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Summary

The concept of using several agents that partly rely on their interaction in order to obtain specific
combined behavior seems very interesting for the next generation of control systems, while in the
mean time progression persists in ever smarter design choices for control. Based on recent stabilizing
results for the quadrotor UAV on SE(3) that apply almost globally, we want to synchronize multiple
quadrotor UAVs. We feel like the specific combination between both worlds, a relatively complex
control strategy based on recent research as well as utilizing a well established coupling technique,
opens up a promising direction for progression in multi-agent systems. For synchronized systems
of multiple quadrotor UAVs, which can be seen as one new system, we expect cost, robustness and
efficiency benefits with respect to single-agent systems, due to potential parallelism and scalability.
In fact, since multi-agent systems are able to utilize their combined lifting power and share sensing
capabilities, some tasks can only be executed with multiple agents. In order to develop this multi-
agent system of quadrotor UAVs, we first try to obtain a very similar model with unicycle robots,
so that we first have a system with reduced complexity to work with. We start by designing a
mobile robot reference tracking algorithm on SE(2) that is almost globally asymptotically stable,
using cascade system theory. After that, we introduce a virtual reference structure that provides a
set of feasible reference trajectories for multiple agents. In order to ensure that the mobile robots
stay in formation even when one of the robots is perturbed, we include mutual coupling in the
system by adding coupling errors in the generalized coordinates of the position tracking subsystem.
The cascaded system is proven almost global asymptotically stable based on cascade system theory.
Furthermore, simulations show the desired behavior. Subsequently, we follow the same approach
for the quadrotor UAV on SE(3), to eventually prove almost global asymptotic stability of the
system under mutual coupling. The behavior is analyzed in simulation of specific test scenarios. It
is shown that increasing the cost weight on the coupling error can increase coupling at the expense
of tracking the individual trajectories.
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ẋ Time-derivative of a system state x

A� The transpose of a matrix

x� The transpose of a vector

Constants and variables

νi, νi,r Body-fixed velocity and reference velocity vector, respectively, expressed with respect
to Bi and Ri of agent i

vii



CONTENTS

Ωi Angular velocity of propeller i

ωi, ωi,r Angular velocity and angular reference velocity, respectively, expressed with respect
to Bi and Ri for agent i

φi Roll angle of aerial body i; also used as orientation angle for grounded vehicle

ψi Yaw angle of body i

ρi, ρi,r Position of the origin of body-fixed reference frames Bi and Ri of agent i, respectively

ρi,e, νi,e Generalized position and velocity coordinates for agent i, respectively; also referred
to as the position and velocity tracking errors for agent i

θi Pitch angle of body i

g Gravitational acceleration constant

I Identity matrix of size n× n

Ji Inertia of agent i

Ki,x Control parameter matrix (gain matrix of size n× n) for agent i and states x

ki,x Control parameter (scalar gain or cost) for agent i and states x

mi Mass of agent i

Ni The set of adjacent agents for agent i

Rf Rotation matrix which transforms F to I
Ri,d Rotation matrix which transforms Di to R
Ri,r Rotation matrix which transforms Ri to I
Ri Rotation matrix which transforms Bi to I
ui Virtual input vector of agent i

vi, vi,r Body-fixed forward velocity and reference velocity of agent i (size 1×1), respectively,
expressed with respect to Bi and Ri

viii



Chapter 1

Introduction

1.1 Background and perspective

The quadrotor type of Unmanned Aerial Vehicle (UAV) is the most popular type of UAV and has
four propellers that are used to lift and steer through the 3D space. Other types of UAVs are, e.g.,
planes, helicopters, bird or insect models and multirotors with more than four propellers. One of
the reasons for the quadrotor UAV to be frequently studied is the relatively simple control with
respect to UAVs with more propellers, like the hexacopter or octacopter. For the quadrotor UAV,
we ’only’ have to take four propellers into account and are able to align the body-fixed reference
frame with the propellers; of course dependent on the specific configuration of the quadrotor UAV.
Another reason for the popularity of the quadrotor is the fact that they are much more agile than
aircraft with fixed wings, as they can freely position themselves in space. Winged aircraft, for
instance, need to make sure they do not drop out of the sky by controlling their forward velocity
and pitch angle. Furthermore, most multirotor systems can take-off vertically, while most aircraft
with fixed wings can not. However, quadcopters with respect to fixed wing aircraft are typically
less efficient in flying forward when comparing battery consumption, which is why recently even
hybrid models are discussed to obtain the best from both worlds [1].

A welcome property of UAVs is that we can capture the behaviour in a model to automate several
processes. Many efforts have already been made to derive the dynamics of a quadcopter [2, 3].
Although control of quadrotor UAVs is not particularly simple, researchers and companies have
already been able to make the operation for the end users relatively easy and provide stable flight,
by using the sensing capabilities to stabilize the drone instead of merely manual joystick controls.
Because of this ease of operation for the end users, the use of drones is no longer limited to military
activities and large high-tech companies; also smaller companies and individuals use drones as a
tool and kids even use them as a toy, since we can now partly rely on the autonomy of the drone
during flight.

A key feature of UAVs is their aereal operation, which means that their domain of operation is
the space. A downside from operating in the space is that the quadrotor constantly has to gener-
ate thrust to overcome the gravitational acceleration, which makes battery power a huge limiting
factor for operation. Besides the power consumption, one can imagine that during research and
development processes many quadrotors have been destroyed upon impact with the ground, as a
result of technical difficulties and flaws. The quadrotor UAV is an underactuated system, which
means that the configuration space is larger than the number of inputs. For the quadrotor UAV,
this means that in order to move forward, the quadrotor has to slightly tilt forward. Because of this
coupling of inputs and states, we are not entirely free to choose the attitude and spatial position
simultaneously. Many linear control strategies exist, assuming small angular manouvres [4–6]. By
now, there is a vast amount of researches considering trajectory tracking with nonlinear control
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CHAPTER 1. INTRODUCTION

techniques, like feedback linearization [7], backstepping [8], MPC [9], and sliding mode control [10].
Recently, a controller has been presented that achieves uniform almost global stability of the error
tracking dynamics for a quadrotor UAV on SE(3) [11]. A benefit of this approach with respect to
other nonlinear controllers for quadrotor UAVs is the fact that singularities of Euler angles and
ambiguity of quaternions are avoided, allowing large angular maneuvers and providing an almost
global instead of a local result. Since we can now already ensure stable flight of more challenging
trajectories, we can accept even more challenging tasks to execute, which basically increases the
system agility. However, some tasks can never be executed by a single agent or are simply better
suited to be executed by multiple agents. In order to make several agents work on the same task,
we somehow have to obtain cooperation in order to make sure that the agents help and not work
against each other. Therefore, as a possible improvement to the recently developed controller for
a quadrotor UAV on SE(3), we would like to research the synchronization of multiple of these
systems.

1.2 Multi-agent cooperation

Many efforts have already been made to synchronize multiple agents in order to utilize their com-
bined capability to complete tasks. In this section, we first investigate the motivation of using
multiple agents instead of one. After that, we consider which coupling methods exist and what
effects these methods have on the obtained system.

1.2.1 Motivation

Using multiple agents with respect to a single possibly more complex agent provides cost and
robustness benefits [12], since the system can consist of multiple fairly simplistic agents and is still
able to operate when a single agent is down. In fact, it might be more efficient to use multiple
quadrotor UAVs, since the number of agents can easily be scaled to the task complexity and
size. These multi-agent systems also facilitate parallelism [12] and procedures like smart charging
and maintenance protocols can be applied in order to provide a system that allows for constant
’around-the-clock’ operation. Multi-agent systems can be seen as super-additive, since the combined
capabilities are more than just the sum of the capabilities of all individuals. This super-additivity
property results from the fact that multiple agents can also do specific tasks that can never be
done individually [13], like how humans need two persons in order to lift a table. Furthermore, the
combined sensing capability can be utilized by the group as a result of mutual communication [14].
In order to fully use the combined value, we can not simply take a number of individual agents, we
also need to have some control over their combined behavior and objectives. This raises the desire
to have some level of synchronization, based on coupling between agents in the multi-agent system.
The exact coupling strategy is of great importance to the resulting behavior of the system.

1.2.2 Coupling methods and approaches

For the class of robots consisting of mobile and (aero)nautical robots, mainly three strategies exist:
the hierarchical method of master-slave synchronization, the decentralized behavioral method that
works with simple laws for the individuals, and the coordinated virtual structure coupling [15]. The
latter, as a result of mutual communication, provides a good ability to obtain a specific formation
with multiple agents in a coordinated manner, while master-slave coupling is particularly capable
of working with individual differences between the agents, since the slave device then simply tries
its best to follow the master [16]. Currently, we do not focus on the behavioral method, since this
method does not provide the agile coordinated system that we want; the behavioral method focuses
on combined behavior based on simple individual laws like obstacle avoidance and mapping. The
main problem for trying to obtain a formation with the master-slave structure is the fact that when
a disturbance is presented to a slave, the rest of the agents do not receive information regarding
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this disruption so they are unable to react cooperatively to maintain the formation [13]. Therefore,
master-slave synchronization is often used for teleoperation where the master device is human
operated and the slave is located in, e.g., a hazardous location like in deep water [16]. In [15], a
virtual structure approach is provided to mutually couple multiple unicycle robots based on cascade
system theory. Even though this approach provides enormous inspiration for the quadrotor UAV,
we also want to point out that the attitude subsystem provides tracking behavior that we can not
allow for a quadrotor UAV; the orientation error of the unicycles is controlled to the absolute origin,
even when the initial error is greater than a full rotation, which for a quadrotor UAV would result
in full rotations around any axis and is therefore unallowed. Alternatively, considering orientation
control of a unicycle robot on SE(2) prevents us from using the virtual structure approach from [15]
and therefore we are unlikely to be able to use the same approach for a quadrotor UAV. Thus, in
order to provide an answer to the desire of synchronizing multiple quadrotor UAVs, we have to
reconsider the exact mutual coupling approach in this thesis. Some of the most widely adopted
coupling approaches implement coupling functions to the reference structure [17,18], directly in the
control law [15] or in the generalized coordinates [13].

1.3 Problem definition and objectives

Based on previous research that has been carried out at the TU/e [11,19], it is clear that a promising
control strategy on SE(3) for a single quadrotor is provided, since the developed controller provides
almost global stability and avoids singularities and ambiguity in the orientation control; allowing for
large angular maneuvers. However, the operation of an aerial multi-agent system with this controller
is still not investigated. Based on the literature results from the previous section, we intend to
implement mutual coupling in order to synchronize operation of multiple quadrotor UAVs over
master-slave coupling. In this thesis, our aim is to provide this mutual coupling strategy for multiple
quadrotor UAVs, so that we are able to operate multiple quadrotors at once as one synchronized
system. The idea is that the end user only has to prescribe some simple rules for the multi-agent
system as a whole while the agents ensure to stay in formation even when agents are disturbed, by
mutually cooperating in order to obtain the desired spatial lay-out. Besides the coupling strategy,
we want to provide the actual controllers that stabilize the developed coupled system, in which the
individuals are based on [11]. By utilizing the previous results from [11], we directly aim to provide
a system that is agile, almost globally stable and synchronized. After the full development including
proof of stability and simulation of test-cases, we want to provide some primary steps towards a
real world system with two quadrotor UAVs. These steps consist of the development of an external
localization and identification algorithm that works for a system of two different quadrotor UAVs,
as the previous method used by [19] and [20] only used one quadrotor UAV during experiments.
This external localization source is required since the drones are not capable of directly providing an
on-board position estimate for themselves without a computationally intensive on-board algorithm
like SLAM. Furthermore, we have to provide a network architecture that enables both drones to
communicate with the external localization source, the supervisory controller and each other so
that we are able to communicate with and coordinate the multi-agent system over the network.
Currently, the on-board DHCP server of the quadrotor UAV is used [19–21], but this does not scale
to multiple quadrotor UAVs, as each of the quadrotor UAVs hosts a new network. Furthermore,
since calculation power is sparse on relatively low-cost micro-controllers that are used on board
of quadrotor UAVs, we might want to consider a quaternion implementation. However, due to
ambiguity that quaternions naturally cope with [22], we prefer to develop and analyze the controllers
by using Euler angles, as in [19]. In order to reach the specified goals, a list of sub-objectives is
explicitly provided:

• Follow the design and analysis of the previous work by [19] and [11] in order to find alternative
design choices that might be beneficial for the multi-agent system.

• Develop the architecture that defines a virtual structure to track for the desired number of
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CHAPTER 1. INTRODUCTION

agents. When developing a control strategy for a scalable number of n agents, there has to
be a systematic approach to obtaining a set of n feasible reference trajectories to track, but
more importantly together define the wanted formation shape, position and attitude.

• Find a coupling structure that provides a system that we are able to stabilize.

• Find stabilizing control laws for the agents in the mutually coupled system.

• Enable experimentation by providing a localization method that enables to locate and iden-
tify multiple quadrotor UAVs for experiments, as well as a network architecture that provides
(possibly meshed) communication between all involved parties. Preferably both have to fa-
cilitate scalability of the system with respect to the number of agents in the system.

• Implement the system for simulation and and test the behavior by simulating test cases.

1.4 Outline of the thesis

This thesis has the following structure. In Chapter 2, we start off by including some preliminary no-
tions that are used extensively throughout this thesis. Chapter 3 considers the (sub) objectives, but
for mobile robots, in order to provide possible answers first for a problem with reduced complexity.
Then, Chapter 4 includes similar steps as Chapter 3, but for the quadrotor UAV, which provides a
spatial instead of a planar formation-tracking problem. In that chapter, also simulation results are
included in order to provide insight in the behavior of the system. Additionally, in Appendix A,
some further information is included in order to obtain a system for experimentation.
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Chapter 2

Preliminaries

Although many relations and results from previous research are now commonly known and some-
what trivial, some relations and results are not. For this reason, many of the nontrivial preliminary
results that are utilized throughout this thesis are recalled, by partly or full adoption herein. In
this section, we introduce notation, definitions, theorems and lemmas that are used throughout
the remainder of this thesis. We start off by recalling some developed methods for attitude repre-
sentation, by some more general mathematical notations, relations and definitions. After that, we
include stability results and definitions that are utilized for the proof of stability later on in this
thesis. At the end we include some definitions from graph theory in order to systematically work
with a multi-agent system.

2.1 Attitude representation

As for all aerial control systems, the attitude of a quadrotor UAV is very important. Because of
this importance, different attitude representation techniques exist, as a result of the interest of
researchers for an extended period of time. Each of the representation techniques has their own
strengths, benefits and weaknesses. For example, although quaternions are very efficient in attitude
representation [23–26], they typically show sign ambiguity. It is very important to be able to define
the attitude of the spatial device unambiguously. Therefore, for controller design we choose to
use the special orthogonal group SO(n) of order n. However, we are free to choose a quaternions
approach for implementation of the same controllers. Then, we utilize the best from both worlds;
providing unambiguous controllers that are efficiently implemented. Therefore, in this section we
first introduce the attitude representation with Euler angles, together with some helpful results and
theories from previous research. After that, we provide the relation between rotation matrices and
quaternions.

2.1.1 Rotation matrices and Euler angles

We define the attitude of a body i, represented by a body-fixed frame Bi, relative to a world-fixed
inertial frame I, by a rotation matrix Ri. If we consider a planar example, there is only one rotation
angle involved, which we call the orientation angle, defined positive in the rotation direction from
the x-axis to the y-axis; we assume all involved frames in this thesis to be right-handed. In order
to define the transformation from Bi to I for a body i in the planar example, we have the rotation
matrix

Ri =

[
cosφi − sinφi

sinφi cosφi

]
∈ SO(2), (2.1)

in which the rotation angle φi for body i (or body-fixed frame Bi) relative to the inertial frame I
is denoted by φi and SO(n) = {Rn×n

i | det(Ri) = 1, R�
i Ri = 0} denotes the Special Orthogonal
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CHAPTER 2. PRELIMINARIES

group of order n. For any matrix Ri ∈ SO(n) holds [27]:

• R�
i = R−1

i , so RiR
�
i = I, which means that R�

i describes the reversed rotation of Ri

• The determinant of a rotation matrix has to equal det(R) = 1 in order to only describe a
rotation without any length change as a result of the transformation, i.e., a proper rotation

• Since both Ri and R�
i are rotation matrices, each column of Ri and R�

i has to be mutually
orthogonal

• Since both Ri and R�
i are rotation matrices, each column of Ri and R�

i has length 1 (has to
be a unit vector)

For a rotation from I to Bi in a 3D (spatial) example, we consider a rotation matrix Ri ∈ SO(3).
The rotation between two spatial frames Bi and I can be defined in several ways, as the rotation
order is of importance. As an example, by using the axis-angle convention, we can define a rotation
between two spatial frames as an axis with a rotation angle around that axis. However, the most
common way to represent this transformation from I to Bi and thus define the attitude of the body
i, is the use of Euler angles [24]. Intentionally chosen equal to [11, 19], define this rotation matrix
Ri ∈ SO(3) by means of Euler angles, as

Ri = Rz,i(ψi)Ry,i(θi)Rx,i(φi), (2.2a)

=

⎡
⎣cosψi − sinψi 0
sinψi cosψi 0
0 0 1

⎤
⎦
⎡
⎣cos θi 0 − sin θi
sin θi 0 cos θi
0 1 0

⎤
⎦
⎡
⎣0 cosφi − sinφi

0 sinφi cosφi

1 0 0

⎤
⎦ , (2.2b)

which are also called roll, pitch, and yaw angles (RPY), since the rotation Rx,i(φi) can be seen
as roll, Ry,i(θi) as pitch and Rz,i(ψi) as yaw angle when we align the axes of the body-fixed
frame Bi with the corresponding direction relative to the body i; this is commonly used in the
(aero)nautical field of research as it does generally not yield a similar orientation as the reversed
order (Rx,i(φi)Ry,i(θi)Rz,i(ψi)) [19], best explained in [28]. Besides the attitude representation by
the rotation order, the most common axis convention for aerial vehicles or projectiles is the North-
East-Down (NED) frame, which we adopt in order to overlap with [11]. Another axis convention is
for instance the East-North-Up (ENU) convention, but the NED convention is preferred in aviation
since we can make the forward and downward direction align with the positive axes of the coordinate
frame. Along with rotation matrices come their time-derivatives. However, resulting from the
special (orthogonality) properties that are states above for rotation matrices, special results apply
for the time derivative of a rotation matrix.

Theorem 2.1.1. Consider a rotation matrix R ∈ SO(3). Define three generators for SO(3) that
correspond to the three standard axis [29]

Gx =

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ , Gy =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , and Gz =

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ , (2.3)

Consider ω ∈ R
3 and define

S(ω) := ωxGx + ωyGy + ωzGz, (2.4a)

=

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ ∈ so(3). (2.4b)

The time derivative of a rotation matrix R ∈ SO(3), then equals

Ṙ = RS(ω), (2.5)
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2.1. ATTITUDE REPRESENTATION

which is a very important result that is widely used. In order to prove this result, let us follow [30].
The skew symmetric operator S(·) has properties that follow from the fact that

S(a)b = a× b, (2.6)

with a, b ∈ R
3×1, which allows to apply operations that hold for the cross-product operator. It holds

that

a× b = −b× a, (2.7)

and for an invertible M ∈ R
3×3, it holds

(Ma)× (Mb) = det(M)(M−1)�(a× b), (2.8)

which under proper rotations, i.e. det(M) = 1 and M�M = I, meaning that M = R is a rotation
matrix, reduces to

(Ra)× (Rb) = R(a× b). (2.9)

From (2.6) and (2.9) it follows [31]

S(Ra)Rb = RS(a)b, (2.10)

which holds for any b, so we find

S(Ra)R = RS(a), (2.11)

and

S(Ra) = RS(a)R�. (2.12)

Besides, from (2.4) it follows

S(a)� = −S(a). (2.13)

Now, as addition to (2.4), let us define the skew symmetric generator for so(2) [29]

Ḡ =

[
0 −1
1 0

]
, (2.14)

so that we find the skew symmetric operator

S̄(ω) := ωḠ =

[
0 −ω
ω 0

]
, (2.15)

with ω ∈ R and S̄(ω) ∈ so(2), from which it also follows that S̄(ω)� = −S̄(ω). The time derivative
of a rotation matrix

R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
∈ SO(2). (2.16)

then equals

Ṙ = RωḠ = RS̄(ω), (2.17)

and for R ∈ SO(2), based on (2.15) and (2.16), we find the property

S̄(ω)R = RS̄(ω). (2.18)
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As shown by (2.16), a rotation matrix R ∈ SO(2) is defined by a single angle φ. However, sometimes
we want to have some kind of a reversed relation, so that we define the angle based on a specific
rotation matrix. By looking at (2.16), we notice that the diagonal only consists of cosφ, which
already provides information about the angle φ. This approach of looking at the diagonal is often
used as a method to define the rotation angle based on a rotation matrix for the proof of stability
[30, 32,33].

Definition 2.1.1. Define, the trace of a matrix A ∈ R
n×n

Tr(A) =
n∑

i=1

aii, (2.19)

with aii representing the diagonal elements of A and n denoting the dimension of the square matrix.
The trace thus provides the sum of all diagonal elements. As a result, from (2.19) we find

Tr(M) = Tr(M�). (2.20)

For M = AB, provided from the definition of matrix products [34, Chapter 2.1]

(AB)ii =
m∑
j=1

aijbji, (2.21)

which together with (2.19) leads to

Tr(AB) =
n∑

i=1

(AB)ii =

n∑
i=1

m∑
j=1

aijbji =

m∑
j=1

n∑
i=1

bjiaij = Tr(BA), (2.22)

In fact, since both A and B could consist of a product of other matrices, we find that the trace
operator is invariant under cyclic operations [34, Chapter 2.1]

Tr(ABC) = Tr(CBA) = Tr(BCA), (2.23)

and

Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC), (2.24)

while arbitrary operations are not allowed. In general

Tr(ABC) �= Tr(ACB). (2.25)

For example, define

A =

[
1 3
5 9

]
, B =

[
3 1
4 5

]
, and C =

[
5 2
6 4

]
(2.26)

then

Tr(ABC) = Tr

([
171 94
555 302

])
= 473, (2.27)

Tr(ACB) = Tr

([
125 93
421 309

])
= 434, (2.28)

Tr(CAB) = Tr

([
177 180
294 296

])
= 473. (2.29)

8



2.1. ATTITUDE REPRESENTATION

Furthermore, from (2.19) follows

Tr(X + Y ) = Tr(X) + Tr(Y ), (2.30)

Tr(rX) = rTr(X). (2.31)

Lastly, since the trace operator Tr(·) is a linear operator, for the time derivative holds

∂

∂t
[Tr(X)] = Tr

(
∂X

∂t

)
. (2.32)

For R ∈ SO(3) we are able do a similar thing, by looking at each individual diagonal of each
of the rotations from (2.2). This is done with the trace operator [30, 32], or by selecting specific
information using cross-products [19] that are related to the generators defined in (2.3). The latter
is chosen in this thesis, since it provides the ability to later adopt convergence results that are also
used in [11].

2.1.2 Quaternions

Instead of attitude representation with rotation matrices, quaternions can be used. Compared to
rotation matrices, quaternions have no singularities in the involved functions. Both representations,
so rotation matrices and quaternions, are well suited to integrating the angular velocity of the body
over time. However, quaternions have an ambiguity property, which means that equal positive
and negative quaternions both describe the same rotation [24]. By designing the controller with
rotation matrices and afterwards implementing quaternions, we can overcome this ambiguity. The
ambiguity is namely handled automatically in this approach of designing with rotation matrices
and afterwards implementing quaternions, since both the negative and positive version of the same
quaternion represent the same rotation matrix. Additionally, we can check that both the positive
and negative version of the same quaternion generate the same control action in order to validate
the system. An important benefit of quaternions is the fact that computational effort and storage
capacity needed is lower for quaternions than with rotation matrices [22]. On-board calculation
power is something that is always scarce to some degree in portable devices.

