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Summary

To mitigate the problems caused by global warming, it is important to transition to alternative
fuel vehicles. Electric buses are a solution to reduce the emissions of public transport. Besides the
environmental and legislative forces to transfer to electric vehicles, lower costs of ownership will
be a benefit in the future. However, bus operators are hesitant to implement these alternative
fueled vehicles because of fears of running out of energy. It is therefore important for VDL
to advise their customers about the scheduling of electric vehicles. However, due to charging,
difficulties in scheduling arise. The goal of this thesis is to develop a tool that schedules electric
vehicles.

Previously, tools have been developed by VDL to aid manual scheduling. Furthermore, a schedul-
ing heuristic was developed, which did not support multiple depots and the solution needed
manual alterations. Besides this heuristic, a tool is developed in the work of Monhemius [1]
that solves the scheduling problem to optimality. However, the method used is computationally
expensive and not practical for any but the smallest problems.

In this research, a heuristic is implemented based on the work of Adler [2]. This is called the
concurrent scheduler and has been first developed by Bodin, Rosenfield, and Kydes [3]. In
the work of Adler [2], the possibility of charging is added to this method. For the concurrent
scheduler, the trips in the timetables are sorted on starting time. The method assesses the
service trips consecutively, where the cheapest bus is assigned to the current service trips. This
is why the method is called the concurrent scheduler.

The concurrent scheduler is implemented in MATLAB and is compared to the VDL scheduler
and, for small instances, the optimal solution. For the test timetables, the concurrent scheduler
gives a 12% lower costs than the VDL scheduler. Furthermore, the optimality gap for the
timetables tested is small. Furthermore, the largest timetable is scheduled within two minutes.
However, the solution of the concurrent scheduler is not perfect. For example, charging during
rush hours is not discouraged and charging earlier than necessary is not considered.

To counteract these issues, multiple alterations to the concurrent scheduler are proposed and
implemented. In the tests conducted, no benefit of these alterations became apparent and thus,
it is advised to use the concurrent scheduler without these alterations. Besides the proposed
alterations to improve the concurrent scheduler, an addition to the concurrent scheduler is made
to support a limited number of chargers for each charging location. Besides expanding the
usability with this addition, the solution of the concurrent scheduler can be used as an input for
another scheduler.

Since the concurrent scheduler does not support non-linear charging or non-fixed charging times,
another solution method is proposed in this research. This solution method is based on the
column generation algorithm. First, using a simplified problem, a reformulation is performed to
assess if this reformulation can reduce the number of necessary decision variables. It is shown
that with this reformulation, the number of decision variables initially increases. However,
with the implementation of the column generation algorithm, the number of necessary decision



variables is lower than the original formulation. Therefore, the reformulation in combination
with the column generation algorithm is a promising technique to solve the scheduling problem.
The idea behind column generation is to split up the problem into two parts. The first part is
to solve the problem for the current set of columns, called the restricted master problem. The
second part, to generate a new column, is called the subproblem.

Next, the simplified model is expanded to support charging, where a limit is set on the number of
available chargers and to the charging power of a charging location. However, only linear charging
and one depot, one charging location and one start/end location is considered. The result of this
expanded model is compared with the result of the concurrent scheduler for a simplified situation,
where it became clear that the column generation gives a lower costs on average. However, the
computation time is longer. The most important drawback of the proposed implementation of
the column generation algorithm is that the largest timetables are not solvable within reasonable
time. This is caused by the definition of the columns, resulting in a hard to solve subproblem
for larger timetables.

To obtain an integer solution, an integer solver is used. Since an integer solver is limited with
respect to the number of decision variables, a rounding algorithm based on a linear solver is
proposed to solve larger problems. For the test timetables, the rounding algorithm gives results
with higher costs than when an integer solver is used. It is therefore not advised to use this
rounding algorithm.

Next, it is investigated if using the solution of the concurrent scheduler heuristic as an initial
solution for the column generation algorithm improves the computation time or solution quality.
For simplicity, the situation without charging is considered. For the assessed test timetables,
both the quality and the computation time are improved. It is therefore advised to use the
solution of a heuristic as the initial solution for the column generation model in combination
with an integer solver to obtain an integer solution.

Finally, the recommendations are given. The main recommendation is to continue with the
development of the scheduling tool using the column generation technique with the usage of a
heuristic as initial solution. It is recommended to alter the formulation of the subproblem to solve
larger problems. Concluding, both the concurrent scheduler as implemented in this research
and the column generation algorithm are useful techniques for electric vehicle scheduling. The
concurrent scheduler gives feasible solutions quickly and can be used as a scheduling tool itself
or as an initial solution for a more advanced solver. The model based on column generation as
implemented in this research gives good solutions. It is expected that with reformulations the
computation times can be improved. Therefore, the column generation algorithm is a promising
future research direction.
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Chapter 1

Introduction

1.1 Background

Global climate change is an issue which requires a transition towards alternative fuel vehicles.
Traditionally, diesel powered buses are used in public transport. Besides the carbon emissions of
diesel buses, also air quality in urban areas is a problem [4]. The transition to electric buses can
solve these problems [5]. However, electric buses have limiting properties that have to be taken
into account. Firstly, electric buses have a lower range than diesel buses and are unable to drive
an entire day without recharging. Secondly, a fleet of electric buses consumes a high amount of
energy. The buses are charged at a finite number of locations, causing a high power demand at
specific locations. The charging location can have a limit on the available power.

Because of the problems that diesel powered buses cause, legislators are requiring the use of
electric vehicles for public transport. In the Netherlands, the government has agreed with the
operators that only emission free vehicles are used from 2025 on [6]. Besides the legislative
force, there are also economical incentives for operators to use electric buses. Electric buses
are expected to have a lower total cost of ownership than diesel powered buses in the near
future.

However, operators currently have little experience using electric buses. Concerns that arise
are the possibility that buses get stranded with empty batteries or that not enough chargers
are available. To solve these issues, operators order more buses than required. This, of course,
increases the costs considerably.

VDL is a manufacturer of city buses and is a substantial player in the bus and coach business
in Europe. VDL produced the first large-scale electric bus fleet. The trend of the market is to
transfer to electric city buses. In addition to providing an operator with buses, VDL can supply
the peripherals as well, an example of this is the charging infrastructure. Because customers are
hesitant to transfer to an electric fleet, it is wise for VDL to provide consultation and explain
that electric buses are able to satisfy their requirements. With this extra service and proof that
a lower total cost of ownership is possible the likelihood that VDL can sell buses increases. It is
therefore useful for VDL to obtain an electric vehicle scheduling tool.

1.2 Problem definition

In this section, the problem definition is given. The problem for operators is to decide for
each service trip which bus will perform that service trip. The service trips combined form the
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timetable, an example of a timetable can be found in Table 1.1. The timetable is composed
in collaboration with the local government and therefore cannot be changed. This means that
the departure and arrival locations, including the start and end times, together with the driving
distances are fixed.

In the case of diesel buses the problem is a vehicle scheduling problem (VSP), which is solvable in
polynomial time [7]. Electric buses cannot drive an entire day without recharging, and thus, the
problem becomes a special case of the VSP, an electric vehicle scheduling and charging problem
(EVSCP). The complexity of this problem is known in literature as an NP-hard problem [8].
This means that the number of decision variables increases non-polynomially.

The problem to be solved is to allocate electric buses to all the trips without exceeding real
world limitations. Some of these restrictions are: range limitations, limited number of charging
locations, deadhead trips to and from the depots, and total available charging power of a charging
location. The goal for VDL is to, for a given timetable, give the customer a possible allocation
of buses to trips and buses to chargers such that the total costs for the customer are minimized.
A possible schedule without charging is shown in Figure 1.1.

Table 1.1: Example of timetable

From Start End To Dist [m]
ehvbst 08:00 08:30 ehvapt 10000
ehvbst 08:15 08:45 ehvapt 10000
ehvapt 08:40 09:10 ehvbst 10000
ehvapt 08:55 09:25 ehvbst 10000
ehvbst 09:00 09:30 ehvapt 10000
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Figure 1.1: A possible schedule, without charging

Model inputs and outputs

Input

For the vehicles, the following parameters need to be known: price, depreciation, energy usage,
maximum charging power, and battery capacity. Furthermore, the timetable, where buses have
to be assigned to, with departure and arrival times in addition to the trip distance has to be
known. For the chargers, the price and maximum charging speeds are needed. In addition to
this, the depot location(s) and the proposed charging locations have to be known, together with
the distance and travel time between these locations. Furthermore, for each charging location,
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the maximum available power that can be taken from the grid should be known. In addition to
this, the cost of electricity has to be known.

Output

The output of the proposed model is the following: A feasible schedule for which the total daily
costs are minimized. For each vehicle, charging actions and driven trips are determined.

1.3 Previously used scheduling methods

VDL scheduler

In recent years, VDL has developed a fleet management tool, which is used for bus scheduling.
In this section, this scheduler is briefly explained. This scheduler is based on the idea that it is
efficient to have few deadhead trips and thus, it is efficient to start the next service trip on the
end location of the previous service trip. A deadhead trip is a trip between two location without
passengers. To implement this, the first service trip is assigned to the first vehicle. After that,
sets of trips are made, which are made from time compatible service trips. The size of these
sets of trips is dependent on the battery capacity. Service trips are added until the battery
would be empty. The deadhead trips toward the first service trip and after the last service trip
of the block are not taken into account. Each subsequent service trip has to start on the end
location of the previous service trip. The energy feasibility of these blocks is checked, now with
the deadhead trips, and if it is energy infeasible, the last service trip in the block is removed.
Charging can occur between blocks, non-linear charging is allowed and the charging time is not
fixed. An attempt is made to reduce the number of vehicles charging during peak demand. If no
previous service trip starts or ends at a location a new bus is taken. Furthermore, if no service
trip departs from a location any more, the bus that ends in that location stays there. In the
end, all the buses return to their home depot. This model does support charging on the depot
and on defined start and end locations. Charging locations other than the depot or on service
locations is not supported.

Linear programming scheduler

Another solution approach is to use a MILP to solve the scheduling problem to optimality. This
approach is used in the work of Monhemius [1] for VDL. Here, the optimal solution is obtained
for a simplified version of the scheduling problem. Even though the solution is optimal, solving
any timetable with more than a few service trips is computationally expensive.

1.4 Defining the scope and solution approach

The goal is to develop a scheduling tool, that is able to schedule electric buses while taking into
account their limitations. The total costs should be minimized for the operator. Furthermore,
the time to compute the schedule should be reasonable. The scheduling of drivers to buses is
not taken into account. A few of the most important assumptions are: the fleet is homogeneous,
there is a single charger type, buses start each day fully charged, and charging is linear.

It is stated earlier that the problem is NP-hard, and therefore, hard to solve to optimality for
any but the smallest problems. To be able to provide a feasible schedule quickly a heuristic
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is implemented first. This heuristic is known as a concurrent scheduler and supports multiple
depots, multiple charging locations and deadhead trips. One inherent drawback of heuristics is
that it is not guaranteed that the solution is globally optimal, and that the optimality gap is
unknown. Hereto, the optimality gap is assessed for small problem instances. Another limitation
of the concurrent scheduler is that the charging time is fixed. The schedule provided by the
heuristic can be used directly, or it can be used as an initial solution for another solution
method.

Next, a column generation algorithm is applied to a simplified problem where energy usage and
charging is neglected. To be able to apply this algorithm the problem is re-formulated first
by applying Dantzig-Wolfe decomposition. After this, the problem becomes a set partitioning
problem whereon column generation can be applied. Next, the simplified problem is expanded
to support electric vehicles and charging. Finally, the results of the concurrent scheduler and the
column generation model are compared and promising research directions are discussed.

1.5 Structure of thesis

This thesis is structured in the following way: First, the current developments in vehicle schedul-
ing are described, including multiple solution methods. After that, the application of a heuristic
is explained. Then, multiple test timetables are defined and a heuristic is used to make sched-
ules for these timetables. The results are compared with the results of the scheduler previously
developed by VDL and, for small problem instances, to the optimal solution. In addition to
this, multiple methods to improve the heuristic are proposed and explored. The results of these
possible improvements are also discussed.

To overcome the limitations of the heuristic, a model based on column generation is formulated
that can implement features that are not implemented in the heuristic. The theory behind this
model is explained using a simplified problem. After that, the simplified model is expanded to
support electric vehicles and charging. Then, this model is tested on the same test timetables
and the quality of the solution is assessed. Furthermore, the benefit of using the solution of the
heuristic as a starting position for this solution method is explored. Finally, the conclusions are
drawn and promising directions for future research are discussed.
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Literature review

The problem is to assign buses to a pre-determined timetable. This problem is known in liter-
ature as a Vehicle Scheduling Problem (VSP) and has been investigated extensively. There are
additions to this problem, for example: with time windows, limited range, multi-depot and other
additions. Ibarra-Rojas [9] made a summary and overview of multiple studies and their solution
methods. Bunte and Kliewer [10] have made an overview of Vehicle Scheduling Problems and
give information about the general workings of these models. A version of the VSP with vehicles
that have limited range is investigated by Adler in [11] and Li in [12]. Sometimes, schedules are
still made by hand. The scheduling method developed by Guedes [13] resulted in a schedule that
has a 31% reduction in costs compared to the hand-made version of that problem set.

The VSP is similar to the Traveling Salesman Problem (TSP). In the research of Lenstra [7] it
becomes clear that the single depot case can be solved in polynomial time O(n3), and that the
multi-depot case is NP-hard. The multi-depot case can only be solved to optimality for small
problem instances. In practice, almost every schedule has either multi-depots, a heterogeneous
fleet or charging sessions, and thus is NP-hard. To solve these large and/or NP-hard problems,
a multitude of (meta-)heuristics exists to solve these problems close to optimality in a reasonable
time. However, a heuristic does not guarantee the globally optimal solution. An overview of
heuristics that can be applied for these types of problems is made by Pepin [14]. A more detailed
description of multiple heuristics has been made by Morton [15] and Gendreau [16]. The VSP
also has similarities to the graph coloring problem, which is also known as an NP-hard problem,
as can been seen in the work of Pinedo [17, p. 166].

To obtain a feasible solution quickly, a concurrent scheduling algorithm has been developed
by Bodin, Rosenfield, and Kydes [3]. In the work of Adler [2], this algorithm is expanded to
support vehicles with limited range and with recharging possibilities. This method is used in
several studies, [2, 11, 12, 18], and has an optimality gap of between 10% and 15% but is rapid.
It is mostly used as an initial solution for other methods.

The Ant Colony Algorithm is another heuristic, which has been used by Wei [19] and Wang
[20]. It is based on the Greedy heuristic. Colonies are distributed over the solution space.
This approach is based on the application of multiple search directions where, if a direction is
promising, there is a higher likelihood of the other colonies to search near that location.

An alternative approach is the Large Neighborhood Search (LNS). This approach takes a feasible
solution, re-optimizes a subset of the solution and if the new total solution is better than the old
solution, the new solution is saved as the best solution. When this is iterated it is probable that
the solution converges to a good solution. A drawback of this approach is that it is possible to
end in a local minimum. In the work of Xu [21], LNS is used as the first step in their combined
heuristic. After that, a branch-and-price algorithm is applied. According to Xu [21], this solution
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is computationally efficient. A version of neighborhood search, called tabu search, is applied in
the work of Adler [2]. Here, the last few visited solution locations are stored and the algorithm
is prohibited to reach these locations again. This way, the algorithm is less likely to end up in
a local minimum [14]. An electric vehicle routing problem with time windows (E-VRPTW) is
solved by Schneider [22], where a combination of variable neighborhood search (VNS) and tabu
search is used. The author states that the combination of VNS and tabu search is most effective
for instances with large time windows.

To shorten the computation time for larger problem instances, a time-space network formulation
can be used. This method is applied in the work of Kliewer [23]. Because of the formulation of
the problem, the deadhead trips of each depot can be combined into fewer arcs. This state-space
reduction is most beneficial for instances with a high number of trips and a low number of depots.
The state-space reduction lowers the amount of decision variables and thus, makes the problem
easier to solve [23]. To solve the E-VSP, Reuer [24] also used a time-space network. However, in
that research, the charging time is chosen either zero or a fixed time. Lu [25] solves the problem
of electric taxi fleet scheduling of reserved taxi trips. Here, also a time-space formulation is
used, but a minimum charge time is imposed, making it possible to assume that the vehicle is
completely recharged after the charging session. No research has been found where an E-VSP is
solved using a time-space formulation where the SoC of the vehicles is accurately represented. In
the work of Guedes [13] the time-space formulation is used to solve a multi-depot multi-vehicle
type scheduling problem. Then, using column generation and state-space reduction the problem
is solved.

In the research of van Kooten Niekerk [26], multiple solution techniques have been implemented.
One of these is the column generation algorithm to obtain a good solution within a reasonable
time. Column generation is a technique which enables to compute a good, but not necessarily
optimal solution [27]. Alongside the column generation also Lagrangian relaxation has been used.
This approach has also been used in the work of Löbel [28]. Here, one or multiple constraints are
transferred to the objective function using penalties. In [26], also a label correcting algorithm
is implemented in combination with the column generation. This algorithm is developed by
Huang [29]. In the work of Adler [2], the column generation is combined with branch-and-bound,
a combination that is known as branch-and-price. This approach is also used by Golden [30].
Li [12] used a truncated column generation to solve large problem instances.

It becomes clear that multiple solution methods are devised and used to solve the electric vehicle
scheduling problem. A concurrent scheduling algorithm can provide a feasible solution quickly,
which is the reason that this algorithm is used in this research. The column generation approach
seems to be the most successful and therefore the most promising research direction when a
higher quality solution is required. This is the reason that the column generation technique is
used in this research.



Chapter 3

Concurrent scheduler

The first solution method is a heuristic, called the concurrent scheduler. With the use of a
heuristic, the scheduling of electric buses to service trips as described in section 1.2, can be
solved quickly. It is not guaranteed however, even unlikely, that the solution of a heuristic is the
globally optimal solution. However, the solution can still be useful. For instance, it can be used
to provide a solution if a schedule should be calculated quickly, or as an initial solution for a more
advanced scheduling method. In this research, the concurrent scheduler heuristic is proposed as
a possible improvement to the heuristic previously developed by VDL. The concurrent scheduler
has been first developed by Bodin, Rosenfield, and Kydes [3]. In the work of Adler [2], the
possibility of charging is added to this method.

The general idea behind the concurrent scheduler is that a good schedule can be obtained by
working through the timetable a single time, where for each service trip, the cheapest available
bus is selected to perform that service trip. Hereto, the service trips need to be sorted on start
time.

In this chapter, the assumptions made and parameters used are explained first. After that, the
theory and the application of the concurrent scheduler is discussed. To be able to compare the
scheduling methods, some test timetables are constructed and presented. The final part of this
chapter is the comparison of the schedulers, where for small problem instances, the optimality
gap is discussed.

3.1 Assumptions

To schedule the vehicles, the parameters need to be known. The charging time, hs, is fixed to
45 [min], because this ensures that the battery can be recharged fully regardless of the starting
SoC. As a minimum time between trips, hgap, 1 [min] is chosen. This is added to the concurrent
scheduler to accommodate for passenger boarding/disembarking, or for starting/stopping the
charging process. Furthermore, a battery capacity of 216 [kWh] is chosen, which is one of the
capacities available in VDL buses. It is decided that 80% of the battery capacity is available, to
reduce battery degradation. In addition to this, only a homogeneous fleet is considered, where all
the vehicles have an energy usage, ew, of 1.5 [kWh/km] regardless of weather, payload or other
factors. Furthermore, it is assumed that every bus is pre-conditioned while still plugged in to the
grid. This encompasses the heating/cooling of the cabin to the set-point, the heating/cooling
of the battery pack and possibly, the pressurization of the pneumatic system. Moreover, it is
assumed that every bus is charged fully overnight. The price of the bus is taken to be AC500.000.
With a 15 year use, no residual value and assumed 300 days of operation a year, the depreciation
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cost of the bus, cb, is AC111.11 per day. Furthermore, the cost of energy, ce, is set at AC0.20 per
kWh and the variable costs, cw for a bus are AC0.10 per km. These variable costs are, as an
example, to cover the maintenance of the vehicle. Note that these values are educated guesses.
For the development of the scheduler, the accuracy of these parameters is not critical. The cost
of a charging session during the day, cs is set to AC10. These are the costs for the use of the
charger, the costs for the energy are calculated separately.

3.2 Concurrent scheduler algorithm

In this section, the algorithm is explained in detail. The code used and the documentation can
be found in Appendix B.1.

3.2.1 Time and charging compatibility

It is not only important that subsequent trips can be performed by a vehicle in terms of energy
limitations, but also in terms of time. In the work of Adler [2], this is solved with the usage of
compatibility arrays. In this research the comp array is the time compatibility array and the
comps is the charging compatibility array. Service trip i is called compatible with any other
service trip j if the end time of trip i, hend(i) in addition to the time required to travel to the
start location of trip j,hdeadhead(lend(i), lstart(j)) and the minimum time between trips, hgap is
earlier than the start time of trip j, hstart(j). If this expression is true, then the comp array is
1 on that location. The equation can be found below:

comp(i, j) =

{
1, if hend(i) + hdeadhead(lend(i), lstart(j)) + hgap ≤ hstart(j)

0, otherwise
∀i, j ∈ T, (3.1)

where T is the set of service trips. The comp matrix is used to check if it is possible for a
vehicle to perform both service trips sequentially in terms of time, by driving directly to the
start location of the next service trip. However, it is also possible that a vehicle charges between
service trips. If two trips can be performed by the same vehicle in terms of time while visiting
a charging location in between, these trips are called charging compatible.

comps(i, j, s) =

{
1, if hend(i) + hdeadhead(lend(i), s, lstart(j)) + 2hgap ≤ hstart(j)

0, otherwise
∀i, j ∈ T ; s ∈ S.

(3.2)

Equation (3.2) is used to determine if two trips are charging compatible. Note that the charging
time is chosen as a constant, while ensuring that this charging time is sufficient to charge a
vehicle fully, regardless of the SoC when charging starts. The charging time is added to the
travel time of the incoming arcs of the charging stations h(lend(i), s), and thus, does not need
to be added in the calculation of the comps array. Here, s ∈ S is a charging location from the
set of charging locations.

3.2.2 Charging Scheduling Algorithm

In this section, the Charging Scheduling Algorithm (CSA) is explained. This algorithm is used
to determine which bus can perform the considered service trip with the lowest added costs,
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while taking time and energy constraints into consideration. Steps 1 through 4 are performed
for each service trip consecutively, which is the reason why the service trips need to be sorted
according to starting time. For the first service trip version (a) of step 1 is performed, where for
the remaining service trip version (b) is used.

Step 1

The first step of the CSA is to generate all sequences that can lead up to the service trip. A
sequence is a list of tasks that is performed consecutively. Only for the first service trip, step
1.a is performed. For subsequent service trips, step 1.b is completed.

Step 1.a As stated before, this step is only performed if the first service trip is considered.
The goal of this step is to generate the sequences from the depots to the start location of the
first service trip. The direct route from the depot to the start location is added. In addition to
this, the routes from the depot via the charging locations to the start location are added. In
Figure 3.1 these different possibilities are shown.

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.1: Step 1.a of CSA

Step 2

The goal of this step is to remove sequences that are not feasible in terms of energy. By removing
these sequences at this point, the computation time is reduced. An arc is either a service trip
or a deadhead trip. For each sequence, all the arcs are assessed and the energy level after each
arc is calculated. If the arc is towards a charging location, the new energy level is set to the
maximum capacity of the vehicle, while ensuring that this charging location can be reached
with the energy remaining. In Figure 3.2, it is shown that the sequence that uses the left
charging location is removed. Another action that can be performed at this step is the removal
of dominated sequences. A sequence is dominated if there are other sequences present that are
both faster and have lower costs. In the implementation of the concurrent scheduler this feature
is disabled, since it increases the computation time. This means that the computation whether
a sequence is dominated is more computationally expensive than to keep the sequence for the
remaining steps of the CSA for the current service trip.

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.2: Step 2 of CSA
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Step 3

This step copies the sequences of step 2 and for each charging location, adds the arc towards that
charging location. Because of this step, the CSA adds the option of charging between service
trips, as well as keeping the option to perform the next service trip directly after the previous
service trip.

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.3: Step 3 of CSA

Step 4

This step is divided into several sub-steps. First, it is determined which sequences can still reach
their home depot, as seen in Figure 3.4. For the remaining sequences, Figure 3.5, the total costs
of the sequences are calculated. Then, the added costs from the previous service trip in the
sequence, if that is the case, to the current service trip is calculated. The sequence with the
lowest added costs is chosen and this sequence is added to the solution, Figure 3.6.

Charging location

Depot

Service trip

Deadhead trip

t1 t2

???

Figure 3.4: Step 4.1 of CSA

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.5: Step 4.2 of CSA

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.6: Step 4.3 of CSA
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Step 1.b The goal of this step is to generate all the arc sequences from the end locations of
the previously assigned buses toward the current service trip. For all the previously assigned
buses, the last performed service trip is taken into account and the arcs toward the current
service trips are added according to the comp and comps arrays. In addition to this, the
sequences are generated to take a new bus from the depot. In Figure 3.7, the new sequences are
visualized.

Charging location

Depot

Service trip

Deadhead trip

t1 t2

Figure 3.7: Step 1.b of CSA

3.2.3 Finishing concurrent scheduler

The steps of the CSA are repeated for all service trips. To finish the bus scheduling, the arcs
toward the depots are added. Furthermore, the solution is checked on multiple factors: energy
feasibility, if all service trips are performed exactly once, if the bus ends at the same depot as
where it started, and if all subsequent arcs have the same start and end locations.

3.3 Test timetables

To compare the performance and quality of different solution methods, it is necessary to use the
same timetables. To have a representative use case, test timetables are based on real timetables.
A summary of the test timetables used in this research can be found in Table 3.1. There are
three timetables with varying sizes whereof there are three versions of each timetable, with an
increasing amount of charging locations. The number of charging locations for all test timetables
is one, two and five.

The first three timetables are based on the schedule of Eindhoven between the train station and
the airport, and consist of the first 14 trips in this schedule. To ensure that charging is necessary
in this test timetable, the distances are multiplied with a factor four. In the case of a single
charging location, the charger is located at the same location as the depot. For the second test
timetable, the charger is located at the airport. In the third test timetable the extra chargers
are located at unique locations, that where not in the timetable before.

