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Summary

Autonomous drones are required to follow a pre-defined trajectory without any need of manual op-
eration. For many applications with cooperative quadrotors, fast-maneuvering with good tracking
capabilities is an important requirement to avoid collisions. A previously designed controller for
a quadrotor UAV is capable of tracking slow varying trajectories with good accuracy. However,
for aggressive maneuvering the controller cannot simultaneously reject the disturbance dynamics
and accurately track the given trajectory. The main objective of this thesis is to re-design the
tracking controller with the extended dynamic model obtained using identification methods. Aero-
dynamic effects have the most dominant role in these disturbances and first principles models of the
aerodynamic forces and moments are computationally expensive. Data-driven modeling is a more
economic approach which is used to identify the disturbances at several operating regions of the
drone. In this project, grey-box models are defined to capture the disturbance dynamics which are
partially based on prior knowledge of quadrotor aerodynamics. Experimental flight data are used to
select the most appropriate model structure and also estimate the parameters of the chosen model.
The validated model for disturbance forces and moments are updated to the cascaded controller
such that almost-global uniform asymptotic stability is proved using known stability results. The
identified extended model has been implemented in a simulation environment and compared with
experimental results. The position results are compared for the case of a three dimensional circular
trajectory and a vertical eight figure trajectory. Simulation results of the extended model without
the identified moment models show good match with the actual quadrotor position measurements.
The identified moment models generated undesired results which is believed to be caused by poor
parameter estimates. Therefore, the implementation of the redesigned controller in the simula-
tion environment does not include the compensation for disturbance moments. Considering the
quadrotor airspeed, disturbance moments have very little influence on the tracking performance.
Simulation of the redesigned controller for the extended model shows improved position tracking
performance. The exclusion of the disturbance force compensation term from the controller results
in a large deviation of the quadrotor position from the given trajectory.
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Chapter 1

Introduction

1.1 Background
The fascination with unmanned aerial vehicles (UAVs) is witnessed in the past years from its appli-
cations emerging in several fields. With the rapid advancement in UAV technology, the potential
uses are constantly recognized by various sectors for the purposes of package delivery, cinematogra-
phy, reconnaissance, farming, rescue missions and many more. The earliest known uses of UAVs go
back to military operations, but now multirotor vehicles are integrated into everyday applications
of the civilian world. In the field of agriculture, they are used for monitoring crop growth and
also for spraying water and pesticides [1]. Film industry implements multirotor drones to capture
hard-to-reach angles and dynamic action scenes due to its freedom of motion [2, 3]. Companies
like Google, Amazon, UPS, and DHL have firmly invested in the idea of package delivery by UAVs
instead of trucks. Such industries are drawn by the less energy consumption and reduced environ-
mental impacts of small and compact drones [4, 5].

In disaster-affected regions, UAVs are utilized for transporting the emergency commodities, locat-
ing trapped victims and also for providing directions for safe evacuations [6]. Operations like this
usually require multiple drones to fly in formation and maintain cooperation with each other to
immediately scan and carry out the necessary actions [7].

The recent improvements in batteries, processors and several other components of drones have
indeed contributed to improving the autonomous applications, but there are still many challenges
involved in enhancing its flight capabilities. For instance, for autonomous flight motions in out-
door environments, UAVs should be capable of flying in changing wind conditions and other harsh
environments. An example requiring such features is the application of autonomous drones for
studying volcanoes and hurricanes, where gathering important real-time data can become very dif-
ficult. NOAA is a known scientific agency which has been using UAVs named Coyote and Global
Hawk to collect data for building hurricane forecasting models [8]. Maneuvering in such conditions
requires design and implementation of controllers which recognize the ambient conditions and also
perform the necessary flight operations.

The design of appropriate tracking control laws for a UAV system possessing highly nonlinear and
strongly intertwined dynamics with an unstable and under-actuated nature is already very challeng-
ing. In addition, the controllers are needed to take into consideration the complex aerodynamics in
different air flow conditions. This demands for deriving mathematical models which describe the

1
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behaviour of the rigid body dynamics of the quadrotor and also the disturbances acting on it in
most environments. The derived models should also not undermine the processing capabilities of
low-cost drones in order to enable high-speed motions. This thesis aims to determine and model
the significant external disturbances for improving the tracking performance of a quadrotor UAV.

1.2 Literature Review
The aerodynamic modeling of quadrotors has remained as an active topic of research for many
years due to the difficulty of obtaining a global model valid for all flight conditions. The complex
interactions between quadrotor air frame, the actuators and the neighbouring fluid are considered
to be the major challenges involved in modeling. An extensive amount of literature suggests several
approaches to describe these aerodynamic effects and some of these methods are briefly described
in this section.

1.2.1 First Principles Models
The most dominant aerodynamic effects acting on the quadrotor are generally considered to arise
from the rotors [9–12]. In [9,10], this rotor behaviour is modeled by considering the effects of blade
flapping. In the work of [12], the implementation of flapping behaviour and induced flow is carried
out using blade element theory (BET) and momentum theory (MT). The aerodynamic models
obtained with blade element theory and momentum theory are known to be simple and versatile.
A common drawback in most theoretical rotor models is that they are derived from the classical
helicopter theories which are adjusted for quadrotors. Such an approach according to the author
in [13,14], fails to capture the complex aerodynamic forces and moments of multirotor vehicles. As
per the knowledge of the author in [14], no current theoretical models are capable of completely
describing the aerodynamics of the quadrotor in the entire operating range. For example, the com-
bined aerodynamic effects resulting from simultaneous lateral and longitudinal motions cannot be
determined using the physical knowledge of the system.

1.2.2 Data-Driven Models
The extraction of dynamics from the measured data has been a popular approach for several sys-
tems with complicated dynamics. In most available literature, the identification of an unstable
and under-actuated system like a quadrotor is performed in closed-loop. Methods including both
black-box and grey-box modeling appear to be consistently used for determining the dynamics of
multirotor systems.

Black-Box Modeling: In [15, 16], subspace identification methods (SIM) are used to identify
linear black-box model structures of quadrotors. The work of [15] obtained unbiased estimates
of the continuous-time model for closed-loop hovering data where the reliability of the model is
checked using a bootstrap method. Another method of obtaining continuous-time state space mod-
els is studied in the work of [17], where the algebraic inversion method is used as the identification
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method. Prediction Error Methods (PEM) as an identification criterion are known for their attrac-
tive features such as applicability on a wide range of parametric model structures and determining
the associated uncertainties in the estimated parameters [18]. The author of the work in [19], uses
PEM to determine an ARMAX model structure and in [20] PEM is implemented to determine the
parameters of a quadrotor state-space model. Linear black box models derived for quadrotors are
unstructured and therefore it cannot be known what information on the dynamics is present in the
model. In addition, to capture the highly nonlinear dynamics of a quadrotor, linear data-driven
models are insufficient. In [21], a recursive neural network method is used to determine a nonlinear
black-box model using a nonlinear ARX model structure. The downside of this approach is that
it does not represent the nonlinearity of the quadrotor in a theoretical structure and also such a
model is only valid in the region where the identification experiment is performed.

Grey-Box Modeling: To understand the underlying dynamics in a much better sense, grey-
box modeling offers the possibility to define the model structure based on the existing physical
knowledge of the system and determine the parameters in that model from the measured data.
Identification software packages such as SIDPAC and CIFER, developed by research associations
are known for parameter estimation of linear quadcopter models. In the work of [22, 23] the SID-
PAC identification package is used to determine the parameters of a linear grey-box model. In [23],
the parameter estimate of aerodynamic drag and control derivatives are obtained with the SIDPAC
parameter estimation algorithm. The author of [24] uses the CIFER package to identify the param-
eters of structured state-space models. This software determines the parameters of the model by
minimizing the cost function in frequency domain. A different approach can be found in [25], where
an optimization cost function is designed to identify the parameters of the grey-box model using
the data of a previously known black-box model. For this optimization problem, a nullspace-based
method is used and the obtained parameter estimates appear to have a very good accuracy. A set
of local linear grey-box models linearized at different working points could be used to compose a
global quadrotor model but as per the claim of author in [13], a global model obtained in such a
way can be quite unreasonable for describing the dynamics of aggressive flights.

Parameter estimation for nonlinear grey-box models is presently considered as one of the well es-
tablished identification approaches for obtaining an extended quadrotor model in current literature.
With all the relevant input and output data available to process, the parameters of the rigid body
dynamics as well as the aerodynamics can be determined. For instance, in [26], the author iden-
tifies thrust, torque and drag coefficients, moment of inertia and quadrotor mass using a genetic
algorithm. In most works [27–30], the focus is on determining aerodynamic effects of the propeller
rotation, modeled using blade element theory and identifying the model parameters using suitable
identification criteria. For example, in the work of [27], the identification method is based on
PEM using a constrained optimization algorithm to refine the initial estimates of the parameters.
Utilizing the IMU accelerometer data for identification of aerodynamic forces is another popular
approach which is used in the work of [11,29]. The identified aerodynamic effects are then included
into the tracking controller of the quadrotor using feed forward compensation. Improvement in
the tracking performance is observed with the inclusion of these aerodynamic effects. Data-driven
modeling of the rotor aerodynamics in most work has indeed resulted in improved trajectory track-
ing capabilities, but for aggressive maneuvers, more complex aerodynamics comes into play. This
complex behaviour is suspected to be partially caused by the interaction of the horizontal and ver-
tical components of quadrotor velocity, as stated in the work of [31]. Such a complex aerodynamic
behaviour is rarely considered for improving the tracking performance of quadrotors.
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1.3 Motivation and Objectives
For aggressive maneuvering of the quadrotor with the controller designed by [32, 33], the closed-
loop system performs a stable three-dimensional circular maneuver with a large deviation from the
given reference trajectory. This can be explained from the influence of the damping effects, i.e.,
aerodynamic forces and moments which becomes more prominent when the quadrotor is subjected
to faster motion. The controller designed by van den Eijnden in [32, 33] is capable of rejecting
these disturbance forces to some extent. However, with increasing magnitude of these motion de-
pendent dynamics, the integral action provided by the controller seems to be insufficient. Tracking
controllers can be tuned to either favour disturbance rejection or tracking performance, but not
both simultaneously. Since we do not want to make any compromise in performance, the controller
needs to be re-designed to take into account the effects of the disturbances. This is achieved by
modeling the aerodynamic effects acting on the quadrotor when performing aggressive acrobatic
maneuvers.

The extended model with the unconsidered aerodynamic effects is designed by de Kleuver [12],
which slightly improves the positions error during simulations. However, there are still some ob-
served inaccuracies in the model with the new dynamics due to the limitations imposed by first
principles modeling.

These observations from the previous work form an important basis for the motivation to carry out
this research project. The previous research inspires to explore new methods and strategies to sig-
nificantly improve the tracking performance of the quadrotor for fast makeovers using data-driven
modeling techniques.

The objectives of the project can be summarized with the following points:

• Define a suitable grey-box model to determine the disturbances acting on the quadrotor.

• Determine an appropriate identification method to determine the free parameters of the grey-
box model structure.

• Re-design the existing tracking controller with the new dynamics such that the resulting
closed loop system is stable.

• Conduct experiments with the new controller and evaluate the performance during aggressive
maneuvering.

1.4 Problem Formulation
The thesis project aims to improve the trajectory tracking performance of quadrotors by extending
the quadrotor model used in the design of the non-linear controller. The disturbance model which
is mostly described by aerodynamics needs to be determined through the methods of data-driven
modeling.

In the work of [32] and [33], the proposed controller is based on the physical model of the rigid body
dynamics and hence any incorporation of the additional dynamics should not alter this structured
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non-linear model. Considering these constraints on modeling, the disturbance model in this project
is identified through grey-box modeling.
The problem is addressed initially by describing the quadrotor dynamics using the rigid body
model and the disturbance model which is to be identified. The center of mass of the quadrotor
with respect to the North-West-Up (NWU) inertial frame is denoted by ρ = [x, y, z]T . The linear
and angular velocities of the quadrotor, within the body frame are given as, ν = [u, v, w]T and
ω = [p, q, r]T .The rotation from the body-fixed frame B to the inertial frame I is implemented
using the rotation matrix R ∈ SO(3). Then the dynamics of the quadrotor model is given as

ρ̇ = Rν (1.1a)

ν̇ = −S(ω)ν − gRT e3 +
f

m
e3 +

Faero

m
(1.1b)

Ṙ = RS(ω) (1.1c)
Jω̇ = S(Jω) + τ + Md + Maero, (1.1d)

where m is the mass of the quadrotor, J = diag([Jx, Jy, Jz]) is the matrix of moment of inertia,
total thrust magnitude f ∈ R and total moment vector τ ∈ R

3 denote the control outputs for the
quadrotor which are given by,⎡

⎢⎢⎢⎣
f
τ1
τ2
τ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

κ κ κ κ
κl −κl −κl κl

−κl −κl κl κl
κd −κd κd −κd

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎤
⎥⎥⎥⎦ , (1.2)

in which κ is a parameter based on rotor geometry, l is the distance from center of mass to the
rotor centers and d is defined as the rotational drag coefficient Also Ωi represent the rotation speed
of each ith rotor. The skew-symmetric matrix S is a cross product operator given as,

S(a) = −S(a)T =

⎡
⎢⎣ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎤
⎥⎦ . (1.3)

In (1.1), Faero, Maero and Md and represents the disturbance dynamics which are needed to be
identified. The terms Faero = [Fa,x, Fa,y, Fa,z]T and Maero = [Ma,x, Ma,y, Ma,z]T represent the
aerodynamic forces and moments, respectively, acting on the quadrotor. Additionally, Md =
[Mgyro,x, Mgyro,y, Mrot,z]T represents the moments caused by gyroscopic torques and rotor iner-
tia torque. The main problem of re-designing the tracking controller is then addressed after the
identification of the new extended model.
With the dynamics of the extended quadrotor model given in (1.1) and a feasible reference trajec-
tory (ρr, Rr, νr, ωr, fr, τr) which satisfies the same dynamics. The error coordinates of the extended
quadrotor model on SE(3) will be defined by:

ρ̃ = RT
r (ρ − ρr) R̃ = RT

r R

ν̃ = −R̃T S(ωr)ρ̃ + ν − R̃T νr ω̃ = ω − R̃T ωr,
(1.4)

The problem of re-designing the tracking controller can be then be defined by the following state-
ment,
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Problem 1.6.1. (Tracking control problem) Given a feasible reference trajectory (ρr, Rr, νr, ωr, fr, τr)
for the quadrotor, suitable control laws need to be determined for:

f = f(ρ, R, ν, ω, ρr, Rr, νr, ωr) > 0 (1.5a)
τ = τ(ρ, R, ν, ω, ρr, Rr, νr, ωr), (1.5b)

such that for the resulting closed-loop system

lim
t→∞ ε(ρ̃(t), R̃(t), ν̃(t), ω̃(t)) = 0, (1.6)

where ε(ρ̃, R̃, ν̃, ω̃) = ||ρ̃|| + || log R̃|| + ||ν̃|| + ||ω̃||, is the measure of error.

1.5 Thesis Outline
The contents of the thesis is grouped as follows:

• Chapter 2: Data Acquisition and Processing
The data-sets for implementing the identification requires quadrotor states and inputs, which
are not directly available from sensor data. This chapter explains the model and processing
used for estimation of the attitude, velocity and rotor speed of the quadrotor. Furthermore,
the estimation of the aerodynamic forces and moments from the sensors are also described in
brief.

• Chapter 3: Identification of Aerodynamic Models
Here the Identifications of the disturbance forces and moments is described, which includes
the method used for identification, grey-box models defined for aerodynamics of the quadrotor
and lastly the estimation of the parameters.

• Chapter 4: Controller Re-design
The controller designed by van den Eijnden is re-designed to include the aerodynamic forces
and moments. The stability of the position subsystem and the attitude subsystem is derived
for the new controller. In addition, the closed loop stability of the entire quadrotor system is
proved as well.

• Chapter 5: Simulation Study
Chapter 5 illustrates the tracking performance of the re-designed controller for high speed
maneuvers through simulation. A comparison of the controller performance is studied with
and without the disturbance compensation term.

• Chapter 6: Conclusion and Recommendations
The final chapter discusses the conclusions from the obtained results and also mentions the
recommendations for further research work.



Chapter 2

Data Acquisition and Processing

In most theoretical models for quadrotor aerodynamics, it observed that the dynamics are depen-
dent on rotor speed Ωi, body-fixed velocity ν and angular velocity ω. The available sensors for the
AR Drone 2.0 are incapable of directly providing a reliable estimate of these variables, which are
required for parameter estimation of the grey-box model. Most quadrotors equipped with Inertial
Measurement Units (IMUs), can be used to reconstruct attitude but there are no specific sensors
which gives an estimate of the body-fixed velocity ν. In Section 2.1 and 2.2 of this chapter, an
attitude observer and the position estimates of the quadrotor with respect to inertial frame I is
used to reconstruct the body-fixed velocity ν. The individual rotor speed Ωi are obtained using the
inputs applied to the quadrotor which is described in Section 2.3. Furthermore, the estimation of
the aerodynamic forces and moments from IMU sensor data is detailed in Section 2.4.