Consider a quaternion q ∈ H, in which H = R
4 is the quaternion space. Quaternions can be

represented as

q = qw + qxi+ qyj + qzk, (2.33a)

q = (qw, q̃), (2.33b)

q =
[
qw qx qy qz

]�
, (2.33c)

which shows that quaternions can be seen as vector, more specifically as a composition of an
imaginary vector and a scalar. The imaginary vector elements fulfill

i2 = j2 = k2 = ijk = −1, (2.34)

from which other useful relations follow. We find

ijk = k2, (2.35a)

ij = k, (2.35b)

and

i2jk = −jk = −i, (2.35c)

−j2k = k = −ji. (2.35d)

9
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By following (2.35) for the other hyper-complex combinations, we find

ij = k = −ji, jk = i = −kj and ki = j = −ik. (2.36)

A quaternion has a conjugate q̄ and norm ||q||, as
q̄ = qw − qxi− qyj − qzk = (qw,−q̃), (2.37)

||q|| = √
qq̄ =

√
q2w + q2x + q2y + q2z =

√
q2w + q̃q̃, (2.38)

Let us introduce the operator ⊗, denoting the quaternion product, as

p⊗ q =

⎡
⎢⎢⎣
pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw

⎤
⎥⎥⎦ , (2.39)

or by following [25], as

p⊗ q = (pwqw − p̃q̃, pw q̃ + qwp̃+ p̃× q̃). (2.40)

Quaternion products are non-commutative, just like rotations. By looking at (2.39), we define
generators Q and Q̄ [23] that handle this multiplication, as

p⊗ q = Q(p)q =

[
qw −q̃�

q̃ qwI3 + S(q̃)

]
q =

⎡
⎢⎢⎣
pw −px −py −pz
px pw −pz py
py pz pw −px
pz −py px pw

⎤
⎥⎥⎦
⎡
⎢⎢⎣
qw
qx
qy
qz

⎤
⎥⎥⎦ , (2.41a)

= Q̄(q)p =

[
qw −q̃�

q̃ qwI3 − S(q̃)

]
p =

⎡
⎢⎢⎣
qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

⎤
⎥⎥⎦
⎡
⎢⎢⎣
pw
px
py
pz

⎤
⎥⎥⎦ . (2.41b)

Let us additionally introduce

E(q) =
[−q̃, qwI3 + S(q)

]
, (2.42)

G(q) =
[−q̃, qwI3 − S(q)

]
, (2.43)

with S(q) according (2.4), such that we find

Q(q) =
[
q G(q)�

]
, (2.44)

Q̄(q) =
[
q E(q)�

]
. (2.45)

Furthermore, if the norm of a quaternion ||q|| = 1 we call this quaternion a unit quaternion, and if
the scalar part qw = 0 we call it a pure quaternion. We denote a vector as the pure quaternion

qv =

[
0
v

]
= vxi+ vyj + vzk. (2.46)

A rotation of a body can be expressed with a clockwise rotation around an axis in 3D space [35].
Notice, that even when multiple rotations are combined, it is still possible to express this resulting
rotation by a single rotation around a specific rotation axis; similar as how we are able to write
multiple subsequent rotation matrices as one new rotation matrix. The rotation axis and rotation
angle θ can be captured with a single quaternion [36]

q̄r = cos
θ

2
− (ē) sin

θ

2
, (2.47)
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in which ē ∈ R
3 is a unit vector that represents the rotation axis and θ ∈ R denotes the amount

of rotation. The rotation from one frame to another can be accomplished by the three quaternion
product [23]. Consider ||q|| = 1 and v, v′ ∈ R

3, then[
0
v′

]
= q̄ ⊗

[
0
v

]
⊗ q, (2.48a)

= Q(q̄)Q̄(q)

[
0
v

]
, (2.48b)

=

[
1 0�

0 E(q)G(q)�

] [
0
v

]
, (2.48c)

in which we use the carefully chosen definitions (2.42) and (2.43), such that we can easily rotate
vectors. Notice that (2.48) shows that quaternion rotations can be linked to rotation matrices, with
mapping

(0, v′) = (0, Rq(q)v) = Q(q̄)Q̄(q)

[
0
v

]
, (2.49)

so we are able to explicitly find the rotation matrix, following from (2.42), (2.43) and (2.48c), equal
to

Rq(q) = (q2w − q̃q̃)I3 + 2q̃ ⊗ q̃ + 2qwS(q), (2.50)

= E(q)G(q)�, (2.51)

=
1

||q||

⎡
⎣||q||2 − 2(q2y + q2z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) ||q||2 − 2(q2x + q2z) 2(qyqz − qxqw)
2(qxqz − qyqw) 2(qyqz + qxqw) ||q||2 − 2(q2x + q2y)

⎤
⎦ . (2.52)

Furthermore, note that the lengths ||v|| and ||v′|| are theoretically the same, although numerical
errors can be induced in simulations, changing the length of quaternions that are supposed to be
unit quaternions. We are able ensure the pureness of the rotation by normalizing every step, which
ensures that the rotation quaternion stays at unit length; often normalizing each set of steps is
accurate enough. Apart from numerical errors, the linear operation does not change the length of
v, since q is a unit quaternion of equal form as (2.50) with a unit vector denoting the axis ē; proving

||q|| =
√

cos2
(
θ

2

)
+ ||ē|| sin2

(
θ

2

)
, (2.53a)

=

√
cos2

(
θ

2

)
+ sin2

(
θ

2

)
= 1. (2.53b)

2.2 Stability results

Many efforts have already been made to prove the stability of various time-varying systems. In this
section, we recall some of them in order to later on use these results directly.

Definition 2.2.1 (cf. [11]). Consider the vector saturation function σ(·) : R
n → R

n that is
twice differentiable and monotone, with s(·) satisfying s(0) = 0 and limx→0 s(x)/x = s′(0) >

0. Furthermore, let Vσ(e) =
∫ e�e

0
s(x)/xdx where the latter function is bounded. Two possible

candidates are

σ(e) = e, σ(e) =
e√

1 + e�e
, (2.54)

where the latter is bounded.
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Definition 2.2.2 (cf. [11]). A function σi for which ||σi(e)|| ≤ M for all e is called a saturation
function.

For example, consider the bounded saturation function

σp(x) =
x

(1 + (x�x)p)
1
2p

, with p ∈ N, (2.55)

in which x ∈ R
3 is a vector, and p ∈ N is a parameter to shape the function, as in [19]. Figure 2.1

shows the saturation function (2.55) for a range of scalar x, for parameter p = 1, p = 2 and p = 3.
It can be seen that by increasing p, we increase the order of the saturation function, utilizing a
larger portion of the available domain.

Figure 2.1: Saturation function (2.55) for p = 1, p = 2 and p = 3, with x scalar.

Theorem 2.2.1 (cf. [37, Theorem 1]). Consider the dynamical system

ẋ = f(t, x) x(t0) = x0, (2.56)

with f(t, 0) = 0, f : R
+ × R

n → R
n locally bounded, continuous and locally uniformly continuous

in t.
If there exist j differentiable functions Vi : R

+×R
n → R

n, bounded in t and continuous functions
Yi : R

n → R for i ∈ {1, 2, . . . , j} such that

• V1 is positive definite ,

• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j} ,

• Yi(x) = 0 for i ∈ {1, 2, . . . , k − 1} implies Yk(x) ≤ 0 for all k ∈ {1, 2, . . . , j} ,

• Yi(x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0 ,

then the origin x = 0 of (2.56) is uniformly globally asymptotically stable (UGAS).

Definition 2.2.3 (cf. [11]). The origin of (2.56) is uniformly almost globally asymptotically stable
(UaGAS) if it is UGAS, except for initial conditions in a set of measure zero.

Theorem 2.2.2. Consider the dynamics

Ṙi,e = Ri,eS̄(ωi,e), (2.57a)

Jiω̇i,e = −ci,ωωi,e +
1

2
ci,R Tr(Ri,eḠ), (2.57b)

12
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with Ri,e ∈ SO(2) = {R2×2
i | det(Ri) = 1, R�

i Ri = 0} and ωi,e ∈ R. If constants ci,ω > 0 and
ci,R > 0, then the equilibrium point (I, 0) of (2.57) is uniformly locally exponentially stable (ULES)
and uniformly almost globally stable (UaGAS). That is, let Ei,c = {I,−I}. Then Ri converges to
Ei,c and ωi converges to zero. The equilibrium (−I, 0) of (2.57) is unstable and the set of all initial
conditions converging to the equilibrium (−I, 0) forms a lower dimensional manifold.

Proof. Define the candidate Lyapunov function

V (Ri,e, ωi,e) =
1

2
ci,R Tr(I −Ri,e) +

1

2
Jiω

2
i,e. (2.58)

Differentiation of (2.58) along the error dynamics yields

V̇ (Ri,e, ωi,e) = ωi,e

[
1

2
ci,R Tr(Ri,eḠ)− ci,ωωi,e

]
− 1

2
Tr(Ri,eḠωi,e), (2.59a)

= −ci,ωω
2
i,e ≤ 0, (2.59b)

in which we have used the property Tr(rA) = rTr(A) with r a scalar and A a matrix (according
to (2.31) from Definition 2.1.1) and Ĝωi,e = S(ωi,e) as in Theorem 2.1.1. Notice that in fact

V̇ (Ri,e, ωi,e) from (2.59) is negative semi-definite. By having Ri(φi) according to (2.1), we can

find that not only the intentional equilibrium (φi,e, ωi,e) = (0, 0) provides V̇i(0) = 0, but also the

undesired equilibrium (φi,e, ωi,e) = (π, 0) provides V̇i(π) = 0. The angle φi,e = π corresponds with
the case where the mobile robot is exactly backwards aligned with the desired heading; resulting
in Ri,e = −I. Consider the set

Qi = {(Ri,e, ωi,e) ∈ SO(2)× R : Vi(Ri,e, ωi,e) ≤ Vi(Ri,e(t0), ωi,e(t0))}, (2.60)

which is positively invariant. By direct implementation of LaSalle’s invariance principle [38], similar
to [19], we can conclude that the only solution that can identically stay in the set

Ei = {(Ri,e, ωi,e) ∈ SO(2)× R|V̇i(Ri,e, ωi,e) = 0} ⊂ Qi, (2.61)

is when ωi,e = 0 and 1
2ci,R Tr(Ri,eḠ) = − sinφi,e = 0. Since we consider rotation matrices in the

special orthogonal group SO(2), with det(Ri,e) = 1, we know that this only holds for Ri,e ∈ E , with

E = {I,−I}, (2.62)

of which Ri,e = I denotes the preferred equilibrium for robot i. By using the Linearization method
of infinitesimal variation, where infinitesimal variation in Ri,e is expressed as δRi,e = S̄(φi,e)Ri,e

[19, 30], we investigate the stability around the equilibria. The linearized dynamics become[
φ̇i,e

δω̇i,e

]
=

[
0 1

−ci,RN −ci,ω

] [
φi,e

δωi,e

]
whith N =

1

2
Tr(Ri,e) = cosφi,e (2.63)

which yields that the preferred equilibrium Ri,e = I is stable and the other equilibrium Ri,e = −I
is unstable, driven by the fact that − cos 0 = −1 causes the linearized dynamics to be Hurwitz
and − cosπ = 1 causes the linearized dynamics to be unstable. Concluding, the equilibrium point
(Ri,e, ωi,e) = (I, 0) is uniformly locally exponentially stable (ULES). There is exactly one line
corresponding with initial conditions (Ri,e(t0), ωi,e(t0)) that cause convergence to the unwanted
equilibrium, which is a set of measure 0 [39], thus, the system (2.57) is uniform almost-global
asymptotic stability (UaGAS).

Theorem 2.2.2 applies for SO(2)×R, which can thus be used for the orientation of a unicycle robot.
For the attitude control of a quadrotor UAV, however, we need to follow a similar approach, but
for SO(3)× R

3. Let us adopt the following theorem.
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Theorem 2.2.3 (adopted from [11], cf. [30, 32]). Consider the system

Ṙi,e = Ri,eS(ωi,e), (2.64a)

Jiω̇i,e = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees), (2.64b)

where Ri,e ∈ SO(3) = {R3×3
i | det(Ri) = 1, R�

i Ri = 0}, ωi ∈ R
3, Ji = J�

i and S(·) according to
(2.4). If Ki,ω = K�

i,ω > 0 and Ki,R = K�
i,R > 0 and ki,s > 0 and distinct for s = 1, 2, 3 and arbitrary

i (e.g., 0 < ki,1 < ki,2 < ki,3), then the equilibrium point (I, 0) of (2.64) is uniformly locally
exponentially stable (ULES) and uniformly almost globally stable (UaGAS). That is, let Ei,c =
{I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)}. Then Ri converges to Ei,c and ωi converges
to zero. The equilibria (Ri, 0) of (2.64) where R ∈ Ei,c \ {I} are unstable and the set of all initial
conditions converging to the equilibrium (Ri, 0) where R ∈ Ei,c \ {I} forms a lower dimensional
manifold.

Proof. Let us follow [11] and [19]. Choose the candidate Lyapunov function

V (Ri,e, ωi,e) =
1

2
ω�
i,eJiωi,e +Ki,R

3∑
s=1

ki,s(1− e�s Ri,ees)︸ ︷︷ ︸
ψ(Ri,e)

, (2.65)

with ks > 0 and distinct for s = 1, 2, 3, e.g., k1 > k2 > k3 > 0, and KR = K�
R > 0. For Ri,e �= I we

have ψ(Ri,e) > 0 and ψ(I) = 0, so V (Ri,e, ωi,e) is positive definite. Differentiating (2.65) along the
dynamics (2.64), yields

V̇ (Ri,e, ωi,e) =
1

2
(Jiω̇i,e)

�ωi,e +
1

2
ω�
i,e(Jiω̇i,e) +Ki,R

3∑
s=1

ks(e
�
s Ri,eωi,e × es), (2.66)

= ω�
i,e

[
−Ki,ωωi,e +KR

3∑
s=1

ksω
�
i,e(es ×R�

i,ees)

]
−Ki,R

3∑
s=1

ks(es ×R�
i,ees), (2.67)

= −ω�
i,eKi,ωωi,e ≤ 0, (2.68)

assuming that Ki,R = K�
i,R > 0, hence, we find (I, 0) as stable equilibrium. Notice that the

closed-loop dynamics (2.64) are time-invariant. Let us consider the set

Qi = {(Ri,e, ωi,e) ∈ SO(3)× R
3 : V (Ri,e, ωi,e) ≤ V (Ri,e(t0), ωi,e(t0))}, (2.69)

which is positively invariant. Now, let us apply LaSalle as in [19], according to the direct invariant
set theorem [38, Theorem 4.4]. The only solutions that can identically stay in the set

Ei = {(Ri,e, ωi,e) ∈ SO(3)× R
3 | V̇ (Ri,e, ωi,e) = 0} ⊂ Qi, (2.70)

are the solutions of
∑3

s=1 ksω
�
i,e(es × R�

i,ees) = 0 and ωi,e = 0. The latter only holds for es =

R�
i,ees = 0 or es = −R�

i,ees = 0, which means that we find the following set of equilibria

Ei = {I, diag([1,−1,−1]), diag([−1, 1,−1]), diag([−1,−1, 1])} ⊂ SO(3). (2.71)

From (2.71) we conclude that Ri,e converges to one of these equilibria, of which I is the desired
equilibrium that corresponds to alignment of the frames; the other three equilibria correspond to
partial alignment of the frames with a rotation of ±π radians about the aligned axis. We can
find that only the desired equilibrium I is stable and that undesired equilibria E\{I} are unstable,

14



2.2. STABILITY RESULTS

by linearising the system around these equilibria. Linearisation of the dynamics, as in [40], with
infinitesimal variation expressed as δRi,e = S(θi)Ri,e, leads to[

θ̇i
δω̇i,e

]
=

[
S(ωi,e) I
Ki,RNi −Ki,ω

]
︸ ︷︷ ︸

Ãi

[
θi

δωi,e

]
, with Ni =

3∑
s=1

ks
[
(e�s Rees)I − ese

�
s R

�
i,e

]
. (2.72)

Only for the desired equilibrium I, we have Ni diagonal and positive definite, leading to Ãi being
Hurwitz. The other equilibria are unstable (hyperbolic). Hence, the desired equilibrium I, and
with that the attitude tracking dynamics, are uniform local exponentially stable (ULES). Define G
as the set of attraction to the desired equilibrium. Since the unstable equilibria are hyperbolic, we
can conclude that for each unstable equilibrium point there exists a stable and unstable manifold.
Then, according to [19, 30, 32] we find that the dimension of the union M = (SO(3) × R

3) \ G of
unstable manifolds is less than the dimension of SO(3) and therefore has zero measure. Hence, by
looking at the entire space of solutions we can conclude that the system is ULES and UaGAS.

Theorem 2.2.4 (Adopted from [11], cf. [41]). Consider the cascaded system ẋ = f(t, x), with
f(t, 0) = 0 that can be written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2, (2.73a)

ẋ2 = f2(t, x2), (2.73b)

where x1 ∈ R
n, x2 ∈ R

m, f1(t, x1) is continuous differentiable in (t, x1), and f2(t, x2), g(t, x1, x2)
are continuous in their argument and locally Lipschitz in x2 and (x1, x2), respectively. This system
is a cascade of the system

ẋ1 = f1(t, x1), (2.74)

and (2.73b). If the origins of the systems (2.74) and (2.73b) are uniform globally asymptotically
stable (UGAS) and the solutions of (2.73) remain bounded, then the origin of the system (2.73)
is UGAS. If additionally the systems (2.74) and (2.73b) are uniform locally exponentially stable
(ULES), then (2.73) is ULES.

Theorem 2.2.5 (cf. [42]). If the origin of (2.74) is uniform globally exponentially stable (UGES),
the origin of (2.73b) is ULES and UGAS and

||g(t, x1, x2)|| ≤ k1(||x2||) + k2(||x2||)||x1||, (2.75)

then the origin of the system (2.73) is ULES and UGAS.

15



CHAPTER 2. PRELIMINARIES

16



Chapter 3

Formation tracking with mobile
robots

In order to first focus on a similar but slightly simpler problem than the tracking control and cou-
pling of quadrotor UAVs, we first consider a similar problem for the mobile robot. This approach is
preferred since the positioning of a mobile robot can be considered as a 2D instead of a 3D problem,
which also eliminates two of the three rotation angles involved. Besides, recent work on the unicycle
robot regarding coupling between agents [15,43] provides a good starting point to elaborate on and
inspired us to at least try to obtain similar results for the quadrotor UAV. Furthermore, unicycle
robots are just like quadrotor UAVs underactuated devices, causing that they both rely on their
attitude freedom to help obtain specific spatial behavior.

Similar to the main goal that is coupling multiple quadrotor UAVs, we now first want to cou-
ple multiple mobile robots. In order to do so, we start by developing a model that is very similar
to the used model of a quadrotor UAV from [19], by modeling the unicycle robot according to the
Newton-Euler framework. Then, we focus on the tracking problem of a single agent, which provides
a good reference point that can be compared with recent results for the quadrotor UAV [19]. After
that, we provide two approaches for implementing coupling in the system. First, we investigate
altering the control law by directly implementing coupling terms. Then, we alter the generalized
coordinates by adding coupling errors in the error definitions.

3.1 Mobile robot modeling and control in the Newton-Euler
framework

In this section, we first introduce the model of a mobile robot according to the Newton-Euler
framework, in order to stay as close to [19] as possible. After that, we introduce reference dynamics
to track and state a tracking problem, so that we eventually can solve this tracking problem in the
subsequent sections.

3.1.1 Dynamical modeling of a unicycle robot in the Newton-Euler frame-
work

Let ρi =
[
xi, yi

]� ∈ R
2 denote the position of the center of mass of a unicycle robot i relative

to the inertial frame I. Consider fixed to the mass at ρi a body-fixed coordinate frame Bi with a
relative rotation of Ri ∈ SO(2) with respect to the inertial frame I. The rotation Ri is defined by
a single angle φi around the axis perpendicular to the plane of I, thus, we can write Ri := Rz(φi)
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CHAPTER 3. FORMATION TRACKING WITH MOBILE ROBOTS

with

Rz(φ) =

[
cosφi − sinφi

sinφi cosφi

]
∈ SO(2), (3.1)

with properties that are introduced in Section 2.1. Let vi ∈ R and ωi ∈ R, respectively, denote
the body-fixed forward velocity of the mass and the angular velocity of the body-fixed frame Bi.
A schematic representation of the introduced states is included in Figure 3.1. We assume that the

FR;i

FL;i

fi

b

b
τiBi

I

ρi; _ρi

φi; !i

Figure 3.1: Schematic representation of the mobile robot. The body fixed reference frame Bi and
inertial reference frame I are indicated.

sideways velocity component of the mass in the body-fixed frame is nonexistent; this follows from
direct implementation of the commonly used nonholonomic no side-slip constraint (e.g., [15, 28]).
This constraint on velocity level can be considered by the kinematic relation[

vi
ui

]
= R�

i ρ̇i,e = R�
i

[
xi

yi

]
(3.2)

in which vi denotes the longitudinal velocity and ui denotes the lateral velocity component. By
assuming no side-slip, we directly assume ui = 0, which provides[

vi
0

]
=

[
cosφi sinφi

− sinφi cosφi

] [
xi

yi

]
(3.3)

which yields the constraint on velocity level

ẏi cosφi − ẋi sinφi = 0. (3.4)

The remaining inverse relation from (3.3) yields the kinematic relation between forward velocity in
the body-fixed frame Bi and the velocity in the inertial frame I, as

ρ̇i = ẋi cosφi + ẏi sinφi. (3.5)

In order to obtain a model that is very similar to [11,19], hopefully allowing us to later on follow a
similar approach for the quadrotor UAV, we generalize this kinematic relation to

ρ̇i = Rivie1, (3.6)
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FRAMEWORK

with the unit vector e1 = [1, 0]� indicating that vi coincides with the forward facing unit vector of
the body-fixed frame Bi. We want to represent the attitude very similar to [19], also by applying
the Newton-Euler method. Notice that generally attitude representation within the Newton-Euler
framework leads to

Ji ˙̂ωi = (Jiω̂i)× ω̂i + τi, (3.7)

where ω̂i a vector that consists of angular velocities around three axis of rotation; this is exactly
what is presented in [19] apart from notation differences. However, in this case we only have an
angular velocity around the axis perpendicular to the plane, which we can see as the z direction.
This single rotational freedom leads to ω̂i,e = [0, 0, ωi,e], which also provides (Jiω̂i) × ω̂i = 0, so
that the expression now equals

Jiω̇i = τi. (3.8)

We can complete the model, by using the derivative of a rotation matrix Ṙi = S̄(ωi)Ri with Ri ∈
SO(2), as introduced in Theorem 2.1.1, and using Newton’s Second law to relate the acceleration v̇i
to the forward force. The dynamical model of a unicycle i, based on the Newton-Euler framework,
then equals

ρ̇i = Rivie1, (3.9a)

v̇i =
fi
mi

, (3.9b)

Ṙi = RiS̄(ωi), (3.9c)

Jiω̇i = τi, (3.9d)

with inertia Ji > 0 with respect to the body-fixed frame Bi, mass mi, forward force magnitude
applied by the unicycle wheel fi ∈ R and the torque around the axis of rotation τi ∈ R for robot i.
Notice that we are able to use the dynamical model of a unicycle for other types of robots, since we
can apply an input transformation that relates the specific robot lay-out to a forward facing force
fi and torque τi for any type of robot. For example, the forward force and torque of a differential
drive robot are composed of two separate forces resulting from wheel contact with the ground for
each of the two wheels, as

fi = FL,i + FR,i, (3.10a)

τi = FR,ib− FL,ib, (3.10b)

with the robot lay-out and forces as indicated in Figure 3.1. The inverse relation yields[
FL,i

FR,i

]
=

1

2

[
1 −b
1 b

] [
fi
τi

]
. (3.11)

3.1.2 The tracking problem

In addition to the dynamics of the mobile robot (3.9), consider the dynamics of a virtual reference
robot

ρ̇i,r = Ri,rvi,re1, (3.12a)

v̇i,r =
fi,r
mi

, (3.12b)

Ṙi,r = Ri,rS̄(ωi,r), (3.12c)

Jiω̇i,r = τi,r, (3.12d)
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CHAPTER 3. FORMATION TRACKING WITH MOBILE ROBOTS

where 0 < fmin
i,r ≤ fr(t). Assume that a feasible reference trajectory is given, i.e., a reference trajec-

tory (ρi,r, vi,r, Ri,r, ωi,r) that satisfies (3.12). Given a reference position ρi,r(t) =
[
xi,r(t) yi,r(t)

]�
in time, we can conclude feasibility under certain conditions that follow from the dynamics (3.12).
Based on (3.12) and (3.1), we can find

ẏi,r
ẋi,r

=
vi,r sinφi,r

vi,r cosφi,r
, (3.13a)

φi,r = atan2

(
ẏi,r
vi,r

,
ẋi,r

vi,r

)
, (3.13b)

φ̇i,r = ωi,r =
ÿi,rẋi,r + ẍi,rẏi,r

ẋ2
i,r + ẏ2i,r

, (3.13c)

which first of all means that we can find a heading angle φi,r given the position over time, but only
if we can also find vi,r and assume ρi,r(t) = [xi,r(t), yi,r(t)]

� is twice differentiable. The velocity
vi,r is obtained as the size of the velocity state vector

vi,r =
√
ẋ2
i,r + ẏ2i,r, (3.14a)

ωi,r =
ÿi,rẋi,r + ẍi,rẏi,r

ẋ2
i,r + ẏ2i,r

. (3.14b)

The existence of the relations (3.14a) and (3.14b) is well-known in literature regarding robotic
systems [44,45] and is a consequence of differential flatness of the dynamics [15]. In order to obtain
the forward and angular acceleration of the reference vehicle, differentiate (3.14a) and (3.14b),
respectively, as

v̇i,r =
ẋi,rẍi,r + ẏi,rÿi,r√

ẋ2
i,r + ẏ2i,r

, (3.15a)

ω̇i,r =

...
y i,rẋi,r + 2ÿi,rẍi,r +

...
x i,rẏi,r

ẋ2
i,r + ẏ2i,r

− 2(ÿi,rẋi,r + ẍi,rẏi,r)(ẋi,rẍi,r + ẏi,rÿi,r)

(ẋ2
i,r + ẏ2i,r)

2
. (3.15b)

Concluding, we find a trajectory that fulfills the dynamics (3.12) and thereby feasibility, only when
the prescribed position over time ρi,r(t) = [xi,r(t), yi,r(t)]

� is three times differentiable. Another
limitation on feasibility of course is the maximal force fi and torque τi that the actuator of the
vehicle is able to deliver, which is for now assumed to be not limiting. Later on when we consider
a quadrotor UAV, we do explicitly overcome this problem by means of saturation of the inputs.
Define the error coordinates

ρi,e = R�
r

[
ρi,r − ρi

]
, (3.16a)

vi,e = vi,re1 −R�
i,rRive1, (3.16b)

R̄i,e = R�
i,rRi, (3.16c)

ω̄i,e = ωi − ωi,r, (3.16d)

in which we have used the fact that all rotations are defined around the same axis of rotation that
is perpendicular to the plane spanned by the inertial frame I; this is by definition the case with
planar dynamics. All error coordinates are expressed in the body-fixed frame of the reference Bi.
Now, in order to match the problem from [11] but with a unicycle robot, let us state the tracking
problem for a single vehicle.