The next three test timetables are also from Eindhoven between the train station and the airport,
but span all the trips throughout the day. The charging locations are the same as in the first
three schedules.

The test timetables 7 through 9 are all trips in Rotterdam, which has more start and end
locations. Again, in the case of one charging location, this is located at the depot. In the case of
two charging locations, the second charger is located at a location that is the start/end location
for some trips. For the situation with five charging locations, the extra chargers are located
randomly. A larger timetable than Rotterdam is not obtained. Note that for all test timetables,
only one depot location is used, even though the concurrent scheduler supports multiple depot
locations.
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Table 3.1: Summary of test timetables

Test
timetable
number

# trips # depots # charging
locations

# start/end
locations

Lower bound
# buses

Service trip
distance [km]

1 14 1 1 2 3 560
2 14 1 2 2 3 560
3 14 1 5 2 3 560
4 203 1 1 2 7 1841
5 203 1 2 2 7 1841
6 203 1 5 2 7 1841
7 1096 1 1 19 43 9400
8 1096 1 2 19 43 9400
9 1096 1 5 19 43 9400
10 - 1 1 1 - -

Table 3.2: Results of VDL scheduler on test schedules

Test schedule
number

Computation
time [s]

Cost per
day

Number of
buses used

Energy used
[kWh]

Distance
driven [km]

Number of
charging sessions

1 2.57 AC1148 7 1239 826 4
2 5.80 AC870 5 993 662 5
4 7.98 AC2762 14 3924 2616 16
5 7.91 AC 2202 11 3149 2099 14
7 13.90 AC14730 81 18974 12649 67
8 18.17 AC14682 83 17697 11789 74

The tenth and final timetable is the same as used in the research of Monhemius [1] and is also
from Eindhoven, of all the service trips between the train station and the airport. Here, inbound
and outbound service trips are combined such that the begin and end locations are at the train
station. It can be chosen how many service trips are extracted from this timetable. The service
trips in the timetable will be spread out through the day. This final timetable is used to compare
the solution of the concurrent scheduler with the optimal solution.

3.4 Results and comparison of schedulers

The algorithm as described in the previous section is implemented in MATLAB. For more
information regarding the implementation, see Appendix B.1 for the documentation. In this
section, the results of both the VDL scheduler and concurrent scheduler on the test timetables
are given1 and compared.

3.4.1 Results of VDL scheduler

The test timetables are solved with the VDL scheduler, whereof the results can be found in
Table 3.2. Note, that since the method of VDL does not support charging locations that are
neither on the depot or start/end locations of service trips, test timetables 3, 6 and 9 are not
scheduled.

1The computer used: Intel Core i7 4770HQ 2.2 Ghz, 16GB DDR3L 1600Mhz ram running on MacOS Mojave
10.14.5
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As an example, the Gantt chart of the resulting schedule from test timetable four can be found
in Figure 3.8. Here, one of the drawbacks of the VDL scheduler becomes clearly visible. Buses
eight through fourteen are waiting to leave a location. In the timetable no service trip leaves that
location and thus, these buses only perform one trip. This increases the costs considerably.
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Figure 3.8: Schedule provided by the VDL scheduler for test timetable four
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Figure 3.9: Schedule provided by the concurrent scheduler for test timetable four

In Figure 3.9 the schedule provided by the concurrent scheduler is shown. It can be seen that
buses 10 and 11 drive deadhead trips to perform service trips instead of waiting.
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Table 3.3: Results of concurrent scheduler on test schedules

Test schedule
number

Computation
time [s]

Cost per
day

Number of
buses used

Energy used
[kWh]

Distance
driven [km]

Number of
charging sessions

Number of
chargers used

1 1.30 AC971 6 1066 710 2 2
2 1.25 AC971 6 1066 710 2 2
3 1.31 AC966 6 1048 699 2 2
4 3.17 AC2250 11 3443 2296 11 4
5 3.63 AC2057 10 3099 2066 12 3
6 6.22 AC2110 10 3219 2146 14 3
7 42.08 AC11665 60 16905 11270 49 14
8 56.69 AC11256 62 16134 10756 62 12
9 99.35 AC11136 55 16144 10763 72 15

3.4.2 Results of concurrent scheduler

The concurrent scheduler as described before has been tested on the test schedules from sec-
tion 3.3. In Table 3.3, the results of the concurrent scheduler can be found. Furthermore, in
Figure 3.9 the Gantt chart of a typical schedule constructed by the concurrent scheduler is given.
Here, the time is on the x-axis and the vehicle number is on the y-axis. Each green block is a
service trip, a red block is a charging session, and the yellow blocks are deadhead trips between
locations. For the concurrent scheduler, it is important to note that it is usually cheaper to
perform the next service trip directly, than to start charging, which is cheaper than taking a
new bus. The concurrent scheduler continues to schedule service trips until the battery is almost
empty, and then starts charging. Because in most timetables the starting times of service trips
is similar, it results in similar times to start charging as well. A good example of this can be
found in Figure 3.9. Here, it can be seen that during the time that buses 1-3 are charging for
the second time, new buses are introduced. It could be beneficial to let some buses charge,
before they are close to empty. This way, the charging demand would spread over the day, and
thus, not many extra buses would be needed when other buses are charging. In addition to this,
charging is not prohibited or discouraged during rush hours. Even though, at those hours the
number of simultaneous service trips is the highest, and thus, charging should be limited.

From the idea that more charging locations increase the number of possible arcs, and thus lower
costs are possible, one would assume that the total costs strictly decreases for more charging
locations. As can be seen in Table 3.3, this is not the case. For test timetable 6, the total
costs are higher than for test timetable 5, while the only difference is the number of charging
locations. Figure 3.10 is used to explain this result.

Charging location

Depot

Service trip

Deadhead trip

ti ti+n

S(3)

S(2)

Figure 3.10: Explanation of not strictly lower costs in concurrent scheduler for more possible charging
locations

For test timetable 5, charging location number 2 is present, but charging location 3 is not. For
timetable 6 both are present. In the figure, the case is given where after service trip i, the bus



3.4. Results and comparison of schedulers 15

does not have enough energy to return to the home depot. See step 4 of the CSA for more
information. Because of this, the bus travels to the nearest reachable charging location. For
schedule 5, this is location number 2, for schedule number 6 this is charging location number 3.
As can be seen from the figure, the total travel distance is higher in the second case, this results
in higher total costs.

3.4.3 Comparison of concurrent scheduler and VDL scheduler

From tables 3.3 and 3.2 it becomes clear that, only for test timetable 2, the resulting schedule is
cheaper with the VDL scheduler. Note that in this timetable, the service trip distance is set to
a high value and it only consists of back and forth service trips with a charging location at one
end. In Figure 3.11, the Gantt charts for both solution methods can be found. The resulting
schedule of the concurrent scheduler is more expensive than the VDL scheduler because it uses
one more bus. This bus is added because no other buses are available to perform the first service
trip of bus 6. This drawback of the concurrent scheduler is explained section 3.4.2. The VDL
scheduler works well for this instance because bus number 1 starts charging after a single service
trip, which causes the charging sessions to be out of sync. This reduces the number of added
buses because of simultaneous charging, reducing the total costs.

A charging session after just one service trip is chosen because of the following. The first service
trip is added to the first bus. Next, the first service trip that is possible with regards to time
from that location is added to the bus, in this case this is trip number 3. After this, it is checked
if the bus can still reach the home depot, which in this case it can. Then, the next service trip is
added, trip number 6. This combination is not possible with regards to energy, so trip number 6
is removed from the block. Then, it is checked if the location after service trip 3 has a charger,
it has not. So trip number 3 is also removed from the schedule. This results in a schedule for
bus 1 where it charges after service trip 1, as can be seen in Figure 3.11b.
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Figure 3.11: Bus schedule for time table 2 for different solution methods

The solution methods are compared in Table 3.4 and the decrease in cost by using the concurrent
scheduler is given. For the test timetables that can be used for both solution methods, the
average cost reduction by using the concurrent scheduler as described previously is 12%
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Table 3.4: Difference between VDL scheduler and Concurrent scheduler

Test schedule
number

Costs VDL
scheduler

Costs Concurrent Scheduler Improvement of Concurrent
Scheduler

1 AC1148 AC971 15.42%
2 AC870 AC971 -11.61%
4 AC2762 AC2250 18.54%
5 AC2202 AC2057 6.58%
7 AC14730 AC11665 20.81%
8 AC14682 AC11256 23.33%

3.4.4 Optimality gap of concurrent scheduler

Up to this point, all the solutions are based on heuristics. It is therefore unknown how good these
solutions actually are. In this section, the concurrent scheduler is compared with the optimal
solution for small problem instances. The method of Monhemius [1] is used to determine the
optimal solution.

For both the concurrent scheduler and the optimal scheduler it is assumed that the energy usage
of the bus is 1.5 [kWh/km], charging time is 45 [min], minimal time between trips is 1 [min],
time to drive from or to the depot is 4 [min] and no energy is used for this deadhead trip.
Furthermore, the battery capacity is set to 216 [kWh], of which 80% is available. The price of a
bus is set to 111.11 [AC/day], price of a charger is 20 [AC/day] and charging costs 0.20 [AC/min]. In
this equation, hcharging is the number of minutes that the chargers are in use. The timetable that
is used is timetable 10, whereof more information can be found in Section 3.3. The schedulers
are tested from 5 to 18 service trips. The results can be found in Table 3.5. The cost per day is
calculated by the following equation:

Cost = cb · nb + 0.2 · hcharging + cs · ns. (3.3)

From Table 3.5, it becomes clear that, the schedule of the concurrent scheduler gives the same
daily costs as the optimal solution for the test cases with 5-7 and 9-18 service trips. This does
not mean that the schedule is identical. An example of this can be found in Figure 3.12. Here, it
becomes clear that the schedule is not the same, but they result in the same cost per day.
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Figure 3.12: Comparison between Concurrent scheduler and optimal schedule, for 15 service trips
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Table 3.5: Comparison between the concurrent scheduler and the optimal solution for increasing number
of planned service trips

Number
of service
trips

Solution method Computation
time [s]

Total
charging
[min]

Number of
buses

Number of
chargers

Cost per day

5 Concurrent Scheduler 1,2 0 1 0 AC111,11
Optimum 3,8 0 1 0 AC111,11

6 Concurrent Scheduler 1,3 0 1 0 AC111,11
Optimum 4,6 0 1 0 AC111,11

7 Concurrent Scheduler 1,3 45 1 1 AC140,11
Optimum 4,6 45 1 1 AC140,11

8 Concurrent Scheduler 1,3 0 2 0 AC222,22
Optimum 5,7 45 1 1 AC140,11

9 Concurrent Scheduler 1,3 45 1 1 AC140,11
Optimum 4,7 45 1 1 AC140,11

10 Concurrent Scheduler 1,4 0 2 0 AC222,22
Optimum 6,3 0 2 0 AC222,22

11 Concurrent Scheduler 1,4 0 2 0 AC222,22
Optimum 8,9 0 2 0 AC222,22

12 Concurrent Scheduler 1,3 0 2 0 AC222,22
Optimum 12,4 0 2 0 AC222,22

13 Concurrent Scheduler 1,6 45 2 1 AC251,22
Optimum 26,5 45 2 1 AC251,22

14 Concurrent Scheduler 1,6 45 2 1 AC251,22
Optimum 51,3 45 2 1 AC251,22

15 Concurrent Scheduler 1,5 45 2 1 AC251,22
Optimum 345,4 45 2 1 AC251,22

16 Concurrent Scheduler 1,5 45 2 1 AC251,22
Optimum 464,6 45 2 1 AC251,22

17 Concurrent Scheduler 1,2 45 2 1 AC251,22
Optimum 172,2 45 2 1 AC251,22

18 Concurrent Scheduler 1,6 45 2 1 AC251,22
Optimum 454,6 45 2 1 AC251,22
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Only for the schedule with eight service trips, the cost is different. In Figure 3.13, the schedules
for this case can be found. Here, the drawback of the concurrent scheduler becomes visible. The
scheduler keeps assigning trips to a bus until the bus is empty. In this case, this results in the
use of an extra bus, since the first bus is empty, and there is not sufficient time to charge the
bus and start the next service trip. In Figure 3.13b, the optimal solution is given. From this
figure it becomes clear that it can be beneficial to start charging before the battery is empty. In
this case, it results in using one bus less.
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Figure 3.13: Comparison between Concurrent scheduler and optimal schedule, for 8 service trips

Besides the difference in the value of the objective function of the schedulers, there is also a
difference in computation time between the concurrent scheduler and MILP implementation.
For the smaller instances, the optimal solution is around four times slower, where for the larger
instances it is around 300 times slower. It is expected that this difference increases for higher
amount of service trips.

3.5 Conclusion on concurrent scheduler

The concurrent scheduler is implemented and tested on several timetables. Then, the quality of
the result is assessed by comparing the concurrent scheduler, the VDL scheduler and the optimal
solution. The quality of the result of the concurrent scheduler is on average 12% better than
the VDL scheduler.

Besides the benefits to computation time and the quality of the results, the concurrent sched-
uler also supports more features than the previous solution methods. However, the concurrent
scheduler does not guarantee the optimal solution. A drawback of this scheduler is that charg-
ing during rush hours is not discouraged or prohibited, resulting in the addition of extra buses
during rush hours when other buses are charging.

Because the concurrent scheduler is fast, and the solution it gives is close to or the same as the
optimal solution for small problems, the conclusion is drawn that the concurrent scheduler is a
good way to obtain a feasible solution quickly.



Chapter 4

Additions to concurrent scheduler

The concurrent scheduler as described and tested in the previous chapter is able to supply a
feasible solution quickly. However, the algorithm is not perfect. The additions on the concurrent
scheduler as given in this chapter are based on the idea that it is beneficial to charge outside of
the rush hours. In this chapter, multiple possible improvements are proposed, whereof some are
applied. The methods chosen here are picked because of their ease of implementation and the
fact that they do not have a random factor, and are thus repeatable. In addition to the possible
improvements, the ability to limit the number of chargers per charging location is added. Then,
the quality of these alterations is tested. Finally, the conclusion on the additions is given.

4.1 Rush hour

As described in the previous chapter, it is not wise to charge during rush hours. To be able to
prevent this, the rush hours need to be defined first. In this section, this is briefly investigated.
In Figure 4.1, the number of simultaneous service trips that are present in timetable seven can
be found. From this figure it becomes clear that the morning rush hour ends around 9:00 and the
afternoon rush hour starts around 14:00 for this timetable. For this remainder of this chapter
these times are used as the rush-hour times. Please note that the magnitude and the extent of
the rush hours are timetable dependent.

4.2 Decrease charging costs during non-rush hours

One idea to let the concurrent scheduler reduce charging during rush hours is the lowering of
the charging costs during non-peak hours. For the rush hours the time intervals of 7:00h to
9:00h and 14:00h to 18:00h are chosen. The time used to determine the charging costs is the
end time of the service trip before that charging session. Since the charging takes 45 minutes
and there is some deadhead time, the higher rate for charging starts one hour before the rush
hours. The charging costs during the rush hour are AC20, twice the rate chosen in the previous
solution, outside the rush hours charging is free. In Table 4.1 the results can be found.

The biggest decrease in daily costs are seen for schedule 8, this can be seen in Table 4.2. It
turns out this is caused by the fact that sometimes, a bus starts charging a service trip earlier
than previously, reducing the total number of buses needed. On average, the method where
charging during non-rush hours is free has 0, 4% lower costs on these test schedules. This is a
small improvement and it is uncertain how this difference develops on other schedules.



20 Chapter 4. Additions to concurrent scheduler

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [h]

0

5

10

15

20

25

30

35

40

45

N
um

be
r 

of
 v

eh
ic

le
s 

[-
]

Number of service trips

Figure 4.1: Number of service trips that are conducted simultaneously

Table 4.1: Results of concurrent scheduler with increased charging costs during rush hour

Test Sched-
ule number

Computation
Time [s]

Cost per
day

Number of
buses used

Energy used Distance
driven [km]

Number of
charging
sessions

1 1,19 AC971 6 1066 710 2
2 1,22 AC971 6 1066 710 2
3 1,28 AC966 6 1048 699 2
4 3,37 AC2250 11 3443 2296 11
5 3,68 AC2055 10 3088 2059 12
6 6,36 AC2055 10 3088 2059 12
7 67,08 AC11490 58 16969 11313 52
8 73,11 AC11159 57 15957 10638 57
9 214,30 AC11294 57 15864 10576 73

Table 4.2: Comparison between concurrent scheduler with increased charging costs during rush hour and
the standard concurrent scheduler

Test Schedule
number

Concurrent
Scheduler

Concurrent Scheduler
- Variable charging
costs

Improvement

1 AC971 AC971 0.0 %
2 AC971 AC971 0.0 %
3 AC966 AC966 0.0 %
4 AC2250 AC2250 0.0 %
5 AC2057 AC2055 0.1 %
6 AC2110 AC2055 2.6 %
7 AC11665 AC11490 1.5 %
8 AC11256 AC11159 0.9 %
9 AC11136 AC11294 -1.4 %
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Figure 4.2: Schedule of test timetable 5 with increased charging before the afternoon rush hour

4.3 Higher SoC between rush hours

The next idea is to minimize the charging during the rush hours by ensuring that the buses enter
that period with a higher SoC. To achieve this, the decision on which sequence is chosen for the
current service trip is altered. No longer the cheapest option is always chosen, but the option
where charging occurs is preferred. Because the charging and the deadhead trips combined take
approximately an hour, the latest time that more charging should start is chosen to be 13:00h.
As a begin time 11:00h is chosen. Note that it is not impossible that charging occurs outside
this interval.

When planning a new trip, the end time of the previous trip is assessed. If this end time is
within the higher SoC interval as determined earlier, and the SoC is lower than the increased
lower bound of the SoC, the CSA considers a charging session. If the CSA would force a charging
session every time, a lot of charging sessions would occur. For this section, it is chosen that the
CSA lets every 5th planned trip go by a charger within the interval. An example of a resulting
schedule can be found in Figure 4.2.

In Figure 4.2 it becomes clear that bus number eight starts charging earlier than previously,
removing the need to charge at a later point. In Table 4.3 the results of all the test timetables
can be found.

In Table 4.4, the results are compared. The new devised method is on average 0.4% worse than
the standard concurrent scheduler. Furthermore, like the alteration where charging is free in
between the rush-hours, it is not certain if this method always gives a better solution. Therefore,
it is not advised to use this method.
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Table 4.3: Results of concurrent scheduler with higher SoC before rush

Test schedule
number

Computation
time [s]

Cost per
day

Number of
buses used

Energy used
[kWh]

Distance
driven [km]

Number of
charging sessions

1 1,41 AC971 6 1066 710 2
2 1,36 AC971 6 1066 710 2
3 1,50 AC966 6 1048 699 2
4 4,02 AC2.360 12 3436 2291 11
5 3,81 AC2.057 10 3099 2066 12
6 5,88 AC2.082 10 3154 2103 13
7 62,79 AC11.530 58 17046 11364 54
8 60,94 AC11.170 55 16232 10821 73
9 148,40 AC11.395 57 16132 10755 76

Table 4.4: Comparison between concurrent scheduler with increased SoC before rush hour and the
standard concurrent scheduler

Test Schedule
number

Concurrent
Scheduler

Concurrent Scheduler
- Increased SoC

Improvement

1 AC971 AC971 0.0 %
2 AC971 AC971 0.0 %
3 AC966 AC966 0.0 %
4 AC2250 AC2360 -4.9 %
5 AC2057 AC2057 0.0 %
6 AC2110 AC2082 1.3 %
7 AC11665 AC11530 1.2 %
8 AC11256 AC11170 0.8 %
9 AC11136 AC11395 -1.6 %

4.4 Limited number of chargers

As stated before, the reason to use the concurrent scheduler is that it is quick, and that the
results are used as an input for the next solution method. However, in the standard concurrent
scheduler, the number of chargers at each charging location is assumed to be infinite. When this
result is used as a starting point for a solution method where the number of chargers is limited,
this method may be starting with an infeasible solution. This is not desirable. A method is
developed to limit the number of chargers on a charging location in the concurrent scheduler.
The method is devised in collaboration with and implemented by S.J.A Rutten. In this section,
the alterations that are made with respect to the standard concurrent scheduler are explained.
In addition to this, the results of the concurrent scheduler with limited chargers are given.

First, it is important to set the maximum number of chargers per charging location. The next
step is to generate an array which states the number of available chargers per charging location
for each time increment. Then, set the values of available chargers for all times to the maximum
number of chargers on that location.

The CSA is altered to implement the limited number of chargers per charging location. Steps
1 and 2 of the CSA are not changed. In step 3 it is checked if the charging location that the
arc goes to has at minimum one charger available for the duration of a charging session. This is
done while taking into account the latest possible time to leave this charging location to start
the next service trip on time. If there is no charger available at least once during this period, the
sequence is removed. If there are enough chargers available in the interval, the charging session
is planned as early as possible. An example of this can be seen in Figure 4.3. If no charging
session can be planned, and no buses are available to complete the trips, a new bus is taken
from the depot.
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Figure 4.3: Shifting charging session with limited chargers

Table 4.5: Results of concurrent scheduler with limited number of chargers

Test Sched-
ule number

Computation
Time [s]

Total cost
per day

Number of
buses used

Total energy
used

Total dis-
tance driven
[km]

Total number
of charging
sessions

Number of
chargers per
charging lo-
cation

Number of
chargers
used without
constraints

1 1,71 AC971 6 1066 710 2 1 2
2 1,65 AC971 6 1066 710 2 1 2
3 1,74 AC966 6 1048 699 2 1 2
4 4,21 AC2.134 10 3349 2233 13 2 4
5 5,60 AC2.080 10 3109 2073 14 2 3
6 11,13 AC2.076 10 3055 2037 15 2 3
7 111,81 AC13.391 74 17395 11596 53 4 14
8 78,21 AC11.449 55 16528 11019 93 4 12
9 127,81 AC11.302 54 16320 10880 95 4 15

The next alteration is in step 4 of the CSA. Here, the charger availability array is updated. With
these alterations the number of chargers used per charging location never exceeds the limit. The
results of the test timetables with limited number of chargers can be found in Table 4.5.

In Figure 4.4a, the number of available chargers over time can be found for test timetable
eight. It becomes clear that between 12:30h and 14:00h intermittently all chargers are in use
at both charging locations. For test timetable eight, the objective function is 1.7% worse than
the solution with unlimited chargers. The number of available chargers for test timetable seven
can be found in Figure 4.4b, the objective function for this schedule is 14.8% worse. Note
that for both test timetables, the number of chargers available at the charging locations is four.
Therefore, the total number of chargers for test timetable seven is more strict than for test
timetable eight.

4.5 Results of additions to concurrent scheduler

In this section, the results of the different improvements methods are compared to the standard
concurrent scheduler.
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(a) Test timetable 8
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Figure 4.4: Number of available chargers per charging location for different test timetables

Table 4.6: Results of different schedule methods on test time timetables

Test Sched-
ule number

Concurrent
Scheduler

Concurrent
Scheduler
- Variable
charging
costs

Improvement Concurrent
Scheduler
- Higher
SoC before
rush

Improvement

1 AC971 AC971 0.0% AC971 0.0%
2 AC971 AC971 0.0% AC971 0.0%
3 AC966 AC966 0.0% AC966 0.0%
4 AC2.250 AC2.250 0.0% AC2.360 -4.9%
5 AC2.057 AC2.055 0.1% AC2.057 0.0%
6 AC2.110 AC2.055 2.6% AC2.082 1.3%
7 AC11.665 AC11.490 1.5% AC11.530 1.2%
8 AC11.256 AC11.159 0.9% AC11.170 0.8%
9 AC11.136 AC11.294 -1.4% AC11.395 -2.3%

Average Im-
provement

0.4% -0.4%

From Table 4.6 it becomes clear that adding variable charging costs has an average improvement
of 0.4% on the costs for the test timetables. The second proposed alteration, requiring a higher
SoC between the rush hours, has a negative effect of 0.4% on the costs. Note that for these test
timetables in combination with the chosen battery size the charging in the standard concurrent
scheduler the charging mainly does not occur during rush hours. This could be a reason why
the suggested improvement methods do not have a significant improvement. Note that each
alterations is made on the standard concurrent scheduler. The alterations are not combined and
tested.

Besides the options that are conducted here, other methods could be thought of as well. For
instance vary the start SoC of the buses or implement random charging session between rush
hours.
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4.6 Conclusion on additions to the concurrent scheduler

In this chapter two suggested improvements are implemented into the concurrent scheduler
algorithm. These suggested alterations to the concurrent scheduler do not have significant im-
provements. It is therefore not advised to implement these methods. Beside these improvements
the concurrent scheduler is expanded to support a limited number of chargers per charging loca-
tion. This feature is useful because in practice, the number of chargers per charging location is
limited. Furthermore, this feature expands the possibility of the concurrent scheduler solution
to be used as an initial solution for another solution method.
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Column generation

In this chapter, the column generation technique is explained using an example, where for
simplicity the goal is to minimize the number of buses that is used. The column generation
technique has been first proposed by Ford and Fulkerson [31]. First, the example problem is
given and a classic ILP formulation is given that solves this problem. Next, this ILP is re-
formulated to apply column generation. After that, the example problem is solved step-by-step
using the column generation technique. Finally, the benefit the column generation technique
can provide is explained and the conclusion is given.

5.1 Definition of example problem

In this section, an example timetable is given for which a schedule is made using two methods:
a classic ILP formulation and the column generation algorithm. For these schedulers, the goal
is to minimize the number of buses. The constraints are, that all the service trips need to be
performed and that only compatible service trips are performed by the same bus. It is assumed
that buses do not use energy, and thus, charging or energy levels are not taken into account.
Furthermore, all the service trips begin and end at the depot.

5.1.1 Timetable of example problem

The example timetable consists of five service trips, with begin times hstart = [1, 2, 3, 4, 5]T

and end times hend = [3, 4, 5, 6, 7]T . Because the begin and end locations coincide, no travel
time is present from any end to any start location. In this timetable, the maximum number
of simultaneous service trips is two, giving a lower bound on nb, the number of buses that are
needed. An upper bound is given by the number of service trips in the timetable, in this case
five. Furthermore, the minimum time between trips, hgap is set to zero. With the comp matrix
as defined in (3.1), the compatibility matrix for this example becomes:

comp =

⎡
⎢⎢⎢⎢⎣
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (5.1)
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5.2 Using an ILP to solve the example problem

One possibility to solve the scheduling problem is to use an Integer Linear Program (ILP). A
straightforward formulation that can be used is explained in this section. The decision variable in
this formulation is atb, which is 1 if service trip t ∈ T is performed by bus b ∈ B and 0 otherwise.
The set T consists of all service trips. Note here that B represents the set of available buses,
which should always be larger than or equal to the number of buses needed in the schedule, nb.