2.1 Attitude Observer
A good estimate of the quadrotor body-fixed velocity ν, is essential for the identification of many
aerodynamic parameters. The smoothed derivatives of the position estimate ρ provide an estimate
of the drone’s velocity in earth frame I, but to represent this estimate in the body-fixed frame B,
rotation matrix R : B → I is needed.

The construction of this rotation matrix R ∈ SO(3) requires information on the drone’s attitude.
To address this issue, an explicit complementary filter with bias correction [34] is proposed to ob-
tain the unbiased attitude information from the IMU gyroscope measurements ωy and vectorial
measurements vi such as gravitational and magnetic field directions. Unlike direct and passive
filters, online algebraic reconstruction of attitude is not required by this observer.

The goal of the non-linear observer is to determine the estimate of the attitude rotation matrix
R̂ ∈ SO(3) in the estimator frame of reference E and bias estimate b̂ such that the error defined by
R̃ = R̂T R and b̃ = b − b̂ is driven to (I, 0).

The outputs from the IMU gyroscope, expressed in body-fixed frame B is represented as follows

ωy = ω + b + η, (2.1)

where ω = [p, q, r]T ∈ B represents the true values of angular velocity, b denotes a constant or slow
time-varying bias and η represents the measurement noise.

7
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Similarly the vectorial data vi ∈ B, are given by

vi = RT v0i + ηi, (2.2)

where v0i ∈ I, i = 1, ..., n, represents the inertial directions and ηi is the noise process.

The two body-fixed frame measurements of the inertial directions that can applied to the proposed
filter are given by

va =
ay

|ay| , vm =
my

|my| , (2.3)

where ay, my ∈ B are the gravitational and magnetometer measurements, respectively, obtained
from IMU unit. The susceptibility of the magnetometer measurements to electric motors of the
quadrotor makes it unreliable and therefore only the accelerometer data is applied to the observer.
The kinematics and stability properties of the filter for a single inertial direction data is explained
through the following definition and theorem:

Definition 2.1.1. ( [34]) Two signals x(t) : R → Mx and y(t) : R → My are termed as
asymptotically independent if there exists a non-degenerate function ft : Mx × My → R and any T
such that for any t > T ,

ft(x(t), y(t)) �= 0, (2.4)

in which the term non-degenerate implies that the Hessian of ft at any point (x, y) is full rank.

Theorem 2.1.1. (Explicit complementary filter, [34], Corollary 5.2) Consider the system
kinematics

Ṙ = RS(ω), (2.5)

where R(t) ∈ SO(3) and S(ω) is the cross-product operator on ω(t) with the measurements defined
in (2.1) and (2.2) (for a single measurement v1 = va). Let kP , kI > 0 be the positive gains.
Consider the filter kinematics given as

˙̂
R = R̂(S(ωy − b̂) + kP S(emes)), R̂(0) = R̂0 (2.6a)
˙̂
b = −kIemes, b̂(0) = b̂0 (2.6b)

emes = va × v̂a, (2.6c)

and let (R̂(t), b̂(t)) be the solution of (2.6). Assume that ω(t) is a bounded, absolutely continuous
signal and that the pair of signals (ω(t), va(t)) are asymptotically independent as per Definition
2.1.1. Let v̂a = R̂T v0a be the estimate of the body-fixed measurement va = RT v0a. Also, dynamics
of the estimator v̂a is given by

˙̂va = −S(ωy − b̂ + kP va × v̂a)v̂a. (2.7)

Define:
The error variables are defined as, R̃ = R̂T R and b̃ = b − b̂. The set U1 ∈ SO(3) × R

3 is given by,

U1 = {(R̃, b̃) : vT
0aR̃v0a = −1, b̃ = 0} (2.8)
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Then:

1) Under the closed-loop filter dynamics, the set U1 is forward invariant and unstable for some
ε-neighborhood of U1 given by,

D = {(R̃∗, b̃∗) : d((R̃∗, b̃∗),U1) < ε} (2.9)

in which d((R̃∗, b̃∗),U1) is the minimum distance between (R̃∗, b̃∗) and set U1 defined by,

d((R̃∗, b̃∗),U1) = inf
R̃,b̃∈U1

(1 − vT
0aR̃T

∗ R̃v0a + ||b̃∗ − b̃||) (2.10)

2) For equilibrium point (I, 0) of (R̃, b̃), the estimate (v̂a, b̂) is locally exponentially stable to
(va, b).

3) The trajectory (v̂a(t), b̂) converges to the trajectory (va(t), b) for almost all initial conditions
(R̃0, b̃0) /∈ U1.

The architecture of this non-linear attitude observer is shown in Figure 2.1. In the block diagram
for filter, the term ωy − b̂ + kP va × v̂a is denoted by ω̂. The PI compensation of the explicit
complementary filter is controlled using the gains kP and kI . In Appendix A, the proposed observer
is simulated for suitable choice of gains kP and kI .

Figure 2.1: Block diagram of the explicit complementary filter with bias correction.

2.2 Velocity Estimation
The xy-position estimates of the drone is obtained from the external camera which is sampled at
the rate of 30 Hz with a delay of 0.1s. The state observer designed by N. Jeurgens in [35] provides
the estimate of z-position in inertial frame using the roll φ and pitch θ angles computed with an
attitude observer and the body-fixed frame z-position estimates acquired from the altimeter out-
putting at 25 Hz. In [35], a dual linear Kalman filter is proposed which provides reliable estimate
of roll φ and pitch θ angles and therefore the z-position estimate in I is also reliable. However, this
attitude observer provides erroneous yaw angle ψ estimates of the quadrotor.

The proposed explicit complementary filter in Section 2.1 is instead used to construct the rotation
matrix R to represent the ρ̇ ∈ I of the quadrotor in body-fixed frame B using
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ν = RT ρ̇, ν ∈ B. (2.11)

The position estimates of drone samples data at a lower rate compared to the attitude information
which is sampled 400 Hz. In order to use all the data to control the drone, the model used for
experiments uses an update mechanism [32,35] for the position estimates. This results in quantized
position data from holding the samples at different intervals.

The process of filtering of such quantized signals from moving average method results in smoothing
out of important information in the signals. Hence, a differentiation filter known as Savitsky Golay
filter [48, 49] is used to compute the smooth derivatives of position ρ and then use the expression
in (2.11) to compute the body-fixed velocity ν. The Savitsky Golay filter is capable of preserving
most of the important information on the signals and also rapidly compute derivatives of the signals
in time domain using the properties of convolution. The smoothed position derivatives obtained
using this differentiation filter is detailed in Appendix B.

2.3 Rotor Speed Estimation
System inputs, thrust f and the torques τ = [τ1, τ2, τ3]T are computed by the controller to follow
a given trajectory. A relation is then used to calculate the thrust Ti required by each rotor for the
given inputs given by, ⎡

⎢⎢⎢⎣
f
τ1
τ2
τ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
l −l −l l

−l −l l l
d −d d −d

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

T1
T2
T3
T4

⎤
⎥⎥⎥⎦ , (2.12)

where l is the distance from the rotors to the center of mass, and d is the rotational drag coefficient.

In the thesis report of N. Jeurgens [35], the functions representing the quadratic relationship be-
tween individual rotor thrust Ti and PWM values PW,i is determined using a force transducer, given
by: ⎡

⎢⎢⎢⎣
T1
T2
T3
T4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1.5618 · 10−4P 2
W,1 + 1.0395 · 10−2PW,1 + 0.13894

1.8150 · 10−4P 2
W,2 + 8.7242 · 10−3PW,2 + 0.14425

1.3478 · 10−4P 2
W,3 + 7.3295 · 10−3PW,3 + 0.11698

1.4306 · 10−4P 2
W,4 + 5.7609 · 10−3PW,4 + 0.13362

⎤
⎥⎥⎥⎦ . (2.13)

Then the PWM values PW,i determined by the above expression are supplied as motor inputs to
the quadrotor. It is observed that there exists a linear relationship between the PWM values PW,i

supplied to the motors and the individual rotor speed Ωi of the quadrotor [36]. This relationship
was experimentally determined in [35] using an RPM counter, given by:⎡

⎢⎢⎢⎣
Ω1
Ω2
Ω3
Ω4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3.7503PW,1 + 132.7387
3.7123PW,2 + 131.5018
3.7891PW,3 + 132.7387
3.7380PW,4 + 132.2209

⎤
⎥⎥⎥⎦ . (2.14)

The above expression is used for determining the individual rotor speeds Ωi of the quadrotor which
is a crucial data for implementing the identification procedures.
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2.4 Extraction of Aerodynamic Forces and Moments
When considering the forces acting on the body-fixed frame of the quadrotor, the translational
dynamic equations are given as

mν̇ = −mS(ω)ν +
∑

Fext, (2.15)

where mS(ω)ν represents the Coriolis term which is regarded as the fictitious internal force. The
term

∑
Fext represents the sum all the external forces which includes the gravitational force and

all the aerodynamic forces acting on the quadrotor, given as
∑

Fext = −mRT ge3 + fe3 + Faero, (2.16)

where the thrust f and all the other aerodynamic forces Faero together represent the total aerody-
namic forces acting on the quadrotor.
The expression for IMU accelerometer which measures in body-fixed frame B, is given as [9],

may = mRT (ge3 + ρ̈), (2.17)

where the internal force described by the Coriolis term is not measured by this sensor since it mea-
sures only the externally applied forces rather than the resultant forces acting on the body-fixed
frame as mentioned in [31,37,38].

The measurement of force mRT ρ̈ is not directly sensed by the accelerometer, in reality this is
estimated from the externally applied aerodynamic forces. Also, the external thrust f in z-direction
is also not directly measured, but during flight this force is equal to the gravitational force which
is given by mRT g. So (2.17) can written as:

may = fe3 + Faero. (2.18)

With this expression, the time signals of the total aerodynamic forces can directly be obtained for
parameter estimation of suitable grey-box models.

The rotational dynamics of the quadrotor is defined as,

Jω̇ = S(Jω)ω + τ + Md + Maero, (2.19)

where the summation of Md and Maero represent the total disturbance moment acting on the drone.
Unlike the accelerometer, the gyroscope of the IMU sensor measures the effect of the resultant
moments rather than just the externally applied moments. With (2.19) and the IMU gyroscope
angular velocity ωy, the disturbance moments can be isolated by rearranging the terms as

Jω̇y − S(Jωy)ωy − τ = Md + Maero. (2.20)

2.5 Concluding Remarks
The datasets required for the identification are either not directly available or are corrupted with
noise and bias. This chapter describes the approaches used to obtain the datasets from the available
sensors for the quadrotor flight experiments. The representation of the quadrotor velocity in the



2.5. Concluding Remarks 12

body-fixed frames requires information on the attitude estimates. An explicit complementary
filter with bias correction is used to reconstruct the attitude information of the drone from the
IMU gyroscope and accelerometer measurements. The derivatives of the external camera position
estimates are used to estimate the quadrotor velocity in the inertial frame. A specific differentiation
filter known as the Savitsky Golay filter is used to compute the derivatives of the quantized position
data. This filter is known to preserve most of the significant information on quadrotor velocity
without too much smoothing. Another important data is the quadrotor rotor speed which is
estimated using the PWM inputs supplied to the motors of the quadrotor. The linear mapping of
the rotor speeds to the PWM inputs used for the estimation of rotor roation speed. Lastly, the
measurements of the aerodynamic forces and moments are acquired from the IMU accelerometer
and gyroscope data, respectively. It is assumed that the accelerometer data captures only the
external forces measurement due to which the internal forces are neglected. However, the gyroscope
sensor measures the net resultant moment acting on the vehicle and therefore all the internal and
external moments need to be considered for isolating the data on aerodynamic and other disturbance
moments.



Chapter 3

Identification of Aerodynamic Models

In this chapter, the identification of the aerodynamic models is performed. The complex aerody-
namic effects involving the quadrotor frame, rotors and the surrounding air is difficult to model with
the currently known theoretical models [9–12]. Such models usually describe the aerodynamics of
quadrotors by only considering the rotor flapping behaviour and induced flow. As stated in the work
of [31, 36], complex interactions between lateral and longitudinal linear velocity of the quadrotor
is also crucial to capture the aerodynamics of the system. Identification methods offer the pos-
sibility to model such complex dynamics which usually cannot be explained by the physical models.

The outputs of the IMU sensor are widely used to identify the aerodynamic forces and moments
acting on the body-fixed frame of the quadrotor [11, 29, 31, 36]. This simple approach enables to
identify the aerodynamic effects in such a way that they can be represented together with the
known theoretical rigid body model. Furthermore, since the aerodynamic models are identified
with respect to the body-fixed frame B, there are no additional rotation matrices introduced in the
quadrotor model. The identification procedure is explained through the schematic representation
given in Figure 4.1.

Figure 3.1: Schematic illustration of the identification method.

The identification procedure entails several steps from processing the flight data till validation of

13
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the suitable model. The different stages crucial to the identification process is explained in brief
through the following points:

• Experiment data
To capture most of the system dynamics in the model, the experiments conducted should
sufficiently excite the necessary variables. For instance, to determine the strong coupling
between the rotor speed Ωi, body linear velocity ν and angular velocity ω of the aerodynamic
model, the experiments should be performed to simultaneously excite all the independent
variables. The determination of the independent variables Ωi, ν and ω and the response
variables Faero, Maero and Md is described in detail in the previous chapter.

• Potential predictors
The combination of the independent variables are used to form the potential predictors for
the model. In the case of the aerodynamic model, polynomial functions are formed with this
combination. The potential predictors are determined with the known theoretical models
for quadrotor aerodynamics. In addition, polynomial functions to account for the other
aerodynamic effects not explained by the physical models are also formed with the variables.
The pool of predictors is defined in the further sections of this chapter to fit the aerodynamic
forces Faero and disturbance moments Maero and Md. In Section 3.2 and 3.3 the model
structure for thrust force (F̂z) and drag force (F̂a,x and F̂a,y) are defined. Similarly, the
grey-box models for roll and pitch moment (M̂x and M̂y) are defined in Section 3.4 and the
structure for yaw moment model (M̂z) is given in Section 3.5. Furthermore, in Section 3.6 it
is briefly explained how the aerodynamic forces and moments varies with quadrotor air speed.

• Model selection
The sum of all the potential predictors defines the model set for carrying out the identification.
It is important to determine only the best set of predictors to fit the response variables Faero,
Maero and Md without any over fitting. To implement this, a model selection criterion is
applied using Least Absolute Shrinkage and Selection Operator (LASSO). The criterion is
applied using Least Angle Regression (LAR) algorithm proposed by Efron et al. [39] and is
explained in Section 3.1. Once, the right set of predictors are selected and the free parameters
are estimated the model for performing validation test is defined.

3.1 Model Selection
Consider the model selection problem defined by the following linear-in-parameters regression
model,

y = XΘ + ε, (3.1)

where y ∈ R
N represents the response variable with N data points. The regressors matrix is

given by, X = [ϕ0, ϕ1, ϕ2, ..., ϕm] ∈ R
N×m, which contains the constant predictor ϕ0 in the first

column and ϕi which represents the ith candidate predictor, where i = 1, 2...m. The vector
Θ = [Θ1, Θ2, ..., Θm] ∈ R

N represents the parameter vector and ε is the residue between measure-
ment data and output of the model.

For identification of the aerodynamic model, the response variable y is given by the measure-
ments of Faero, Maero and Md. Also, the matrix X consists of the predictors formed with the
independent variables Ωi, ν and ω.
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Let the matrix X represent the dictionary of the m potential predictors to fit the response vari-
able y. In model identification, it is often redundant to use the complete set of predictors defined
in X. Thus, our model selection problem is equivalent to determining a full dimensional subset
XP = [ζ0, ζ1, ..., ζP ] ∈ R

N×p of P ≤ m predictors from the library of X, with constant predictor
ζ0 = ϕ0. Then the system response variable y can be acceptably approximated using a linear
combination of ζ0, ζ1, ζ2, ..., ζP , given by

y =θ0ζ0 + θ1ζ1 + ... + θP ζP + ε

=XP θ + ε.
(3.2)

The problem of model selection in (3.1) is confronted by implementing Least Absolute Shrinkage
and Selection Operator (LASSO), which is method for regularizing a least squares regression. The
LASSO method fits the linear model, given by,

ŷ =
m∑

i=1
ϕiΘi (3.3)

with the constant predictor term ϕ0 excluded, to solve the optimization problem,

Θ̂ = min
Θ

||y − ŷ||2 subject to
m∑

i=1
|Θi| ≤ s, (3.4)

where ||.|| is the L2 norm and s ≥ 0 is the tuning shrinkage parameter used to select the number
of predictors to the model. A sufficiently large value of s, will produce the ordinary least square
solution for (3.4) and smaller values shrinks some estimates of Θ to zero.

The expression given in (3.4), was earlier solved using quadratic programming which was compu-
tationally cumbersome. Therefore, we use the Least Angle Regression (LAR) algorithm proposed
by Efron et al. [39] which implements the LASSO optimization problem with a small modification.
Such an implementation determines the solutions for LASSO for all shrinkage parameter s. The
LAR algorithm with modification for LASSO is shown in Algorithm 3.1 which is based on the work
of [41].

