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Abstract In this note we address the problem of set-point control of robot manipulators with un-
certain gravity knowledge by combining several previous contributions to PID control. The main
contribution is a linear PID controller which ensures global asymptotic stability of the closed loop.
The key feature of the controller is that the integration is started after a short transient. In the case
of unmeasurable velocities, a similar �delayed� PI2D controller is shown to globally asymptotically
stabilize the manipulator.
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1 Introduction

From [19] it is well known that a PD plus gravity compensation controller can globally asymptotically
stabilize a rigid-joints manipulator. This approach has two well known drawbacks: 1) the vector of
gravitational forces is assumed to be known accurately and 2) velocity measurements are needed.
An ad hoc solution to the Þrst problem is to compensate for the gravitational vector with the best
estimate available. This method can be used if a (small) bounded steady state error can be tolerated.
It is also well known that this error can be eliminated by adding an integrator. While PID control
started probably with Nicholas Minorsky in 1922, in marine vessels applications, in robotics, the Þrst
local asymptotic stability proof of a PID controller is attributed to [3]. For a recent reference on
PID (set-point and tracking) control of industrial manipulators see [18]. Concerning the problem of
unmeasurable velocities, we know at least the following linear dynamic position feedback controllers
which appeared independently [9, 1, 5, 6], see also [16] where the concept of EL controllers was
introduced and which generalizes the results of the previous references. The PI2D controller, which
uses the approximate differentiation Þlter used in [9, 5, 6] together with an integral action was Þrst
introduced in [15]. See also [7].

For the case of measurable velocities one can design, with some smart modiÞcations, nonlinear
PID�s which guarantee global asymptotic stability. As far as we know, the Þrst nonlinear PID controller
is due to [8], where a normalized integral term was used. Indeed, even though the author presented his
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result as an �adaptive� controller, the latter can be reformulated as a nonlinear PID (see [14]). Arimoto
[2] proposed to use a saturated proportional term. This helps in the same way as the normalization
to cope with third order terms which appear in the Lyapunov function derivative and impede proving
global properties.

As far as we know, there exist no proof of global asymptotic stability of a linear PID controller in
closed loop with a robot manipulator. Based on the discussion at the begining of the Introduction,
in this note we prove that a robot manipulator in closed loop with a linear delayed PID controller
is globally asymptotically stable. Our �delayed PID�, in short PIdD, can be understood as a simple
PD controller to which an integral action is added after some transient of time. Also, in the case of
unmeasurable velocities we show that the integral action of a PI2D controller can be delayed as to
guarantee the global asymptotic stability of the closed loop. We will call this linear controller, �delayed
PI2D�, or PI2dD.

Our approach is inspired by the ideas of composite control developed in [13]. The idea of this
approach consists of �patching� a global and a local controller. The Þrst drives the solutions to an
arbitrarily small domain, while the second, yields local asymptotic stability. See also [20] where the
authors propose an algorithm to combine global with local controllers with the aim of improving both
robustness and performance.

This note is organized as follows. In Section 2, we Þrst state the problem of interest here and
then, we recall some well known but fundamental results for our main contributions. The latter are
presented in Section 3. In Section 4 we show some simulations, and Section 5 concludes the note.

Notation. In this note we use k·k for the Euclidean norm of vectors and matrices. We denote by kpm
and kpM the smallest and largest eigenvalues of the matrix Kp.

2 Problem formulation and preliminary results

The rigid-joints robot kinetic energy is given by T (q, úq) = 1
2 úq
>D(q) úq, where q ∈ Rn represents the link

positions, D(q) = D>(q) > 0 is the robot inertia matrix, and the potential energy generating gravity
forces is denoted by Ug(q). Applying the Euler-Lagrange equations we obtain the well known model

D(q)q̈ +C(q, úq) úq + g(q) = u (1)

where g(q) := ∂Ug
∂q (q), C(q, úq) úq represents the Coriolis and centrifugal forces, and u ∈ Rn are the

applied torques. It is also well known now (see for instance [17]) that the following properties hold

P1 For all q ∈ Rn the matrixD(q) is positive deÞnite and, with a suitable factorization (more precisely
using the so called Christoffel symbols of the Þrst kind) the matrix N(q, úq) = úD(q)− 2C(q, úq) is skew
symmetric. Moreover, there exist some positive constants dm and dM such that dmI < D(q) < dMI.