Problem 3.1.1 (cf. [11]). Given a feasible reference trajectory (ρi,r, vi,r, Ri,r, ωi,r) for robot i, find
control laws

fi = fi(ρi, vi, Ri, ωi, ρi,r, vi,r, Ri,r, ωi,r), (3.17a)

τi = τi(ρi, vi, Ri, ωi, ρi,r, vi,r, Ri,r, ωi,r), (3.17b)
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such that the resulting closed-loop (3.9), (3.12) and (3.17) yields

lim
t→∞

(||ρi,e||+ ||vi,e||+ || log R̄i,e||+ |ω̄i,e|
)
= 0. (3.18)

3.1.3 A virtual structure for reference tracking

Instead of directly assuming the trajectory for a single agent given by the position ρi,r(t) over time
that is three times differentiable, as explained in Section 3.1.2, we assume that the reference tra-
jectory is defined as a result of a defined reference formation shape and pose. In order to do so, we
explicitly need to know this location and derive the necessary relations that ensure the feasibility
of each of the resulting reference trajectories in the formation. Again, this feasibility is important
in order to ensure that the virtual reference trajectories in fact act as virtual robots that fulfill
the dynamics, so that the actual robots at least are physically able to track the references. A sin-
gle resulting reference from this virtual structure approach is then treated similar as the reference
dynamics from Section 3.1.2, meaning that when we achieve to answer the tracking problem from
Problem 3.1.1, we achieve to track a specific reference trajectory from a virtual reference quadrotor
in the formation. If we solve this problem for multiple agents in the same formation simultaneously,
we can actually obtain a formation of unicycle robots. Notice that this is by no means coupling
or synchronization of multiple agents, since there is no connectivity between the agents, the agents
are simply provided with their own tasks that happen to be structurally connected.

In order to systematically obtain a set of n feasible reference trajectories, we have chosen to follow
a similar procedure as in [13, 15], defining the graph structure relative to a virtual formation cen-
tered coordinate frame, which also provides a mutually known frame in order to later on relate the
individual generalized coordinates for mutual coupling.

Introduce the formation centered frame F positioned at a fixed but free to choose virtual cen-
ter (VC) of the formation. Let ρf (t) = [xf (t), yf (t)]

� ∈ R
2 denote the planar position of the VC

and let Rf (t) ∈ SO(2) denote the transformation from F to I over time, with

Rf (t) = Rz(φf (t)) =

[
cosφf (t) − sinφf (t)
sinφf (t) cosφf (t)

]
. (3.19)

Let the position of an agent i over time be given relative to the VC, expressed in F , by pi(t) =
[pi,x(t), pi,y(t)]

� ∈ R
2. Notice that pi(t) with i = 1, . . . , n is thus the set of shape vectors defining

the formation shape (i.e., position vectors relative to the VC). Furthermore, note that although
we introduce the shape vectors as explicitly time varying, it is also possible to have a constant
formation shape in time.

Subsequently, similar to [15], consider the reference trajectory of vehicle i, as the composition

ρi,r = ρf +Rfpi, (3.20)

which is thus a composition between the trajectory of the formation relative to the inertial frame
and the position of agent i relative to the virtual formation center, combined and expressed relative
to the inertial frame. Let us relate (3.20) to the exact form from [15], by substituting the parameters
in (3.20), as [

xi,r

yi,r

]
=

[
xf

yf

]
+

[
cosφf − sinφf

sinφf cosφf

] [
pi,x
pi,y

]
, (3.21a)

which leads to {
xi,r = xf + pi,x cosφf − pi,y sinφf ,

yi,r = yf + pi,x sinφf + pi,y cosφf ,
(3.21b)
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CHAPTER 3. FORMATION TRACKING WITH MOBILE ROBOTS

in which (xf , yf ) describes the movement of a formation center, angle φf denotes a formation
heading and relative position (pi,x, pi,y) gives the possibly time varying formation shape. In order
to have (3.20) provide a feasible reference trajectory, we at least need to have existence of (3.14a)
and (3.14b) and their derivatives (3.15a) and (3.15b). These relations are defined if ρi,r is three
times differentiable. We differentiate the relation (3.20) that we use to obtain ρi,r thee times to
find the resulting necessary conditions for feasibility of the tracking problem

ρ̇i,r = ρ̇f + Ṙfpi +Rf ṗi, (3.22a)

ρ̈i,r = ρ̈f + R̈fpi + 2Ṙf ṗi +Rf p̈i, (3.22b)
...
ρ i,r =

...
ρ f +

...
Rfpi + 3R̈f ṗi + 3Ṙf p̈i +Rf

...
p i, (3.22c)

Notice that
...
Rf can be related to the orientation angle over time ω̈f =

...
φ f by following Theo-

rem 2.1.1. Concluding, in order to provide a feasible reference trajectory, the reference trajectory
parameters ρf , pi, and φf have to be three times differentiable.

3.2 Individual reference tracking with a unicycle robot

Since we have now provided a virtual structure that allows agents to track, we try to develop
controllers fi and τi that solve the tracking problem from Problem 3.1.1. In this section, we first
look at a single unicycle identified by i, that tracks its own feasible reference trajectory. When we
solve the tracking problem for a single unicycle, this means that we also track the set of reference
trajectories from the virtual structure with a set of agents in order to track a virtual reference
structure that defines a formation.

Although we have already introduced error coordinates in Problem 3.1.1, we are free to choose
different error coordinates to solve this problem, as long as this implies that eventually a solution
to Problem 3.1.1 is provided. Most intuitive would be to define the error coordinates relative to
the inertial frame, but this makes the tracking errors depend on the inertial frame. If we rotate
the inertial frame by 90◦ for instance, the components of the position tracking errors change and
the behavior can change. Often, the error coordinates are expressed relative to the reference frame,
as also used in [11], but they can also be expressed relative to the body-fixed frame [13, 15]. The
generalized coordinates are then independent from the inertial frame choice and can be seen as
components in longitudinal and lateral direction to the reference trajectory or actual trajectory,
respectively. However, when eventually introducing coupling between the agents, this expression
relative to the reference frame Ri for agent i makes the generalized coordinates from two agents not
directly comparable, since they are not expressed relative to the same coordinate frame. Therefore,
we try to propose an alternative to the approach from [15], where error coordinates are expressed
relative to the body-fixed frame of each robot and also used for coupling. We also divert slightly
from [11] where a single quadrotor UAV is considered with generalized coordinates relative to the
reference frame.
In this section, we separate the design of the tracking controller into two different parts. First, we
consider the subsystem for position tracking, under assumption that we can use accelerations of
the unicycle robot as virtual input. Consecutively, we consider the problem of realizing this virtual
input by means of the actual inputs.

3.2.1 Position reference tracking with a mobile robot

In the previous section a frame F is introduced fixed to the virtual center of the reference formation.
The frame F in addition to the frame I is the second mutually known reference frame in the system.
The existence of this frame F perfectly allows to express all of the involved position tracking errors
relative to the same and mutually known reference frame. A benefit of the frame F with respect
to the frame I is that it does not cause different behavior in the different directions of the inertial
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frame, and therefore does not change when we choose a different inertial frame. In order to solve
Problem 3.1.1 and have generalized error coordinates for all quadrotor UAVs expressed in the same
mutually known frame F , define the reference tracking error coordinates

ρi,e = R�
f

[
ρi,r − ρi

]
, (3.23a)

vi,e = R�
f Ri,rvi,re1 −R�

f Rivie1. (3.23b)

Notice that we are free to choose the formation frame F as it represents a virtual center. Therefore,
in a purely single agent system, we can choose F equal to one of the other involved frames to obtain
more classical error definitions [15, 46]. Differentiating (3.23) along the dynamics (3.9) and (3.12),
yields

ρ̇i,e = −S̄(ωf )ρi,e + vi,e, (3.24a)

v̇i,e = −S̄(ωf )vi,e +R�
f Ri,rS̄(ωi,r)vi,re1 −R�

f RiS̄(ωi)vie1 +R�
f Ri,r

fi,r
mi

e1 −R�
f Ri

fi
mi

e1︸ ︷︷ ︸
ui

, (3.24b)

with skew symmetrix matrix S̄(ωi,r) as defined in Theorem 2.1.1 and we assume ui to be a virtual
input that is defined for control purposes and achieved by controlling the thrust force magnitude
fi and the orientation Ri. Notice that we have full control over ui since we have full control over
the term R�

f Ri
fi
mi

e1. We can achieve the input size of ui ∈ R
2 by fi ∈ R and the orientation by

the direction Ri ∈ SO(2), meaning that we can obtain any input vector ui ∈ R
2 [11]. In order to

provide the first part of a solution to Problem 3.1.1, we propose the following virtual input.

Proposition 3.2.1. Consider the position reference tracking dynamics (3.24) with the error coor-
dinates given by (3.23). Choosing the control law

ui = −ki,ρρi,e −Ki,vvi,e, (3.25)

yields the closed-loop subsystem for position tracking

ρ̇i,e = −S̄(ωf )ρi,e + vi,e, (3.26a)

v̇i,e = −S̄(ωf )vi,e − ki,ρρi,e −Ki,vvi,e, (3.26b)

in which ki,ρ > 0 and Ki,v = K�
i,v > 0 are control parameters that act on position and velocity level,

respectively. The closed-loop system (3.26) is uniformly globally asymptotically stable (UGAS).

Proof. In order to prove the stability of the closed-loop system (3.26), consider the candidate
Lyapunov function

V1(ρi,e, vi,e) =
1

2
ρ�i,eki,ρρi,e +

1

2
v�i,evi,e > 0, (3.27)

again with scalar ki,ρ > 0. Differentiating (3.27) along the error dynamics (3.24) provides

V̇1(ρi,e, vi,e) = ρ�i,eki,ρρ̇i,e + v�i,ev̇i,e, (3.28a)

= ρ�i,eki,ρ
[−S̄(ωi,r)ρi,e + vi,e

]
+ v�i,e

[−S̄(ωi,r)vi,e + ui

]
, (3.28b)

= v�i,eki,ρρi,e + v�i,eui, (3.28c)

in which we have used the property of skew symmetric matrices, that b�S̄(a)b = 0. Choosing the
virtual input (3.25) then provides

V̇1(ρi,e, vi,e) = −v�i,eKi,vvi,e := Y1(vi,e) ≤ 0. (3.29)
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Subsequently, since (3.29) does not yield any information on ρi,e yet, let us choose the additional
function

V2(ρi,e, vi,e) = ρ�i,evi,e, (3.30)

with time derivative along the dynamics

V̇2(ρi,e, vi,e) = v�i,evi,e − ρ�i,eki,ρρi,e − ρ�i,eKi,vvi,e := Y2(ρi,e, vi,e). (3.31)

We can now use Matrosov’s Theorem, included as Theorem 2.2.1, in order to conclude asymptotic
stability, similar to [11]. We have V1(ρi,e, vi,e) ≥ 0 provided that ki,ρ > 0 and Ki,v = K�

i,v > 0,

satisfying the first condition. Furthermore, by choosing V̇1(ρi,e, vi,e) = Y1(vi,e) and V̇2(ρi,e, vi,e) =
Y2(vi,e) follows that the second condition is automatically satisfied. Then, we can find Y1(vi,e) = 0
for vi,e = 0, which implies Y2(ρi,e, 0) = −ρ�i,eki,ρρi,e ≤ 0 provided ki,ρ > 0, which means that the
third assumption holds. Lastly, the equalities Y1(vi,e) = 0 and Y2(ρi,e, vi,e) = 0 only hold at the
absolute origin. Concluding, since all conditions from Theorem 2.2.1 are satisfied, the closed-loop
system (3.26) is UGAS.

3.2.2 Orientation control on SO(2)

In the previous part, we showed that having R�
f Ri,rS̄(ωi,r)vi,re1−R�

f RiS̄(ωi)vie1+R�
f Ri,r

fi,r
mi

e1−
R�

f Ri
fi
mi

e1 equal to the desired virtual input ui from (3.25) provides that the position tracking sub-
system is UGAS. Next, we want to use the actual inputs fi and τi to achieve this desired virtual
input ui.

Let us start by using (3.24b), to find

Ri

[
S̄(ωi)mivie1 + fie1

]
= Ri,r

[
S̄(ωi,r)mivi,re1 + fi,re1 −R�

i,rRfmiui

]
, (3.32a)

Ri [fie1 +miωivie2] = Ri,r

[
fi,re1 +miωi,rvi,re2 −R�

i,rRfmiui

]
. (3.32b)

Define

Fi =

[
Fi,x

Fi,y

]
= fi,re1 +miωi,rvi,re2 −R�

i,rRfmiui, (3.33)

so that we can write

Ri

[
fi

miωivi

]
= Ri,r

[
Fi,x

Fi,y

]
. (3.34)

Because of the unit length of rotation matrices, as explained in Section 2.1, we can find the force
magnitude input fi, as

f2
i = F 2

i,x + F 2
i,y − (miωivi)

2, (3.35)

fi = ±
√
F 2
i,x + F 2

i,y − (miωivi)2, (3.36)

for (miωivi)
2 ≤ F 2

i,x + F 2
i,y. Notice that this means that we are unable to obtain a solution for the

case where (miωivi)
2 > F 2

i,x+F 2
i,y, which has the physical interpretation that the force perpendicular

to the forward facing force vector fie1 (a centripetal force that enables to robot to stay on its curve)
can not become larger than the magnitude of the reference force and virtual input combined (so
we need miωivi ≤ ||Fi||, with Fi from (3.33)). This is a limiting factor since it means that we
might not always find an input fi that provides the wanted virtual input ui. However, for now we
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accept this limitation, but we provide a solution for a similar problem with the quadrotor UAV.
The smallest rotation between the left and right side of (3.34) is obtained if fi equals

fi = sgn(Fi,x)
√
F 2
i,x + F 2

i,y − (miωivi)2. (3.37)

In order to achieve the virtual input ui, besides the right magnitude fi with (3.37), we have to make
the quadrotor UAV attain the correct attitude Ri. Since we can not simply choose the orientation
Ri, we try to achieve the desired orientation over time asymptotically. The relation (3.34) shows
us that the misalignment between both sides equals R�

i,rRi. Let us define the desired heading Ri,d,
such that

Ri,d

[
fi

miωivi

]
=

[
Fi,x

Fi,y

]
, (3.38)

provides the desired virtual input ui (incorporated in Fi,x and Fi,y). The rotation angle between
two arbitrary vectors u and v can be defined by [47]

cos θ =
u • v

||u|| ||v|| , (3.39)

which by using the vectors (3.38), leads to

cosφi,d =
(fie1 +miviωie2) • (Fi,xe1 + Fi,ye2)

||fie1 +miviωie2|| ||Fi|| . (3.40)

Notice that ||fie1 + miviωie2|| =
√
f2
i + (miviωi)2 =

√
F 2
i,x + F 2

i,y − (miviωi)2 + (miviωi)2 =√
F 2
i,x + F 2

i,y, so (3.40) equals

cosφi,d =

|Fi,x|︷ ︸︸ ︷
sgn(Fi,x)Fi,x

√
F 2
i,x + F 2

i,y − (miviωi)2 + Fi,ymiviωi

F 2
i,x + F 2

i,y

, (3.41a)

=
Fi,xfi + Fi,ymiviωi√

f2
i + (miviωi)2

√
F 2
i,x + F 2

i,y

. (3.41b)

Similarly, we use sin θ = ||�u×�v||
||�u|| ||�v|| [47], leading to

sinφi,d =
sgn(Fi,x)Fi,y

√
F 2
i,x + F 2

i,y − (miviωi)2 − Fi,xmiviωi

F 2
i,x + F 2

i,y

, (3.42a)

=
Fi,yfi − Fi,xmiviωi

F 2
i,x + F 2

i,y

. (3.42b)

Altogether, the obtained heading information can be used to obtain the rotation matrix

Ri,d =

⎡
⎣Fi,xfi+Fi,ymiviωi

F 2
i,x+F 2

i,y
−Fi,yfi−Fi,xmiviωi

F 2
i,x+F 2

i,y
Fi,yfi−Fi,xmiviωi

F 2
i,x+F 2

i,y

Fi,xfi+Fi,ymiviωi

F 2
i,x+F 2

i,y

⎤
⎦ ∈ SO(2). (3.43)

Following from 3.43, the goal now is to let R�
i,rRi converge to Ri,d, so that we obtain the size of the

desired input with fi and asymptotically converge to the desired heading by finding an appropriate
control law τi. In order to find this input τi, we define the orientation error in the body-fixed frame
of the mobile robot

Ri,e = R�
i,d(R

�
i,rRi), (3.44a)
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with associated angular velocity error

ωi,e = ωi − ωi,r − ωi,d. (3.44b)

Differentiating (3.44) along the solutions yields the dynamics

Ṙi,e = Ri,eS̄(ωi,e), (3.45a)

Jiω̇i,e = τi − τi,r − Jiω̇i,d. (3.45b)

In order to stabilize the attitude tracking dynamics (3.45), we formulate an orientation tracking
problem.

Problem 3.2.1. (Orientation tracking problem) Consider the dynamics (3.45) following from
the corresponding error definitions (3.44). Assume that we desire the equilibrium (I, 0) ∈ SO(2)×R.
Find an appropriate control law

τi = τi(t, Ri,e, ωi,e) ∈ R), (3.46)

such that for the resulting closed-loop system (3.45) and (3.46)

lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0.

In order to stabilize the dynamics (3.45) with the input τi, we have to know ω̇i,d, so that we can
cancel this term in order to achieve the known stable result from Theorem 2.2.3. Note that we can
also base the orientation error coordinates and controller on [46], which in fact has already been
used to couple multiple unicycle robots in [15, 43]. However, a huge downside from that approach
is that is has a problem with the wrapping of the orientation error; in [15] the orientation error
is controlled to the absolute origin. This is undesirable since this can cause steering of multiple
full rotations in order to achieve the absolute origin; e.g., when the robot initially starts with an
angular heading error greater than 2π. The behavior is only worsened when multiple agents are
mutually coupled, since we then have to control both the error relative to the reference to the
absolute origin as well as the coupling errors, each potentially with their own offset of aa number of
full rotations. In order to overcome this effect, we try to stay close to [11] and focus on the results
from Theorem 2.2.3, but on SO(2)× R.

We first provide the desired angular velocity ωi,d, defined by the relation Ṙi,d = Ri,dS̄(ωi,d). Fol-
lowing from (3.43), the time-derivative of the rotation matrix equals

Ṙi,d =

[
γcos −γsin
γsin γcos

]
. (3.47)

For notation efficiency, define

lo = Fi,xfi + Fi,ymiviωi, (3.48a)

la = Fi,yfi − Fi,xmiviωi, (3.48b)

lh = F 2
i,x + F 2

i,y, (3.48c)

with the opposite side to the angle φi,d denoted by lo, the adjacent side denoted by la, and the
hypotenuse side denoted by lh. As a direct result, we are able to write

cosφi,d =
lo
lh
, sinφi,d =

la
lh
. (3.49)

By utilizing (3.49), define the time derivatives γcos =
d
dt cosφi,d and γsin = d

dt sinφi,d, as

γcos =
l̇o
lh

− lo l̇h
l2h

, (3.50a)

γsin =
l̇a
lh

− la l̇h
l2h

, (3.50b)
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with

l̇o = Ḟxfi + Fi,xḟi,d + Ḟymiviωi + Fi,ymiv̇iωi + Fi,ymiviω̇i, (3.51a)

l̇a = Ḟyfi + Fi,y ḟi,d − Ḟxmiviωi − Fi,xmiv̇iωi − Fi,xmiviω̇i, (3.51b)

l̇h = 2(ḞxFi,x + ḞyFi,y), (3.51c)

in which [
Ḟx

Ḟy

]
= ḟi,re1 +mi(ω̇i,r)vi,r + ωi,rv̇i,r)e2 . . . (3.52a)

+ S(ωi,rR
�
i,rRfmiui −R�

i,rRfS(ωf )miui −R�
i,rRfmiu̇i,

u̇i = −ki,ρρ̇i,e −Ki,v v̇i,e, (3.52b)

ḟi,r = mi
...
ρ i,r, (3.52c)

ḟi =
(Fi,xḞx + Fi,yḞy − (miωivi)(miω̇ivi +miωiv̇i)√

F 2
i,x + F 2

i,y − (miωivi)2
. (3.52d)

Notice that fi,r can be obtained by using Newton’s Second Law, so to find ḟi,r, we differentiate

both sides with respect to time. Using Ṙi,d = Ri,dS̄(ωi,d) to find ωi,d, we obtain

S̄(ωi,d) = R�
i,dṘi,d, (3.53a)

ωi,d = cosφi,dγsin − sinφi,dγcos. (3.53b)

Subsequently, the desired angular acceleration term ω̇i,d is obtained by differentiating (3.53b),
providing

ω̇i,d = −ωi,d sinφi,dγsin + cosφi,dγ̇sin − ωi,d cosφi,dγcos − sinφi,dγ̇cos. (3.54)

What remains is to obtain γ̇cos and γ̇sin, which we obtain as the time derivatives of (3.50), equal
to

γ̇cos =
l̈o
lh

− l̇o l̇h
l2h

− l̇o l̇h + lo l̈h
l2h

+
2lo l̇hlh l̇h

l4h
, (3.55a)

γ̇sin =
l̈a
lh

− l̇a l̇h
l2h

− l̇a l̇h + la l̈h
l2h

+
2la l̇hlh l̇h

l4h
. (3.55b)

From (3.51) follows

l̈o = F̈xfi + 2Ḟxḟi,d + Fi,xf̈i,d + F̈ymiviωi + 2Ḟymiv̇iωi + 2Ḟymiviω̇i . . . (3.56a)

+ Fi,ymiv̈iωi + 2Fi,ymiv̇iω̇i + Fi,ymiviω̈i,

l̈a = F̈yfi + 2Ḟy ḟi,d + Fi,y f̈i,d − F̈xmiviωi − 2Ḟxmiv̇iωi − 2Ḟxmiviω̇i . . . (3.56b)

− Fi,xmiv̈iωi − 2Fi,xmiv̇iω̇i − Fi,xmiviω̈i,

l̈h = 2(F̈xFi,x + F̈yFi,y + Ḟ 2
x + Ḟ 2

y ), (3.56c)

in which [
F̈x

F̈y

]
= mi

[
f̈i,r
mi

e1 + (ω̈i,rvi,r + ω̇i,rv̇i,r + (ω̇i,rv̇i,r) + ωi,rv̈i,r))e2 − üi

]
, (3.57a)

üi = −ki,ρρ̈i,e −Ki,v v̈i,e, (3.57b)

f̈i,r = miρ
(4)
i,r , (3.57c)

f̈i,d =
(Fi,xḞx + Fi,yḞy − (miωivi)(miω̇ivi +miωiv̇i))

2√
F 2
i,x + F 2

i,y − (miωivi)2
3 , (3.57d)
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Notice that in order for f̈i,r to exist, ρ
(4)
i,r has to exist. So in addition to the required three times

differentiability for feasibility of the reference trajectory, we need need the virtual structure from
(3.20) to provide

ρ
(4)
i,r = ρ

(4)
f +R

(4)
f pi + 4

...
Rf ṗi + 6R̈f p̈i + 4Ṙf

...
p i +Rfp

(4)
i , (3.58)

meaning that ρf , Rf and pi need to be four times differentiable in order to find existence of ρ
(4)
i,r

and being able to provide the required expression for ω̇i,d.