Since the given algorithm will add one predictor with every step, the Bayesian Information Criterion
(BIC) is used to terminate the LAR code. Assuming the LAR algorithm has added p predictors
after n steps to the model, then the BIC criterion is defined by,

BICn = N ln (RSSn/N) + p ln(N), (3.5)

where RSSn is the residual sum of squares given by ||y − ŷ||2. Then the following condition is used
as a satisfactory model selection stopping criterion [40],

|BICn−1 − BICn| < εcrit, (3.6)

in which the value of εcrit decides how many predictors are to be included in the model.
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Algorithm 3.1 Least Angle Regression (LAR) with LASSO modification
Initialize:

1: Standardize the predictors ϕi, 0 < i ≤ m to keep mean μ = 0 and variance σ = 1, except the constant
predictor term ϕ0. Set coefficients Θ1, Θ2, ..., Θm = 0.

2: Find the first predictor most correlated to response y and determine the residue, r = y − ŷ, where ŷ is
the least square estimation of y.

Procedure:
3: Excluding the first predictor, find a predictor ϕj most correlated with r.
4: Increase coefficient Θj from zero towards its least-squares coefficient 〈ϕj , r〉 until some other candidate

ϕk has as much correlation with the current residual as ϕj .
5: Move coefficient (Θj , Θk) in the direction determined by joined least squares coefficient of the present

residual on (ϕj , ϕk), until some other candidate ϕl has as much correlation with the current residual.
6: LASSO modification: Continue this pattern and if some non-zero coefficient reaches zero, remove it

from the active set and recompute the present joint least squares direction.

Stop Criterion:
7: The above procedure is terminated when the BIC stopping criterion in (3.6) is met.

Once the model with p most essential predictors are selected using Algorithm 3.1, the output model
is estimated by also including the constant predictor term (for bias), given by

ŷ =θ̂0ζ0 + θ̂1ζ1 + ... + θ̂P ζP + ε

=XP θ̂
(3.7)

where the value of θ̂ is estimated by the original least squares (OLS) solution, defined by

θ̂ = (XT
P XP )−1XT

P y (3.8)

3.2 Thrust Force Model

In this section, the structure of the thrust model F̂z is defined using the known quadrotor aerody-
namic theories. The purpose of this model is to capture the resultant force acting on the z-direction
of the quadrotor. The thrust force excluding the drag forces denoted by T̂ , is first modelled by
considering the following components of forces:

• The thrust generated by the propellers.

• The force due to thrust variance effect which is caused by translational lift and rotor induced
velocity [10]. Effective translational lift is the aerodynamic force which results from the
quadrotor performing climbing and descending maneuvers. The other effect is caused by the
inflow of air through the rotor disk known as the rotor induced velocity.

Assumption 3.2.1 For purposes of identification the following assumptions are considered:

i) The local rotor velocities, νi = [ui, vi, wi]T ∈ B in the body frame of all the four rotors are
identical.

ii) The induced velocity νin,i of each rotor is assumed to equal to each other as well.
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The thrust forces of the ith rotor is hence expressed by [42]:

Ti =
ρaaBcΩ2

i R3
ra

2

(
θr

3
+

V 2
i cos 2αθr

2Ω2
i R2

ra

+
νin,i − Vi sin α

2ΩiRra

)
(3.9)

where ρa is the density of air, a is the lift curve slope of blade profile, B refers to the number of
blades, c is the blade chord, Rra indicates the rotor radius, θr is the rotor pitch angle, Vi = ||νi|| is
the resultant magnitude of the ith rotor velocity , α is the angle of attack between coming air flow
and rotor disk and νin,i is the induced velocity of the ith rotor.

Now, the resultant speed Vi of rotor i of the quadrotor is a function of the horizontal and vertical
body-fixed velocities of the quadrotor. Hence, by substituting the following terms,

Vi cos α =
√

u2
i + v2

i , Vi sin α = wi, (3.10)

in the expression given for Ti in (3.9), we get

Ti =
ρaabcΩ2

i R3
ra

2

(
θr

3
+

(u2
i + v2

i )θr

2Ω2
i R2

ra

+
νin,i − wi

2ΩiRra

)
(3.11)

All the constants for Ti can be lumped together for simplicity and therefore the model for the total
rotor generated thrust in the body-fixed frame can be given as,

T̂ =
4∑

i=1
Ti = κ0

∑
Ω2

i + κ1(u2 + v2) + κ2(νin − w)
∑

Ωi (3.12)

in which κ0, κ1 and κ2 are the constant parameters. The term
∑4

i=1 will be simply represented by∑
in further expressions. The total induced velocity νin during translational flight in the quadrotor

body-fixed frame is given by [10],

νin =
v2

h√
u2 + v2 + (vin − w)2 , (3.13)

where vh is the induced velocity of the quadrotor during hovering. The resultant force acting in
the z-direction of the quadrotor is then given by,

F̂z = T̂ + Dz

= κ0
∑

Ω2
i + κ1(u2 + v2) + κ2(νin − w)

∑
Ωi + Dz,

(3.14)

in which Dz represents all the drag forces in the z-direction of the body-frame.
When the drone flight experiments are conducted to only hover at a certain a height, the resultant
force in z-direction given in (3.14) reduces to the following,

F̂hov = κ0
∑

Ω2
i + κ2νh

∑
Ωi, (3.15)

where the components of body-fixed velocities ν = 0, during hovering at a stationary point. In the
above expression the induced velocity νin becomes equal to the hovering induced velocity νh, which
can be inferred from (3.13). In the work of [30], it is empirically proven that the induced velocity
during hovering has a linear relationship with the rotor speed, which can be expressed as,

νh = dh

∑
Ωi, (3.16)



3.2. Thrust Force Model 18

where dh is a constant parameter. Hence the expression for hovering model F̂hov in (3.15) can be
written as,

F̂hov = κ0
∑

Ω2
i + κ2dh

(∑
Ωi

)2 ≈ (κ0 + κ2)
∑

Ω2
i = κ

∑
Ω2

i , (3.17)

in which the constants κ0 and κ2 are lumped together and represented by κ. Here we have obtained
an approximate model for F̂hov which has a direct mapping to the term

∑
Ω2

i . To determine the
hovering parameter κ of this model it is required to preform several hovering experiments with the
quadrotor. However, drones operating near the ground can suffer from varying effects of the in-
duced velocity which is known as the ground effect. It is required to perform hovering experiments
at height z from the ground which satisfies the condition z/Rra > 0.5 [43], where the variation of
the induced velocity effect becomes negligible.

The closed-loop hovering flight experiments are performed using the controller designed in [32], for
the position reference trajectory given by,

ρr =
[
0 0 zr

]T
, zr = 1m (3.18)

The parameter κ is computed using recursive least squares using the the individual rotor speed
Ωi data and the measurement for hovering thrust force Fhov is obtained from the accelerometer
measurement in z-direction. Figure 3.2 shows the sequential estimation of parameter κ with the
dataset formed with eight different hovering flight experiments. The estimate of parameter κ from
each hovering experiment is presented in Appendix C and the detailed explanation to the applied
recursive least squares method is given in Appendix D.
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Figure 3.2: Recursive estimation of parameter κ from combined data of eight different hovering
flight experiments.

During experiments for hovering data ,the quadrotor was not able to hover motionless for a long
period and therefore multiple datasets were acquired for estimation of parameter κ. It is observed
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in Figure 3.2 that after N = 8000, the parameter value becomes more consistent. The final value
obtained for the hovering parameter is κ = 6.858 · 10−6 N rad−2s2.

The remaining terms of the model F̂z given in (3.14) can be represented by forming polynomial
functions with independent variables of ν and

∑
Ωi [31]. Then the set of model predictors are given

as:

F̂zset = F̂hov + Θ0 + Θ1(u2 + v2) + Θ2w
∑

Ωi + Θ3w2 ∑
Ωi + Θ4u

∑
Ωi+

Θ5v
∑

Ωi + Θ6uw2 + Θ7vw2
(3.19)

where F̂hov is the estimated hovering model which remains fixed in the set and Θi for i = 0, 1...7,
are the unknown free parameters with Θ0 being the parameter of constant predictor or bias. In the
above expression, the third and fourth term of the polynomial model resemble the ones given in
(3.14). The terms w2 ∑

Ωi, u
∑

Ωi and v
∑

Ωi partly represent the effects of the induced velocity
term νin. Using first principles models, it is difficult to determine νin for the thrust model, but our
proposed identification method can capture its effects in the grey-box model. Furthermore, uw2

and vw2 represent the aerodynamic drag forces acting in z-direction which is represented by Dz in
(3.14). These terms take into consideration the coupling of horizontal and vertical motion of the
quadrotor.

Now, the model selection criterion from the previous section is implemented to determine the most
essential predictors in model set F̂zset given in (3.19). This selection criterion is not only used
to avoid overfitting but also to limit the number of model terms for the final quadrotor model.
For determining the parameter κ, the hovering trajectory in (3.18) was chosen to eliminate all the
other disturbance effects. Similarly, to determine all the free parameters in the model, the flight
trajectory should excite all the independent variables of body-fixed velocity ν and rotor speed
Ωi simultaneously. Here, we use the 3D fast trajectory for the flight experiment defined by the
following reference position,

ρr(t) =
[
cos(att) sin(att) 1.5 + sin(att)

]T
(3.20)

where at=1 for fast 3D circular maneuver. The IMU accelerometer flight data for z-direction is
then collected from this experiment to get the measurement of aerodynamic force Fz. By using
this measurement as the response variable and the model set for F̂zset defined in (3.19), the model
selection algorithm is applied with εcrit = 400 for restricting the number of model terms.

Figure 3.3 shows the evolution of the function BICn−1 −BICn (in blue) with respect to n iteration
steps of the selection method. It is observed in the figure that after n = 4, the value drops below
the chosen critical value of εcrit (dashed in black). It can be also seen that after n = 4, the values
go in a non-increasing fashion except at n = 7. This is because at iteration step of n = 7, the
coefficient of one of the model terms already existing in the model shrinks to zero. As per Algorithm
3.1, the LASSO modification step removes the model term whose coefficient value reaches zero and
recomputes the present joint least square direction. The selection algorithm then adds another
more correlated model term to the model set in the same step of n = 7.
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Figure 3.3: Model selection algorithm applied for model set F̂zset with chosen εcrit (dashed in black)
.

For the choice of the εcrit, the model terms for up to n = 4 steps are only considered. The resulting
output model with p = 4 selected model terms and the bias term is given by:

F̂z = F̂hov + θ̂1 + θ̂2(u2 + v2) + θ̂3u
∑

Ωi + θ̂4v
∑

Ωi + θ̂5w
∑

Ωi (3.21)

in which the free parameters θ̂i with i = 1, ..., 5, are estimated using the original least squares
solution given in (3.8). The value of estimated parameters are given in Table 3.1 which are sorted
as per the most to least relevant predictor terms of the model.

Model
Predictor Parameter (θ̂) Estimated

Value Units

w
∑

Ωi θ̂5 −3.91 · 10−4 N(m·rad)−1 s2

v
∑

Ωi θ̂4 −2.17 · 10−5 N(m·rad)−1 s2

u
∑

Ωi θ̂3 −1.55 · 10−4 N(m·rad)−1 s2

u2 + v2 θ̂2 −1.46 · 10−1 Nm−2s2

1 θ̂1 −2.98 · 10−2 -
NMSE fit 85.86 %

Table 3.1: Estimated value of the free parameters for thrust model F̂z (sorted from most to least
relevant).

In Table 3.1, the % goodness of fit of the obtained model on to the estimation data set is evaluated
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by computing the Normalized mean square error (NMSE), given by

fit% =
(

1 − ||y − ŷ||2
||y − ȳ||2

)
× 100, (3.22)

where ||.|| represents the 2-norm of vector and ȳ is the mean value of the measurement or reference
data y. Table 3.1 shows that the most relevant or correlated predictor for thrust model is the
term which involves the independent variable

∑
Ωi. This is understandable since in z-direction

the air induced with propeller rotation contribute the most towards the aerodynamic effects acting
on the quadrotor. The predictor term v2 + u2 representing the effective translational lift seems to
contribute as well in the aerodynamic model of Fz.

It is however also noticed that the effect of terms uw2 and uv2, which takes into account the drag
forces in (3.19) had no significant effect on the quadrotor aerodynamics in z-direction. As per the
work of [36], resultant airspeed V of the quadrotor should be greater than 2 m/s to model the
complex aerodynamic effects. Since, the drone experiments are conducted at normal room wind
speed, some of the disturbance dynamics cannot be identified and incorporated to the present model.

In Figure 3.4, the fit of the estimated model on the validation data is illustrated for the same 3D
fast trajectory defined in (3.20). The performance of the estimated model F̂z is evaluated by also
comparing it with the simple hovering thrust model F̂hov.

As seen in the Figure 3.4, the hovering thrust model F̂hov lags behind the measurement of force Fz

and also overestimates the magnitude due to negligence of the damping effects. The aerodynamic
force model F̂z seems to predict the magnitude of the measurement much better and also the phase
difference between the measurement Fz and the model F̂z is also reduced. A validation fit of 70.53%
is obtained for the estimated model with estimation fit of 85.86%. To bring the validation fit results
much more closer to estimation fit, the parameter estimates needs to be recomputed with longer
identification dataset.

It is to be noted that the number of mode predictor terms can be further increased to improve the
estimation and validation fit without any overfitting. Since the additional disturbance dynamics
terms for the non-linear controller has to be limited, only the few most relevant predictors are
included.

In the model selection criterion by adjusting the value of εcrit given in (3.6), the number of model
predictors from the model set of F̂z can be controlled. In the next section for modeling drag forces,
the choice of εcrit is chosen to be even smaller.
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Figure 3.4: Validation fit results on the measurement Fz (black) with hovering model F̂hov (dashed)
and identified thrust model F̂z (red) of NMSE fit - 70.53%.

3.3 Drag Force Model
The aerodynamic forces acting in x and y direction of the quadrotor is modeled in this section. Dis-
turbance dynamics in the horizontal direction of the drone are mostly caused by the aerodynamic
drag forces. The Assumption 3.2.1 for local rotor velocities and induced velocities is taken into
consideration for the drag force models as well. To model Fa,x and Fa,y, we consider the following
horizontal forces:

Blade flapping effect :
When the tip-path-plane of the rotor blade during translating horizontally through air tilts back
to balance the aerodynamic forces with its flexibility, the rotor thrust is tilted back which leads to
a horizontal force. This horizontal drag force on rotor i due to blade flapping is expressed as [9],

DBf,i = Th,iAflap
VH,i

ΩiRra
, (3.23)

where Th,i represents the nominal hovering thrust for rotor i, VH,i = [ui, vi, 0]T ∈ B is the velocity
of the rotor in the x-y plane and Aflap is given by,

Aflap =

⎡
⎢⎣A1c −A1s 0

A1s A1c 0
0 0 0

⎤
⎥⎦ , (3.24)

in which A1c and A1s are constants corresponding to blade flapping drag. In (3.15), the expression
for total hovering thrust F̂hov = κ

∑
Ω2

i and therefore individual rotor thrust of the quadrotor can
be given as, Th,i = κΩ2

i . Then the expression in (3.23) can be written as,
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DBf,i = κΩiAflap
VH,i

Rra
, (3.25)

The total drag force DBf acting on the vehicle from blade flapping effect can be expressed in the
following lumped parameter form,

DBf =
∑

DBf,i = KD,1
∑

ΩiVH , (3.26)

where KD,1 is a constant parameter.

Induced drag:
In blade flapping it is assumed that the blades are flexible and thereby counters the imbalance in
the lift force. However, if the blades are considered to be stiff or even semi-rigid the advancing
blade will generate more lift than the retreating blade and such instantaneous lift will also produce
a proportional instantaneous induced drag. The rotor blade on the retreating side experiences
less induced drag than the blade on the advancing side during forward flight. Hence, the net
instantaneous induced drag experienced by the rotors will directly oppose the apparent wind. This
induced drag acting on the vehicle which is proportional to the apparent wind velocity can be given
as [9],

DId =
∑

DId,i = KD,2VH , (3.27)

in which DId,i represents the induced drag for individual rotor i and KD,2 is a lumped constant
parameter.

Translational drag:
The air sucked in through the rotors with the velocity component called induced velocity νin is
responsible for this drag. In forward flight, the direction of the apparent wind or relative wind
velocity is redirected downwards due to the induced flow through the rotors. Such a down-washing
of the airflow causes the angle of attack α between the chord line and relative wind flow to shrink.
The compensation for the induced flow downwash results in induced lift by increasing the angle of
attack. When the rotor blade induces more lift there is also a proportionally induced drag. This
effect of drag from induced flow is termed as momentum drag or translational drag. The model for
this drag effect as expected would have the component of induced flow and rotor speed in the x − y
plane. The expression for translational drag of rotor i at high speed is given by [44],

DT d,i = KT (wi − νin,i)4VH,i, (3.28)

where KT is a constant, wi and νin,i represent the z-direction velocity and induced velocity of rotor
i, respectively. Now using Assumption 3.2.1, the total translational drag DT d acting on the drone
can be written in the lumped form using,

DT d =
∑

DT d,i = KD,3(w − νin)4VH , (3.29)

in which KD,3 is the lumped constant for the total translational drag DT d. For the identification
model, the expression of the translational drag of rotor i for low speed given by, DT d,i = KT VH,i is
not taken into consideration.

