectories of z34,i (t) will be in the set �s in which
the velocity vi is always positive, thus the input (8) is well
defined. Since the input is well defined, then we also have
limt→∞ ‖z12,i (t)‖ = 0. In addition, under the condition (13)
and sufficiently small initial position error z12,i(0), from (10)
we have that ξi is bounded and converges to zero as t → ∞.
Therefore, by the second statement of Lemma 3, it can be
concluded that limt→∞ ‖z34,i (t)‖ = 0.

APPENDIX B

First, we need to study the internal dynamics (38b). By sub-
stituting Hi−1, β1,i , β2,i , 	34,i , 	−1

12,i , separating the trans-
lational and rotational dynamics, and noting that ωi−1 =
vi−1κi−1, we are able to rewrite (38b) into[

ż3,i
ż4,i

]
= −Gi

[
z3,i
z4,i

]
− κi−1

(
Qi

[
z3,i
z4,i

]
− fv,i

)
+ ζi (50)

where

fv,i =
[−vi−1 sin θi−1

vi−1 cos θi−1

]
vi−1 −

[−vi sin(θi + α)
vi cos(θi + α)

]
vi (51)

ζi = hκ,i κ̇i−1 +
[
cos θi−1
sin θi−1

]
ai−1 − 	34,i	

−1
12,i

[
k1z1,i
k2z2,i

]
(52)

hκ,i = vi (r + hivi ) cos2 αi

[
sin(θi + αi )

− cos(θi + αi )

]

+cosαi − 1
κ2i−1

	34	
−1
12

[
sin θi−1

− cos θi−1

]
(53)

Qi = ri + hivi

μi

[
q11 q12
q21 q22

]
(54)

q11 = cosαi sin(θi−1 − θi )(ri cos
2 θi + hivi )

+hivi sin(θi + αi )[cos θi−1 − cosαi cos θi ]
−ri sin θi cos θi

q12 = cosαi sin(θi−1 − θi )(ri sin θi cos θi )

hivi sin(θi + αi )[− sin θi−1 + cosα sin θi ]
−ri sin2 θi − hivi

q21 = cosαi sin(θi−1 − θi )(ri sin θi cos θi )

−hivi cos(θi + αi )[cos θi−1 − cosαi cos θi ]
+ri cos

2 θi + hivi

q22 = cosαi sin(θi−1 − θi )(ri sin2 θi + hivi )

+hivi cos(θi + αi )[− sin θi−1 + cosαi sin θi ]
+ri sin θi cos θi

with μi as in (37), and Gi as in (11). It can be observed that
if the platoon maneuvers on a straight path (i.e., κi−1 = 0
and ωi−1 = 0), the subsystem (50) reduces to (9b), thus for
tracking a straight path we can again use Proposition 1. The
term ζi can be considered as external inputs that are decaying
to zero. Given that κi−1 is bounded by (39) and the condi-
tion (40) is satisfied, we first prove that the subsystem (50) is
stable by the following lemma.

Lemma 4: Let z34,i = [z3,i , z4,i ]T , ζi = [ζ1,i , ζ2,i ]T , and
consider the dynamics (50) where κi−1 is bounded by (39) and
input ζi is a continuous function, bounded by ‖ζi‖ ≤ ζmaxi . Let
ε > 0 be given, and assume that 0 < ε < vmini−1 ≤ vi−1(t) ≤
vmaxi−1 .
1) If

‖z34,i (0)‖ ≤ 2
(ri

ε
+ hi

)
ζmaxi ≤ vmini−1 − ε (55)

then vi (t) ≥ 0.
2) If, additionally,

lim
t→∞ ‖ζi (t)‖ = 0 (56)

then limt→∞ ‖z34,i (t)‖ = 0.
Proof: Let us consider the set �c = {‖z34,i‖ ≤ vmini−1− ε},

with ε > 0. Inside �c, we have

ε2 ≤ (
vmini−1 − ‖z34,i‖

)2 ≤ (
vi−1 −

√
z23,i + z24,i

)2
= v2i−1 − 2vi−1

√
z23,i + z24,i + z23,i + z24,i

≤ (vi−1 cos θi−1 − z3,i )
2 + (vi−1 sin θi−1 − z4,i )

2

= v2i . (57)
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Moreover, it directly follows from (19c) and (19d) that:

v2i = (vi−1 cos θi−1 − z3,i )
2 + (vi−1 sin θi−1 − z4,i )