Minimize over nb:

nb, (5.2a)

subject to:

batb ≤ nb ∀ t ∈ T, b ∈ B, (5.2b)
at1b + at2b ≤ 1 ∀ t2 > t1; comp(t1, t2) = 0; t1, t2 ∈ T ; b ∈ B, (5.2c)∑

b∈B
atb = 1 ∀ t ∈ T, (5.2d)

atb ∈ {0, 1}, (5.2e)

nb ∈ Z
+. (5.2f)

Constraint (5.2c) states that for each bus, no two service trips that are incompatible are allowed
in the solution. The second constraint, (5.2d), states that each service trip must be performed
by exactly one bus.

The number of decision variables is |T ||B| + 1. With an upper bound on |B| of |T |, the upper
bound on the number of decision variables is |T |2 + 1. When charging is added, or a larger
timetable is considered, the number of decision variables is considerably higher. In the research
of Monhemius [1], charging and deadhead trips are added to this approach and the vehicle
scheduling problem is solved. However, the computation times are impractical.

The model as described above is implemented in MATLAB. The documentation can be found
in Appendix B.2. Next, problem (5.2) is solved and the resulting solution is given by:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
a21
a31
a41
a51
a12
a22
a32
a42
a52
a13
...

a55
nb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0
1
0
1
0

0
...
0

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The number of used buses is 2, where the first bus performs service trips 1, 3, and 5 and the
second bus performs service trip 2 and 4.
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5.3 Reformulated problem

In the previous section, it became clear that it is possible to formulate an ILP to solve a
scheduling problem. The decision variable was which bus performed which trip. However, this
is not required. In this section, the problem is re-formulated.

The concept of a vehicle task is introduced first. A vehicle task consists of all the service trips
that are performed by a bus during a day. The set of all vehicle tasks that exist is denoted by V ,
wherein each column represents a vehicle task. The goal is to use the fewest buses as possible.
This is equivalent to using the fewest vehicle tasks. For the example problem Xtv = V , where
Xtv consists of xtv which is 1 if service trip t ∈ T is performed by vehicle task v ∈ V and 0
otherwise.

V = Xtv =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 1 1

⎤
⎥⎥⎥⎥⎦

Above, the matrix V is given for the example problem. The number of columns is 12 because
with the given constraints the number of possible vehicle tasks is 12. An upper bound on the
number of vehicle tasks is 2|T |−1, which is the number of possible vehicle tasks when all service
trips are compatible. Since only feasible vehicle tasks are present in the set V , the compatibility
constraint does not need to be added. The decision variable is uv, which is 1 if vehicle task v
is in the solution and 0 otherwise. The objective function is to minimize the number of vehicle
tasks used, thereby minimizing the number of buses.

Minimize over uv:

nb =
∑
v∈V

uv, (5.3a)

subject to:

∑
v∈V

xtvuv = 1 ∀ t ∈ T, (5.3b)

uv ∈ {0, 1} ∀ v ∈ V. (5.3c)

Equation (5.3b) implies that for all the columns that are selected combined, each service trip
must be performed once. Furthermore, the decision variable uv must be binary. This means
that it is not allowed to let half a bus drive a vehicle task. Problem (5.3) is solved using an
integer solver and the result can be found below:

uTv =
[
0 0 0 0 0 0 0 0 1 1 0 0

]
.

From this result, it becomes clear that two vehicle tasks are selected and therefore two buses
are used. The ninth and the tenth vehicle task are selected from V . This means that the first
bus performs service trip 1, 3 and 5 and the second bus performs service trips 2 and 4, which is
the same result as using the formulation in Section 5.2.

This formulation does not seem to be an improvement. One reason is that the number of decision
variables in problem (5.3) grows exponentially with the number of service trips, 2|T |−1, whereas
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the number of decision variables in problem (5.2) grows polynomially, |T |2 + 1. The second
reason is that, for larger problems, it is not possible to enumerate the vehicle tasks and thus, it
is impossible to obtain the set V . Furthermore, even if it was possible to find V , problem (5.3)
would have many integer decision variables and thus, would be hard to solve.

The idea behind column generation is, that it is not required to start with an entire set of vehicle
tasks V , but to start with a few vehicle tasks and then iteratively find new vehicle tasks. When
the iteration phase is completed, fewer vehicle tasks are needed than are present in V . This is
possible because in the set V , multiple columns are present which are inefficient. In the example
problem, columns 6, 8 and 12 in V are inefficient because the bus is inactive for large portions
of the day.

The technique described above is called column generation because the goal is to find new vehicle
tasks, which are represented by columns. When the number of decision variables is large and the
number of constraints is relatively low in problem (5.3), this technique is particularly beneficial.
In the next section the formulations of the steps of column generation are given.

5.4 Formulating column generation

In this section, the formulation of the steps of the column generation algorithm are given. These
steps are applied to the example problem of the previous section. A flowchart of the column
generation algorithm can be found in Appendix A.1.

5.4.1 Restricted master problem

The first step is to solve a linear relaxation of problem (5.3), which is solved on a subset of V ,
called V ′. The Master Problem (MP) is described in (5.3), and the new formulated, (5.4), is
called the Restricted Master Problem (RMP). The RMP has to ensure that each service trip is
driven at least once.

Minimize over uv:

nb =
∑
v∈V ′

uv, (5.4a)

subject to:

∑
v∈V ′

xtvuv ≥ 1 ∀ t ∈ T, (5.4b)

uv ≥ 0 ∀ v ∈ V ′. (5.4c)

Here, (5.4b) states that each service trip must be performed at least once and (5.4c) states that
non-negative portion of buses can be assigned to a vehicle task.

5.4.2 Dual of restricted master problem

When the dual of the RMP as described in (5.4) is solved, shadow prices are obtained. These
can be used to find a new vehicle path. The shadow prices are also calculated when the RMP
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is solved using the simplex method. Below, the dual of the RMP is given, where πτ are the
decision variables.

Maximize over πτ : ∑
τ∈T

πτ , (5.5a)

subject to:
∑
τ∈T

XT
tvπτ ≤ 1 ∀ v ∈ V ′, (5.5b)

πτ ≥ 0 ∀ τ ∈ T. (5.5c)

The resulting decision variables πτ are also called the shadow prices. Each constraint in the
RMP has a corresponding shadow price in the dual. These shadow prices can be interpreted as
the amount of improvement to the objective of the RMP, when the corresponding constraint is
relaxed by one. Thus, when a constraint is inactive, the corresponding shadow price is zero. For
column generation, the shadow prices are used to find a new column to add to V ′.

5.4.3 Subproblem

The subproblem is used to find a new vehicle task to add to V ′, with the use of the shadow
prices as found in the dual of the RMP. From the formulation it becomes clear that the number
of integer decision variables in the subproblem is equal to the number of dual variables, and
thus, to the number of constraints in the RMP. This is why the column generation technique is
efficient when the number of constraints is relatively low. The new vehicle task j has to improve
the solution of the RMP to the biggest extent. When no column can be found that improves
the RMP, the set V ′ is sufficient and no more columns need to be added.

The decision variable in the subproblem is δτj , which is one if service trip τ ∈ T is in j and
zero otherwise. Furthermore, cvj is the costs of the new column j and πτ the shadow prices as
determined in the dual of the RMP.

Minimize over δτj :

cvj −
∑
τ∈T

πτδτj , (5.6a)

subject to:

δτ1j + δτ2j ≤ 1 ∀ comp(τ1, τ2) = 0; τ2 > τ1; τ1, τ2 ∈ T, (5.6b)
δτj ∈ {0, 1}. ∀ τ ∈ T. (5.6c)

In constraint (5.6b) it is stated that no two service trips are allowed in the new vehicle task j
when these service trips are incompatible. The number of constraints this equation describes
is the number of zero elements above the diagonal in the compatibility matrix, as described in
(3.1). The value of the objective function in the subproblem is also called the reduced cost, since
it gives the quantity by which the objective of the RMP could decrease by adding the newly
found column. If the reduced cost is negative, the new column is added to the set V ′ and the
dual of the RMP (5.5) is solved again.
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5.4.4 Solving to integer solution

When the RMP is solved for the known set of columns V ′, it is not certain, even unlikely that
all the decision variables uv are integers. This is not an issue when searching for new vehicle
tasks. However, when all the required columns are added and an integer solution is desired, this
can become an issue. To circumvent this problem, the MP can be applied on the set V ′.

Minimize over uv:

nb =
∑
v∈V ′

uv, (5.7a)

subject to: ∑
v∈V ′

xtvuv = 1 ∀ t ∈ T, (5.7b)

vp ∈ {0, 1} ∀ v ∈ V ′. (5.7c)

Note here that the number of decision variables in uv is equal to the number of columns in V ′.
This means that for larger problems, where possibly more columns are present in V ′, it is hard
to find an integer solution using an integer solver. For now, it is assumed that finding an integer
solution is possible.

If using an integer solver is not possible, the RMP can be solved. The solution for uv can be
rounded up to the nearest integer. This way, it is ensured that each service trip is performed.
However, it is possible that some service trips are performed more than once.

In the next section the column generation algorithm is applied to the example problem as
described in Section 5.1.

5.5 Applying column generation to example problem

In this section, the column generation algorithm as described above is applied to the example
problem used in this chapter. First, the subset of V , called V ′, is defined. For this initial set
for V ′, the RMP needs to be feasible. Furthermore, each vehicle task present in V ′ must be
feasible for a bus. In this example, the identity matrix is chosen as V ′. This means that one bus
is assigned to each service trip, where that bus does not perform any other service trips during
that day. This is an inefficient schedule since each bus only driving a short period of the day.
However, the usage of the identity matrix as the initial set V ′ ensures that the RMP is feasible.
Note here that any feasible schedule is allowed as an initial set for V ′.

V ′ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

5.5.1 Iteration 1

Using this starting solution for V ′, the dual of the RMP, problem (5.5) is solved. Here, cv, the
cost of each vehicle task is set to one and Xtv = V ′.



5.5. Applying column generation to example problem 33

Dual problem Problem (5.5) is applied to the example problem, the resulting optimization
problem is stated below:

Maximize:
π1 + π2 + π3 + π4 + π5, (5.8a)

subject to:
0 ≤ πτ ≤ 1 ∀ τ ∈ T (5.8b)

The resulting shadow prices πτ can be found below:

πT
τ =

[
1 1 1 1 1

]
.

Subproblem These shadow prices are then applied to the subproblem as described in (5.6).
This be found below:

Minimize:
1− 1δ1j − 1δ2j − 1δ3j − 1δ4j − 1δ5j , (5.9a)

subject to:
δ1j + δ2j ≤ 1,

δ2j + δ3j ≤ 1,

δ3j + δ4j ≤ 1,

δ4j + δ5j ≤ 1,

(5.9b)

δτj ∈ {0, 1} ∀ τ ∈ T (5.9c)

The resulting proposed new column j is then:

δτj =

⎡
⎢⎢⎢⎢⎣

1
0
1
0
1

⎤
⎥⎥⎥⎥⎦ ,

which has a reduced costs of −2 and thus, can be added to the set V ′. The next iteration can
start by solving the dual problem. The new set V ′ is given by:

V ′ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ .

5.5.2 Iteration 2

For this iteration, the same steps as for iteration 1 are performed.

Dual With the newly obtained array V ′, the dual of the RMP is solved again and the shadow
prices πτ are: [0, 1, 1, 1, 0]T .
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Subproblem With these shadow prices, the subproblem is solved and the proposed new col-
umn becomes:

δτj =

⎡
⎢⎢⎢⎢⎣

0
1
0
1
0

⎤
⎥⎥⎥⎥⎦ .

The reduced costs of the column above is −1, which is negative. Therefore, the column is added
to the known set V ′, which becomes:.

V ′ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ .

5.5.3 Iteration 3

With this newly obtained array V ′, the dual is solved again.

Dual The resulting shadow prices can be found below:

πT
τ =

[
0 0 0 1 1

]
.

Subproblem The subproblem is solved and the proposed column is the following:

δτj =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ .

The reduced costs of this column is 0. This is not negative and therefore, the proposed column is
not added to V ′. When the reduced cost is non-negative it is certain that no column exists that
can improve the solution of the RMP. For this example, two columns are added to the original
five. These seven vehicle tasks are sufficient to solve problem (5.4) to optimality.

5.5.4 Solving to integer solution

When the reduced costs in the subproblem become non-negative, the MP can be solved for V ′

and the solution is obtained. For the example, the number of decision variables is seven. The
solution can be found below:

uTv =
[
0 0 0 0 0 1 1

]
.

From here, it becomes clear that the sixth and seventh column are chosen. Therefore, one bus
drives service trip 1, 3 and 5 and one bus drives service trip 2 and 4, which means that two
buses are used in total and that the solution is the same as the solution of problem (5.2) and
problem (5.3).
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5.6 Conclusion on column generation

The example problem as described in Section 5.1 is solved using different solution methods.
First, the problem is solved using an ILP directly. The number of decision variables for this
formulation increases polynomially. Next, the problem is re-formulated. In this reformulation,
the number of integer decision variables grows exponentially. The column generation technique
is applied on the example problem and it is shown that it is not necessary to add all possible
vehicle tasks.

The problem is split up into a global problem, the MP/RMP, and a local problem, the sub-
problem, where the global problem ensures that each service trip is driven, and directs the local
problem to find a good solution. The local problem does not have to ensure that each service
trip is driven, just that the gain on the RMP is maximized and that the new column is feasible
for a bus. The main advantage of column generation is illustrated because not all of the possible
columns need to be enumerated, but only important columns are added iteratively.





Chapter 6

Application of column generation to
electric vehicle scheduling

In this chapter, a model is formulated that is based on the column generation technique, which
is used to solve an electric vehicle scheduling problem. The model explained in this chapter is
an elaboration of the model explained in Chapter 5. The first extension is that a limit on the
number of chargers on a charging location is taken into account. Furthermore, a limit on the
power that is drawn from the grid on the charging location is considered. As before, only one
depot and one charging location is considered, which is the begin and end location of all service
trips. In this chapter, the modeling decisions are explained first. Next, the formulation of each
step of the column generation algorithm is given. Then, multiple stopping criteria are discussed.
Finally, it is explained how an integer solution is obtained.

6.1 Modeling decisions

An important decision to make is to choose what decisions should be made by the master problem
and what decisions by the subproblem. A multitude of possibilities exist.

One possibility is that the subproblem is to find a vehicle task, that can be performed on a single
battery charge. Then, the MP/RMP becomes to choose which vehicle tasks are performed by the
same bus. The effect is that the MP/RMP has to ensure that enough charging occurs between
the vehicle tasks. Furthermore, the begin and end times of the vehicle tasks have to be taken
into account.

Another possibility is to discretize time and to construct the subproblem as a Shortest Path
Problem (SPP). An example of this can be found in the work of Kooten Niekerk [26] and
Posthoorn [18]. If both the time and the SoC are discretized the subproblem becomes a SPP,
which can be solved in polynomial time. If the SoC is not discretized, the subproblem becomes
an SPP with resource constraints. It is important to note here that while solving a SPP is
relatively easy, constructing the SPP while taking the shadow prices into account is non-trivial.
In the work as described earlier, the size of the graph was reduced by removing unreachable
nodes.

For this research, it is chosen that the definition of the vehicle task is not altered with respect
to the previous chapter. Thus, the vehicle task is defined as the combination of tasks a vehicle
performs during an entire day. Therefore, the decision which service trip is performed and
when charging occurs is present in the subproblem. The effects of this decision are discussed in
section 6.2.5
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To simplify modeling it is assumed that charging is linear. Furthermore, the time is discretized
into |Z| timeblocks, to simplify tracking the number of chargers that are used at the same
time.

6.2 Model formulation

In this section, each step of the column generation algorithm is explained. The constraints
applied to the MP/RMP represent the restrictions that apply to the complete system. Because
of the decision made in the previous section, the global constraints are that each service trip
is performed, the number of chargers used at the same time does not exceed the number of
available chargers, and the charging power on the charging location is not exceeded. The local
constraints are the constraints of a vehicle task. No incompatible trips are performed in the
same vehicle task, energy is only added to a vehicle that is connected to a charger. Furthermore,
the amount of energy that is added to a bus connected to a charger is within the lower and
upper bound. No charging occurs during driving and the energy level in the battery does not
exceed the lower and upper bounds. The time is discretized into nz timeblocks. Each timeblock
is denoted by z ∈ Z where Z is the set of timeblocks. In Appendix A.3, a flowchart can be
found of each step performed in the formulation used in this chapter.

6.2.1 Explanation of vehicle task

In the previous section, the choice is made that the subproblem consists of finding a vehicle
task that spans the entire day and that time is discretized. With the addition of charging, this
means that the vehicle task includes the service trips that the bus performs, the time slots that
are used to charge, and how much energy is charged during those time slots.

The vehicle task consists of three parts. The first part, Xtv is the same as defined in the previous
chapter, where xtv is one if service trip t is performed in vehicle task v. As described in the
previous section, the time is discretized into |Z| time blocks. In the new vehicle task, szv ∈ Szv

is one if charging occurs during time block z in vehicle task v and zero otherwise. Here, Szv is
a matrix whereas S is the collection of charging locations. Furthermore, the amount of energy
that is added to the bus needs to be determined. This information is stored in Ezv where ezv is
the amount of energy that is charged during time block z in vehicle task v.

In the previous chapter, it is stated that the identity matrix can be used as an initial set of
columns V , since this describes that each bus performs a single service trip. The same choice is
made for the model in this chapter. Therefore, the array Xtv is set to the identity matrix. The
matrices Szv and Ezv are zero matrices. This results in a feasible solution for the RMP, since
each trip can be performed and no chargers are used.

6.2.2 Master Problem

In this section, problem (5.3) is extended to support the vehicle tasks as described above. As in
problem (5.3), the decision variable is uv, which is one if vehicle task v is used in the solution and
zero otherwise. It is no longer assumed that each vehicle task has a cost of one. The parameter
cvv is introduced that expresses the costs of vehicle task v ∈ V . The objective is to minimize the
total cost of the solution. In this formulation, ns is the number of chargers that is available.
The parameter εs’,max

z indicates the maximum amount of energy that can be delivered by the
grid to the charging location during time block z.
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Minimize over uv: ∑
v∈V

cvvuv, (6.1a)

subject to:

∑
v∈V

xtvuv = 1 ∀ t ∈ T, (6.1b)

∑
v∈V

szvuv ≤ ns ∀ z ∈ Z, (6.1c)

∑
v∈V

ezvuv ≤ εs’,max
z ∀ z ∈ Z, (6.1d)

uv ∈ {0, 1} ∀ v ∈ V. (6.1e)

Constraint (6.1b) states that each trip must be performed once. Constraint (6.1c) ensures that
the number of simultaneous charging sessions does not exceed the number of available chargers
for every time block and the final constraint, (6.1d), dictates that the amount of energy that
is added to the buses by all the used vehicle tasks does not exceed the capability of the grid
connection in each time block.

6.2.3 Restricted Master Problem

The same alterations as in section 5.4.1 are performed. First, the integrality constraint is
relaxed and the master problem is solved for a subset of vehicle tasks, V ′ ⊂ V . Furthermore,
constraint (6.1b) is altered to ensure that each trip is performed at least once.

Minimize over uv: ∑
v∈V ′

cvvuv, (6.2a)

subject to:

∑
v∈V ′

xtvuv ≥ 1 ∀ t ∈ T, (6.2b)

∑
v∈V ′

szvuv ≤ ns ∀ z ∈ Z, (6.2c)

∑
v∈V ′

ezvuv ≤ εs’,max
z ∀ z ∈ Z, (6.2d)

uv ≥ 0 ∀ v ∈ V ′. (6.2e)

The interpretation of the constraints in the RMP is not changed with respect to the MP. This
interpretation can be found below problem (6.1).

6.2.4 Dual of restricted master problem

Next, the dual of problem (6.2) is constructed. Dual variables πτ , θζ and ρζ are introduced.
When the dual is solved, the shadow prices are obtained.
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Maximize over πτ , θζ and ρζ :

∑
t∈T

πτ −
∑
ζ∈Z

θζn
s −

∑
ζ∈Z

ρζε
s,max, (6.3a)

subject to:

∑
t,τ∈T

XT
tvπτ +

∑
z,ζ∈Z

ST
zvθζ +

∑
z,ζ∈Z

ET
zvρζ ≤ cvv, ∀ v ∈ V ′ (6.3b)

πτ ≥ 0 ∀ τ ∈ T, (6.3c)
θζ ≥ 0 ∀ ζ ∈ Z, (6.3d)
ρζ ≥ 0 ∀ ζ ∈ Z. (6.3e)

Here, the shadow prices πτ state how expensive it is to perform each service trip τ , θζ gives
the costs of exceeding the number of chargers available in time block ζ and ρζ of exceeding the
power limit of the charging location in time block ζ.

6.2.5 Subproblem

In this section, the subproblem is given and explained. The goal of the subproblem is to obtain
a new vehicle task that improves the solution of the RMP the most. The subproblem uses the
shadow prices as given by the dual problem to find the new vehicle task. From the definition of
the vehicle task in section 6.2.1, it becomes clear that the number of decision variables in the
subproblem is |T | + 2|Z|. The decision variables δτ,j , σζ and εζ are introduced, where binary
decision variable δτ,j is one if service trip τ ∈ T is performed by new vehicle task j and zero
otherwise. The binary decision variable σζ is one if the bus is using a charger during time block
ζ ∈ Z and zero otherwise. Finally, εζ is the amount of energy that is added to the bus during
time block ζ. Thus, there are |T | + |Z| integer decision variables and |Z| continuous decision
variables in the subproblem.

The cost of energy is ce, the minimum energy level in the bus is eb,min, the maximum energy
level in the bus is eb,max and εs,min is the minimum amount of energy that has to be charged
during a time block if a bus is connected to a charger. Furthermore, etτ is the energy that service
trip τ ∈ T requires. In the case described earlier, the costs for a unit of energy is fixed. If time
of day pricing of energy is required, ce is altered to cez, which is the cost of energy in timeblock
z ∈ Z.

As in problem (5.6), the objective function is the cost of the new vehicle task, cvj , minus the
gain that can be achieved, depending on the decision variables and the shadow prices. Here, the
cost of the new vehicle task is not set to one, but to the price of the bus, cb, plus the cost of the
energy that is charged during the vehicle task. The cost of a vehicle task is calculated as:

cvj = cb +
∑
ζ∈Z

εζc
e. (6.4)

With (6.4), the subproblem becomes (6.5). Note that cb is a constant and can be ommited
from the objective function, since the solution is the same. However, in this research cb is kept
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in the objective function to be able to use the objective function value as the reduced cost
directly.

Minimize over δτ,j , σζ and εζ :

cb −
∑
τ∈T

πτδτ,j +
∑
ζ∈Z

θζσζ +
∑
ζ∈Z

εζ(c
e + ρζ), (6.5a)

subject to:

δτ1,j + δτ2,j ≤ 1 ∀ comp(τ1, τ2) = 0; τ2 > τ1; τ1, τ2 ∈ T,
(6.5b)

δτ,j +

hend,z
τ∑

ζ=hstart,z
τ

σζ ≤ 1 ∀ τ ∈ T, (6.5c)

−σζM + εζ ≤ 0 ∀ ζ ∈ Z, (6.5d)

εs,minσζ − εζ ≤ 0 ∀ ζ ∈ Z, (6.5e)

τ∑
1

δτ,je
t
τ −

hend,z
τ∑
ζ=1

εζ ≤ eb,max − eb,min ∀ τ ∈ T, (6.5f)

hstart,z
τ −1∑
ζ=1

εζ −
τ−1∑
1

δτ,je
t
τ ≤ 0 ∀ τ ∈ T, (6.5g)

δτ,j ∈ {0, 1} ∀ τ ∈ T, (6.5h)

σζ ∈ {0, 1} ∀ ζ ∈ Z, (6.5i)

0 ≤ εζ ≤ min{εs,max, εs’,max, εb,max} ∀ ζ ∈ Z. (6.5j)

The functions hstart,z
τ and hend,z

τ are explained first. These functions state in which time block
ζ ∈ Z service trip τ begins and ends. In Figure 6.1, an example can be found with two service
trips. In this example, there are five time blocks and the time domain spans from 400 to 450.
It can be seen that service trip 1 starts during the first time block and ends during the second.
Thus, hstart,z

τ1 is 1 and hend,z
τ1 is 2.

The first constraint states that only compatible trips are allowed in the new column. The
second constraint ensures that a bus driving a service trip cannot be connected to a charger. In
constraint (6.5d), the big-M method is used to ensure that energy can only be added when the
bus is connected to a charger. Here, M is a sufficiently large number. Equation (6.5d) is only
correct if M is larger than the maximum value of εζ . Thus, M > min{εs,max, εs’,max, εb,max},
where εs,max is the maximum amount of energy a charger can deliver during a time period,
εs’,max is the maximum amount of energy a charging location can deliver and εb,max is the
maximum amount of energy a bus can charge during a time period. In this research, M = 1000
is used.
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Time

400 410 420 430 440 450

Time blocks

Figure 6.1: Example for determining overlap time blocks and service trips

Time

Before charging shift

After charging shift

[z]

Service trip

Charging

Figure 6.2: Comparison charging before and after shifting charge sessions

Constraint (6.5e) states that if a bus is connected to a charger, a minimum amount of energy
is added to the bus. To ensure that the energy level of the bus does not go below the lower
bound, constraint (6.5f) is added. Here, the sum of the energy of all the trips performed up to
and including the current service trip minus the energy charged has to be above the minimum
energy level. Constraint (6.5g) states that the energy level of the bus cannot exceed the upper
bound, by ensuring that the energy that is added to the bus is always less than the consumed
energy.

Even though the goal is to find a new column that improves the solution of the RMP the most, it
is not required to solve the subproblem to optimality for each iteration. As long as the reduced
cost is negative, the column can improve the solution of the RMP. However, to prove that no
column exists that improves the solution of the RMP, the reduced costs needs to be non-negative
when the subproblem is solved to optimality.