Profile and parasitic drag:
The frictional resistance offered by the rotor blades of the quadrotor when moving through air



3.3. Drag Force Model 24

causes profile drag [44]. The angle of attack has very little to no effect on this drag force but
increases moderately in a linear manner with velocity. However, at very high speed the drag force
varies quadratically with increasing velocity. The expression for profile drag DP d acting on the
vehicle is given by,

DP rd =
∑

DP d,i = KD,4VH , (3.30)

where DP d,i is the profile drag for rotor i and KD,4 is the lumped constant parameter. The parasitic
drag on the other land is caused by the non-lifting components of the quadrotor such as the outdoor
hull, fuselage, motors, rotor hub and landing gear. This drag varies quadratically with velocity and
the expression for the quadrotor in the x-y plane is given as [44],

DP d = KD,5VH |VH |, (3.31)

in which KD,5 is the constant parameter. The variation of all the considered drag forces for the
quadrotor with respect to body velocity ν is shown in Figure 3.5.

Figure 3.5: Variation of different drag forces with respect to body-fixed velocity ν [44].

From Figure 3.5, it is clear that blade flapping and induced drag are the most dominant drag forces
acting on the drone. The translational drag is the most important damping force after these two
and has a different behaviour at low and high speed of the quadrotor.

Using (3.26),(3.27), (3.29), (3.30) and (3.31), the total drag forces acting on the x − y plane of the
quadrotor can be expressed as,

F̂a,xy =DBf + DId + DT d + DP rd + DP d

=KD,1
∑

ΩiVH + KD,2VH + KD,3(w − νin)4VH + KD,4VH + KD,5VH |VH | (3.32)

Here the terms with constant KD,2 and KD,4 can be represented together as constant KD and
hence (3.32) becomes,
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F̂a,xy =KD,1
∑

ΩiVH + KDVH + KD,3(w − νin)4VH + KD,5VH |VH | (3.33)

The above expression gives an approach to define the model set for aerodynamic force in x-direction
by forming polynomial terms of the variables ν and

∑
Ωi. The model predictor terms for model

set F̂a,xset is then given by,

F̂a,xset =Θ0 + Θ1u
∑

Ωi + Θ2v
∑

Ωi + Θ3w
∑

Ωi + Θ4u + Θ5w + Θ6uw
∑

Ωi + Θ7uw2 ∑
Ωi

+ Θ8u|u| + Θ9u|v| + Θ10u|w| + Θ11w|v|
(3.34)

in which Θi for i = 0, 1...11, are the unknown free parameters with Θ0 being the bias term. In
the above expression, the aerodynamic force in x-direction also contains the velocity terms v and
w of the y − z plane since the identification experiment with 3D fast trajectory (given in (3.20))
is conducted to capture the drag effects of simultaneous excitation of the horizontal and vertical
components. The reasoning for choosing the polynomial terms in set F̂a,xset to model the drag
effects are explained through following points:

• The terms u
∑

Ωi, v
∑

Ωi and w
∑

Ωi together represents blade flapping drag force DBf par-
tially. These terms also partly represent the effect of translational drag DT d. The mutual
interaction of the rotors and the quadrotor fuselage could also be represented with these
terms [31].

• The fifth and sixth predictor term in (3.34) given by u and w represent the effect of induced
drag DId and profile drag DP rd.

• uw
∑

Ωi and uw2 ∑
Ωi represent the effect of translational drag DT d and also the previously

mentioned interaction of the rotors and fuselage..

• Furthermore, since the resultant velocity V of the quadrotor in the identification experiment
has a component in x,y and z-direction simultaneously during flight, the parasitic drag DP d

will contain terms such as u|u|, u|v|, u|w| and |w|v in the model set for Fa,x.

The model selection algorithm from Section 3.1 is applied with εcrit = 100 to determine a suitable
model for F̂a,x with limited model terms. The output model F̂a,x is selected from the model set
using the flight dataset of 3D fast circular maneuver. The chosen output model along with the bias
term is given by,

F̂a,x = θ̂6 + θ̂7u|u| + θ̂8w|v| + θ̂9u
∑

Ωi + θ̂10u|w| (3.35)

where the parameters θ̂i with i = 6, ..., 10, are estimated using the original least squares and are
given in Table 3.2.
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Model
Predictor Parameter (θ̂) Estimated

Value Units

u|w| θ̂10 −1.92 · 10−1 Nm−2s2

u
∑

Ωi θ̂9 −6.19 · 10−5 N(m·rad)−1 s2

w|v| θ̂8 1.19 · 10−1 Nm−2s2

u|u| θ̂7 −2.90 · 10−2 Nm−2s2

1 θ̂6 1.91 · 10−1 -
NMSE fit 88.46 %

Table 3.2: Parameters estimates obtained for x-direction drag force model F̂a,x (sorted from most
to least relevant).

As seen in Table 3.2, the model predictors obtained for F̂a,x contain most terms that represent
the parasitic drag force DP d. This means the aerodynamic resistance in the x-direction is mostly
caused by drag from components of the quadrotor such as outdoor hull, motors and landing gear.
The presence of the term u

∑
ωi in the selected model indicates that the horizontal component of

the blade flapping effect DBf also plays a significant role.

For performing the validation fit test, as a benchmark for comparison the simple x-direction damp-
ing force model FD,x given in the work of van den Eijnden [32] is used, which is expressed as,

FD,x = −sign(u)
1
2

ρacxu ◦ u (3.36)

where cx = 2.5 represents the damping coefficient and the density of air is taken as, ρa=1.2 kg/m3.
Figure 3.6 illustrates the fit results of the simple damping force model FD,x and the estimated
model F̂a,x on the validation dataset of aerodynamic force Fa,x.
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Figure 3.6: Validation fit results on the measurement Fa,x (black) with simple damping model FD,x

(dashed) and identified aerodynamic model F̂a,x (red) of NMSE fit - 80.85%.
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As observed in Figure 3.6, the simple damping force FD,x modeled by [32] overestimates the mag-
nitude of the aerodynamic force and also lags behind in phase with the measurement Fa,x. The
identified aerodynamic model F̂a,x has a NMSE fit of about 80.85% on the measurement. The
magnitude and phase of the identified model F̂a,x predicts better in comparison to the damping
force model FD,x.

The model set for aerodynamic force in y-direction has a similar structure to the one given in (3.34)
and is expressed as,

F̂a,yset =Θ0 + Θ1v
∑

Ωi + Θ2u
∑

Ωi + Θ3w
∑

Ωi + Θ4v + Θ5w + Θ6vw
∑

Ωi + Θ7vw2 ∑
Ωi

+ Θ8v|v| + Θ9v|u| + Θ10v|w| + Θ11w|u|
(3.37)

By model selection with same critical value εcrit = 100, the reduced selected model (including term
for bias) for aerodynamic force in y-direction is given by,

F̂a,y = θ̂11 + θ̂12v|v| + θ̂13vw
∑

Ωi + θ̂14u
∑

Ωi + θ̂15v
∑

Ωi, (3.38)

in which the parameters θ̂i with i = 11, ..., 15, are estimated using least squares and the estimates
are given in Table 3.3.

Model
Predictor Parameter (θ̂) Estimated

Value Units

v
∑

Ωi θ̂15 −1.51 · 10−4 N(m·rad)−1s2

u
∑

Ωi θ̂14 −4.58 · 10−5 N(m·rad)−1s2

vw
∑

Ωi θ̂13 5.14 · 10−5 N(m2·rad)−1s3

v|v| θ̂12 7.37 · 10−2 Nm−2s2

1 θ̂11 −3.2 · 10−2 -
NMSE fit 82.33 %

Table 3.3: Parameters obtained from the estimation dataset for y-direction drag force model F̂a,y

(sorted from most to least relevant).

In the Table 3.3 it is noticed that the terms represented by v
∑

Ωi and u
∑

Ωi are the most rele-
vant predictors for the model, which could indicate the effect of blade flapping., . After these two
model predictors, the term vw

∑
Ωi denoting partly the effect of translational drag DT d and other

complex interactions seems significant for the selected model. Lastly, the parasitic drag term v|v|
seem to contribute as well to the drag force model F̂a,y

It is observed that the terms of parasitic drag DP d have only a little role in describing the aerody-
namic force Fa,y due to the interaction with the quadrotor fuselage in y-direction. During identi-
fication it was determined that the inclusion of more parasitic drag terms lead to high variance in
the estimated parameters for different datasets. In the work of [36] it is mentioned that the aero-
dynamic force in the direction projected to large area of the fuselage have quadratically varying
parameters. This is expected to be the cause of varying estimated parameters in the identification.
It is also to be noted that no similarity in the obtained parameters can be seen for drag force
models F̂a,x and F̂a,y as the choice of model terms and the projected area in the x and y-direction
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of quadrotor are different. Furthermore, reasoning for the positive values of parameter estimates
in F̂a,x and F̂a,y is unknown and needs to be investigated in future work. Again for comparison, we
use the y-direction damping force model FD,y used in the work of [32], given by,

FD,y = −sign(v)
1
2

ρacyv ◦ v (3.39)

where cy = 1.3 is the damping coefficient. Figure 3.7 shows the validation fit results of the damping
force model FD,y and identified aerodynamic model F̂a,y on the measurement Fa,y from 3D circular
manuever trajectory. Here it observed that the model FD,y representing the parasitic drag predicts
accurately the magnitude of the y-direction aerodynamic force at some instances and overestimates
in other instances which suggest that the y-direction damping force occurs with a combination of
different drag forces. The identified model F̂a,y takes into account the combination of these drag
forces and actively predicts the aerodynamic force acting in the y-direction of the quadrotor with
a 81.9 % validation fit.
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Figure 3.7: Validation fit results on the measurement Fa,y (black) with simple damping model FD,y

(dashed) and identified aerodynamic model F̂a,y (red) of NMSE fit - 81.9%.

3.4 Roll and Pitch Moment Model

In this section, with the proposed identification method the roll and pitch moment models (M̂x

and M̂y) are determined. The aerodynamic moments acting on the air-frame of the quadrotor are
generally considered to surface from all the drag forces except the parasitic drag (defined in the
previous section). In theoretical models, the rotor generated drag forces and their respective offset
from the center of gravity is used to model the aerodynamic moment.

However, for our configuration of the quadrotor the moment models are identified from IMU gy-
roscope measurements. This enables to determine the drag forces that are actually responsible
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for the external torque on the quadrotor. It also helps in ascertaining if the aerodynamic drag
forces which were identified in the previous section have contribution to external moments as well.
However unlike aerodynamic forces, the external aerodynamic moments are much more difficult to
approximate with linear-in-parameters models.
To model the roll and pitch moment models we consider the following torque inputs given by,

τ1 = κlVp

τ2 = κlVq
(3.40)

where τ1 and τ2 are the control outputs used to control the roll and pitch motion of the quadrotor,
respectively, κ is the hovering thrust coefficient determined in Section 3.2 and l is the distance of
the rotor centers from the center of gravity. Also, Vp and Vq represent the rotor speed combination
of each rotor i given by,

Vp = Ω2
1 − Ω2

2 − Ω2
3 + Ω2

4, Vq = −Ω2
1 − Ω2

2 + Ω2
3 + Ω2

4 (3.41)

The total external roll moment M̂x acting on the quadrotor can be represented as follows,

M̂x = τ1 + M̂a,x (3.42)

in which the aerodynamic roll moment model M̂a,x is determined using model set M̂a,xset which is
defined by polynomial predictors formed by ν, ω, Vp and

∑
Ωi. The model set M̂a,xset is expressed

as follows,

M̂a,xset = Θ0 + Θ1v
∑

Ωi + Θ2v + Θ3w + Θ4vw
∑

Ωi + Θ5p + Θ6vVp + Θ7v2Vp + Θ8w2Vp (3.43)

The above model set is selected based on the following reasoning:

• The second to fifth terms in (3.43) resembles the model set F̂a,yset in (3.37) since the rolling
motion of the quadrotor results in linear velocity components in y and z-direction. Therefore,
the rolling motion of the vehicle is damped and dependent on velocity terms v and w. The
complex interaction of the other velocity terms from set F̂a,yset are excluded in set M̂a,xset

due to the difficulty of modeling aerodynamic moments.

• The term representing the roll rate p in M̂a,xset is used to take into account the rotational
damping from rolling maneuvers.

• The coefficient of the roll control output τ1 is given by κl as represented in (3.40) but it is
determined that this coefficient varies when the quadrotor rolls to fly sideways. Hence, the
terms vVp, v2Vp and w2Vp are used to take into account this mismatch in the roll control. The
coupling of the rotor speed combination Vp with the velocity terms ensures that this effect
becomes negligible when the quadrotor is hovering.

Using the IMU gyroscope outputs, the net internal roll moment Mx is calculated for the 3D circular
trajectory (given in (3.20)) flight dataset. The roll aerodynamic moment measurement Ma,x is then
obtained by Ma,x = Mx−τ1, which is used for applying the model selection criterion with εcrit = 300.
A larger value of εcrit is chosen for roll moment model selection since aerodynamic moments have
very little influence on damping the quadrotor motion at low airspeed (V ≤ 2 m/s). The selected
model M̂a,x is given as follows,

M̂a,x = θ̂16 + θ̂17v2Vp + θ̂18w2Vp + θ̂19v (3.44)
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The parameters of the output model M̂a,x are estimated using least squares and are provided in
Table 3.4.

Model
Predictor Parameter (θ̂) Estimated

Value Units

v θ̂19 1.82 · 10−2 Ns
w2Vp θ̂18 −2.13 · 10−6 N(m·rad2)−1s4

v2Vp θ̂17 −2.06 · 10−7 N(m·rad2)−1s4

1 θ̂16 1.14 · 10−3 -
NMSE fit 76.99 %

Table 3.4: Estimated parameters for selected model M̂a,x (sorted from most to least relevant).

Similarly, the model set Ma,yset is defined along the same lines as the model structure given in
(3.43) and is expressed as,

M̂a,yset = Θ0 + Θ1u
∑

Ωi + Θ2u + Θ3w + Θ4uw
∑

Ωi + Θ5q + Θ6uVq + Θ7u2Vq + Θ8w2Vq (3.45)

The measurement Ma,y = My −τ2, from the gyroscope outputs of the previously used flight dataset
is used for model selection. The obtained output model M̂a,y using the previous cut-off value for
term selection i.e., εcrit = 300 is given by,

M̂a,y = θ̂20 + θ̂21u + θ̂22u2Vq + θ̂23w2Vq, (3.46)
where the parameter estimates θi for i = 20, ..., 23, are shown in Table 3.5.

Model
Predictor Parameter (θ̂) Estimated

Value Units

w2Vq θ̂23 −2.185 · 10−6 N(m·rad2)−1s4

u2Vq θ̂22 −9.94 · 10−7 N(m·rad2)−1s4

u θ̂21 −1.51 · 10−2 Ns
1 θ̂20 −4.4 · 10−3 -

NMSE fit 91.35 %

Table 3.5: Moment model M̂a,y estimated parameters (sorted from most to least relevant).

The external aerodynamic moments affecting the roll and pitch motion have similar choice of terms,
as seen in (3.44) and (3.46) for M̂a,x and M̂a,y, respectively. In both moment models, the predictor
terms involving rotor speed combination Vp and Vq are considered to be significant. This implies
that the coefficients of the torque inputs τ1 and τ2 given in (3.40) vary when the quadrotor performs
flight maneuvers. Also, the horizontal velocity terms v and u in models M̂a,x and M̂a,y, respectively,
indicate that the quadrotor experiences an aerodynamic moment due to the drag forces in x − y
plane. No similar patterns in the parameter estimates can be observed for roll and pitch moment
models as the projected area in x and y-direction of the quadrotor is different.

The disturbance moment from gyroscopic effect of the rotors M̂gyro = [M̂gyro,x, M̂gyro,y]T , affecting
the roll and pitch motion is given by [44],

M̂gyro = −Jr

4∑
i=1

(−1)i+1S(ω)b3Ωi, (3.47)
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where Jr represents the moment of inertia of the rotor. The estimation of this disturbance moment
showed that it had very little significance on the net roll and pitch moment of the quadrotor. This
is suspected to be caused by the counter rotating rotors of the quadrotor which makes the distur-
bance torque M̂gyro virtually negligible and thereby are excluded from the roll and pitch moment
models.

The validation fit results of the estimated of roll external moment model M̂x = τ1 + M̂a,x on mea-
surement Mx is shown in Figures 3.8. For comparison, the hovering roll input model τ1 is plotted
against the measurement Mx as well. Similarly in Figure 3.9, the fit of the identified pitch moment
model M̂y = τ2 + M̂a,y and the hovering pitch model τ2 on the measurement My is illustrated.

