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Personal background

• Some historical facts

• Personal information

• Research topics



Some historical facts
• July 1990: member of Dutch team International Mathematical Olympiad (Beijing)

• March 1995: First journal paper (IEEE TAC)
On the possible divergence of the projection algorithm

• April 1995: First experience with Mechanical Engineering A mathematical approach to
come to an optimal velocity profile for the endurance stage of the Tour de Sol.

• June 1996: MSc in Applied Mathematics at University of Twente
(Adaptive) control of chaotic and robot systems via bounded feedback control

• October 1999: First experiment (wearing waders) Tracking control of an underactuated ship

• April 2000: PhD in Applied Mathematics at University of Twente
Tracking Control of Nonlinear Mechanical Systems

• Since January 2000: Assistant Professor at TU/e: Mechanical Engineering
2000–2014 Systems Engineering Group (since 2011: Manufacturing Networks)

2015–now Dynamics and Control Group
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Personal information
• Married to Wieke, since 2000

• Four children: Jiska (15), Nathan (13),
Tobias (11), Mikal (10)

• Hobby: scuba diving (Dive Master)

• Goal: Half marathon of Eindhoven 2020
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Research topics

• Control of drones

• Cooperative Adaptive Cruise Control

• Intersection Control

• Network control/synchronization

Passion
Finding a Lyapunov-based stability proof
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Lyapunov stability: Why uniform results are impor-
tant, and how to obtain them

• Standard approach of using Barbălat + signal chasing

• Need for uniform asymptotic stability

• Modified approach for showing UGAS.



Example (Jiang, Nijmeijer, 1997)

Consider tracking error dynamics for kinematic model of mobile robot tracking a reference,
expressed in its body fixed frame:

ẋe = ωye − v + vr cos θe ẏe = −ωxe + vr sin θe θ̇e = ωr − ω

where ωr and vr are given functions of time, and 0 < vmin
r ≤ vr (t) ≤ vmax

r , |v̇r | ≤ amax,
|ωr | ≤ ωmax. Using

v = vr cos θe + k1xe

ω = ωr + k2yevr
sin θe
θe

+ k3θe NB: sin θe
θe

=

∫ 1

0

cos(θes) d s

with k1, k2, k3 > 0, results in the closed-loop system

ẋe = ωye − k1xe ẏe = −ωxe + vr sin θe θ̇e = −k2yevr sin θeθe
− k3θe
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Example (Jiang, Nijmeijer, 1997)

Closed-loop system:

ẋe = ωye − k1xe ẏe = −ωxe + vr sin θe θ̇e = −k2yevr sin θeθe
− k3θe

Lyapunov function candidate: V = 1
2x

2
e + 1

2y
2
e + 1

2k2
θ2e > 0

Differentiating along solutions:

V̇ = xe(ωye − k1xe) + ye(−ωxe + vr sin θe) +
1

k2
θe(−k2yevr sin θeθe

− k3θe) = −k1x2e −
k3
k2
θ2e ≤ 0

How to complete the proof?

• We can not use LaSalle (1959), since closed-loop dynamics is not autonomous.

• We might use LaSalle (1976). . .
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Questions

Assume that limt→∞ x(t) = 0. Do we have limt→∞ ẋ(t) = 0?

No: Consider x(t) = e−t sin e2t for which ẋ(t) = −e−t sin e2t + 2et cos e2t

Assume that x(t) is bounded and limt→∞ ẋ(t) = 0. Do we have limt→∞ x(t) = C for some
constant C?

No: Consider ẋ(t) = cos(ln(t+1))
t+1 for which x(t) = sin(ln(1 + t))

We need some results to complete the proof
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Commonly used tools for completing the proof

Lemma (Barbălat, 1959)
Let φ : R+ → R be a uniformly continuous function (e.g., φ̇ bounded). Suppose that

limt→∞
∫ t

0
φ(τ) d τ exists and is finite. Then lim

t→∞
φ(t) = 0.