Since we now have the explicit expression for ω̇i,d, what remains is to define the control law for
τi to stabilize the dynamics (3.45). We present our proposition for a solution to Problem 3.2.1 as
follows.

Proposition 3.2.2. Consider the attitude tracking error dynamics (3.45), error definitions (3.44),
desired orientation (3.43), desired angular velocity (3.53b) and desired angular acceleration (3.54).
Choose the control law

τi = τr,i + Jiω̇i,d +
1

2
ci,R Tr(Ri,eḠ)− ci,ωωi,e, (3.59)

which yields the closed-loop dynamics

Ṙi,e = Ri,eS̄(ωi,e), (3.60a)

Jiω̇i,e = −ci,ωωi,e +
1

2
ci,R Tr(Ri,eḠ), (3.60b)

with ci,ω > 0 and ci,R > 0. The control law (3.59) uniformly asymptotically stabilized the solutions
of the closed-loop system (3.60) in the almost-global region of attraction (Ri,e, ωi,e) ∈ G ⊂ SO(2)×R.
All trajectories starting in this region converge to preferred equilibrium Ri,e = I and ωi,e = 0. That
means, except for a set M = SO(2)×R\G with zero Lebesgue measure, all trajectories converge to
the preferred equilibrium. The system is uniformly almost-globally asymptotically stable (UaGAS).

In Theorem 2.2.2 the closed-loop system (3.60) is presented and proven ULES and UaGAS. Notice
that a direct consequence of the asymptotic convergence of Ri,e and ωi,e to the desired equilibrium
is the asymptotic convergence of the force vector

R�
i,rRi

[
fi

miωivi

]

to the desired force vector (3.38). However, although the virtual input ui is thus asymptotically
achieved in time, it is not perfectly achieved at all times, following from possible remaining mis-
alignment between the actual heading R�

i,rRi and desired heading Ri,d; this means that the error

Ri,e = R�
i,dR

�
i,rRi is not yet in equilibrium state. Therefore, the position tracking subsystem (3.26)

is perturbed by the solution of the orientation tracking subsystem (3.60), so we evaluate the com-
bined system using cascade system theory.

3.2.3 Cascade system analysis

In the previous sections, we determined a desired control action by means of a control law for the
position tracking sub-dynamics, as well as a controller for fi and τi in order to achieve the desired
control action. The desired orientation and longitudinal acceleration, successively, are obtained by
the inputs τi and fi. In fact, we identify a cascaded structure [41, 42], in the closed-loop dynamics
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((3.9), (3.12), (3.25), (3.37), (3.59)), equal to

ρ̇i,e = − S̄(ωi,r)ρi,e + vi,e, (3.61a)

v̇i,e = − S̄(ωi,r)vi,e − ki,ρρi,e −Ki,vvi,e +
fi
mi

R�
i,rRi(I −R�

i,e)e1, (3.61b)

Ṙi,e = Ri,eS̄(ωi,e), (3.61c)

ω̇i,e = −ci,ωωi,e +
1

2
ci,R Tr(Ri,eḠ). (3.61d)

The cascaded term

g(t, ρi,e, vi,e, Ri,e, ωi,e)Ri,e =
fi
mi

R�
i,rRi(I −R�

i,e)e1 (3.62)

results from the fact that the position tracking subsystem is perturbed by the control action fi
pointing not exactly in the desired direction. We identify the two systems in cascade, being
((3.61a),(3.61b)) and ((3.61c),(3.61d)). If we are able to conclude

lim
t→∞ ρi,e = 0, lim

t→∞ vi,e = 0, lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0, (3.63)

the tracking control problem is solved, since if (3.63) holds, the conditions from Problem 3.1.1 hold
automatically. The result is presented as follows.

Proposition 3.2.3. Consider the closed-loop cascaded system 3.61. The solutions of the closed-
loop cascaded system (3.61) are uniformly almost-globally asymptotically stable. The solutions of
((3.61a),(3.61b)) asymptotically converge to the origin for all ρi,e ∈ R

2, vi,e ∈ R and (Ri,e, ωi,e) ∈ G
with G ⊂ SO(2)× R and M = (SO(2)× R) \G a set with measure zero.

Proof. The orientation tracking subsystem ((3.61c),(3.61d)) is UaGAS, which proves the first as-
sumption from Theorem 2.2.4. We consider the attitude tracking subsystem in the region G ⊂
SO(2) × R, which is the almost global region of attraction in which our system converges to the
desired equilibrium. The stability analysis of the cascaded structure is thus considered on R

4 ×G.
Furthermore, we have (3.26) UGAS, providing the second assumption from Theorem 2.2.4. What
remains is to prove that the cascaded term from (3.61b) is bounded, providing that stability is
remained for the two subsystems in cascade. In order to prove this boundedness, similar to [11],
consider

V =
1

2
ρ�i,eki,ρρi,e +

1

2
v�i,evi,e ≥ 0, (3.64)

with time derivative along the solutions of (3.61)

V̇ (ρi,e, vi,e) =
1

2
ρ̇�i,eki,ρρi,e +

1

2
ρ�i,eki,ρρ̇i,e +

1

2
v̇�i,evi,e +

1

2
v�i,ev̇i,e, (3.65a)

=
1

2

[−S̄(ωi,r)ρi,e + vi,e
]�

ki,ρρi,e +
1

2
ρ�i,eki,ρ

[−S̄(ωi,r)ρi,e + vi,e
]
. . . (3.65b)

+
1

2

[
−S̄(ωi,r)vi,e − ki,ρρi,e −Ki,vvi,e +

fi
mi

R�
i,rRi(I −R�

i,e)e1

]�
vi,e + . . .

1

2
v�i,e

[
−S̄(ωi,r)vi,e − ki,ρρi,e −Ki,vvi,e +

fi
mi

R�
i,rRi(I −R�

i,e)e1

]
,

= v�i,e

[
fi
mi

R�
i,rRi(I −R�

i,e)e1

]
− v�i,eKi,vvi,e, (3.65c)

≤ v�i,e

[
fi
mi

R�
i,rRi(I −R�

i,e)e1

]
≤ ci,1

√
V ||I −R�

i,e||, (3.65d)
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in which we have used that ||R�
i,rRi|| = 1. Since ((3.61c),(3.61d)) is ULES, we have√

V (t)−
√

V (t0) ≤ ci,2(t0). (3.66)

So V is bounded and therefore the solutions of ((3.61a),(3.61b)) are bounded, which ensures that
the coupling term is bounded. Thus, the last assumption from Theorem 2.2.4 holds, proving that
the cascaded system is UaGAS.

3.3 Mutual coupling of multiple unicycle robots

Until now, we provided a virtual structure approach that generates a set of feasible reference tra-
jectories and provided a controller that allows us to track a specific feasible reference with a specific
unicycle robot. Based on these results, we are able to track the entire virtual structure of n virtual
robots, with n unicycle robots, allowing us to drive in formation. However, due to the absence of
connectivity between the robots, the robots are unable to take action on disturbances that happen
to the others, so we can not guarantee any performance for the combined formation tracking behav-
ior. In order to overcome this problem, we want to implement coupling between the robots, so that
the overall tracking behavior of the entire formation is somewhat a consideration between tracking
the individual reference trajectories and staying in formation. With different relative cost between
reference tracking and coupling errors, we are able to shift the weight to a specific preference, so
that obtaining the formation shape or converging to the individual reference state can be made
more important. Notice that these two tasks do not always have to be conflicting, since in the ideal
situation the robots are at their own reference position and in perfect formation. Directly after
initiation of the system and as a result of disturbances, the formation is not yet fully obtained and
the specific tracking behavior to overcome this imperfection can be altered by altering the relative
cost between getting in formation and tracking the individual reference.

Based on the cascaded structure of the developed system for a single agent, we choose to only
implement coupling in the position tracking subdynamics. We are able then still operate the ori-
entation tracking subsystem entirely locally, so that the original subsystem remains in tact. This
choice allows the orientation to work individually and remain fully in service of the position tracking
performance. Additionally coupling the orientation worsens the behavior, as the desired heading
then consist of a consideration between the actual desired heading to obtain the virtual input and
reducing the angular difference between two robots.

3.3.1 Coupling with position reference tracking

Since we now know which dynamics we want to synchronize, we have to decide on how we want
to achieve this goal. Coupling with the position tracking sybsystem can be obtained in several
ways, namely, implemented on the reference structure [17, 18], directly in the control law [15] or
by considering coupling terms in the generalized coordinates [13]. Furthermore, we can choose
a master-slave approach, or consider mutually coupling. The latter is preferred for the unicycle
robots, since we consider a more or less homogeneous fleet of unicycle robots and try to obtain a
formation that is scalable to any number of agents. Notice that the previously proven stability of
the closed-loop position tracking subsystem (3.26) is depending on the gain ki,ρ on position level
being scalar. By including coupling directly in the control law, as in [15,43], we are unable to prove
stability in a similar manner, as we would have a coupling matrix including cross-coupling between
the position errors of the mutually coupled agents. In order to overcome this exact problem, let
us choose our error definitions differently from the uncoupled scenario, so that we include coupling
errors.

Definition 3.3.1 (cf. [48, 49]). Ni ⊂ V is the set of neighbors of vertex i ∈ V defined by

Ni = {j ∈ V|j �= i and aij �= 0}. (3.67)
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Subsequently, inspired by [18], we define generalized coordinates including coupling errors, as

ρi,e = R�
f

⎡
⎣(ρi,r − ρi) +

∑
j∈Ni

k̃ij,ρ((ρj,r − ρj)− (ρi,r − ρi))

⎤
⎦ , (3.68a)

νi,e = R�
f

⎡
⎣(Ri,rvi,re1 −Rivie1) +

∑
j∈Ni

k̃ij,v((Rj,rvj,re1 −Rjvje1)− (Ri,rvi,re1 −Rivie1))

⎤
⎦ ,

(3.68b)

with k̃ij,ρ = k̃ji,ρ and k̃ij,v = k̃ji,v denoting the coupling strength between agent i and j on position
and velocity level [50], respectively. We choose the coupling strength in both directions equal to
underline the homogeneity in mutual coupling. Differentiating (3.68) along the dynamics (3.9) and
(3.12), yields

ρ̇i,e = −S(ωf )ρi,e + vi,e, (3.69a)

v̇i,e = −S(ωf )vi,e +R�
f

[(
Ri,rS̄(ωi,r)vi,re1e1 +Ri,r

fi,r
mi

e1 −RiS̄(ωi)vie1 −Ri
fi
mi

e1

)
. . . (3.69b)

+
∑
j∈Ni

k̃ij,v

[(
Rj,rS̄(ωj,r)vj,re1 +Rj,r

fj,r
mj

e1 −RjS̄(ωj)vje1 −Rj
fi
mj

e1

)
. . .

−
(
Ri,rS̄(ωi,r)vi,re1 +Ri,r

fi,r
mi

e1 −RiS̄(ωi)vie1 −Ri
fi
mi

e1

)]]
.

Define the virtual input

ũi = R�
f

[(
Ri,rS̄(ωi,r)vi,re1e1 +Ri,r

fi,r
mi

e1 −RiS̄(ωi)vie1 −Ri
fi
mi

e1

)
. . . (3.70)

+
∑
j∈Ni

k̃ij,v

[(
Rj,rS̄(ωj,r)vj,re1 +Rj,r

fj,r
mj

e1 −RjS̄(ωj)vje1 −Rj
fi
mj

e1

)
. . .

−
(
Ri,rS̄(ωi,r)vi,re1 +Ri,r

fi,r
mi

e1 −RiS̄(ωi)vie1 −Ri
fi
mi

e1

)]]
,

so that we obtain

ρ̇i,e = −S(ωf )ρi,e + vi,e, (3.71a)

v̇i,e = −S(ωf )vi,e + ũi. (3.71b)

By using Proposition 3.2.1, we know that choosing the virtual input

ũi = −ki,ρρi,e −Ki,vvi,e, (3.72)

under the assumption that we are able to achieve this virtual input, provides the closed-loop system

ρ̇i,e = −S(ωf )ρi,e + vi,e, (3.73a)

v̇i,e = −S(ωf )vi,e − ki,ρρi,e −Ki,vvi,e, (3.73b)

which is uniformly globally asymptotically stable (UGAS). Since the system (3.73) is equal to the
system (3.26) that is considered in Section 3.2.1, the stability proof is provided in Section 3.2.1.
What remains is to find the actual inputs fi and τi in order to obtain the virtual input ũi.
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3.3.2 Achieving the virtual input

In order to achieve the virtual input ũi, we again try to obtain the force magnitude input fi and
the desired heading Ri,d separately. Following from (3.70), we also find the defined virtual input
for the entire system:

Ũ = K̃v

⎡
⎢⎢⎢⎣

R�
f

(
R1,rS̄(ω1,r)v1,re1 +R1,r

f1,r
m1

e1 −R1S̄(ω1)v1e1 −R1
f1
m1

e1

)
...

R�
f

(
Rn,rS̄(ωn,r)vn,re1 +Rn,r

fn,r

mn
e1 −RnS̄(ωn)vne1 −Rn

fn
mn

e1

)
⎤
⎥⎥⎥⎦ (3.74a)

in which

Ũ =
[
(ũ1)

� · · · (ũn)
�]� , (3.74b)

K̃v =

⎡
⎢⎢⎢⎢⎢⎣
I −∑

j∈N1
K̃1j,v K̃12,v · · · K̃1n,v

I −∑
j∈N2

K̃2j,v

...
...

. . .

K̃n1,v · · · K̃n(n−1),v I −∑
j∈Nn

K̃n(n−1),v

⎤
⎥⎥⎥⎥⎥⎦ , (3.74c)

Kij,v = Ik̃ij,v. (3.74d)

Rewriting (3.74) provides

Ũ = K̃vGRf

⎡
⎢⎣ R1,rm1ω1,rv1,re2 +R1,rf1,re1 −R1m1ω1v1e2 −R1f1e1

...
Rn,rmnωn,rvn,re2 +Rn,rfn,re1 −Rnmnωnvne2 −Rnfne1

⎤
⎥⎦ (3.75a)

GR

⎡
⎢⎣ f1e1 +m1ω1v1e2

...
fne1 +mnωnvne2

⎤
⎥⎦ = GRr

⎡
⎢⎣
⎡
⎢⎣ f1,re1 +m1ω1,rv1,re2

...
fn,re1 +mnωn,rvn,re2

⎤
⎥⎦−G�

Rr
GRf

K̃−1
v Ũ

⎤
⎥⎦

︸ ︷︷ ︸
Fd

, (3.75b)

in which we use a generator

G(R) = GR = diag(R1, . . . , Rr), (3.76)

with G�
R = G(R�) = G(R−1) = G−1

R , following from the special properties of the rotation matrix,
as included in Section 2.1. Furthermore, we defined the stack of desired force vectors Fd, which has
components

Fd =

⎡
⎢⎣F1,d

...
Fn,d

⎤
⎥⎦ (3.77)

where Fi,d = [F̃i,x, F̃i,y]
� and the tilde indicates that we consider mutual coupling, which makes

these defined variables different from Fi,x and Fi,y from Section 3.2.2. However, equal to Sec-
tion 3.2.2, we can now obtain fi and Ri,d from (3.75b) and (3.77). We obtain

fi = sgn(F̃x)
√
F̃ 2
x + F̃ 2

i,y − (miωivi)2, (3.78)
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and

Ri,d =

⎡
⎣ F̃xfi+F̃i,ymiviωi

F̃ 2
x+F̃ 2

i,y

− F̃i,yfi−F̃xmiviωi

F̃ 2
x+F̃ 2

i,y

F̃i,yfi−F̃i,xmiviωi

F̃ 2
x+F̃ 2

i,y

F̃xfi+F̃i,ymiviωi

F̃ 2
x+F̃ 2

i,y

⎤
⎦ ∈ SO(2), (3.79)

which are exactly the same expressions as for the single-agent system, but with F̃i,x and F̃i,y instead
of Fi,x and Fi,y. Notice that these two differ as a result of the additional coupling matrix. Since
we only implement coupling on position tracking, the orientation controller further remains in tact.
Again this means that in the specific situation where F̃ 2

x + F̃ 2
i,y < (miωivi)

2 we are unable to
obtain a suitable fi to achieve the magnitude of ui; a situation that corresponds with the scenario
of a centripetal force that is larger than the magnitude of the reference vehicle and virtual input
combined, as can be seen in (3.75b). For now we accept this outcome in order to later on focus on a
solution for the quadrotor UAV. We are now able to use exactly the same orientation dynamics and
control law τi as in Proposition 3.2.2, in order to asymptotically achieve the desired heading Ri,d.
In order to fully provide the required parameters that are used in the control law, we explicitly
provide the required time derivatives of Fi,d. From Section 3.2.2 follows that the first and second
order time derivatives of Fd are required to compute ω̇i,d for i = 1, . . . , n. We explicitly obtain
these time derivatives of Fd, as

Ḟd =

⎡
⎢⎣ ḟ1,re1 +m1ω̇1,rv1,r +m1ω1,rv̇1,re2

...

ḟn,re1 +mnω̇n,rvn,re2 +mnωn,rv̇n,re2

⎤
⎥⎦ . . . (3.80a)

−G�
Ṙr

GRf
K̃−1

v Ũ −G�
Rr

GṘf
K̃−1

v Ũ −G�
Rr

GRf
K̃−1

v
˙̃U,

F̈d =

⎡
⎢⎣ f̈1,re1 + 2m1ω̇1,rv̇1,r +m1ω̈1,rv1,r +m1ω1,rv̈1,re2

...

f̈n,re1 ++2mnω̇n,rv̇n,r +m1ω̈n,rvn,r +mnωn,rv̈n,re2

⎤
⎥⎦ . . . (3.80b)

− 2G�
Ṙr

GṘf
K̃−1

v Ũ − 2G�
Rr

GṘf
K̃−1

v
˙̃U − 2G�

Ṙr
GRf

K̃−1
v

˙̃U . . .

−G�
R̈r

GRf
K̃−1

v Ũ −G�
Rr

GR̈f
K̃−1

v Ũ −G�
Rr

GRf
K̃−1

v
¨̃U.

The current status is that we are able achieve the virtual input (3.72), by the actual force magnitude
input fi if we asymptotically converge to the desired heading Ri,d. In order to asymptotically
converge to Ri,d, we follow the same approach as for a single unicycle and define the orientation
tracking errors

Ri,e = R�
i,d(R

�
i,rRi), (3.81a)

ωi,e = ωi − ωi,r − ωi,d. (3.81b)

Differentiating (3.81) along the solutions yields the dynamics

Ṙi,e = Ri,eS̄(ωi,e), (3.82a)

Jiω̇i,e = τi − τi,r − Jiω̇i,d. (3.82b)

which is exactly the same as we previously obtained for a single agent. Therefore, we are able
to consider the same tracking problem as Problem 3.2.1 with corresponding solution from Propo-
sition 3.2.2; for the proof we refer to the proof from Theorem 2.2.2. Thus, the dynamics (3.82)
in closed-loop with (3.59) is UaGas, as proven in Section 3.2.2. Thus, based on these results we
conclude that we asymptotically achieve the virtual input ũi by the actual inputs fi and τi. How-
ever, since we asymptotically achieve ũi in time rather than perfectly at any time, the position
tracking subsystem is perturbed by the solution of the orientation tracking subsystem. We identify
a cascaded structure.
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3.3.3 Cascade system analysis

In the previous sections, we determined virtual control action by means of a control law for the
position tracking sub-dynamics, as well as a controller for fi and τi in order to achieve the virtual
control action. The desired orientation and longitudinal acceleration, successively, are obtained by
the inputs τi and fi. In fact, we identify a cascaded structure [41, 42]. The closed-loop dynamics
(3.9), (3.12), (3.72), (3.78), and (3.59), equal

ρ̇i,e = − S̄(ωi,r)ρi,e + vi,e, (3.83a)

v̇i,e = − S̄(ωi,r)vi,e − ki,ρρi,e −Ki,vvi,e +
fi
mi

R�
i,rRi(I −R�

i,e)e1, (3.83b)

Ṙi,e = Ri,eS̄(ωi,e), (3.83c)

ω̇i,e = −ci,ωωi,e +
1

2
ci,R Tr(Ri,eḠ). (3.83d)

The cascaded term

g(t, ρi,e, vi,e, Ri,e, ωi,e)Ri,e =
fi
mi

R�
i,rRi(I −R�

i,e)e1 (3.84)

again results from the fact that the position tracking subsystem is perturbed by the control action
fi pointing not exactly in the desired direction. If we are able to conclude

lim
t→∞ ρi,e = 0, lim

t→∞ vi,e = 0, lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0, (3.85)

the tracking control problem from Problem 3.1.1 is solved, since if (3.63) holds, the conditions from
Problem 3.1.1 hold automatically. The dynamics (3.9), (3.12) in closed loop with (3.72), (3.78), and
(3.59) provide the closed-loop cascaded system (3.83) that now includes coupling in the generalized
position and velocity errors. By directly using Proposition 3.2.3, we can conclude that the cascaded
system is UaGAS.

3.4 Simulation study

Although the stability of the system is already guaranteed by the provided proof of stability for
the involved generalized dynamics, we still want to at least get some feeling for the effect that the
included coupling structure has on the formation tracking behavior. In order to test the effect of the
included coupling from the obtained system Section 3.3, we implement the system for simulations.
We make the mobile robots initiate relatively far from their reference trajectories in order to show if
the coupling provides that we can make the mobile robots drive in formation before they reach the
reference trajectories. If that is the case, we thus have control over the trade-off between tracking
the formation shape or the individual reference trajectories and can accept the results in order to
follow a similar approach for the quadrotor UAVs. The formation trajectory is chosen circular, as

ρf (t) =
[
cos(t) sin(t)

]�
, (3.86)

and the formation shape is defined as

pi(t) = r
[
cos(i (4−n)π

2n ) sin(i (4−n)π
2n )

]�
, (3.87)

with the agent defined by i, the total number of agents n and the radius r = 0.2; this shape function
positions a number of n agents equally on a circle circumference with radius r and is actually time
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invariant. The initial conditions in generalized coordinates are chosen as

ρ1,e =
[−5 0.2

]�
,

v1,e =
[
0.01 0.1

]�
,

φ1,e = −π

6
,

ω1,e = 0.2,

ρ2,e =
[−5 −2

]�
,

v2,e =
[
0.3 0.1

]�
,

φ2,e =
π

6
,

ω2,e = 0.3.

(3.88)

The system parameters are set at

K1,ρ = K2,ρ =

[
5 0
0 5

]
,

K1,v = K2,v =

[
5 0
0 5

]
,

ci,R = 1,

ci,ω = 1,

K̃12,ρ = K̃21,ρ =

[
5 0
0 5

]
,

K̃12,v = K̃21,v =

[
5 0
0 5

]
,

mi = mi = 1,

Ji = Jr,i = 1.

(3.89)

A simulation is executed and the results are implemented in Figure 3.2. First of all, we see that
the error coordinates of the position tracking subsystem converge to the absolute origin, which we
have also proven mathematically in the previous section. The trajectories in the right graph from
Figure 3.2 shows that the robots start to drive in the virtual formation shape even before they reach
the actual formation as a result of the coupling terms. This means that the implemented coupling
functions provide the ability to control the consideration between tracking the individual reference
trajectories and tracking the formation (shape). Therefore, the system of multiple mobile robots
shows the wanted behavior, so we follow a similar approach later on for the system of multiple
quadrotor UAVs.

(a) (b)

Figure 3.2: Simulation results in which two mobile robots start tracking a reference formation that
moves over a circular path from relatively far away. In (a) the magnitude of the involved error
coordinated for both unicycle robots over time and in (b) the trajectories in the plane.
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3.5 Concluding remarks

In this chapter, we provided a dynamical model for the unicycle robot, defined error coordinates,
and defined a tracking problem. The tracking problem for a unicycle robot is deliberately stated
very similar to the problem that we later consider for a quadrotor UAV, in order to use this case
study as an introductory problem to the rest of this research. A virtual reference structure is
provided by defining the pose and shape of this structure, so that we obtain a set of reference
trajectories for the set of unicycle robots. We showed that all reference trajectories are feasible and
we are able to obtain the virtual input when the formation trajectory over time (ρi,r), formation
heading (Rf ) and shape vectors (pi) all are four times differentiable. To facilitate mutual coupling,
we defined the position tracking errors relative to the mutually known formation centered frame,
so that individual errors can directly be compared and are independent from the choice of inertial
reference frame; which is another (alternative) mutually known frame in the system.