In figures 3.8 and 3.9 it is observed that the magnitude of the moment measurements (Mx and My)
are much lower than the identified models (M̂a,x and M̂a,y) and the simple hovering models (τ1 and
τ2) . However, the magnitude of the identified models are more damped and closer to the validation
dataset than the initially considered hovering roll and pitch models. The poor validation fit of the
identified moment models is expected, since linear-in-parameters models are insufficient to capture
the aerodynamic moments acting on the quadrotors [36]. In Section 3.6, the variation of parameters
with respect to speed in moment models is briefly discussed to explain this complex behaviour. In
the current state of the quadrotor it is difficult to perform aggressive angular maneuvers for large
magnitude of moment measurements. This is also suspected to be the reason of the unsatisfactory
fit results from the poor parameter estimates.

Furthermore, during experiments the protective outdoor hull was attached to the quadrotor. This
loosely attached hull results in unsteady pitch and roll motions of the quadrotor which in turn leads
to constantly fluctuating aerodynamic moments acting on the quadrotor.
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Figure 3.8: Validation fit results on the measurement Mx (black) with hovering roll model τ1
(dashed) and identified roll moment model M̂x (red).
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Figure 3.9: Validation fit results on the measurement My (black) with hovering pitch model τ2
(dashed) and identified pitch moment model M̂y (red).

3.5 Yaw Moment Model
This section determines the model for yaw moment during hovering and other aggressive flight
maneuvers. The net external yaw moment acting on the vehicle can be expressed as,

M̂z =τ3 + M̂de3 + M̂a,z

=dVr + M̂rot,z + M̂a,z,
(3.48)

where d is the drag coefficient and Vr = Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4, is the rotor speed combination defined
for yaw input torque. The disturbance moment resulting from rotor inertia M̂rot,z is given as,

M̂rot,z = Jr(−Ω̇1 + Ω̇2 − Ω̇3 + Ω̇4) (3.49)

To estimate the model of yaw moment during hovering, the flight data for the quadrotor should be
obtained by conducting experiments to perform yaw motions while hovering at a stationary point.
This results in flight datasets where body-fixed velocity, ν = 0 and angular rates for roll and pitch
becomes negligible as well. The model for yaw moment during hovering and can be given by,

M̂hov,z = dVr + Jr(−Ω̇1 + Ω̇2 − Ω̇3 + Ω̇4) + γr, (3.50)

in which the term γr represent the effect of rotational damping for yaw rate r. The flight dataset
for hovering yaw moment model M̂hov,z is obtained using the toolbox designed in the work of
Marx [45]. The graphical user interface of the toolbox enables to perform manual yaw maneuvers
during hovering.

The estimation datasets are then used to determine the parameters [d, Jr, γ]T of the hovering yaw
moment model M̂hov,z which is given in Table 3.6. The table shows that the parameter γ for the
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rotational damping is negative which is expected.

Parameters Estimated value Units
d 5.14 · 10−9 Nm·rad−2s2

Jr 2.12 · 10−6 Nm·rad−1s2

γ −2.02 · 10−3 Nm·rad−1s

Table 3.6: Estimated parameters of hovering yaw moment model M̂hov,z

The net yaw moment for other cases such as forward flights as given in (3.48) can be written as
follows,

M̂z = M̂hov,z + M̂a,z, (3.51)

in which M̂a,z accounts for the other aerodynamic effects when the quadrotor performs other ma-
neuvers and the model set M̂a,zset is hence given by,

M̂a,zset = Θ0 + Θ1v
∑

Ωi + Θ2u
∑

Ωi + Θ3v + Θ4u + Θ5vVr + Θ6v2Vr + Θ6uVr (3.52)

where the first few terms resemble the model predictors for the drag forces in x-y plane. The other
terms, such as vVr, v2Vr and Vr accounts for the mismatch in yaw torque input in forward flights.
The 3D circular trajectory flight dataset is used again for the model selection from set M̂a,zset . The
output measurement Mz obtained from the IMU gyroscope and the estimated hovering moment
model M̂hov,z is used to isolate the yaw aerodynamic measurement using, Ma,z = Mz −M̂hov,z. The
chosen output model M̂a,z form the model selection algorithm with εcrit = 300 is given by,

M̂a,z = θ̂24 + θ̂25u + θ̂25v (3.53)

The above output model has smaller number of terms as the term representing the rotational damp-
ing effect given by γr is already included in the hovering yaw moment model M̂hov,z. Therefore, the
total aerodynamic yaw moment for the quadrotor is represented by the term γr and the predictors
determined in (3.53) for model M̂a,z. The estimated parameters for the selected model M̂a,z is
given in Table 3.7. The estimation fit for few selected terms is about 44.53 % which can be further
increased to about 70 % with inclusion of more model terms.

Model
Predictor Parameter (θ̂) Estimated

Value Units

v θ̂26 −1.33 · 10−3 Ns
u θ̂25 −2.64 · 10−4 Ns
1 θ̂24 −3.9 · 10−4 -

NMSE fit 44.53 %

Table 3.7: Estimated parameters for moment model M̂a,z (sorted from most to least relevant).

The fit of the identified net external yaw moment model M̂z = M̂a,z +M̂hov,z against the validation
dataset is given in Figure 3.10. Compared to the estimation fit results, the validation fit in Figure
3.10 is good for the estimated yaw moment model M̂z. Unlike the roll and pitch moments, the yaw
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moment acting on the drone at low speed (V ≤ 2m/s) is relatively easier to be approximated with
linear-in-parameters models. Also, the yaw motion of the quadrotor is much more steady than the
roll and pitch motions. Therefore, the measurement of yaw moment Mz has a good correlation
with the model predictors.
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Figure 3.10: Validation fit results on the measurement Mz (black) with identified yaw moment
model M̂z (red) of NMSE fit 43.30 %.

The estimation and validation fit of the yaw moment model M̂z can be increased by including
more model predictor terms. However, unlike the aerodynamic force models, the yaw aerodynamic
moment model M̂a,z requires more than ten predictor terms for a significant increase in fit. This
is because when more model predictors other than the ones given in (3.52) are included to the
model, they contribute very little to increase the fit on the measurement. The yaw moment model
with more model predictors is detailed in Appendix E. The increase in the model terms will indeed
result in improved estimation fit but due to the increased model complexity, the validation fit will
be much lower than the estimation fit. With the increase of model complexity there will always
be increase in the variance of the parameters for different measurement sets. Therefore, a reduced
validation fit can be expected for the complex yaw moment model with large number of terms.

3.6 Comments on Identified Models
In identification it is a common approach to study the variation in estimated parameters of the
chosen model set by methods such as Monte Carlo simulations. The limited datasets available for
identification makes it difficult to study how the coefficients of the selected model structure changes
for different flight conditions. Fortunately, the recent work of Sun and Visser in [36] has studied
this variation of coefficients in force and moment models with respect to the air speed. It was
determined that angle of attack α and side slip angle β are the two deciding factors that influence
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this change, which are given by,

α = arcsin (w/V )

β = arcsin
(
v/

√
u2 + v2

) (3.54)

In Figure 3.11a the variation of the horizontal force coefficient Ch =
√

C2
x + C2

y with respect to the

advance ratio μh =
√

μ2
x + μ2

y in different side slip angle β intervals is illustrated. The expressions
for these dimensionless parameters can be seen in the work of [36].

Similarly, Figure 3.11b shows the variation of pitch moment coefficient Cm with respect to advance
ratio μ =

√
μ2

x + μ2
y + μz

y with constant range of angle of attack α and different intervals of β.

(a) Horizontal force coefficient Ch vs advance ratio μh. (b) Pitch moment coefficient Cm vs advance ratio μ.

Figure 3.11: Variation of horizontal force and pitch moment coefficients in different intervals of side
slip angle β [36].

In Figure 3.11a, it is seen that horizontal force coefficient Ch remains linear with respect to the
horizontal speed and varies slightly for the three different intervals β. The work of [36] states that
this is due to the slight quadratic variation of aerodynamic force in y-direction. The large exposed
area of the quadrotor fuselage in y-direction is suspected to be the cause of this quadratic coefficient
behaviour which was mentioned in Section 3.3.

The non-linear behaviour of the pitch moment coefficient Cm with respect to the rotor averaged
air speed μ is observed in Figure 3.11b. This can be regarded as one of the reasons for the poor
validation fit results of the roll and pitch moment model in Section 3.4.

Figure 3.11 also further affirms the choice of identification using the 3D circular trajectory for the
quadrotor to follow as this reference covers a large range α and β. The complex aerodynamic
behaviour modeled using this dataset should be valid for a large flight envelope of the quadrotor.
Similar plots for coefficient variation of thrust and yaw moment can be seen in [36].
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3.7 Concluding Remarks
This chapter is dedicated for the identification of the aerodynamic forces and moments acting
on the quadrotor. The identification involves defining grey-box model structures for capturing
the aerodynamic effects and selecting most appropriate set of model predictors from the structures
based on a model selection algorithm. The Least Angle Regression algorithm with few modifications
is used to select the most suitable model terms for the output model. Model selection plays a
significant role as it does not only select the model terms based on the correlation with output
data. The implemented selection criterion considers choosing the appropriate model terms based
on the terms already existing in the model. The decisive algorithm also determines if the any
term should be dropped out of the model in order to add another more correlated model term.
This approach yields models with least number of terms and also a good estimation fit. Another
important aspect of the identification procedure is tailoring specific flight experiments. In the case
of identification of the hovering thrust model, the quadrotor should hover motionless such that all
the linear and angular velocities become negligible. Similarly for the hovering yaw moment model,
the quadrotor needs to hover and perform yaw motions. For the identification of all the other
aerodynamic effects which are motion dependent, the quadrotor is made to follow a 3D circular
reference trajectory. The models identified with this flight data takes into consideration the complex
interactions of horizontal and vertical motions of the quadrotor. Also, a large range of angle of
attack and side slip angle is covered in the datasets for this maneuver. The identified net external
forces F̂ext acting on the quadrotor can hence be represented as the sum of forces acting on the
drone while hovering, given by f and forces that dependent of the motion of quadrotor which is
denoted by F̂aero. The expression for net external forces F̂ext = [F̂a,x, F̂a,y, F̂z]T excluding all the
considered bias terms is given by,

F̂ext = f + F̂aero

F̂ext =

⎡
⎢⎣ 0

0
κ

∑
Ω2

i

⎤
⎥⎦ +

⎡
⎢⎢⎣

θ̂1u|u| + θ̂2w|v| + θ̂3u
∑

Ωi + θ̂4u|w|
θ̂5vw

∑
Ωi + θ̂6v|v| + θ̂7u

∑
Ωi + θ̂8v

∑
Ωi

θ̂9(v2 + u2) + θ̂10u
∑

Ωi + θ̂11v
∑

Ωi + θ̂12w
∑

Ωi

⎤
⎥⎥⎦ (3.55)

The above identified model has yielded 12 terms for the total external disturbance forces and the
estimation and validation fit results of each identified force model is given in Table 3.8.

Model Estimation fit (%) Validation fit(%)
F̂z 85.86 70.53

F̂a,x 88.46 80.85
F̂a,y 82.33 81.9

Table 3.8: Estimation and Validation fit results of all the identified external disturbance force
models

The net external moments M̂ext = [M̂x, M̂y, M̂z]T can also be expressed as the sum of the moments
during hovering, M̂hov and motion dependent disturbance moment (M̂aero). The term M̂hov is
further expressed as the sum of input torques τ and disturbance moment M̂d resulting from rotor
inertia, i.e., M̂hov = τ + M̂d . The net external moments M̂ext can hence be given as,
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M̂ext = τ + M̂d + M̂aero

M̂ext =

⎡
⎢⎣κlVp

κlVq

dVr

⎤
⎥⎦ +

⎡
⎢⎣ 0

0
Jr(−Ω̇1 + Ω̇2 − Ω̇3 + Ω̇4)

⎤
⎥⎦ +

⎡
⎢⎢⎣

θ̂13v2Vp + θ̂14w2Vp + θ̂15v

θ̂16u + θ̂17u2Vq + θ̂18w2Vq

θ̂19r + θ̂20u + θ̂21v

⎤
⎥⎥⎦ (3.56)

In the identified roll and pitch moment models, the validation fit results seemed to be quite un-
satisfactory as the roll and pitch motion moment measurements have small magnitudes and are
unsteady in nature. The external aerodynamic moments are also found to be difficult to capture
with linear-in-parameters models. The yaw moment model however are found to have better val-
idation fit results and also improvement in the fit has also been observed with further increase in
model terms.

The important feature of the identified force and moment models is that when the quadrotor is
hovering with linear and angular velocity equal to zero, the expressions in (3.55) and (3.56) be-
comes F̂ext = f and M̂ext = M̂hov . The coupling of all the model terms with either the body-fixed
velocity ν or the angular velocity ω makes this arrangement possible.

The quadrotor system can be then represented with the rigid body dynamics and the identified
aerodynamics (F̂ext, M̂ext) as follows,

ρ̇ = Rν (3.57a)

ν̇ = −S(ω)ν − gRT e3 +
f

m
e3 +

F̂aero

m
(3.57b)

Ṙ = RS(ω) (3.57c)

Jω̇ = S(Jω)ω + τ + M̂d + M̂aero, (3.57d)

using this extended model, the previously used cascaded controller in the work of [33] is re-designed
in Chapter 4.



Chapter 4

Controller Re-design

In this chapter the tracking controller for the quadrotor model with extended dynamics is derived.
The stability of the controller is proved along the same lines as in the work of [33]. In Figure 4.1, the
block diagram of the control structure is presented. As seen in the figure, the reference trajectory
for desired aerodynamic forces given by Fr,aero and disturbance moments given by Mr,aero and Mr,d

is generated for the updated controller. This additional reference is required so that the identified
disturbance force model F̂aero and disturbance moment models M̂aero and M̂d acting externally on
the quadrotor tracks the disturbance forces and moments of the desired reference trajectory. The
control scheme in Figure 4.1 shows a natural cascaded structure where the dynamics of the position
subsystem is influenced by the output of the attitude subsystem. Considering the cascaded form
and the underactuated characteristics of the system, the desired position dynamics is therefore
attained by generating the new attitude reference R∗ for the attitude tracking controller.

Figure 4.1: Schematic representation of the tracking controller structure using the extended model
in (3.57).

In Section 4.1, the definitions and convergence results required to derive the almost global stability
of the tracking controller is presented. The tracking problem of the quadrotor is formulated in
Section 4.2 with the desired reference trajectory dynamics. Sections 4.3 and 4.4 presents the re-

38
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design of the tracking controllers for the position and attitude subsystems. The stability of resulting
cascaded closed-loop system is then analyzed in Section 4.5.

4.1 Preliminaries
This section describes the definitions and stability theorems utilized for re-designing the cascaded
controller.

4.1.1 Saturation Function
The nonlinearity resulting from actuator saturation is one of the most common encountered issues
in feedback problems. For controlling the quadrotor, this input saturation problem is directly
taken into account in the design of the state feedback control law. A saturation vector-function
σ(e), σ : Rn → R

n defined for vector ei for i ∈ {1, 2, 3} satisfies the following condition,

eT σ(e) > 0, ∀e �= 0 and
dσ

de
(0) > 0. (4.1)

In addition, the saturation vector-function σ satisfies the bound, ||σ(e)|| ≤ M for all e. For the
controller used in this chapter, a possible candidate that can be used for the saturation vector-
function σ(e) is given by,

σ(e) =
e√

1 + eT e
(4.2)

4.1.2 Stability Definitions and Results
Consider a non-autonomous system given by,

ẋ = f(t, x) x(t0) = x0, (4.3)

where f(t, 0) = 0, f : R+ × D ⊂ R
n → R

n is piecewise continuous on R
+ × D and locally Lipschitz

in x on R
+ × D.

To explain the stability definitions for the system in (4.3), following comparison functions are uti-
lized,

Definition 4.1.1 ( [46])

• A continuous function α : [0, a) → [0, ∞) belongs to class K if it is strictly increasing and
α(0) → 0. In addition, the function belongs to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

• A continuous function β : [0, a) × [0, ∞) → [0, ∞) is said to belong to class KL if for each
fixed s, the mapping β(r, s) is class K and for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → ∞.

Following notions of stability are used to prove the robustness of the proposed controller,

Definition 4.1.2 The equilibrium point x = 0 is [46],
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• (locally) uniformly asymptotically stable if and only if there exists a function β ∈ KL and a
constant c > 0, independent of t0 such that,

||x(t)|| ≤ β(||x(t0)||, t − t0) t ≥ t0 ≥ 0, ||x(t0)|| < c (4.4)

• uniformly globally asymptotically stable (UGAS) if the inequality in (4.4) is satisfied for all
x(t0).

• uniformly almost globally asymptotically stable (UaGAS) if it is UGAS, except for all initial
conditions in a set of measure zero.