P2 There exists some positive constants kg and kv such that for all q ∈ Rn

kg ≥ sup
q∈Rn

°°°°∂2Ug(q)∂q2

°°°° , kv ≥ sup
q∈Rn

°°°°∂Ug(q)∂q

°°°° . (2)

P3 The matrix C(x, y) is bounded in x and linear in y, that is, for all z ∈ Rn we have that
C(x, y)z = C(x, z)y and kC(x, y)k ≤ kckyk with kc > 0.
Set-point control problem with uncertain gravity knowledge: Assume that only an inacurate
estimate, �Ug(q), of the gravitational energy function Ug(q), is available. Assume also that the estimate

of the gravitational forces vector, �g(q) := ∂ �Ug
∂q (q) satisÞes

kv ≥ sup
q∈Rn

k�g(q)k , ∀ q ∈ Rn (3)
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where kv is deÞned in property P2. Under these conditions design continuous control laws (state
feedback) u = u(q, úq) and (dynamic position feedback) u = u(q,ϑ), úϑ = f(q,ϑ), such that the closed
loop (1) with u is globally asymptotically stable (GAS) at an arbitrary setpoint ( úq, q,ϑ) = (0, q?, 0).
In particular, we are interested in linear PID-like control laws achieving this goal.

2.1 Preliminary results

For clarity of exposition and to introduce some notation, we reconsider in this section, some well
known results on robot control. These are fundamental for the proofs of our main propositions.

First case: measurable velocities. Based on the results of [19] and [21] we present below a simple
robustness result vis-a-vis the uncertainty of g(q).

Proposition 1 Consider the robot manipulator model (1) in closed loop with the PD control law

u = −Kp�q −Kd úq + �g(q∗) , (4)

where �q := q − q∗. Let kpm > kg, then there exists a unique equilibrium point ( úq, q) = (0, qs) for the
closed loop system. The point ( úq, q) = (0, qs) is globally asymptotically stable for (1), (4) and the
steady state error �qs := qs − q∗ satisÞes

k�qsk ≤ 2kv
kpm

. (5)

Sketch of proof. The closed loop equation (1), (4) is given by

D(q)q̈ +C(q, úq) úq + g(q)− �g(q∗) +Kp�q +Kd úq = 0. (6)

The system (6) is Lagrangian with potential energy function

U1(q) := Ug(q)− �Ug(q∗)− �q>�g(q∗) + 1
2
�q>Kp�q .

The system (6) has equilibria, q = qs, at the minima of U1(q), which are solutions of

∂U1
∂q
(qs) = 0 ⇔ Kp(qs − q∗) + g(qs)− �g(q∗) = 0 (7)

moreover, the equilibrium q = qs is unique if kpm > kg where kg satisÞes (2). Global asymptotic
stability of the equilibrium ( úq, q) = (0, qs) immediately follows using Krasovskii-LaSalle�s invariance
principle taking the time derivative of V1(q, úq) = 1

2 úq
>D(q) úq + U1(q) which qualiÞes as a Lyapunov

function candidate if kpm > kg. ¥
As it is well known the steady state error �qs can be eliminated by the use of an integrator, this

result was Þrstly proved in [3]. Reformulating (for further analysis) the original contribution of [3] we
have

Proposition 2 Consider the dynamic model (1) in closed loop with the PID control law

u = −Kp�q −Kd úq + ν (8)

úν = −Ki�q, ν(0) = ν0 ∈ Rn. (9)

where Kp, Kd, and Ki are diagonal positive deÞnite matrices and �q := q − q?. If Kp is sufficiently
large then the closed loop is locally asymptotically stable at the origin x := col[�q, úq, �ν] = 0, where
�ν := ν − g(q∗).
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Sketch of proof. Choose any positive deÞnite diagonal matrix K 0
p and let

Kp := K
0
p +

1

ε
Ki (10)

where ε > 0 is a (small) constant to be determined. Then the error dynamics (1), (8), (9) become

D(q)q̈ +C(q, úq) úq + g(q)− g(q∗) +K0
p�q +Kd úq = −

1

ε
Ki�q + �ν (11)

ú�ν = −Ki�q . (12)

A simple inspection shows that the unique equilibrium of the system (11), (12) is �q = 0, �ν = 0 and
úq = 0. To analyze the stability of the closed loop system we use the following Lyapunov function
candidate with cross terms (similarly to [12, 22, 10, 2, 15]):