Idea: For φ(t) use V̇ (t).

Lemma (Micaelli, Samson, 1993)
Let f : R+ → R be any differentiable function. If limt→∞ f (t) = 0 and

ḟ (t) = f0(t) + η(t) t ≥ 0

where f0 is a uniformly continuous function (e.g., ḟ0 is bounded) and limt→∞ η(t) = 0, then
limt→∞ ḟ (t) = limt→∞ f0(t) = 0.

Idea: Signal chasing by (repeatedly) applying to signals that converge to zero
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Example (Jiang, Nijmeijer, 1997)

Since V̇ ≤ 0 we have: xe , ye , θe bounded.

Barbălat: ˙̇V bounded, lim
t→∞

∫ t

0

V̇ d t = lim
t→∞

V (t)− V (0) exists and finite, so lim
t→∞

V̇ (t) = 0,

i.e., lim
t→∞

xe(t) = lim
t→∞

θe(t) = 0.

Lemma of Micaelli and Samson: θ̇e = − k2yevr︸ ︷︷ ︸
f0(t)

+ k2yevr
(

1− sin θe
θe

)
− k3θe︸ ︷︷ ︸

η(t)

f0 uniformly continuous, lim
t→∞

η(t) = 0, so lim
t→∞

ye(t)vr (t) = 0 and therefore lim
t→∞

ye(t) = 0.

From the above we can conclude global asymptotic stability of the closed-loop system.
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Standard form

Previous example is standard proof.

More general: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

• Lyapunov function: V (x1, x2, x3, t) positive definite.

• Derivative along dynamics: V̇ (x1, t) negative semi-definite.

• Using Barbălat: V̇ (x1, t)→ 0, which implies x1 → 0.

• Using Micaelli, Samson: f1(0, x2, x3, t)→ 0, which implies x2 → 0.

• Using Micaelli, Samson: f2(0, 0, x3, t)→ 0, which implies x3 → 0.

Or even more general. . .

Using this approach we can show global asymptotic stability. However, is that what we want?
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Example (Panteley, Loŕıa, Teel, 1999)

Consider the system

ẋ =


1

1+t if x ≤ − 1
1+t

−x if |x | ≤ 1
1+t

− 1
1+t if x ≥ 1

1+t

For each r > 0 and t0 ≥ 0 there exist k > 0 and γ > 0 such that for all t ≥ t0 and |x(t0)| ≤ r :

|x(t)| ≤ k|x(t0)|e−γ(t−t0) ∀t ≥ t0 ≥ 0

However, always a bounded (arbitrarily small) additive perturbation δ(t, x) and a constant
t0 ≥ 0 exist such that the trajectories of the perturbed system ẋ = f (t, x) + δ(t, x) are
unbounded.

Main reason for this negative result: the constants k and γ are allowed to depend on t0, i.e.,
for each value of t0 different constants k and γ may be chosen.
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Robustness to perturbations for UGAS

Lemma (Khalil 1996 (2nd ed), Lemma 5.3; Khalil 2002 (3rd ed), Lemma 9.3)

Let x = 0 be a uniformly asymptotically stable equilibrium point of the nominal system
ẋ = f (t, x) where f : R+ × Br → Rn is continuously differentiable, and the Jacobian

[
∂f
∂x

]
is

bounded on Br , uniformly in t. Then one can determine constants ∆ > 0 and R > 0 such
that for all perturbations δ(t, x) that satisfy the uniform bound ‖δ(t, x)‖ ≤ δ < ∆ and all
initial conditions ‖x(t0)‖ ≤ R, the solution x(t) of the perturbed system ẋ = f (t, x) + δ(t, x)
satisfies

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t0 ≤ t ≤ t1 and ‖x(t)‖ ≤ ρ(δ) ∀t ≥ t1

for some β ∈ KL and some finite time t1, where ρ(δ) is a class K function of δ.
Furthermore, if x = 0 is a uniformly globally exponentially stable equilibrium point, we can
allow for arbitrarily large δ by choosing R > 0 large enough.
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Problem

Lesson learned from example

For robustness we need uniform global asymptotic stability.