In the formulation of the subproblem, a bus is not prohibited to connect and disconnect from a
charger multiple times in between service trips. A constraint can be formulated that prevents
multiple charging sessions in between service trips. In this research, an other solution approach
is used. Here, charging sessions in between service trips are shifted to be consecutive after the
first charging session in between service trips. An example of the difference before and after
shifting can be found in Figure 6.2. Note here that this has an impact on the reduced costs of
the proposed new vehicle task.

6.2.6 Stop criteria

In the previous chapter, the column generation algorithm was halted when the reduced cost
became non-negative. When this is the case, it is certain that no vehicle task exists that can
improve the solution of the RMP. However, for larger problems, the number of columns that
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Table 6.1: Stop criteria

Stop criterion Meaning
1 No column exists that improves the result of the RMP
2 Improvement on the objective value of RMP is too low over numerous

iterations to continue
3 Maximum number of iterations reached
4 Maximum computation time reached

need to be added until the reduced cost is non-negative can be large. A well known effect of
the column generation technique is the tailing-off effect. More information about the tailing off
effect can be found in the work of Lübbecke [32]. This means that the greatest improvement
on the RMP is obtained in the first iterations, where later iterations have a lower benefit to
the objective function of the RMP. It can therefore be said that if it is not required to solve to
optimality it can be useful to stop iterating before the reduced cost is non-negative.

In Table 6.1, the stopping criteria used in this research are given. The first stop criterion is
that the reduced cost is non-negative. Another possibility is to stop iterating when the solution
of the RMP has not improved above a set amount over a finite number of iterations. Other
possibilities are to set a limit on the number of iterations or computation time. It is important
to note that when any stop criterion is used other than the first, it is no longer guaranteed the
set of vehicle tasks is sufficient to find the globally optimal solution.

6.2.7 Solving to an integer solution

The column generation algorithm iterates between the RMP, dual, and the subproblem to find
more vehicle tasks to add to V ′. As explained in the previous section, at some point the algorithm
is stopped. At that point, the set V ′ is known and the search for an integer solution for uv can
start. If the set V ′ is small enough, an integer solver can be used to find the vehicle tasks that
are used. This is caused by the fact that the number of integer decision variables is equal to
the number of vehicle tasks in V ′. If the set V ′ consists of many vehicle tasks, the computation
time when an integer solver is used can be long.

To circumvent this problem, an other method can be used to find an integer solution. In the
previous chapter, the RMP was solved and any decision variables that were larger than zero were
rounded up to one. This resulted in possibly driving service trips more than once. However,
with a limit on the number of chargers and the limit on the grid capacity, this is no longer
possible. For example, if either constraint (6.2c) or constraint (6.2d) is active when the RMP
is solved and the non-integer decision variables are rounded up to one, at least one constraint
is violated, resulting in infeasibility. In this research, a simple method is proposed, based on
rounding.

In Figure 6.3, the proposed rounding algorithm is shown by a flowchart. First, the RMP is
solved on set V ′ that has been obtained with the column generation algorithm. The solution
to uv could be, and probably will be, non-integer. However, if some decision variables are one,
equality constraints are added that fix these decision variables to one. Then, the algorithm
repeats. Another option is that no decision variable, that has not been fixed to one before, is
one. Then, the decision variable closest to one is set to one. If a decision variable is rounded to
one, it is possible to start the column generation algorithm again to add a couple of new vehicle
tasks. Using the method as described above, it it possible that an integer solution is obtained
using only a problem with continuous decision variables.

The first important note here is that not adding any additional columns might be possible,



44 Chapter 6. Application of column generation to electric vehicle scheduling
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Figure 6.3: Flowchart of performed steps to find integer solution using linear solver

but the quality of the solution can suffer. Ideally, columns are added until the reduced cost is
non-negative. However, this can result in high computation times. The second note is that the
method described above has a large drawback, namely that is not guaranteed that a feasible
integer solution is obtained. More sophisticated methods to find an integer solution exist, whereof
some can be found in the work of Kooten Niekerk [26] and Pepin [14]. Furthermore, once a
decision variable is rounded, it is no longer certain that the solution is globally optimal.

6.3 Results of model

In this section, the test timetables as described in section 3.3 are scheduled using the model
based on column generation as described by (6.1)-(6.5). From now on, this is referred to as the
column generation model. First, the values for the parameters that are used are explained. Next,
the results of the schedules for the test timetables made by the column generation model are
presented. Then, the quality of the solution is compared with the concurrent scheduler heuristic.
After that, the effect of increasing the number of iterations and the decrease in quality caused
by using the rounding algorithm is discussed. Furthermore, it is investigated if using an other
initial set of vehicle tasks can improve the results. Finally, the conclusion and recommendations
are given.

6.3.1 Results column generation

The column generation model is used to schedule electric vehicles for the timetables as described
in section 3.3. To be able to solve the problem, some parameters need to be known. These are
similar as described in section 3.1. Since the model does not support multiple locations, it is
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Table 6.2: Results from column generation on test timetables, with unlimited number of chargers

Concurrent Scheduler Column Generation
Computation
time [s]

Costs #Buses Computation
time [s]

Number of
iterations

Stop
Crite-
rion

Mean
trips

Costs #Buses

Timetable 1 1.85 AC628 5 4.10 22 1 1,000 AC474 4
Timetable 4 4.54 AC1294 9 873.75 200 3 1.074 AC1292 9
Timetable 7 57.63 AC7007 52 - - - - - -
Timetable 10 1.78 AC255 2 4.46 49 1 1.231 AC240 2

assumed that all the service trips described in the timetables start and end at the depot location.
Furthermore, all the available chargers are located at the depot. The minimum time between
trips hgap is set to 1 [min]. In addition to this, a battery capacity of 216 [kWh] is chosen whereof
80% is available. All the vehicles use 1.5 [kWh/km], regardless of the operating conditions. The
depreciation cost of a bus is 111.11 [AC/day]. The price of energy is set at 0.20 [AC/kWh]. The
stop criteria as described in section 6.2.6 are used. The second stop criterion is that the RMP
should improve more than 1% over 200 iterations. Thus, the value of the RMP should be less
than 99% of the value of the RMP 200 iterations earlier. The maximum number of iterations is
set to 250 and the maximum computation time is set to two hours. Please note that these stop
criteria are applied to the iterative part of the column generation algorithm and do not include
the search for an integer solution. As an initial solution, each service trip is assigned a unique
bus, where the cost for each of these vehicle tasks is set to 1000. For timetable 1, the number
of time steps is set to 50, for all the other timetables 100 time steps are used.

As explained in section 6.2.5, it is not always required to solve the subproblem to optimality.
To reduce the computation time, a time limit of 60 seconds is set to the computation time of
the subproblem. Please note that this time has to be sufficient to find a feasible solution, with
a negative reduced cost, for the subproblem. Finally, the number of service trips in timetable
10 is set to 13.

The column generation model is implemented in MATLAB and the documentation can be found
in Appendix B.3.2. Next, the main results of the column generation model are presented. First,
the results are given when the number of chargers is unlimited. For these results, an integer
solver is used to obtain an integer solution.

From Table 6.2, it can be seen that when the column generation model is used to schedule the
trips, the resulting costs is lower than the costs using the concurrent scheduler for test timetable
one, four and ten. For test timetable one this is because fewer buses are used. For test timetable
four and ten his is caused by the fact that the resulting costs are the costs of the buses plus the
costs of the energy. The column generation model can choose how much energy is added, where
the concurrent scheduler always charges fully. This means that where the column generation can
end the day at the minimum SoC, the concurrent scheduler can have a higher SoC. Furthermore,
it becomes clear that test timetable seven is not computable. This is caused by the number of
integer decision variables in the subproblem, which is equal to the number of service trips |T |
plus the number of time steps |Z|. For this instance, the number of integer decision variables
is 1097 + 100 = 1197, which is too large for the integer solver used. In addition to this, the
computation time is longer for the column generation than the concurrent scheduler. Finally, it
becomes clear that for test timetable 4 and 10 the mean number of service trips performed is
larger than one. This means that some service trips are present in more than one vehicle task
that is chosen. In practice, these trips would not be performed multiple times.

Next, the column generation model is used to solve the test timetables where the number of
chargers is limited. For test timetable 1, 4 and 10 the number of chargers is set to one, and for
test timetable 7 it is set to four. In Table 6.3 the results are given when the number of chargers
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Table 6.3: Results from column generation on test timetables, with limited number of chargers

Concurrent Scheduler Column Generation
Computation
time [s]

Costs #Buses Computation
time [s]

Number of
iterations

Stop
Crite-
rion

Mean
trips

Costs #Buses

Timetable 1 1.88 AC715 6 4.38 20 1 1.143 AC575 5
Timetable 4 4.38 AC1.294 9 1712.30 200 3 1.857 AC9465 26
Timetable 7 81.92 AC7.902 64 - - - - - -
Timetable 10 1.68 AC255 2 4.75 47 1 1.231 AC240 2
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Figure 6.4: Gantt charts of test timetable 4 with unlimited and limited number of chargers

is limited. From this table it becomes clear that the resulting costs is lower when the column
generation model is used than when the concurrent scheduler is used for timetable one and ten.
The reason is the same as for the situation with an unlimited number of chargers. For timetable
4, the case with a limited number of chargers has a better result than the concurrent scheduler,
while for the case with a limited number of chargers the result is worse, almost by an order of
magnitude.

From Figure 6.4b it becomes clear that for the case with unlimited chargers each bus drives
multiple service trips, where for the case with a limiting amount of chargers some buses only
drive a single service trip. These vehicle tasks are the initial vehicle tasks, with high costs. Since
each of these vehicle tasks have a cost of 1000, the resulting cost is high. The question is then,
how do these bad vehicle tasks end up in the solution. One reason could be that not enough
iterations of the column generation algorithm are completed. This can cause that some service
trips are not present in newly generated vehicle tasks, forcing the solver to pick an initial column
to ensure that each service trip is performed. In the next section, the effect of increasing the
number of iterations is briefly investigated.

6.3.2 Increasing the number of iterations

In this subsection, the effect of increasing the number of iterations for the column generation
algorithm is investigated. As stated before, it is beneficial to generate a higher amount of
columns. This is because each iteration can improve the solution of the RMP. It is important
to note that the RMP is a linear problem, whereas the MP is an integer linear program. It is
not guaranteed that an improvement on the RMP also means that the MP is improved. Test
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Figure 6.5: Comparison objective value of RMP and MP for multiple iterations

Table 6.4: Comparison of results on timetable four with with different number of iterations

Computation time [s] Number of iterations Stop criterion Mean trips Costs #Buses
1055.70 100 3 1.803 AC 11359 27
2262.80 250 3 1.8571 AC 9465 26

timetable 1 is used as an example first, where in Figure 6.5 the objective function of the RMP
is shown for each iteration. Furthermore, for each iteration, the objective function of the MP is
given as well, when the MP is solved for the set V ′.

From Figure 6.5, it can be seen that when for each iteration the RMP is solved, the solution
improves. For this example, the MP is solved on the known columns in each iteration too. As
is expected, the solution of the MP is always higher or equal to the solution of the RMP, since
the decision variables have to be integer. Furthermore, it becomes clear that when the solution
of the RMP improves, the solution of the MP does not necessarily improve. Next, the column
generation algorithm is used to schedule test timetable four where the maximum number of
iterations is set to 100 and 250 respectively.

From Table 6.4 it can be seen that indeed, increasing the number of iterations can be beneficial.
It is important to note that in both solutions, original columns with disproportionately high
costs, are present. This can be seen in Figure 6.6. This could indicate that, also for the case
with more iterations, more columns should be added. However, note that when more columns
are added, the problem becomes harder to solve using an integer solver. After a certain point,
one has to resort to an other method to obtain an integer solution.

6.3.3 Effects of the rounding algorithm

When the search for columns has been completed, the solution can be calculated. However,
when many columns are present in V ′, an integer solver can no longer be used to obtain an
integer solution. In this research, using a linear solver in combination with rounding has been
proposed. To not let the rounding algorithm benefit from having more vehicle tasks than the
integer solver, the number of extra columns that are generated if rounding is applied is set to
zero. As described in section 6.2.7, it is not certain that a feasible solution is obtained. However,
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(a) Test timetable four with 100 iterations
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(b) Test timetable four with 250 iterations

Figure 6.6: Gantt charts for test timetable four with different number of iterations

in the tests as described in this research a feasible solution is always obtained. In this section,
using an integer solver and the rounding algorithm to find an integer solution is compared. The
test timetable used here is test timetable four, where the number of chargers is one. The limit
on the number of iterations is set to 100. In Table 6.5 the results can be found.

Table 6.5: Comparison between using rounding to find integers and using an integer solver for test
timetable four

Solution method Computation time [s] Number of
iterations

Stop criterion Mean trips Costs #Buses

Integer solver 1058.50 100 3 1.803 AC 11359 27
Rounding 968.77 100 3 1.7241 AC 13394 30

From this table it becomes clear that for this case, the rounding algorithm provides a worse
solution than the case where an integer solver is used.

Next, test timetable one is scheduled using both the solution methods, where both the situation
with a limited number and unlimited amount of chargers is scheduled. In Table 6.6 the results
are given.

Table 6.6: Comparison between using rounding to find integers and using an integer solver for test
timetable one

Solution method Number of chargers Computation
time [s]

Number of
iterations

Stop crite-
rion

Mean trips Costs #Buses

Integer solver 4 chargers 3,39 22 1 1,0000 € 474 4
Rounding 4 chargers 3,44 22 1 1,0000 € 474 4
Integer solver 1 charger 3,67 20 1 1,1429 € 575 5
Rounding 1 charger 3,70 20 1 1,4286 € 699 6

From this table it becomes clear that for test timetable one, when the number of chargers is
not limiting, the result is identical. The linear solver does not give an all integer solution in
the first iteration of the rounding algorithm. However, the same vehicle tasks are used as in the
solution of the integer solver. When the number of chargers is limiting, the rounding algorithm
and the integer solver give a different solution. It can be seen that the rounding algorithm uses
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six vehicle tasks, and thus buses, where the integer solver uses five buses. As a reminder, the
concurrent scheduler algorithm also uses six buses in this case.

6.3.4 Warm start

Up to this point, the initial set V ′ is constructed by assigning a unique bus to each service
trip. This means that the number of vehicle tasks when the column generation algorithm starts
is equal to the number of service trips, nt. In the formulation as described in section 6.2, no
columns are removed from V ′ and thus, the number of integer decision variables when an integer
solution is desired is at least nt.

In this section, it is investigated if starting with a different set of vehicle tasks V ′ is beneficial.
Since the initial set has to be feasible for the RMP, not all sets of vehicle tasks are sufficient as
an initial set. A heuristic can be used to provide an initial set. Using a better initial set might
be beneficial because of two reasons.

The first reason is that a heuristic most probably assigns buses more efficiently than using each
bus for just one trip. This means that fewer buses, and thus vehicle tasks, are present in the
initial set V ′. This increases the number of vehicle tasks that can be generated by the column
generation algorithm, before an integer solver can no longer be used to find an integer solution,
possibly increasing the quality of the solution.

The second reason that using a warm start can be beneficial, is the possibility that higher
quality vehicle tasks are generated by the column generation algorithm. If the identity matrix is
used, the first iterations have a large impact on the value of the objective function of the RMP.
However, this does not mean that the generated vehicle tasks are good vehicle tasks, just that
a large improvement is made on the bad initial solution. The first vehicle tasks generated by
the column generation algorithm are tasks where service trips are combined that can be driven
by a single vehicle. It is possible that when a warm start is used fewer iterations of the column
generation algorithm are needed. Thereby improving the computation time. Note that finding
an initial feasible solution does have a computational costs itself.

In this section, the test timetables are solved using the column generation algorithm with the
identity matrix and with the solution of the concurrent scheduler as described in section 3 as
an initial set of vehicle tasks. To ease using the concurrent scheduler as an initial solution, it is
assumed that buses do not consume energy and thus, do not need charging. This assumption
can be dropped, when the charging timeblocks as described in section 6.2 are taken into account
in the concurrent scheduler. In the column generation algorithm equality constraints are added
to fix the decision variables in the subproblem, σζ and εζ , to zero. With these alterations, the
column generation algorithm is used to schedule the test timetables. An integer solver is used
to obtain an integer solution.

In Table 6.7, the results are given. For each test timetable a cold and a warm start is considered.
When the identity matrix is used as an initial solution, it is referred to as a cold start. On
the other hand, if the solution of the concurrent scheduler is used as the initial solution, it is
called a warm start. Furthermore, the computation time of the results with a warm start is
the computation time of the concurrent scheduler combined with the computation time of the
column generation algorithm. It can be seen that for test timetable 7, results are available where
for the case where charging was possible results were not obtained. This is at least partly caused
by the reduction in necessary decision variables. The computation time of test timetable 7 is
higher than the other test timetables, since the number of service trips is higher, resulting in
higher computation time of the subproblem.
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Table 6.7: Results of test timetables solved by the column generation algorithm with warm and cold
starts

Test
timetable

Start Total computa-
tion time [s]

Number of
iterations

Stop crite-
rion

Mean trips Costs #Buses

1 Cold 2,06 10 1 1,0714 AC333,34 3
1 Warm 3,767 6 1 1 AC333,34 3
4 Cold 17,14 200 3 1,0739 AC888,89 8
4 Warm 13,17 200 3 1 AC777,78 7
7 Cold 2048,70 200 3 1,4416 AC6666,67 60
7 Warm 776,79 120 1 1,0009 AC4999,99 45
10 Cold 1,66 1 1 1 AC111,11 1
10 Warm 3,16 0 1 1 AC111,11 1

Table 6.8: Comparison of results on timetable four with with increased charging costs between 11:00 and
15:00

Energy price Computation time [s] Number of
iterations

Stop crite-
rion

Mean trips Costs #Buses

Normal pricing 429.74 100 3 1.074 AC1292 9
Higher pricing 423.15 100 3 1.09 AC1475 10

For test timetable one, the number of iterations performed is reduced to six when the concurrent
scheduler is used to provide an initial solution. However, the integer solution does not contain
any of the newly generated vehicle tasks. The same is the case in test timetable ten, where no
new column is generated if a warm start is used. When a cold start is used for test timetable
ten, the globally optimal solution is obtained in one iteration.

The most interesting results are the results of test timetable four and seven. Here, it becomes
clear that when a warm start is applied, both the quality of the result and the computation time
can be improved by using a warm start. However, the costs are the same as the costs of the initial
solution provided by the concurrent scheduler. This could be caused by the simplification of the
problem, without deadhead trips and energy consumption. It is uncertain how this difference
develops if charging and energy consumption is included. With the results as shown above it
becomes clear that a warm start is a promising research direction.

6.3.5 Time of day pricing

In the formulation given in section 6.2, adding time of day pricing is briefly explained. The cost
of energy is altered from ce to cez, to provide the cost of energy for each timeblock z ∈ Z. In
this section, as an example, test timetable four is solved where the price of energy is set 100
times higher between 11:00 and 15:00. In Table 6.8 the results can be found. From Figure 6.7 it
becomes clear that when the charging price is increased for a certain period, less charging occurs
in that period.

6.4 Modeling recommendations

The model as described in section 6.2 does have some drawbacks. One drawback is that, at least
for the first iterations, the value of the objective function of the subproblem is not dependent on
the time when charging occurs. Therefore, a multitude of combination of the decision variables
result in the same objective value, increasing the computation time. Since no charging occurs



6.4. Modeling recommendations 51

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

0

1

2

3

4

5

6

7

8

9

10

V
eh

ic
le

 n
um

be
r 

[-
]

Service Trips
Charging

(a) Gantt chart when price is constant

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

0

1

2

3

4

5

6

7

8

9

10

11

V
eh

ic
le

 n
um

be
r 

[-
]

Service Trips
Charging

(b) Gantt chart when price is increased temporarily

Figure 6.7: Gantt charts for test timetable four with different charging costs

in the initial solution, no constraints in the subproblem regarding charging are active. Thus,
all shadow prices associated with these constraints are zero. Therefore, it does not matter in
which timeblocks charging occurs, as long as enough charging occurs between service trips and
charging is not during service trips. To solve this problem, a small penalty can be added to the
charging costs in the subproblem. For example, linearly increasing in time to ensure charging
starts at the earliest possible moment. Note that this factor can be small, since the only goal is
to make the model well defined.

The main drawback of the current implementation is the number of integer decision variables
in the subproblem, which is nt + nz. Larger timetables are therefore harder to compute using
this formulation. To reduce the size of the subproblem, the problem can be reformulated. If the
subproblem is to provide the tasks that are performed on a single charge, the charging can be
transferred to the MP/RMP. This eliminates the need to discretize in time, reducing the number
of integer decision variables in the subproblem. The MP/RMP has to ensure that each trip is
performed, that enough charging occurs between vehicle tasks and that the charging limits are
not exceeded. Furthermore, the RMP/MP needs to decide which vehicle tasks are performed by
the same vehicle. In this proposed formulation, non-linear charging and charger limits can be
implemented in a similar manner as in the work of Monhemius [1]

A different solution method can be used as well. In the work of Kooten Niekerk [26], the
subproblem is defined as a SPP. The subproblem is obtained by constructing a graph, where
both time and SoC are discretized. Once the graph is obtained, the problem reduces to a
SPP, which is solvable in polynomial time. If the SoC is not discretized, the subproblem can
still be solved using a graph. The problem then becomes a shortest path problem with resource
constraints. The difficulty of this method is constructing the graph. Kooten Niekerk reduced the
size of the graph by combining nodes. Note that the size of the graph might become intractable
quickly. Furthermore, it is important to keep track of the reduction of the graph, to apply
the shadow prices correctly. Because of the difficulty constructing the graph, and applying the
shadow prices correctly, it is not advised to use this method.
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6.5 Conclusion and recommendations column generation

In this chapter, the modeling decisions are explained and the extended model is given. In
addition to this, stop criteria are given and a method to find an integer solution is explained.
After that, the results of the column generation model are given. Finally, the benefit of using a
heuristic as an initial solution is discussed.

From the results it becomes clear that the column generation technique is a useful technique to
solve larger integer problems. The schedules provided by the column generation model have lower
costs than the schedules made by the concurrent scheduler heuristic. However, the computation
time is longer. Most importantly, using the formulation as provided in this chapter, the column
generation model is not able to schedule the largest test timetable. With formulation, it seems
promising that these larger problems can be solved with the column generation algorithm as
well. Furthermore, this reformulation can add extra features, like deadhead trips, non-linear
charging and the implementation of multiple charging locations.

Furthermore, it is investigated if increasing the number of iterations is beneficial to the quality
of the solution. For a single test scenario conducted in this research it is shown that it is
beneficial to increase the number of iterations, as long as an integer solver can be used to find
an integer solution. This is because it is shown that the rounding algorithm proposed in this
research reduces the quality of the solution. Therefore, it is not advised to use the rounding
algorithm.

In tests performed in this chapter, it became clear that using a heuristic to obtain the initial set
of columns is useful. This warm start reduced the necessary iterations or, for the same number
of iterations, reduced the costs of the solution. In addition to this, the computation time is
reduced when larger problems are assessed. Because of these reasons, it is advised to use a
heuristic to obtain an initial set of columns instead of assigning a unique bus to each service
trip.

Finally, some recommendations are given. The main recommendation is to divide the MP and
subproblem differently to reduce the size of the subproblem. Hereto, the definition of the columns
needs to be altered. The advise given is to redefine the subproblem to find a vehicle task that
can be driven on a single charge instead of finding a task for a bus for an entire day. The
decision on which vehicle tasks are assigned to the same bus and how much charging should
take place between these vehicle tasks is solved by the MP/RMP. This reformulation reduces
the number of decision variables in the subproblem. Furthermore, the need to discretize time
to take into account the charger usage is eliminated, further decreasing the number of integer
decision variables.
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Conclusions and recommendations

In this thesis, two different scheduling methods for electric vehicles are constructed and applied.
To find a feasible solution quickly, a concurrent scheduler heuristic is used in this research.
This scheduler is implemented and compared with the scheduler previously developed by VDL.
The concurrent scheduler gives, on average, 12% lower costs than the VDL scheduler, while
supporting more features. It is advised to use the concurrent scheduler when a feasible solution is
needed quickly, or as an initial solution for another solution method. Furthermore, the concurrent
scheduler is expanded to support a limit on the number of chargers, increasing the usability of
this heuristic to provide an initial solution.

However, the concurrent scheduler is not perfect. The main disadvantage is that charging during
rush-hours is not discouraged. Another disadvantage is that the concurrent scheduler does not
consider charging earlier than required, while this could reduce the number of simultaneous
charging sessions. To reduce these effects, two methods are devised. Both of these methods are
tested, where the effect on the quality of the result is low. Thus, is is not advised to implement
these additions. In addition to this, the concurrent scheduler is expanded to limit the number
of chargers on a charging location. This increases the practical employability of the concurrent
scheduler. Both as a scheduler and as a provider of an initial solution for another solution
method. The second solution method applied in this research is based on a column generation
algorithm. A simple example is used to explain the column generation algorithm. Next, this
example is used to show the reduction of integer decision variables. After that, the model is
expanded to support electric vehicles, where the subproblem remains to find a vehicle task for
a bus for an entire day. In addition to this, stop criteria are defined and a method is devised
to obtain an integer solution. This method is based on rounding. The most important note is
that the rounding algorithm is not guaranteed to provide a feasible solution. In addition to this,
results show that when the rounding algorithm is used, the quality of the solution is lower than
when an integer solver is used. When possible, it is advised to use an integer solver to find an
integer solution instead of the proposed rounding algorithm.

The results where an integer solver is used, generally have a lower cost than the concurrent
scheduler heuristic. An important condition to this results is that sufficient number of columns
are generated. The column generation technique is useful to find a high quality solution. More
features can be added to the column generation model. In this research, an example of time of
day pricing of energy is given.

Considering the reduction in decision variables provided by column generation, it is advised
to continue to use this technique to solve the vehicle scheduling problem. In the formulation
given in this research, the size of the subproblem is limiting the computational efficiency of the
column generation model. Therefore, it is advised to reformulate the column generation model,



54 Chapter 7. Conclusions and recommendations

to reduce the size of the subproblem. Besides improving performance, this reformulation can
include features like deadhead trips, multiple charging locations and non-linear charging. In
addition to this, removing unnecessary vehicle tasks from the set of known vehicle tasks can
improve the performance further.