V2(x) :=
1

2
úq>D úq + Ug − Ug∗ − �q>g∗ +

1

2
�q>K0

p�q +
ε

2
(−1
ε
Ki�q + �ν)

>K−1
i (−1

ε
Ki�q + �ν) + ε�q

>D úq ,

where we have dropped the arguments and deÞned Ug∗ := Ug(q∗), g∗ := g(q∗). By splitting the
kinetic, and part of the potential energy terms as �q>K0

p�q = (λ1 + λ2 + λ3)�q
>K 0

p�q, úq
>D(q) úq = (λ1 +

λ2 + λ3) úq>D(q) úq with 1 > λi > 0, i = 1, 2, 3, one can show that, if

k0pm ≥ max
½
kg
λ1
,
ε2dM
λ1λ2

¾
, (13)

then the function V2(x) satisÞes the lower bound:

V2(x) ≥ λ3
2
�q>K 0

p�q +
λ2 + λ3
2

úq>D úq (14)

hence, V2(x) is positive deÞnite and radially unbounded. Next, using kC(z, y)k ≤ kckyk and kg(q)− g(q∗)k ≤
kg k�qk, the time derivative of V2(x) along the trajectories of (11), (12) satisÞes

úV2(x) ≤ −
³
kdm −

ε

2
kdM − εkc k�qk− εdM

´
k úqk2 − ε

µ
k0pm − kg −

1

2
kdM

¶
k�qk2 (15)

which is negative semideÞnite if,

kdm > ε(kdM + 2dM) (16)

k0pm > kg +
1

2
kdM (17)

k�qk ≤ kdm
2εkc

. (18)

Local asymptotic stability of the origin x = 0 follows using Krasovskii-LaSalle�s invariance principle
(see for instance [11, p. 115]). A domain of attraction can be determined by deÞning the set

Bδ :=
©
x ∈ R3n : V2(x) ≤ δ

ª
(19)

with δ, the largest positive constant such that (18) holds and hence úV2(x) ≤ 0 for all x ∈ Bδ. Since V2
is radially unbounded and positive deÞnite, and úV2(x) ≤ 0 for all x ∈ Bδ, this set is positive invariant
(i.e. if x(0) ∈ Bδ then x(t) ∈ Bδ for all t ≥ 0) and qualiÞes as a domain of attraction for x(t).

Second case: unmeasurable velocities. Based on the results of Kelly [10], we brießy present
some results similar to those contained in Propositions 1 and 2.
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Proposition 3 Consider the dynamic model (1) in closed loop with the PD control law

u = −Kp�q −Kdϑ+ �g(q∗) (20)

úqc = −A(qc +Bq) (21)

ϑ = qc +Bq (22)

where A, B, Kd and Kp are diagonal positive deÞnite matrices. Then, if kpm > kg, the equilibrium
point ( úq, ϑ, q) = (0, 0, qs) where qs satisÞes (5), of the closed loop system is globally asymptotically
stable.

The following proposition can be deduced from the results presented in [15].

Proposition 4 Consider the robot model (1) in closed loop with the PI2D control law (21), (22),
u = −Kp�q −Kdϑ+ ν, and

úν = −Ki(�q − ϑ), ν(0) = ν0 ∈ Rn . (23)

Let Kp, Ki, Kd, A and B be positive deÞnite diagonal matrices where B is such that BD(q) =
D(q)B > 0. Under these conditions, we can always Þnd a sufficiently large proportional gain Kp
(or sufficiently small Ki) such that the equilibrium ξ := col[�q, úq, ϑ, �ν] = 0 is locally asymptotically
stable.

Sketch of proof. Using (10), the error equations can be written as

D(q)q̈ +C(q, úq) úq + g(q)− g(q∗) +K 0
p�q +Kdϑ = �ν −

1

ε
Ki�q (24)

ú�ν = −Ki(�q − ϑ) (25)
úϑ = −Aϑ+B úq (26)

where K 0
p is deÞned by (10). From [15] we know that the Lyapunov function candidate, V4(ξ) =

V2(x)+
1
2ϑ
>KdB−1ϑ−εϑ>D(q) úq, is positive deÞnite and radially unbounded with a global and unique

minimum at the origin, if ε is sufficiently small. We rewrite the conditions derived in [15] with a
slight modiÞcation convenient for the purpose of this note. Partition the term ϑ>KdB−1ϑ = (µ1 +
µ2)ϑ