We have shown that if we consider a specific individual robot with its reference trajectory, we
are able to stabilize the position tracking dynamics based on a defined virtual input, providing
uniform global asymptotic stability (UGAS). After that, we have showed that except for a specific
situation where the centripetal force of the unicycle is greater than the magnitude of the virtual
input and reference forces combined, we are able to provide the actual force magnitude input and
desired heading, based on this virtual input. We also assumed no physical limitations on the achiev-
able force magnitude input and torque inputs, which is why we did not use saturation techniques on
the designed virtual input. For now we accept these results in order to later on overcome them for
the main focus of this research that is the quadrotor UAV. We then used the orientation tracking
subsystem to achieve the desired heading, by defining a control law that renders the orientation
tracking dynamics uniformly almost-globally asymptotically stable (UaGAS). Since the orientation
of the unicycle robot can be different from the desired orientation during convergence towards this
desired orientation, the position tracking error dynamics are perturbed by the solution of the ori-
entation tracking error dynamics. Therefore, the two subsystems in cascade were analyzed using
cascade system theory. Based on cascade system theory, we showed that the cascaded system is
UaGAS. This stability result of the cascaded system combined with the provided reference structure
already allowed us to track a formation with a specific number of robots. However, since there was
still no coupling between the robots, this still did not ensure synchronized positioning, since the
robots are unable to react to disturbances acting on the other.

Subsequently, in order to have control over the consideration (or trade-off) between tracking the
individual trajectories and staying in formation, we included coupling functions in the error def-
inition of the position tracking subsystem. The alternative approach of implementing coupling
functions directly in the virtual input was also considered, but we were unable to prove stability
because of the resulting coupling matrix in the closed-loop system. We choose to only consider
coupling in the position tracking subsystem, since the orientation tracking subsystem is designed
fully in service of the position tracking controller. Trying to synchronize orientation then only
acts as an additional disturbance to the desired heading angle. Based on our literature research,
we did not consider master-slave coupling, because mutual coupling provided better cooperative
formation tracking ability. The coupled position tracking subsystem is proven UGAS and we were
able to provide the desired heading and force magnitude input. Based on these results, we were
able to work with the same orientation error coordinates and apply the same orientation controller
as for the uncoupled system, leaving the entire orientation tracking subsystem in tact. We again
have the limitations that for some specific cases we are unable to provide a suitable force mag-
nitude input in order to obtain the desired input and we did not consider physical limitations of
the motors and therefore saturation. For now we allow these limitations in order to later on over-
come these for the main focus that is the quadrotor UAV. Based on the combined results, we have
again analyzed the stability of the cascaded structure and proved that the cascaded term is UaGAS.
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A brief simulation study showed the behavior in a simple test case and it is shown that it is
possible to obtain the formation shape even before the reference states are reached, resulting from
the included coupling functions. In the next chapter, we want to follow a very similar approach
for a system of quadrotor UAVs, to eventually obtain similar formation tracking (behavior) with
quadrotor UAVs.
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Chapter 4

Formation tracking with quadrotor
UAVs

In the previous chapter, we developed a formation controller that induced mutual coupling between
individual agents, in which the agents are represented by unicycle robots. The consecutive inter-
mediate steps deliberately match the objectives of this research, so that we can now follow these
same steps but for the quadrotor UAV.

In this chapter, we first introduce the model of a quadrotor UAV, modelled according to the
Newton-Euler framework, in order to obtain the same model as used in [19]. After that, we in-
troduce reference dynamics to track and the tracking problems. Subsequently, we first develop a
tracking controller for the individual agent, so that we can track provided reference trajectories
with a single quadrotor UAV. Then, we provide a virtual structure approach to obtain a set of
feasible reference trajectories that together form a reference formation. The set of feasible reference
trajectories together with the ability to track a reference trajectory already allows us to track a for-
mation with multiple robots, however, still without any coupling between the agents. Therefore, in
order to have some reciprocity between staying in formation and tracking the individual reference,
we then induce mutual coupling between the agents, so that we are able to retain the formation
even when individual agents are perturbed. At the end, we validate the behavior in some simple
simulated case-studies.

4.1 Single-agent reference tracking

First, we want to follow [11,19] in order to control a single quadrotor UAV. This is important since
we want to slightly adjust the error definitions, so that the error coordinates of the different agents
are mutually comparable. Currently, so in [11] and [19], this comparability is absent, since the error
coordinates of the agent are expressed relative to a frame that is only known by the agent itself,
following from logical choices that were made without the intention of coupling multiple agents.
Therefore, in this section, we first introduce the dynamical model of a quadrotor UAV and state a
tracking problem. After that, we follow the controller design procedure from [11] in order to prove
the stability of the slightly adjusted controller.

4.1.1 Modeling and Problem definition

Consider a quadrotor UAV i with velocity νi ∈ R
3 relative to the body fixed reference frame Bi,

position ρi ∈ R
3 relative to an inertial frame I, a rotation matrix Ri ∈ SO(3) that transforms Bi

to I and angular velocities ωi ∈ R
3 relative to the body-fixed frame Bi. The body-fixed frame Bi

represents the spatial attitude of the quadrotor UAV, which means that Ri equivalently represents
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the attitude of the body relative to the inertial frame I. A schematic representation of this quadrotor
UAV is shown in Figure 4.1. The quadrotor is presented in +-configuration for illustration clarity,
meaning that the frame partially aligns with frame Bi. For the rest of this thesis, however, we
assume ×-configuration, as we intend to develop a system for a quadrotor UAV with a dedicated
forward direction according to the ×-configuration. The relation between the two configurations
is geometrically defined and only shows in the exact conversion from motor inputs Ti,j with j =
{1, 2, 3, 4} to fi and τi. By following the Newton-Euler modelling approach [28], the dynamical

I

Bi

Ti;1

Ti;2

Ti;3

Ti;4

τi;1

τi;2τi;3

νi;1

νi;2

νi;3

fi

ρi

Figure 4.1: Schematic configuration of quadrotor UAV i with body-fixed-frame Bi, relative to
Inertial frame I. The rotation matrix Ri rotates Bi to I. Indicated are the position of the quadrotor
ρi relative to I , the body fixed accelerations νi, and the force fi and torque τi resulting from the
individual motors.

model of a quadrotor UAV equals

ρ̇i = Riνi, (4.1a)

ν̇i = −S(ωi)νi + gR�
i e3 −

fi
mi

e3, (4.1b)

Ṙi = RiS(ωi), (4.1c)

Jiω̇i = S(Jiωi)ωi + τi, (4.1d)

with mass mi, inertia matrix Ji = J�
i > 0 with respect to the body-fixed frame Bi, the skew

symmetric matrix S(·) from Theorem 2.1.1, the inputs for control fi ∈ R and τi ∈ R
3. Notice that

since the velocity νi and angular velocity ωi are expressed in the body-fixed frame as well as the
inertia matrix Ji, force magnitude input fi and torque input τi, the resulting model is relatively
simple. The body-fixed frame Bi is a right-handed reference frame, defined relative to a North-
East-Down (NED) inertial frame I. NED coordinate frames are commonly used in the modeling
and control of aerial vehicles [51], as they have proven to work particularly well for tasks such as
navigation and auto-pilot. In addition to the dynamics of a quadrotor UAV (4.1), assume that we
have a feasible reference trajectory, i.e., a trajectory (ρi,r, Ri,r, νi,r, ωi,r, fi,r, τi,r) that also satisfies
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the dynamics of a quadrotor

ρ̇i,r = Ri,rνi,r, (4.2a)

ν̇i,r = −S(ωi,r)νi,r + gR�
i,re3 −

fi,r
mi

e3, (4.2b)

Ṙi,r = Ri,rS(ωi,r), (4.2c)

Jiω̇i,r = S(Jiωi,r)ωi,r + τi,r, (4.2d)

where 0 < fmin
r ≤ fi,r(t). Similar as for the actual quadrotor UAV, we define a body fixed right-

handed reference frame Ri that is expressed relative to the inertial frame I. As we aim to provide
a similar solution to the exact same tracking problem from [11], let us adopt the following error
coordinates on SE(3)

ρ̃i = R�
i,r(ρi − ρi,r), (4.3a)

ν̃i = R̃�S(ωi,r)ρ̃i,r + ν − R̃�
i νi,r, (4.3b)

R̃i = R�
i,rRi, (4.3c)

ω̃i = ωi − R̃�
i ωi,r, (4.3d)

and adopt the corresponding error measure

εi(ρ̃i, ν̃i, R̃i, ω̃i) = ||ρ̃i||+ ||ν̃i||+ || log R̃i||+ ||ω̃i||, (4.4)

for robot i. Then, define the tracking control problem as follows.

Problem 4.1.1 (cf. [11]). Given a feasible reference trajectory (ρi,r, Ri,r, νi,r, ωi,r, fi,r, τi,r) for
robot i, find control laws

fi = fi(ρi, νi, Ri, ωi, ρi,r, νi,r, Ri,r, ωi,r), (4.5a)

τi = τi(ρi, νi, Ri, ωi, ρi,r, νi,r, Ri,r, ωi,r), (4.5b)

such that the resulting closed-loop (4.1), (4.2) and (4.5) yields

lim
t→∞ εi(ρ̃i(t), ν̃i(t), R̃i(t), ω̃i(t)) = 0. (4.6)

4.1.2 Position reference tracking with a quadrotor UAV

Consider a single quadrotor UAV identified by i from (4.1) and consider the dynamics of a virtual
reference quadrotor UAV (4.2). Now, we would like to define generalized coordinates that best
facilitate the eventual use for the control of an entire formation. A bad choice, for instance,
would be to define generalized coordinates in the reference frame Ri for robot i, since the error
coordinates between different agents would then not be comparable as they are all expressed in
their own reference frame; therefore, we slightly diverge from [11] with the objective to enable
coupling between agents. A better idea would be to express the error coordinates in the inertial
frame I, since this frame is already known by all of the involved agents and the errors are directly
comparable since they are expressed in the same mutually known frame. However, by using the
inertial frame, we cause different behavior when we make a different choice for the pose of the
inertial frame I; e.g., when we rotate the frame by 90 degrees about the z-axis, we change the gains
that work on the x-direction and y-direction. Therefore, we imagine that we are able to extend the
previously introduced virtual formation structure to the 3D case and let us prematurely introduce
a new mutually known frame F that is also right-handed, denoted as the formation frame. Notice
that the frame F can be translating and rotating in time, which is later on used in order to make a
distinction between the formation shape (Ri relative to F) and the formation pose (F relative to
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I). Let us use the rotation matrix Rf to denote the rotation from F to I. Subsequently, define the
position tracking error coordinates for agent i, expressed in the formation centered reference frame
F , as

ρi,e = R�
f [ρi,r − ρi] , (4.7a)

νi,e = R�
f [Ri,rνi,r −Riνi] . (4.7b)

Notice that we are free to choose the formation frame F as it represents a virtual center. Therefore,
in a single agent system, we can choose F equal to one of the other involved frames to obtain more
classical error definitions. Differentiating (4.7) along the dynamics yields

ρ̇i,e = −S(ωf )ρi,e + νi,e, (4.8a)

ν̇i,e = −S(ωf )νi,e +R�
f Ri,rS(ωi,r)νi,r −R�

f RiS(ωi)νi . . . (4.8b)

+R�
f Ri,r

[
−S(ωi,r)νi,r + gR�

i,re3 −
fi,r
mi

e3

]
−R�

f Ri

[
−S(ωi)νi + gR�

i e3 −
fi
mi

e3

]
,

= −S(ωf )νi,e +R�
f Ri,r

[
gR�

i,re3 −
fi,r
mi

e3

]
−R�

f Ri

[
gR�

i e3 −
fi
mi

e3

]
, (4.8c)

= −S(ωf )νi,e +R�
f Ri

fi
mi

e3 −R�
f Ri,r

fi,r
mi

e3︸ ︷︷ ︸
ui

. (4.8d)

Assume that

ui = R�
f Ri

fi
mi

e3 −R�
f Ri,r

fi,r
mi

e3, (4.9)

is a virtual input which later on is achieved by controlling the thrust magnitude fi and attitude
Ri with inputs τi. Since the thrust vector in the body-fixed frame fie1 and attitude Ri are both
in the same term, we know that we have full control over the defined virtual input, therefore, we
consider this virtual input ui for controller design. The force magnitude fi is used to obtain the
magnitude of the desired virtual input and the attitude Ri is used to point the force vector fie1
in the desired direction. Notice that stabilizing the dynamics (4.8) with error definitions (4.7) also
provides a possible solution to Problem 4.1.1. Let us now work towards a possible solution.

In order to stabilize the error dynamics (4.8), we define the feedback control law

ui = −ki,ρρi,e −Ki,ννi,e. (4.10)

However, following from (4.9), we see that we can not allow every input size ui, since there at least
is some physical limitation on the maximal thrust magnitude fi that agent i is able to provide. In
order to have ui bounded, let us use a saturation function σ(·), according to Definition 2.2.1, that
satisfies ||σ(·)|| ≤ M , for some M .
For now, let us step back to the more general definition for a saturation function σ(·), from Defini-
tion 2.2.1 and Definition 2.2.2. We present our possible solution for stabilizing the dynamics (4.8)
as follows.

Proposition 4.1.1. Consider the generalized dynamics (4.8). Define the feedback control law

ui = −ki,ρσ(ρi,e)−Ki,νσ(νi,e), (4.11)

which provides the closed-loop system

ρ̇i,e = −S(ωf )ρi,e + νi,e, (4.12a)

ν̇i,e = −S(ωf )νi,e − ki,ρσ(ρi,e)−Ki,νσ(νi,e). (4.12b)

The origin of the closed-loop system (4.12) is uniformly globally asymptotically stable (UGAS).
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Proof. Consider the candidate Lyapunov function

V1(ρi,e, νi,e) = ki,ρVσ +
1

2
ν�i,eνi,e, (4.13)

with Vσ from Definition 2.2.1, scalar gain ki,ρ > 0. Note that V1(ρi,e, νi,e) only equals 0 at the ab-
solute origin and in the domain excluding the origin the function is positive definite. Differentiating
(4.13) along the solutions (4.12) yields

V̇1(ρi,e, νi,e) = ki,ρρ̇
�
i,eσ(ρi,e) + ν�i,eν̇i,e, (4.14a)

= [−S(ωf )ρi,e + νi,e]
�
ki,ρσ(ρi,e) + ν�i,e [−S(ωf )νi,e − ki,ρσ(ρi,e)−Ki,νσ(νi,e)] ,

(4.14b)

= ki,ρρi,eS(ωf )σ(ρi,e) + ki,ρν
�
i,eσ(ρi,e)− ν�i,e [S(ωf )νi,e + ki,ρσ(ρi,e) +Ki,νσ(νi,e)] ,

(4.14c)

= −ν�i,eKi,νσ(νi,e) = Y1(νi,e) ≤ 0, (4.14d)

in which we have used the property of a skew symmetric matrix b�S(a)b = 0 for a ∈ R
3 and b ∈ R

3.
Then, since until now we only have νi,e included in the time derivative of the Lyapunov function,
define

V̇2(ρi,e, νi,e) = ρ�i,eνi,e, (4.15)

with time derivative along the dynamics

V̇2(ρi,e, νi,e) = ˙ρi,e
�νi,e + ρ�i,eν̇i,e, (4.16a)

= [−S(ωf )ρi,e + νi,e]
�
νi,e + ρ�i,e [−S(ωf )νi,e − ki,ρσ(ρi,e)−Ki,νσ(νi,e)] , (4.16b)

= ν�i,eνi,e − ρ�i,eki,ρσ(ρi,e)− ρ�i,eKi,νσ(νi,e) = Y2(ρi,e, νi,e). (4.16c)

We now use Matrosov’s Theorem [37], included as Theorem 2.2.1, in order to conclude asymptotic
stability. We have V1(ρi,e, νi,e) ≥ 0 provided that ki,ρ > 0 and Ki,v = K�

i,v > 0, satisfying the first

condition from Theorem 2.2.1. Furthermore, by choosing V̇1(ρi,e, νi,e) = Y1(νi,e) and V̇2(ρi,e, νi,e) =
Y2(νi,e, ρi,e) follows that the second condition is automatically satisfied. Then, we find Y1(νi,e) = 0
for νi,e = 0, which implies Y2(ρi,e, 0) = −ρ�i,eki,ρσ(ρi,e) ≤ 0 provided ki,ρ > 0, which means that
the third assumption holds. Lastly, the equalities Y1(νi,e) = 0 and Y2(ρi,e, νi,e) = 0 only hold at the
absolute origin. Concluding, since all conditions from Theorem 2.2.1 are satisfied, the closed-loop
system (4.12) is UGAS.

4.1.3 Attitude control

In the previous part we have shown that if we have R�
f Ri

fi
mi

e3 −R�
f Ri,r

fi,r
mi

e3 equal to the desired
value for ui from (4.10), the resulting closed-loop position tracking error dynamics are UGAS.
Therefore, similar to [11], we now aim to use the inputs fi and τi to achieve this virtual input ui.
Let us rewrite (4.9), to

R�
f Ri

fi
mi

e3 = R�
f Ri,r

fi,r
mi

e3 − ui, (4.17)

which means that we can rephrase our aim: we want to find inputs fi and τi in order to obtain the
vector R�

f Ri,r
fi,r
mi

e3 − ui, with the vector R�
f Ri

fi
mi

e3. Notice that we are able to control Ri by the
input τi from (4.1) in order to obtain the desired orientation, while we can obtain the magnitude
of the virtual input with fi. From (4.17), we find

Rifie3 = Ri,r

[
fi,re3 −R�

i,rRfmiui

]
. (4.18)
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Due to the unit length of rotation matrices, we find the force magnitude, by

fi = ||fi,re3 −R�
i,rRfmiui||. (4.19)

where ui is given by (4.11), such that fi > 0. What remains is to find the desired attitude to let
R�

i,rRifie3 equal (fi,re3−R�
i,rRfmiui). However, notice that because of the geometrical properties of

the propellers, the force vector fie3 only has a component in body-fixed e3 direction. Consequently,
based on (4.18), we are free in the rotation around the thrust axis while still able to provide any
virtual input ui. Based on (4.18) and (4.19), we define the desired direction of the thrust vector, as

Ri,de3 =
fi,re3 −R�

i,rRfmiui

||fi,re3 −R�
i,rRfmiui||

:= fi,d, (4.20)

where

fi,d =
[
fi,d1 fi,d2 fi,d3

]�
. (4.21)

Notice that (4.19) and (4.20) also indicate the necessity of saturation of the virtual input, since
it shows that we need fi > 0 in order to have the desired attitude Ri,d well-defined. Since we
now have only have a wanted direction for the thrust vector fi,d, we still have not fully prescribed
the position of the desired frame Di, since rotation around this thrust vector is still free. Let us
choose to let the entire rotation happen in the plane spanned by fi,d and e3, with the angle that
is defined as the angle between those two vectors. This means that the rotation matrix Ri,d that
rotates the desired frame to the reference frame describes a rotation from the desired thrust vector
to the thrust vector of the reference in the spanned plane. The rotation thus happens around an
axis perpendicular to this plane, given by

ni =
fi,d × e3

||fi,d × e3|| , (4.22)

which is normalized to ensure unit length. The amount of rotation is then given by

cos(θi,d) =
e3 · fi,d

||fi,d|| ||e3|| =
[−fi,d2 fi,d1 0

]�
, (4.23)

which with Pythagoras in the unit disc and the unit length of any column in a rotation matrix
(||fi,d|| = 1) also provides

sin(θi,d) =
√
1− cos2(θi,d) =

√
1− f2

i,d3. (4.24)

We now use (4.22), (4.23), and (4.1.3) together with Rodrigues’ rotation formula, given by

Ri,r = I + (sinαi)S(ni) + (1− cosαi)S(ni)
2, (4.25)

in order to find Ri,d, as

Ri,d =

⎡
⎢⎢⎣
1− f2

i,d1

1+fi,d3
− fi,d1fi,d2

1+fi,d3
fi,d1

− fi,d1fi,d2
1+fi,d3

1− f2
i,d2

1+fi,d3
fi,d2

−fi,d1 −fi,d2 fi,d3

⎤
⎥⎥⎦ ∈ SO(3). (4.26)

Thus, the rotation matrix Ri,d rotates fi,d to e3 in the plane spanned by fi,d to e3, around the
vector perpendicular to those two vectors fi,d and e3 and with the rotation angle also defined by

the angle between the two vectors fi,d and e3. Since we also know that Ṙi,d = Ri,dS(ωi,d), we find

ωi,d =

⎡
⎢⎢⎣
−ḟi,d2 +

fi,d2ḟi,d3
1+fi,d3

ḟi,d1 − fi,d1ḟi,d3
1+fi,d3

fi,d2ḟi,d1−ḟi,d2fi,d1
1+fi,d3

⎤
⎥⎥⎦ . (4.27)
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Given (4.18), (4.19) and (4.26), we obtain the equality[
fi,re3 −R�

i,rRfmiui

]
= fiRi,de3, (4.28)

so in order to obtain the goal of having R�
i,rRifie3 equal to (fi,re3 −R�

i,rRfmiui), what remains is

to find inputs τi to let Ri,dfie3 converge to R�
i,rRifie3. In order to do so, let us define the attitude

tracking error

Ri,e = R�
i,d(R

�
i,rRi), (4.29a)

with corresponding angular velocity error

ωi,e = ωi −R�
i Ri,rωi,r − (R�

i Ri,r)Ri,dωi,d. (4.29b)

Note that (R�
i Ri,r)Ri,d = (R�

i,d(R
�
i,rRi))

� = R�
i,e. The angular velocity error is expressed in the

body fixed reference frame Bi of robot i, as that is convenient for controller design, because that
means that the input τi, which by definition also aligns with Bi, appears directly in the error
dynamics. The terms R�

i Ri,r and (R�
i Ri,r)Ri,d from (4.29b), respectively, are used to transform

the angular velocity of the reference frame Ri and the desired frame Di from their own frame to
the body-fixed frame Bi. Differentiating (4.29a) and (4.29b) along their solutions, yields

Ṙi,e = Ri,eS(ωi,e), (4.30a)

Jiω̇i,e = S(Jiωi)ωi + τi + S(ωi)R
�
i Ri,rωi,r −R�

i Ri,rS(ωi,r)ωi,r . . . (4.30b)

−R�
i Ri,rJ

−1 [S(Jiωi,r)ωi,r + τi,r] + S(ωi,e)R
�
i,eωi,d −R�

i,eω̇i,d.

Let us now state the attitude tracking control problem.

Problem 4.1.2. (Attitude tracking problem) Consider the attitude tracking dynamics (4.30),
resulting from the attitude tracking errors as defined in (4.29). The desired equilibrium of the system
is given as (I, 0) ∈ SO(3)× R

3. Find an appropriate control law

τi = τi(t, Ri,e, ωi,e), (4.31)

such that the resulting closed-loop system (4.30), (4.31), yields

lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0.

let us immediately propose a possible solution based on the known stability results, included in
Theorem 2.2.3. More specifically, let us follow [11,19], based on [30,32,52].

Proposition 4.1.2. Consider the attitude tracking dynamics (4.30), resulting from the attitude
tracking errors as defined in (4.29) and ωi,d as defined in (4.27). Choosing the control law

τi = −Ki,ωωi,e +Ki,R

3∑
s=1

ks(es ×R�
i,ees)− S(Jiωi)ωi − S(ωi)R

�
i Ri,rωi,r . . . (4.32)

+R�
i Ri,rS(ωi,r)ωi,r +R�

i Ri,rJ
−1 [S(Jiωi,r)ωi,r + τi,r]− S(ωi,e)R

�
i,eωi,d +R�

i,eω̇i,d,

with Ki,ω = K�
i,ω > 0 and Ki,R = K�

i,R > 0, provides a closed-loop format that is equivalent to [11].
The closed-loop system (4.30) with (4.32), yields

Ṙi,e = Ri,eS(ωi,e), (4.33a)

Jiω̇i,e = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees), (4.33b)

for which (I, 0) is ULES and UaGAS for distinct ki,s with s = 1, 2, 3 when Ki,ω = K�
i,ω > 0 and

Ki,R = K�
i,R > 0, cf. [30,32]; included in Theorem 2.2.3 including proof.

45
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In order to provide a full solution to Problem 4.1.1, however, we can not simply look at the
position tracking subsystem and attitude tracking subsystem separately. The controlled attitude
is namely required to obtain the virtual input for the position tracking subsystem and achieved
asymptotically. This means that the virtual input is not achieved at all times, since the desired
attitude is asymptotically achieved rather than identically the same as the actual attitude. We
can see the two subsystems as one cascaded system, since the solution of the attitude tracking
subsystem thus perturbs the position tracking subsystem. In order to analyze the stability of the
cascaded system, we execute a cascade system analysis.