• uniformly locally exponentially stable (ULES)/ uniformly globally exponentially stable (UGES)
if it is (locally) uniformly asymptotically stable/uniformly globally asymptotically stable re-
spectively and (4.4) is satisfied with,

β(r, s) = kreγs k > 0, γ > 0. (4.5)

Theorem 4.1.1 (Nested Matrosov Theorem [47], Theorem 1): Consider the nonautonomous
system,

ẋ = f(t, x) x(t0) = x0 (4.6)

with f(t, 0) = 0, f : R+ × R
n → R

n locally bounded, continuous and locally uniformly continuous
in t.
Considering there exists j differential functions Vi : R+ × R

n → R bounded in t and continuous
functions Yi : Rn → R for i ∈ {1, 2, ...j) such that,

• function V1 is positive definite,

• V̇i(t, x) ≤ Yi(x) for all i ∈ {1, 2, ...j),

• Yi(x) = 0 for i ∈ {1, 2, ...k − 1} implies that Yk(x) ≤ 0 for all k ∈ {1, 2, ...j),

• Yi(x) = 0 for all i ∈ {1, 2, ...j} implies that x = 0,

then the origin x = 0 of (4.6) is uniformly globally asymptotically stable (UGAS).

Theorem 4.1.2 ( [33], Theorem 4):Consider the system,

Ṙ = RS(ω) (4.7a)

Jω̇ = −Kωω + KR

3∑
i=1

ki(ei × RT ei), (4.7b)

in which R ∈ SO(3) = {R ∈ R
3×3 | RT R = I, detR = 1}, ω ∈ R

3, J = JT > 0.

The equilibrium point (I, 0) of (4.7) is uniformly locally exponentially stable (ULES) and uniformly
almost global exponentially stable (UaGAS) if Kω = KT

ω > 0, KR = KT
R > 0 and the values of

ki > 0 are chosen distinctly. That is, let the four equilibria of R given by,

Ec = {I, diag(1, −1, −1), diag(−1, 1, −1), diag(−1, −1, 1)} (4.8)
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Then R and ω converge to Ec and zero, respectively. The undesired equilibria (R, 0) of (4.7), where
R ∈ Ec\{I} are unstable and the set of all initial conditions converging to the equilibrium (R, 0),
where R ∈ Ec\{I} form a lower dimensional manifold.

Theorem 4.1.3 ( [33], Theorems 5, 6): Consider the system ẋ = f(t, x) with f(t, 0) = 0 written
in the following cascaded form,

ẋ1 = f1t, x1) + g(t, x1, x2)x2 (4.9a)
ẋ2 = f2(t, x2) (4.9b)

where x1 ∈ R
n, x2 ∈ R

m, f(t, x1) is continuously differentiable function in (t, x1) and f2(t, x1),
g(t, x1, x2) are continuous in their arguments and locally Lipschitz in x2 and (x1, x2) respectively.
This system is a cascade of the following two subsystems,

Σ1 : ẋ1 = f1t, x1) Σ2 : ẋ2 = f2(t, x2) (4.10)

in which the output of subsystem Σ1 is perturbed by the output of subsystem Σ2.

Then,

• if the origin of the subsystems Σ1 and Σ2 are UGAS and solutions of the cascaded system in
(4.9) remain bounded, the origin of the system (4.9) is UGAS. In addition, if the subsystems
Σ1 and Σ2 are ULES, then the system in (4.9) is ULES.

• if the origin of subsystem Σ1 is uniformly globally exponentially stable (UGES), the origin
of the subsystem Σ2 is ULES and UGAS, and

||g(t, x)|| ≤ k1(||x2||) + k2(||x2||)||x1||,
then the origin of the cascaded system in (4.9) is ULES and UGAS.

4.2 Problem Formulation
The problem of re-designing the tracking controller as already stated in the Chapter 1 is defined
again in this section. For re-designing the controller with the extended quadrotor model, it is
assumed that a feasible reference trajectory given by (ρr, Rr, νr, ωr, fr, τr) satisfies the following
dynamics,

ρ̇r = Rrνr (4.11a)

ν̇r = −S(ωr)νr − gRT
r e3 +

fr

m
e3 +

F̂r,aero

m
(4.11b)

Ṙr = RrS(ωr) (4.11c)

Jω̇r = S(Jωr)ωr + τr + M̂r,d + M̂r,aero, (4.11d)

in which 0 < fmin
r ≤ fr.

The error coordinates of the extended quadrotor model defined on SE(3) are given by:

ρ̃ = RT
r (ρ − ρr) R̃ = RT

r R

ν̃ = −R̃T S(ωr)ρ̃ + ν − R̃T νr ω̃ = ω − R̃T ωr,
(4.12)
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Problem 4.2.1 For (ρr, Rr, νr, ωr, fr, τr) being a given feasible reference trajectory, suitable control
laws need to be determined for:

f = f(ρ, R, ν, ω, ρr, Rr, νr, ωr) > 0 (4.13a)
τ = τ(ρ, R, ν, ω, ρr, Rr, νr, ωr), (4.13b)

such that the resulting closed-loop system formed by (3.57)(4.11)(4.13), satisfies

lim
t→∞ ε(ρ̃(t), R̃(t), ν̃(t), ω̃(t)) = 0, (4.14)

in which ε(ρ̃, R̃, ν̃, ω̃) = ||ρ̃|| + || log R̃|| + ||ν̃|| + ||ω̃||, is the error measure.

4.3 Position Control Re-design
In this section, the position tracking controller for the quadrotor is derived. The quadrotor itself
is an underactuated system and therefore we derive the position tracking controller by working
under the assumption that the body-fixed linear accelerations can be used as virtual inputs. In the
next section, the virtual inputs are realized to actual inputs in the design of the attitude tracking
controller. The position tracking error is expressed in the body-fixed frame of reference which is
given as [33],

ρe = RT
r (ρr − ρ)

νe = νr − RT
r Rν

. (4.15)

The position tracking error dynamics can then be given by,

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe +
fr

m
e3 − RT

r R
f

m
e3 +

1
m

(F̂r,aero − RT
r RF̂aero),

(4.16)

where the term fr

m e3 − RT
r R f

me3 is assumed to be the virtual input u for stabilizing the position
tracking error dynamics. This is achieved by controlling the thrust magnitude and the attitude.

Assumption 4.3.1 For the control problem, we assume that the identified aerodynamic force model
F̂aero to be bounded ∀t, which is given as,

||F̂aero,max|| = Dmax, (4.17)

where Dmax is a constant. This assumption is rather conservative and in the future a state depen-
dent bound needs to be implemented for the disturbance forces.

Proposition 4.3.1 Consider the following dynamics,

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe +
1
m

(F̂r,aero − RT
r RF̂aero) + u

(4.18)
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in closed-loop with the dynamic state feedback consisting of the saturated PD controller term and
the term for disturbance force compensation, given by,

u = −σ(kρρe + kννe)− 1
m

(F̂r,aero − RT
r RF̂aero) (4.19)

where kρ = kT
ρ >0, kν = kT

ν >0. If ωr(t) is bounded and continuous, then the origin of the closed
loop system (4.18), (4.19) is UGAS.

Stability proof :
The closed loop system (4.18) and (4.19) can be described as follows:

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe − σ(kρρe + kννe)
(4.20)

Consider the positive definite function defined by:

V1(ρe, νe) = Vσ(kρρe + kννe) +
kρ

2
νT

e νe (4.21)

where Vσ(kρρe + kννe) represents the integral of the proposed smooth saturated function which is
positive definite and radially unbounded. The expression for (4.21) can then be written as,

V1(ρe, νe) =
∫ (kρρe+kννe)

0
σ(s)ds +

k1

2
νT

e νe (4.22)

Along the solutions of (4.20), we get:

V̇1(ρe, νe) = σ(kρρe + kννe)T [−kρS(ωr)ρe + kρνe − kνS(ωr)νe − kνσ(kρρe + kννe)]+
+ kρνT

e [−S(ωr)νe − σ(kρρe + kννe)]

= −kνσ(kρρe + kννe)2 = Y1(ρe, νe) ≤ 0

(4.23)

in which we have used the property bT S(ωr(t))b = 0.

Also consider a continuous and bounded function, given by,

V2(ρe, νe) = νT
e ρe (4.24)

Then, V̇2(ρe, νe) is given by:

V̇2(ρe, νe) = νT
e νe − ρT

e [σ(k1ρe + k2νe)] = Y2(ρe, νe) (4.25)

Applying Theorem 4.1.1, the system in (4.20) is UGAS.



4.4. Attitude Control Re-design 44

4.4 Attitude Control Re-design

The virtual input u was assumed to be equal to fr

m e3 − RT
r R f

me3 in the previous section. This
resulted in stabilizing the position dynamics with u given in (4.19). In this section, the thrust f
and torque τ inputs are used to let RT

r Rfe3 converge to fre3 − mu with u as given in (4.19). To
track a feasible reference trajectory we have the following condition,

0 < fmin
r ≤ fr (4.26)

To achieve this condition, it has to be guaranteed that ||u|| < fmin
r
m . Since the reference aerodynamic

force F̂r,aero is bounded and considering Assumption 4.3.1 we have,

||u|| ≤ α + dmax <
fmin

r

m
(4.27)

where dmax is a constant that bounds the term || 1
m(F̂r,aero − RT

r RF̂aero)|| ∀t and α term depends
on the choice of saturation function and gains kρ and kν . Since we have control over the value of
α by choosing a proper saturation function and careful tuning of the gains, the condition in (4.27)
can be satisfied and therefore a positive thrust given by f > 0 can be guaranteed.

The next step is to realize the control input for position subsystem into the attitude subsystem by
defining thrust input f and a desired rotation matrix Rd which satisfies the following,

fRde3 = fre3 − mu (4.28)

Since under a rotational transformation, the magnitude of a vector remains invariant, the thrust
input f can be defined from (4.28) as follows,

f = ||fre3 − mu|| (4.29)

where u is given by (4.19) such that f(t) > 0. Now, the expression for torque input τ needs to be
determined for achieving the desired attitude. The desired direction of the thrust vector is defined
as,

Rde3 =
fre3 − mu

||fre3 − mu|| := fd, (4.30)

where, fd =
[
fd1 fd2 fd3

]T
which satisfies fd3 > 0. The rotation matrix Rd rotates the desired

thrust vector fd to the reference thrust vector (i.e., e3) within the plane containing both vectors
which can be given by,

Rd =

⎡
⎢⎢⎢⎣

1 − f2
d1

1+fd3
−fd1fd2

1+fd3
fd1

−fd1fd2
1+fd3

1 − f2
d2

1+fd3
fd2

−fd1 fd2 fd3

⎤
⎥⎥⎥⎦ ∈ SO(3) (4.31)

where it can be observed that a specific choice of yaw ψ is made. Similarly, the corresponding
desired angular velocity ωd can be given by,

ωd =

⎡
⎢⎢⎢⎣

−ḟd2 + fd2ḟd3
1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1+fd1ḟd2
1+fd3

⎤
⎥⎥⎥⎦ (4.32)
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From (4.29) and (4.31), we obtain fre3 − mu = fRde3. Therefore, the initial aim to determine
torque input τ such that fRT

r R converges to fre3 −mu is now substituted by the goal to determine
τ such that RT R converge to Rd. Hence, the following error coordinates are considered for attitude
tracking in the body-fixed frame of the quadrotor,

Re = RT
d (RT

r R) (4.33a)
ωe = ω − RT Rrωr − RT

e ωd (4.33b)

The tracking error dynamics can then be defined by,

Ṙe =ReS(ω)

Jω̇e =S(Jω)ω + τ + M̂d + M̂aero − JRT RrJ−1[S(Jω)ω + τr + M̂r,d + M̂r,aero]
+ J(S(ωe)[ω − ωe] + JRT

e [S(ωd)RT
d ωr − ω̇d]

(4.34)

The torque input τ is given by,

τ = − Kωωe + KR

3∑
i=1

ki(ei × RT
e ei) − J(S(ωe)[ω − ωe] − JRT

e [S(ωd)RT
d ωr − ω̇d]

− S(Jω)ω − M̂d − M̂aero − JRT RrJ−1[S(Jω)ω + τr + M̂r,d + M̂r,aero]

(4.35)

which results in the following closed-loop form,

Ṙe =ReS(ω) (4.36a)

Jω̇e = − Kωωe + KR

3∑
i=1

ki(ei × RT
e ei) (4.36b)

for which according to Theorem 4.1.2, the origin (I, 0) is ULES and UGAS for distinct ki > 0 and
Kω = KT

ω > 0 and KR = KT
R > 0.

4.5 Cascade Analysis
In this section, we perform the stability analysis of the closed-loop system. The controller outputs
f and τ are determined in the previous section for asymptotic convergence of the desired control
action for the position tracking error dynamics. The last step is to analyze the stability of the
closed-loop cascaded system formed with the attitude controller and desired position controller.
The closed-loop dynamics with the extended model can written using the system dynamics in (3.57),
the reference dynamics (4.11) in closed-loop with the stabilizing virtual input u (4.19), thrust f
and (4.29) and torque τ (4.35). The resulting closed-loop system can be given by,

ρ̇e = − S(ωr)ρe + νe (4.37a)

ν̇e = − S(ωr)νe − σ(kρρe + kννe) +
f

m
RT

r R(RT
e − I)e3 (4.37b)

Ṙe =ReS(ω) (4.37c)

Jω̇e = − Kωωe + KR

3∑
i=1

ki(ei × RT
e ei) (4.37d)
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Proposition 4.5.1: If the gains kρ and kν are properly chosen such that ||u|| ≤ fmin
r
m , where

fmin
r > 0, then the origin (ρe, νe, Re, ωe) of (4.37) is ULES and UaGAS.

Proof:
System (4.37) can be observed as a cascade of subsystem (4.37a), (4.37b) and subsystem (4.37c),
(4.37d).
In Section 4.4, UaGAS of subsystem (4.37c), (4.37d) is proved and therefore we perform the sta-
bility analysis on R

6 × G, where G ⊂ SO(3) × R
3 represents the almost global region of attraction

of (4.37c), (4.37d).

The solutions of ρe and νe is initially proved to be bounded using the following Lyapunov candidate,

V = Vσ(kρρe + kννe) +
kρ

2
νT

e νe (4.38)

Differentiating (4.38) along the solutions of (4.37), gives,

V̇ ≤ νT
e

f

m
RT

r R(RT
e − I)e3 ≤ c1

√
V1||Re − I|| (4.39)

in which c1 represents a constant. Since, the subsystem (4.37c), (4.37d) is ULES we have√
V (t) −

√
V (t0) ≤ c2(t0) (4.40)

since V is found to be bounded along solutions, the solutions of (4.37) is therefore bounded as well
based on the results of Theorem 4.1.3.

Corollary 4.5.1: The reference tracking problem is solved by the controller outputs consisting of
virtual input u (4.19), thrust f (4.29) and torque τ (4.35).

Proof:
The position tracking errors ρe → 0 and νe → 0 and therefore using (4.15) we have ρ̃ → 0 and
ν̃ → 0. Furthermore, since virtual input u → 0, so from (4.30) we get the desired thrust fd → 0
and desired rotation matrix Rd → 0.
We obtain R̃ → 0 from attitude tracking error Re and (4.33a). At last, since u̇ → 0, the desired
angular velocity ωd → 0. Therefore, angular velocity tracking error ωe → 0 and using (4.33b) we
get ω̃ → 0.

4.6 Concluding Remarks
In this chapter, the previously designed tracking controller is updated for the extended quadro-
tor model. The natural cascaded structure in which the position subsystem is influenced attitude
subsystem is utilized in designing of the position and the attitude controller. The position error
dynamics defined in the tracking reference frame is stabilized using a virtual input. A saturated
PD control action and a disturbance compensation term included in the virtual input ensures that
the position subsystem is uniformly globally asymptotically stable in closed-loop. Lyapunov anal-
ysis along with the Nested Matrosov theorem is utilized in proving the stability of the position
error dynamics. A non-negative bounded thrust is ensured by the assumption that the disturbance
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forces are bounded and careful choice of saturation function. The derived control input for the
position subsystem is realized into the attitude subsystem by defining a new set of attitude error
coordinates. The attitude tracking error dynamics are stabilized in closed-loop by designing the
torque input using Lyapunov theory. Resulting closed-loop torque input makes the attitude subsys-
tem uniformly almost globally asymptotically stable. Lastly, the interconnected closed-loop system
achieves uniform almost global asymptotic stability which is proved by cascade control theory.



Chapter 5

Simulation Study

The re-designed state-feedback controller is implemented in a simulation environment in this chap-
ter. The tracking behaviour of the closed-loop system with a discretized controller needs to an-
alyzed through simulation. In Section 5.1, the tracking results of the identified extended model
are compared with the actual quadrotor behaviour from the experimental results. The tracking
performance of the updated controller from previous chapter is evaluated in Section 5.2 for the
extended model in the simulation environment.

5.1 Validation of Extended Model
The extended model in the simulation environment is implemented with the parameters given in
Table 5.1. The choice of the simulation step size is based on the Parrot AR Drone 2.0 on-board
sensors outputting rate.

Parameter Description Value Unit
m Quadrotor mass 0.414 kg
Jx Moment of inertia around x-axis 0.0022 kgm2

Jy Moment of inertia around y-axis 0.0025 kgm2

Jz Moment of inertia around z-axis 0.0045 kgm2

Jr Rotor inertia 2.12·10−6 kgm2

Ts Simulation step size 0.0025 s

Table 5.1: Relevant simulation parameters.