>KdB−1ϑ where 0 < µ1 + µ2 ≤ 1, µi > 0 with i = 1, 2. One can prove that if (13) holds and

ε <

µ
2kdmλ2µ2
dMbM

¶1/2
(27)

then V4(ξ) satisÞes the bound

V4(ξ) ≥ λ3
2
úq>D úq +

λ3
2
�q>K 0

p�q +
µ1
2
ϑ>KdB−1ϑ . (28)

Furthermore, it has also been shown in [15] that if the position error �q and the Þlter output ϑ satisfy

kϑk+ k�qk ≤ bmdm
2kc

(29)

and if ε > 0 is sufficiently small to satisfy

ε < min

(
(k0pm − kg)kdmam

2bM
£
k0pM + kdM + kg

¤2 , kdmamdm2[amdM ]2
,
kdmam
2bMkdM

)
, (30)

there exist strictly positive constants β1, β2, and β3 such that the time derivative of V4(ξ) along the
closed loop trajectories (24), (25) is bounded by úV4(ξ) ≤ −β1 k�qk2−β2 k úqk2−β3kϑk2. Local asymptotic
stability of ξ = 0 can be proven by invoking Krasovskii-LaSalle�s invariance principle. A domain of
attraction for the system (24), (26) with state ξ = col[�q, úq, ϑ, �ν] can be deÞned as in the proof of
Proposition 2, as the set Bρ :=

©
ξ ∈ R4n : V4(ξ) ≤ ρ

ª
where ρ is the largest positive constant such

that (29) holds and hence úV4(ξ) ≤ 0 for all ξ ∈ Bρ.
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3 Main results

We show that one can achieve global asymptotic stability with PID and PI2D control by simply delaying
the integral action.

3.1 First case: measurable velocities

Proposition 5 (PIdD controller) Consider the robot manipulator model (1) in closed loop with
the PIdD controller

u = −Kp�q −Kd úq + ν (31)

úν =

½
0, ν(0) ∈ Rn ∀ 0 ≤ t ≤ ts−Ki�q, ν(ts) = ν(0) ∀ t ≥ ts (32)

where Kp, Kd, and Ki are diagonal positive deÞnite matrices. There always exist a Þnite time instant
ts ≥ 0, a sufficiently large proportional gain Kp and/or a sufficiently small integral gain Ki, indepen-
dent of the initial conditions, such that the closed loop system is globally asymptotically stable at the
origin x := col[ úq, �q, �ν] = 0 where �ν := ν − g(q∗).

Remark 1 Notice that, when ν(0) = �g(q∗), in its Þrst phase (that is 0 ≤ t ≤ ts), the delayed PID
of Proposition 5 reduces to the robust controller of Proposition 1 which guarantees global asymptotic
stability of a different equilibrium than desired but it also guarantees that the steady position error is
conÞned to the closed ball of radius determined by (5). In its second phase (that is, for all t ≥ ts),
the delayed PID reduces to the �conventional� PID controller of Proposition 2 with initial conditions
x0 = x(ts). ¤

Proof of Proposition 5. From Proposition 1 it follows that during the Þrst phase of the delayed
PID, (�q, úq, �ν)→ (�qs, 0, �g(q∗)−g(q∗)) as t→∞. Furthermore, �qs satisÞes the upperbound (5). DeÞne
the set

Γ :=

½
x ∈ R3n : k�qk ≤ 2kv

kpm
, úq = 0, k�νk ≤ 2kv

¾
,

then we must Þnd a constant δ so that Γ ⊂ Bδ where Bδ is deÞned in (19) and this will yield a suitable
ts to guarantee GAS of the closed loop. Notice that in order to give an explicit value to δ in terms of
the control gains, V2(x) is needed, however the potential energy term Ug(q) is not known explicitly.
Therefore, deÞne

V2M(x) =
1

2
úq>D úq +

1

2
(kpM + kg) k�qk2 + k�νk k�qk+

ε

2kim
k�νk2 + ε�q>D úq (33)

and the set BMδ :=
©
x ∈ R3n : V2M(x) ≤ δ

ª
. Notice that from (10) we have that V2M(x) ≥ V2(x)

hence BMδ ⊂ Bδ. Now we look for a δ such that Γ ⊂ BMδ ⊂ Bδ, using (33) and (5) it suffices that

δ >
1

2
(kpM + kg)

µ
2kv
kpm

¶2
+
4k2v
kpm

+
2εk2v
kim

. (34)

In words, the lower-bound on δ given above, ensures that the delayed PID controller in its Þrst phase
will drive the trajectories into the domain of attraction Bδ in Þnite time. The second requirement on
δ is that úV2(x) be negative semi-deÞnite for all x ∈ Bδ, hence we proceed to calculate an upperbound
for δ so that úV2(Bδ) ≤ 0.