4.1.4 Cascade system analysis

In the previous sections, we have designed a virtual control action ui for the position tracking
error dynamics of a robot i and a controller for fi and τi to asymptotically achieve this virtual
control action ui. What remains is to analyze the stability of the attitude and position subsystems
in cascade, similar to [11]. Consider the dynamics of the quadrotor UAV (4.1) and its virtual
reference quadrotor UAV (4.2) in closed-loop with inputs (4.11), (4.19) and (4.32). The cascaded
closed-loop system in generalized coordinates then equals

ρ̇i,e = −S(ωf )ρi,e + νi,e, (4.34a)

ν̇i,e = −S(ωf )νi,e − ki,ρσ(ρi,e)−Ki,νσ(νi,e) +
fi
mi

R�
i,rRi(I −R�

i,e)e3, (4.34b)

Ṙi,e = Ri,eS(ωi,e), (4.34c)

Jiω̇i,e = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees), (4.34d)

in which the cascaded term fi
mi

R�
i,rRi(I −R�

i,e)e3 = fi
mi

(R�
i,rRi −Ri,d)e3 is as a disturbance on the

position tracking system that results from the fact that the attitude error is not fully converged
yet; due to the remaining attitude error, the virtual input ui is basically not yet entirely obtained
by fi and τi.

If we are able to conclude

lim
t→∞ ρi,e = 0, lim

t→∞ νi,e = 0, lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0, (4.35)

the tracking control problem from Problem 4.1.1 is solved, since if (4.35) holds, the conditions from
Problem 4.1.1 hold automatically. The result is presented as follows.

Proposition 4.1.3. Consider the closed-loop cascaded system 4.34. The solutions of the closed-
loop cascaded system (4.34) are uniformly almost-globally asymptotically stable. The solutions of
(4.34) asymptotically converge to the origin for all ρi,e ∈ R

3, νi,e ∈ R
3 and (Ri,e, ωi,e) ∈ G with

G ⊂ SO(3)× R
3 and M = (SO(3)× R

3) \G a set with measure zero.

Proof. Identify the cascaded system ((4.34a),(4.34b)) and ((4.34c),(4.34d)). We know that the
attitude tracking subsystem ((4.34c),(4.34d)) is UaGAS, so for the cascaded system, we consider
the stability analysis on R

6 × G, where G ⊂ SO(3) × R
3 denotes the almost global region of

attraction. By only considering this region, we are able to use Theorem 2.2.4 in order to prove
the cascaded system stable. Then, from Section 4.1.2 we already know that the position reference
tracking subsystem in its unperturbed form (assume Ri,e = I in ((4.34a),(4.34b)) to obtain (4.12))
is UGAS. What remains is to show that ρi,e and νi,e remain bounded, with the dynamics from
((4.34a),(4.34b)). Consider

V = ki,ρVσ +
1

2
ν�i,eνi,e, (4.36)
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so that differentiating yields

V̇ (ρi,e, νi,e) = ki,ρρ̇
�
i,eσ(ρi,e) + ν�i,eν̇i,e, (4.37a)

= [−S(ωf )ρi,e + νi,e]
�
ki,ρσ(ρi,e) . . . (4.37b)

+ ν�i,e

[
−S(ωf )νi,e − ki,ρσ(ρi,e)−Ki,νσ(νi,e) +

fi
mi

R�
i,rRi(I −R�

i,e)e3

]
,

= −ν�i,eKi,νσ(νi,e) + ν�i,e
fi
mi

R�
i,rRi(I −R�

i,e)e3, (4.37c)

which results in

V̇ (ρi,e, νi,e) ≤ ν�i,e
fi
mi

R�
i,rRi(I −R�

i,e)e3 ≤ c1

√
V (ρi,e, νi,e)||I −Ri,e||. (4.38)

Resulting from the fact that ((4.34c),(4.34d)) is ULES, as in [11], we have√
V (ρi,e(t), νi,e(t))−

√
V (ρi,e(t0), νi,e(t0)) ≤ c2(t0), (4.39)

which means that V (ρi,e, νi,e) is bounded, so ρi,e and νi,e are bounded. From Theorem 2.2.4 follows:
the closed-loop cascaded system (4.34) is ULES and UaGAS. Therefore, the dynamics (4.1) and
(4.2) in closed-loop with inputs (4.11), (4.19) and (4.32) are ULES and UaGAS.

Different from previous results, as [11, 19], the provided solution to the reference tracking problem
from Problem 4.1.1 is based on generalized coordinates that are expressed in a mutually known
frame. Furthermore, by introducing a notation that allows for identifying a specific agent, by
utilizing an index i, we can stack the dynamics of these individuals and scale to any number of
agents in the system. In fact, if we are able to provide a set of n feasible reference trajectories
that together form a virtual formation in time, we can use the agents with i = 1, . . . n to track this
virtual formation. However, without any interconnection, we are unable to provide any guarantee
on the formation tracking behavior, since the agents are still unaware of each other, which prohibits
them from reacting to disturbances on the others. Therefore, we should implement some coupling
between the agents in order to have control over the consideration between tracking of the individual
reference trajectory and staying (or going) in formation.

4.2 Formation control

In this section, we first introduce a virtual formation reference structure, similar to Section 3.1.3
(e.g., as in [15]) but now in 3D instead of 2D, in order to systematically obtain a set of n feasible
reference trajectories for n quadrotor UAVs to form a formation. Then, we want to implement
coupling functions on the individual systems to enable synchronized operation. At the end, we
want to analyze the stability and test the behavior of the system.

4.2.1 A spatial virtual reference structure for tracking

In order to systemetically obtain a set of n feasible reference trajectories, we choose to follow a sim-
ilar procedure as in [13,15], since there the graph structure relative to a virtual formation centered
coordinate frame is defined, which also provides a mutually known frame in order to later on relate
the individual generalized coordinates for mutual coupling.

Let us introduce the formation centered frame F , located at a fixed but free to choose virtual
center of the formation. Let the position of this frame over time be denoted by the time dependent
vector

ρf (t) = (xf (t), yf (t), zf (t))
� ∈ R

3, (4.40a)
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relative to the inertial frame I, and the attitude of this frame F relative to I by the rotation
matrix Rf (t) ∈ SO(3). Together, the position ρf (t) and attitude Rf (t) fully define the frame F .
Notice that we could choose Rf (t) = I or Rf (ρf (t)) in order to always find a suitable attitude,
something that we will do for the attitude of the quadrotor UAV, but for now we abstractly
assume Rf (t) available. Furthermore, assume a set of possibly time varying formation shape vectors
pi(i) = (pi,x(t), pi,y(t), pi,z(t))

� ∈ R
3 with i = 1, . . . , n that describes the positions of n quadrotor

UAVs relative to the virtual formation center F available. Subsequently, let us consider the reference
position of vehicle i, as

ρi,r = ρf +Rfpi, (4.41)

which is thus a composition between the path of the formation relative to the inertial frame and
the path of agent i relative to the virtual formation center, combined and expressed in the inertial
frame; this is similar to for example [15], but in 3D instead of 2D. Now, we need feasibility of the
reference trajectories (4.41), i.e., each reference trajectory i has to fulfill the dynamics (4.2) [22].
Assume that formation trajectory (ρf , Rf ) and the formation shape vectors pi are provided, as
these are the three parameters we need to have or choose in order to obtain the reference i. We can
then assume for quadrotor i that ρi,r(t) is given. Following from Newton’s second law, we know

ρ̈i,r(t) = ge3 − fi,r
mi

Ri,re3, so we can find fi,r by assuming fi,r > 0, as

fi,r = ||fi,rRi,re3|| = m||ge3 − ρ̈i,r|| > 0, (4.42)

satisfying in which we have used that ||Ri,re3|| = 1, following from Section 2.1. The normalized
direction of this thrust vector can then be found, which is because of the geometrical lay-out equal
to the direction Ri,re3, as

Ri,re3 =
ge3 − ρ̈i,r

||ge3 − ρ̈i,r|| =
⎡
⎣ri,r1ri,r2
ri,r3

⎤
⎦ . (4.43)

Notice that this also means that rotation around this thrust vector, i.e., the yaw angle, is still free
to choose. This follows from the fact that we are able to obtain any vector Ri,re3 with just the roll
and pitch freedom. In order to always obtain a reference attitude Ri,r we have to either prescribe
a possibly time varying yaw angle ψi(t) or choose a relation for the yaw angle as function of other
system parameters. Similar to [11], let us choose the yaw angle ψi such that the resulting rotation
matrix Ri,r rotates the thrust vector e3 to Ri,re3 in the spanned plane. By choosing this rotation
plane for the thrust vector, we have a single rotation (namely between the two vectors Ri,re3 and
e3) available to rotate back to hovering mode. In order to rotate the thrust vector in the plane
spanned by e3 and Ri,re3, we define the axis around which we rotate as the vector perpendicular
to this plane [28, Theorem 1.2.1] [25], as

ki = e3 ×Ri,re3 =
[−ri,r2 ri,r1 0

]�
. (4.44)

In order to find the rotation matrix defined by a rotation between two vectors in the spanned
plane, consider Rodrigues’ rotation formula (4.25), which describes a rotation of αi counterclockwise
around the normalized rotation axis ni. Since consider two vectors e3 and Ri,re3 that not only define
the rotation axis, but also the rotation angle, we now have enough information to fully define the
rotation matrix Ri,r from (4.25). The normalized rotation vector can now be found equal to

ni =
ki

||ki|| =
1√

r2i,r1 + r2i,r2

⎡
⎣−ri,r2

ri,r1
0

⎤
⎦ for ||ki|| > 0, (4.45)

and notice that
√
r2i,r1 + r2i,r2 + r2i,r3 = 1. Furthermore, notice that ||ki|| = 0 corresponds with the

scenario that e3 and Ri,re3 are aligned, which also means that there is no rotation and thus no
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rotation axis. The rotation angle αi between the two vectors is e3 and Ri,re3 obtained by

cosαi =
e3 •Ri,re3

||e3|| ||Ri,re3|| = ri,r3, (4.46)

and by using Pythagoras in the unit disc, we find

sinαi =
√
1− cos2 αi =

√
1− r2i,r3. (4.47)

By using (4.25), (4.45), (4.46), and (4.47), we obtain

Ri,r = I +
√
1− r2i,r3S(ni) + (1− ri,r3)S(ni)

2 (4.48)

which equals

Ri,r =

⎡
⎢⎢⎣
1− r2i,r1

1+ri,r3
− ri,r1ri,r2

1+ri,r3
ri,r1

− ri,r1ri,r2
1+ri,r3

1− r2i,r2
1+ri,r3

ri,r2
−ri,r1 −ri,r2 ri,r3

⎤
⎥⎥⎦ ∈ SO(3). (4.49)

Figure 4.2 shows an example of the frames of I and the Ri with the rotation plane spanned by e3
and Ri,re3 and rotation axis ni indicated. Notice that having e3 and Ri,re3 parallel thus results in
αi = 0 and Ri,r3 = 1, which provides Ri,r = I.

Figure 4.2: Rotation example of the frame Ri by rotation matrix Ri,r from (4.49), relative to the
inertial frame I. The plane and normalized axis ni perpendicular to this plane are indicated. As
an example, the direction of the reference thrust was chosen as Ri,re3 = 1√

3
[1 1 1]�.

Subsequently, using the dynamics (4.2), we find

νi,r = R�
i,rρ̇i,r, S(ωi,r) = R�

i,rṘi,r, τi,r = Jω̇i,r − S(Jωi,r)ωi,r, (4.50)

so by using the definition for S(ωi,r) from Theorem 2.1.1, we obtain [22]

ωi,r =

⎡
⎢⎣−ṙi,r2 +

ri,r2ṙi,r3
1+ri,r3

ṙi,r1 − ri,r1ṙi,r3
1+ri,r3

ri,r2ṙi,r1−ṙi,r2ri,r1
1+ri,r3

⎤
⎥⎦ . (4.51)
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In order to obtain τi,r, we also need

ω̇i,r =
d

dt
ωi,r =

⎡
⎢⎢⎣

−r̈i,r2 +
ṙi,r2ṙi,r3+ri,r2r̈i,r3

1+ri,r3
− ṙ2i,r3ri,r2

(1+ri,r3)2

r̈i,r1 − ṙi,r1ṙi,r3+ri,r1r̈i,r3
1+ri,r3

+
ṙ2i,r3ri,r1
(1+ri,r3)2

ri,r2r̈i,r1−r̈i,r2ri,r1
1+ri,r3

− ṙi,r3
ri,r2ṙi,r1−ṙi,r2ri,r1

(1+ri,r3)2

⎤
⎥⎥⎦ . (4.52)

Notice that in order to compute R̈i,r, we need R̈i,re3. For completeness, let us compute R̈i,re3, by
first defining

f∗
i,r = m(ge3 − ρ̈i,r), (4.53)

so that the first and second order time derivatives of Ri,re3, yield

Ṙi,re3 =

⎡
⎣ṙi,r1ṙi,r2
ṙi,r3

⎤
⎦ =

ḟ∗
i,r

fi,r
− ḟi,rf

∗
i,r

f2
i,r

, (4.54a)

R̈i,re3 =

⎡
⎣r̈i,r1r̈i,r2
r̈i,r3

⎤
⎦ =

f̈∗
i,r

fi,r
− ḟi,rḟ

∗
i,r

fi,r
− f̈i,rf

∗
i,r + ḟi,rḟ

∗
i,r

f2
i,r

+
2fi,rḟ

2
i,rf

∗
i,r

f3
i,r

, (4.54b)

in which

ḟ∗
i,r = −mi

...
ρ i,r, (4.55a)

f̈∗
i,r = −miρ

(4)
i,r , (4.55b)

fi,r = ||f∗
i,r|| =

√
(f∗

i,r)
�(f∗

i,r), (4.55c)

ḟi,r =
2(f∗

i,r)
�(ḟ∗

i,r)

||f∗
i,r||

, (4.55d)

f̈i,r =
2(ḟ∗

i,r)
�(ḟ∗

i,r + 2(f∗
i,r)

�(f̈∗
i,r)

||f∗
i,r||

− 4((f∗
i,r)

�(ḟ∗
i,r))

2

||f∗
i,r||f∗

i,r

. (4.55e)

Altogether, since we want to find feasible reference trajectories by only prescribing ρi,r(t) with

(4.40), we obtain all required system dynamics if we have existence of ρ
(4)
i,r , since then the entire

reference system (4.42) till (4.55) can be expressed in time derivatives of ρi,r(t). Thus, the time
varying reference position ρi,r(t) needs to be four times differentiable. Differentiating ρi,r from
(4.41) four times, yields

ρ̇i,r = ρ̇f + Ṙfpi +Rf ṗi, (4.56a)

ρ̈i,r = ρ̈f + R̈fpi + 2Ṙf ṗi +Rf p̈i, (4.56b)
...
ρ i,r =

...
ρ f +

...
Rfpi + 3R̈f ṗi + 3Ṙf p̈i +Rf

...
p i, (4.56c)

ρ
(4)
i,r = ρ

(4)
f +R

(4)
f pi + 4

...
Rf ṗi + 6R̈f p̈i + 4Ṙf

...
p i +Rfp

(4)
i . (4.56d)

Concluding, in this section we defined a virtual structure that acts as the reference formation for
n quadrotor UAVs to track. In order to have all reference trajectories i with i = 1, . . . , n feasible,
according to (4.42) till (4.55), the prescribed reference position ρi,r(t) over time needs to be four
times differentiable. Since we compose this reference trajectory by means of a virtual structure
approach, as defined in (4.41), we need to have ρf , pi, and Rf , four times differentiable, following
from (4.56d).
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4.2. FORMATION CONTROL

4.2.2 Formation tracking with a fleet of quadrotor UAVs

In the previous sections, we have provided a tracking controller for an individual agent and a
method to obtain a set of feasible reference trajectories for a set of agents. However, if we take
the previously defined tracking controllers (4.11), (4.19) and (4.32) for all of the individuals, we
still have no control over the consideration between tracking the individual reference trajectories
and staying in formation. Therefore, we want to find a coupling method to couple the tracking
dynamics of the agents in order to enable synchronized behavior [50]. Since the reference structure
and current controllers already allow a scalability to a high number of agents, we choose to strive
for mutual coupling between the agents. Another method would be master-slave coupling [16, 53],
but in our opinion this only provides a partly solution to the problem of synchronizing multiple
agents. The solution is considered as partly since the master-slave synchronization can still fail
as a result of the master being down or the slave being unable to catch up, both as a result of
the hierarchical structure of the system; if the master is down the slave cannot react as it is only
provided the task to follow the master and if the slave is down the master never knows. There-
fore, we want to provide all agents with their own reference trajectory and mutually implement
coupling, so that each of the agents makes a consideration between mutual synchronization and
following the own reference trajectory. Several coupling methods exist for mutual coupling, like
coupling by altering the reference trajectories [17,18], directly implementing coupling in the control
law [15] or by considering coupling terms in the generalized coordinates [13]. All of these methods
require to define some kind of error between any pair of coupled agents, but they differ in where
this error is incorporated in order to cause synchronization. Furthermore, since we aim to use a
similar cascaded approach as before, we use the attitude tracking subsystem in order to obtain the
virtual input. Therefore, we choose to only implement coupling on the position tracking subsystem,
to both leave the attitude tracking subsystem entirely in tact, as well as to not compromise the
position tracking ability. Adding coupling between agents on the attitude tracking, namely, would
act as an additional disturbance to the ability to point the thrust in the desired direction, which
compromises the position tracking performance.

The simplest alternative would be to directly add the coupling functions in the control law ui, as
in [15], so that we obtain the control law

ui = −ki,ρρi,e −Ki,vvi,e −
∑
j∈Ni

k̃i,ρ(ρj,e − ρi,e)−
∑
j∈Ni

K̃i,v(vj,e − vi,e), (4.57)

providing the closed-loop dynamics for the entire system at once, as

˙̄ρe = −GS(ωf )ρ̄e + ν̄e, (4.58a)

˙̄νe = −GS(ωf )ν̄e − K̄ρρ̄e − K̄ν ν̄e, (4.58b)

in which we use the stacked system parameters

ρ̄e =

⎡
⎢⎣ρ1,e...
ρn,e

⎤
⎥⎦ , v̄e =

⎡
⎢⎣v1,e...
vn,e

⎤
⎥⎦ , and GSωf

= diag(S(ωf ), . . . , S(ωf )), (4.59)
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and the coupling matrices

K̄ρ =

⎡
⎢⎢⎢⎢⎢⎣
K1,ρ −

∑
j∈N1

K̃1j,ρ K̃12,ρ · · · K̃1n,ρ

K2,ρ −
∑

j∈N2
K̃2j,ρ

...
...

. . .

K̃n1,ρ · · · K̃n(n−1),ρ Kn,ρ −
∑

j∈Nn
K̃n(n−1),ρ

⎤
⎥⎥⎥⎥⎥⎦ ,

(4.60)

K̄v =

⎡
⎢⎢⎢⎢⎢⎣
K1,v −

∑
j∈N1

K̃1j,v K̃12,v · · · K̃1n,v

K2,v −
∑

j∈N2
K̃2j,v

...
...

. . .

K̃n1,v · · · K̃n(n−1),v Kn,v −
∑

j∈Nn
K̃n(n−1),

⎤
⎥⎥⎥⎥⎥⎦ , (4.61)

with Ki,ρ = ki,ρI and K̃ij,ρ = k̃ij,ρI. Notice that as a result of the assumptions k̃ij,ρ > 0, K̃ij,ν =

K̃�
ij,ν > 0, k̃ij,ρ = k̃ji,ρ, and K̃ij,ν = K̃ji,ν , we have K̄ρ = K̄�

ρ > 0 and K̄v = K̄�
v > 0. The

closed-loop system (4.58) is very similar to the closed-loop system (4.12) for a single quadrotor.
However, one very important difference is that the gain on the position error now is a matrix K̄ρ

instead of a scalar ki,ρ, which makes it impossible to utilize ki,ρρ
�
i,eS(ωf )ρi,e = 0, as in (4.14), since

we now have ρ̄�e GS(ωf )K̄i,ρρ̄e �= 0. This means that we can not follow the Lyapunov proof from [11].
Therefore, instead of directly including the coupling terms in the control law, let us define a new
set of errors inspired by [18]

ρ̃i,e = R�
f

⎡
⎣(ρi,r − ρi) +

∑
j∈Ni

k̃ij,ρ((ρj,r − ρj)− (ρi,r − ρi))

⎤
⎦ , (4.62a)

ν̃i,e = R�
f

⎡
⎣(Ri,rνi,r −Riνi) +

∑
j∈Ni

k̃ij,ν((Rj,rνj,r −Rjνj)− (Ri,rνi,r −Riνi))

⎤
⎦ , (4.62b)

in which k̃ij,ρ > 0 and k̃ij,ν > 0 are coupling gains that can be seen as cost related to the coupling
error, expressed in the inertial frame. This choice was made deliberately so that every term has to
be multiplied by R�

f in order to be expressed in the formation frame eventually, which provides the
exact same dynamics as before

˙̃ρi,e = −S(ωf )ρ̃i,e + ν̃i,e, (4.63a)

˙̃νi,e = −S(ωf )ν̃i,e + ũi, (4.63b)

with ũi a virtual input that equals

ũi = R�
f

[
(Ri,r{gR�

i,re3 −
fi,r
mi

e3} −Ri{gR�
i e3 −

fi
mi

e3}) . . . (4.64)

+
∑
j∈Ni

k̃ij,ν((Rj,r{gR�
j,re3 −

fj,r
mj

e3} −Rj{gR�
j e3 −

fj
mj

e3}) . . .

− (Ri,r{gR�
i,re3 −

fi,r
mi

e3} −Ri{gR�
i e3 −

fi
mi

e3}))
]
.

because of the fact that the gains are expressed in the inertial frame and partly for control purposes,
we have chosen the gains k̃ij,ρ and k̃ij,ν scalar so that they work in every direction equally. In our
opinion this choice seems reasonable since first of all quadrotor UAVs are usually axisymmetric and
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4.2. FORMATION CONTROL

we do not necessarily need to have different coupling strengths in different directions. The preferred
alternative is to define the error coordinates with all gains expressed in the formation frame, as

ρ̃i,e = ρi,e +
∑
j∈Ni

k̃ij,ρ(ρj,e − ρi,e), (4.65a)

ν̃i,e = νi,e +
∑
j∈Ni

k̃ij,ν(νj,e − νi,e), (4.65b)

with ρi,e and νi,e as defined in (4.7), so expressed in F . However, these error definitions provide a
closed-loop system that we can not directly relate to the original format (4.12) in order to stabilize.
Therefore, for now we allow a scalar coupling strength and choose to use the definitions (4.62),
which provides similar generalized dynamics similar to the uncoupled generalized dynamics. This
known format results from the fact that coupling cost is implemented in the inertial frame and
premultiplied with R�

f , rotating the entire term from the inertial frame to the formation frame.
We allow this because this gain only influences the relative cost between the reference tracking
error and coupling error and is unidirectional. Since the cost is a scalar it works on all directions
equally and we can simply move it to the front in (4.63) and look at it as expressed in any frame
equally. Furthermore, we are still free to choose additional tracking gains in ũi to influence the
overall convergence of the generalized coordinates (4.62). Notice that stabilizing (4.63) also pro-
vides a solution to Problem 4.1.1, since the position tracking error definitions from Problem 4.1.1
are always identically zero if (4.62) is at the origin.

Considering the generalized dynamics (4.63) with generalized coordinates (4.62). By applying
Proposition 4.1.1, choosing the virtual input

ũi = −ki,ρσ(ρ̃i,e)−Ki,νσ(ν̃i,e), (4.66)

yields the closed-loop system

˙̃ρi,e = −S(ωf )ρ̃i,e + ν̃i,e, (4.67a)

˙̃νi,e = −S(ωf )ν̃i,e − ki,ρσ(ρ̃i,e)−Ki,νσ(ν̃i,e), (4.67b)

which is UGAS, as proven in Section 4.1.2.

4.2.3 Attitude control

Following from the previous section, we know that we are able to stabilize the dynamics with a
virtual input ũi. However, we need to find a method to achieve the virtual input ũi, by means of
the actual inputs fi and τi. Rewriting (4.64) provides

ũi = R�
f

[
(Ri,r{−fi,r

mi
e3} −Ri{− fi

mi
e3}) . . . (4.68)

+
∑
j∈Ni

k̃ij,ν((Rj,r{−fj,r
mj

e3} −Rj{− fj
mj

e3}) . . .