2

= v2i−1 − 2vi−1z3,i cos θi−1 − 2vi−1z4,i sin θi−1 + ‖z34,i‖2
≤ v2i−1 + v2i−1 cos2 θi−1 + z23,i

+v2i−1 sin2 θi−1 + z24,i + ‖z34,i‖2
= 2v2i−1 + 2‖z34,i‖2 ≤ 2(vi−1 + ‖z34,i‖)2. (58)

As a result from (57) and (58), vi is bounded by

0 < ε ≤ vi ≤ √
2
(
vmaxi−1 + vmini−1 − ε

)
(59)

in �c. Now consider a quadratic Lyapunov function V = z23,i+
z24,i . By using (19c, 19d), we can rewrite fv,i in (51) as

fv,i =
[−vi−1 sin θi−1

vi−1 cos θi−1

]
(vi−1 − vi ) + vi

[−z4,i
z3,i

]
(60)

such that the derivative of V along the trajectory (50) is given
by

V̇ = −2
[

z3,i
z4,i

]T

Gi

[
z3,i
z4,i

]
− 2κi−1

[
z3,i
z4,i

]T

Qi

[
z3,i
z4,i

]

+2κi−1(vi−1 − vi )

[
z3,i
z4,i

]T [−vi−1 sin θi−1
vi−1 cos θi−1

]

+2
[
ζi,i

ζi,2

]T [
z3,i
z4,i

]
. (61)

By substituting Gi and Qi into (61) and by noting that sin αi =
κi−1(ri + hivi ) cosαi [which directly follows from (21)
and (22)], we can rewrite V̇ as

V̇

= − 2vi

γi (ri +hivi )

(
z23,i +z24,i +

ri

hivi
(z3,i cos θi +z4,i sin θi )

2)
+2riκi−1

γi hi
(z3,i sin θi −z4,i cos θi )(z3,i cos θi +z4,i sin θi)

−2viκi−1
γi

f34,i (z3,i cos θi−1 + z4,i sin θi−1)

+2viκi−1 cosαi

γi
f34,i (z3,i cos θi + z4,i sin θi )

+2κi−1vi−1(vi−1 − vi )(−z3,i sin θi−1 + z4,i cos θi−1)
+2ζ1,i z3,i + 2ζ2,i z4,i (62)

where

f34,i = (z3,i sin(θi + αi ) − z4,i cos(θi + αi )) (63)

γi = 1− sin αi sin(θi−1 − θi ). (64)

Note that we can also apply the Cauchy–Schwarz inequality
[in the same manner as (46)] to all terms in (62) that are
dependent on z3,i and z4,i . As a result, those terms are always
less than or equal to ‖z34,i‖. Moreover, by applying the
inequality to (19c) and (19d), we also have vi−1−vi ≤ ‖z34,i‖.
Since γi ≤ 2 by definition (64), it follows from (49) that:

V̇ ≤ −
(

vi

ri + hivi

)
‖z34,i‖2 − κi−1

(
− ri

hi

)
‖z34,i‖2

−viκi−1‖z34,i‖2 + viκi−1 cosαi‖z34,i‖2
+2κi−1vi−1‖z34,i‖2 + 2‖z34,i‖‖ζi‖ (65)

and we need to show that V̇ ≤ 0. Let us denote

�i = vi

2(ri +hivi )
+κi−1

(
−ri

hi
+vi (1−cosαi )−2vi−1

)
(66)

such that we can rewrite (65) as

V̇ ≤ −�i‖z34,i‖2 − vi

2(ri + hivi )
‖z34,i‖2 + 2‖z34,i‖‖ζi‖

= −�i‖z34,i‖2− vi

4(ri +hivi )
‖z34,i‖2+ 4(ri +hivi )

vi
‖ζi‖2

− vi

4(ri + hivi )

(
‖z34,i‖ − 4(ri + hivi )

vi
‖ζi‖

)2
≤ −�i‖z34,i‖2 − vi

4(ri + hivi )

×
(

‖z34,i‖2 −
(
4(ri + hivi )

vi
ζmaxi

)2)
(67)

and it follows that the negative definiteness of V̇ is determined
by vi , ‖z34,i‖, and �i . First we want to analyze the term �i .
Note that by using (22), and by using a Taylor expansion we
can bound the term (1− cosαi ) by

1− cosαi =
√
1+ κ2i−1(ri + hivi )2 − 1√
1+ κ2i−1(ri + hivi )2

≤ 1

2
κ2i−1(ri + hivi )

2. (68)