From the proof of Proposition 2 (see (14)) we know that (13) implies that V2(x) ≥ V2m(x) where
we deÞned V2m(x) := 0.5λ3k

0
pm k�qk2. DeÞne the set Bmδ :=

©
x ∈ R3n : V2m(x) ≤ δ

ª
. With these

deÞnitions we have that Bδ ⊂ Bmδ hence it suffices to prove that úV2(Bmδ ) ≤ 0. Notice that among the
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three sufficient conditions (16)-(18) to ensure úV2(x) ≤ 0, the only one which affects the deÞnition of
the domain of attraction (hence of δ) is (18) thus, it should hold true that

2δ

λ3k0pm
<

k2dm
4ε2k2c

. (35)

In summary, (34) and (35) suffice to ensure that the trajectories x(t) converge to the domain of
attraction Bδ in Þnite time. Finally, to ensure global asymptotic stability of the origin it suffices
to choose the time ts as the Þrst time moment when the �initial conditions� x(ts) ∈ Bδ that is,
ts : V2(x(ts)) ≤ δ however, since V2(x) is not accurately known consider the function

V̄2M(x) :=
1

2
úq>D úq +

1

2
(kpM + kg) k�qk2 + 2kv

µ
k�qk+ εkv

kim

¶
+ ε�q>D úq

which has been deÞned based on (33) by taking the worst case scenario, that is, when the unknown
constant error �ν = �g(q∗)− g(q∗) takes its maximal possible value, k�νk = 2kv. This steady state error
is a robustness measure for the the PIdD controller in its Þrst phase, that is, when it works as a PD
which drives the system trajectories to a bounded domain. Motivated by this discussion, we deÞne
the start-integration time as

ts : V̄2M(x(ts)) ≤ δ (36)

so the proof is completed observing that V̄2M(x(t)) ≥ V2M(x(t)) for all t ≤ ts and (35) holds for
sufficiently small ε, hence due to (10) for sufficiently large kpm and/or sufficiently small kiM < ε.

The following corollary gives an insight to the practitioner on how to choose the control gains and
the switching time ts to guarantee GAS of the origin.

Corollary 1 Consider the dynamic model (1) in closed loop with the PIdD control law (31), (32).
Let Kp, Kd, and Ki be diagonal positive deÞnite matrices, satisfying kdm > ε(kdM + 2dM) and
k0pm > max

©
kg/λ1 , ε

2dM/λ2λ1 , kg + 0.5kdM
ª
, (34) and (35). DeÞne the start-integration time ts as

in (36). Under these conditions, the closed loop system is globally asymptotically stable.

3.2 Second case: unmeasurable velocities

Proposition 6 [PI2dD controller] Consider the robot model (1) in closed loop with the PI
2
dD control

law (21), (22) and

u = −Kp�q −Kd úq + ν (37)

úν =

½
0, ν(0) ∈ Rn ∀ 0 ≤ t ≤ ts−Ki(�q − ϑ), ν(ts) = ν(0) ∀ t ≥ ts (38)

Let Kp, Ki, Kd, A and B be positive deÞnite diagonal matrices where B is such that BD(q) =
D(q)B > 0. Under these conditions, we can always Þnd a Þnite time instant ts ≥ 0, sufficiently large
gains Kp, B and/or a sufficiently small integral gain Ki, independent of the initial conditions, such
that the closed loop system is globally asymptotically stable at the origin ξ := col[ úq, �q,ϑ, �ν] = 0,
where �ν := ν − g(q∗).
Proof . The proof follows along the lines of the proof of Proposition 5, based on the results obtained
in Propositions 3 and 4. DeÞne the set

Γ0 :=
½
ξ ∈ R4n : k�qk ≤ 2kv

kpm
, úq = ϑ = 0, k�νk ≤ 2kv

¾
,

and denoting the setBMρ :=
©
ξ ∈ R4n : V4M(ξ) ≤ ρ

ª
where V4M(ξ) := V2M(x)+1

2ϑ
>KdB−1ϑ−εϑ>D úq.