Concluding, the column generation technique is a promising direction for future research. It is
expected that with some reformulation the electric vehicle scheduling problem is solvable within
reasonable time for the largest real life time tables.
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Appendix A

Column generation algorithm
flowcharts and structures

A.1 Flowchart of simplified model

In this section, the steps in column generation are visualized using a flowchart, Figure A.1. The
first step is to formulate the Master Problem (MP). Global constraints are part of the MP. An
example of a global constraint is the constraint that each service trip needs to be performed. The
second step is to formulate the Restricted Master Problem by relaxing the integrality constraint
in the MP and to solve for V ′, a subset of V . The third step is to solve the dual of the RMP,
wherefrom the shadow prices for each constraint in the RMP is extracted. The fourth step is
to find a new column/vehicle task using the subproblem. The shadow prices from the dual are
an input to the subproblem. In the subproblem the local constraints are added. An example
of a local constraint is the constraint that no incompatible service trips are allowed in the new
vehicle task. After step four, the reduced cost is calculated. If the reduced cost is negative, the
new column is added to V ′, and the algorithm is repeated from step three. The fifth and final
step is to solve the MP for set V ′. If the set V ′ is too large, the RMP can be solved and the
decision variables are rounded up to integers.
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Master Problem (MP)

Restricted Master
Problem (RMP)

Dual of RMP

Subproblem

V ′ = [V ′, δτj ]
If reduced cost < 0

Solve MP for V ′ or,

Solution

Shadow prices

If reduced cost >= 0

Step 1

Step 2

Step 3

Step 4

Step 5

round solution RMP

Constraint:

Each trip performed

Constraint:

No incompatible trips

Figure A.1: Flowchart of steps in column generation algorithm
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A.2 Structure of extended column

In Figure A.2 the structure of the extended columns can be found. Here, Xtv is an array with
integer values, where xtv is one if trip t ∈ T is performed by vehicle task v ∈ V and zero
otherwise. The values in the integer array Szv are ones if charging occurs during timeblock
z ∈ ζ in vehicle task v ∈ V and zero otherwise. The third part of the extended column is the
Ezv array. Here, the amount of energy is given that is charged during timeblock z ∈ Z in vehicle
task v ∈ V .

Xtv

v

t

Szv

Ezv

z

z

Figure A.2: Structure of extended column
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A.3 Flowchart of model extended to support electric vehicles

This flowchart is similar as described in the previous section. Here, extra constraints are added
to support the usage of electric vehicles and charging. Most importantly, if the RMP is used to
obtain an integer solution, a non-integer variable is fixed and possibly more columns are added.
This rounding algorithm is discussed in detail in section 6.2.7.

Restricted Master

If no negative reduced
are present or other stop
criterion is reached

Relax integrality constraint

Master Problem (MP)

Dual of RMP

Shadow prices

Constraints:

Each trip performed

Number of chargers not exceeded

Grid capacity not exceeded

Subproblem Find new column

Constraints:
No incompatible trips

Not simultaneous driving and charging

Only charging when connected to charger

When charging, add a minimal amount of energy

SoC not below minimum

SoC not above maximum

Only subset of all paths

Problem (RMP)

Analyze reduced costs

Solve RMP/MP

All variables integer

Solution

Round integer

Figure A.3: Flowchart of steps in column generation algorithm with support for electric vehicles



Appendix B

Documentation of schedulers

B.1 Documentation of concurrent scheduler

In this document the input, the code and the output of the concurrent scheduler is explained.
The main steps of the concurrent scheduler can be found in the report. Here the code is explained
that uses these steps.

Input

Excel file

As an input for the time table and location information an excel file is used. The format is as
follows: In the first sheet, called Time_Table, the service trips are given. In the table below an
example can be found. Here the distance has to be given in meters.

From Start End To Dist
ehvbst 08:00:00 08:30:00 ehvapt 40000
ehvbst 08:15:00 08:45:00 ehvapt 40000
ehvapt 08:40:00 09:10:00 ehvbst 40000
ehvapt 08:55:00 09:25:00 ehvbst 40000
ehvbst 09:00:00 09:30:00 ehvapt 40000
ehvbst 09:15:00 09:45:00 ehvapt 40000

In the second sheet, called All_locations. The location names and the location numbers are
mapped. Here all unique start and end locations for service trips are listed first, whereafter all
the depots, and the charging locations. An example can be found in the table below.

Name Number
ehvapt 1
ehvbst 2
Depot_1 3
Fuel_1 4

In the third sheet, called d the distances between all locations have to be given. Again, for
distance the unit is meters. Here it is important to note that Depot_1 and Fuel_1 are at the
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same location. Furthermore, the distance is from the location in the first column toward the
location in the other columns. An example can be found below.

ehapt ehvbst Depot_1 Fuel_1
ehapt 0 11083 5833 5833
ehvbst 11083 0 9916 9916
Depot_1 5833 9916 0 0
Fuel_1 5833 9916 0 0

The next sheet, called t is similar to the sheet d. This sheet represents the travel time between
the different locations. This travel time is a fraction of the day, thus 1 hour travel time is
represented as 1/24.

ehapt ehvbst Depot_1 Fuel_1
ehapt 0,0000 0,0132 0,0069 0,0069
ehvbst 0,0132 0,0000 0,0118 0,0118
Depot_1 0,0069 0,0118 0,0000 0,0000
Fuel_1 0,0069 0,0118 0,0000 0,0000

The next sheet called Depot states all the depot locations and their names.

Name
Depot_1

The last sheet called Charging gives the names of all the charging locations. Furthermore, an ex-
tra column can be added with the maximum number of chargers available at that location.

Name
Fuel_1

MATLAB

The first section in MATLAB is designated to the input of variables, and the input of the excel
file as described earlier. In the following code the variables are stated:

1 %% Input
2

3 %Trips
4 h_gap = 1; %Minimal amount of time between trips
5

6 %Charging
7 c_e = 0.20; %Cost of energy [euro/kWh]
8 h_s = 45; %Charging time (time in that a vehicle can be charged fully)
9 c_s = 10; %Cost of visiting a charging station

10

11 %Buses
12 c_b = 500000/(15*300); %Unit price of the considered bus type
13 e_b_max = 216*0.8; %Usable energy capacity for each vehicle [kWh]
14 e_w = 1.5; %energy usage [kWh/km]
15 c_w = 0.1; %Variable costs of bus [euro/km] (excl energy)
16
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17 %Time-table
18 filename = 'test_schedule1.xlsx';
19

20 time_table = readtable(filename,'Sheet','Time_Table');
21 L = readtable(filename,'Sheet','All_Locations');
22 w = xlsread(filename,'d');
23 h = xlsread(filename,'t');
24 D_string = readtable(filename,'Sheet','Depot');
25 S_string = readtable(filename,'Sheet','Charging');

Code

Pre-calculations

In the following code the time inputs are converted from fractions of the day to minutes since
the start of the day. Furthermore, the number of service trips that are happening simultaneously
are calculated, giving the lower bound on the number of buses. In addition to this, the location
names are converted to their location number. This is done to ease the referencing and looping
over locations later.

1 %Change model time to minutes
2 h_start = round(h_start*24*60);
3 h_end = round(h_end*24*60);
4 h = round(h*24*60);
5

6 %Calculate number of concurrent service trips
7 for i = 1:n_t
8 begin_time = h_start(i);
9 temp = find(begin_time > h_start & h_end >= begin_time);

10 n_sim_service_trips(i) = length(temp)+1;
11 end
12 min_buses = max(n_sim_service_trips);
13

14 %Convert location name of begin and end location to location number
15 for i = 1:n_t
16 begin_loc = l_start_cell{i};
17 end_loc = l_end_cell{i};
18

19 [l_start(i),~] = find(strcmp(begin_loc,L.Name) == 1);
20 [l_end(i),~] = find(strcmp(end_loc,L.Name) == 1);
21 end

To be able to map the trips between locations as a deadhead trip all the different deadhead
arcs are numbered. This can be found below. Here the start of the deadhead arcs is a high
number, this number has to be higher than the number of service trips. The start location of
each deadhead arc is i, and the end locations is j.

1 n_l = height(L);
2 arc_number = zeros(n_l,n_l);
3 deadhead_arc_number = 100001;
4 for i = 1:n_l
5 for j = 1:n_l
6 arc_number(i,j) = deadhead_arc_number;
7 deadhead_arc_number = deadhead_arc_number+1;
8 end
9 end
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In the information in the excel file the cost and energy consumption of deadhead trips is not
given. In the following code this is calculated.

1 e_deadhead = zeros(n_l);
2 c_deadhead = zeros(n_l);
3

4 for i = 1:n_l
5 for j = 1:n_l
6 if ne(i,j)
7 e_deadhead(i,j) = (w(i,j)/1000)*e_w;
8 c_deadhead(i,j) = (w(i,j)/1000)*c_w+e_deadhead(i,j)*c_e;
9 end

10 end
11 end

This model adds the cost of charging, the charging time and the cost of the bus to the outgoing
arcs of the charging stations and the depot respectively. In the code below this calculation is
given.

1 %Add price of bus and charging time
2 for i = 1:n_l
3 for j = 1:n_l
4 if any(ismember(S,i)) %If deadhead trip is from charging location
5 h(i,j) = h(i,j)+h_s;
6 c_deadhead(i,j) = c_deadhead(i,j)+c_s;
7 elseif any(ismember(D,i)) %If deadhead trip is from depot
8 c_deadhead(i,j) = c_deadhead(i,j)+c_b;
9 end

10 end
11 end

Next, the time and time-energy compatibility arrays need to be calculated. This is done in the
following code:

1 %% Check compatible trips
2 comp = zeros(n_t);
3 comps = zeros(n_t,n_t,n_s);
4

5 % Determine if trips are time compatible
6 for i = 1:n_t
7 for j = i+1:n_t
8 if h_end(i)+h(l_end(i),l_start(j))+h_gap <= h_start(j)
9 comp(i,j) = 1;

10 end
11 end
12 end
13

14 % Determine if trips are energy compatible
15 for s = 1:n_s
16 for i = 1:n_t
17 for j = i+1:n_t
18 if h_end(i)+h(l_end(i),S(s))+h(S(s),l_start(j))+h_gap <= h_start(j)
19 comps(i,j,s) = 1;
20 end
21 end
22 end
23 end
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CSA

In this section the different steps of the CSA is given in code. First, the different labels have
to be made. A label is a set of possible arc sequences. The labels L_1,...,L_4 correspond to
steps 1,...,4 of the CSA. The steps 1 to 4 are iterated for all service trips, the currently assessed
service trips is i.

1 %% CSA.1 Creating labels
2 % generate labels for arc associated with trip. Take union from all
3 % starting depots and from starting depots via charging stations.
4

5 L_1 = cell(1,n_t);
6 L_2 = cell(1,n_t);
7 L_3 = cell(1,n_t);
8 L_3_temp = cell(1,n_t);
9 L_3_feas = cell(1,n_t);

10 L_4 = cell(1,n_t);

CSA step 1 The first step of the CSA is to obtain all the sequences that lead up to and
include the current service trip i. For the first trip this is both the direct way from the depots to
the start of the service trip and via a charging station. For any trip other than the first trip, the
same sequences are added. Tn addition to this the last locations of the already planned buses
are taken and sequences from these locations toward the current service trip are made. These
are only added if the service trips are comp or comps.

1 for i = 1:n_t
2 progress = i/n_t;
3 waitbar((progress*0.8)+0.1)
4 %1.a if first trip:a
5 if i == 1
6 l = 1;
7 n = 1;
8 for k = 1:n_d
9

10 %Directly from depot to service trip
11 %No self loop allowed
12 if D(k) ~= l_start(i)
13 %Sequence up to trip
14 L_1{i}{l,n} = arc_number(D(k),l_start(i));
15 end
16 l = l+1;
17

18 %From depot to service trip via charging location
19 for s = 1:n_s
20 if D(k) ~= S(s) %No self loop allowed
21 L_1{i}{l,n} = arc_number(D(k),S(s));
22 L_1{i}{l,n+1} = arc_number(S(s),l_start(i));
23 l = l+1;
24 end
25 end
26 end
27

28 %1.b if not first trip:b
29 else
30 L_1{i}{1,1} = []; %Generate the next step in L_1
31

32 %Add previous solution to new start solution
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33 %Time compatible
34 [n_rows_cur_sol,~] = size(current_solution);
35 for k = 1:n_rows_cur_sol %For all current sequences
36

37 %Find last arc
38 %Check number of steps in current solution sequences
39 n_stepsk = sum(~cellfun(@isempty,current_solution(k,:)),2);
40 last_arc = current_solution{k,n_stepsk};
41

42 %If last trip is service trip (If last trip is not a service trip,
43 %then is toward a charger --> comps)
44 %Last service trip in current solution
45 if any(ismember(T,last_arc))
46 previous_service_trip = last_arc;
47 %If previous service trip and new service trip are compatible
48 if comp(previous_service_trip,i) == 1
49 if sum(~cellfun(@isempty,L_1{i})) == 0
50 n_rows = 0;
51 else
52 [n_rows, ~] = size(L_1{i});
53 end
54 %Number of steps of solution for k
55 n_stepsk = sum(~cellfun(@isempty,...
56 current_solution(k,:)),2);
57 for n = 1:n_stepsk
58 %Add previous solution to new possible solution
59 L_1{i}(n_rows+1,n) = current_solution(k,n);
60 end
61 end
62 end
63 end
64

65 %Time-energy compatible
66 [n_rows_cur_sol,~] = size(current_solution);
67 for k = 1:n_rows_cur_sol %For all current sequences
68 temp = true;
69 %Check number of steps in current solution sequences
70 n_stepsk = sum(~cellfun(@isempty,current_solution(k,:)),2);
71 last_arc = current_solution{k,n_stepsk};
72 if any(ismember(T,last_arc))
73 last_loc = l_end(last_arc);
74 else
75 [~,last_loc] = find(arc_number == last_arc);
76 end
77

78 %If last arc is a service trip
79 if any(ismember(T,last_arc))
80 for s = 1:n_s
81 %If previous service trip and new service trip are compatible
82 if comps(last_arc,i,s) == 1
83

84 if sum(~cellfun(@isempty,L_1{i})) == 0
85 n_rows = 0;
86 else
87 [n_rows, ~] = size(L_1{i});
88 end
89

90 %Add previous solution to new possible solution
91 for n = 1:n_stepsk
92 L_1{i}(n_rows+1,n) = current_solution(k,n);
93 end
94 %Add arc toward charging station
95 L_1{i}{n_rows+1,n_stepsk+1} = arc_number(last_loc,S(s));
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96 end
97 end
98

99 %If last arc is not a service trip
100 else
101

102 %Check last service trip
103 for l = n_stepsk:-1:1
104 arc = current_solution{k,l};
105 %Last service trip in current solution
106 if any(ismember(T,arc)) && temp == true
107 previous_service_trip = arc;
108 temp = false;
109 end
110 end
111

112 for s = 1:n_s
113 %If previous service trip and new service trip are compatible
114 if comps(previous_service_trip,i,s) == 1 && last_loc == S(s)
115 if sum(~cellfun(@isempty,L_1{i})) == 0
116 n_rows = 0;
117 else
118 [n_rows, ~] = size(L_1{i});
119 end
120 %Number of steps of solution for k
121 n_stepsk = sum(~cellfun(@isempty,...
122 current_solution(k,:)),2);
123 for n = 1:n_stepsk
124 %Add previous solution to new possible solution
125 L_1{i}(n_rows+1,n) = current_solution(k,n);
126 end
127 end
128 end
129 end
130 end
131

132 %Add deadhead arc towards start location of service trip i
133 if sum(~cellfun(@isempty,L_1{i})) == 0
134 n_rows = 0;
135 else
136 [n_rows, ~] = size(L_1{i});
137 end
138 n_steps = sum(~cellfun(@isempty,L_1{i}),2);
139

140 %Determine arc towards service trip
141 for k = 1:n_rows
142 n = n_steps(k);
143 if n == 0
144 break
145 end
146

147 last_arc = L_1{i}{k,n};
148 if any(ismember(T,last_arc)) %If last arc is a service trip
149 l_end_prev = l_end(last_arc);
150 else %If last arc is not a service trip
151 [~,l_end_prev] = find(arc_number == last_arc);
152 end
153

154 %If begin location of next service trip is not equal to
155 %end location of previous arc
156 if l_start(i) ~= l_end_prev
157 arc = arc_number(l_end_prev,l_start(i));
158 L_1{i}{k,n_steps(k)+1} = arc;
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159 end
160 end
161

162 %Generate labels if a new bus is taken from the depot
163 for l = 1:n_d
164 if sum(~cellfun(@isempty,L_1{i})) == 0
165 n_rows = 0;
166 else
167 [n_rows, ~] = size(L_1{i});
168 end
169 %Directly from depot to service trip
170 if D(l) ~= l_start(i) %No self loop allowed
171 %Sequence up to trip
172 L_1{i}{n_rows+1,1} = arc_number(D(l),l_start(i));
173 end
174 %From depot to service trip via charging location
175 for s = 1:n_s
176 if D(l) ~= S(s) %No self loop allowed
177 L_1{i}{n_rows+1+s,1} = arc_number(D(l),S(s));
178 L_1{i}{n_rows+1+s,2} = arc_number(S(s),l_start(i));
179 end
180 end
181 end
182 end
183

184 %Add service trip to sequence
185 [n_rows, ~] = size(L_1{i});
186 n_steps = sum(~cellfun(@isempty,L_1{i}),2);
187 for k = 1:n_rows
188 L_1{i}{k,n_steps(k)+1} = i;
189 end
190

191 L_2{i} = L_1{i};

CSA step 2 The goal of step 2 is to remove sequences that are generated in step 1 that are
energy infeasible. To simplify the code, the energy infeasibility calculation is implemented as a
function.

1 %% CSA.2 Remove dominated and energy infeasible labels
2

3 %Remove energy infeasible sequences
4 [energy_level_L1, energy_infeasible, energy_used_tot, time_used_tot, ...
5 cost_tot, dist_tot] = energy_feasibility(L_2{i},T,S,arc_number,...
6 e_deadhead,e_t,c_deadhead,c_t,w,w_t,h,l_start,l_end,h_start,h_end,e_b_max);
7 L_2{i}(find(energy_infeasible ~= 0),:) = [];

In the next section the energy_feasibility function is given. This function does not only give a
statement on which sequence is energy infeasible, but also the cost, energy used and distance
driven. This function is used multiple times in the script, it is only explained here. It is
important to note that for the energy level, it sets the energy level to full when traveling toward
a charging station. It is also checked if the bus can still reach the charging station with the
energy remaining.

1 function [energy_level, energy_infeasible, energy_used_tot, ...
2 time_used_tot, cost_tot, dist_tot] = energy_feasibility(L,T,...
3 S,arc_number,f,f_trip,c,c_trip,d,d_trip,t,b,e,bt,et,w)
4 %Check if solution is energy feasible
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5 [n_rows,~] = size(L);
6 n_steps = sum(~cellfun(@isempty,L),2);
7

8 energy_used_arc = zeros(n_rows,max(n_steps));
9 time_used_arc = zeros(n_rows,max(n_steps));

10 dist_arc = zeros(n_rows,max(n_steps));
11 cost_arc = zeros(n_rows,max(n_steps));
12

13 energy_level = zeros(n_rows,max(n_steps));
14 energy_infeasible = zeros(n_rows,1);
15 energy_used_tot = zeros(n_rows,1);
16 time_used_tot = zeros(n_rows,1);
17 dist_tot = zeros(n_rows,1);
18 cost_tot = zeros(n_rows,1);
19

20 for k = 1:n_rows
21 %Check which sequences are not feasible with regard to energy
22

23 for l = 1:n_steps(k) %For all possible sequences
24 arc = L{k,l}; %Check which arc is traversed
25

26 if any(ismember(T,arc)) %If trip is a service trip
27 %energy usage of service trip i
28 energy_used_arc(k,l) = f_trip(arc);
29 %Time used to fullfill service trip i
30 time_used_arc(k,l) = et(arc)-bt(arc);
31 %Costs associated with service trip i
32 cost_arc(k,l) = c_trip(arc);
33 %Driven distance by service trip i
34 dist_arc(k,l) = d_trip(arc);
35

36 else %If trip is a deadhead trip
37 %Check what are the start and end locations
38 [b_loc, e_loc] = find(arc_number == arc);
39 %Check the energy consumption over that arc
40 energy_used_arc(k,l) = f(b_loc,e_loc);
41 time_used_arc(k,l) = t(b_loc,e_loc); %Check time usage over arc
42 cost_arc(k,l) = c(b_loc,e_loc); %Check cost of arc
43 dist_arc(k,l) = d(b_loc,e_loc); %Check distance of arc
44 end
45

46 %Energy level of bus on arcs towards service trip
47 %If arc is towards charge location, new charge level is w
48 if l~= 1 && any(ismember(S,e_loc)) ...
49 && energy_used_arc(k,l) < energy_level(k,l-1)
50 energy_level(k,l) = w;
51 %If it is first arc in sequence, then new charge level is full
52 %charge level minus energy used.
53 elseif l == 1
54 energy_level(k,l) = w-energy_used_arc(k,l);
55

56 else %New charge level is old charge level minus energy used.
57 energy_level(k,l) = energy_level(k,l-1)-energy_used_arc(k,l);
58 end
59 end
60

61 %Determine total
62 %Determine total energy used
63 energy_used_tot(k) = sum(energy_used_arc(k,:));
64 %Determine total time used
65 time_used_tot(k) = sum(time_used_arc(k,:));
66 %Determine total cost
67 cost_tot(k) = sum(cost_arc(k,:));
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68 %Determine total distance driven
69 dist_tot(k) = sum(dist_arc(k,:));
70 end
71 for k = 1:n_rows
72 if any(energy_level(k,:) < 0)
73 energy_infeasible(k) = 1;
74 end
75 end
76 end

CSA step 3 In this step, all the arcs are added from the last location toward the different
charging locations.

1 %% CSA. 3 Generate labels associated with visiting each charging station
2 %following the service trip
3 %disp('Step 3: Generating possible sequences to charge station
4 %after service trip')
5 n_steps = sum(~cellfun(@isempty,L_2{i}),2); %Number of arcs traveled
6 %Count number of current feasible sequences
7 [n_rows, ~] = size(L_2{i});
8 %Pre-define new solution cell-array
9 L_3{i} = cell(n_rows,min(n_steps));

10

11 for k = 1:n_rows
12 n = n_steps(k); %Number of arcs including service trip
13

14 for s = 1:n_s+1
15

16 if s == 1 %If not towards charging station, only old label
17 for l = 1:n
18 L_3{i}{(n_s+1)*(k-1)+s,l} = L_2{i}{k,l}; %Old label
19 end
20 else %If towards charging station after service trip
21 %Arc number from end location service trip to charge station
22 arc = arc_number(l_end(i),S(s-1));
23 for l = 1:n+1
24 if l == n+1
25 %Add arc towards charge station
26 L_3{i}{(n_s+1)*(k-1)+s,l} = arc;
27 else
28 L_3{i}{(n_s+1)*(k-1)+s,l} = L_2{i}{k,l}; %Old label
29 end
30 end
31 end
32 end
33 end

CSA step 4 Step 4 of the CSA is the most comprehensive step. The goal of this step is to
check if the bus can still reach its home depot. Removing the infeasible sequences. The next
goal is to determine which sequence does add the lowest added costs to the total solution. Then,
that solution is chosen and added to the current_solution.

The first step is done by adding the arcs toward the home depot to the end of the sequences
of step 3. The sequences that cannot return to their home depot are deleted from both L3 and
L4. This way, L3 represents the sequences that can still reach the home depot after the service
trip.
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Next, the cost of the previous solution is calculated, the cost of the new possible sequences is
calculated and it is checked what the added costs are. The lowest added costs is chosen and the
new part of that sequence is added to the end of the current solution.