Moreover, due to the fact that vi−1 ≥ vmini−1 > 0, it follows
from (66) that:

vi −2|κi−1|(ri +hivi )

(
−ri

hi
+ 1
2
vi |κi−1|2(ri +hivi )

2
)

> 0 (69)

is a sufficient condition for the first term in (67) to be negative.
Using condition (39) and the bound of vi from (59), we have

|κi−1| ≤ 1

ri + hi
√
2
(
vmaxi−1 + vmini−1 − ε

) ≤ 1

ri + hivi
(70)

where the second inequality follows from the upper bound of
vi in (59). By substituting (70) into (69), we obtain

vi − 2
(

− ri

hi
+ 1

2
vi

)
= 2ri

hi
> 0

from which we can conclude that �i is positive for all κi−1
satisfying (39). Now, we want to show that the second term
of (67) is negative. Note by (55) and by the fact that vi ≥ ε
from (59), we have 2(ri/vi + hi )ζ

max
i ≤ 2(ri/ε + hi )ζ

max
i ≤

vmini−1 − ε. Now let us consider two subsets of �c, denote by
�u = {‖z34,i‖ < 2(ri/vi + hi )ζ

max
i } and �s = {2(ri/vi +

hi )ζ
max
i ≤ ‖z34,i‖ ≤ vmini−1−ε}. By using the same reasoning as

Lemma 3, we can also conclude that for ‖z34,i (0)‖ ≤ 2(ri/ε+
hi )ζ

max
i ≤ vmini−1 − ε we have ‖z34,i (t)‖ ≤ 2(ri/ε + hi )ζ

max
i ≤

vmini−1 − ε, given that κi−1 is strictly bounded by (39).
The second statement of Lemma 4 can be proven directly

using the same reasoning as the one in Lemma 3.
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From Lemma 4, we have the result that the subsystem (50)
is stable, under the condition that κi−1 is bounded, and also
under the condition that ζi is bounded by

ζi (t) ≤ vmini−1 − ε

2
( ri

ε + hi
) (71)

with ζi as in (52), and can be considered as external inputs
that are decaying to zero. To conclude the stability proof of
this system, we need to check the boundedness of 	34,i	

−1
12,i

and hκ,i . From (21) and (22), we have

cos2 αi = sin αi cosαi

κi−1(ri + hivi )
. (72)

Substituting (72) into δi in (31) and taking (30) into account,
we eventually obtain 	34,i	

−1
12,i as

	34	
−1
12 = 1

μi

[
γ11 γ12
γ21 γ22

]
(73)

with

γ11 = (ri + hivi ) cos θi cos(θi + αi ) + hivi sin(θi + αi )p1
γ12 = (ri + hivi ) sin θi cos(θi + αi ) − hivi sin(θi + αi )p2
γ21 = (ri + hivi ) cos θi sin(θi + αi ) − hivi cos(θi + αi )p1
γ22 = (ri + hivi ) sin θi sin(θi + αi ) + hivi cos(θi + αi )p2
p1 = sin θi + sin αi cos θi−1 − sin αi cosαi cos θi

p2 = cos θi − sin αi sin θi−1 + sin αi cosαi sin θi

and μi as in (37). Applying the fact that (1− sinαi sin(θi−1−
θi )) ≤ 2 into μi , we have∥∥	34,i	

−1
12,i

∥∥
2 ≤ ∥∥	34,i	

−1
12,i

∥∥
F ≤ 2

hi
, (74)

where ‖·‖F is the Frobenius norm. Thus, 	34,i	−1
12,i is bounded.

Now, we want to show that hκ,i is also bounded. Note that by
substituting (22) and (68) into (53), we can rewrite hκ,i as

hκ,i ≤ vi (ri + hivi )

1+ κ2i−1(ri + hivi )2

[
sin(θi + αi )

− cos(θi + αi )

]

+1
2

(ri + hivi )
2 	34	

−1
12

[
sin θi−1

− cos θi−1

]
. (75)

By substituting (74) into (75), for a trajectory starting in �c

[which follows from (59)] we obtain

‖hκ,i‖2 ≤ vi (ri + hivi ) − 1

h
(ri + hivi )

2

≤ r2i
hi

+ hi
√
2
(
vmaxi−1 + vmini−1 − ε

) = hmaxκ,i . (76)

Since we have that κ̇i−1, ai−1 and z12,i converge to zero as
t → ∞, thus we have limt→∞ ‖z34,i (t)‖ = 0.
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