During simulations, it was observed that the inclusion of the identified disturbance moment models
M̂aero and M̂d had very little contribution to resemble the actual quadrotor behaviour and for fast
time-varying trajectories, the simulation results diverged further away from the actual quadrotor
behaviour. This can partially be attributed to the data utilized for the identification of roll and
pitch moment models which are not informative enough to capture the true aerodynamic moments.
To improve the moment models, further experiments need to be conducted with steady and high
amplitudes of roll and pitch motions. For simulation purposes, the extended model in this chapter
only accounts for the disturbance force model F̂aero and the disturbance moment models M̂aero and
M̂d are made equal to zero.

48
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The simulation with the extended model is performed with the previously designed non-linear
controller in the work of [33]. The position tracking results are compared with the same controller
gains used for the experiments which are presented in Table 5.2

Parameter Description Value
kw Integral gain 0.4
kz Integral gain 1
kρ Position gain 3
kν Velocity gain 2
kR Attitude gain 70
kω Attitude gain 30
k1 Attitude gain 0.9
k2 Attitude gain 1
k3 Attitude gain 1.1

Table 5.2: Controller gains used for experiments and simulation

The quadrotor is made to follow a 3D circular reference trajectory with the extended model and
the rigid body model in the simulation, which is given by,

ρr(t) =
[
cos(att) sin(att) 1.5 + sin(att)

]T
(5.1)

where the value of at is taken as 1 for a fast 3D circular maneuver. The initial conditions used for
the simulation of the extended model and the rigid body model are given by,

ρ(t0) =

⎡
⎢⎣0.06

0.65
0.27

⎤
⎥⎦ R(t0) =

⎡
⎢⎣ 1 −0.0002 −0.0003

0.0002 1 −0.0070
0.0003 0.0070 1

⎤
⎥⎦

ν(t0) =

⎡
⎢⎣ 0.1

−0.8
0.7

⎤
⎥⎦ ω(t0) =

⎡
⎢⎣−0.5

0.3
0.1

⎤
⎥⎦

. (5.2)

Figure 5.1 illustrates the position tracking performance of the quadrotor extended model rigid
body model (red), rigid body model (blue) for the given 3D circular reference trajectory (dashed).
Furthermore in Table 5.3, the RMS position error between the two models and the position mea-
surement from the quadrotor experiments are given.

The actual quadrotor position measurements (black) can be compared with both the models from
simulation in the figure. It is observed that the position measurements ρ of the rigid body model
perfectly tracks given reference position ρr in the absence of external disturbances. However, the
position measurement ρ of the extended model is more close to the actual quadrotor behaviour from
experiments. In Table 5.3, it is observed that RMS position error is significantly less between the
extended model and actual quadrotor than the RMS values for position error between the rigid body
model and actual quadrotor. The extended model estimates the actual quadrotor x-position better
than the rigid body model by almost 70%. In the y and z-direction, the results of the extended
model are closer than the rigid body model to the actual quadrotor position by approximately 55% .
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Figure 5.1: The simulation position measurements ρ for the extended model (red), rigid body
model (blue) for the reference position ρr (dashed). In black, the filtered position measurements
from quadrotor experiments for the same reference trajectory is provided for comparison.

RMS Position Error
Model x-position (m) y-position (m) z-position (m)

Rigid body model 0.52 0.68 0.51
Extended model 0.15 0.28 0.22

Table 5.3: RMS position error between the models (rigid body model and extended model) and
actual quadrotor measurement (shown in Figure 5.1).

The position measurements of the quadrotor is further evaluated for a reference trajectory with
different speeds in x and z-directions using a vertical-eight-figure trajectory, given by,

ρr(t) =
[
sin(at1t) 0 1 + 0.5 sin(at2t)

]T
, (5.3)

where at1 = 1 and at2 = 0.5. The non-linear PID controller gains used for the simulation and the
experiments are the same as given in Table 5.2. The initial conditions given in (5.8) are used again
for the simulations models.

In Figure 5.2, the positions measurements ρ from simulation of the extended model (red) and rigid
body model (blue) are compared to the experiment results (black) for the same reference position
ρr (dashed) of vertical-eight-figure trajectory. In addition, the values of the RMS position error
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in x and z direction between the actual quadrotor and the models are given in Table 5.4. The
rigid body model efficiently tracks the reference position in absence of external disturbances. The
extended model x-direction position measurement closely resembles the actual quadrotor position
measurement from experiments. The z-direction measurement of the extended model from sim-
ulation is not however very close to the the experiment measurement, but the results appear to
be better compared to the rigid body model position data. From the RMS values given in Table
5.4, the results of the extended model appear to be only closer to actual quadrotor position in
x and z-direction by approximately 16% and 26%, respectively. The improvement in prediction
by the extended model is observed to be less than the previously selected 3D circular trajectory.
This is believed be caused by the reduced aerodynamic effects for the quadrotor following a slower
time-varying trajectory.

Figure 5.2: The simulation position measurements ρ for the extended model (red), rigid body model
(blue) with vertical-eight-figure reference trajectory of position ρr (dashed). In black the actual
quadrotor position measurements from experiments is given for the same reference trajectory.

RMS Position Error
Model x-position (m) z-position (m)

Rigid body model 0.4208 0.2720
Extended model 0.3506 0.1990

Table 5.4: RMS position error between the models (rigid body model and extended model) and
actual quadrotor measurement (shown in Figure 5.2).
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5.2 Re-designed Controller Simulation
The trajectory generation of the extended model is a challenging problem due to the inclusion of
several complex terms. To determine a feasible reference trajectory from the given flat outputs of
desired position (ρd) and heading (ψd), the extended dynamic model of the quadrotor should be
diferentially flat.

Considering the time limitations, the feasible reference trajectory in the simulation environment
is generated by applying an open-loop input thrust f to the extended quadrotor model. For,
zr = 1 + 0.5 sin(t), the thrust input applied to the extended quadrotor model is given by,

f = m
√

(z̈r + g)2. (5.4)

The initial conditions are set to the following values for generating the reference trajectory,

ρ(t0) =

⎡
⎢⎣5.6

3.9
4.6

⎤
⎥⎦ R(t0) =

⎡
⎢⎣ 1 −0.0011 0.0016

0.0011 1 0.0048
−0.0016 −0.0048 1

⎤
⎥⎦

ν(t0) =

⎡
⎢⎣ 0.1

−0.8
0.7

⎤
⎥⎦ ω(t0) =

⎡
⎢⎣0

0
0

⎤
⎥⎦ .

(5.5)

It is to be noted that the reference trajectory is generated without considering the disturbance
moments. Consecutively, for the simulation of the updated controller in this chapter, the terms of
disturbance moments M̂aero and M̂d and the corresponding reference terms M̂r,aero and M̂r,d are
taken as zero. This implies that the stabilizing torque input τ derived in Chapter 4 is simplified to
the following,

τ = − Kωωe + KR

3∑
i=1

ki(ei × RT
e ei) − J(S(ωe)[ω − ωe] − JRT

e [S(ωd)RT
d ωr − ω̇d]

− S(Jω)ω − JRT RrJ−1[S(Jω)ω + τr]

(5.6)

The neglected disturbance moment terms however does not change the previously proved stability
of the complete closed-loop cascaded system. Figure 5.3 shows the reference position ρr obtained
from the simulation which satisfies the extended dynamic model of the quadrotor.

The quadrotor is made to track the obtained feasible reference trajectory using the saturated PD
controller with disturbance compensation designed in Chapter 4. The saturation function in the
controller is chosen as,

σ(kρρe + kννe) =
kρρe + kννe√

1 + ||(kρρe + kννe)||2
, (5.7)

where the position gain kρ and velocity gain kρ used in the simulation are given in Table 5.5 along
with the attitude controller gains.
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Figure 5.3: Reference position ρr satisfying the dynamics of the extended model.

Parameter Description Value
kρ Position gain 3.8
kν Velocity gain 6
kR Attitude gain 70
kω Attitude gain 30
k1 Attitude gain 0.9
k2 Attitude gain 1
k3 Attitude gain 1.1

Table 5.5: Controller gains for the re-designed controller

The initial conditions for the simulation of the extended model with the re-designed controller is
given by,

ρ(t0) =

⎡
⎢⎣4.4

3.3
3.6

⎤
⎥⎦ R(t0) =

⎡
⎢⎣ 0.9983 0.0204 −0.0544

−0.0247 0.9965 −0.0797
0.0525 0.0809 0.9953

⎤
⎥⎦

ν(t0) =

⎡
⎢⎣ 0.1

−0.8
0.7

⎤
⎥⎦ ω(t0) =

⎡
⎢⎣0

0
0

⎤
⎥⎦

. (5.8)

In Figure 5.4, the position measurement of the extended model using the re-designed controller is
presented. The position measurement in blue represents the quadrotor trajectory with no distur-
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bance force compensation term included in the controller. This implies that the term 1
m(F̂r,aero − RT

r RF̂aero)
is set to zero in the virtual input u. The position data in red represents the tracking performance
with the disturbance compensation term included. It is clearly seen that addition of the disturbance
compensation term resulted in improved tracking of the reference position ρr (in black).
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Figure 5.4: 3D representation for the quadrotor flight trajectory for position reference ρr (black).
The trajectory in blue represents the tracking performance with no disturbance compensation and
the red trajectory represents the tracking performance with disturbance compensation.

The position error of the controller with and without compensation for external disturbance is
shown in Figure 5.5. In the figure it is observed that with zero disturbance compensation there
exists a constant error (in blue) from the given reference trajectory. The position error (in red)
converges close to zero with the re-designed controller including external aerodynamic force com-
pensation.

It can be recalled that the attitude error in the previous chapter is defined by Re = RT
d (RT

r R),
which asymptotically converges to I. Here, the distance of Re to I is represented by the following
natural Riemannian metric, given by,

d(RT
r R, Rd) = || log(Re)|| (5.9)

This metric restricts the values in the range of [0, π). The attitude error with and without external
disturbance compensation is given in Figure 5.6 which is given by | log(Re)|. It can be seen that for
desired reference Rd with and without the disturbance compensation, the attitude error ( in red)
converges to zero which represents the convergence of the term RT

r R to Rd.



55 Chapter 5. Simulation Study

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

1.5

e x [m
]

0 5 10 15 20 25 30 35

Time [s]

0

0.2

0.4

0.6

e y [m
]

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

e z [m
]]

Figure 5.5: Position error eρ = ρr − ρ with external disturbance force compensation (red) and
without compensation for disturbance (blue).
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Figure 5.6: Attitude error representing RT
r R converging to Rd using the natural Riemannian metric.

The attitude error with and without external disturbance compensation are given in red and blue,
respectively.
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5.3 Concluding Remarks
This chapter studies the performance of the re-designed controller for the extended model in a
simulation environment. Initially, the behaviour of the extended model in simulation is compared
to the experimental results of the quadrotor. The reference trajectories used for simulation and
experiment include a fast time varying 3D circular trajectory and a vertical-eight-figure trajectory.
It was observed that the position measurements of the extended model closely resemble the actual
position of quadrotor using the previously designed controller. The identified moment model seemed
to perform poorly and was therefore neglected from the simulation model and also the updated
controller. The tracking performance of the re-designed controller is determined for the extended
model with particular choice of control gains and initial conditions. The complexity of the extended
model makes trajectory generation more complicated and therefore for present simulation needs,
the trajectory is generated in the simulation environment with an open loop input thrust. It
was observed that the disturbance compensation term in the controller enables the quadrotor in
simulation to track the feasible reference trajectory with sufficient accuracy. With the exclusion
of the disturbance force compensation term, the quadrotor maintained some offset from the given
reference.



Chapter 6

Conclusions and Recommendations

The thesis report has addressed the problem of tracking control of quadrotor subjected to external
disturbances. Models capable of capturing most of the actual dynamic behaviour of the quadrotor
system are significant for the design of autonomous tracking controllers. An extended model is
determined in this project using techniques from data-driven modeling. The resulting extended
model is incorporated into the previous design of a nonlinear controller for improving the tracking
of fast time-varying trajectories.

6.1 Conclusions
The results from the thesis report are discussed based on the research conducted for model iden-
tification and control design. The simulations conducted based on the final results are also briefly
mentioned.

Model Identification and Control
The identification procedure starts from gathering the relevant data from the available data acqui-
sition system. For identifying the disturbance model, information on quadrotor rotor speed and
body-fixed linear velocities are not directly obtained. The rotation speed of the rotors is deter-
mined from the inputs applied to the quadrotor. Quadrotor body-fixed velocity is obtained using
the external camera outputs and an almost globally stable attitude observer. Derivatives of position
estimates from the camera and the reconstructed attitude are used to get the quadrotor velocity
estimate in body-fixed frame.

The second step of identification involves defining grey-box model structures for the disturbance
forces and moments acting externally on the quadrotor. A lumped parameter model is formed
based on the existing theoretical models on aerodynamics. In data-driven modeling, it is crucial to
consider only the most relevant model terms using methods like model selection. A modified version
of the Least Angle Regression Algorithm is used to select the suitable set of model predictor terms
for the disturbance model. Outputs of the Inertial Measurement Unit from tailored experiments
are used to retrieve the measurements on disturbance forces and moments.

The identified disturbance model is incorporated into the previous design of the cascaded controller
with a few modifications. The position and velocity tracking errors are defined in a fixed reference
frame of the quadrotor for the trajectory control problem. For position control, the stabilizing
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virtual input consists of a saturated PD control action and another term for compensation of the
external disturbance forces. A non-negative thrust is then ensured by assuming the disturbance
force to be bounded and by taking a suitable saturation function. The bounded input for position
control is realized into the attitude controller by defining a rotation matrix in the desired reference
frame. The attitude error dynamics are correspondingly defined for stabilizing the position and
attitude subsystem in closed-loop by determining a proper torque input. Lyapunov stability the-
ory is used to determine the inputs which make the closed-loop position subsystem and attitude
subsystem uniformly globally asymptotically stable and uniformly almost globally asymptotically
stable, respectively. The stability of the complete cascaded closed-loop system is finally proved
using cascade control theory.

Simulation
A comparison of the position measurements from the extended model in simulation was made with
the previously conducted quadrotor experiments. The identified disturbance moment model was
neglected from the simulation model and the controller, as it generated undesired results caused
by poor identification data. For different fast time-varying trajectories it was observed that the
position results of the extended model closely resembled the results of the actual quadrotor system.
The re-designed controller is implemented in the simulation environment for a feasible reference
trajectory generated by applying an open loop thrust. Position measurements of the simulation
model in closed-loop show that the drone is capable of tracking the given trajectory with sufficient
accuracy. The previously incorporated integral action is no longer required in the controller since
it already takes into consideration most of the external disturbances acting on the drone.

6.2 Recommendations
This section covers the recommendations for future work and practical implementation in the
following points,

• The proposed attitude observer can be used for real time applications by implementing the
quaternion version of the kinematic observer using first order Euler integration. By carefully
choosing the gains and the initial conditions, stable unbiased attitude responses can be ob-
tained.

• For the identification the quadrotor rotor speed was obtained using PWM motor inputs. A
much more accurate method would be to determine the rotor speed by identification of a mo-
tor model. A first order system with non-linear parameters can be determined with input as
applied voltage and the rotor rotation speed as output. The model parameter estimates can
then be obtained using optimization methods such as nonlinear least squares. Experiments
can be performed to manually measure the rotor rotation speed while the quadrotor is fixed
to the ground and the applied voltage data is available from the on-board sensors.

• The identified moment models preformed poorly due to lack of good experimental data for
parameter estimation. For proper identification of moment models, experiments need to be
conducted such that the quadrotor performs steady and high magnitude angular maneuvers.
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• In the re-design of the controller, the disturbance forces were assumed to be bounded by a
constant to ensure a non-negative and bounded control thrust. This assumption is rather
conservative and in the future a state dependent bound needs to established for the stability
derivation of the controller. For example, the dissipativity property of drag forces suggest
that the intensity of the quadrotor drag forces cannot be larger than the velocity vector of
the vehicle.

• The trajectory generation of the extended model is a difficult problem due to the presence of
several complex terms in the quadrotor dynamics. Methods from differential flatness theory
such as feedback linearization could be implemented to determine the reference states and
inputs from desired position and heading angle.

• The practical implementation of the re-designed controller is hindered by the time limitations
of the project and also the lack of a velocity observer. The problem of determining the
quadrotor body-velocity can be addressed by either updating the previously proposed velocity
error observer with the identified disturbance forces or building a new velocity observer which
takes into consideration all the external forces acting on the drone.



Bibliography

[1] A. K. Saha, J. Saha, R. Ray, S. Sircar, S. Dutta, S. P. Chattopadhyay and H. N. Saha “IOT-
based drone for improvement of crop quality in agricultural field,” IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC), 612-615, January 2018.

[2] Chong Huang, Fei Gao, Jie Pan, Zhenyu Yang, Weihao Qi, Peng Chen,Xin Yang, Shaojie Shen
and Kwang-Ting Cheng, “ACT: An Autonomous Drone Cinematography System for Action
Scenes,”IEEE International Conference on Robotics and Automation (ICRA),7039-7046, May
2018.

[3] S. Zacharek, “How Drones Are Revolutionizing the Way Film and Television Is Made,” article,
TIME, Entertainment, May 2018.

[4] Constantine Samaras and Joshuah Stolaroff, “Delivering packages with drones might be good
for the environment,” The Conversation, February 2018.