− (Ri,r{−fi,r
mi

e3} −Ri{− fi
mi

e3}))
]
,

ũi = R�
f

[
(Ri

fi
mi

e3 −Ri,r
fi,r
mi

e3) . . . (4.69)

+
∑
j∈Ni

k̃ij,ν

(
(Rj

fj
mj

e3 −Rj,r
fj,r
mj

e3)− (Ri
fi
mi

e3 −Ri,r
fi,r
mi

e3)
)]

.
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In order to find the input fi for robot i, we have to solve the entire set of these equations for fi
with i = 1, . . . , n. The entire (stacked) set of relations equals

Ũ = K̃ν

⎡
⎢⎣
R�

f (R1f1 −R1,rf1,r)
e3
m1

...
R�

f (Rnfn −Rn,rfn,r)
e3
mn

⎤
⎥⎦ , (4.70)

in which

U∗ =
[
(ũ1)

� · · · (ũ∗
n)

�]� , (4.71a)

K̃ν =

⎡
⎢⎢⎢⎢⎢⎣
I −∑

j∈N1
K̃1j,ν K̃12,ν · · · K̃1n,ν

I −∑
j∈N2

K̃2j,ν

...
...

. . .

K̃n1,ν · · · K̃n(n−1),ν I −∑
j∈Nn

K̃n(n−1),ν

⎤
⎥⎥⎥⎥⎥⎦ , (4.71b)

Kij,ν = Ik̃ij,ν . (4.71c)

We rewrite (4.70), to

K̃ν

⎡
⎢⎣
R�

f R1f1e3
...

R�
f Rnfne3

⎤
⎥⎦ = MŨ + K̃ν

⎡
⎢⎣
R�

f R1,rf1,re3
...

R�
f Rn,rfn,re3

⎤
⎥⎦ , (4.72a)

⎡
⎢⎣
R�

f R1f1e3
...

R�
f Rnfne3

⎤
⎥⎦ = K̃−1

ν MŨ +

⎡
⎢⎣
R�

f R1,rf1,re3
...

R�
f Rn,rfn,re3

⎤
⎥⎦ , (4.72b)

⎡
⎢⎣R1f1e3

...
Rnfne3

⎤
⎥⎦ = GRf

K̃−1
ν MŨ +

⎡
⎢⎣R1,rf1,re3

...
Rn,rfn,re3

⎤
⎥⎦ , (4.72c)

⎡
⎢⎣R1f1e3

...
Rnfne3

⎤
⎥⎦ = GRrG

�
Rr

GRf
K̃−1

ν MŨ +

⎡
⎢⎣R1,rf1,re3

...
Rn,rfn,re3

⎤
⎥⎦ , (4.72d)

⎡
⎢⎣
R�

1,rR1f1e3
...

R�
n,rRnfne3

⎤
⎥⎦ = G�

Rr
GRf

K̃−1
ν MŨ +

⎡
⎢⎣f1,re3...
fn,re3

⎤
⎥⎦ :=

⎡
⎢⎣F1

...
Fn

⎤
⎥⎦ , (4.72e)

in which M = diag(m1, . . . ,mn), GRf
= diag(Rf , . . . , Rf ), and GRr = diag(R1,r, . . . , Rn,r) with n

equal to the total number of agents in the system. We now find the actual force magnitude input
fi by utilizing the fact that fi = ||R�

i,rRifie3||, resulting in

fi = ||Fi||. (4.73)

We consider the misalignment between Ri,r and Ri from (4.72e) as the desired relative attitude in
order to actually achieve the virtual input ũi. We find this desired attitude based on (4.72e), as

Ri,de3 =
Fi

fi
:= fi,d, (4.74)

where fi(t) > 0 because of the included saturation in ui from (4.66). Similar as before, since this
only defines the third unit axis of the rotation matrix which we define as the desired thrust direction
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fi,d, rotation around this axis is still free. Therefore we still have to choose a desired yaw angle in
order to find a suitable rotation matrix, and therefore desired attitude. We choose to make Ri,d

rotate the direction of the desired thrust vector Ri,de3 to the direction of the thrust vector of the
reference in the reference frame e3, in the spanned plane. We again use Rodrigues’ rotation formula
from (4.25), since we again find both the rotation angle and axis based on the fact that we rotate
Ri,de3 to e3 in the spanned plane and therefore around the axis perpendicular to these two vectors.
By following the same approach as in Section 4.1.3, we obtain

Ri,d =

⎡
⎢⎢⎣
1− f2

i,d1

1+fi,d3
− fi,d1fi,d2

1+fi,d3
fi,d1

− fi,d1fi,d2
1+fi,d3

1− f2
i,d2

1+fi,d3
fi,d2

−fi,d1 −fi,d2 fi,d3

⎤
⎥⎥⎦ ∈ SO(3). (4.75)

Since we also know that Ṙi,d = Ri,dS(ωi,d), we find

ωi,d =

⎡
⎢⎢⎣
−ḟi,d2 +

fi,d2ḟi,d3
1+fi,d3

ḟi,d1 − fi,d1ḟi,d3
1+fi,d3

fi,d2ḟi,d1−ḟi,d2fi,d1
1+fi,d3

⎤
⎥⎥⎦ . (4.76)

What remains is to let R�
i,rRi converge to Ri,d. In order to do so, let us again use the same tracking

approach as in Section 4.1.3. Define the attitude tracking error

Ri,e = R�
i,d(R

�
i,rRi), (4.77a)

with corresponding angular velocity error expressed relative to the body-fixed frame Bi of quadrotor
i

ωi,e = ωi −R�
i Ri,rωi,r − (R�

i Ri,r)Ri,dωi,d, (4.77b)

where (R�
i Ri,r)Ri,d = R�

i,e. In order to solve the tracking problem, we follow the remaining steps
from Section 4.1.3. In fact, this means that the attitude tracking system remains unchanged and
only the relations between ũi and the actual input fi and desired attitude Ri,d is now different as a
result of introduced coupling. The method that is used to achieve this desired attitude by tracking
remains equal. For completeness, let us adopt some proceeding steps in this section.

Differentiating (4.77) along their solutions, yields

Ṙi,e = Ri,eS(ωi,e), (4.78a)

Jiω̇i,e = S(Jiωi)ωi + τi + S(ωi)R
�
i Ri,rωi,r −R�

i Ri,rS(ωi,r)ωi,r . . . (4.78b)

−R�
i Ri,rJ

−1 [S(Jiωi,r)ωi,r + τi,r] + S(ωi,e)R
�
i,eωi,d −R�

i,eω̇i,d.

This means that we can consider Problem 4.1.2 as the problem to solve in order to stabilize the
dynamics (4.78) too, since apart from some internal parametric relations the dynamics (4.78) are
equivalent to (4.30). Thus, since the problem is equal, we adopt the same proposition for a solution,
included as Proposition 4.1.2, to solve this problem. Choosing the input

τi = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees)− S(Jiωi)ωi − S(ωi)R

�
i Ri,rωi,r . . . (4.79)

+R�
i Ri,rS(ωi,r)ωi,r +R�

i Ri,rJ
−1 [S(Jiωi,r)ωi,r + τi,r]− S(ωi,e)R

�
i,eωi,d +R�

i,eω̇i,d,

with Ki,ω = K�
i,ω > 0 and Ki,R = K�

i,R > 0, provides a closed-loop format that is equivalent to [11].
The closed-loop system ((4.78), (4.79)), yields

Ṙi,e = Ri,eS(ωi,e), (4.80a)

Jiω̇i,e = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees), (4.80b)
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for which (I, 0) is ULES and UaGAS for distinct ki,s with s = 1, 2, 3 when Ki,ω = K�
i,ω > 0 and

Ki,R = K�
i,R > 0, conform [30,32], as included in Theorem 2.2.3. For the full proof, we refer to the

proof of Proposition 4.1.2.

4.2.4 Stability of the cascaded structure

In the previous part, we have designed control action ũi for the coupled position tracking error
dynamics of a robot i that is coupled to all robots j ∈ Ni conform Definition 3.3.1, and a controller
for fi and τi to asymptotically achieve this virtual control action ũi. However, since we asymp-
totically obtain the virtual input ũi, because of the asymptotic convergence of the desired attitude
Ri,d, we do not at all times identically apply the virtual input ũi. More specifically, the solution of
the attitude tracking subsystem, the residual error Ri,e, perturbs the position tracking subsystem
by sometimes pointing the force magnitude input fi in not exactly the desired direction. Therefore,
we have to analyze the cascaded system. Additionally, if we are able to conclude

lim
t→∞ ρ̃i,e = 0, lim

t→∞ ν̃i,e = 0, lim
t→∞Ri,e = I, and lim

t→∞ωi,e = 0, (4.81)

the tracking control problem from Problem 4.1.1 is solved, since if (4.81) holds, the conditions from
Problem 4.1.1 hold automatically.

Consider the dynamics of a fleet of n quadrotor UAVs (4.1), with i = 1, . . . , n, and a virtual
structure (4.41) that provides a set of feasible reference trajectories that fulfill the dynamics (4.2),
with i = 1, . . . , n, in closed-loop with inputs (4.66), (4.73) and (4.79). The cascaded closed-loop
system in generalized coordinates then equals

˙̃ρi,e = −S(ωf )ρ̃i,e + ν̃i,e, (4.82a)

˙̃νi,e = −S(ωf )ν̃i,e − ki,ρσ(ρ̃i,e)−Ki,νσ(ν̃i,e) +
fi
mi

R�
i,rRi(I −R�

i,e)e3, (4.82b)

Ṙi,e = Ri,eS(ωi,e), (4.82c)

Jiω̇i,e = −Ki,ωωi,e +Ki,R

3∑
s=1

ki,s(es ×R�
i,ees), (4.82d)

in which the cascaded term equals fi
mi

R�
i,rRi(I − R�

i,e)e3 = fi
mi

(R�
i,rRi − Ri,d)e3. Notice that

the cascaded system (4.82) is very similar to (4.34). By directly applying Proposition 4.1.3, we
conclude that the cascaded system (4.82) is UaGAS, meaning that we also provided a solution to
Problem 4.1.1 including coupling on the position subsystem.

4.3 Simulation study

In the previous section, the stability of the system is already guaranteed by the provided mathe-
matical proof. However, before using the developed system in a real-world application, we want to
test specific behavioral aspects of the system and their relation to system parameters and gains. In
this section, we try to find the effect that different coupling gains have on the convergence rate of
getting in formation and tracking the individual references. Therefore, we first simulate a system
of two quadrotor UAVs with a simple repetitive spatial reference trajectory that we can use in the
future to compare to the experimental behavior. We apply several different coupling gains in order
to find the effect on both coupling and tracking the individual references. Subsequently, in order to
further investigate the formation tracking properties, we created a stylized scenario in which we can
clearly see the consideration between tracking the individual references and the formation shape.
At the end, we show what happens if one of the quadrotor UAVs is unable to keep up as a result
of constant perturbation.
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For the first simulations with two quadrotor UAVs, we choose the initial conditions

ρ1 =
[
0.5 0.5 0

]�
,

v1 =
[
0.01 0.1 0.2

]�
,

φ1 = 0,

θ1 = 0,

ψ1 = 0,

ω1 =
[
0.1 0.2 −0.1

]
,

ρ2 =
[−0.5 0.5 0

]�
,

v2 =
[
0.01 0.1 0.2

]�
,

φ2 = 0,

θ2 = 0,

ψ2 = 0,

ω2 =
[
0.1 0.2 −0.1

]
.

(4.83)

The system parameters are set at

k1,ρ = k2,ρ = 1,

K1,ν = K2,ν = I,

K1,R = K2,R = 0.5I, (4.84)

K1,ω = K2,ω = 1.2I,

mi = 1, Ji = 1,

and the two different sets coupling gains are used for two different simulations

k̃12,ρ = k̃21,ρ = k̃12,ν = k̃21,ν = 1, (4.85a)

and

k̃12,ρ = k̃21,ρ = k̃12,ν = k̃21,ν = 5. (4.86a)

We first choose the formation trajectory and shape vectors equal to

ρf (t) =
[
cos(t) sin(t) sin(t)

]�
, (4.87a)

Rf (t) = Rz(t), (4.87b)

pi(t) = r
[
sin(i (4−n)π

2n ) cos(i (4−n)π
2n ) 0

]�
, (4.87c)

with radius r = 0.3 so that a the agents are equally spaced on a circle circumference in the plane for
which pi,z = 0. The yaw angle t is chosen to make the forward direction of the formation tangent

to the curve, since tan−1
(

cos(t)
sin(t)

)
= t; which relates to a constant yaw velocity of 1 rad/s. Thus,

we provide a 3D circular formation trajectory with the forward direction of Rf with both reference
quadrotor UAVs positioned with an equal offset (one with 0.3 and the other with -0.3) relative
to the formation frame F . For clarity, let us explicitly mention that we consider the individual
coupling error between two agents i and j, as

ρij,ε = R�
f ((ρj,r − ρj)− (ρi,r − ρi)), (4.88a)

νij,ε = R�
f ((Rj,rνj,r −Rjνj)− (Ri,rνi,r −Riνi), (4.88b)

which provides the full mutual coupling terms, equal to

ρi,ε = R�
f

∑
j∈Ni

((ρj,r − ρj)− (ρi,r − ρi)), (4.89a)

νi,ε = R�
f

∑
j∈Ni

((Rj,rνj,r −Rjνj)− (Ri,rνi,r −Riνi). (4.89b)
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The reference tracking errors are considered as

ρi,e = R�
f (ρi,r − ρi), (4.90a)

νi,e = R�
f (Ri,rνi,r −Riνi), (4.90b)

which together with the weighted sum of all individual coupling terms form the defined error (or
generalized) coordinates from the definition (4.62). We like to make this distinction clear so that
we are able to mention differences in reference tracking and coupling behavior, both on position
and velocity level.

(a) (b)

Figure 4.3: Error magnitudes from the simulation scenario (4.87) with system parameters (4.84)
and initial conditions (4.83). The coupling gains (4.85a) are used in (a), and (b) shows the results
from a simulation with coupling gainss (4.86a).

(a) (b)

Figure 4.4: Spatial trajectories from the simulated scenario (4.87) with system parameters (4.84)
and initial conditions (4.83). The coupling gains (4.85a) are used in (a), and (b) shows the results
from a simulation with coupling gainss (4.86a).
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The simulation is executed for both sets of coupling gains and the results are implemented in fig-
ures 4.3 till 4.5. Figure 4.3 shows that the magnitude of all errors reduces to 0 for both simulations,
so the quadrotor UAVs eventually converge to their desired states; as expected from the mathemat-
ical proof provided in the previous section. Furthermore, it shows that for a high coupling gain,
which basically means a higher cost on the coupling error, the magnitude of the generalized error
coordinates is greater. In Figure 4.4, the flight paths of the formation, reference UAVs and quadro-
tor UAVs are included for both coupling strengths (4.85a) and (4.86a). It shows that for a high
coupling gain, the quadrotors take a detour before converging towards the reference trajectory. As
a result of a high relative cost for the coupling error with respect to the error with their individual
reference position, the quadrotors are allowed to increase their individual tracking errors as long as
it provides a reduced coupling error; hence the detour. Figure 4.5 shows what happens to the mag-
nitude of the individual position tracking error vectors and coupling error vector for both coupling
strengths (4.85a) and (4.86a). Notice that the overall behavior with the increased coupling gain
is worsened, meaning that it takes a longer time before all position errors are converged, because
we use the same proportional and derivative gains ki,ρ and ki,ν , while in order to obtain the same
spatial tracking behavior we should increase these accordingly. Furthermore, Figure 4.5 shows that
for a high cost on coupling error the individual errors increase a lot in order to reduce the coupling
error, which is in agreement with the detour that is shown in Figure 4.4.

(a) (b)

Figure 4.5: Position reference tracking errors and coupling errors from the simulation scenario (4.87)
with system parameters (4.84) and initial conditions (4.83). The coupling gains (4.85a) are used in
(a), and (b) shows the results from a simulation with coupling gainss (4.86a).

In the previous simulations we have provided a scenario that is reproducible in the real world
and showed the effect of different coupling gains on a system that is initiated from specific initial
states. However, we especially developed a coupling structure in order to make all agents react to
disturbances to a specific agent during operation, so that we have control over the formation (shape)
tracking behavior even when one of the agents is perturbed. Therefore, in order to showcase the
tracking behavior during these disturbances, we simulate a stylized scenario in which four agents
are exactly on their reference states and the 5th and last agent is blown off its reference and thus
perturbed. We use the same system parameters as in (4.84) and simulate a linear movement of a
diagonal line-formation in positive x-direction. The results for simulations starting directly after
the perturbation without coupling (k̃12,ρ = k̃21,ρ = 0 and k̃12,ν = k̃21,ν = 0) and with coupling

(k̃12,ρ = k̃21,ρ = 1 and k̃12,ν = k̃21,ν = 1) are included in Figure 4.6.
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(a) (b)

Figure 4.6: Spatial flight paths with linear reference paths for the situation where all quadrotors
are initially on the reference trajectories except for one perturbed quadrotor UAV. In (a) there
is no coupling and in (b) there is coupling. The virtual formation centered frame F is located
at the potition of the quadrotor UAV that is in the middle and the formation moved in positive
x-direction.

Figure 4.7: Spatial flight paths with linear reference paths for the situation where all quadrotors
are initially on the reference trajectories except for one perturbed quadrotor UAV. One agent is
constantly perturbed to the extend that it cannot converge to the reference formation and coupling
gains are set at k̃12,ν = k̃21,ν = 1. The virtual formation centered frame F is located at the potition
of the quadrotor UAV that is in the middle and the formation moved in positive x-direction.

Figure 4.6 shows that in the simulation without coupling the agents do not react to the distur-
bance to one of the quadrotors in the system, while in the simulation with coupling the system first
converges partly to the desired formation shape before together converging to the desired location.
However, as a result of motor failure or disturbances from the surroundings it is possible that the
disturbed quadrotor UAV is unable to catch up with the formation. Therefore, in Figure 4.7 we
included simulation results of what happens if the perturbed agent is unable to converge back to the
reference formation. Figure 4.7 shows that as a result of the coupling term all other agents move to-
wards the perturbed agent until an equilibrium is met, which can be altered by changing the relative
cost declared to the coupling errors with respect to the reference tracking errors, as explained before.
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Although we showed the desired tracking and coupling behavior and the ability to control the
consideration between tracking the individual references and coupling, some necessary steps have
to be taken in order to obtain a real-world system of multiple quadrotor UAVs that can be operated.
These necessary steps, like how to use an external source to locate and identify multiple quadrotor
UAVs and which network architecture to use for communication between quadrotors and with the
supervisor, are executed and included in Appendix A. Although the entire system is developed
and tested, the system showed some shortcomings as a result of hardware limitations and software
architectural decisions. These limitations are also included in Appendix A and possible solutions
are included as learning points. The main shortcoming was the large delay and large sample time
for the external localization. Furthermore, notice that there is no collision avoidance algorithm, so
there is no guarantee that drones will not collide with each other. Therefore, before experimental
operation of a real-world system a collision avoidance algorithm should be implemented. Alter-
natively, the change for a collision can be minimized by defining a reference with all quadrotors
relatively far apart and testing in simulations before executing experiments for each scenario.

Concluding, in the first simulations we provided a 3D formation path for a formation of two quadro-
tor UAVs. We showed that all generalized error coordinates converge to the absolute origin. Solely
increasing the cost on the coupling error made the size of these generalized coordinates increase for
the same scenario, caused by this increased ’weight’. More important, increasing the cost on the
coupling error allowed the tracking errors to increase to reduce the coupling error, which caused the
quadrotors to take a detour before converging to the reference paths. In order to further investigate
the added ability to control the formation shape with the implemented coupling structure, we did
some more simulations that showed what happens if a single agent is momentarily or constantly
perturbed. We showed that we are then able to control the consideration between moving towards
the perturbed agent in order to keep or get in formation (with a high coupling gain) or moving
towards or keeping at the individual reference trajectories (coupling gain very low or zero).

4.4 Concluding remarks

In this chapter, we first introduced a model and notation for the quadrotor UAV that allows for
multiple agents in the system, by identifying specific agents with their index number. After that,
we adopted a tracking problem from previous research, which we first solved slightly differently for
the single agent system. We defined the error coordinates relative to a mutually known formation
centered frame and changed the control law accordingly. We showed that the closed-loop position
tracking error dynamics are uniform global asymptotically stable (UGAS) based on a defined virtual
input. Subsequently, we showed that we are capable of obtaining the virtual input by choosing a
specific force magnitude input that is related to the magnitude of the virtual input. Subsequently,
to also point the vector that now has the right magnitude in the desired direction, we defined the
desired attitude based on the desired direction and a specific choice for yaw angle. Then, we defined
an attitude error on SO(3) for the misalignment between the actual attitude and the desired atti-
tude. The desired attitude was then achieved by formulating an attitude tracking control problem
and the closed-loop system was rendered uniformly almost-globally asymptotically stable (UaGAS)
with the designed control action. Since the attitude converges to the desired attitude rather than
that the attitude is obtained at all times, the position tracking subsystem is perturbed by the
solution of the attitude tracking subsystem. Thereby, a cascaded structure was identified. Based
on cascaded theory, a cascade system analysis was executed showing that the cascaded system is
UaGAS.

Proceeding, we first defined a virtual reference structure, used to obtain a set of n feasible ref-
erence trajectories for a system with n quadrotor UAVs. In order for the reference to be feasible
for tracking, we need the parametric formation flight path (ρf (t)), formation attitude (Rf (t)) and
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possibly time varying formation shape (pi(t)) to be four times differentiable. The availability of the
feasible reference trajectories already allowed us to track a virtual reference formation with a fleet
of quadrotor UAVs, but still did not guarantee that the quadrotors stay in formation, since they
only try to track their individual reference trajectories and do not communicate and therefore not
react to the others. In order to provide some guarantee for the formation tracking abilities of the
multi-agent system, we had to synchronize operation based on cooperation of the agents. We pro-
vided this wanted level of cooperation by defining a consideration between tracking the individual
reference trajectories and getting or staying in formation. This was established by implementing
coupling between the agents.

We have chosen to strive for mutual coupling instead of, e.g., master-slave coupling, based on
our literature research. This choice was made because we want to obtain a homogeneous system
of multiple agents that is easily scalable to different numbers of agents and able to form a struc-
tured formation that performs agile maneuvers. Although different alternatives were investigated,
we implemented the coupling errors in newly defined generalized coordinates for position tracking
and followed the same cascaded approach for developing control laws. Because of this cascaded
approach, we chose to leave the attitude subsystems uncoupled, since we already use the attitudes
of the UAVs to obtain the virtual inputs that cause the wanted position tracking behavior. We
mentioned that additionally taking care of attitude coupling errors besides the reference tracking
errors would act as a disturbance to the attitude reference tracking convergence and therefore as
a disturbance on the position tracking behavior. This results from the fact that quadrotor UAVs
(have to) use the attitude of the quadrotor UAV to move it, since the thrust vector has to be di-
rected by the attitude of the body, because the thrust vector is fixed to the body; quadrotor UAVs
are under-actuated devices. Furthermore, by not including coupling on the attitude subsystems, we
remained the previously defined attitude subsystems entirely in tact. Similar as before, we defined
a virtual input that caused the now coupled position tracking subsystem to be UGAS and used the
actual inputs to obtain this virtual input magnitude and direction separately. Since the desired
attitude can differ from the actual attitude, the position tracking subsystem is perturbed by the
error of the attitude tracking subsystem, which indicated the cascaded structure. Using cascade sys-
tem theory, the stability of the cascaded structure was analyzed and the system was proven UaGAS.

Subsequently, we tested the behavior of the system by simulating some testcases. It was shown that
we are able to alter the coupling strength by altering the cost on the coupling error relative to the
cost on reference tracking and therefore have control over the consideration between getting/stay-
ing in formation and tracking the individual reference trajectories. For example, a low cost on the
coupling errors caused the system to allow the coupling error to increase in order to converge to
the reference faster, while a high cost on the coupling error caused the coupling error to converge
to 0 faster even when this prohibits the agents to track their individual references perfectly; e.g., if
one agent is unable to catch up while the others are on their reference, the agents move off their
reference in order to better obtain the formation shape. Thereby, it is shown that the formation is
able to react to disturbances to specific agents and that we are able to influence this reaction with
the coupling gain; meaning that with a coupling gain of 0 we remove this reaction/coupling entirely
and with a higher coupling gain we better obtain the reference formation shape. Furthermore, since
there is no collision avoidance implemented in the system, we cannot ensure to avoid collisions. Be-
sides actual collisions, for quadrotor UAVs it is dangerous to enter each others downwash, meaning
that is dangerous to cross other UAVs directly above or below. Since both collisions and flying
underneath other quadrotors cause problems, in the future, a collision avoidance algorithm that
additionally takes into account the hazardous zone underneath (and above) other UAVs has to be
implemented.

Furthermore, a program for experimentation is developed including external localization and com-
munication over a wireless network. During some early tests several learning points showed. First
of all, a relatively high delay of max about 0.43 s is present in the system. Furthermore, the
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external localization algorithm has a very long sample time of 0.2 s, which makes it one of the
limiting factors. Lastly, it is very important to make sure that the saturation terms and gains in
the applied inputs provide inputs that are within the bounds of the motors. If not, the thrusts
will be automatically saturated individually to a certain maximum, which makes controlling (the
attitude of) the quadrotor UAV impossible.