The next step is:

1 %% CSA. 4 Check if buses can still reach home depot. Choose cheapest
2 %solution and save this solution.
3 % Check if schedules associated with service trip or at the charge station
4 % can reach the end depot given remaining energy.
5

6 %---------------------------%
7 %Step 4_1: Check if home depot can be reached
8 L_4{i} = L_3{i};
9

10 %Add trip that travels to starting depot of sequence
11 n_steps = sum(~cellfun(@isempty,L_4{i}),2);
12 %Count number of current feasible sequences
13 [n_rows, ~] = size(L_4{i});
14

15 for k = 1:n_rows
16 arc_first= L_4{i}{k,1};
17 arc_last = L_4{i}{k,n_steps(k)};
18

19 %Find start location
20 if any(ismember(T,arc_first)) %If first trip is a service trip
21 b_loc = l_start(arc_first); %Find start location
22 else
23 [b_loc, ~] = find(arc_number == arc_first); %Find start location
24 end
25

26 %Find end location
27 %If last trip is a service trip
28 if any(ismember(T,arc_last))
29 e_loc = l_end(i); %Find end location
30 else
31 [~, e_loc] = find(arc_number == arc_last); %Find end location
32 end
33

34 %Add arc to starting depot
35 arc_to_depot = arc_number(e_loc,b_loc);
36 L_4{i}{k,n_steps(k)+1} = arc_to_depot;
37 end
38

39 %Check if labels can reach starting depot with range remaining
40 [energy_level_L4, energy_infeasible_L4, energy_used_tot, time_used_tot,...
41 cost_tot, dist_tot] = energy_feasibility(L_4{i},T,S,arc_number,...
42 e_deadhead,e_t,c_deadhead,c_t,w,w_t,h,l_start,l_end,...
43 h_start,h_end,e_b_max);
44

45

46 %L_4 is array with possible sequences, including arc toward home depot
47 %L_3_feas is the same as L_4, but without the arcs toward home depot
48 L_4{i}(find(energy_infeasible_L4 == 1),:) = [];
49 L_3_temp{i} = L_3{i};
50 L_3_temp{i}(find(energy_infeasible_L4 == 1),:) = [];
51 L_3_feas{i} = L_3_temp{i};
52

53 %---------------------------%
54 %Step 4_2: Determine the best solution for trip i
55 %Determine costs of all sequences that are able to perform
56 %service trip i (L_3_feas



74 Appendix B. Documentation of schedulers

57 %Determine number of rows
58 [n_rows, ~] = size(L_3_feas{i});
59 %Determine number of traversed arcs for each row
60 n_steps = sum(~cellfun(@isempty,L_3_feas{i}),2);
61 cost_total_L3_feas = zeros(n_rows,1);
62 cost_arc_L3_feas = zeros(n_rows,max(n_steps));
63 added_costs = zeros(n_rows,1);
64 clear loc_prev_trip
65

66 %Determine costs of L3_feas possible sequences
67 for k = 1:n_rows
68 for l = 1:n_steps(k)
69

70 arc = L_3_feas{i}{k,l};
71 if any(ismember(T,arc))
72 cost_arc_L3_feas(k,l) = c_t(arc);
73 else
74 [b_loc,e_loc] = find(arc_number == arc);
75 cost_arc_L3_feas(k,l) = c_deadhead(b_loc,e_loc);
76 end
77 end
78 cost_total_L3_feas(k) = sum(cost_arc_L3_feas(k,:));
79

80 cost_L3_feas_save{i} = cost_arc_L3_feas;
81 cost_total_L3_feas_save{i} = cost_total_L3_feas;
82 end
83

84 %Find location minimal added costs of performing service trip i
85 if i == 1
86 added_costs = cost_total_L3_feas;
87 else
88

89 %Determine the cost of the sequences up to the first
90 %deadhead arc to perform service trip i
91

92 clear n_steps
93 %Determine number of rows
94 [n_rows, ~] = size(L_3_feas{i});
95 %Determine number of traversed arcs for each row
96 n_steps = sum(~cellfun(@isempty,L_3_feas{i}),2);
97 cost_total_L3_feas_prev = zeros(n_rows,1);
98 cost_arc_L3_feas_prev = zeros(n_rows,max(n_steps));
99

100 for k = 1:n_rows
101 %If the possible sequence has an earlier service trip, before
102 %traveling to the current service trip
103 if any(ismember(setdiff(T,i),[L_3_feas{i}{k,1:n_steps(k)}]))
104 for l = n_steps(k):-1:1
105 arc = L_3_feas{i}{k,l};
106 if arc < i
107 %Save the step number which is the previous service trip.
108 loc_prev_trip(k) = l;
109 break
110 end
111 end
112

113 for l = 1:loc_prev_trip(k)
114 arc = L_3_feas{i}{k,l};
115 if any(ismember(T,arc))
116 cost_arc_L3_feas_prev(k,l) = c_t(arc);
117 else
118 [b_loc,e_loc] = find(arc_number == arc);
119 cost_arc_L3_feas_prev(k,l) = c_deadhead(b_loc,e_loc);
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120 end
121 end
122 cost_total_L3_feas_prev(k) = sum(cost_arc_L3_feas_prev(k,:));
123 added_costs(k) = cost_total_L3_feas(k)-...
124 cost_total_L3_feas_prev(k);
125

126 cost_total_L3_feas_prev_save{i} = cost_arc_L3_feas_prev;
127 else
128 %If the possible sequence does not have an earlier service trip
129 added_costs(k) = cost_total_L3_feas(k);
130 end
131 end
132 end
133

134 added_costs_save{i} = added_costs;
135

136 [loc_seq_best,~] = find(added_costs == min(added_costs));
137 [n_sol, ~] = size(loc_seq_best);
138 if n_sol > 1
139 loc_seq_best = loc_seq_best(1,1);
140 end
141 loc_seq_best_save{i} = loc_seq_best;
142 %Determine number of traversed arcs for each row
143 n_steps = sum(~cellfun(@isempty,L_3_feas{i}),2);
144

145 for n = 1:n_steps(loc_seq_best)
146 best_seq_sol{i,n} = L_3_feas{i}{loc_seq_best,n};
147 end
148 clear added_costs loc_last_service_trip
149

150 %---------------------------%
151 %Step 4_3: Save best sequence to the current_solution
152 %Check if beginning of best sequence is already part of another sequence,
153 %if so: Add solution to current_solution
154

155 %If trip is the first service trip
156 if i == 1
157 for n = 1:n_steps(loc_seq_best)
158 current_solution{i,n} = best_seq_sol{i,n};
159 end
160

161 %If trip is not the first service trip
162 else
163 after_service_trip = false;
164

165 %Check if part of new best solution is already an earlier trip
166 [~, n_steps] = size(best_seq_sol(i,:));
167 for n = 1:n_steps
168 arc = best_seq_sol{i,n};
169 if any(ismember(T,arc)) && arc ~= i
170 %The new best solution is done after an earlier service trip
171 after_service_trip = true;
172 end
173 end
174

175 %If new solution is after an earlier service trip
176 if after_service_trip == true
177 n_steps = sum(~cellfun(@isempty,best_seq_sol(i,:)),2);
178 %Check from which arc the new arcs start
179 for n = n_steps:-1:1
180 if any(ismember(T,best_seq_sol{i,n})) && best_seq_sol{i,n} ~= i
181 loc_last_service_trip = n;
182 end
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183 end
184

185 %Save the previous solution that has to be found in current_solution
186 previous_trip = best_seq_sol(i,1:loc_last_service_trip);
187

188 %Find location of previous trips in current_solution
189 [n_rows,~] = size(current_solution);
190 n_stepsk = sum(~cellfun(@isempty,previous_trip),2);
191 for k = 1:n_rows
192 check_same = zeros(1,n_stepsk);
193 for n = 1:n_stepsk
194 if current_solution{k,n} == previous_trip{1,n}
195 check_same(1,n) = 1;
196 else
197 check_same(1,n) = 0;
198 end
199 end
200

201 if all(check_same) %If all values in check_same are 1
202 location_sol = k;
203 [~, n_steps_sol] = size(best_seq_sol(i,:));
204 current_solution(location_sol,1:n_steps_sol)...
205 = best_seq_sol(i,:);
206 break
207 end
208 end
209 else %If new solution takes a new bus
210 [n_rows,~] = size(current_solution);
211 %Determine number of traversed arcs for each row
212 n_steps = sum(~cellfun(@isempty,best_seq_sol(i,:)));
213 for n = 1:n_steps
214 current_solution{n_rows+1,n} = best_seq_sol{i,n};
215 end
216 end
217 end

Finishing code

Here the arcs are added from the last location of the bus towards the home depot of that bus,
since it was checked earlier that this was energy feasible this is not checked again here.

1 %Add deadhead arcs toward home station after all the service trips
2 [n_rows,~] = size(current_solution);
3 n_steps = sum(~cellfun(@isempty,current_solution),2);
4 for k = 1:n_rows
5 n = n_steps(k);
6 last_arc = current_solution{k,n};
7 first_arc = current_solution{k,1};
8

9 if any(ismember(T,first_arc))
10 b_loc = l_start(first_arc);
11 else
12 [b_loc, ~] = find(arc_number == first_arc);
13 end
14

15 if any(ismember(T,last_arc))
16 e_loc = l_end(last_arc);
17 else
18 [~,e_loc] = find(arc_number == last_arc);
19 end
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20

21 %Add deadhead arc towards home depot to solution
22 current_solution{k,n+1} = arc_number(e_loc,b_loc);
23

24 end

Checking solution

It is important to know that the solution that is calculated is also feasible. In terms of energy
but also in terms of time and location. These checks are performed in the code below.

1 %Check if solution is energy feasible
2 [energy_level_solution, energy_infeasible_solution, energy_used_tot_solution,...
3 time_used_tot_solution, cost_tot_solution, dist_tot_solution] = ...
4 energy_feasibility(current_solution,T,S,arc_number,e_deadhead,e_t,...
5 c_deadhead,c_t,w,w_t,h,l_start,l_end,h_start,h_end,e_b_max);
6

7 if any(energy_infeasible_solution)
8 disp('ERROR: Solution is energy infeasible')
9 else

10 disp('- Solution is energy feasible')
11 end
12

13 %Check if solution completes all service trips a single time
14 total_occurrences = zeros(n_t,1);
15 for i = 1:n_t
16 % Find OccurrencesIn Each Cell
17 nr_in_cell = cellfun(@(x) find(x==i), current_solution, 'Uni',0);
18 % Output Total Occurrences In All Cells
19 total_occurrences(i) = numel([nr_in_cell{:}]);
20 end
21 if all(total_occurrences)
22 disp('- Every service trip is performed exactly once')
23 end
24

25 %Check if bus ends at the depot where it started
26 [n_rows,~] = size(current_solution);
27 n_steps = sum(~cellfun(@isempty,current_solution),2);
28 for k = 1:n_rows
29 n = n_steps(k);
30 last_arc = current_solution{k,n};
31 first_arc = current_solution{k,1};
32 if any(ismember(T,first_arc))
33 b_loc = l_start(first_arc);
34 else
35 [b_loc, ~] = find(arc_number == first_arc);
36 end
37

38 if any(ismember(T,last_arc))
39 e_loc = l_end(last_arc);
40 else
41 [~,e_loc] = find(arc_number == last_arc);
42 end
43

44 if e_loc == b_loc
45 home_depot(k) = 1;
46 end
47 end
48

49 if any(home_depot) %if all values in home_depot are one
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50 disp('- All buses return to their start depot')
51 else
52 disp('- ERROR: Not all buses return to their start depot')
53 end
54

55

56 %Check if every next trip starts from the end location of the previous trip
57 startendcheck_save = cell(1,n_t);
58 startendcheck_array = zeros(1,n_t);
59 for k = 1:n_rows
60 startendloc = zeros(n_steps(k),2);
61 startendcheck_temp = zeros(n_steps(k)-1,1);
62

63 for n = 1:n_steps(k)
64 %Check which arc is traversed
65 arc = current_solution{k,n};
66 if any(ismember(T,arc)) %If trip is a service trip
67 b_loc = l_start(arc); %Begin location of trip
68 e_loc = l_end(arc); %End location of trip
69 else
70 [b_loc,e_loc] = find(arc_number == arc);
71 end
72

73 startendloc(n,1) = b_loc;
74 startendloc(n,2) = e_loc;
75 if n ~= 1
76 %If previous end location is the same as the current start location
77 if startendloc(n-1,2) == startendloc(n,1)
78 startendcheck_temp(n-1,1) = 1;
79 end
80

81 end
82 end
83 startendcheck_save{k} = startendcheck_temp;
84

85 if any(startendcheck_save{k})
86 startendcheck_array(k) = 1;
87 end
88 end
89

90 if any(startendcheck_array)
91 disp('- All start/end locations are correct')
92 else
93 disp('- ERROR: Buses move between locations without deadhead arc')
94 end
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Output

Numbers

1 disp('======================================')
2 disp(' ')
3 disp('Results:')
4

5 %Determine total CPU time
6 computation_time = toc;
7 A = ['- Computation time: ',num2str(computation_time),' [s]'];
8 disp(A)
9

10 %Determine total costs
11 total_cost_solution = round(sum(cost_tot_solution));
12 total_cost_disp = addComma(total_cost_solution);
13 A = ['- Total cost: ',char(8364),total_cost_disp,'.-'];
14 disp(A)
15

16 %Determine number of buses used
17 [n_buses,~] = size(current_solution);
18 A = ['- Number of buses used: ', num2str(n_buses)];
19 disp(A)
20

21 %Determine number of extra buses used due to deadhead trips and charging
22 % A = ['- Extra buses due to deadhead+charging: ', num2str(n_buses-min_buses)];
23 % disp(A)
24

25 %Display Bus Assignment
26 % disp(' ')
27 % disp('Bus Assignment :')
28 Bus_assignment = current_solution;
29 % disp(Bus_assignment)
30

31 %Display energy levels
32 % disp('energy level after each movement')
33 % disp(energy_level_solution)
34 total_energy_used = sum(energy_used_tot_solution);
35 A = ['- Total energy used: ', num2str(round(total_energy_used)), ' [kWh]'];
36 disp(A)
37

38 %Display kilometers driven
39 %Per bus
40 %Total
41 total_distance_driven = sum(dist_tot_solution);
42 A = ['- Total distance driven: ', num2str(round(total_distance_driven/1000)),...
43 ' [km]'];
44 disp(A)
45

46

47 %Display number of charging sessions
48 to_charger = zeros(n_rows,max(n_steps));
49 n_charging_sessions_bus = zeros(n_rows,1);
50 n_charging_sessions_charger = zeros(n_s,1);
51 for k = 1:n_rows
52 for n = 1:n_steps(k)
53 arc_towards = Bus_assignment{k,n};
54 [~,e_loc] = find(arc_number == arc_towards);
55 if any(ismember(S,e_loc))
56 [~,charger_number] = find(S == e_loc);
57 n_charging_sessions_charger(charger_number) = ...
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58 n_charging_sessions_charger(charger_number)+1;
59 to_charger(k,n) = 1;
60 end
61 end
62 n_charging_sessions_bus(k) = sum(to_charger(k,:));
63 end
64 %Per bus
65

66 %Total
67 total_number_charging_sessions = sum(n_charging_sessions_bus);
68 A = ['- Total number of charging sessions: ',...
69 num2str(total_number_charging_sessions)];
70 disp(A)

Figures

1 %% Figures
2 %Make Gantt chart
3 [n_rows,~] = size(Bus_assignment);
4 n_steps = sum(~cellfun(@isempty,Bus_assignment),2);
5 service_trip_times = zeros(n_t,4);
6 first_service_trip = zeros(n_rows,1);
7 deadhead_times = zeros(1,1,n_rows);
8 n_deadhead = zeros(n_rows,1);
9 charging_times = zeros(1,1,1);

10 n_charging = zeros(n_rows,1);
11

12

13 %Determine start and end times of different types of trips in sequence
14

15 %Service trips
16 for k = 1:n_rows
17 temp = true;
18 for n = 1:n_steps(k)
19 trip_number = Bus_assignment{k,n};
20 if any(ismember(T,trip_number)) %If trip is a service trip
21 service_trip_times(trip_number,1) = trip_number;
22 service_trip_times(trip_number,2) = k;
23 service_trip_times(trip_number,3) = h_start(trip_number);
24 service_trip_times(trip_number,4) = h_end(trip_number);
25

26 if temp == true
27 first_service_trip(k) = n;
28 temp = false;
29 end
30 end
31 end
32 end
33

34 %Deadhead + charging trips
35 for k = 1:n_rows
36

37 for n = first_service_trip(k)-1:-1:1
38 trip_number = Bus_assignment{k,n};
39 if any(ismember(T,trip_number)) %If current trip is a service trip
40 else %If current trip is a deadhead trip
41 [b_loc,e_loc] = find(arc_number == trip_number);
42 next_trip = Bus_assignment{k,n+1};
43 n_deadhead(k) = n_deadhead(k)+1;
44
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45 if any(ismember(S,b_loc)) %If from charging location
46 n_charging(k) = n_charging(k)+1;
47

48 if any(ismember(T,next_trip)) %Next trip is a service trip
49 deadhead_times(n_deadhead(k),1,k) = trip_number;
50 deadhead_times(n_deadhead(k),2,k) = k;
51 deadhead_times(n_deadhead(k),3,k) = ...
52 h_start(next_trip)-h(b_loc,e_loc);
53 deadhead_times(n_deadhead(k),4,k) = h_start(next_trip);
54

55 charging_times(n_charging(k),1,k) = trip_number;
56 charging_times(n_charging(k),2,k) = k;
57 charging_times(n_charging(k),3,k) = ...
58 h_start(next_trip)-h(b_loc,e_loc);
59 charging_times(n_charging(k),4,k) = ...
60 h_start(next_trip)-h(b_loc,e_loc)+h_s;
61

62 else %Next trip is not a service trip
63 end
64

65 else %If not from charging location
66 if any(ismember(T,next_trip)) %Next trip is a service trip
67 deadhead_times(n_deadhead(k),1,k) = trip_number;
68 deadhead_times(n_deadhead(k),2,k) = k;
69 deadhead_times(n_deadhead(k),3,k) = ...
70 h_start(next_trip)-h(b_loc,e_loc);
71 deadhead_times(n_deadhead(k),4,k) = h_start(next_trip);
72 else %Next trip is not a service trip
73 deadhead_times(n_deadhead(k),1,k) = trip_number;
74 deadhead_times(n_deadhead(k),2,k) = k;
75 deadhead_times(n_deadhead(k),3,k) = ...
76 deadhead_times(n_deadhead(k)-1,3,k)-h(b_loc,e_loc);
77 deadhead_times(n_deadhead(k),4,k) = ...
78 deadhead_times(n_deadhead(k)-1,3,k);
79

80 end
81 end
82 end
83 end
84

85 for n = first_service_trip(k)+1:n_steps(k)
86 trip_number = Bus_assignment{k,n};
87

88 if any(ismember(T,trip_number)) %If current trip is a service trip
89 else %If current trip is a deadhead trip
90 [b_loc,e_loc] = find(arc_number == trip_number);
91 previous_trip = Bus_assignment{k,n-1};
92 n_deadhead(k) = n_deadhead(k)+1;
93

94 if any(ismember(S,b_loc)) %If from charging location
95 n_charging(k) = n_charging(k)+1;
96

97 %If previous trip is a service trip
98 if any(ismember(T,previous_trip))
99 %Never occurs

100 else %If previous trip is not a service trip
101 deadhead_times(n_deadhead(k),1,k) = trip_number;
102 deadhead_times(n_deadhead(k),2,k) = k;
103 deadhead_times(n_deadhead(k),3,k) = ...
104 deadhead_times(n_deadhead(k)-1,4,k)+h_s;
105 deadhead_times(n_deadhead(k),4,k) = ...
106 deadhead_times(n_deadhead(k)-1,4,k)+h(b_loc,e_loc);
107
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108 charging_times(n_charging(k),1,k) = trip_number;
109 charging_times(n_charging(k),2,k) = k;
110 charging_times(n_charging(k),3,k) = ...
111 deadhead_times(n_deadhead(k)-1,4,k);
112 charging_times(n_charging(k),4,k) = ...
113 deadhead_times(n_deadhead(k)-1,4,k)+h_s;
114 end
115

116 else %If not from charging location
117 %If previous trip is a service trip
118 if any(ismember(T,previous_trip))
119 deadhead_times(n_deadhead(k),1,k) = trip_number;
120 deadhead_times(n_deadhead(k),2,k) = k;
121 deadhead_times(n_deadhead(k),3,k) = ...
122 h_end(previous_trip);
123 deadhead_times(n_deadhead(k),4,k) = ...
124 h_end(previous_trip)+h(b_loc,e_loc);
125 else %If previous trip is not a service trip
126 deadhead_times(n_deadhead(k),1,k) = trip_number;
127 deadhead_times(n_deadhead(k),2,k) = k;
128 deadhead_times(n_deadhead(k),3,k) = ...
129 deadhead_times(n_deadhead(k)-1,4,k);
130 deadhead_times(n_deadhead(k),4,k) = ...
131 deadhead_times(n_deadhead(k)-1,4,k)+h(b_loc,e_loc);
132 end
133 end
134 end
135 end
136 end
137

138 %Plotting
139 figure
140 hold on
141 grid on
142 xmax = max([max(max(max(deadhead_times(:,3:end,:))))/60+0.1,...
143 max(max(max(service_trip_times(:,3:end,:))))/60+0.1,...
144 max(max(max(charging_times(:,3:end,:))))/60+0.1]);
145 xmin = min(nonzeros(deadhead_times(:,3:end,:)))/60-0.1;
146 axis([xmin xmax 0 n_rows+1])
147 xlabel('Time [h]')
148 ylabel('Vehicle number [-]')
149

150 for k = 1:n_rows %Deadhead trips
151 for n = 1:n_deadhead(k)
152 deadhead_trip_plot = plot([deadhead_times(n,3,k)/60 ...
153 deadhead_times(n,4,k)/60],[deadhead_times(n,2,k) ...
154 deadhead_times(n,2,k)],'-','Color',[1 0.7 0],'LineWidth',3);
155 end
156 end
157

158 for k = 1:n_rows %Charging
159 for n = 1:n_charging(k)
160 charging_plot = plot([charging_times(n,3,k)/60 ...
161 charging_times(n,4,k)/60],[charging_times(n,2,k)...
162 charging_times(n,2,k)],'-','Color',[1 0.5 0.5],'LineWidth',5);
163 end
164 end
165

166 for k = 1:n_t %Service trips
167 service_trip_plot = plot([service_trip_times(k,3)/60 ...
168 service_trip_times(k,4)/60],[service_trip_times(k,2) ...
169 service_trip_times(k,2)],'-','Color',[0 0.75 0.75],'LineWidth',10);
170 text(service_trip_times(k,3)/60,service_trip_times(k,2),...
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171 num2str(k),'FontSize',8);
172 end
173

174

175 xticks([floor(xmin):1:round(xmax)])
176 yticks([0:1:n_buses+1])
177 legend([service_trip_plot,deadhead_trip_plot,charging_plot],...
178 'Service Trips','Deadhead Trips','Charging','Location','northwest')

Most important variables

arc_number The variable arc_number stands for the deadhead arc number. Here all the
locations, service trip start and end location, depots and charging locations are interconnected
with deadhead arcs. Each arc has a unique number, the two arcs between two locations therefore
have a different number. The direction is from the first column to the other column.

current_solution In this cell-array the current solution is stored. Here each row stands for a
bus, and the arcs in that row stands for the sequence that that bus performs. Here are both the
deadhead arcs and service trips present. One can see that charging occurs when two deadhead
arcs follow each-other. When the computation of each service trip scheduling is completed this
solution is added to the current_solution. Therefore, if the calculation is stopped earlier than
the total amount of trips the current_solution stores the solution up to that point.

L_x This cell array stores the labels of step x of the CSA. Here it is important to note that
each row of arc sequences stand for a possible way to perform service trip i. From all these
possible sequences one is chosen by the CSA and added to the current_solution. For each
service trip the possible arc sequences are saved. L{i}{k, n}, i is the service trip, k the row
number and n the step number.
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B.2 Direct ILP

In this section, the code that is used in section 5.2 is given and explained. First, the input
parameters are given, in this case, the example timetable. Next, the compatibility array is
determined. Furthermore, the number of incompatible trips combinations are calculated.

1 %Script to determine a schedule for a timetable with only electric buses.
2 %Technique used: Direct ILP
3 %Filename: Direct_ILP.m
4 %JWM Wijnheijmer - November 2019 - VDL-ETS
5 clc; close all;clear all
6

7 %% Input
8 T = [1,2,3,4,5]; %Set of service trips
9 n_t = size(T,2); %Count number of service trips

10 h_start = [1,2,3,4,5]; %Begin times of service trips
11 h_end = [3,4,5,6,7]; %End times of service trips
12 c_b = 1; %Price of a bus
13 B = T; %Set of buses is equal to set of service trips
14 n_b_min = size(B,2); %Determining lower bound on number of buses
15

16 %Set options for integer solver
17 options_intlinprog = optimoptions('intlinprog','Display','none');
18

19 %% Process inputs
20

21 %Determining comp array
22 comp = zeros(n_t);
23 for i = 1:n_t
24 for j = i+1:n_t
25 if h_start(j) >= h_end(i)
26 comp(i,j) = 1;
27 end
28 end
29 end
30

31 %Determining number of incompatible trip combinations
32 for i = 1:n_t
33 n_incomp(i) = sum(find(comp(i,i+1:n_t) == 0));
34 end
35 n_incomp_trips = sum(n_incomp);

Next, the arrays are constructed that are used by the integer solver. Firstly, the constraint is
added that ensures that no incompatible trips are performed by a bus. Secondly, the constraint
that is necessary for the objective function is added. Lastly, the equality constraint that each
service trip needs to be performed once is added. Next, the arrays are combined and the lower
and upper bounds on the decision variables are added.

1 %% Set up optimization problem
2 n_decision_var = n_t*n_b_min+1; %Number of decision variables
3

4 %Objective function
5 f = zeros(n_decision_var,1);
6 f(n_decision_var) = c_b;
7

8 %%INEQUALITY CONSTRAINTS
9 %No incompatible trips together

10 A1 = zeros(n_incomp_trips*n_b_min,n_decision_var);
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11 m = 1;
12 for b = 0:n_b_min-1
13 for i = 1:n_t
14 for j = i+1:n_t
15 if comp(i,j) == 0
16 A1(m,b*n_t+i) = 1;
17 A1(m,b*n_t+j) = 1;
18 m = m+1;
19 end
20 end
21 end
22 end
23 b1 = ones(n_incomp_trips*n_b_min,1);
24

25 %Minimize number of used buses
26 A2 = zeros(n_t*n_b_min,n_t*n_b_min+1);
27 m = 1;
28 for b = 0:n_b_min-1
29 for t = 1:n_t
30 A2(m,b*n_t+t) = b+1;
31 A2(m,n_decision_var) = -1;
32 m = m+1;
33 end
34 end
35 b2 = zeros(n_t*n_b_min,1);
36

37 %%EQUALITY CONSTRAINTS
38 %Each trip performed once
39 A3 = zeros(n_t,n_decision_var);
40 for t = 1:n_t
41 for b = 0:n_b_min-1
42 A3(t,b*n_t+t) = 1;
43 end
44 end
45 b3 = ones(n_t,1);
46

47 A = [A1;A2];
48 b = [b1;b2];
49 Aeq = A3;
50 beq = b3;
51 lb = zeros(n_decision_var,1);
52 ub = ones(n_decision_var,1);
53 ub(n_decision_var) = Inf;

In the end, the optimization problem is solved and the results are displayed.

1 %% Solving optimization problem
2 [solution,Obj_val,~,~] = intlinprog(f,1:n_b_min*n_t,A,b,Aeq,beq,...
3 lb,ub,options_intlinprog);
4

5 %% Display results
6 solution = round(solution)
7 n_buses_used = solution(end)
8 total_cost = Obj_val
9

10 tasks_performed = zeros(n_t,n_b_min);
11 for b = 1:n_b_min
12 tasks_performed(1:n_t,b) = solution((b-1)*n_t+1:(b-1)*n_t+n_t);
13 end
14

15 tasks_performed = round(tasks_performed)
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B.3 Documentation of column generation

B.3.1 Column generation without energy usage and charging

In this section, the MATLAB code is given and explained that is used to solve the example
problem in section 5.3. This script can be used to solve the problem using three methods. The
first method is solving the MP. In that case, the set with all the available vehicle paths P needs
to be given. The second method is to use the identity matrix as an initial solution and add
vehicle tasks iteratively using column generation. The third option is to use column generation
for a given initial set of vehicle tasks.

First, the input parameters are given. In this case, the timetable that has to be scheduled.
Then, the initial set of columns has to be given.