[5] Anne Goodchild and Jordan Toy, “Delivery by drone: An evaluation of unmanned aerial vehicle
technology in reducing CO2 emissions in the delivery service industry,” Transportation Research
Part D,58-67, June 2018.

[6] Sudipta Chowdhury, Adindu Emelogu, Mohammad Marufuzzaman, Sarah G. Nurre and Linkan
Bian,“Drones for disaster response and relief operations: A continuous approximation model,”
International Journal of Production Economics,167-184, 2017.

[7] Martin Rosalie, Grégoire Danoy, Pascal Bouvry and Serge Chaumette,“UAV Multilevel Swarms
for Situation Management,” Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use, 49-52, 2016.

[8] Jack Williams, “Into the Eye: Tracing the History of the Hurricane Hunters,” Weatherwise,
37-45, 2015.

[9] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: modeling, estimation, and
control of quadrotor,” IEEE Robotics and Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[10] H. Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Aerodynamics and control of
autonomous quadrotor helicopters in aggressive maneuvering”, IEEE Conference on Robotics
and Automations, pp. 3277-3282, 2009.

[11] Sammy Omari, Minh-Duc Hua, Guillaume Ducard, “Nonlinear Control of VTOL UAVs Incor-
porating Flapping Dynamics”, IEEE/RSJ International Conference on Intelligent Robots and
Systems, November 2013.

60



61 Bibliography

[12] H.J.K. de Kleuver, “Extended non linear dynamics for quadrotor control in aggressive maneu-
vering,” master’s thesis [DC report, 2017.092], Eindhoven University of Technology, Dynamics
and Control Group, Department of Mechanical Engineering, Eindhoven, the Netherlands, Oc-
tober 2017.

[13] Xiaodong Zhang, Xiaoli Li, Kang Wang and Yanjun Lu,“A Survey of Modelling and Identifi-
cation of Quadrotor Robot”, Abstract and Applied Analysis, October 2014.

[14] M.-D. Hua, T. Hamel, and C. Samson, “Introduction to feedback control of underactuated
VTOL vehicles,” IEEE Control Systems Magazine, pp. 61–75, 2013.

[15] M. Bergamasco and M. Lovera, “Identification of Linear Models for the Dynamics of a Hovering
Quadrotor”, IEEE Trans Control Systems Technology, vol. 22, pp. 1696-1707, 2014.

[16] Pietro Panizza, Fabio Riccardi, Marco Lovera,“Black-box and grey-box identification of the
attitude dynamics for a variable-pitch quadrotor”, Conference: Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles, June 2015.

[17] J. Muliadi and B. Kusumopu, “Assessing The Method of State Space Determination from the
Quadrotor Flight Simulation”, International Seminar on Application for Technology of Infor-
mation and Communication (iSemantic), pp. 258-263, 2017.

[18] Lennart Ljung, “Prediction Error Estimation Methods",Technical Report, Department of Elec-
trical Engineering, Linköping University, 2001.

[19] Ingrid Kugelberg, “Black-Box Modeling and Attitude Control of a Quadcopter”, Master Thesis,
Department of Electrical Engineering, Linköping University, 2016.

[20] Ionel Stanculeanu, Theodor Borangiu,“Quadrotor Black-Box System Identification”, World
Academy of Science, Engineering and Technology, 2011.

[21] Pairan, M.F. and Shamsudin, S.S.,“ System identification of an unmanned quadcopter system
using MRAN neural”, IOP Conference Series: Materials Science and Engineering, 2017.

[22] Derek Scott Miller, “Open Loop System Identification of a Micro Quadrotor Helicopter from
Closed Loop Data”, Master Thesis, University of Maryland, College Park, 2011.

[23] G. Gremillion, “System identification of a quadrotor micro air vehicle,” Proceedings of the
AIAA Atmospheric Flight Mechanics Conference, p. 7644, Toronto, Canada, 2010.

[24] G. Cai, H. Mehairi, H. Al-Hosani, J. Dias and L. Seneviratne, “Frequency-Domain Flight
Dynamics Model Identification of MAVs - Miniature Quad-Rotor Aerial Vehicles”, IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3376-3381, 2014.

[25] O. Prot, and J. Ramos, “Identification of parameterized gray-box state-space systems: From
a black-box linear time-invariant representation to a structured one” in IEEE Transactions On
Automatic Control,vol. 59, no. 11, November 2014.

[26] J. Yang, Z. Cai, Q. Lin, D. Zhang and Y. Wang, “System Identification of Quadrotor UAV
Based on Genetic Algorithm”, IEEE Chinese Guidance, Navigation and Control Conference
(CGNCC), pp. 2336-2340, 2014.



Bibliography 62

[27] M. Alkowatly, V. Becerra and W. Holderbaum, “Body-centric Modelling, Identification, and
Acceleration Tracking Control of a Quadrotor UAV”, International Journal of Modelling Iden-
tification and Control, vol. 24, pp. 29-41, 2015.

[28] Rajan Gill and Raffaello D’Andrea,“Propeller Thrust and Drag in Forward Flight”, IEEE
Conference on Control Technology and Applications, August 2017.

[29] James Svacha, Kartik Mohta, Vijay Kumar, “Improving Quadrotor Trajectory Tracking by
Compensating for Aerodynamic Effects”, International Conference on Unmanned Aircraft Sys-
tems (ICUAS), June 2017.

[30] D. Derya Kaya, “Modeling and Experimental Identification of Quadrotor Aerodynamics”, Mas-
ter Thesis,Aerospace Engineering Department, Middle East Technical University, August 2014.

[31] Sihao Sun, Coen De Visser and Rudi Schilder, “Identification of Quadrotor Aerodynamic Model
from High Speed Flight Data”, AIAA Atmospheric Flight Mechanics Conference, January 2018.

[32] S. J. A. M. van der Eijnden, “Cascade based tracking control of quadrotors,” master’s thesis
[DC report, 2017.012], Eindhoven University of Technology, Dynamics and Control Group,
Department of Mechanical Engineering, Eindhoven, the Netherlands, January 2017.

[33] E. Lefeber, S. J. A. M. van der Eijnden, and H. Nijmeijer, “Almost global tracking control
of a quadrotor uav on se(3),” in 56th IEEE Conference on Decision and Control, Melbourne,
Australia,, 2017.

[34] Mahony, R., Hamel, T., & Pflimlin, J. M., “Nonlinear complementary filters on the special
orthogonal group.”, IEEE Transactions on automatic control, 53(5), 1203-1218., (2008).

[35] N. Jeurgens, “Identification and control implementation of an AR Drone 2.0”, Master’s the-
sis, Eindhoven University of Technology, 2017, Department of Mechanical Engineering, DC
2017.013.

[36] Sihao Sun, Coen C. de Visser and Qiping Chu, “Quadrotor Gray-Box Model Identification
from High-Speed Flight Data” JOURNAL OF AIRCRAFT , November 24, 2018.

[37] Manon Kok, Jeroen D. Hol and Thomas B.Schon , “Inertial Sensors for Position and Orienta-
tion Estimation,” Foundations and Trends in Signal.,Vol. 11: No. 1-2, pp 1-153, 2017

[38] Burak Yüksel, Cristian Secchi, Heinrich H Bülthoff, Antonio Franchi,“ A nonlinear force ob-
server for quadrotors and application to physical interactive tasks”, IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, Jul 2014, Besancon, France. 8p., 2014.

[39] Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani, “Least angle regression”,
Annuals of Statistics, 32(2), 407–499, 2004.

[40] T. Lombaerts,“Model-based fault detection and identification with online aerodynamic model
structure selection”,Progress in Flight Dynamics, GNC, and Avionics, 299-316, 2013.

[41] Trevor Hastie, Jonathan Taylor, Robert Tibshirani and Guenther Walthe, “Forward stagewise
regression and the monotone lasso”, Electronic Journal of Statistics, 1–29, 2007.

[42] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, Bruce Kothmann, and Vijay Kumar,
“Influence of aerodynamics and proximity effects in quadrotor flight.”, In Experimental robotics,
pages 289-302. Springer, 2013.



[43] Mor Gilad, Inderjit Chopra and Omri Rand, “Performance Evaluation of a Flexible Rotor in
Extreme Ground Effect.”, 37th European Rotorcraft Forum, Milan, Italy, 2011.

[44] M Bangura R Mahony, “Nonlinear Dynamic Modeling for High Performance Control of a
Quadrotor”, Australasian Conference on Robotics and Automation, Australian Robotics and
Automation Association, Wellington, pp. 1-10, 2012.

[45] Sanne Marx, “High Performance Drone Target Pursuit”, Master’s thesis, Eindhoven University
of Technology, 2017, Department of Mechanical Engineering, CST 2017.017.

[46] H. K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., December 2001.

[47] A. Lor´ıa, E. Panteley, and A. Teel, “A nested Matrosov theorem and persistency of excitation
for uniform convergence in stable nonautonomous systems,” IEEE Transactions on Automatic
Control, vol. 50, no. 2, pp. 183–198, 2005.

[48] Michael Lynch, Kevin Robinson, Ovidiu Ghita, Paul F. Whelan, “A Performance Charac-
terisation In Advanced Smoothing Techniques”,Vision Systems Group,Dublin City University,
Ireland.

[49] Srinivasan Rajagopalan, Richard Robb, “Image smoothing with Savitzky-Golay fil-
ters”,Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA,
2003.

[50] Thomas F. Edgar, “Recursive Least Squares Parameter Estimation for Linear Steady State
and Dynamic Models,” Department of Chemical Engineering University of Texas, Austin.

63



Appendix A

Attitude Observer Simulation

The performance of the proposed explicit complementary filter with bias correction is evaluated in
this appendix for the data obtained from quadrotor experiments. Following initial conditions are
chosen for the almost globally stable attitude observer,

R̂(t0) = I b̂(t0) = [0, 0, 0]T v̂a(t0) = [0.09, 0.005, 0.996]T (A.1)

The gains are selected as, kP = 1 rad.s−1 and kI = 0.3 · 10−4 rad.s−1. Figure A.1 shows the
roll, pitch and yaw angles from open loop integration of gyro outputs (dashed in blue) and the
reconstructed R̂ of the observer (red).

Figure A.1: Attitude estimates from open loop integration of gyro outputs (dashed in blue) and
explicit complementary filter with bias correction (in red) .
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65 Appendix A. Attitude Observer Simulation

In Figure A.1, it can be observed that the open-loop integrated attitude has the presence of a time
varying bias. The explicit complementary filter has generated unbiased estimates of the quadrotor
attitude for specific choice of gains.
The error measure Emes of the filter is expressed as:

Emes = 1 − 〈va, v̂a〉 = 1 − tr(vT
a v̂a) (A.2)

Figure A.2 shows the error measure obtained for the observer implemented on the flight data from
experiments.
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Figure A.2: Error measure Emes for explicit complementary filter with bias correction.

It is observed in Figure A.2 has a constant offset of around 0.2 from zero, this is caused by the
presence of noise in the normalized accelerometer measurements.



Appendix B

Differentiation Filter

The working of the Savitzky Golay filter is briefly explained here which is used for smoothing po-
sition data and for computing the numerical derivatives as mentioned in 2.2. The filter basically
replaces each value of the data point with the value of a chosen fitted polynomial (using least-
squares). The procedure involves finding the coefficients of the chosen polynomial which are linear
to the data values. This is implemented by computing coefficients of fictitious data and applying
filter over all the data points.

Assuming the size of the smoothing window is N × N where N is odd, and order of polynomial
used for fitting is k, where N > k + 1. The smoothing causal filter is usually expressed as [48],

gx,y =
n∑

j=−n

n∑
i=−n

Ci,jfx+i,y+i (B.1)

where C is the convolution matrix and fxy is the real data and n = N−1
2 . Suppose we have to fit a

polynomial of the following type to the data,

f(xi, yi) = a00 + a10xi + a01yi + a20x2
i + a11xiyi + a02y2

i + ... + a0kyk
i (B.2)

Using least-squares the vector of coefficients a = [a00, a01, a10...a0k]T can be computed. For the
general equation given by,

A · a = f (B.3)

the vector a is computed by,
a = (AT · A)−1 · (AT f) (B.4)

Since least-squares fitting is linear to the values of the data, the coefficients can be computed
despite of the actual data. This is achieved by replacing f in (B.4) by a unit vector. Thus the
coefficient matrix C becomes, C = (AT A)−1(AT ). C can be set back to the traditional looking
filter of size N ×N . The first coefficient is used to smooth the data and the higher order coefficients
are implemented to compute numerical derivatives. It is to be noted that the above expressions are
used for filtering of images consisting of both x and y data points together.
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Appendix C

Hovering Thrust model

The estimate of the hovering parameter κ is estimated in Section 3.2 using eight different hovering
flight experiments. Here in this appendix, the estimate of κ is presented for each of the eight flight
experiments (with different dataset length) in Table C.1.

Flight
Experiment No. Length of Dataset Value of κ

1 19160 6.861·10−06
2 10070 6.824·10−06
3 18812 6.732·10−06
4 4550 6.984·10−06
5 15993 6.993·10−06
6 14096 6.854·10−06
7 19352 6.880·10−06
8 19291 6.833·10−06

Table C.1: Estimate of κ from each hovering experiment

It is seen in Table C.1 that the κ estimate differs for each hovering experiment. This is very much
expected since during experiments the drone did not hover completely motionless at a stationary
point.

In some of the experiments the drone was slowly moving in the x-y plane and in other experiments
the drone was slowly moving up and down in the vertical direction. These variations does influence
the estimate of parameter κ which can seen from the expressing for thrust model given in Section
3.2.
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Appendix D

RLS Algorithm

The hovering thrust parameter κ from Section 3.2 is estimated from the Recursive least square
algorithm explain in this Appendix.

For model y = ax with the response variable data y∗ = ax + ε, the least square estimate of a for
ith data point (yi, xi) is given by:

min
â

k∑
i=1

(y∗
i − âxi)2 (D.1)

The solution for the minimum (least squares) estimate is given by (non-sequential):

âk = (
k∑

i−1
x2

i )−1

︸ ︷︷ ︸
pk

(
k∑

i−1
xiyi)

︸ ︷︷ ︸
bk

(D.2)

where pk and bk are functions of number of samples.

The sequential form of (D.2) for new data point xi and yi is given by:

p−1
k =

k∑
i=1

x2
i = p−1

k−1 + x2
k

bk =
k∑

i=1
xiyi = bk−1 + xkyk

(D.3)

The recursive form for parameter estimation is hence given by [50]:

âk = âk−1 − Kk (xkâk−1 − yk)︸ ︷︷ ︸
estimation error

where, Kk =
pk−1xk

(1 + pk−1x2
k)

(D.4)

The update for pk is given by:

pk = pk−1 − p2
k−1x2

k

(1 + pk−1x2
k)

(D.5)
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Appendix E

Further Extended:Yaw Moment
Model

In Section 3.5, the model selected for aerodynamic yaw moment model M̂a,z had limited number
of terms which resulted in low estimation and validation fit results of the estimated model. Here,
the fit of the net external yaw moment model M̂z is further improved by including a large number
of predictors to the aerodynamic yaw moment model M̂a,z. The output model is selected based
on the work of [31] and [36] which takes into consideration the complex aerodynamic interactions
using higher order terms composed of the variables u, v, w, Vr,

∑
Ωi, given by,

M̂a,z =θ̂24 + θ̂25u + θ̂26v + θ̂27u3Vr + θ̂28v2Vr + θ̂29u
∑

Ωi + θ̂30uvVr

+ θ̂31uv2 + θ̂32uv + θ̂33v
∑

Ωi + θ̂34uw2 + θ̂35uvw2
(E.1)

The estimated value of the parameters in (E.1) is given in Table E.1. The estimation fit for the
extended model is about 75.57% with the inclusion of 12 terms which also has the bias term.

Model
Predictor Parameter (θ̂) Estimated

Value Units

uvw2 θ̂35 2.58 · 10−3 Nm−3s4

uw2 θ̂34 −6.67 · 10−3 Nm−2s3

v
∑

Ωi θ̂33 −1.45 · 10−5 Nrad−1s2

uv θ̂32 2.28 · 10−3 Nm−1s2

uvVr θ̂30 −3.13 · 10−8 N(m·rad2)−1s4

u
∑

Ωi θ̂29 −6.02 · 10−6 Nrad−1s2

v2Vr θ̂28 2.12 · 10−8 N(m·rad2)−1s4

u3Vr θ̂27 −3.82 · 10−9 N(m·rad)−2s5

v θ̂26 2.17 · 10−2 Ns
u θ̂25 1.02 · 10−2 Ns
1 θ̂24 −3.84 · 10−4 -

NMSE fit 75.57 %

Table E.1: Estimated parameters for further extended moment model M̂a,z.

The validation fit of the extended yaw moment model M̂z = M̂a,z + M̂hov,z is given in Figure E.1.
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Figure E.1: Validation fit results on the measurement Mz (black) with identified extended yaw
moment model M̂z (red) of NMSE fit 63.47 %.

Vaidation fit of 63.47% of the new moment model M̂z is lower than the estimation fit by about
12% which is expected since the number of terms have been increased significantly.