Notice from the proof of Proposition 4 that V4M(ξ) ≥ V4(ξ), hence BMρ ⊂ Bρ. Notice also that
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V4M(Γ
0) = V2M(Γ) hence Γ0 ⊂ BMρ if ρ satisÞes a similar bound as (34). We only need to deÞne an

upperbound for ρ which ensures that úV4(Bρ) ≤ 0. Let

V4m(ξ) := V2m(x) +
µ1kdm
2bM

kϑk2 , (39)

from (28) we have that V4(ξ) ≥ V4m(ξ) if condition (27) and (13) hold. Consider next the condition
established by inequality (29), then analogously to (35) we have that

max

½µ
2ρ

λ3k0pm

¶
,

µ
2ρbM
µ1kdm

¶¾
<
b2md

2
m

16k2c

and (30) imply that úV4(ξ) ≤ 0 for all ξ such that V4m(ξ) ≤ ρ, hence also for all ξ ∈ Bρ. In summary,
it is sufficient that ρ satisÞes

1

2
(kpM + kg)

µ
2kv
kpm

¶2
+
4k2v
kpm

+
2εk2v
kim

< ρ <
b2md

2
m

16k2c
min

½µ
λ3k

0
pm

2

¶
,

µ
µ1kdm
2bM

¶¾
, (40)

to ensure that the delayed PI2D controller in its Þrst phase drives the trajectories ξ(t) into the domain
of attraction deÞned for the second phase. Hence, there exists a Þnite ts ≥ 0 ensuring GAS of the
origin ξ = 0. As in the proof of Proposition 5, considering that for all t ≤ ts, the gravity compensation
error k�νk is a constant bounded by 2kv, the instant ts can be chosen as

ts : V̄4M(ξ(ts)) ≤ ρ (41)

where

V̄4M(ξ) :=
1

2
úq>D úq +

1

2
(kpM + kg) k�qk2 + 2kv

µ
k�qk+ εkv

kim

¶
+ ε�q>D úq +

1

2
ϑ>KdB−1ϑ− εϑ>D úq.

The proof Þnishes noticing that (40) holds for sufficiently large bm and sufficiently small ε, hence due
to (10) for sufficiently large kpm and/or sufficiently small kiM < ε. ¥

Remark 2 Notice from (41) that the switching time ts does indeed depend on the unmeasurable
velocities úq(ts). Hence, the precise theoretical result which is contained in Proposition 6 is that �there
exists a start-integration time ts such that the origin ξ = 0 is GAS�. For practical purposes however,
observe that the velocity measurements are not used in the controller equations (37) � (38). The start-
integration time ts can then be computed using the best estimate available of the velocity measurement
at a precise instant. For instance, any ts such that V̄4M(ξ(ts)) < ρ where we redeÞned

V̄4M(ξ(ts)) :=
1

2
�úq(ts)

>D�úq +
1

2
(kpM + kg) k�q(ts)k2 + 2kv

µ
k�q(ts)k+ εkv

kim

¶
+ ε�q(ts)

>D�úq(ts) . (42)

and �úq(ts) is the best estimate available of úq(ts). Such an estimate can be computed for instance from
the last two position measurements prior to the moment ts. ¤

Corollary 2 Consider the dynamic model (1) in closed loop with the PI2dD control law (37)�(38).
Let Kp, Kd, and Ki be diagonal positive deÞnite matrices with Kp deÞned by (10), satisfying (27),
(30), and (40). There exists a time instant ts (for instance given by (41)) such that the closed loop
system is globally asymptotically stable at the origin ξ = col[�q, úq,ϑ, �ν] = 0.



146 SACTA, Vol.3, No.2, 2000

4 Simulation results

To illustrate the performance of the PIdD and PI2dD controllers, we present some MatlabTM simu-
lations. We compared the delayed PID controller derived in Section 3.1 with the normalized PID of
Kelly [8] and the saturated PID controller of Arimoto [2]. We used the model presented in [4], where

D(q) =

·
8.77 + 1.02 cos q2 0.76 + 0.51 cos q2
0.76 + 0.51 cos q2 0.62

¸
C(q, úq) = 0.51 sin q2

· − úq2 −( úq1 + úq2)
úq1 0

¸
g(q) = 9.81

·
7.6 sin q1 + 0.63 sin(q1 + q2)

0.63 sin(q1 + q2)