Subject of remainder of this talk (10 minutes)

How to show UGAS when we do not have a proper Lyapunov function, i.e, when V̇ is negative
semi-definite, but are able to complete the proof using Barbălat + signal chasing

After this talk, you (hopefully) know:
• How to complete a proof using Barbălat + signal chasing

• Using Barbălat + signal chasing shows only GAS, whereas we want UGAS.

• How to show UGAS using different tools
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Matrosov like theorem (Loŕıa et.al., 2005)

Consider the dynamical system

ẋ = f (t, x) x(t0) = x0 f (t, 0) = 0 (1)

f : R+ × Rn → Rn loc. bounded, continuous a.e., loc. unif. continuous in t. If there exist

◦ j differentiable functions Vi : R+ × Rn → R, bounded in t, and

◦ continuous functions Yi : Rn → R for i ∈ {1, 2, . . . j} such that

• V1 is positive definite and radially unbounded,

• V̇i (t, x) ≤ Yi (x), for all i ∈ {1, 2, . . . , j},
• Yi (x) = 0 for i ∈ {1, 2, . . . , k − 1} implies Yk(x) ≤ 0, for all k ∈ {1, 2, . . . , j},
• Yi (x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0,

then the origin x = 0 of (1) is uniformly globally asymptotically stable.

Question: how to determine suitable functions Vi and Yi (for i > 1)?
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Example (revisited)

Closed-loop system: ẋe = ωye − k1xe , ẏe = −ωxe + vr sin θe , θ̇e = −k2yevr sin θeθe
− k3θe .

Lyapunov function candidate: V1 = 1
2x

2
e + 1

2y
2
e + 1

2k2
θ2e .

Differentiating along solutions: V̇1 = −k1x2e − k3
k2
θ2e = Y1.

Consider V2 = −θe θ̇e . Then

V̇2 = −θ̇2e − θe θ̈e = −[−k2yevr + η(t)]2 − θe θ̈e = −(k2yevr )
2 + 2k2yevrη(t)− η(t)2 − θe θ̈e

≤ −k2
2 (vmin

r )2y2
e + M1 ‖η‖+ ‖η‖2 + M2 ‖θe‖ = Y2.

Note that Y1 = 0 implies Y2 ≤ 0. Furthermore, Y1 = Y2 = 0 implies xe = ye = θe = 0.

Therefore: uniform global asymptotic stability.
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New standard approach for uniform results

More general case: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

• Lyapunov function: V1(x1, x2, x3, t) positive definite.

• Derivative along dynamics: V̇1(x1, t) = · · · ≤ Y1(x1) negative semi-definite.

• Use V2 = −xT1 ẋ1. Then V̇2 ≤ −[f1(0, x2, x3, t)]2 + F2(‖x1‖) ≤ Y2(x).

• Y1 = 0 implies Y2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.

• Use V3 = −xT2 ẋ2. Then V̇3 ≤ −[f2(0, 0, x3, t)]2 + F3(‖x1‖ , ‖x2‖) ≤ Y3(x).

• Y1 = Y2 = 0 implies Y3 =≤ 0. Also, Y1 = Y2 = Y3 = 0 implies x1 = x2 = x3 = 0.

• Conclusion: uniform global asymptotic stability.

NB: Often simpler functions can be found for Vi , e.g., V2 = −f1(0, x2, x3, t)T ẋ1, etc.
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Conclusions

• Got to know Erjen Lefeber slightly better

• We recalled the standard approach of using Barbălat + signal chasing

• We illustrated the need for uniform asymptotic stability

• We showed how to modify the standard approach for showing GAS to prove UGAS instead.
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