1 %Script to determine a schedule for a timetable with only electric buses.
2 %Technique used: Column generation
3 %Filename: CG_basic.m
4 %JWM Wijnheijmer - November 2019 - VDL-ETS
5 clc; clear all; close all
6

7 %% Parameters
8

9 %Set used method
10 method = 2; %1 if all vehicle tasks are known
11 %2 to use identity matrix as initial set of vehicle tasks
12 %3 to define initial set of vehicle tasks manually
13

14 %Service trips
15 T = [1 2 3 4 5]; %Set of service trips
16 h_start = [1 2 3 4 5]; %Begin times of service trips
17 h_end = [3 4 5 6 7]; %End times of service trips
18 n_t = size(T,2); %Number of service trips
19 c_b = 1; %Price of a bus
20 maxiter = 10; %Maximum number of iterations
21 M = 100;
22

23 if method == 1
24 %(1) Give all existing vehicle tasks
25 V = [1 0 0 0 0 1 1 1 1 0 0 0;
26 0 1 0 0 0 0 0 0 0 1 1 0;
27 0 0 1 0 0 1 0 0 1 0 0 1;
28 0 0 0 1 0 0 1 0 0 1 0 0;
29 0 0 0 0 1 0 0 1 1 0 1 1];
30 Xzp = V;
31 V_star = V;
32 C_v = c_b*ones(1,size(V_star,2));
33

34 elseif method == 2
35 %(2) Use identity matrix as initial solution
36 V_star = eye(n_t);
37 C_v = c_b*ones(1,n_t); %Cost of vehicle tasks
38

39 else
40 %(3) State initial set of vehicle tasks
41 V_man = [1 0 0;
42 0 1 0;
43 1 0 1;
44 0 1 0;
45 0 0 1];



B.3. Documentation of column generation 87

46

47 C_v = c_b*ones(1,size(V_man,2)); %Cost of vehicle tasks
48 V_star = V_man;
49 end
50

51 %Set options for solvers
52 options_intlinprog = optimoptions('intlinprog','Display','none');
53 options_linprog = optimoptions('linprog','Display','none');

The next step is to find the array comp.

1 %% Process inputs
2 % Determine if trips are time compatible
3 comp = zeros(n_t);
4 for i = 1:n_t
5 for j = i+1:n_t
6 if h_end(i) <= h_start(j)
7 comp(i,j) = 1;
8 end
9 end

10 end

The next step is to perform the column generation algorithm. This algorithm is repeated until
the reduced costs are no longer non-negative, or the maximum number of iterations has been
reached.

First, the arrays that state the constraints of the subproblem are formulated. In this example
the only constraint in the subproblem is that no service trips that are incompatible are allowed in
the same vehicle task. Next the shadow prices are determined. Please note that this script does
not use the dual of the RMP, but obtains the shadow prices directly from the RMP. Next, the
subproblem is solved using the newly found shadow prices, and the reduced cost is calculated.
If the reduced costs is negative, the new vehicle task is added to V ′ and the algorithm is started
again.

1 %% Iteravely find new columns
2 %Make constraint that ensures no time incompatible trips will be in vehicle task
3 %Transform comp matrix to constraint matrix
4 A1_sub = zeros(1,n_t);
5 k = 0;
6 for i = 1:n_t
7 for j = i+1:n_t
8 if comp(i,j) == 0
9 if k == 0

10 n_rows_A_sub = 0;
11 A1_sub(1,i) = 1;
12 A1_sub(1,j) = 1;
13 else
14 n_rows_A_sub = size(A1_sub,1);
15 A1_sub(n_rows_A_sub+1,i) = 1;
16 A1_sub(n_rows_A_sub+1,j) = 1;
17 end
18 k = k+1;
19 end
20 end
21 end
22 b1_sub = ones(size(A1_sub,1),1);
23 clear k
24
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25 reduced_costs_save = zeros(maxiter,1);
26

27 for i = 1:maxiter
28

29 disp('----------------------------------------')
30 disp_txt = ['Iteration number: ', num2str(i)];
31 disp(disp_txt)
32 disp(' ')
33 n_v = size(V_star,2); %Number of vehicle tasks
34

35 %% RMP: Find shadow prices
36 %In this example, the shadow prices are obtained directly from the RMP
37 %when this is solved using the simplex method. You can also define the dual
38 %of the RMP, and solve that. The resulting decision variables are then the
39 %shadow prices.
40

41 f_RMP = C_v;
42 A_RMP = -V_star(1:end,:);
43 b_RMP = -ones(n_t,1);
44 Aeq_RMP = [];
45 beq_RMP = [];
46 lb_RMP = zeros(n_v,1);
47 ub_RMP = ones(n_v,1);
48

49 [u_v, Obj_val, exitflag, ~, shadows_prices] = linprog(f_RMP,A_RMP,b_RMP,...
50 Aeq_RMP,beq_RMP,lb_RMP,ub_RMP,options_linprog);
51

52 disp_txt = ['Solution RMP'];
53 disp(disp_txt)
54 disp(u_v)
55

56 %Get shadow prices
57 pi_tau = shadows_prices.ineqlin(1:n_t);
58 pi_t_tau_save{i} = pi_tau';
59

60 disp_txt = ['Shadow prices'];
61 disp(disp_txt)
62 disp(pi_tau)
63

64 %% SUBPROBLEM: Make new vehicle task
65

66 f_sub = [-pi_tau'];
67 A_sub = A1_sub;
68 b_sub = b1_sub;
69 Aeq_sub = [];
70 beq_sub = [];
71 lb_sub = zeros(size(f_sub,2),1);
72 ub_sub = ones(size(f_sub,2),1);
73

74 [new_column, fval, exitflag, output] = intlinprog(f_sub,1:size(f_sub,2),...
75 A_sub,b_sub,Aeq_sub,beq_sub,lb_sub,ub_sub,options_intlinprog);
76 new_column(1:n_t) = round(new_column(1:n_t));
77 new_column_save{i} = new_column;
78 fval_sub_save(i) = fval;
79

80 disp_txt = ['New column'];
81 disp(disp_txt)
82 disp(new_column)
83

84 %Compute reduced costs
85 disp_txt = ['Reduced costs'];
86 disp(disp_txt)
87 reduced_costs = c_b+fval;
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88 disp(reduced_costs)
89 reduced_costs_save(i) = -reduced_costs;
90

91 %If new column will improve the RMP, add the column to V_star.
92 %Otherwise, stop iterating
93 if i ~= maxiter && reduced_costs < 0
94 V_star = [V_star, new_column];
95 C_v = [C_v, c_b];
96

97 disp_txt = ...
98 ['Reduced costs are negative, new column is added to known columns'];
99 disp(disp_txt)

100 disp(' ')
101

102 disp_txt = ['Known set of vehicle tasks'];
103 disp(disp_txt)
104 disp(V_star)
105

106

107 else
108 disp_txt = ['Reduced costs are non-negative'];
109 disp(disp_txt)
110 disp_txt = ['No column can be found that will improve the basis'];
111 disp(disp_txt)
112 break
113 end
114 end

If the reduced cost is non-negative, the MP is solved for the set V ′ and the results are dis-
played.

1 %% Find final solution
2 disp('===========================================')
3 disp_txt = ['Start with finding final solution from basis'];
4 disp(disp_txt)
5

6 f_end = C_v;
7 A_end = -V_star(1:n_t,:); %Each service trip is performed at least once
8 b_end = -ones(n_t,1);
9 Aeq_end = [];

10 beq_end = [];
11 lb_end = zeros(n_v,1);
12 ub_end = ones(n_v,1);
13 [u_v, total_costs, ~, ~] = intlinprog(f_end,1:n_v,A_end,b_end,Aeq_end,...
14 beq_end,lb_end,ub_end,options_intlinprog);
15

16 disp_txt = ['Vehicle tasks used in solution'];
17 disp(disp_txt)
18 tasks_used = find(u_v == 1);
19 disp(tasks_used)
20 disp_txt = ['Cost of solution'];
21 disp(disp_txt)
22 disp(total_costs)
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B.3.2 Column generation with energy usage and charging

The first step is to import the timetable used and the settings that are needed to perform the
column generation algorithm.

1 %Script to determine a schedule for a timetable with only electric buses.
2 %Technique used: Column Generation
3 %Filename: CG.m
4 %J.W.M. Wijnheijmer - november 2019 - VDL-ETS
5 clear all;close all;clc
6 tic
7 %% Input
8

9 %Time-table
10 test_schedule = ['1'];
11 filename = ['test_schedule',test_schedule,'_column.xlsx'];
12

13 MP_integer_end = 0; %(1) Inlinprog should be used to solve
14 %to integer number of vehicle tasks
15 %(0) Linprog in combination with rounding
16 %is used to solve to integers
17 use_eq_RMP = 0; %(1) Use equality constraint in RMP to give
18 %shadow prices.
19 %(0) Use inequality constraint in RMP to give
20 %shadow prices
21 n_s = 1; %Number of chargers [-]
22

23 use_intlin_RMP = 0; %(1) Also use intlinprog in RMP, to find integer
24 %optimal objective value of RMP
25 %(0) Only use linprog in RMP, to find current
26 %objective value
27

28 %Options ultimate solution
29 save_results = 1; %(1) Save figures and workspace variables
30 %(0) Do not save figures and workspace variables
31 one_bus_per_trip = 0; %(1) Alters the end MP/RMP demands that each trip
32 %is performed exactly once
33 %(0) Each trip has to be performed at least once
34 %Set stop criteria
35 max_computation_time = 7200; %Maximum computation time [s]
36 maxiter = 400; %Maximum number of iterations [-]
37 n_min_improvement = 200; %Number iterations that is looked back to
38 min_improvement = 0.99; %Fraction from which the improvement is to low
39

40 %Figure properties
41 fontsize_figure = 14;
42 linewidth_figure = 2;
43

44 %If connect charging sessions between service trips to make them
45 %continuous (1 is on, 0 is off)
46 connect_charging_blocks = 1;
47

48 %Give solver options
49 options_linprog = optimoptions('linprog','Display','none');
50 options_intlinprog = optimoptions('intlinprog','Display','none');
51

52 maxtime_first_iterations = 60;
53 maxtime_later_iterations = 30;
54 n_iterations_switch = 10;
55

56 h_gap = 1; %Minimal gap between trips [min]
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57

58 %%COLUMN GENERATION
59 n_z = 50; %Number of time-steps[-]
60 min_improv_reduc_costs = -1e-3; %Value for reduced costs from where a new
61 %Column will not be added any more [euro]
62 M = 1e3; %Large M
63 error_integer = 0.0001; %Error that can be on integer, while
64 %still considering them as integers [-]
65 delete_initial_vehicle_tasks = 0; %If the initial vehicle tasks will be
66 %deleted from set of vehicle tasks [-]
67 extra_columns_after_rounding = 0; %Number of extra columns that are
68 %generated to ensure that obtaining an
69 %integer solution [-]
70 value_rounding_no_extra = 0.99; %If vp is higher than given value, no
71 %extra columns will be added [-]
72

73 %%BUS
74 %Maximum charging power bus (In optimal condition)
75 P_b_max = 230; %[kW]
76 P_b_min = 10; %Minimum charging power bus[kW]
77 min_SoC = 0.10; %Minimum SoC [%]
78 max_SoC = 0.90; %Maximum SoC [%]
79 %Maximum energy capacity of the battery pack [kWh]
80 battery_capacity = 216;
81 e_b_min = battery_capacity*min_SoC;
82 e_b_max = battery_capacity*max_SoC;
83 c_b = 500000/(15*300); %Unit price of the considered bus type,
84 %costs per day of operation (fixed costs)
85 e_w = 1.5; %Energy usage [kWh/km]
86 c_w = 0.1; %Variable costs of bus [euro/km]
87

88 %%CHARGING
89 max_charge_power_charger = P_b_max; %Maximum power of charger [kW]
90 max_power_charge_loc = 1000; %[kW]
91 max_chargers_connected_bus = 1; %Maximum amount of chargers a bus can
92 %be connected to
93 c_e = 0.2; %Price of energy in low energy price
94 %time [euro/kWh]
95 c_e_high = 0.2; %Price of energy of high energy prive
96 %time [euro/kWh]
97 price_high_start = 11*60; %Start time of high energy price [min]
98 price_high_end = 15*60; %End time of high energy price [min]
99 price_energy = c_e*ones(n_z,1);

The next step is to read the data and to process the inputs.

1 %% Process inputs
2 time_table = readtable(filename,'Sheet','TimeTable');
3 locations_all = readtable(filename,'Sheet','All_Locations');
4 h = xlsread(filename,'t');
5

6 l_start_cell = time_table.From; %Begin location, stored as cell array
7 h_start_cell = time_table.Start; %Begin time
8 h_end_cell = time_table.End; %End time
9 l_end_cell = time_table.To; %End location, stored as cell array

10 w_t = time_table.Dist; %Distance of service trip
11

12 n_t = length(l_start_cell); %Number of service trips
13 l_start = zeros(n_t,1); %Allocate begin locations
14 l_end = zeros(n_t,1); %Allocate end locations
15 T = linspace(1,n_t,n_t)'; %Trip number
16 e_t = (w_t/1000)*e_w; %Fuel usage of service trips
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17 c_t = (w_t/1000)*c_w+e_t*c_e; %Cost of performing service trip
18

19 %Transformation of input, if is not according to format
20 if iscell(h_start_cell)
21 [n_rows, ~] = size(h_start_cell);
22 h_start = zeros(n_rows,1);
23 h_end = zeros(n_rows,1);
24 for i = 1:n_rows
25 h_start(i) = str2num(h_start_cell{i,1});
26 h_end(i) = str2num(h_end_cell{i,1});
27 end
28 else
29 h_start = h_start_cell;
30 h_end = h_end_cell;
31 end
32

33 %Change model time to minutes
34 h_start = round(h_start*24*60);
35 h_end = round(h_end*24*60);
36 h = round(h*24*60);
37 h_start_schedule = min(h_start);
38 h_end_schedule = max(h_end)+1;
39

40 %Convert location name of begin and end location to location number
41 for i = 1:n_t
42 b = l_start_cell{i};
43 e = l_end_cell{i};
44

45 [l_start(i),~] = find(strcmp(b,locations_all.Name) == 1);
46 [l_end(i),~] = find(strcmp(e,locations_all.Name) == 1);
47 end
48

49 %Clear unnecessary variables
50 clear b_cell e_cell all_loc end_loc bt_cell et_cell i locations b e
51

52 % Determine if trips are time compatible
53 comp = zeros(n_t);
54 for i = 1:n_t
55 for j = i+1:n_t
56 if h_end(i)+h(l_end(i),l_start(j))+h_gap <= h_start(j)
57 comp(i,j) = 1;
58 end
59 end
60 end
61

62 %Begin and end times of time blocks
63 time_step = (h_end_schedule-h_start_schedule)/n_z; %[min]
64 time_block = h_start_schedule:time_step:h_end_schedule; %[-]
65 time_block_start = time_block(1:end-1); %[-]
66 time_block_end = time_block(2:end); %[-]
67 time_blocks = [time_block_start',time_block_end']; %[-]
68

69 %Transform power input to energy per time-step
70 max_energy_charging_charger = ((time_step*60)*max_charge_power_charger*...
71 1000)/3.6e6;
72 max_energy_charging_bus = ((time_step*60)*P_b_max*1000)/3.6e6;
73 min_energy_charging_bus = ((time_step*60)*P_b_min*1000)/3.6e6;
74 max_energy_charging_location = ((time_step*60)*max_power_charge_loc*1000)...
75 /3.6e6;
76

77 %Give initial vehicle tasks
78 V_star = eye(n_t); %Each service trip a new bus
79 Szv = zeros(n_z,n_t); %No charging occurs (no charging sessions)
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80 Ezv = zeros(n_z,n_t); %No charging occurs (no charging power)
81 V_star = [V_star;Szv;Ezv]; %Update vehicle task array
82

83 %Give costs of initial vehicle tasks
84 Cv = M*ones(1,n_t); %Give a high value to ensure they are not
85 %present in the final solution
86

87 %Calculate charging costs for each time block
88 price_high_start_block = find(time_blocks(:,1)<= price_high_start &...
89 price_high_start <= time_blocks(:,2));
90 price_high_end_block = find(time_blocks(:,1)<= price_high_end & ...
91 price_high_end <= time_blocks(:,2));
92 price_energy(price_high_start_block:price_high_end_block) = c_e_high;

Once these steps are performed, the column generation problem can be set up. First, the lower
and upper bounds of the variables in the subproblem are determined. Next, the arrays that
describe the constraints are constructed.

1 %% Set-up subproblem
2 %Bounds on decision variables
3 %1.If trip is driven
4 lb1_sub = zeros(n_t,1);
5 ub1_sub = ones(n_t,1);
6

7 %2.If is being charged
8 lb2_sub = zeros(n_z,1);
9 ub2_sub = max_chargers_connected_bus*ones(n_z,1);

10

11 %3.How much is being charged
12 lb3_sub = zeros(n_z,1);
13 ub3_sub = min([max_energy_charging_bus,max_energy_charging_charger*...
14 max_chargers_connected_bus,max_energy_charging_location])*ones(n_z,1);
15

16 lb_sub= [lb1_sub;lb2_sub;lb3_sub];
17 ub_sub= [ub1_sub;ub2_sub;ub3_sub];
18

19 %Make constraint that ensures no time incompatible trips will be in vehicle task
20 %Transform comp matrix to constraint matrix
21 A1_sub = zeros(1,n_t+n_z+n_z);
22 k = 0;
23 for i = 1:n_t
24 for j = i+1:n_t
25 if comp(i,j) == 0
26 if k == 0
27 n_rows_A_sub = 0;
28 A1_sub(1,i) = 1;
29 A1_sub(1,j) = 1;
30 else
31 n_rows_A_sub = size(A1_sub,1);
32 A1_sub(n_rows_A_sub+1,i) = 1;
33 A1_sub(n_rows_A_sub+1,j) = 1;
34 end
35 k = k+1;
36 end
37 end
38 end
39 b1_sub = ones(size(A1_sub,1),1);
40 clear k
41

42 %Make constraint array that will ensure that service trips do not overlap
43 %with charging sessions
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44 %Determine in which time blocks a ST has overlap
45 h_startz = zeros(1,n_t);
46 h_endz = zeros(1,n_t);
47 for i = 1:n_t
48 h_startz(i) = find(time_blocks(:,1) <= h_start(i) & ...
49 time_blocks(:,2) > h_start(i));
50 h_endz(i) = find(time_blocks(:,1) <= h_end(i) & ...
51 time_blocks(:,2) > h_end(i));
52 end
53

54 %Ensure that charging cannot in timeblock where ST has overlap
55 A2_sub = zeros(n_t,n_t+n_z+n_z);
56 for i = 1:n_t
57 A2_sub(i,i) = 1;
58 A2_sub(i,n_t+h_startz(i):n_t+h_endz(i)) = 1;
59 end
60 b2_sub = ones(size(A2_sub,1),1);
61

62 %Ensure that energy is only added to a bus when it is charging
63 A3_sub = zeros(n_z,n_t+n_z+n_z);
64 A3_sub(1:n_z,n_t+1:n_t+n_z) = -M*eye(n_z);
65 A3_sub(1:n_z,n_t+n_z+1:end) = eye(n_z);
66 b3_sub = zeros(n_z,1);
67

68 %Ensure that when bus is charging, at least a minimal amount of power is added
69 A4_sub = zeros(n_z,n_t+n_z+n_z);
70 A4_sub(1:n_z,n_t+1:n_t+n_z) = min_energy_charging_bus*eye(n_z);
71 A4_sub(1:n_z,n_t+n_z+1:end) = -eye(n_z);
72 b4_sub = zeros(n_z,1);
73

74 %Make constraint that ensures energy level of bus never goes below
75 %minimal energy level
76 A5_sub = zeros(n_t,n_t+n_z+n_z);
77 for i = 1:n_t
78 A5_sub(i,1:i) = e_t(1:i);
79 A5_sub(i,n_t+n_z+1:n_t+n_z+h_endz(i)) = -ones(1,h_endz(i));
80 end
81 A5_sub;
82 b5_sub = (e_b_max-e_b_min)*ones(n_t,1);
83

84 %Make constraint that ensures energy level of bus never goes above
85 %maximum energy level
86 A6_sub = zeros(n_t,n_t+n_z+n_z);
87 for i = 1:n_t
88 if i > 1
89 A6_sub(i,1:i-1) = -e_t(1:i-1);
90 end
91

92 if h_startz(i)-1 == 0
93 else
94 A6_sub(i,n_t+n_z+1:n_t+n_z+h_startz(i)-1) = ones(1,h_startz(i)-1);
95 end
96 end
97 b6_sub = zeros(n_t,1);
98

99 %Construct inequality constraint of subproblem array
100 A_sub = [A1_sub;A2_sub;A3_sub;A4_sub;A5_sub;A6_sub];
101 b_sub = [b1_sub;b2_sub;b3_sub;b4_sub;b5_sub;b6_sub];
102 Aeq_sub = [];
103 beq_sub = [];

Then, the iterative search for new columns can start. In this application, the RMP is used
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directly to obtain the shadow prices. Thus, the dual of the RMP is not constructed here.
Furthermore, two options to obtain these shadow prices are present. One is the option as used
in this research, where constraint (6.2b) is an inequality constraint. The other option is to use
an equality constraint. When an equality constraint is used, the shadow price for πτ can be
negative.

1 %% Iteratively find new vehicle tasks
2 Obj_val_RMP_save_all = [];
3 cut_due_to_time = zeros(2,1);
4 reduced_costs_save = zeros(2,1);
5 Obj_val_RMP_lin_save = zeros(2,1);
6

7 for i = 1:maxiter
8

9 disp('----------------------------------------')
10 A = ['Iteration number: ', num2str(i)];
11 disp(A)
12

13 %Delete initial vehicle tasks from set of vehicle tasks,
14 %since they will not be used in the final solution anyway
15 if i == 2*n_t && delete_initial_vehicle_tasks == 1
16 V_star(:,1:n_t) = [];
17 Cv(1:n_t) = [];
18 end
19

20 %% RMP, find shadow prices of constraints
21 n_v = size(V_star,2);
22

23

24 if use_eq_RMP == 1
25 %Set up RMP
26 f_RMP = Cv;
27 A1_RMP = V_star(n_t+1:n_t+n_z,:);
28 b1_RMP = n_s*ones(n_z,1);
29 A2_RMP = V_star(n_t+n_z+1:n_t+2*n_z,:);
30 b2_RMP = max_energy_charging_location*ones(n_z,1);
31 A_RMP = [A1_RMP;A2_RMP];
32 b_RMP = [b1_RMP;b2_RMP];
33 Aeq_RMP = V_star(1:n_t,:);
34 beq_RMP = ones(n_t,1);
35 lb_RMP = zeros(n_v,1);
36 ub_RMP = ones(n_v,1);
37

38 else
39 %Set up RMP
40 f_RMP = Cv;
41 A1_RMP = -V_star(1:n_t,:);
42 b1_RMP = -ones(n_t,1);
43 A2_RMP = V_star(n_t+1:n_t+n_z,:);
44 b2_RMP = n_s*ones(n_z,1);
45 A3_RMP = V_star(n_t+n_z+1:n_t+2*n_z,:);
46 b3_RMP = max_energy_charging_location*ones(n_z,1);
47 A_RMP = [A1_RMP;A2_RMP;A3_RMP];
48 b_RMP = [b1_RMP;b2_RMP;b3_RMP];
49

50 Aeq_RMP = [];
51 beq_RMP = [];
52 lb_RMP = zeros(n_v,1);
53 ub_RMP = ones(n_v,1);
54 end
55
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56 [uv,Obj_val_RMP_lin,~,~,lambda_RMP] = linprog(f_RMP,A_RMP,b_RMP,Aeq_RMP,...
57 beq_RMP,lb_RMP,ub_RMP,options_linprog);
58 Obj_val_RMP_lin_save(i) = Obj_val_RMP_lin; %Save for plot
59 time_Obj_val_RMP_lin_save(i) = toc;
60 uv_lin_save{i} = uv;
61

62 if use_intlin_RMP == 1
63 options_intlinprog_RMP = ...
64 optimoptions('intlinprog','LPPreprocess', 'none');
65 [uv,Obj_val_RMP_intlin,~,~,] = intlinprog(f_RMP,1:n_v,A_RMP,b_RMP,...
66 Aeq_RMP,beq_RMP,lb_RMP,ub_RMP,options_intlinprog_RMP);
67 Obj_val_RMP_intlin_save(i) = Obj_val_RMP_intlin;
68 time_Obj_val_RMP_intlin_save(i) = toc;
69 vp_intlin_save{i} = uv;
70 end
71

72 %Check if objective function is improving enough. If not, stop adding columns
73 if i> n_min_improvement
74 if Obj_val_RMP_lin > Obj_val_RMP_lin_save(i-n_min_improvement)*...
75 min_improvement
76 disp('Improvement on objective function is to low, adding columns is stopped')
77 stop_criterion = 2;
78 break
79 end
80 end
81

82 %Check to confirm that objective function of RMP is monotonically decreasing
83 if i > 1
84 if Obj_val_RMP_lin > Obj_val_RMP_lin_save(i-1) + 1e-6
85 Obj_val_RMP_lin_save(i-1)
86 Obj_val_RMP_lin
87 disp('ERROR: Objective value of RMP is not monotonically decreasing!')
88 return
89 end
90 end
91

92 %Display results
93 disp_txt = ['Objective value RMP: ',num2str(Obj_val_RMP_lin)];
94 disp(disp_txt)
95

96 %Extract shadows prices from solution of RMP
97 if use_eq_RMP == 1
98 pi_tau = lambda_RMP.eqlin(1:n_t);
99 theta_zeta = lambda_RMP.ineqlin(1:n_z);

100 rho_zeta = lambda_RMP.ineqlin(n_z+1:end);
101 else
102 pi_tau = -lambda_RMP.ineqlin(1:n_t);
103 theta_zeta = lambda_RMP.ineqlin(n_t+1:n_t+n_z);
104 rho_zeta = lambda_RMP.ineqlin(n_t+n_z+1:end);
105 end
106

107 %% Subproblem: Find new column
108

109 %Set intlinprog options dependent on iteration number. A limit is set on
110 %calculation time, it is not required that the subproblem is solved to
111 %optimality, just that reduced costs are negative. However, closer to optimal
112 %yields a better improvement for the basis of the RMP. To prove optimality of
113 %the basis, the last iteration should be solved to optimality with
114 %non-negative reduced costs
115 if i <= n_iterations_switch
116 options_subproblem = optimoptions('intlinprog','Maxtime',...
117 maxtime_first_iterations,'Display','none');
118 else
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119 options_subproblem = optimoptions('intlinprog','Maxtime',...
120 maxtime_later_iterations,'Display','none');
121 end
122