¸
For this system we have dm = 0.45, dM = 9.96, kc = 1.53, kv = 80.7, kg = 81.2. For simplicity, we
assume to have no better estimate of the gravitational forces vector than �g(q) = [0, 0]>. We considered
the problem of controlling the manipulator from the position [2, 0]> towards [1, 1]>. For this we used
Kp = 240I, Kd = 75I, Ki = 150I, where K 0

p = 120I. From (10) it follows that ² = 1.25. From (13) we
see that V2(x) ≥ 0 and by choosing δ = 290 condition (34) is met and the solution of the closed loop
system is guaranteed to enter the ball B̄Mδ := {x ∈ R6 : V̄2M(x) ≤ δ} in Þnite time. Therefore the
existence of ts as deÞned in (36) is also guaranteed. Next we selected λ1 = 0.7, λ2 = 0.2 and λ3 = 0.1
so that V2(�q, úq, �ν) ≥ 6k�qk2 hence from the fact that V2(x) ≤ δ we can conclude that k�qk < 7, which
results into úV2(x) < −2.2k úqk2 − 1.6k�qk2 .

From [14], we know that our selection of gains also guarantees global asymptotic stability of the
normalized PID of Kelly [8] and the saturated PID controller of Arimoto [2]. In Figure 1 we show a
comparative study in simulations of all three schemes. We see that the partially saturated proportional
term leads to a larger overshoot for Arimoto�s controller [2], whereas the saturation in Kelly�s controller
[8] leads to a slower convergence of ν to g(q∗). We can also see the delayed integration (starting at
ts = 0.2533) of the PIdD controller.

To make not only a qualitative but also a quantitative comparison among the three controllers, we
have evaluated the Integral Square Error (ISE) index

ise(t) :=

Z t

0
�q(s)>�q(s)ds.

The result is illustrated at the bottom of Figure 1. The application of Arimoto�s controller [2] yields
the largest ise, seemingly due to the partially saturated proportional term which retards the transient.
One can also appreciate that during the Þrst second, the ise with Kelly�s controller [8] is slightly lower
than the ise of our delayed PID controller, however, due to the saturation in the integral part the
Þnal convergence of Kelly�s controller is slower, resulting into a larger ise.

In case of unmeasurable velocities we consider the same task. For the PI2dD we used Kp = 240I,
Kd = 75I, Ki = 2I, A = 15I, B = 200I. The smaller value for Ki in comparison with the state-
feedback case is due to the more restrictive inequalities. By choosing K0

p = 100I (which results into
² = 0.0143) we have that V4 ≥ 0, and using λ1 = 0.82, λ2 = 0.08, λ3 = 0.10, µ1 = 0.95, µ2 = 0.05,
(39) becomes V4m(ξ) ≥ 5k�qk2 + 0.1781kϑk2. By choosing ρ = 275 we meet the left hand side of (40)
and are guaranteed to enter the set BMρ and therefore the existence of ts as deÞned in (41). Since
V4m ≤ ρ we have that k�qk+ kϑk ≤ 40 and hence,

úV4 ≤ −
 k úqk
k�qk
kϑk

>  0.3974 0 −1.0675
0 0.2679 −0.6697

−1.0675 −0.6697 4.5535

 k úqk
k�qk
kϑk

 < 0 .
Therefore, if we start integrating as soon as the trajectories are in BMρ we obtain asymptotic stability
in the second phase and henceforth, global asymptotic stability of the delayed PI2D controller. As
pointed out in Remark 2, an estimate of the velocity value at the instant ts is needed. Here, ts = 25
since a visual inspection from the plot of �q reveals that the velocities are considerably small after 25s.
The resulting overall performance is depicted in Figure 2. Notice that the delayed integral action
results into a zero position error.
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Figure 1: A comparative performance study. The PIdD versus nonlinear PIDs.
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Figure 2: Performance with the delayed PI2D controller.
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5 Concluding remarks

We have addressed the practically important problem of global asymptotic stabilization of robot ma-
nipulators with uncertain gravity knowledge. Our main contribution is the proof that GAS is possible
with linear PID (for the state feedback case) and PI2D (if velocities are unavailable) controllers by
simply delaying the integral action. From a theoretical point of view we have shown for both the state
and position feedback case, that there exists a �start-integration time� ts such that GAS is guaranteed.
From a practical point of view, we have given criteria on how to choose the instant ts and the control
gains. Finally, we have shown in simulations the potential advantages of our schemes vis-a-vis existing
nonlinear PID controllers.
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