Concluding, this means that we obtained almost global formation tracking control including cou-
pling of multiple quadrotor UAVs on SE(3), based on some intermediate steps, starting from the
results presented in [11] to almost globally control a single quadrotor UAV on SE(3). Simulations
showed the ability to synchronize the formation but some future work remains before experimen-
tation.
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Chapter 5

Conclusions and recommendations

The concept of using several agents that partly rely on their interaction in order to obtain specific
combined behavior seems very interesting for the next generation of control systems, while in
the mean time progression persists in ever smarter design choices for control. We feel like the
specific combination between both worlds, a relatively complex control strategy based on recent
research as well as utilizing a well established coupling technique, opens up a promising direction for
progression in multi-agent systems. In this chapter, we first provide conclusions that are drawn from
the previous part of this research. After that, we want to point out specific limitations, promises
and future work in the form of recommendations.

5.1 Conclusions

In this thesis, we first developed a system of multiple mobile robots under mutual coupling. We
deliberately modeled the mobile robots with the Newton-Euler approach, which makes these mobile
robots modeled very similar to the model that was later on adopted for the quadrotor UAV. After
that, based on the insights that followed from the system of multiple unicycles, we developed the
system with multiple quadrotor UAVs under mutual coupling. In this section we separately present
our conclusions for the two to some degree similar multi-agent systems.

Formation tracking with mobile robots

Based on the Newton-Euler modeling framework together with the nonholonomic no side slip con-
straint, a model representation of unicycle robot is derived. Based on this model, we first introduced
generalized coordinates with respect to an introduced virtual frame. We showed that we are able
to stabilize the position dynamics, by choosing a virtual control law, and we showed that this vir-
tual input was theoretically obtainable since we have full control over the force magnitude input
and torque input that are incorporated. We neglected possible saturation necessity for real world
systems because of actuator saturation and well definedness, since we only looked at the theoretical
example of a unicycle in order to provide insights for the main objective that is the quadrotor
UAV. The closed-loop position tracking subsystem is proven uniformly globally asymptotically sta-
ble (UGAS) based on the defined virtual input. The force magnitude input allowed us to obtain
the virtual input magnitude and we showed that we are able to define a desired heading direction
based on the virtual input. Only in some special scenarios, the centripetal force of the unicycle
robot exceeds the magnitude of the combined reference and virtual input forces, then we are unable
achieve the right magnitude. However, for now we accept these limitations for the unicycle system,
as we again purely used this system as introductory case study for the main objective that is cou-
pling the quadrotor UAV. We used the torque freedom as input for control and designed a tracking
approach to let the actual heading direction converge to the desired heading direction asymptoti-
cally. The orientation tracking control system was proven uniformly almost-globally asymptotically
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stable (UaGAS). Based on the fact that the desired heading is not at all times obtained, we iden-
tified a cascaded structure, since the position tracking subsystem is perturbed by the solution of
the orientation tracking subsystem. Subsequently, the cascaded system is proven UaGAS based on
cascade system theory.

Then, we chose the previously introduced virtual frame as virtual center for a reference forma-
tion. Based on the formation trajectory, we provided conditions that ensured feasibility of the set
reference trajectories, so that they can be used as reference for tracking. This already allowed to
track the set of references by a set of unicycle robots, but without coupling we cannot guarantee
the formation tracing behavior, since the quadrotor UAVs can not react to disturbances that hap-
pen to the other quadrotor UAVs. Therefore, in order to overcome this problem, we implemented
mutual coupling between the agents. Since the defined tracking errors are expressed with respect
to the mutually known virtual formation center, we directly compared tracking errors in coupling
functions to synchronize behavior. We obtained a new set of generalized coordinates by adding
coupling functions to the previously defined position tracking errors. The new generalized tracking
dynamics provided a very similar structure as the single-agent system, which allowed us to use the
same approach as for the single agent. We chose to leave the orientation tracking subsystem uncou-
pled since it then remains entirely in service of achieving the virtual input by attaining the desired
orientation. This resulted in the fact that the orientation tracking subsystem remained in tact
and prevented from conflicting orientation objectives; the orientation controller can simply try its
best to service the position subsystem by obtaining the desired orientation instead of additionally
trying to synchronize. Again, the closed-loop position tracking subsystem is proven UGAS for the
scenario in which the orientation tracking subsystem is converged, which corresponds with the sce-
nario in which the defined virtual input is perfectly obtained. The orientation tracking subsystem
remained unchanged thus is proven UaGAS. What remained is to analyze the system in cascade,
which additionally analyzed the scenario where the virtual input is not at all times obtained. This
scenario originates from the fact that the actual orientation can differ from the desired orientation,
which perturbs the position tracking subsystem. Based on the stability proofs for both separate
subsystems and proven conditions on the cascade term, we proved the cascaded system UaGAS.

In order to test the behavior of the system, we simulated a simple test-case and showed that
the mobile robots converged to the reference structure.

Formation tracking with quadrotor UAVs

Subsequently, we adopted an approach for the quadrotor UAV very similar to the approach we
used for the unicycle robot. Different from the unicycle robot, we directly adopted a model and
controller with only minor differences regarding coupling-readiness, namely, we again defined the
error coordinates relative to a mutually known virtual formation centered frame. We followed the
same approach of defining a virtual input for the now spatial position tracking subsystem, which
rendered this subsystem UGAS. Then, the size of the virtual input is again obtained with the force
magnitude input and we defined a desired attitude. Because of the fact that we used saturation in
for the virtual input, the desired direction is well defined and the magnitude of the thrust vector
is bounded, in compliance with actuator saturation. Together, these force magnitude input and
desired attitude provide the wanted virtual input. The actual thrust vector is fixed to the body
and aligned with the body-fixed downwards direction. Because on this alignment, we were still free
to choose any rotation around the thrust vector while we still able to obtain the virtual input. In
order to have the desired attitude fully defined from the desired direction, we chose to prescribe
the rotation as a rotation around the axis perpendicular to both the desired thrust vector and the
thrust vector of the reference. This choice provided that we that the yaw angle is defined in addition
to the roll and pitch angles that follow from the desired direction of the thrust vector, meaning
that we have the desired attitude fully defined. In order to asymptotically achieve this desired
attitude, we defined attitude tracking errors and a control law that renders this subsystem UaGAS.
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A cascaded structure resulted from the fact that quadrotor UAV is not in the desired attitude at all
times, so the system was analyzed using cascade system theory. Based on cascade system theory,
the cascaded system was proven UaGAS.

Now, we defined virtual formation structure in space to obtain a set of feasible reference trajecto-
ries for a set of quadrotor UAVs. This allowed to already use multiple uncoupled quadrotor UAVs
to track this structure, but coupling is needed to have some control over the formation tracking
abilities as a group; without coupling agents cannot react to disturbances to the other. Therefore,
we defined coupling errors for the agents, based on the directly comparable tracking error defini-
tions. These errors are directly comparable since we defined these relative to the mutually known
formation centered frame. This frame choice also provided tracking behavior that is characteristic
relative to the formation frame. Alternatively, if we chose the inertial frame to express the errors
in, the tracking gains are expressed relative to the chosen inertial frame, thus the behavior differed
for a different inertial frame choices. We showed that directly implementing the coupling functions
in the defined virtual control laws provided a system that was hard to prove stable. Therefore, we
implemented the coupling errors together with the tracking errors in new generalized coordinates
in order to provide generalized dynamics that are similar to the generalized dynamics for a single
agent. We were able to follow the same steps as before in order to prove stability.

We showed that the mutually coupled position tracking subsystem was UGAS, based on a defined
virtual input. We also showed that this virtual is obtainable by the actual inputs for control. Then,
we obtained the magnitude of the virtual input with the actual input, i.e., the force magnitude or
thrust magnitude. After that, we defined a desired attitude. When we achieve this desired attitude,
the thrust vector is pointed in the desired direction. In order to asymptotically achieve this desired
attitude, we again formulated the same tracking problem which is again rendered stable using the
torque input. The attitude system is proven to be UaGAS. Similar as for the unicycle robot, we
chose to not implement coupling on the attitude subsystem, since we wanted it to be fully in service
of the position tracking subsystem. Since the desired attitude is obtained asymptotically, resulting
from the tracking approach that is used to obtain this desired attitude, the desired attitude is not
exactly obtained at all times, which means that the position tracking subsystem is perturbed by
the resulting error in the attitude tracking subsystem. Therefore, a cascaded structure is again
identified. The cascaded structure is shown to be UaGAS based on cascade system theory.

In order to fully test the system, we executed simulations both with two and five agents. For
the two-agent system, we verified that a low coupling strength resulted in relatively weak coop-
eration with respect to tracking the individual reference trajectories and a high coupling strength
resulted in relatively strong cooperation with respect to tracking the individual references. With
the five-agent system, we showed the resulting behavior when a single agent is perturbed once
or perturbed continuously for the coupled system compared to the system with coupling off. We
showed that the formation is able to react to disturbances to specific agents and that we are able
to influence this reaction with the coupling gain.

Then, the system is implemented for experiments with two Parrot AR.Drone 2.0 quadrotors and
some necessary additions are provided. These additions comprise external localization and a net-
work architecture for real-time operation but we did not yet include an algorithm to avoid collisions
and entering each others dangerous airflows. Some primary results showed a relatively large de-
lay of 0.43 s and relatively long sampling time of 0.2 s for the external localization source. This
prevented us from performing aerial experiments with the current software implementation on the
chosen hardware.
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5.2 Recommendations

Although the main objective of our research is obtained, the current status is far from a complete
solution for multi-agent quadrotor systems. First of all, the quadrotor UAVs are coupled by includ-
ing coupling errors in the generalized coordinates and then stabilized by a virtual input. However,
in order to actually achieve and thus apply this virtual input, all quadrotors have to know almost
all states of the other quadrotors. This of course consumes a large amount of the communication
bandwidth, but also requires an enormous amount of calculation power. This means that the system
tends to be operated in a centralized manner, since all the quadrotor UAVs otherwise have to run
very similar and relatively heavy calculations. For future research, two obvious improvements arise.
We can embrace the centralized operation and find uses that can work while hosted by a centralized
ground unit, or we can reconsider the coupling approach to create a more decentralized formation
tracking algorithm. The first approach allows us to focus a bit less on calculation power and more
on additional algorithms to create a more advanced system, but also makes it much harder to get
the developed system out of the research and demonstration atmosphere. The second alternative
provides a system that is potentially very scalable, but provides constraints on calculation power
and possibly prevents from a very coordinated approach as the one we developed.

Additionally, currently the program is developed with and implemented in Euler angles, but we are
free to use a quaternion representation in the software of the system. This quaternion representa-
tion requires less storage and less calculation power for rotation chaining than the rotation matrix
alternative. Possible improvement of the program can be made regarding the required amount of cal-
culations (CPU) and required memory capacity (RAM) by using quaternions to represent rotations.

Currently, the controllers are developed under the assumption that we can perfectly access the
state of all quadrotor UAVs at any time. The truthful situation is, however, that we have sampled
and delayed measurements of some states with a limited accuracy and at specific times. The ex-
change of state information even happens over WiFi with UDP, allowing for information to never
arrive or end up at the wrong device without any of the agents noticing. Therefore, in the future,
each of the agents has to be equipped with a sufficient state observer in order to provide some guar-
anteed accuracy regarding the own state, and therefore for others, even between measurements.
In that way, the currently developed system with the relatively low sampling frequency for exter-
nal localization could be sufficient for real-world operation. Past research has already considered
observers that can be used, but improvements can still be made, e.g., by including time delays.
Another approach might be to increase the sampling frequency of external localization, e.g., by
considering only a part of the image from the overhead camera based on the last known position
of the quadrotors.

In the current system, it is necessary to have the thrust magnitude larger than zero in order
to have the desired attitude well defined. Currently, this requirement is ensured to be achieved
by using saturation of the virtual input, other approaches like a hybrid system approach can be
considered as well. This can increase the performance of the position tracking controller and with
that the agility of the UAV.

Then, before executing experiments, some kind of collision avoidance algorithm should be im-
plemented in order to have the guarantee that collisions will not happen. This algorithm should
take into account possible collisions, but also dangerous airflow resulting from the propellers of
other quadrotor UAVs. Without collision avoidance, it is only possible to decrease the chance on
a collision by flying with a large distance between the quadrotors and by checking the flight paths
beforehand.

Lastly, in previous research it has been shown that integral action is required to overcome off-
sets that result from a faulty mass in the model, while we currently did not implement this integral
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action. Especially for large systems of ’homogeneous’ quadrotor UAVs it is very hard to get all
masses modeled correctly, since the identity of a specific quadrotor can change during or between
operations and these systems are never truly homogeneous as a result of production differences.
Many of the sensor differences should be handled by the observer or by some kind of automated
calibration. For the mass estimation fault, however, we should include the integral action in order
to overcome steady state errors as a result of faulty mass determination.
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Appendix A

Towards experimental validation

In this Appendix, we provide some steps for the development of a system of multiple quadrotor
UAVs that operates in the real-world. In order to test the real-world behavior, we want to execute
experiments in the future with at least two quadrotor UAVs. Some necessary steps have been
carried out and the learning points that followed from the resulting system are included at the end
of this Appendix.

A.1 Experimental setup

In this section, we introduce a localization algorithm for multiple agents and design a network
architecture that allows us to work with multiple agents at once. After that, we introduce the
hardware that is used for the experiments.

A.1.1 Multi-agent localization

In order to control the quadrotor UAVs in a real-world scenario, we need to have some sort of lo-
calization of the quadrotors. Several different on-board techniques exist for doing this by using the
on-board sensors of the device, like SLAM (simultaneous localization and mapping) [54], particle
filters like adaptive Monte Carlo localization (AMCL) [55] or sensor fusion based on the extended
Kalman filter (EKF) [56]. However, since our current setup is short on processing power, we aim
to use an external localization technique. During the experiments, we want to use a single-camera
system, while in the outdoors this can later be done by something like GPS (global positioning
system). It is important that the external localization algorithm can make a clear and robust dis-
tinction between the different agents, since it can be catastrophic to send the position of a specific
quadrotor UAV to a wrong agent.

An answer to multi-agent and robust localization has been found in [57], where experiments
with multiple agents have been executed based on specific marker-patterns. The different marker-
patterns that are used for localization are included in Figure A.1. When starting with the algorithm
from [57], change the number of drones k from 1 to a range that describes the set of agents in the
system. Furthermore, make sure that the UDP-send function only sends localization data from
agent i to the specific address of quadrotor i. In order to send data to all involved quadrotors,
all quadrotors have to be connected to the same network. Although we now have a system that
locates multiple quadrotor UAVs, there are many potential situations that provide a mix-up of the
ID numbers. For an imaginable system of two quadrotor UAVs with ID 1 and 2 from Figure A.1,
any one of the LEDs from quadrotor 2 that is not seen by the algorithm causes a mix-up in the
ID numbers. Therefore, additional robustness is created by making sure that when not all LEDs
are located the new location of the quadrotor UAVs are provided with the same ID numbers as
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1 32

Figure A.1: Schematic representation of the markers used for localization and identification with
the algorithm from [57]. The black dots represent LED lights, the bars represent LED-strips and
the numbers are the automatic ID numbers.

the closest quadrotor in the previous time step, this is schematically shown in Figure A.2. Notice
that as a result of the absolute minimum sample frequency of 5 Hz and absolute maximum flight
speed (but usually much lower) of 5 m/s [58] combined, the position vector between the current and
previous step for a specific drone is usually smaller than the vector between the current location
and the previous location of any of the other quadrotor UAVs. Under normal circumstances the
length between two samples of the same quadrotor is thus less than 1 m, while we intent have much
more space than 1 m between any two drones. Notice that the sampling frequency can be increased
by dedicating more computational power to operating the algorithm, but also by only considering
a part of the image based on the last known position of the quadrotor UAVs.

ID:1, t=3.00

ID:1, t=3.20

ID:1, t=3.40 ID:2, t=3.40

ID:2, t=3.20

ID:2, t=3.00

Figure A.2: Schematic 2D projection of the position of the quadrotor UAVs in the xy-plane as
provided by the localisation algorithm with the overhead camera. The ID number update procedure
is indicated with the black vectors denoting the right ID decision and the red vectors representing
the wrong decision for ID numbers.

A.1.2 Communication architecture

The Parrot AR 2.0 quadrotor UAV features an on-board DHCP server. This means that in order to
communicate with multiple quadrotors, we have to develop a different network architecture. When
we do not change anything, the supervisor has to connect to all quadrotors separately, which means
that the number of agents is very limited, since normally every network card can only connect
to a single WiFi network. One way to solve this problem is to use an additional DHCP server
that features a wireless access point (AP), which are both services that most common routers have
included. By aborting the original networking process on the quadrotor and simultaneously making
the quadrotor a client to an open network with specific service set identifier (SSID) and internet
protocol (IP) address, we can connect the drone to the AP of choice. We use [59]

1 k i l l a l l udhcpd ; iwcon f i g ath0 mode managed e s s i d SSID ; i f c o n f i g ath0
DRONE IP netmask 255 . 255 . 255 . 0 up ;
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of which SSID has to equal the SSID of the AP and DRONE IP has to equal an arbitrary IP address
that is free and within the range of the router. Notice that in order to communicate with the drone
after booting the device, we have to connect to the network of the quadrotor in order to execute
these commands. The removal and installation thus has to happen simultaneously since the used
network for communication is terminated by the commands. Furthermore, notice that we are only
able to connect to an open network, in order to connect to a WPA secured network additional
firmware is required [60]. The resulting Network architecture is schematically shown in Figure A.3.
Notice that if the router also has an internal network switch, which most of the commonly used

Agent 1 Agent 2

Supervisor

Laptop 1 Laptop 2

Wireless

Access Point

DHCP Server

UTP cable

Wi-Fi

GigE Camera

Router

External

Localization

/

Figure A.3: Schematic representation of the proposed system architecture in which agents are
connected to a DHCP server/wireless access point (WAP) combination. The network allows a
connection between the connected devices and allows scalability for multiple agents and support
hardware.

routers have, we can easily connect the router to the internet and we can easily connect the GigE
camera to the router by a wired connection. However, for the GigE camera, we prefer to connect
the camera to the laptop directly to prevent from a vast amount of data being transmitted over the
wireless network unnecessarily; only the resulting locations are being transmitted over the wireless
network by laptop 2.

A.1.3 Hardware

For the experiments we use two identical (apart from manufacturing differences) quadrotor UAVs
that are commercially available: the Parrot AR.Drone 2.0. A list of specifications is included in
Table A.1.
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Table A.1: Specifications of the Parrot AR.Drone 2.0.

Dimensions lx × ly × lz = 517× 451× 50 mm3 [58]
Mass 456 g including LED-strip [19] 420 g out of the box with hull [58]

Processor 1 GHz 32 bit ARM Cortex A8 Processor [58]
Memory 1 GB DDR2 RAM (200MHz) [58]
WiFi Own network (DHCP host) max range of 50 m [58]
Motors 4 brushless inrunner moters, max 14.5 W and 28.500 RPM [58]
Battery 1500 mAh 3S (3-cell) Li-Po [58]

Max velocity 5 m/s [58]
Sensors GPS, front-facing camera (1280× 720 @ 30 fps, fov 90◦ diagonal),

down-facing camera (320× 240 @ 60 fps, fov 64◦ diagonal),
barometer (precision 10 Pa), 3-axis magnetometer (precision 6◦),

3-axis gyroscope (precision ±2000◦/s),
3-axis accelerometer (precision ±50 mg)

and ultrasonic distance sensor (range 0.2 m - 6 m) [20]

Additionally, the quadrotors have a cool-white LED strip mounted on top for localization with the
specific lay-out as in Figure A.1. The camera that is used for localization is the GigE GE1900
camera [57], operating at 30 fps and full HD. The router that is used for the experiments is the
D-link DIR 600 router. The laptop that is used for execution of the control system is the HP
EliteBook 8570w Workstation, running Windows 10 and Matlab 2016b. The second laptop is used
for localization with Matlab 2015b is the Asus R500V, also running Windows 10.

A.2 System-architecture for experimentation

The required relations for control of the multi-agent system require more calculation power than
the single agent system from [19], while even then the central processing unit (CPU) was a limit-
ing factor. Therefore, we are unable to operate the multi-agent quadrotor system entirely on the
on-board micro processors. In order to overcome this problem, we develop a system that operates
somewhat hybrid, based on the tooling presented in [61], by outsourcing the input calculation to a
central ground-unit. This means that each agent gathers sensor data and bundles this data into an
ordered bit-package that is sent to the central ground-unit over the wireless network hosted by a
router. The ground unit clusters the data of each of the agents with an extra additional localization
source from the top camera based on [57], also obtained over the wireless network. The now recon-
structed states are used to obtain the required relation to provide control action, by also computing
all reference and desired states for that time step. The calculated inputs fi and τi are sent to each
of the corresponding drones in the network. On board of the quadrotor UAVs, these inputs are
then transformed to PWM signals based on motor constants that are obtained trough calibration,
as in [61]. On-board of the quadrotor UAV, the PWM signals are also saturated one more time
in order to make sure that the PWM signals do not exceed the maximum allowable value. Notice
that it is important to make sure that this saturation bound is not reached, since it will change
the control action drastically, since both the thrust magnitude and torques are effected. Because
of that, one possible improvement is to change this saturation so that it scales the force magnitude
and torques directly in order to make the PWM signals fit in the domain. This provides the benefit
that we are still able to control the attitude during saturation so that we have full control over the
quadrotor at all times. For now, we accept the saturation of PWM signals directly, since with the
incorporated saturation terms and gains in the control laws we can make sure to keep within the
saturation bounds of the PWM signals.

The modeling is done with Euler angles, since because of the use of a central ground unit compu-
tational power is not scarce. In future on-board implementations, however, a quaternion approach
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should be considered, as it has certain benefits with respect to Euler angles, as explained in Sec-
tion 2.1.2; a quaternion implementation requires less storage and less calculation power for rotation
chaining than the rotation matrix alternative.

The tooling from [61] is used for calibration, communication and actuation functionality and the
controllers from Chapter 4 are implemented for two drones in order to control the drones.

A.3 Experiments and learning points

After calibration, we tested the system that is described in the previous section in experiments.
First, we tested the communication by communicating known data between clients of the network.
We were able to verify first on bit-level that we are able to transfer binary data. After that, we
extended to sending bytes that represented singles and doubles from measurement data. After this
verification of the data transfer, we connected the sensor data feed and were able to directly send
the data that was required for operation. This means that we were able to access the measurement
data to compute the control input. The controller was already tested in simulations and therefore
we now have all the building blocks needed to operate the system. However, during real time
operation we noticed some shortcomings in the proposed setup which we would like to include here
as learning points for future work.

• The sampling frequency of the IMU is 400 Hz, assuming that the wireless connection is not
limiting, we can operate the system at up to 400 Hz. However, the only source for the
absolute position in x and y is the overhead camera which can currently only run steady
at a maximum of 5 Hz. This position update frequency of 5 Hz is a huge limiting factor
in the feedback control and therefore either the sampling frequency should be improved or
some kind of observer should be included to provide a better estimate of the position between
measurement samples. One possible method to increase the sampling frequency of the top
camera is to only search in a part of the image for the quadrotor UAV given their previous
position, direction of motion and the amount of time that has past. In that way the image
search algorithm can operate much quicker which is possible since the camera can run up to
30 fps.

• There is a considerable time delay induced by the specific system configuration between
measurements and actuation. For example, whenever the localization algorithm is ready to
accept a new image it takes the last available image, which can be as old as 1/5 seconds
because of the frame rate which can maximal be 30 fps is decreased to the frequency of the
image searching algorithm. Then, the image search algorithm takes place which takes 1/5
seconds. The location data is then transmitted to the laptop that bundles this data with
sensor data from the quadrotor UAV that is slightly less delayed since it operates at 100 Hz
and transmits at 100 Hz. The laptop then calculates the new inputs. Since the program runs
at 100 Hz, the data is read after a maximum of 1/100 s as soon as the new time step starts.
During next sample of 1/100 s, the input is calculated and send towards the microchip on
the quadrotor UAV. Since the wireless connection with the quadrotor operates at 100 Hz,
after a maximum of 1/100 s the new inputs are read and applied for 1/100 s. Thus, in the
worst case scenario the quadrotor UAV is provided with inputs that are calculated based on
measurements that are taken 0.43 s before, meaning that the delay can be up to 43 samples
when operating the quadrotor UAV at 100 Hz.

• The on-board saturation on the microprocessor of the quadrotor UAV simply saturates each if
the four motor signals to the chosen maximum whenever the controller provides motor signals
that are higher. However, this means that the desired input is not applied at all, since the
torque as a result of the difference between the motor signals is canceled because all of the
motors can potentially be saturated to the same value. It is beneficial to only scale the overall
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magnitude an keep the desired torque in tact whenever possible, because then the quadrotor
is able to best control its attitude at all times.
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