123 %Update objective function of subproblem with the new shadow prices
124 f_sub = [pi_tau',theta_zeta',rho_zeta'+price_energy']; %Objective function
125 [new_column,obj_val_sub,exitflag,~] = intlinprog(f_sub,1:n_t+n_z,A_sub,...
126 b_sub,Aeq_sub,beq_sub,lb_sub,ub_sub,options_subproblem);
127

128 %Check if the solution of the subproblem was solved to optimality, or was
129 %stopped due to time and the current feasible solution is saved
130 if exitflag == 2
131 cut_due_to_time(i) = 1;
132 else
133 cut_due_to_time(i) = 0;
134 end
135

136 %Shift charging session so that if charging occurs between service trips,
137 %all the charging occurs consecutively. Charging sessions are shifted toward
138 %end of first charging session between the service trips
139 if connect_charging_blocks == 1
140 if any(new_column(n_t+1:n_t+n_z) > 0)
141 for k = 1:n_t
142 %If service trip i is performed in the new column
143 if new_column(k,1) > 1-error_integer && new_column(k,1)...
144 < 1+error_integer
145

146 for l = k+1:n_t
147 if new_column(l,1)...
148 > 1-error_integer && new_column(l,1) < 1+error_integer
149 %Find service trip that is performed after i
150

151 %Check which timeblocks are in between these ST'
152 %First block where charging can occur between k and l
153 begin_charging_domain = h_endz(k)+1;
154 %Last block where charging can occur between k and l
155 end_charging_domain = h_startz(l)-1;
156

157 %Count how many charging blocks are used in the
158 %charging domain
159 n_charging_blocks_used = ...
160 nnz(new_column(n_t+begin_charging_domain:n_t+...
161 end_charging_domain));
162

163 if n_charging_blocks_used == 0
164 %If no charging occurs in the domain nothing has
165 %to be done
166 elseif n_charging_blocks_used > 1
167 %If just one charging block is used, then nothing
168 %has to be shifted
169

170 %Flush all charging sessions to directly after
171 %first charging block
172

173 %Find used charging blocks between service trips
174 charging_indices = find(new_column(n_t+...
175 begin_charging_domain:...
176 n_t+end_charging_domain) ~= 0);
177 charging_indices_temp = (n_t+...
178 begin_charging_domain-1)*...
179 ones(1,n_charging_blocks_used);
180 charging_indices = charging_indices_temp'+...
181 charging_indices;
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182

183 %Number of chargers used
184 %Determine values old location
185 new_charging_column = ...
186 new_column(charging_indices);
187 %Overwrite to new location
188 new_column(charging_indices) = ...
189 zeros(n_charging_blocks_used,1);
190 new_column(charging_indices(1):...
191 charging_indices(1)+...
192 n_charging_blocks_used-1) = ...
193 new_charging_column;
194

195 %Amount of energy charged
196 %Determine values old location
197 charging_indices = charging_indices+n_z;
198 new_charging_column = ...
199 new_column(charging_indices);
200 %Overwrite to new location
201 new_column(charging_indices) = ...
202 zeros(n_charging_blocks_used,1);
203 new_column(charging_indices(1):...
204 charging_indices(1)+...
205 n_charging_blocks_used-1) = ...
206 new_charging_column;
207 disp('Charging blocks shifted to have one charging session between ST')
208 end
209 break
210

211 elseif l == n_t %No service trip is performed after ST i
212 end
213 end
214 end
215 end
216 end
217 end
218

219 %Calculate the costs of the new column, only bus price and energy costs are
220 %taken into account
221 cost_new_column = c_b + sum(new_column(n_t+n_z+1:end)'*price_energy);
222 %Calculate the reduced costs, if the reduced costs are non-negative,
223 %the basis of known columns is proven to be optimal.
224 reduced_costs = c_b + obj_val_sub;
225

226 if toc > max_computation_time
227 stop_criterion = 4;
228 disp('Maximum computation time reached, finding new columns is stopped,')
229 disp('Continuing to find integer solution')
230 break
231 end
232

233 if isempty(new_column) == 1
234 %Display error if
235 disp('ERROR')
236 disp('No new column could be generated, infeasible subproblem')
237 return
238 elseif i ~= maxiter && reduced_costs < min_improv_reduc_costs
239 n_iter_needed = i;
240 new_column(1:n_t+n_z) = round(new_column(1:n_t+n_z));
241 %New column is added to set of known columns
242 V_star = [V_star,new_column];
243 %Costs of new column is added to known costs
244 Cv = [Cv,cost_new_column];
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245 disp_txt = ['Reduced costs: ', num2str(reduced_costs)];
246 disp(disp_txt) %Display results
247 reduced_costs_save(i) = reduced_costs; %Save reduced costs for plot
248 elseif i == maxiter
249 disp('Maximum number of iterations reached')
250 stop_criterion = 3;
251 n_iter_needed = i;
252 new_column(1:n_t+n_z) = round(new_column(1:n_t+n_z));
253 %New column is added to set of known columns
254 V_star = [V_star,new_column];
255 %Costs of new column is added to known costs
256 Cv = [Cv,cost_new_column];
257 disp_txt = ['Reduced costs: ', num2str(reduced_costs)];
258 disp(disp_txt) %Display results
259 reduced_costs_save(i) = reduced_costs; %Save reduced costs for plot
260 elseif reduced_costs >= min_improv_reduc_costs
261 disp_txt = ['Reduced costs: ', num2str(reduced_costs)];
262 disp(disp_txt) %Display results
263 disp('No column exists that will improve the basis of the RMP')
264 stop_criterion = 1;
265 break
266 elseif toc > max_computation_time
267 stop_criterion = 4;
268 break
269 end
270 end

Once the columns are generated, the search for an integer solution can start. Again, two options
are possible here. The first option is to use an integer solver. The second option is to use the
rounding algorithm as described in section 6.2.7.

1 %% Get to integer solution
2 disp('=======================================================')
3 disp('Starting with finding integer solution')
4 n_v = size(V_star,2);
5

6 searching_for_integer_started = 1; %Search for integer solution has started
7

8 %Solve to integers. Two methods possible. Direct method using intlinprog to
9 %solve MP, or by rounding highest integer, add a few more columns and iterate

10 %until all decision variables are integer.
11

12 %%USE INTLINPROG DIRECTLY
13 %If MP is solved to obtain integer solution, use intlinprog directly
14 if MP_integer_end == 1
15 f_end = Cv;
16 lb_end = zeros(n_v,1);
17 ub_end = ones(n_v,1);
18

19 if one_bus_per_trip == 1
20 A1_end = V_star(n_t+1:n_t+n_z,:);
21 b1_end = n_s*ones(n_z,1);
22 A2_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
23 b2_end = max_energy_charging_location*ones(n_z,1);
24 A_end = [A1_end;A2_end];
25 b_end = [b1_end;b2_end];
26 Aeq_end = V_star(1:n_t,:);
27 beq_end = ones(n_t,1);
28 else
29 A1_end = -V_star(1:n_t,:);
30 b1_end = -ones(n_t,1);
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31 A2_end = V_star(n_t+1:n_t+n_z,:);
32 b2_end = n_s*ones(n_z,1);
33 A3_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
34 b3_end = max_energy_charging_location*ones(n_z,1);
35 A_end = [A1_end;A2_end;A3_end];
36 b_end = [b1_end;b2_end;b3_end];
37 Aeq_end = [];
38 beq_end = [];
39 end
40

41 [uv,obj_val_end,~,~] = intlinprog(f_end,1:n_v,A_end,b_end,Aeq_end,...
42 beq_end,lb_end,ub_end);
43 %Round the solution to integers (intlinprog does not always give exact
44 %integer solution)
45 uv = round(uv);
46

47 else
48 %%USE ROUNDING TO GET TO INTEGER
49 maxiter_end = extra_columns_after_rounding; %Reset maxiter
50 n_iter_extra_needed = 0;
51 %Track how many extra iterations are made
52 n_columns_extra = 0;
53 %Track how many extra columns are added
54 integer_fixed = zeros(n_v,1);
55 %Track which columns are fixed to 1
56 rounding = zeros(1,2);
57 %Track from which value in vp the columns are rounded to 1
58 Obj_val_RMP_extra_save = [];
59 %Track the opbjective value of the RMP
60 vp_extra_save = [];
61 %Save the intermediate solutions
62 rounding_in_progress = 1;
63 %Indicator that the rounding process is active
64 i = 0;
65

66

67 f_end = Cv;
68 lb_end = zeros(n_v,1);
69 ub_end = ones(n_v,1);
70

71 if one_bus_per_trip == 1
72 A1_end = V_star(n_t+1:n_t+n_z,:);
73 b1_end = n_s*ones(n_z,1);
74 A2_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
75 b2_end = max_energy_charging_location*ones(n_z,1);
76 A_end = [A1_end;A2_end];
77 b_end = [b1_end;b2_end];
78 Aeq_end = V_star(1:n_t,:);
79 beq_end = ones(n_t,1);
80 else
81 A1_end = -V_star(1:n_t,:);
82 b1_end = -ones(n_t,1);
83 A2_end = V_star(n_t+1:n_t+n_z,:);
84 b2_end = n_s*ones(n_z,1);
85 A3_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
86 b3_end = max_energy_charging_location*ones(n_z,1);
87 A_end = [A1_end;A2_end;A3_end];
88 b_end = [b1_end;b2_end;b3_end];
89 Aeq_end = [];
90 beq_end = [];
91 end
92

93
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94 % Solve RMP to find values for decision variables
95 [uv,obj_val_end,~,~,lambda_end] = linprog(f_end,A_end,b_end,Aeq_end,...
96 beq_end,lb_end,ub_end,options_linprog);
97

98

99 while rounding_in_progress == 1
100 clear integer
101 extra_column_counter = 0;
102 i = i+1;
103

104 %Find location of decision variables that are integer
105 new_integer = find((uv-1 < error_integer & uv-1 > -error_integer) &...
106 integer_fixed ~= 1);
107 n_integer = size(new_integer,1);
108

109 %If the entire solution is integer, stop with algorithm
110 if all(ismember(uv,[1,0])) == 1
111 disp('All resulting decision variables are integer')
112 rounding_in_progress = 0;
113 break
114

115 %For the decision variables that are integer, add constraint to fix
116 %them to that value. This way they do not change any more in the future.
117 elseif isempty(new_integer) == 0
118 new_Aeq = zeros(n_integer,n_v);
119 disp('One or multiple decision variables are 1.')
120 disp('Adding constraint to fix them to one.')
121

122 for j = 1:n_integer
123 if integer_fixed(new_integer(j)) ~= 1
124 new_Aeq(j,new_integer(j)) = 1;
125 disp_txt = ['Variables: ', num2str(new_integer(j)),...
126 ' fixed to 1'];
127 disp(disp_txt)
128 integer_fixed(new_integer(j)) = 1;
129 end
130 end
131 new_beq = ones(n_integer,1);
132

133 %%If no integers are found, round the nearest value to 1 to 1
134 %(no first columns) and re-iterate
135 else
136 vp_temp = zeros(n_v,1);
137 loc_to_assess = find(integer_fixed == 0);
138 vp_temp(loc_to_assess) = uv(loc_to_assess);
139 error = abs(vp_temp-1);
140 error(1:n_t) = M; %Prevent dummy columns to be chosen
141 [loc_close_integer,~] = find(error == min(error) &...
142 integer_fixed ~= 1);
143 loc_close_integer = loc_close_integer(end);
144

145 %Round up highest value to 1
146 if integer_fixed(loc_close_integer) == 0
147 disp('Not all resulting decision variables are integer')
148 disp_txt = ['Decision variable: ', num2str(loc_close_integer),...
149 ' is rounded from: ',num2str(uv(loc_close_integer)),' to 1'];
150 disp(disp_txt)
151

152 integer_fixed(loc_close_integer) = 1;
153 new_Aeq = zeros(1,n_v);
154 new_Aeq(1,loc_close_integer) = 1;
155 rounding(i,1) = loc_close_integer;
156 rounding(i,2) = uv(loc_close_integer);
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157 new_beq = 1;
158 end
159

160 %% Add more columns to V_start. Code is omitted here.
161

162 integer_fixed = [integer_fixed;zeros(extra_column_counter,1)];
163

164 end
165

166 %%Solve RMP with new columns
167 n_v = size(V_star,2);
168

169 %Add constraint that the chosen decision variables are 1
170

171 f_end = Cv;
172 lb_end = zeros(n_v,1);
173 ub_end = ones(n_v,1);
174

175 if one_bus_per_trip == 1
176 A1_end = V_star(n_t+1:n_t+n_z,:);
177 b1_end = n_s*ones(n_z,1);
178 A2_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
179 b2_end = max_energy_charging_location*ones(n_z,1);
180 A_end = [A1_end;A2_end];
181 b_end = [b1_end;b2_end];
182 Aeq_end = V_star(1:n_t,:);
183 beq_end = ones(n_t,1);
184 else
185 A1_end = -V_star(1:n_t,:);
186 b1_end = -ones(n_t,1);
187 A2_end = V_star(n_t+1:n_t+n_z,:);
188 b2_end = n_s*ones(n_z,1);
189 A3_end = V_star(n_t+n_z+1:n_t+2*n_z,:);
190 b3_end = max_energy_charging_location*ones(n_z,1);
191 A_end = [A1_end;A2_end;A3_end];
192 b_end = [b1_end;b2_end;b3_end];
193 Aeq_end = [];
194 beq_end = [];
195 end
196

197 %Add constraint for integers that are fixed
198 n_integers_fixed_total = sum(integer_fixed);
199 loc_integer_fixed = find(integer_fixed == 1);
200 Aeq_fixed = zeros(n_integers_fixed_total,n_v);
201 for k = 1:n_integers_fixed_total
202 Aeq_fixed(k,loc_integer_fixed(k)) = 1;
203 end
204 beq_fixed = ones(n_integers_fixed_total,1);
205 Aeq_end = [Aeq_end;Aeq_fixed];
206 beq_end = [beq_end;beq_fixed];
207

208

209 [uv,obj_val_end,exitflag_rounding,~,lambda_end] = linprog(f_end,A_end,...
210 b_end,Aeq_end,beq_end,lb_end,ub_end,options_linprog);
211

212 if exitflag_rounding == -2 || exitflag_rounding == -5
213 disp('ERROR: After rounding some solutions for vp,')
214 disp('no feasible solution is possible any more, more columns')
215 disp('should be addded at rounding stage')
216 return
217 elseif exitflag_rounding ~= 1
218 disp('ERROR: Some error in rounding to integer solution')
219 end
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220 end
221 end

The final step is to analyze the results and to plot the figures. Also, the most important variables
are saved for future reference.

1 %% Analyse, save and plot results
2

3 tasks_used = V_star(:,find(uv == 1));
4 buses_used = size(tasks_used,2);
5

6 %Sort tasks_used on starting time
7 for i = 1:buses_used
8 for j = 1:n_t
9 if tasks_used(j,i) ~= 0

10 first_trip(i) = j;
11 break
12 end
13 end
14 end
15

16 [~,old_loc] = sort(first_trip);
17

18 for i = 1:buses_used
19 tasks_used_new(:,i) = tasks_used(:,old_loc(i));
20 end
21

22

23 clear first_trip old_loc
24 tasks_used = tasks_used_new
25 combined_solution = sum(tasks_used,2)
26 computation_time = toc
27 total_cost = sum(obj_val_end)
28 mean_trips = mean(combined_solution(1:n_t,:))
29 buses_used
30 stop_criterion
31 n_iter_needed
32

33 %%PLOTTING SOC OF ALL USED VEHICLE TASKS
34 n_v = size(tasks_used,2);
35 for i = 1:n_v
36 for j = 1:n_z
37

38 %Remove energy of performing service trip at first timeblock of service trip
39 %Service trips performed(or started) up to time step j
40 temp2 = max(find(h_startz <= j));
41 %Service trips performed in i up to and including j
42 [temp3,~] = find(tasks_used(1:temp2,i) > 1-error_integer & ...
43 tasks_used(1:temp2,i) <1+error_integer);
44 energy_used(j+1,i) = sum(e_t(temp3));
45 energy_charged(j+1,i) = sum(tasks_used(n_t+n_z+1:n_t+n_z+j,i));
46 energy_level(j+1,i) = e_b_max-energy_used(j+1,i)+energy_charged(j+1,i);
47

48 end
49 energy_level(1,i) = e_b_max;
50 end
51

52 %Go from energy level to SoC
53 SoC_level = ((energy_level)/battery_capacity)*100;
54 figure
55 for i = 1:n_v
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56 plot(time_block'/60,SoC_level(:,i),'LineWidth',linewidth_figure)
57 grid on
58 hold on
59 end
60 set(gca,'FontSize',fontsize_figure)
61 xlabel('Time [h]','fontname','Helvetica Neue')
62 ylabel('SoC of bus [%]','fontname','Helvetica Neue')
63 axis([(min(time_block-30)/60) (max(time_block+30)/60) 0 100])
64 xticks(floor((min(time_block-30)/60)):1:ceil((max(time_block+30)/60)))
65 if save_results == 1
66 filename = ['CG_csoc_test',test_schedule,'_steps_',num2str(n_z),...
67 '_chargers_',num2str(n_s),'more'];
68 print(filename,'-dpng')
69 print(filename,'-dpdf')
70 print(filename,'-depsc')
71 savefig(filename)
72 end
73

74 %%PLOTTING NUMBER OF CHARGERS AVAILABLE
75 n_chargers_used = combined_solution(n_t+1:n_t+n_z);
76 n_chargers_available(1:n_z) = n_s-n_chargers_used;
77

78 for i = 1:n_z
79 temp(i*2) = n_chargers_available(i);
80 end
81 for i = 2:2:2*n_z
82 n_chargers_available(i-1) = temp(i);
83 n_chargers_available(i) = temp(i);
84 end
85 clear temp
86

87 time_plotting = [];
88 for i = 1:size(time_blocks,1)
89 time_plotting = [time_plotting, time_blocks(i,:)];
90 end
91

92 figure
93 plot(time_plotting/60,n_chargers_available,'LineWidth',linewidth_figure)
94 set(gca,'FontSize',fontsize_figure)
95 grid on
96 xlabel('Time [h]','fontname','Helvetica Neue')
97 ylabel('Number of chargers available [-]','fontname','Helvetica Neue')
98 xticks(floor((min(time_block-30)/60)):1:ceil((max(time_block+30)/60)))
99 yticks(0:1:n_s+1)

100 axis([(min(time_block-30)/60) (max(time_block+30)/60) -.5 n_s+.5])
101 legend('Number of chargers available')
102 if save_results == 1
103 filename = ['CG_chargers_test',test_schedule,'_steps_',num2str(n_z),...
104 '_chargers_',num2str(n_s),'more'];
105 print(filename,'-dpng')
106 print(filename,'-dpdf')
107 print(filename,'-depsc')
108 savefig(filename)
109 end
110

111 %%PLOTTING POWER USAGE OF THE GRID
112 grid_power = combined_solution(n_t+n_z+1:n_t+2*n_z)*(3.6e3/(60*time_step));
113 for i = 1:n_z
114 temp(i*2) = grid_power(i);
115 end
116 for i = 2:2:2*n_z
117 grid_power_plot(i-1) = temp(i);
118 grid_power_plot(i) = temp(i);
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119 end
120 clear temp
121

122 figure
123 plot(time_plotting/60,grid_power_plot,'LineWidth',linewidth_figure)
124 set(gca,'FontSize',fontsize_figure)
125 grid on
126 xlabel('Time [h]','fontname','Helvetica Neue')
127 ylabel('Power delivered by grid [kW]','fontname','Helvetica Neue')
128 xticks(floor((min(time_block-30)/60)):1:ceil((max(time_block+30)/60)))
129 axis([(min(time_block-30)/60) (max(time_block+30)/60) -10 max(grid_power)+50])
130 legend('Power delivered by grid [kW]')
131 if save_results == 1
132 filename = ['CG_gridpower_test',test_schedule,'_steps_',num2str(n_z),...
133 '_chargers_',num2str(n_s),'more'];
134 print(filename,'-dpng')
135 print(filename,'-dpdf')
136 print(filename,'-depsc')
137 savefig(filename)
138 end
139

140

141 %%PLOTTING GANTT CHART
142 figure
143 set(gca,'FontSize',fontsize_figure)
144 hold on
145 grid on
146 xlabel('Time [h]','fontname','Helvetica Neue')
147 ylabel('Vehicle number [-]','fontname','Helvetica Neue')
148 axis([min(h_start)/60-0.5 max(h_end)/60+0.5 0 buses_used+1])
149 yticks(0:1:buses_used+1)
150 xticks(floor(min(h_start)/60-0.5):1:(max(h_end)/60+0.5))
151 %Plotting service trips
152 for i = 1:buses_used
153 for k = 1:n_t %Service trips
154 if tasks_used(k,i)-1 <= error_integer && tasks_used(k,i)-1 >= ...
155 -error_integer
156 begin_time_trip = h_start(k)/60;
157 end_time_trip = h_end(k)/60;
158 service_trip_plot = plot([begin_time_trip end_time_trip],[i i],...
159 '-','Color',[0 0.75 0.75],'LineWidth',10);
160 end
161 end
162 end
163 %Plotting charging sessions
164 for i = 1:buses_used
165 for k = n_t+1:n_t+n_z %Charging
166 if tasks_used(k,i) > 0.2
167 begin_time_charge = time_block_start(k-n_t)/60;
168 end_time_charge = time_block_end(k-n_t)/60;
169 charging_plot = plot([begin_time_charge end_time_charge],[i i],...
170 '-','Color',[1 0.5 0.5],'LineWidth',5);
171 end
172 end
173 end
174

175 if exist('deadhead_trip_plot') && exist('charging_plot')
176 legend([service_trip_plot,charging_plot,deadhead_trip_plot],...
177 'Service Trips', 'Charging','Deadhead Trips','Location','northwest')
178 elseif exist('charging_plot')
179 legend([service_trip_plot,charging_plot],'Service Trips','Charging',...
180 'Location','northwest')
181 else
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182 legend([service_trip_plot],'Service Trips','Location','northwest')
183 end
184 if save_results == 1
185 filename = ['CG_Gantt_test',test_schedule,'_steps_',num2str(n_z),...
186 '_chargers_',num2str(n_s)];
187 print(filename,'-dpng')
188 print(filename,'-dpdf')
189 print(filename,'-depsc')
190 savefig(filename)
191 end
192

193 %PLOT REDUCED COSTS
194 reduced_costs_save = reduced_costs_save(1:n_iter_needed-1);
195 x = 1:n_iter_needed-1;
196 figure
197 plot(x,-reduced_costs_save,'LineWidth',linewidth_figure)
198 set(gca,'FontSize',fontsize_figure)
199 xlabel('Iteration number [-]','fontname','Helvetica Neue')
200 ylabel('Reduced costs','fontname','Helvetica Neue')
201 legend('Reduced costs')
202 grid on
203 if save_results == 1
204 filename = ['CG_reduced_costs_test',test_schedule,'_steps_',num2str(n_z),...
205 '_chargers_',num2str(n_s)];
206 print(filename,'-dpng')
207 print(filename,'-dpdf')
208 print(filename,'-depsc')
209 savefig(filename)
210 end
211

212 figure
213 x = 1:n_iter_needed;
214 plot(x,Obj_val_RMP_lin_save,'LineWidth',linewidth_figure)
215 set(gca,'FontSize',fontsize_figure)
216 xlabel('Iteration number [-]','fontname','Helvetica Neue')
217 ylabel('Objective value RMP','fontname','Helvetica Neue')
218

219 if use_intlin_RMP == 1
220 hold on
221 plot(x,Obj_val_RMP_intlin_save,'LineWidth',linewidth_figure)
222 legend('Objective value RMP','Objective value MP')
223 else
224 legend('Objective value RMP')
225 end
226

227 grid on
228 if save_results == 1
229 filename = ['CG_obj_val_RMP_test',test_schedule,'_steps_',num2str(n_z),...
230 '_chargers_',num2str(n_s)];
231 print(filename,'-dpng')
232 print(filename,'-dpdf')
233 print(filename,'-depsc')
234 savefig(filename)
235 end
236

237 %save output
238 if save_results == 1
239 filename = ['CG_output',test_schedule,'_steps_',num2str(n_z),'_chargers_',...
240 num2str(n_s),'more'];
241 if use_intlin_RMP == 1
242 if MP_integer_end == 0
243 save(filename,'buses_used','computation_time',...
244 'Obj_val_RMP_lin_save','time_Obj_val_RMP_lin_save',...
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245 'stop_criterion','mean_trips','total_cost',...
246 'tasks_used','c_b','combined_solution','Cv',...
247 'n_iter_needed','cut_due_to_time','n_s','V_star',...
248 'test_schedule','time_step','uv_lin_save','MP_integer_end',...
249 'maxiter','use_eq_RMP','use_intlin_RMP',...
250 'Obj_val_RMP_intlin_save','rounding')
251 else
252 save(filename,'buses_used','computation_time',...
253 'Obj_val_RMP_lin_save','time_Obj_val_RMP_lin_save',...
254 'stop_criterion','mean_trips','total_cost','tasks_used',...
255 'c_b','combined_solution','Cv','n_iter_needed',...
256 'cut_due_to_time','n_s','V_star','test_schedule','time_step',...
257 'uv_lin_save','MP_integer_end','maxiter','use_eq_RMP',...
258 'use_intlin_RMP','Obj_val_RMP_intlin_save')
259 end
260 else
261 if MP_integer_end == 0
262 save(filename,'buses_used','computation_time',...
263 'Obj_val_RMP_lin_save','time_Obj_val_RMP_lin_save',...
264 'stop_criterion','mean_trips','total_cost','tasks_used','c_b',...
265 'combined_solution','Cv','n_iter_needed','cut_due_to_time',...
266 'n_s','V_star','test_schedule','time_step','uv_lin_save',...
267 'MP_integer_end','maxiter','use_eq_RMP',...
268 'use_intlin_RMP','rounding')
269 else
270 save(filename,'buses_used','computation_time',...
271 'Obj_val_RMP_lin_save','time_Obj_val_RMP_lin_save',...
272 'stop_criterion','mean_trips','total_cost','tasks_used','c_b',...
273 'combined_solution','Cv','n_iter_needed','cut_due_to_time',...
274 'n_s','V_star','test_schedule','time_step','uv_lin_save',...
275 'MP_integer_end','maxiter','use_eq_RMP','use_intlin_RMP')
276 end
277 end
278 end


